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1. INTRODUCTION

1.1 The Transportation Problem

Managerial decisions are directed toward choosing the best possible
outcome, as measured by costs, profits, or some other suitable criterion,
from among the potential courses of action. While numerous alternatives
may be available, the level of achievement is limited by the necessity of
meeting certain prescribed conditions. A traffic manager may desire, for
example, to schedule freight shipments in a manner which will insure the
movement of goods at lowest total cost. The goods are usually available
at various points (depots) for delivery to prescribed destinations {demand
points). For a given problem, there generally exist many different
schedules which meet the demands at varying levels of total costs. The
traffic manager is therefore concerned with devising some method for
selecting a schedule with least cost. This transportation problem exists
in practically all industries.

A typical transportation problem (24, 39, 47) is shown in Fig. 1.
There are s factories (sources) manufacturing items of a particular
commodity at levels Wl, Wz, iy WS and there are N sinks (demand points)

D D

32 N®

number of units of the resource sent from the ith origin to the nth demand

consuming the item at levels D Let Bin represent the

g3 tees
point and Fin(ein) be the cost incurred by this operation. It may be a
linear or a nonlinear cost function. The problem is to determine

8, ,i=1,2, ..., 83 n=1,2, ..., N, so as to minimize the total cost

of transportationm.

N s
I 1 FCe,), (1.1)

n=1 i=1 &

CsN
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Fig. 1 The direct shipment (transportation) problem



subject to the constraints

(i) Non~negativity constraint

8,,20, 1=1,2, ..., 85 n=12, ..., N (1.2)
N
(ii) ) B, = Wso  1=1,2, uiuy 8, (1.3)
n=1
S .
(iii) iEl 6 "Dy B L2, cuss N (1.4)

The feasibility of the problem can be assured if

S
W,20, D >0, and ] W,

(1.5)
° i=1 n=1

|
~1
o
=]

In the above formulation, the cost of transporting the commodity
from origins to destinations is assumed known and is also assumed to be
independent of the ﬁumber of units moved. Constraint (ii) implies that
the supply or product of any one depot (origin) serves equally well to
satisfy the demands of any destination (consuming center). Resources and
products are homogeneous. The supplies of resources at various depots
and the demands of the various destinations are known. Constraints (ii)
and (iii) imply that the total demand is equal to the total supply. In
practice it is possible to equate demand and supply by including a dummy

origin or destination.

1.2 The Transhipment Problem and the Transportation Problem

In the transportation problem only direct shipments of resources to

their destinations are considered. In addition to direct shipment, the



extended transportation problem allows one to ship from source to source
and from destination to destination., This direct extension of the trans-
portation problem is called a transhipment problem (13).

From the standpoint of business and industry, this is a more realistic
description of the distribution or resource allocation problem. Indeed,
a firm may frequently find it necessary to ship its products from one
warehouse (source) to another in order to meet an abnormal rise in demand
in the second supply area. In such a case the second warehouse behaves
both as a source and as a sink thus blurring the distinction. In other
words, each source or sink is permitted to act as an intermediate point
for shipments from other scurces to other sinks.

Now not only the direct links joining sources to sinks but also all
other possible links must be considered. TFor comparision, a problem
with two sources and three demand points is shown in Fig. 2.

In the transhipment problem each 'in' link must be considered as
two distinct links because there is a difference whether material is sent
fromn to i or from i to n. There is an economic reason for this difference
even though freight rates between two points are often the same regardless
of the direction of shipment. It is easier to follow such a difference by
considering a pipeline connecting two stations, one on the top of a
mountain and another in a valley. The cost of pumping uphill is greater
than down. It is valid for different freight rates, too.

Assume a simple s X N transhipment problem where s is the total
number of resources and N the total number of demand points. When this
s x N transhipment problem is converted into a transportation problem, it

becomes one with s+N shippers and s+N receivers. Any amount can be
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shipped from source teo source and from destination to destination.

In addition the following assumptions are made in converting tran-—

shipment problem into the transportation problem (63).

(1) Treat each point as a pair of points, one acting as a shipper

and the other as a receiver.

(2) The cost of shipment from a point considered as a shipper to the

same point considered as a receiver is set equal to zeroc, i.e.

in(ain) = 0 for i = n.

(3) The amount shipped from a point comsidered as a shipper to the

same point considered as a receiver is equal to zero, i.e.

§., =0 for i = n.
in

Before formulating the problem, 2 definition of the amount transhipped

should be given for clarification. Consider a shipper whose production

level is eight units and a receiver whose consumption level is five units.

If the shipper sends all eight units directly to the receiver, who

consumes only five, then the remaining three units are said to be transhipped

by the receiver (30).
Let s denote the amount transhipped by the ith point.

leaving the shipper is

s+N
L ein = wi + ti’ 1= 1.2, suey 83

the amount leaving the receiver is

s+N

¥ 8.y = £ys 1= (s¥D), (5%2), ..., (sHN);
n=1

the amount arriving at the shipper is

The amount

(1.6)

f %,

e



s+N

] =t , n= 1,2, ..., N; and (1.8)
e

i#n
the amount arriving at the receiver is

6, = Dn + tn’ n= (N+1), (N+2), ..., (N+s) . (1.9)

The transhipment problem would be easy to solve if the exact amount
to be transhipped through each point were known. It would only be
necessary to add this amount to both the supply and the demand for the
point. This would give the total amounts leaving and entering each point,
which are relevant 'supply' and 'demand' figures for the transportation
problem solution procedures. Unfortunately, the transhipment amounts
are part of the solution and are not known initially. It is assumed
for computation purposes that a large amount of the material to be
shipped is available at each point and acts as a stockpile which can be
drawn on or replenished. The solution of the transhipment problem lies in
the fact that withdrawals from and corresponding additions to the stock-
piles are equivalent to transhipment. The stockpile sizes are immaterial
provided they are large enough to permit all possible shipments whichrcan
reduce the cost. In the computation, excessively large stockpiles are
arbitrarily introduced (16).

Assume upper boundary for t,s say tg, then t, 2ty

. = £, = B, i 1 2y yewy (oHN) (1.10)

Now the amount of goods transhipped cannot exceed the total amount of



goods produced (or received), i.e. tg 2

wi, but for the purpose of

I b~

i=1
computation ts is taken to be sufficiently large. Therefore the s x N
transhipment problem can be stated as a (s+N) x (s+N) transportation
problem. Minimize the cost of transportation
s+N s+N

=1 I P (e (1.11)

fu] pu] T 2D

subject to the constraints

SN fwi + tO’ £ o= T2, wais 8
El 9in -
tys i= (s+l), (s+2), ..., (s+N) (1.12)
siﬂ tgo 0= 1,20 wesy N
ii ein -
Dn + tgs n= (ntl), (n+2), ..., (N+s) (1.13)

1= 1,2, coey 8 Cotl), (8F2)y oaey (M)
and 6, > 0, (1.14)
n=1,2, ..., N, (N+1), (N+2), ..., (N+s)

Rather than writing all the equations involved, the model for a
transhipment problem, when converted into a transportation problem, is
usually written in a concise tabular or matrix form as illustrated in

D are essentially

Fig. 3. It should be noted that Ds+l’ Ds+2""" SHN

D., D

12 Dos vees DN for a s x N transportation problem and are so subscripted

for convenience and ease. In comparision with a s x N transportation
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problem, a s x N transhipment problem requires additjional cost data to
be solved by the techniques used for solving a transportation problem.
It is obvious that the cost data of shipment from source to sink (the top
right hand side elements of the matrix shown) will coincide with the cost
data of the original s x N transportation problem. The diagonal cost
elements of the matrix in Fig. 3 will be zero as it indicates the cost of

shipment from a point to itself.

1.3 Literature Review

The transportation problem was formulated by Hitchcock (39) in 1941
and Koopmans in 1947. Dantzig (16,17) was the first to solve it by linear
programming in 1947. Hitchcock showed how to proceed from an initial
solution to the optimal one. He used the problem of distribution of a
product from several sources to a number of cities at the least cost.
Koopmans considered a problem of allocating products for shipment among
the units within a transportation system so as to minimize the number of
units needed to carry out a program but which would reduce the total
cost at the same time. Dantzig applied the simplex method of linear pro-
gramming in 1951 and treated the problem_of linear objective function with
linear constraints. In 1954 Charnes and Cooper (10,11,12) developed a
short method instead of the lengthy algorithms. They devised "the
stepping stone method of solving transportation model," an alternative to
Dantzig's "row column sum calculation method." The simplex method has
certain advantages for calculation by electronic computers but the
stepping stone method is easier to explain because it lays a base for the
essential structure of the problem. The calculation method is more

readily apparent than Dantzig's simplex method. It was proved that it is
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much easier from the calculation point of view when the problems have
fewer origins and demand points.

In 1955 Schell (66) stated an extension of the transportation
problem. He considered it as a block in which the layer in all directions
forms restricted transportation problems. Along with the extensions new
computational methods were developed. Glezal (32) came up with a new
computational algorithm in 1955. He applied it to the problem in which
combinatorial ideas play the major role rather than the theory of
linear inequalities.

In 1956 Vidale (75) developed a graphical approach for the solution
of the general type of transportation problems. He has suggested a method
of successive approximations when the production costs vary with the volume
of resource produced. It was extended to problems involving a large
number of origins and destinations. The assumption made is that trans-
portation costs are monotonically increasing as one moves out from a
given production center, but the rate of increase need not be constant
or uniform in all directions. At the same time Ford and Fulkerson (27,
28,29) handled Hitchcock's capacity constrained problem on assignments to
routes.

In 1956 Bellman (7) applied dynamic programming to the transportatiom
model. He used functional equation techniques to solve a general class
ofltransportation problems. This technique has computational limitatiomns,
such as "dimensionality difficulty," and so far has been used to handle
transportation problems with not more than three sources.

In 1957 Dwyer (22) proposed an efficient method, the method of reduced

matrices. This utilizes successive transformations involving subtractions
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of constants from the rows and columns of the cost matrix. Essentially
the original matrix is reduced by successive transformations to a
completely reduced matrix having a permutation set of zeros identifying
the solution.

