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F(Z)

G(x,y)

NOMENCLATURE OF TERMS

Wave number of plan form solution

Biot number at fluid layer boundary, Z=0, hoL/k
Biot number at fluid layer boundary, Z=1, hlL/k
Specific heat at constant volume

Differential operator, %; = %—%E

Z-component of vertical disturbance velocity
Constant of gravitational acceleration

Plan form solution for disturbance velocity or temperature
Heat transfer coefficient

Thermal conductivity .
Total layer depth

Depth of upper sublayer

Depth of lower sublayer

L2

Dimensionless grouping, N = .
s 2k(To—Tl)

Basic state pressure

Disturbance pressure

Volumetric energy source

External Rayleigh Number

Internal Rayleigh Number as defined by Kulacki and Goldstein(ls)
Maximum horizontally averaged layer temperature

Upper boundary temperature

Lower Eoundary temperature

Disturbance temperature

Steady state temperature

Temperature

Time



U*

V*

W*

Disturbance velocity in x~direction
Disturbance velocity in y-diraction
Disturbance velocity in z-direction

I~th component, external force

Horizontal coordinate

Horizontal coordinate

Vertical coordinate in fluid layer, 0 < z < L
Dimensionless vertical coordinate in fluid layer, z/L, 0 < Z < 1
Thermal diffusivity

Coefficient of volumetric expansion

Viscosity

Kinematic viscosity

Dissipation function

Decay constant for disturbance velocity
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1.0 INTRODUCTION

The possibility of a core disruptive accident in the proposed
Liquid Metal Fast Breeder Reactor (LMFBR) has prompted a detailed
study of post accident core heat transfer characteristics. O0f specific
interest is the heat transfer mechanism in a molten fuel layer heated
by a decay heat source uniformly distributed throughout the layer.

Best available data on thermophysical properties of molten mixed-
oxide fuel, <U0.8 PuO.Z)OZ’ are tabulated in Table 1. The maximum
fuel-layer thickness of interest is approximately 12 to 15 cm. For
thicker layers, boilling and the possibility of criticality of the fuel
layer change the nature of the heat-transfer problem. ﬁeat generation
rates of interest are from lw/cm3 to as high 50 to 60 W/cmB. These
limits correspond to decay heat power levels for the Fast Flux Test
Facility one month after shutdown from sustained operation at design
power or for Clinch River Reactor fuel 1005 after shutdown. These layer
thicknesses and heating rates result in internal Rayleigh Numbers as
high as 6 x 1010. The external Rayleigh Number depends on the boundary
temperatures. As an exitreme case, consider a layer of molten fuel with
molten steel at its lower boundary and boiling steel at its upper boundary,
i.e., -the lower surface temperature, TO’ is 1683 °K and the upper sur-
face temperature, Tl’ is 3073 °K. These conditions give an external
Rayleigh Number of 1.1 x 1010. Considerations such as the foregoing
provide the motivition for the presert investigation.

An initially quiescent fluid layer can be breought tc a state of
internal convective motion if a sufficiently large imbalaace is caused

between buoyant forces, which tend to disturb fluid elements, and restraining



Table 1. Thermophysical Properties of Molten (UO.B Pu0.2)02.
[After Baker, et al. (1).]

Melting point 2770 °C
Boiling point ' 3150 °C
Density 8.4 g/cm3
Thermal conductivity 0.029 W/ (cm®C)
Specific heat 0.5 J/(g°C)
Expansion coefficient 1074e¢™1
Thermal diffusivity 0.0069 cmzlsec
Kinematic viscosity 0. 0060 cmzfsec

Prandtl number 0.9

viscous forces. Buoyant forces due to density differences can be produced
by differential warming of the fluid at its horizontal boundaries or by
warming of the fluid from within.

The ratio of the buoyant forces promoting convection to restraining
viscous forces is the characteristic dynamical parameter for such systems

and is expressed by a dimensionless grouping of the form,

R, = 58 am?,

(5,11)

for fluids satisfying the classical Boussinesq relation wherein
the density, p, is treated as a constant in all terms in the equations
of motion except the one in the external force. The temperature
difference between the top surface and lower surface is AT, and L is a
characteristic length of the layer. These sympols are defined in the
Nomenclature List.

This grouping is denoted as the Rayleigh Number in honor of Lord

Rayleigh(ls) who first used it in his analysig of hydrodynamic instability

in fluid layers warmed from below. This group is now more commonly called



the external Rayleigh Number hecause it describes a physical situation
whereiln buoyant forces arise from differential heating at the horizontal
boundaries. Hence, there exists a fixed external Rayleigh Number for
each layer which has a specified temperature difference between the top
gurface and the bottom surface. For such a fluid layer, there exists

a critical external Rayleigh Number, R_., such that instability develops

EC
when its value is met or exceeded. For instance, if RE is less than REC’-
thermal convection can't occur, and heat travels only by conduction within
the fluid layer. If a small disturbance is created in the fluid, the
disturbance dies away with time because of viscous forces. Such a state
is described as stable and small disturbances can't grow into convection
cells. ’

The first quantitative studies of externally driven thermal convection

(2) who wtudled the flow produced in a

were the experiments of Bénard
horizontal liquid layer heated from below. His work was the first to
demonstrate the onset of thermal instabilities in fluid layers heated
from below. His general description of the flow has survived until today,
however, and externally driven thermal convection in horizontal fluid
layers is generally termed "Bénard Convection." Another class of thermal
convection~-that driven by internally produced density differences--is
regarded as an extension of classical Bénard Convection.

After Bénard's experiment, the first amalytical treatment aimed at
the determining the conditions delineating the breakdown of the steady state

(8,9) (19), and Pellow and

was published by Lord Rayleigh. Jeffreys y Low
Southwell(31), have extended Rayleigh's initial analysis to a broader
range of boundary conditions. In particular, Pellow and Southwell present

the most tomplete theory of the thermal instability concerning the classical



Bénard Convections. The aforementioned analytical studies have
congidered hydrodynamic boundary conditions which correspond to the
following containment conditions of the fluid layer: (1) the upper
and lower bounding surfaces are both rigid (zero slip); (2) the lower
surface is rigid, while the upper surface is free (zero shear);

(3) the upper and lower surfaces are both free. The latter condition
does not appear to correspond to a real physical situation, but it
may be of theoretical interest.