Prager (65) published a numerical technique in 1957. It was the
"saturation technique" for the solution of the generalized transportation
problem. This approach is an extension of the Ford and Fulkgrson method
which was used for the numerical solution of the Hitchcock problem.

Ford and Fulkerson (27) worked out "primal dual algorithm" originally
developed by Dantzig. It was used in solving the capacitated Hitchcock
problem. The algorithm starts with a feasible solution to a dual problem.
If that solution is not available, then it uses a solution to a pseudodual
problem.

In 1958 Gerstenhaber (31) proposed another method in which he discussed
the use of row values which he called "producer subsidies." He concluded
that by applying suitable subsidies any transportation problem can be
made to have a trivial solution, one which permits each destination to be
supplied at minimum cost. He demonstrated that the problem of finding
suitable subsidies is equivalent to solving the dual problem. Gerstenhaber .
showed how the subsidies permit easy recomputation of a solution after
perturbation of the problem.

In 1959 Shetty (67) solved the generalized transportation problem
with nonlinear cost function by an algorithm which was an iterative process.
The method can be applied to a wide range of problems by appropriate
interpretation. A feasible solution is obtained at each stage and the
value of the criterion function is improved in going from onme stage to

another.
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Wagner (76) worked out techniques which transform transportation
problems with a certain class of capaclty flow constraints into enlarged
uncapacitated transportation problems.

In 1960 Szwarc (72) developed a transportation model with stochastic
demand. The problem with stochastic demand is considered when penalties
are paid for each over-supplied and under-supplied unit of product. It
was a modificatién of the sﬁandard transportation model by assuming that
the demands of the consumers are random variables which may be dependent
or independent with given density function. In his problem he had a
known non-negative penalty rate associated with each unit of unfulfilled
demand and the nth consumer destination. Similarly there was another
non-negative penalty rate for each unit in excess of the quantity demanded
by nth consumer. The objective was to minimize the total transportation
costs plus total expected penalty cost. In determining the initial sclution
of the transportation problem, Szwarc developed a new method which is a
modification of Vogel's approximation method.

From 1961 many short and simple methods were developed for problems
with fewer origins and demand points. Fetter (25) gave ''morth-west corner
rule" which is used for finding the initial starting solution which reduces
the steps needed in getting the solution.

In 1962 Vajada (73) developed the "shadow cost method." William (71)
applied Dantzig's '"decomposition principle" to Hitchcock's transportation
problem and to several of its generalizations. Among these generalizations
are the transportation problem in which the source availabilities are
subject to general linear constraints and the case in which costs are

linear convex functions.



In 1963 Fan and Wang (24) applied the discrete version of the maximum
principle for the solution of the transportation preblem. It is a2 good
technique when nonlinear cost functicns are considered, but for linear
cost functions the method is not advantageous and linear programming is
resorted to. However, this technique could not be used extensively due
to laborious calculations. Several small problems such as three origins
and three demand points are solved by Hwang and Panchal (23). The
computation becomes more tedious for problems with four or more origims.

In 1963 William (78) considered the more frequently occurring
problem in which market demands are not known with certainty. He assumed
the probability distribution of the demand and market demands were
considered as random variables. This problem of uncertainty was called a
stochastic transportation problem. He also gave an algorithm based on
the decomposition principle.

In 1964 Llewellyn (52) proposed another simple method, "mutual
preference method," to solve the tranmsportation problem. Balinski and
Gomory (5) described a simple method for the assigmment and transportation
problems. Their method is dual to the well known Hungarian method. Balas
and Ivanescu (4) solved the generalized transportation problem by developing
an extended form of the loop-technique of the stepping stone method. It
reduced computational time and effort.

Dwyer (21), in 1966, developed an algorithm for the direct solution
of the transportation problem. It was a method of reduced matrices. Im
the direct method, the basic specifications of the problem are used directly
in solving the problem without replacing them, in whole or in part, with

zuxiliary theorms and criteria and without using the circuitous approach
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of transforming an initial feasible solution to an optimal one. Since the
purest direct method is not practical, a modified form is used. The
method of reduced matrices is used to make subtractions from rows and
columns of the transportation matrix to produce a transformed matrix
with all elements non-negative such that the non-negative integral eij
can be assigned to the zero terms to satisfy the specifications for
origins, 1, aﬁd aestinaticns, n. Formal and informal versions are pre-
sented and applied to several general problems. Heiner (37) developed

an ordered selection method in 1966, which was a sort of cost reduction
method.

In 1967 Stroup (70) formulated the problem of assigning launch
vehicles to space mission as the fixed cost transportation problem. This
formulation assumes unlimited supplies and fixed cost incurred for positive
flow from the sources. He used a branch-and-bound technique to obtain
a minimum cost solution,

Klein (40) proposed a simple procedure for solving minimal cost
flow problems in 1967. 1In these problems feasible flows are maintained
throughout, He developed a primal method for the assigmment and the
transportation problems and also handled convex cost problems. During
1967 Lagemann (51) published a method of two pass operation for trans-
portation models.

The power and simplicity of the transportation models is further
demonstrated by the number of other applications that can be cast as
transportation problems, one being that of transhipment.

Although numerous publications are available on the transporta;ion
problem,rthe literature on the transhipment problem is very limited.

In 1967, Orden (63) formulated the transhipment problem. It is an
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extension of the original transportation problem which includes the
possibility of transhipment. The transhipment technique is used to
find the shortest route from one point in a network to another.

In 1960, Dantzig (16) considered this problem and applied the simplex
method of linear programming to this type of extended transportaticn
problem. Fulkerson (29) considered the capacity constrained transhipment
problem and found its equivalence to be a Hitchcock's transportation
problem. To seek a capacity constrained problem, he imposed upper bounds
on the amounts that can be shipped between any two points in an ordinary
transhipment problem. Garvin (30) also considered the transhipment
problem.

In 1962 Vajada (73) described the transhipment problem as an appli-
cation of linear programming. During 1963, Hammond (35) proposed a more
typical transhipment model of great interest to management. In 1966
Chung An-Min (13) also applied some of the linear programming methods
to the transhipment problem.

However little -literature is available on the transhipment problem,
the work of Orden seemed to be most prominent and much of the available
literature is centered around this reference. So far only linear pro-
gramming has been applied to this problem. Dynamic programming and
maximum principle have not been applied to the solution of a transhipment
problem. Other transportation algorithms can be used when the problems

have fewer origins and demand points.
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2. THE FUNCTIONAL GRADIENT TECHNIQUE

2.1 General

Optimization techniques may be divided into two classes. The first
is composed of single stage techniqueq, such as linear and non-linear
programming, which optimize various stages simultaneously. The other
class is made up of multistage optimization techniques, such as dynamic
programming and the discrete maximum principle, which use certain re-
lationships to isolate interconnections between various stages. Each
technique has its own limitations. Linear programming solves linear
complex processes but cannot handle non-linear problems. Simple serial
structures can be handled by multistage techniques, yet they face dif-
ficulties in solving fairly complex structures.

In view of the complexity of industrial and management problems,
the above limitations are fairly serious. The functional gradient
technique, which is a version of the gradient methods, was developed for
variational problems. It is an iterative procedure and improves the
assumed feasible controls by using the gradient direction. A set of
feasible control values is assumed in the beginning to initiate the
procedure.

While applying the gradient technique to the solution of the trans-
portation problem, stopping conditions and additional comstraints must be
considered. The functional gradient technique method can be extended
easily to handle additional constraints. The general procedure involves
guessing a nonoptimal starting decision function which satisfies the end
point conditions of the problem. Using this nonoptimal decision functionm,

a better solution can be obtained.
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2.2 The Numerical Method

Keliey (44) and Bryson obtained the equations for the gradient technigue.
Dreyfus (8) derived the same equations by using the concept of the in-
variant imbedding technique.- This approach was found to be fairly simple
because it eliminates the use of influence functions or adjoint equations,
which Kelley used in his derivation. The disadvantage of this method is
that it is not rigorous.

The continuous processes are represented by the following differential

equation:

dX

Iof (x, X

- f % X — A g = BBy siuyg 8 (2.1)

where 0 is the control variable and Xi, i=1,2, ..., s are the state

variables.

The initial conditions are

Xi(O) = X, 4 = 1.2 s By (2.2)

i0

The problem is to optimize the objective function

‘N N SR X (2.3)

having the number of state variables and time t at some unspecified

future time tl.where tlis the first time that the terminal condition

] (x s XZ: cu ey XS’ t) =0 (2-4)

is satisfied.

Equation (2.1) can be written in the following difference form:
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Xi(t + A) = xi(r.) + fi[xl(t), x2(t), waay BCE)s £lA

i - 1,2, ey S (2-5)

It is necessary to estimate a reasonable control variable sequence.
We define S(Xlo, XZO’ P XsO’ to) which is the value of ¢ at time t1

where starting state is (xlO’ x20’ — XSO) at time to. The nominal
estimate sequence is usaed. The above defined function S satisfies the

relation:

S(X) s Xpy voey X, t) = S(X; + £48, «o0 X+ £8, € +4). (2.6)

1

This will be the basic equation for the further derivation. Essentially

it states that the value of objective function ¢ at t, with starting state

1
Xl, Xz, T g XS at t equals the value of objective function at tl

with starting state X, + f,4, ..., X+ fsA at t + A. The f's are evaluated
using the particular estimated controls.

The direction of steepest ascent can be obtained by differentiating

Eq. (2.6) with respect to control variable 8

. 38| E 3s By + Bl
38 | 45 39X, +£4) aal
t
s of
a8 i
= ] . 4. : (2.7
pmy 9By + 1,8) b6 |
t
Then Eq. (2.5) gives

s of.

A (2.8)
t

D.(¢)| = D, (4) —
€ lt i£l X l:+A a9
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where
JdS
)| =8| -2
8 £ a4 " o8

evaluated in terms of the state and control variables at time t, and

D .<¢>| -2,
& t+4 i

evaluated in terms of the state and control variables at time (t+4).

Now, partially differentiating Eq. (2.6) with respect to Xj

§ Bfi
D,.(¢)] =D .(¢)l + D,. (¢) ¥ i l A . (2.9)
4] g X era dm1 T lepa %y g

Finally, the change of S with respect to time can be obtained

§ oy ds
D (¢)' =D (¢)l + D_.{¢) s —’ A . (2.10)
k t E t+a i=1 & t+i L t de t
Therefore at final time tl’
J3 | de g, du ) aw | |
DXj(-d’)‘t X, |, Gt / a0 . X | {2tl)
il 1 30"

Results. These equations are called influence functioms or adjeint
equations.

Since the final conditions at t = t, are known, these equations can
be solved in a backward recursive fashion. 'D¢(¢)‘ is essentially the

gradient of ¢ with respect to the control variable, 6. If improvement

of A4 is asked, then the greatest improvement will be obtained if
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D <¢),
. t

B {ew] |

For minimization problems, A$ is set equal to minus.

S(t)new = B(t)Old + Ay . (2.12)

For the discrete case, performance equations would be difference
equations instead of differential equations. Since differential equations
are converted into difference equations before the influence equations
are obtained, the same results can be used for the discrete case with

A‘lu



2.3 Computational Procedure

In this numerical technique an iterative procedure is used. A set
of estimated controls is used to initiate the iteratiom:

(1) Estimation of a nominal control sequence Bo(t);

(2) Integration of Eq. (2.1) using ea(t};

(3) Solve Eqs. (2.8) and (2.9) backward using the final conditions

obtained by Eq. (2.11);

(4) Determipe the new value of 8(t) from Eq. (2.12);

(5) Integrate Eq. (2.1) again using improved 8(t);

(6) Repeat steps (3) to (5) until the gradient becomes so small ~

that no more improvement is significant.

The method and recurrence relations can be easily extended to solve
problems with additional final conditions and with several control vari-
ables. The treatment of such additional constraints is given in Chapter

IIT,

2.4 Advantages and Disadvantages

The gradient technique applied to the multistage processes has the
advantage of being able to investigate prqblems with a fairly large numb
of state variables. It does not have the dimensionality difficulty. By
using this method, the two point boundary value difficulties generally
Present in tﬁe classical and maximum principle approach can be partly
overcome. It can handle both stagewise and continuous processes. It
has the computational advantage that it constitutes an approximation in
policy space and that it has the monotone convergence property. The

gradient technique, using a Langrange multiplier and quasilinearization,

22

er
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can handle fairly complex topological situatioms. It can handle problems
with more than one control variable. However, computational difficulties
increase rather rapidly with the increase of control variables.

Along with these advantages, there are some disadvantages. The most
serious is that it cannot conveniently handle problems with inequality
constraints on the state variable. The technique may not reach the absolute
optimum but only reach a relative one. The convergence rate may be
very slow during the last part of the iterations. The iterative techniques
can be used for solving problems with state variable inequality constraints.
By using différent starting values the absolute optimum can be obtained.

If the second variation is used near the optimal, a faster rate of conver-
genhe can be achieved. The more efficient use of this technique is

achieved by Lee (53, 54, 55 ..., 59), when he combined it with several other
methods such as quasilinearization, conjugate gradient, Lagrange multiplier

and other search techniques.
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3. APPLICATION TO THE TRANSPORTATION PROBLEM

3.1 Transportation Problem as a Multistage Optimization Problem

Figure 4 shows a framework into which the transportation problem
shown in Fig. 1 can be cast. Chapter I indicates that a tramsportation

problem can be stated as

N s
Minimize Co=~ & 1 B (8,0 (3.1)
n=1 i=1
1= 1, 2, civy 8y
subject to ein >0 (3.2)
n=1, 2, ..., N
)
B, =W, i=1,2, .say 8 (3.3)
a=1 1P i
s
_X By =0 n=1,2, «.., N. (3.4)
i=1

This problem may be formulated as a multistage problem. Consider
N different stages constituting a simple serial structure. Let each
stage represent each demand point. The whole problem is to solve (s-1)
similar types of processes, each one having N number of stages. 'The
simple serial strucéure is shown in Fig. 5.

Let the nth stage represent the nth demand point. The state variables
xin where i = 1,2, ..., (s~1)

represent the total amount of resource transported from ith depot {resource)
to the first n stages (demand points). Therefore the performance equation

becomes
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Fig. 5 Simple serial process
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Roa, ™ K bwedy * Pag ' (3.5)

with end conditions

X9 = 0 (3.6)
and IRTRAN (3.7)
where =1, 2. wess (8-17

n=1%1, 2, vusys N .

Conditions (3.6) are obvious. Conditions (3.7) can be derived as follows:

at Nth stage
iN-~ i1y * Oan
= X2y T liw-1) T Can
85

Xim-3) T %2 T bim-1 T fin

— e o s s am em am s e es e s mm ER Em o mr me e em am

1]
o
&3

=~
L4 v]

It must be noted that though there are s depots (resources) in the
problem, there are only (s-1) state variables in Eq. (3.5). This is

because the demand by each stage is preassigned; hence the number of
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units supplied from the sth depot (resource) to the nth stage can be cb-
tained by subtracting the sum of units supplied to the nth stage by the
1 to (s-1) depots from the total number of units required by the nth

stage. Therefore,
B, =D, - .X By n=1, 2, ..., N (3.8)

is the solution of the sth process.
Since the objective of the problem is to minimize the total cost of
transportation, this objective is defined as the sth state variable which

satisfies the relation

s
xsn,= xs(n—l) 4 .; Fin (ein)’ (3.9)
i=1
where n=1, 2, «uey N .
It satisfies the condition
X =0. (3.10)

s0

It should be noted that "s' here is not the sth origin.

It can be shown that XS represents the total cost of transportation.

N

From Fig. 6 it is easy to formulate Eq. 3.9. The objective function ¢,

which is equal to X may be derived in the following manner:

sN?

s
sN Xs(N-l) ¥ iZ FiN (6

1 iN

s
= XS(N—Z) ¥ iE

S
y Grven) * L Fay (B

x.
g 2=l 1=1
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5 s s
=X .+ ) F..(8,.)+ ] F.,(8,,)+.+ ] F,_ (8, ) +.
s0 101 il *'il 121 i2 2 4op In in
B8
cen * _{ N
i=1
N s
=% nzl i£1 Fin (ein)

Thus in general s state variables and (s-1) control s
available. The sth sequence is fixed by condition (3.4).

gives an additional set of comstraints.

3.2 Recursive Relations

The set of performance and cost equations are

e~ By v Yup

s

xsn = Xs(n—l) i .Z Fin (ein)
i=1
i=1, 2, ... (s=1)
n=1, 2, ...y, N
The initial conditions are
Xip =0 g oo Lo Be unuy CEL
and X =0 .

s0

equences are

Equation (3.3)
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The problem is to optimize the objective function §(X ; n)

in; xsn
= XsN’ which is a function of the state variable and the stage number, n.

The terminal condition to be satisfied is ¢ = n-N = 0.

First, S must satisfy the relation

S (xin; xsn; n) = S (xin + finA’ Xsn + fsn; a + A) (3_11)

i - 1, 2, s ey (3-1)
o= l, 2’ s ey (N"l)-

Then Eq. (2.8) gives

s
3S et g 35 ai-z=1 fin C1o’
30 = 1 % cla s 30 " A
j'n  i=1 ilnp+l s 'ntl i

j - 1, 2’ ssey (S-l)
n=1, 2, ..., (N-1) .

Since A = 1 in this case, then

S
2 ) F, (8.)
5| _ 5%as l 88 oo ililie
By ln =1 % gy g g 90, .
1=1, 2, «vv, (s-1)
a=1, 2, ..., (-1, 312
Using Eq. (2.9) yields
s-1 _
ol IR+ ISR+ ol IEERT L - o INRCRR
¢ n § intl  di=1 °%i ln+l s In+l




3s as Bed 4g
X =X * I =
3 j 'mtl i=1 i 'n+l

Similarly,
3S asS 2S
3xs n 3Xs n+1l xs n+l
3S 2. 28
axﬁ aXs o+l

- ]
g; | =0 i=1, 2, ..., (s-1)
i IN
and
=2 =1
°%s N

dmdy &y weny

A new set of control variables can be obtained by

oS
s

00,

ajn(new) = ﬁjn(old) + J

j - 1125

o= 1,2,

(s-1)

n = 1, 2, se ey (N-l)

(s-1)

N .

L
N

3.13)

(3.14)

(3.15)

(3.16)

(sl )

{(3.18)

is set. The values of sth process will be calculated from the relation
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(s-1)

ﬂsn(new) B e, &= )

o Bjn(new) n f 1.2, wwss N» (3.19)

3.3 Additional Constraints

In Section 3.2 recursive equations were derived without considering

the additional constraints

) =X -W =0 om L oo weiy La=l}.

X iN i

in® %in
These constraints must be satisfied at the terminal point. The recursive
equations for handling the additional constraints are derived in a similar
fashion.

Using Eq. (2.8) gives

s-1 57

= nl.&
n i=1 axi n+l

i=1, 2, ..., (s=1) (3.20)

i ‘n i=1 i |u+l nom 1o 2. ey (N=1) ,

Equation 2.9 results in

n‘l’ 2’ esay (N"'l).

E_Z_l=§2_‘ s‘la_z_l . B g b

ok il 1=1 %4 lon

az az | s"z"l az j - 1, 2, o0y (S-l) (3.21)
o oy B e——— -+ — =

%, Iy Myl g1 9%y gy

The end conditions are calculated by using Eq. (2.11). Therefore,
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= =] i=1, 2, ..., (s=1) . {3.22)

Improvement is attained by adopting the reasonable policy of changing
8 at each stage proportional to the rate at which the final value of ¢

35

changes with 8, that is 30 ° Therefore
j=1, 2, ..., (s=1) (3.23)
oy =y (B | ] vy (32| ]
4 i 'n i n=1, 2, coss N

where Kl and K2 are constants of proportionality. They are to be evaluated

by solving the following simultaneous linear equations:

N (35 2 ¥ (s 37
e {1 [ ) ety B0 ]) - B} (3.26
11,8 (e 2 El ) 385 |y
j=1, 2, veu, (s-1)
N N 2
38 37 37
wmx {) ) B} el B} .29
1 nzl %, 205 |, 2 n£1 3 |y

§=1, 2, .uns (s-1)

where A¢ is the asked improvement in the objective function and AZ is the -
value of the additional constraint. The value of the AZ should be zero or
very near to zero when the solution approaches the optimum. The value of
& is set equal to that of BZ for 1 =1, 2, ..., (s8-1).