The thermal conditions usually applied at the upper and lower
surfaces are based on the supposition that these surfaces are in contact
with materials of infinite thermal conductivity and heat capacity. From
such a model, it follcws that the temperatures at the surfaces are kept
constant.

(12)

In a spzcilal case, Jeffreys investigated a situation wherein
both upper and bottom surfaces are both rigid and insulted. Objections
to this condition have been raised both by Low and by Pellow and Southwell
on the grounds that both béundary surfaces are kept at constant temperature.
However, actual physical situations suggest that the thermal boundary
conditions of fixed temperatures at the surface of the fluld layer may
be too restrictive. If the heat-transfer coefficient between the surface
and the environment is finite, the surface temperature will be perturbed
when the quiescent state breaks down. The Biot Number, appropriately
expressing the conductance of the boundary relative to that of the fluid
layer, was thus included in the thermal boundary conditions for the
temperature disturbance at the surface.

Nield(za) and Hurle, et al.(v) have done stability studies which

included boundaries of finite thermal conductance. These works are,

however, limited to stability in the classical Bénard problem. Nield found



that for layers with a rigid and isothermal lower boundary and a free
upper boundary, decreasing the Biot Number of the upper boundary
destabilizes the fluid layer, (i.e. yields lower values of the critical
Rayleigh Number). Hurle et al. considered a layer bounded by two<rigid
walls of finite thickness and found that by decreasing the thermal
diffusivity of the boundaries the critical external Rayleigh Nﬁmber
decreased.

(33) determined critical Rayleigh Numbers for layers

Sparrow et al.
with a rigid (zero slip) lower and a free upper boundary. The lower
boundary had either constant temperature or constant heat flux. A
decreasing Biot Number at the upper boundary was shown to have a destabilizing
effect on the fluild layer. '

Sparrow et al, also treated the stability problem for a fluid layer
with a uniform, volumetric energy source. For two rigid and isothermal
boundaries, with the effects of the volumetric energy production super-
imposed on a basic linear conduction temperature profile, the critical
external Rayleigh Number was found to decrease as the volume heating
source increased. The range of critical Rayleigh Numbers REG studied
under different boundary conditions ranged from 103 to 105.

(29)

Roberts periormed stability calculations for a fluid layer
with a uniform volumetric heat source enclosed in an insulated lower
boundary and an isothermal upper boundary. Both boundaries were rigid.
At such conditions, only one critical external Rayleigh number existed.
Another Rayleigh Number used for an internally heated fluid layer

is defined by Kulacki(15). This Rayleigh Number can be expressed as



wherein the characteristic length scale is L/2 and the maximum
temperature difference in a layer with a symmetrical parabolic con-

2
1 _
duction temperature is -+ (%%—). Because, it is concerned with the

4
internal source, q, it is called the internal Rayleigh Number.

Kulacki(ls), in ﬁis dissertation, investigated the critical internal
Rayleigh Number for a fluid layer with constant heat flux at both sur-
faces, but with different hydrodynamic constraints. It was shown
that the critical Rayleigh Number decreases monotonically with decreasing
Biot Number when the Biot Numbers at both boundaries are identical. The
game trend was found in the case of asymmetrical thermal boundary con-
ditions when the ratio of the upper éurface Biot number, Bl’ to that at
the lower surface, BO’ is fixed. If the lower surface Biot Number is
held constant, an increasing Biot Number ratio, Bl/BO, is strictly
destabilizing. If the thermal boundary conditions are the same, the
more stable configuration is a layer with rigid-rigid hydrodynamic con-
straints; the less stable, a layer with free-rigid surfaces.

The purpose of this study is to calculate the critical internal
Rayleigh Number, RKG’ and the critical external Rayleigh Number, REC for
either rigid-rigid and isothermal surfaces or free-rigid and isothermal
gurfaces. The magnitude of critical internal Rayleigh numbers studied
ranges {rom 103 to lO10 while critical external Rayleigh Numbers studied
extend from 104 Eo 1010.

In the following sections, the governing equations for the fluid
layers of interest will be developed, the methods of solution will be

examined and resulting solutions discussed with respect to previous

studies.



2.0 THEORY

2.1 General Solution

In considering the quesﬁion of stability in a horizontal fluid
layer with an internal energy source, several simplifying assumptions
are made uéually to produce a tractable mathematical problem.

These are: |

(a) The layer is assumed to be of infinite horizontal extent.
In a physical sense, the layer is of such an extent that

all edge effects are negligible.

(b) The fluid is incompressible and the volumetric energy source

is constant throughout the layer.

(c) Buoyancy forces are due to thermally induced density differences

only.
A schematic of the system and the coordinate system are shown in
Fig 1. To describe the problem completely, the three Conservation
equations and the equation of state are required. These equations can

be expressed in tensor form as,

2

P %E Vi = pXi - %;;—P + vpV Vi ’ (2.1)
%Pt-+~£-i- (V) =0, (2.2)

o = bl - B(T-T] , (2.3)
pvi%;;cv'f+pg-t-cvr=kv2'r-P-§%+q+@, C(2.4)

where the symbols have been defined in the Nomenclature list. From the

Boussinesq approximation the specific volume, v, the specific heat at
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Fig. 1 Schematic Representation of a Horizontal Layer with
Uniform Internal Energy Sources.



constant volume, Cv, the coefficient of volumetric expansion, B, and

the thermal conductivity, k, can be treated as constants. The density,
p, 18 also treated as a constant except in the body force term, pXi, and
there is no viscous dissipation (%=0}.

In the initial (steady) state, Vi=0, and P=P_ and is independent of

0

x and y. Therefore, under such conditions, these equations can be

simplified as follows:

ar,
~ g, (2.5)
EXi =0 (2.6)
axi ’
vir +9.-¢ (2.7)
SS k - . »

By solving Eq. 2.7, the initial temperature can be expressed in
the form,
+ Az - (q/2k)22 . (2.8)

Tgs = Tp

where A depends on the boundary conditions., Substituting Eq. 2.8 into
Eq. 2.3 it follows:
= w - = - 9,2
p=py 11 - B(Tgg = Tgd} = py(1 - BAz + B 5 27) . (2.9)

Now assume that there is a small (infinitesimal) disturbance applied
to the basic conduction state. Let U*, V¥, and W* be the resulting dis-
turbed velocity components in the x, y, and z directions respectively.
These velocity components are sufficiently small to justify neglect of
their squares and products. This is the basis of linear theory.