% Iy 38, Iy




3.4

Summary

The cquations derived in Sections (3.2) and (3.3) are summarized in

the order they are used in solving the problems by the gradient technique.

Partial derivatives with respect to the state variables:

B l _3s | 5 sil'as l

B by Wy lpg gei Py U

as 58 q i Iy B amey A8-L)
Lo g o T

BXS In 9xy ‘n+1 n=1, 2, ..., (N=1)
3z l 3z I i Sil Y I

B3 X oy 151 % loe

End conditions:

§§_i =
iy iy
38 i
oX_ |y
37 _
%X, Iy

i=1, 2, ..., (s-1)

Partial derivatives with respect to the control variables:

(3.26)

(3.27)
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s | Sil 35 l , 35 121 1 e
303 n i=1 axi n+l axs nt+l aej n
J
j = 1’ 2, 00y (S—l)
n=1, 2, .,., (N-1)
-1
4 5S¢ 8z
- z o (3.28)
j 'n i=1 "7i 'n+l
For simplicity in calculationm, %g— I and ag | are set equal to =
and 'g_az__ respectively. For the same purpose the method explained
3 IN-1
in the Section 4.2 can be used.
_ 3s 9z
Bjn(new) = Bjn(o.ld) h {Kl [—aej In] + K2 [aej In]} (3.29)

j = l’ 2: teey (S—l)

n=1, 2, iiey K

where K. and K, are calculated by solving the simultaneous equations

1 2
N
as 3z
o-x {3 (| Thendd B L) B L))
£ s, aej - 21 Laej aeJ 0
and
(3.30)
N N 2
az
= {1 I Jem {1 G5 L))
e n=l\asj - aaj % 2 -1 aej 2

g o= Lo 2 emay (BeLl)a
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4, APPLICATION TO THE TWO DIMENSIONAL (TWO ORIGINS) PROBLEMS

4.1 Two Origins and Three Demand Points

This problem has been solved by the maximum principle (23). The trans-
portation costs and other numerical values are shown in Table 1. The
values a; . and bin are the constants ih the cost function. Subscript i
denotes the ith origin and n denotes the nth demand point. In this
problem, it is assumed that i = 1, 2, and n = 1, 2, 3. For convenience
this problem will be designated as 2x3 problem.

1

Uin, the number of units to be transported from different origins to
the various demand points such that the cost of transportation will be
a minimum, has to be determined. The cost of transportation is given by

the cost function

. 2 G -
Fin (Sin) =a, ein + bin (ein) , 1i=1, 2andn=1, 2, 3. (4.1)

There are two state variables and one control variable in this problem.
The values of second control variable sequence are given by Eq. (3.4).
The number of stages is equal to the number of demand points. Three

stages exist in this problem.

4.2 Computational Aspects and Results
The problem described in Section 4.1 is solved by using three dif-

ferent values of the initial control variable sequence. The value of the

gradient at the last stage, i.e. ;g

1 '3

s 1s calculated by differentiating

the objective function with respect to 313. The objective function given

by Eq. 4.1 can be written as




Table 1.

Transportation costs and requirements for 2x3 problem

Depots
1 2 .
D
% 41n bln %2n bZn N
7 1.0 3.0 10
=
B
B 3.0 0.01 2.1 45
=
o
§
a 3.0 1.0 0.2 20
W 30 45 75




2 2
Flo Og) + Fpp (0)) =ay, 05 48y 8y F by, (0107 + by, (6,007,
oo Ly 2y Sa (4.2)
From Eq. (3.4)
By ™ By = By (4.3)
Substituting the value of an in Eq. (4.2) gives
' : 2
Fin <81n> & F2n (Dn - eln) = %n eln ¥ %2n (Dn - aln) = bln (6ln>
+b, (O -6 )> (4.4)
2n 'n in * )
Therefore taking a partial derivative of Eq. (4.4) with respect to eln
and evaluating it at n = 3 results in
28 .
36, = [aln * 2bln (Bln) - Zb2n (Dn - Bln)] ) (4.5
1'3 n=3
The value of 3%5 is equal to 3%— g
1 3 1 42

Initially a larger value of A¢ is used with the assumed starting
control sequence to get faster convergence. The suitable value of A¢
is estimated by trial and error. Equation (3.17) gives the values of
improvements in control variables. The step size should not be too large
or the optimal may be overshot and the additional constraint will not be
satisfied. To achieve better accuracy of the additiomal constraint, further

calculations are done with a smaller A¢ value. Starting values are taken
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from the results of the best iteration of the previous calculations with
a larger A¢. The procedure of reducing A¢ is continued until the re-
quired accuracy is met.

The convergence rates for the three different starting sets are shown
in Tables 2,3,5,6,8 and 9. The computer logic is given in Appéndix T
The computer program is given in Appendix II.

Tables 2, 3 and 4 are obtained with the following feasible starting

control sequence:

6., =8,, =8, = 10. | (4.6)

11 12 13

Table 2 has a larger value of A¢ while Table 3 is the continuation of
Table 2 but with a smaller A¢. The starting values used are obtaine&
from the 13th iteration in Table 2. Table 4 gives the optimal results
of this froblem, which are from iteration 12 in Table 3. |
Tables 5, 6 and 7 ‘are obtained with the following starting control,

which is above the feasible control sequence:

817 = 619 = 815 = 20 » (4.7)

Table 5 has a larger value of A¢ and uses the above starting values for
the control variable. Table 6 has a smaller A¢; the results of iteration
13 in Table 5 are used as the starting values. Table 7 gives the optimal
results of this problem, which are obtained from iteration 16 in Table 6.
Tables 8, 9 and 10 are obtained with the following starting control,

which is below the feasible control sequence:

911 = 912 = 913 =2 (4.8)




Table 2. Convergence rate of transportation cest with 4¢ = 10

Iter. Cost Value of
Number in § Add. Constraint

Initial 174.4999 - 0.0000

1 169.8485 ~2.5806

5 162.6443 -4.4262

10 159.8798 -4.8293

13 159.5276 -4.6285

15 159.5489 : -4.5055

25 159.5584 . -4.4596

50 159.5584 -4.4595

. 33 159.5584 : -4,4595

100 ' 159.5584 -4.4595




Table 3.

Convergence rate of transportation cost with A¢ = 1

Iter. Cost Value of
Number in § Add. Constraint
Iter. # 13 of
Table 2 159.5273 ~4,6300
1 161.7899 ~1.4131
5 162.5858 ~0.5025
10 162.5880 ~0.5000
12 162.5879 ~0.4999
15 162.5878 ~0.4999
100 162.5861 ~0.5000
150 162.5858 ~0.5000
200 162.5857 ~0.5000
250 162.5857 ~0.5000
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Table 4.

The optimal

solution with equation (4.6)

i Depots

1 2 Dn
I
s |1 10.0000 0.0000 10
E
5
1 2.2473 58,7597 45
=
£
& 13 17.2528 - 2.7472 20
W 29.5001 45,4999 75




Table 5.

Convergence rate of transportation cost with 4¢ = 10

Iter. Cost Value of
Number in § Add. Constraint
Initial 166.5000 30.0000
i 176.1112 0.9468
5 164.0554 - 4.1965
10 160.2986 - 4.7720
13 159.5054 - 4.8344
15 159.5384 - 4.5614
25 159.5583 - 4,4597
50 159.5584 - 4.4595
75 159.5584 - 4.4595
100 159.5584 - 4.4595
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Table 6.

Convergence rate of transportation cost with 49 = 1

Iter. Cost Value of
Number in § Add. Constraint
Iter. # 13 of i
Table 5 159.5051 ‘_-4.8400
i 161.8212 -1.4197
5 162.5928 -0.5074
10 162.5983 -0.4999
15 162.5973 -0.4999
16 162.5970 ~0.4998
50 162.5918 -0.4999
100 162.5881 -0.5000
200 162.5861 -0.5000
250 162.5858 -0.5000

45




Table 7.

The optimal solution with equation (4.7)

Depots

1 2 Dn
n

b 10.0000 0.0000 10
B
Qo
(= %)

= 2.3748 42.6252 45
&
5

& 17.1254 2.8746 20

W 29,5002 45.4998 75
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Table 8 has a larger value of A$ and the above starting values. Table 9
uses a smaller A¢ an& uses results of iteration 22 in Table 8 as the
starting values. Table 10 gives the optimal results of this problem,
which are obtained from iteration 179 in Table 9.

Comparing the optimal solutions in Table 3, 6 and 9 shows that the
cost of transportation for 2x3 problem is $162.59. The value of the

additional constraint is -0.4999,

4,3 Two Origins and Ten Demand Points

This problem is to see the effect of using the functional gradient

technique with the assumption that the gradient at the 10th stage is

equal to that of the 9th stage, i.e. B oy . The problem is
30, |19 36,

9

also solved by another approach in which the gradient for the last stage,

i.e. 3§§ is calculated by differentiaring the objective function with
1. “10
aZ oZ
respect to © + The value of — is equal to —— in both of these
110 ael 10 361 9

approaches. Transportation costs and other requirements are given in
Table 11. It is necessary to determine Bin where i = 1, 2, and
n=1, 2, ,.., 10 such that the cost of tramsportation given by the

function

2
is minimized.
This problem is similar to the one described in Section 4.1 except

the number of stages is increased to ten. For convenience, this wil be

called a 2x10 problem.



Table 8. Convergence rate of transportation cost with 4¢ = 10

Iter. Cost Value of
Number in § Add, Constraint
Initial 211,1399 -24,0000
L 216.9357 - 7.8286
5 203.4599 - 1.5828
10 172.2946 - 2.6876
20 159.8288 - 4.8362
22 159.5127 - 4.7479
25 159.5499 - 4.5004
50 159.5584 - 4.4595
15 159.5584 - 4,4595

100 159.5584 4.4595




Table 9.

Convergence rate of transportation cost with 4¢ = 1

Iter. Cost Value of
Number “in § Add. Constraint
Iter. # 22 of
Table 8 1558.5125 -4.7500
1 161.8063 -1.4172
5 162.5865 -0.5077
10 162.5928 -0.4999
11 162.5927 -0.4999
50 162.5892 -0.4999
79 162.5877 -0.4999
100 162.5871 - =0.5000
200 162.5859 -0.5000
250 162,5857 -0.5000
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Table 10.

The optimal seolution with equation (4.8)

Depots

1 2 Dn
n
o 10.0000 0.0000 10
=
o
B 2.2413 42.7587 45
=
£
2 17.2588 2.7412 20

29.5001 45,4999 75
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Table 11. Transportation costs and requirements for 2x10 problem

Depots
& 1 2

D

n aln bln a2n b2n B

i 1.001{ 0.01 3.00] 0.20 20

2 2.00 | 0.00 2.10| 0.00 60

3 3.00} 0.00 2.00| 0.20 40

4 1.20 | 0.00 1.00! 0.03 10
[
Fu]

.g 5 1.50 | 0.10 2.60| 0.25 10
By
k=

&1 6 1.70 | 0.00 : 2.70] 0.15 30
g
fa]

7 2.00 | 0.00 5.00] 0.18 45

8 1.00 | 0.04 1.00| 0.06 25

9 3.00 | 0.02 4,00 0.03 15

10 6.00 | 0.20 6.60] 0.17 35

W, 160 130 290
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4.4 Computational Aspects and Results

To simplify the presentation this problem will be discussed in two

9 .
separate parts., In part A it is assumed that - is calculated by

By l10

differentiating the objective function given by eq. (4.9) with respect

to 61 10° In part B it is assumed that Sgg = g%"- .
1 |10 1l
Part A

The problem is solved by using three different sets of inmitial con-

~

trol variable sequences. The value of %%—
i

is given by Eq. (4.5)
10

by evaluating it at n = 10, The approximate choice of Aj is made as
described in Section 4.2,
Tables 12 and 13 are obtained with the following feasible starting

control sequence:

811 = 912 = 913 - L, = 8110 =16 . (4.10)

Table 12 shows the convergence rate of cost and starts from the feasible
starting control sequence. The optimal is reached at iteration 206. Table
13 shows the optimal results of this problem.

Tables 14 and 15 are obtained with the following starting control

sequence, which is above feasible:

611 = 312 = ... = 6110 = 25. (4.11)

Table 14 gives the convergence rate of cost with the above starting wvalues
of control variable sequence, The optimal is reached at iteration 209 and

Table 15 presents the optimal results of this problem.




Table 12.

Convergence rate of tramsportation cost with A¢ = 10000

Iter. Cost Value of
Number in 3 Add. Constraint
Initial 1272.6390 - 0.0000
1 1148.3170 | - 7.3238
5 919.9716 11.7128
11 883.5642 18.6275
14 883.9902 17.6544
49 894.4238 5.0341
100 897.6228 1.9788
160 899.3557 0.5368
191 899.8894 8. 1239
203 ' 900.0241 0.0218
206 900.0554 - 0.0015
209 900.0847 - 0.0239
223 900.2175 - 0.1233
262 900.4609 - 0.3040

298 900.596% 0.4037
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Table 13.

The optimal solution with equation (4.10)

i Depots

1 2 Dn
n

1 19.3786 00.6214 20

2 0.0000 60.0000 60

3 29,4714 10.5286 40

4 00.0000 10.0000 10

m 5 08,6938 01.3062 10
&
B

5 6 28.8130 01.1870 30
i
g

b 7 45,0000 00.0000 45

8 08.0319 16.9681 25

9 05.5935 09.4065 15

10 15.0163 19.9837 35

W 159.9985 130.0015 290
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Table 14. Convergence rate of transportation cost with A¢ = 10000

Iter. Cost Value of
Number in § Add. Comstraint
Initial 1173.9980 90.0000
1 1012.9840 64.6729
5 930.3105 21,3896
15 881.5791 24.1956
18 881.8364 21.9331
« 50 893.6162 5.6961
101 897.5717 2.0167
152 899.1665 0.6865
194 899.8735 0.1363
200 899.9460 0.0809
209 900.0451 0.0062
212 900.0754 - 0.0170
227 900.2114 - 0.1185
263 900.4426 - 0.2906
299 900.5861 - 0.3957




Table 15. The optimal solution with equation (4.11)
i Depots
1 2 Dn
n
1 19.3786 00.6214 20
2 00.0000 60.0000 60
3 29.4714 10.5286 40
4 00.0040 10.00600 10
2 5 08.6939 01.3061 10
5
a ,
'g 6 28.813G 01.1870 30
7 45.0000 00.0000 45
8 08.0340 16.9660 25
9 05.5988 09.4012 15
10 15.0165 19.9835 35
Wi 160.0062 129.9938 290
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Tables 16 and 17 are obtained with the following starting control

sequence, which is below feasible:

911 = 812 = L., = 9110 =10 . (4.12)

Table 16 shows convergence rate of cost with the above starting control
sequence values. Optimal is reached at iteration 158, Table 17 shows
optimal results of this problem.

In all the abo;e calculations, sufficient accuracy of the additional
constraint is obtained with an assumed value of A¢; hence further
calculations are not made. Comparing the optimal results in Tables 12,
14 and 16 shows the cost of tranmsportation for 2x10 problem is $900.06

and the value of the additional constraint is -0.0015.

Part B

The problem is solved by using four different values of initial
control variable sequences. The value of the gradient at the last
stage is assumed to be equal to the previous stage. The choice of A¢
is made as explained in Section 4.2.

Tables 18 and 19 are cbtained with the feasible starting control
sequence given by Eq. (4.10). Table 18 shows the convergence rate of
cost and starts with the feasible control sequence. The optimal is
reached at iteration 128. Table 19 shows the optimal results of this
problem.

Tables 20 and 21 are obtained with a starting control sequence which
is above feasible and which is given by Eq. (4.11). Table 20 givés the
convergence rate of cost with the above starting values of control variable

sequence., The optimal is reached at iteration 257 and Table 21 presents




Table 16.

Convergence rate of transportation cost with A¢ = 10000

Iter, Cost Value of
Number in § Add. Constraint
Initial - 1485.9980 -60.0000
d 1394.5750 -62.7022
6 952,6137 - 4.3500
11 902.1330 1.2727
24 891.9450 9,1131
50 897.5917 1.9942
80 898.6643 1.0906
110 899.3745 0.5215
140 899.8518 0.1527
152 899.9951 0.0438
158 900.0590 - 0.0043
161 900.0888 - 0.0269
173 500.1970 - 0.1081
224 900.5048 - 0.3360
299 900. 7001 - 0.4792
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Table 17.

The

optimal solution with equation (4.12)

i Depots

1 2 Dn
n

1 19.3786 00.6214 20

2 00.0000 60.0000 60

3 29.4714 10.5286 40

4 00. 0000 10.0000 10

- 5 08.6939 01.3061 10
=
-

- 6 28.8130 01.1870 30
g
&

/A 7 45.0000 00.0000 45

8 08.0341 16.9659 25

9 05.5882 09.4118 15

10 15.0165 19.9835 35

W 159.9957 130.0043 290
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Table 18. Convergence rate of transportation cost with 44 = 10000

Iter, Cost Value of
Number in § Add. Conmstraint
Initial 1272.6390 00.0000
1 1148.3260 - 7.3357
5 920.2263 11.4712
11 884.6105 17.9109
25 895.1804 6.6203
52 906.6445 0.6628
122 923.0908 0.2299
125 923.6940 0.0782
128 924.2768 - 0.0670
131 924.8400 - 0.2061
152 928.2646 - 1.0309
176 931.2343 - 1.7187
200 ; 933.4187 - 2.2101
248 936.1665 - 2.8124

299 937.6623 - 3.1334




Table 19. The optimal solution with equation (4.10)
i Depots
D
5 1 2 n
1 20.0000 00.0000 20
2 00.0000 60.0000 60
3 40.0000 00.0000 40
4 00.0000 10.0000 10
a3
=] 5 04.0666 05.9334 10
i
'E 6 28.5067 01.4933 30
5
a
7 45,0000 00.0000 45
8 07.9872 17.0128 25
9 06.7288 08.2712 i5
10 07.6437 27.3563 35
W 159.9330 290

130.0670




Table 20.

Convergence rate of tramsportation cost with A¢ = 10000

Iter. Cost Value of
Number in § Add. Constraint

Initial 1173.9980 90.0000
1 1015.0410 | 65.0234

5 942.7617 23.9628

21 893.0495 , 23.6714
66 891.1103 14.1664
69 891.1125 . 13.7615
98 896.4360 ’ : 4.7275
149 897.9758 - 2.0024
200 899.2529 > 7 0.6898
242 899.9104 0.1289
254 900.0451 0.0204
257 900.0761 ~ 0.0040
2607 ' 900.1064 - 0.0276
272 900.2153 - 0.1125
299 900.4052 - 0.2586
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Table 21. The optimal solution with equation (4.11)
i Depots

1 2 Dn
n

1 19.3787 00.6213 20

2 00.0000 60.0000 60

3 29.4717 10.5283 40

4 00.0000 10.0000 10

@ 5 08.6938 01.3062 10
=
o
=]

: 1 6 28.8130 01.1870 30
=
:

a 7 45.0000 00.0000 45

8 08.0339 16.9661 25

9 05.3177 09.6823 10

10 15.2872 19.7128 35

Wi 159.9960 130.0040 290

63
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the optimal results of this problem.

Tables 22 and 23 are obtained with a starting control sequence which
is below feasible and which is given by Eq. (4.12). Table 22 shows con-
vergence rate of cost with the above starting control sequence values.
Optimal is reached at iteration 60. Table 23 shows the optimal results
of this problem.