Similarly, let T* be the deviation from the steady state temperature.

It follows:

TH = T - [T, + Az - (a/2k)2%] . (2.10)
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Substituting from Eq. 2.8 into Eq. 2.4 and neglecting the second order

terms in Vi*, and T#*, it follows:

~awx + dpue = (2 - ov?T L (2.11)
k ot
Substituting for the temperature, T, in Eq. 3, it is obtained
- - 9,2 _ arx
p po(l BAz + B T BT*) , (2.12)

Comparing Eq., 2.12 with Eq. 2.9, it can be seen that the incremental
density which resultslfrom,the convective motion is a very small fraction

-RT* '
&___JEE_____) of the steady state density. Hence, the increment may be
aa, B4 2
1-BAz 272

neglected when it is multiplifed by U%*, V%, W%, or T*. In like fashion,

’

the pressure of the system after the disturbance is:

P = P0 + Bk (2.13)

By virtue of Eq. 2.5, three component equations follow from Eq. 2.1:

& %
LR -;—-g-}‘-} + wlux (2.14)
* %
3t & 1.%§m + vy | (2.15)
% sP* :
%‘g—-= gRT* —% z—z— + woluk (2.16)

From the continuity equation, it follows:

ouU* | oV*  aW%
™ + 5y + oy 0. (2.17)

Eliminating U* and V* by combining Eq. 2.17 with Eqs. 2.14 and 2.15,

it is obtained:

ey (2.18)
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2 2
where Vi represents ——E-+-g—§ . Furthermore, Eq. 2.16 may be expressed
ax ay
by operating on both sides with Vi,
9 252 2 1 _2 aP#*
— 4 = e ma — i i
[55 - VWIvy Wx = gV T TRl (2.19)
Adding Eq. 2.18 and Eq. 2.19, it follows:
9 2..2 2
—_— % = *
[at wWOIVT W gBVl T* . (2.20)

By operating on both sides with [%E - uvz] it is found:

9

2,.9 Zocd on . 2.9 2
T - vV ][3? - aVT]V W = gBVl[ - aV ]T* . (2.21)

9
ot
But the quantity [%E - aVZ]T* is known from Eq. 2.11. Substitution of

Eq. 2.11 into Eq. 2.21 yields an expression for W¥, 4

2oy
ot

V2112 - av? vk = ga(-a + doyviun | (2.22)
9t kK71

This is, thus, the governing equation for the perturbation velocity in

the vertical direction.

(17)

The solution of this equation was sought first by Lin in the form,

Wk = F(z) G(x,y)e’ , (2.23)

where ¢ is, in general, a complex number.

1f Re{v} >0, then the disturbance velocity and temperature increase
with time, that is, pure instability results if Re{c} > 0. On the other
hand if Re{c} < 0,'then the disturbance motion will eventually die out.
Finally when 0=0, the disturbance neither grows nor decays, and this limit

is termed the marginal or neutral stability limit.
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Following Kulacki(ls)

» 1t can be shown that the function G(x,y)
obeys

ViG(x,y) + (a/L)%6(x,y) = 0 , (2.24)

where "a" 1s a single wave number corresponding to the onset of motion.
Substituting Eqs. 2.23 and 2.24 into 2.22, an expression for the function

F(Z) is obtained, (detaills of the derivation are covered in Appendix A).

Thus:

a°F (2) 2 d*r(2) 4 427 (2)

% " 3a -fﬁ-z---+ 3a o

dz dZ dZ
+ (A + QZ)F(Z) + 02¢l<z) +ap,2) =0, (2.25)
where
p
Z=2z/L, A= —(gBL‘Aaz/u\J)—a6 and 0 = gBquazfavk.

The groups A and @ represent constants which are determined from
the problem statement. The wl and ¢2 funetions need not be stated in-
asmuch as they drop out of the forthcoming analysis, because o is equal
to 0 in the stability limit.. (See Appendix A for explicit form and

derivation.)

Under these conditions, Eq. 2.25 can be expressed as,

4

6 4 2.0,
da FéZ) _ 332 d F(Z) + 334 Li._._F_;__z'_}. + (MQZ)F(Z) = 0 , (2.26)
dZ dZ dz” ’

which isla homogenous ordinary differential equation for the perturbation
function F(Z).

Therefore the resulting eigenvalue problem for this homogeneous
system of equations provides a means for determining the conditions under

which a solution for the perturbation can exist.
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2.1 Power Series Solution

The general solution for a sixth order homogeneous differentilal
equation can be constructed in the form,

5
Fz) = 1 ¢t @ (2.27)
1=0

with Ci arbitrary, and in which the f(i)(Z) are a convergent power

series(33}.

Following Sparrow(33), it can be demonstrated that the series

coefficients bn(i) obey the folleowing relationship foxr n > 6,

b D = L 2@y, @ - sat@enr b @

n - nl

2 4
- P Bymeery, | (2.28)
and b_l(i) = 0. In addition, the bo(i) through b5(i) are specified as
p () oy (04a<5), | (2.29)

wherein Gni=l for n=i and Gni=0 for n¥i. The constants, CO’ Cis oes C5,
which appears in the solution for F(Z) are to be determined from the

boundary conditions. (See Appendix E for further discussion.)