Compare the values of cost and additional constraint in Tables 18,
20 and 22 corresponding to iterations 128, 257 and 60 respectively. The
values are different for all three different starting control value
sequences. In each'case the optimal is reached but the values are dif-
ferent. It should be noted that the results of Tables 20 and 21 are
similar to those obtained in Tables 14 and 15. To show that this is
coincidental and that it has nothing to do with making the choice of
starting control sequence above feasible, one more starting control
sequence above feasible is presented.

Tables 24 and 25 are obtained by using the following starting control
sequence:

ell = 612 v = 8110 = 20 . (4.13)

Table 24 gives convergence rate of cost with above starting comntrol
sequence values. Optimal is reached at iteration 92; Table 25 gives the
optimal results of this problem. Again, the values of cost and additional

constraint are different from that obtained by previous starting points.

4.5 Discussion

The two dimensional problems discussed in this chapter show that the
sethed oF equiting o= | to—— , is not fruitful. The approach of
38 Iy %8 Iy

calculating



Table 22. Convergence rate of transportation cost with A¢ = 10000

Iter. : Cost Value of
Number in § Add. Constraint
Initial - 1485.9980 -60.0000
1 - 1394.9120 — -62.7674
5 1036.2660 -23.8404
14 ' 916.2873 - 1.6870
13 911.7521 4.4153
18 913.0971 3.9700
45 5 922.7790 1.0415
57 | 926.,1752 0.1600
60 - 926.9516 - 0.0336
63 927.7011 - 0.2178
99 934,8649 - 1.8752
150 940.7912 ' - 3.1383
201 943.8134 - 3.7546
249 945.2600 - 4.0438

297, 946.0061 4.1916




Table 23.

The optimal solution with equation (4.12)
i Depots
" 1 2 Dn
1 20.0000 00.0000 20
2 00.0000 60.0000 60
3 40.0000 00.0000 40
4 00.0000 10.0000 10
S1s 04.0669 05.9331 10
s
=9
w | 6 28.5066 07.4934 30
1]
5
7 45.0000 00.0000 45
8 08.0437 16.9563 25
9 07.1746 07.8254 15
10 07.1746 27.8254 35
W 159.9664 130.0336 290
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Table 24. Convergence rate of transportation cost with A¢ = 10000

Iter. Cost Value of
Number in § Add. Constraint
Initial 1195.9980 40.0000
1 1057.1500 | 26.9746
4 909.3122 21.5870
9 875.2243 28.5331
12 876.3911 25.4024
26 890.3395 10.4492
50 894.5195 04.9208
80 900.2968 01.0460
89 901.8515 00.2393
92 902, 3483 ~00.0046
95 902.8347 -00.2374
145 909.6582 -03.0524
200 913.2717 -04.3097
251 915.1706 -04.9265

299

916.0932

-05.2168




Table 25. The optimal solution with equation (4.13)
i Depots

1 2 Dn
n

1 19.3786 00.6214 20

2 00.0000 60,0000 60

3 29,4702 10.5298 40

4 00.0000 10.0000 10

® 5 08.6939 01.3061 10
e
K

o 6 28.8127 01.1873 30
B
@

E 7 45,0000 00.0000 45

8 08.0919 16.9081 25

9 07.8180 07.1820 15

10 12,7301 22,2699 35

Wi 159.9954 130.0046 290

68




69

3

3%— in which differentiation of the objective function with respect
l1°N ,

to 8., is used works efficiently. Increasing the number of stages

iN

results in greater accuracy of additional comstraint with the same efforts.
In the 2x3 problan,-more accuracy can be obtained by using A¢ = 0.1 or
0.01 but the convergence rate is very slow and takes more computational
time, Different starting control variables sequences are used to assure

absolute optimum,
3s _ 38 l
WMy g g

results are not tabulated. The optimal cost stayed far from the optimum.

The 2x3 problem was also tried with though the

It can be noticed that the last stage is misguided because of the assumption

95
a8

_3s
20

. The reasons for obtaining similar results in 2x10 problem

1 ’N 1 IN—l

by both the ways, with @ 5 ™ 25 as a starting point, are because of the

i
values of total demands and the constraint 0 < 6, <D . A better

agreement is obtained in the total costs for the 2 x 10 problem than for
the 2 x 3 problem. It is obvious that with the increase in the number of

stages the assumption of 28,

‘ _ 38
38, |y

becomes more realistic. Thus,
38) Iy-1

this is a fairly good approximation for continuous processes.
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5. APPLICATION TO THE THREE DIMENSIONAL (THREE ORIGINS) PROBLEM

5.1 Three Origins and Three Demand Points

This problem has been solved by the maximum principle (23).
Transportation costs and other requirements are shown in Table 26. It is
necessary to determine the number of uﬁits transported, ein, i=1,2,3
and n=1,2,3. The values of e3n’ n=1,2,3 are calculated by using con-

dition in Eq. (3.4). The cost of tranmsportation is given by

2

F, (8, )=a, 6. +b, (8, ) 1=1,2,3 and n=1,2,3. (5.1)

in in in in in in

The cost of transportation must be minimized.
In this problem there are three state variables, two control wvariables
sequences and three stages. For convenience this will be called a 3x3

problem,

5.2 Computational Aspects and Results
The problem described im Section 4.1 is solved by using three different

sets of starting control variables sequences. The value of the gradients

§§_| g 2
881 3 882

the objective function with respect to 6

at the last stages i.e; are calculated by differentiating

3

13 and 623, respectively. The

objective function given by Eq. 4.1 can be written as

6, +b 2

Fln(aln) i F2n(e2n) * F3n(93n) = aln 1n 1n (e

1n)

2

2
+ a 6, + b2n (Szn) +a, 6 (5.2)

45 g 3n O30 T D3y (B3y)
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Table 26. Transportation costs and requirements for 3x3 problem.
Depots
i
1 2 3
n D
%1n bln 22n b3p %3n b3n =

“ 2.5 2,6 1.0 20

2 3.0 .01 2 9.0 60

3 6.0 5.0 .01 6.6 40
W, 50 30 40 120




B

T2
From Eq. (3.4)

B, =T o B =b
n

3n 1n 2n (5.3)

Substituting the value of 63n into Eq. (5.2) gives

2
Fln (eln) v F2n (BZn) * F3n (e3n) = 4 eln ® bln (aln)

2 2
, F 29n B2n i bZn (GZn) k) 23n (Dn > eln - BZn) o b3n(Dn - e1n - eZn)

(5.4)

Therefore taking the partial derivative of Eq. (5.4) with respect to aln

b5

and evaluating at n=3 results in

+ 2b 6, - a, — 2b (D -8

%6 |, o w  a 30 30 Py = 815 ~ 09501 . (5.3)

Similarly taking partial derivative of Eq. (5.4) with respect to an and

evaluating at n=3 results in

38, |3 gn ¥ 20y, Oy — 83 — 205 (D -6 - 8,,)] ; (5.6)
e NI 2t %%— ‘ and %%_ are equal to %%- and %%— respectively.

The suitable value of A¢ is estimated by trial and error.

Tables 27, 28 and 29 are obtained by using the following feasible

starting controls sequences:
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e =0 =0

11 = Y12 4

= 16.66 and 921 =8 = 10 (5.7)

13 22 23

Table 27 has a larger value of A¢ and uses control sequences given by
Eq. (5.7). Table 28 is continuation of Table 27 with a smaller A%.
The starting values used are the results of iteration 16 in Tahle 27,
Table 28 gives the optimal results of this problem, which are from
iteration 154 in Table 28,

Tables 30, 31 and 32 are obtained using the starting controls

sequences

6., =8,, =28

11 12 = 20 and 6,, = 0,, = 0

13 21 = 922 =13 = (5.8)

Table 30 has a larger value of A¢ and uses control sequences given
by Eq. (5.8). Table 31 is continuation of Table 30 with a smaller A¢.
The starting values used are the results of iteration 13 in Table 30.
Table 32 gives the pptimél results of this probiem, which are from
iteration 238 in Table 31,

Tables 33, 34 and 35 are obtained by using the starting control

sequences

811 = 035 = 833 = 10 and 6, = By, = By, = 3. (5.9)

Table 33 has a larger value of A¢ and uses control sequences given by
Eq. (5.9). Table 34 uses a smaller A¢. The starting values used are
the results of iteration 20 in Table 33. Table 35 gives the optimal
results of this problem, which are from iteration 191 in Table 34.

Comparing the optimal solutions in Tables 28, 31 and 34 shows the




Table 27.

Convergence rate of transportation cost with A4 = 10

Iter. Cost Values of

Number in § Add. Constraints
Initial 679.8090 -0.0110 0.0000
1 652.8244 -1.7047 -1.7547
2 633.8146 -~0.1827 -0.3000
3 615.4079 0.9781 0.8105
10 495.0190 4.1794 3.9296
16 439.9978 3.4606 6.9870
17 440.2233 3.7487 6.7332
50 442,3161 6.2233 4.8130
100 443.6469 6.3879 4.6974
150 445,3393 6.4462 4.5666

h



Table 28.

Convergence rate of transportation cost with 4¢ =1

Iter. Cost Values of
Number in § Add. Constraints
Iter. # 16 of
Table 27 440.0761 3.4500 6.9700
1 442,6845 3.2270 6.3961
25 455.8662 1.6149 1.8439
50 449.5249 1.3024 1.2864
75 450.6376 0.8273 0.7364
100 450.9836 0.6939 0.5748
154 451.2478 0.6300 0.5000
155 451.1909 0.6356 0.5051
200 451.2490 0.6410 0.5060
250 451.3232 0.6418 0.5048

75




Table 29.

The optimal solution with equation (5.2)

76

Depots
T 2 3 Pn

n

. 00.0000 00.0000 20.0000 20
E
o
. 37.1300 22.8600 00.0100 60
K

q
5 13,5000 07.6400 18.8600 40

W 50.6300 30.5000 38.8700 120




Table 30.