2.2 Boundary Conditions

It is assumed that the layer is horizontal and large enough to
neglect any edge effects; therefore, two hydrodynamic boundary condi-
tions and two thermal boundary conditions are required to solve the

problem.
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2.2.A Hydrodynamic Boundary Condition

2.2.A.1 Free Surface

When a surface is not constrained by a rigid boundary, it is called
a free surface, A free surface requires that the vertical velocity

component, W¥, vanishes, and in addition, it is not able to support a

aU* DV
tangential stress. Thus, the partials 5;—-and 2z 2re both zero. Under
these restrictions, it follows from the continuity equation, Eq. 2.17, that
22w
5 = 0 and that

oz 2

P2y = 58 - o (2.30)

dz

2.2.A.2 Rigid Surface

A rigid surface requires that all the velocity components vanish

identically ("no slip") U* = V¥ = W& = 0 at the wall., Correspondingly,

* *
the partials %g—-and %gn-are both zero. From the continuity equation
%
it follows further that %g~ =0 . In terms of the F(Z) function,
_dF(z) _

2.2,B Thermal Boundary Conditions

2.,2.B.1 Fixed Surface Temperature

If the surface temperature is constant, then it must remain
unperturbed by any temperature perturbations in the fluid. Thus, T*
at the surface for a fixed surface temperature must be zero. From

Eq. 2.20, it is obtained at the surface,

[%E-- vvz]vzw* =0 . (2.32)
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Substituting the general solution, Eq. 2.23, into Eq. 2.34, the

boundary condition in terms of F(Z) is obtained,

4 2
Q—Eé—l - 252 Q—Eégl + a%F(z) =0 . (2.33)
dz dz

2.2.B.2 Constant Heat Flux

If heat is being transferred at a free surface, then the energy
must be conducted to the surface since no tangential slip or normal
velocity components are allowed. By Fourier's Law, the heat flux, Q,

passing through the free boundary per unit time and area, is

q = <k 2% ) (2.34)
z
surface

Energy transport in a fluid is more conveniently expressed in terms
of the product of a heat transfer coefficient, h, and a temperature

difference,

O ag
-k 5= h(T - T) , (2.35)

where T is the ambient temperature above the surface. If T is replaced

%) then 21X = (WL/K)T* , si k(aTSS - R d
by (TSS + T*) then - ( ) » since -k(5- ) = h(TSS_Tw)' estate

in terms of the F(Z) function, it is found that

d°F (Z) " A3F(Z) . 4 dF(2)
———7;—— - 2a -__75__ + a a7z
dz 4z
hL L d*F(z) 2 d%r(z 4
= hL dF@) _,.2dF@) , Gpyy , (2.36)
k © gzt dz?

2.3 Application of the Boundary Conditions

Four different sets of boundary conditions are discussed in this
investigation. These are also shown schematically in Fig. 2. Each of

them will now be covered in turn.
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Fig. 2 Four Different Boundary Situations of a Horlzontal
Layer with Uniform Internal Heqt Sourcos
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The first case of interest is one in which both the lower and the
upper boundaries are rigid and isothermal. The boundary conditions

appropriate to this case are:

2=0, F(Z) = g%ézl =0
dr@ L2 4@ _
azt az? ’
Z
7=1, F(z) = dgéz) =0
4
d Féz) _,2d a%r@) ez =0 .
dz dz

Substituting a power series for F(Z} inte the above equations, there

follows: ;

—4alc. + 24 ¢

2 5. =Y

0= [C2f(2)(z) +c ez + c4f(a)(2) +C f(s)(z)]

3 5 Z=1 »

P o aP@ ,  aWe 4P

0=1¢, =3z 3~ az 4 dz 5 dz . Jdz=1 o

5 (1)
i C [d f : (Z) 2a

2 26 @) | 4wy L
=2 b az dz &l

2

The second case of interest is one in which the lower boundary is

rigid and isothermal, but the upper surface is free and isothermal. The

boundary conditions appropriate to the case are

dF(Z)

Z=0, F(Z) = az

:0,

d*r@z) ,q2 F@) _
45@) aF() _

dz dz2

17



2

z=1, r@) = 58 - o,
dz
d*r(2) 2 a’F(z) . 4
A F2) _ gy 12 4 2% @) =0 .
dz dz

Substituting Eq. 2.27 into the above equations, there follows:

2 —
-4a"C, + 24C, = 0 ,

(@) + ot @@ + e D@1, =0,

(2)
[czf (z) +¢C 5

3

42?2y ‘e 4263 (7 . a26 %) (25 ' a2 7y
dz dz dz

3 gDy 2 %My 4w, .

X CiL————j;——— ~ 2a 5 4+ a'f (z)]z=l =0 .

i=2 dZ dz

The third case is one in which the lower surface is free and

insulated, but the upper surface is rigid and isothermal. Then,

boundary conditions appropriate to this case are

2
7=0, Fz) = & Féz) -0,
dz
5 3
SR _ 2 EF@) 4 dEE) _
dz° az3 dz
F(Z
-, rm=EE oo,

fc 4 8 =0
2 2 3 2 4 2 5 dzZ Z=1

the

18



Again, substituting a power series into the equations, it follows:

Cp = Cy=0
120¢, - 12a3c3 + a4cl il
(1) (3) (4) (5) _
[le (Z) + C3f (Z) + Cﬁf (Z2) + Csf (Z)]Z=l =0,

(1) (3) (4) (5)
df 7 (2) df 7’ (2) df* 7 (2) df "’ (Z) -
€, =@  *C~az tC T tC g g =0
4 (i) 2.(1)
o (8B 52 45~y AWy =0
1=1,3,4,5 dz dz

The last case of interest is one in which the lower surface is
free and insulated, but the upper surface is free and isothermal. Then,

the boundary conditions appropriate to this case are: ;

2
7=0, r(z) = 4 Féz) -0,
4z
42 (2) 2 &3F(z) | 4 dF(2)
LHL) _ 9a* S5, 4 - o,
dZ dz
2
7=1, AR ng) =0,
4z
d*r(z) 2 d®Fr(z) . 4
458 927 S5 4 3% @) = 0
dz az

Again, substituting a power series solution into the above equations,

there follows:

Cp=C =0
2 G
120c, - 12a%, + a'c, = 0,
o 20 L % P, K L,
1 dzz 3 dzz 4 dzz 5 de Z=1
4. (1) 2.(1i)
Ae® a2V 4 @) )
o B - 2a? S 4 Wy, =0

i=1,3,4,5 dZ dz

19
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The principle used to find the critical external Rayleigh Number
is the same in all four cases. As an example, consider the last case.
In such an instance, the boundary equations constitute a system of
four, linear, homogeneous, algebraic equations in the four constants Cl’
A non—-trivial solution exists if and only 1f the deter-

C c

3 €4 Cs
minant of the coefficient matrix vanishes,

The value of the determinant depends on two parameters, the external
Rayleigh Number (gB(leTO)LS/av) and the constant "a". For every "a"
value, an external Rayleigh number exists that causes the determinant of
the coefficient matrix to be zero. Moreover, it is found that for a
particular "a", there is a corresponding Rayleigh Number which is smaller
than that for any another "a". A solution for the disturbance equation
cannot be found for'any external Rayleigh Number below this wvalue.
Physically this means that the quiescent state is stable because no
perturbation function can be found. Therefore, the aforementioned minimum
external Rayleigh Number corresponds to the onset of instability. This

is generally called the critical external Rayleigh Number and it is this

number that is of interest in the present study.
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3.0 RESULTS AND DISCUSSION

Consideration will now be given to investigating how the stability
of an initially quiescent layer is affected by the shape of the tempera-
ture distribution in the fluid. In the present study, a non-linearity
in the temperature distribution is created by a uniformly distributed
heat source, q. The boundary condition selected for this phase of
study is a free or rigid, fixed-temperature upper surface and rigid,
fixed-temperature lower surface.

3.1 The Temperature Distribution

If the temperature of the lower and the upper boundary surfaces

are designated as Tl and T0 respectively, then the steady-state tempera-

ture distribution can be expressed by
(T-T,)/ (T,-T,) = 1-Z4K (22" (3.1)

or alternatively
(1-1,)/ (T,~T¢) = 1-2'4(-Ng) (z'-2'%), 2'=1-2 , (3.2)

in which NS is a dimensionless group which is defined as

Ng = qL2/2k(T0—T1) ) (3.3)

The parameter, NS is a non-dimensional term due to internal heat generation.

Inasmuch as (1-Z) represents a linearly varying temperature distri-
bution, (q=0), then the departure of NS from zero is a measure>of the
non~linearity introduced by the heat source. The heat source, q, will
always be a positive number; therefore, NS>0 must correspond to TO>T1,
while NS<0 will correspond to T1>T0. Inspection of Eqs. 3.1 and 3.2

reveals that the shapes of the temperature profiles for NS>0 and NS<0

are the same, provided that the former is plotted as a function of Z
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and the latter is plotted as function of Z'=1~-Z. The graphical
presentation of the temperature distribution is displayed in Fig. 3.
From Fig, 3 1t is evident that in the range 0 5_NS < 1, the
highest temperature in the fluid layer occurs at the lower boundary
surface, Z=0. As N_, Increases beyond unity, temperatures in excess

s

of that at Z=0 occur within the fluid. Further increases in NS give

rise to corresponding increases in fluid temperature, and the location
of the temperature maximum approaches Z=1/2.
The situation is somewhat different for NS<O. In the range

~1 < N, < 0 the temperature is monotonically increasing with helght, and

8

the fluid layer is completly stable. However, for N_<-1 temperatures

S
within the fluid layer exceed that of the upper bounding surface, with
the consequence that a heavier fluid is situated above a lighter fluid,

and instability becomes possible.

3.2 Stability Criteria

3.2.A From Power Series

The actual computation of stability criteria is carried out in a
manner similar to that already described in Section 2.3. The series
solution is stated as before, but the parameters A and §§ which appear

in the recursion relation becomes:

2

A= a?”RE(l—NS)-«aG, R = 2a°R.N (3.4)

S L]
It ig of interest to inquire how the present results calculated by

power series method compare with those obtained with other techniques.

Only one of the entries in Table II can be specifically compared. For

the case of the Bénard problem, (i.e. two rigid-isothermal surfaces and

no heat source), the critical external Rayleigh numbexr found analytically
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24

is 1707.762, While the power series solution used in this thesis yields
a result of 1707.765. (For details of the analytical solution, see
Appendix D.)

The results obtained for case I (two surfaces rigid and isothermal)

are showmn in Tables II and III for N_>0 and NS<0 respectively. The first

S
two columns are results by Sparrow, et al. (33) (The critical external Rayleigh
nunber's range is between 103 and 105.) The other two columns are results
from this study. From Table III, it is observed that as NS approaches ;l,
the external Rayleigh Number approaches infinity. This result is
expected since, from Fig. 3, it is found that NS = =1 corresponds to a
completely stable solution.
An expression for the eritical Rayleigh number has bBeen derived by
Baker, et al. (1). Conceptually, they divided the fluid layer at the
plane of maximum average temperature into two sublayers, one with an
insulated lower boundary and one with insulated upper boundary, as shown
in Fig. 4. They subsequently used analytical expressions for the tempera-

ture distribution in these sublayers to develop the correlation.

For pure conduction heat transfer, it follows:

A Q(L“Lo)z
Teh === > (3.5]
and
ToTot o (3.6)
Since E must be the same for both Egqs. 3.5 and 3.6,
2 L
-7 =8k (0 _



Table II. Critical External Rayleigh Numbers for Two Rigid
and Isothermal Surfaces

NS>0
Sparrow, et al. (33) This Study
Ns 2 Rec a Ree "
0 3.12 1707.765 3,12 1707.765
0.1 3.12 1707.636 3.12 1707.636
0.25 3.12 1706.953 3.12 1706,953
0.5 3.12 1704.453 3.12 1706.453
1.0 3.13 1694.953 3.13 1694.953
1.5 3.14 1679.407 3.14 1679.407
2.5 3.18 1632.886 3.18 1632.886
3.0 S SR 3.20 1630.431
5.0 3.30 1462.863 3.30 1462.863
$s5 3.43 1279.267 3.43 1279.268
10.0 3.53 1118.430 3.53 1118.430
15.0 3.68 878.339 3.66 878.303
20.0 3.74 717.201 3.74 717.201
30.0 3.82 521,403 3.82 521,403
40.0 3.86 408,558 3.86 408.558
70.0 3.92 247.075 3.92 247.075
100.0 3.94 176.936 3.94 176.936
200.0 e SRR 3.97 90.855
21.0..0 357 86.639
o 4.00 o et 4,00  ———e—-