Convergence rate of transportation cost with A¢ = 10

Iter. Cost Values of

Number in $ Add. Constraints
Initial 633.7497 10.0000 15.0000
1 604.0073 3.3750 7.1576
5 539.0107 4,2421 5.3223
10 465.7084 4,6204 8.1749
13 435.8967 4.7107 9.3895
14 436.3403 4.9614 8.9897
25 439.4089 6.2875 6.4579
50 441.7138 6.4878 5.1134
100 443.5368 6.4050 4,7265
150 445,2556 6.4453 4.5742

17



Table 31.

Convergence rate of transportation cost with A¢ = 1

Iter. Cost ‘Values of
Number in $ Add. Constraints
Iter. # 13 of
Table 30 435,9633 4,7000 9.3800
1 440.0668 4.3325 B. 5513
25 464,7333 1.6711 1.9920
50 456.1032 1.5326 1.5299
75 449,7236 1.2097 Lol 720
100 450.6784 0.8003 0.7042
150 451.,0881 0.6535 0.5254
230 451.2280 0.6414 0.5071
238 451,2397 0.6414 0.5068
249 451,2558 0.6415 0.5063

18



Table 32.

The optimal solution with-equation (5.3}

79

Depots
1 3 3 B

n

. 90.0000 00.9000 20. 0000 20
]
.y
A 37.4133 22.5867 0.0000 60
~
5
§ 13.2281 07.9201 18.8518 40

W, 50.6414 30.5068 38.8518 120




Table 33. Convergence rate of transportation cost with A4 = 10

Iter. Cost Values of
Number in § Add. Constraints
Initial 742.7497 -20.0000 -15.0000
1 717.4082 14,1181  -10.4185
5 628.2099 - 2.3006 * 1.3226
6 609.1860 - 0.6241 - 0.0311
7 590.7736 0.6537 1.0649
20 444.3413 1.2924 5.0689
50 443,3669 5.7594 4.3300
100 443,9184 6.3621 4,6414
125 444,6977 6.4165 4,6049

150 445,5812 6.4506 4.5466




Table 34.

Convergence rate of transportation with A¢ = 1

Iter. Cost Values of
Number in § Add, Constraints
Iter. # 20 of '
Table 33 444,4082 1.2800 5.0600
1 445,1535 1.1587 4.6872
25 449,4343 1.2288 1.4321
50 450.6965 0.8318 0.7518
75 451.0654 0.6970 0.5764
100 451.1960 0.6574 0.5264
191 451.3723. 0.6424 0.5041
200 451,3867 0.6424 0.5037
225 451.4277 0.6426 0.5028
249 451.468 0.6429 0.5020

e1




Table 35.

The optimal solution with equation (5.3)

g2

Depots
1 2 3 Dn
n
00.0000 00.0000 20.0000 20
o)
=
b 38.0044 21.9956 00.0000 60
hiw]
5
§ 12.6380 08.5085 18.8535 40
W, 50.6424 30.5041 38.8535 120




cost of transportation for 3x3 problem is $451.24. The values of the

additional constraints are 0.6414 and 0.5068.

5.3 Discussion

In this three dimensional problem with three stages a similarity
in accuracy of the values of additiongl constraints in comparison to the
2x3 problem is found. The convergence rate is also the same. 'Be:ter
accuracy in both problems is made possible by using smaller values
of A¢. Since the convergence is very slow still, smaller values of A¢
were not tried. There is no difficulty in handling a fairly large number
of state variables using the gradient technique. Since programming is done
in the most general form, it is helfful to extend transportation problems
in both directions, that is by increasing both the number of demand points
or stages and the number of depots, i.e. by increasing number of state

variables.



6. CONCLUSION

A literature survey shows that various optimization techniques
such as linear programming, dynamic programming and the maximum principle
have been used to solve transpertation problems. However, owing to the
large dimensionality and the nonlinear nature of the problem, the usefulness
of these techniques are frequently limited. Gradient techniques can be
used to overcome some of these difficulties.

By selecting three problems, such as 2x3, 2x10 and 3x3, the technique
proves its efficiency and ease in handling problems with a fairly large

number of state variables as well as with a large number of stages. Using

- i

I
the assumption ;8 l = 35—- did not work. For all practical purposes,
N %% In-1
~ 1
the value of %%— i is calculated by differentiating the objective function
3 5 In
with respect to ejN. The approach is more effective and accurate. The con-

vergence rate is alsc better. Looking to the accuracy of additional con-
straint or constraints in the three problems, the 2x10 problem had maximum
accuracy with the same efforts. The reason for this is the large nuxber

of stages in the problem., The reasons for getting different optimal values

for different assumed starting points when %E—-' = 2 é was used are
j 'N j 'N-1

Q2

Q3

obvious. They are the constraint O < 8, < D and the wrong value of last
stage improvement. The improvement in the last stage control wvali . is
not correct as it takes that of the previous stage. However, problems with

a very large number of stages may work out as expected.
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Appendix 1

ComputerFlow Diagram

START

Set

# of iterations (ITNO.) =

# of resources (IS = s8) =

## of demand points (ND = N) =

v
Read in

Values of constants a; . b

Values of total demands (Dn)

. 1=1,2,...,s
n=1,2,...,N

i=1,2,...(s-1)
n=1,2,...N.

Values of total resources (Wi)

Values of assumed control sequences ein }

)

Calculate -~ th

Remaining values of s  sequence from
the eq. 3.8

Initial cost.

Print out
All values read in (a,_,b._,D ,W.)
All ein G T Tl )

Initial cost

Set
ITER = 0

=,
ITER = ITER + 1

Define
End conditions of the recurrence
relations i.e. 3.27

¥

Solve the equations 3.26, 3.28 in backward direction,
first for all the stages and then for all (IS-1)
processes

l continue
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Calculate

Gradient of last stage for all processes

by differentiation'w.¥. to control variable.
Partial derivative of additional constraint
w.r. to control variable at last stage

= that of previous stage

Set L =0

®

N

Calculate
Value of add . comstraint = Az
Set A¢

\

L = L+1
Solve equations (3.30) simultaneously for Kl and K2

h

Calculate
Values of improvements in assumed control variables
sequences (Aein)

L

ein(new) = Sin(old) - ABin(improvement)

a—
NO

Calculate

Bin for the s origin

from the eq. 3.8

l continue



Calculate
cost of tramsportation w.r. to
new control sequences.

¥

Print out :

Iter, cost, values of gradients, sum of squares of
the gradients, improvements, control variables
sequences, values of additional constraints etc.

Yes

o
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301
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303
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Appendix 2

Computer Program for (2x3) Problem

TRANSPORTATION PROBLEM BY - GRADIENT TECHNIQUE

#x¥2¥CHANGE DIMENSION CARDS AS PER VALUES OF IS AND ND%*%*%%:#%
DIMENSION A(10,10)},B(10,10),TI{10,10),W(10),0(10),EUM(10,10)
DIMENSION COSIN{10),FI(10,10)

DIMENSION DSDX(10,10),DZDX{10,10),SUM(10),CUM(10),DSDT(10,10)
DIMENSION DZDT(10,10)

DIMENSION XN(10),0F(10)},0Z{10),YUM(10),BUM(10),2ZUM(10),S(10)
DIMENSION C1(10),C2(10),DT{10,10)

DIMENSION OUM(10),C0S(10),F(10,10)

CHANGE NEXT THREE CARDS ASPER CHANGES

[TNC=100

15=7

ND=7

[Z=75~-1

NZ=ND-1

REAT IN.INITIAL VALUES (UPTO 92)

CHANGE NEXT FOUR FORMAT STATEMENTS AS PER VALUES OF IS AND ND
FORMAT(1H ,6(1X,F8.2))

FORMAT(LIH +3(1XsF8.,2))

FORMAT(1H 42(1XsFB8.2))

FORMATI{IH 43{1XsFB8.2))

REAT 101,{(A{IsN),I=1,IS)sN=1,ND)

REAT 101, { ‘BII'N, |I=1'IS)|'N=1'NS)

REAT 102, {{TI(I,N),I=1,1Z),N=1,ND)

REAL 9l (Wl{I)eI=1l,1S)

REAT S92, (DIN}«N=1,ND)

PRIAT 300

FORMAT{1H-,*DIFFERENT VALUES READ IN ")

PRINT 301

FORMAT(1H-, "VALUES GF CONSTANTS A!')

PRIANT 101,((A{I4N)4[=141S)4N=1,ND)

PRINT 302

FORMAT(1H-, *VALUES CF CONSTANTS B')

pRIP\T IOL'I.IBII'N),I=1' lS)|N=1|ND)

PRINT 303 )

FORMAT(1H-, "VALUES OF CONTROL VARIABLES ASSUMED!)