*
For all power series results, uncertainty is in the fourth place for
mnmo

the critical Rayleigh number and in the third place for "a
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Table III. Critical External Rayleigh Numbers for Two Rigid
and Isothermal Surfaces.
NS<0
Sparrow, et al. (33) This Study
—Ns a REC a R;C
1 m—— e R
1.1 — o e 10.001  3,500,505,265.535
1.2 ———— meemmeeee 10.00 242,937,954.626
1.3 e 10.¢C0 21,815,951.328
1.5 e 7.95  7,474,917.681
1.9 m—— meeemeew B.65 416,216.478
2.1 ——— Sl 7.75 227,718.976
2.3 ———— e 7.20 142,127,694
2.5 ———— e 6.40 99,915.567
2.7 — = 6.40 " 70,758,144
2.9 ——— = 6.21 53,860.144
3.0 6.13 47,673,615 6.10 47,724.903
5.0 5.10 11,527,500 5.10 11,527.520
7.5 4,73 5.+172.813 4,73 5,172.813
10.0 4,59 3,215.211 : 4.55 3,215.226
15.0 4.38 1,783.818 4,37 1,783.811
20.0 4.28 1,221,732 4,28 1,221,732
30.0 4.18 744,170 4.19 744,168
40.0 4.14 533.579 4,14 533.57¢%
70.0 4,08 287.819 4.08 287.819
100.0 4,06 196.891 4.05 196.891
200.0 - 4.03 95,842
210.0 ———— emm————— 4,03 91.161
220.0 - 4.02 86.918
230.0 —— e 4.02 83.051
o 4,00 —————- 4,00 mmmmmeem——eeee—e
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This may be changed into a form,

2k(Tl—TO) ) RE 5 EQ .
2 32RKG L

(3.8)
qL

where the internal Rayleigh Number of the upper layer is expressed as,

‘ gBLi q LO 5
Reer1 = Ghavk - Pke a-

(16)

: (3.9)

Following Kulacki , the RKGLI’ which is the critical internal Rayleigh
Number for a layer with an insulated free lower boundary layer, was set

equal to 25.7899, Substituting Eq. 3.8 and the critical value of RKGLl’

into Eq. 3.9, it follows that

(1 - 38311, , (3.10)

0.2
Rxe

RE = 32 RKG
The comparison between the theoretical critical Rayleigh number

as listed in Table II and III, and the empirical prediction of Eq. 3.10
is shown in Fig. 5. Agreement between the theoretical and empirical

predictions is very good for large R However, for RE<106, there is

E.
gome variation between the empirical correlation and the theoretical
prediction. From the points calculated by the power series method, the

least squares fit expression 1s found to be:

_ 4294
R, = 32.46 Reo(1 - 25575 (3.11)

Rxe

3.2.B Upper Surface is Free and Both Surfaces are Isothermal

The Rayleigh Numbers marking the onset of instability calculated

from the power series for this case are presented graphically in Fig. 6.
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A parallel presentation of the results is made in Table IV, wherein

the N_ values corresponding to the critical Rayleigh Numbers are also

S
listed. Attention should be directed to the results of Fig. 6. TFrom
an inspection of the figure, it is seen that for a given NS, the
critical Rayleigh Number for an upper rigid surface is larger than that
of an upper free surface. This agrees with the intuitive feelings that
a layer with a rigid surface is more stable than a layer with a free
surface., That this result is also true for a fluid layer without heat
sources is shown by Sparrow(33). There is a marked difference in the
numerical values of the critical Rayleigh Numbers for these two cases;
however, the ratio of these two critical numbers is relatively constant

and equal to about 2.2.

3.2.C Lower Boundary is Insulated

If the lower boundary of a stable layer is free and insulated,
there is only conduction present inside the layer. From the conduction

equation under such thermal boundary conditions, it follows:
T. - T, = 2, (3.12)

Substituting this relation into Eq. 3.3, it is obtained that NS=1.
This means that the critical Rayleigh Number of such a layer has physical
meaning only if NS=1. Using the power series solution with suitable
boundary conditions, the critical internal Rayleigh Number for a layer
with a free and isothermal upper surface is 13.947, while for a layer
with the upper surface rigid, the critical internal Rayleigh Number is’
25.810. Kulacki has used another method (see Reference (32)) to arrive
at similar results. He found that the critical internal Raleigh numbers

for each case are 13.559 and 25.789 respectively. His method supposes



Table IV. Critical Rayleigh Numbers for Two Isothermal
Surfaces (lower surface rigid).

-Ns upper surface rigid upper surface free
100.0 196.891 88.027
40.0 533.579 239.306
20.0 1,221,732 552.602
10.0 3,215.226 1,485.624
3.0 47,673.615 22,371.853
2.5 99,915.567 45,336.103
2.3 142,127,694 66,840.103
2.1 227,719.976 107,554.322
1.9 416,216.479 194,527.491
1.5 7,474,917.681 498,072.094

1.2 242,937,954.626 =00 =—em——————
1.1 3,500,505,265.535 = ==meeee—e- '

1.0 e e
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that there are three trial solutions that satisfy the boundary conditions
at Z=0. Then, the linear combination of the trial solutions will satisfy
the boundary condition at Z=1, It is verified, therefore, by two
techniques, that a layer with a rigid upper surface is more stable than

one with the upper surface free,
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4.0 CONCLUSIONS

Hydrodynamic instability in a fluid layer with a uniform volumetric
energy source has been shown to depend on both the hydrodynamic and
the thermal constraints imposed at its horizontal boundaries. If the
external Rayleigh number under specified conditions is less than the
critical Rayleigh number, the layer is stable, and within if there is
only conduction. The importance of this study is two fold. First, the
range of critical Rayleigh Numbers investigated has been extended to
higher internal Rayleigh Numbers approximating the postulated post
accident heat removal scenerios in an LMFBR. Second, the expression of
Baker, et al. (1) has been verified for critical internal Rayleigh
Numbers greater-than 105. In cases I and II, (lower surface rigid and
isothermal, upper surface isothermal and either rigid or free), the
critical external Rayleigh Number decreases monotonically with increasing
internal heat generation as expressed by NS (when it is positive) or
with decreasing NS (when it is negative). In cases ILI or IV, where the
lower boundary is free and insulated rather than isothermal, the critical

Rayleigh Number is less.
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APPENDIX A

Derivation of the Governing Perturbation Equation.
This appendix has been included to illustrate the derivation
of the governing Eq. 2.25, TFrom Section 2.0, it was found that three

equations existed as follows:

W& (X,y,2z,t) = F(Z)G(x,y)ect s (A.1)
2 2
V] 6(x,y) + (a/L)"G(x,y) = 0, (A.2)
_.a.._. g3 2 _a__ = 2 2 % s ﬂ_ 2 * =
[at VY “3!: ave]veux 4 gp(a . z)vl W 0, (A.3)
where
2 2 2
v2532+32+"’2, , (A.4)
ax 9y 9z
2 2
v B e B (A.5)
1 2 2
ox oy
2
vievia o, (A.6)
1 2
9z
From Eq. A.2, it follows:
2 a2
Vi GGy) = = =5 Glx,y) - (A.7)
i 5

Another expression for Eq. A.l can be obtained by multiplying both
sides by the operator V2, it follows:

2
Pk (x,y,2,8) = (72 + S)F(2)6(x,y)e’"
az

2
= —F(z)eUt EE G(x,y) + Fz(z)G{x,y)ect " (A.8)
L

Let the symbol A ., be equal to the right hand side of Eq. A.8.

1!



Then

9 2
(Bt - ov)4,

1

+

A 2
381 2 3
- oV + 322)Al

ot

2
- 2 B (2)6( et + 0e”F P () ¢, (x,y)

&~

2
EEZF(z)G(x,y)eUt +‘§55 F(z)(Z)G(x,Y)ect
L L

2

555 F(Z)(z)G(x,y)eUt - aF(A)G(x,y)eot .

=

Let the symbol ﬂz be equal to the right hand side of Eq. A.9. Then

(

9

at

o+

+

at

-wm%-w%%wqm=§~wﬁ%

2
v (230 0x, 73" ~ 3B £ hnix, vyt

LZ

0ar ™ (236 (x,1)e%" - 0wk (2)6(x,y)e

4 2
+ _____Baza F(z)(z)G(x,y)eUt + cect a2y ;v Fz(z)G(x,y)
L L
232u (2) ot azu (2) ot
= F (2)G(x,y)e” " + == F " (2)G(x,y)e
L L
2 ot_(2) ava6 ot
o%e” F 17 (2)C(x,y) - —¢— F(2)G(x,y)e
L
2 a ot \.ua.£l ot
0" = F(2)6(x,y)e” " - 0 —— F(2)G(x,y)e " ,

L

Substituting Eq. A.10, into Eq. 2.22, it is obtained,

39

(A.9)

" (4.10)
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2
avF(6)(z)G(x.Y)e°t'*‘QEEEH F(a)cz)G(X,Y)eot
L

& 2 6 2
3008 52 ()60x,y)e + (- 2598 - M8, 2 BB )p(s)G(x,y)e”"

L L2 L6 sz
2 2 4
+ 060k, y)e” AR 5P () + 228§D () 4 B9 gy - 2o p(a)

L L L L

2 @),y 420
+ 0%6(x,y)e”" (F'(2) + L F(2)) =0 . | (A.11)
L
Let Z = %‘, then

(6) )
OTRNE At RO JANEE Auidc)]

>
L L4
(2)
F gy 1@ (A.12)
L
Substituting these above relations into Eq. A.ll and dividing by
L6 on both sides, it is obtained,
(6) 2 @) | 4 dEr@ )
F (Z) - 38" ———*=+ 3a + (MRZ)F(Z2) + o (L F ()
4 2
dz dZ
+ LaazF(Z)) + o(a ovL F(Z)(z) + 2a aF(z)(Z)L
+ L2va2r D (z) - va*L2r(z)) = 0, (A.13)

where

-(gBL&Aazfav)-a6 ;

=
1]

Q= gBL qa /avk ,

4 2

4F(z)(z) + L a"F(z) ,

<=
-
]

= a2avt?F(?) (2) + 22247 P (2)1.2

hd
™o
I

+ 12va25 () 7y = vali2p(zy |
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Computer Program for Two Rigild

and Two Isothermal Surfaces
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APPENDIX C

Variation Solution

This appendix has been included to demonstrate use of the variational

method to find the critical external Rayleigh number.

(6,27)

Following reference » 1t may be shown that the governing

equation, Eq. 2,26, can be changed to the form,

HF(z) = RMF(Z) , (c.1)
H= @ - a2)3
M = (aZ(NS—l) - 2a2NSZ) ,

where RE is the external Rayleigh Number and the eigenvalue of the

equation. By the variation principle, a relation can be formed;

_ <F+,HF>

R
<F' MP>

" ; (c.2)

wherein F+(Z) is the solution to the adjoint equation becuase F(Z), H,

and M are self-adjoint. It follows that

1
| FWFaz

R

E (€C.3)

| FMFdz
0
The external Rayleigh Number RE is, thus, a function of NS and "a".

For example, if N_=0, a trial function of the form

)

_ 6 5 4 3 2
F(Z) = alz + azz + a3Z + aaz + aSZ

may be chosen. The polynomical coefficients can be determined from the
boundary conditions. Substituting this polynomial into Eq. 3.13, it is

found that a=3.12 and that RE is 1688.15. For comparison, the power
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series solution yields a value of 1707.765 for the critical external

Rayleigh Number. If F and F+ are varied by amounts &F and 6F+, then RE

will vary by amount ARE. Therefore,

+, o+
R, + AR = j(F++aF+)H(F+5F)dz _ (€. 5)
[(F +8F YM(F+5F)dz
Substracting RE from both sides (where RE is in the following form),
[ +s7 M (F+oF) dz
Rp r—— ) (C.5)
J(F +8F )M (F+6F)dz
An explicit expression for ARE can be obtained,
+ + + +
J6F HSFdZ-REfﬁF MSFAZ+[ (F +8F)H(F+8F)dz+[F (HSF-RMSF)dZ
AR, = ' - . (C.6)
[(F +8F )M(P+68F)dz
From the definition of an adjoint operator, it follows:
[(rt+sF ) (uF-RMF) Az = 0 , (€.7)
[rrmesmyaz = [sr@'FHdz , (C.8)
¥ (MsF)az = [SFQUF )dz . (C.9)
Hence the Eq. 3.16 can be simplified as
[(s¥VHsFYaz - REIM(SF)ZdZ
ARy = (C.10)

[F S M(FH6F) dz

The error in RE calculated from the variation method depends on the
many functions shown in Eq. C.10. The accuracy mainly depends on the trial
function. If the trial function is close to the real solution, the results
will be good. The solution of the governing equationm is so complicated that

several trials are necessary to select the appropriate trial function.
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APPENDIX D

Bénard Problem Solved by Analytical Method(s)

Following the derivation in Chapter 2, but with the origin located
in the middle of the fluid layer, (i.e. Z'=Z - 1/2), the governing

equation suitable for the Bénard problem (q=0) is as follows:

0% - 253 F@z") = R a’F(z") , (®.1)

Boundary equations for two rigid and isothermal surfaces can be

expressed as follows:

F(z') =DF(Z2') =0, atz'=4%1/2, (D.2)

(m%-a%) F@z'y =0, atz'=%1/2. (D.3)

The solution of Eq. D.l can be expressed in such a form:

Fz') = aed% (0.4)

Substituting Eq. D.4 into Eq. D.1, it follows:

23 o g wf (.5)

(d2 - a
Let

R, a”~ = 17a . (D.6)

Then, it follows:

d6 - 3a2d4 + 3a4d2 - 36 = -13a6 {D.7)

There will be six roots suitable to the Eq. D.7. These are:

d; = fa/t-1 = 1d_, (.8)
d, = - ia/t-1 = -id_ , (D.9)
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dy = avl + 1/2 t(1+1v3) = d , (D.10)
d, = -a¥l + 1/2 T(1+iv3) = ~d , (D.11)
dg = a’l + 1/2 t(1-1 /3) - 4" , (D.12)
¢ %
dg = -a’l + 1/2 t(1-i/3) = -4~ , (D.13)
The properties of d can be stated as follows:
2 2
R{d°) =a" @+,
2
Sy Y3 a
Im{d } = 2 T »
ldzi = a2/1+1+12 R 5
d2 = a2/1+f+12 eie
wherein
gin § = /3 T/2/1+T+12
cos 6 = (1 + 7/2)/#1+T+T2
Then,
| 5 1/2 1/2
R {d} = 2~ { (L+1+t7) + (1+ t/2)} : (D.14)
€ V2
" 9 1/2 1/2
I {d} = - — {(1+7v+t") + (1+ ©/2)} " (D.15)
n V2

Therefore, the solution for Eq. D.2 can be stated as:

F(Z'") = AOCOS dbz' + ACoshdZ' + A* Coshd*Z' , (D.16)
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Then:
DF(Z') = -AOdOSindDZ‘ + Adsindz'

+ A*d*Sinhd*2' , (D.17)

-2t 2r "y = Ao(doz + a?) Cosd z' + A(d2-a2)? coshdz

* -
+ A*(d £ a2)2 Coshd*Z . (D.18)

By applying Eq. D.17 and D.18 for Z' = 1/2(or - 1/2), and dividing

the last row by a412, it follows:

[ 1 | d d* )
= & az [4 ) ()
cos 2 do Cosh 2 Cosh 2 A0 0
d
; o d - a*
—d051nh o dSinh 7 d*Sinh 7 A = 0 (D.19)
d
0 1v3-1 d 1V/3+1 d*
s el SN et bl o %
LCos 3 2 Cosh 5 > Cosh 2 ) (A% ) .0

For a non-trial solution, the determinant of such a matrix must vanish,

1 1 1
do d d#*
-dotan 7 dtanh 7 d*tanh‘iw =0, (D.20)
1 1v3-1 ~(1/3+1)
2 2

By simplifying the determinant, it follows:

(4, + V3 d,) Sinh d; + (/3 d,-d,)sind,

-dotan E'do = Cosh dl + Cos d2 (D.21)

wherein

d = avr-1l ,

o
a ” 1/2 1/2
= — {(l+7+1°) + (14 1/2)})
V2

dy
a , 1/2 1/2
= — {(1+1+17) - (1+ t/2)}
V2

d,
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Then from Eq. D.21 and Eq. D.6, the critical external Rayleigh number

can be found. The results are:

a=3.117 , Rp, = 1,707.762

C
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APPENDIX E

Convergence of the Power Series Method

The accuracy of critical external Rayleigh number calculated from
the power series depends on how many items are retained in the solution
of the governing Eq. 2.26. However, after a certain number of terms have
been retained, the critical external Rayleigh number does not change
appreciably, and further terms result in unnecessary computational time.
For an example, if the number of items used to calculate the critical

external Rayleigh number at N_, = 100 are varied, the critical external

S
Rayleigh number is as listed in Table E.l.

Table E.1 Effept of Varying Power Series Terms on Calculated External
Rayleigh Numbers.

Number of Items a REC
30 3.94 180.6232
35 3.95 176.9054
40 3.94 176.9362
45 3.94 176.9360
50 3.94 176.9360
55 3.94 176.9360
65 3.94 176.9360
70 3.9 176.9360
75 3.94 176.9360

Therefore, it is apparent that after forty-five items, the answer
does not change at all. It is adequate to use fifty terms in the cal-

culation of the ecritical Rayleigh Number.
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ABSTRACT

The stability in a horizontal fluid layer with a large, uniformly
distributed energy source is investigated. For the first time, an
analytical solution is obtained for critical external Rayleigh numbers
ranging beyond 1010. Specifically, a power series expression is used
for the case where both surfaces are rigid and isothermal, but at different
temperatures. The results are in good agreement with the empirical
solution of Baker et al(l). The critical Rayleigﬁ numbers are also cal-
culated for the case where the upper surface is free and isothermal and
the lower rigid and isothermal. TFurther calculations of the critical
external Rayleigh number are made either for a free and isothermal upper
surface or a £igid and isothermal upper surface, both with a lower surface
insulated and free. From the results, it is shown that fluid layers with

a rigid upper surface are more stable than those with the upper surface

free.