PRIANT 102, {({TI(IsN)»I=1,1Z)sN=1,ND)

PRINT 304

FURMAT(1H—- "VALUES -OF TOTAL RESQURCE AVAIBLE®')
PRINTOL,IWlI)s1I=1,1S)
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PRINT 305
305 FORMAT(1H-,*VALUES OF TOTAL DEMAND')
PRINT92,{DIN)yN=1,ND}
CALCULATIONS OF REMAINING CONTROL VARIABLES W.R.TO INITIAL VALUES
MY=C
Jy=1S§
307 MY=MY:]
EUMIJY,MY)=0
DO 2061I=1,12
306 EUMIJY MY )=EUM{JY MY)+TI(]I,MY)
TIEJY,MY)=DIMY)-EUM{JY,NMY)
IF{PY-ND)307+,308,308
308 PRINT 309
309 FORMAT({1H-, 'REMAINING VALUES OF CONTROL VARIABLES CALCULATED FROM-
LTOTAL DEMANDS')
PRINT 92,(TI(IS.N} N=1,ND}
CALCULATION OF TOTAL COST CORRESPONDING TO INI. CONTROL VARIABLES
MD=C
COSTIN=0
311 MD=MD#]
COSIN{MD)=0
DO 2101I=1,1S
FI(TMDI=A(TIsMDI*TI(I,MD)+B(I,MDI*(TI(I,MO)%%2)
310 COSTN(MD)=COSIN(MD)+FI(I.MD)
COSTIN=COSTIN+COSIN(MD}
IF{FD-ND)311,312,312
312 PRINT 313,COSTIN
313 FORMAT(1H-, "%%5x*INITIAL COST='9F15,8, " *%k%x%1)
¥ ¥MAIN PROGRAM FOR ITERATIONS*#%&%
ITER=0
15 ITER=ITER+l.
DO4Cli=1,12
DSDX(J,ND)=0
401 DZOX{J,ND}=1
DSDX(IS,ND)=1
K=0
406 N=NC-K
SUMIN)=0
CUMIN)=0
DO4C2KL=1,1Z
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SUMIN)}=SUMIN)+DSDX(KLN)
402 CUMIN)=CUM(N)+DZDX(KL,N)
IF{I{K+1)-ND)403,404,404
403 DO4C5KM=1,12
DSDX(KMyN-1)=DSDX{KM,N)+SUM(N)
405 DZDX{KMyN—-1)=DZIDX(KMyN)+CUM(N)
DSDX{ISyN-1)=DSDX{IS,N)*2
K=K+1
GO YO 406
404 LS=C
409 NK=ND-LS
DO4CBKT=1,17Z
DSDTI{KT¢NK-1)=SUMINK)+DSDX(IS,NK)*{A(KT,NK-1)+2%B(KTyNK~-1)*TI(KT¢N
IK=1)-A{ISyNK—1)-2%BlIS:NK-1)=TI(IS,NK~-1})
408 DIDTU{KT,NK—-1)=CUMINK)
LS=15+1
IF({L5+1)-ND)409,410,410
410 DO&YV1KM=1,112
*#*VALUE OF DS/DT AT END POINT IS TAKEN FROM USUAL GRADIENT TECH.*
DSDT{KMyND)=A(KMyND)+2%B(KM,ND)*TI(KM¢ND)-A{IS,ND)-2%B(IS,ND)*TI(I
15,NC}
411 DIZIDT{KM,ND)=DZDT(KM,ND-1)
L=0
9 L=L+1.
XN(L})=0
CHANGE NEXT CARD FOR VALUE OF DELTABARFAAY
DFIL)=10.0
DO S9MY=1,ND
99 XNIL)=XN{L)+TI(L,MY)
DZIL)=XN(L)-W(L)
YUM(L)=0
BUMIL)=0
ZUMIL)=0
DO 106NP=14ND
YUM{L)=YUM(L)+DSDT(L NP)*DZDT(LNP)
BUMIL)=BUM{L)+DSDT (L NP )%*%2
106 ZUMIL)=ZUM(L)+DZDT(L,NP)%%x2
SOLVING SIMULTANEOUSLY FOR K1 AND K2
SILY={{(BUM{L) }*{ZUMIL) )=(YUM{L) )={YUMIL)))
CLIL)=((DFIL) ) *{ZUMIL) )=(YUMIL))*(DZ(L)))I/S(L)



21
22
24
314
10
11
107

12

13

108

14

203

111

204

205
206

112

100

C2IL)=((BUMILI ) *{DZ(L))—-(DFIL) ) ={YUMIL)))}/S(L)
DO314M=1,ND
DT(L,M)=CL(L)*DSDT(L,M)+C2(L)I*DZIDT(L:M)
TI(L,MI=TI(L,M)=DT{L,M)

TFITI(L,M))21422,22

TI(L,M)=0

IFITI(L,M)-D(M))314,314,24

TI(L,M)=DI(MY)

CONTINUE

IFIL-1Z2)9,10410

MX=0

MX=VX+1,

QUMIMX)=0

DO 107I=1,12

OQUMIMX)=0UM{MX)+TI(I,MX)
TICIS,MX)=D(MX)-OUM(MX)

IF(MX-ND)11,12,12

MO=C

COST=0

MO=M0O+1.

costmMo)=0

DO 1081I=1,1IS

FII,MO)=(A(TI,MO))*(TI(I, MO))+(B{I,MO)IX(TI(I,NO)%*%2)
COS{MO)=COS{(MD)+F(I,MO)

COST=COST+COS(MO)

IF{MO-ND)13,14,14

PRINT 203,{DZ{L)oL=1,12)

FORMAT({1H-, *ADDITIONAL CONSTRAINT VALUE =%*,E15.8/)

PRINT 111,ITER,COST
FORMAT { 1H~, "*txass sk sakssr ks s xtaonsthtdessss [TERATION NO.', 14

1L o COST="gF15.8," *xxekkkdksddxRtdthdsbssrraaaRoRes)

PRINT 204

FORMAT({1H-,*' VALUES OF IMPROVEMENTS IN CONTROL VARIABLES ')
***CHANGE FORMAT 205 AS PER VALUES OF IS AND ND #**x*

DO 2061IP=1,12

PRINT 205, (DT(IP,NP),NP=1,ND)

FORMAT(1H +3(E15.8,4X)/)

CONTINUE

PRINT 112

FORMAT(1H-,"SUM OF DS/DT SQUARE",4X,*SUM OF DZ/DT SQUARE"',4X,'SUM
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10F CS/DT#*DZ/DT"')
DO 201I=1,12
PRINT 113,BUM(I)+ZUMII),YUM(I)
113 FORMAT(1H ,3(EL15.8+5X)/)
201 CONTINUE
CHANGE NEXT DO LOOP,AS WELL AS HEADINGS,AS PER '"IS' VARIES

PRINT 114
114 FORMAT(1H ' NUMBER OF UNITS TRANSPORTED®,2X," DS/DX1 ®
192X,° DS/0T Y92Xy " pz/07 T92Xy! DS/DXS*)

DO 202N=1,ND
PRINT 115, ({TI(IeN)osI=14IS),(DSDOX{I4N)DSDTII4N)DIDT(I,N),I=1,12),
LDSDX({ISyN)

115 FORMAT(1H ,6(E15.8,2X)/)

202 CONTINUE
IF(ITER-ITND)15+16,416

16 STQOP
END
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92

101
102

91
300

301

302
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Appendix 3

Computer Program for (2x10) Problem

TRANSPORTATION PRCBLEM BY GRADIENT TECHNIQUE
&R ¢ xCHANGE DIMENSION CARDS AS PER VALUES OF IS AND ND®%x%%%
DIMENSTION A(10,10)B(10+,10)TI(10,10)yW{10),D{10),EUM(10,10)
DIMENSION COSINI{10),FI(10,10)

DIMENSION DSDX{10,10),DZDX(10+10131,SUM{10),CUM(10),DSCT(10,10)
DIMFNSION DZIDT(10,10)

DIMFNSION XN{10),DF(10),DZ{10),YUM(L10)sBUM{10)},ZUM(10),5(10)
DIMFNSION Cl(103,C2(10}1,0T7(10,101}

DIMENSION OQUM(10),CO0S(10)},F(10,10)

CHANGE NEXT THREE CARDS ASPER CHANGES

ITNC=300

I5=?

ND=10

[Z=1S5-1

NZ=ND-1

REAT IN INITIAL VALUES (UPTOD 92) .

CHANGE NEXT TWO FORMAT STATEMENTS AS PER VALUES OF IS AND ND
FORMAT(10(1X,FT7.21)

FORVMAT(2(1XsF8.2))

REAT 1004 ((A{I+N}yI=15IS)sN=1,ND)

REAT 100 ({B{I,N),I=1,I5}sN=1,ND)

REAC 1005 ((TI(I4N),I=1,12)eN=LyND)

REAT 100, (DIN)sN=1,ND)

REAT 92, (Wl{l}sI=1,18)

CHANGE NEXT ¢3¢ FORMAT STATEMENTS AS PER VALUES OF IS AND ND
FORMAT{1H ,10{1X,F7<2)/1lH ,10{1X,FT7.2))

FORMAT{IH L10{1X,F7.2))}

FORYATI{1IH ,2{1X,FB8.2))

PRINT 300

FORMAT(1H-, *DIFFERENT VALUES READ IN ')

PRINT 301 : .

FORVMAT{1H~,"VALUES OF CONSTANTS A')

PRINT 10l {{A(IsN)sI=1,1IS)sN=1,ND}

PRINT 302

FORVMAT([1H-, *VALUES OF CONSTANTS B*')

PRINT 101:({B(I!N)i[=1|[5)tN=ltND)

PRINT 303

FORVMATI1H—-,*VALUES OF CONTROL VARIABLES ASSUMED®')

PRINT 102, (ITI{IN)sI=1,12)¢N=1,ND)

PRIMT 305



305

304

307

306

308
309

311

310

312
313

15

401

406

103

FORMAT{1H-, *VALUES OF TOTAL DEMAND®)

PRIAT 102,{DiN)sN=14,ND)

PRINT 304

FORMAT(1H-, "VALUES OF TOTAL RESOURCE AVAIBLE")
PRINTO1,(WlI),I=1,1S)

CALCULATIONS OF REMAINING CONTROL VARIABLES W.R.TO INITIAL VALUES
MY=C

JY=1S

MY=¥v+1

EUM{JY MY )=0

00 2061=1,117

EUMTUY MY )=EUM{JY MY )+TI(I.MY)

TI(IY MY =D{MYI-EUM{JY MY}

IFI®Y-ND) 307,308,308

PRINT 309

FORFAT(1H—, "REMAINING VALUES OF CONTROL VARIABLES CALCULATED FROM-

L1TOTAL DEMANDS')

PRINT 92, {TI(IS,N)sN=1,ND)

CALCULATICON OF TOTAL COST CORRESPONDING TQ INI. CONTROL VARIABLES
MD=C

COSTIN=0

MD=FD+1

COSTIN{MD)=0

DO 310I=1,1I5

FI(TsMD)=A{T4MD)XTI{I,MD)+B(I MD)*{TI(I4MD}%%2)
COSINI(MD)=COSIN{(MC)I+FI(I,MD)
COGSTIN=COSTIN+COSIN{MD)

IF{MD-ND)311,312,312

PRINT 313,COSTIN

FORPAT(1H—o "%xkexkINITIAL COST=%,F15.8y Y ¥*%kkkt)
% %xMAIN PROGRAM FOR ITERATIONS*%&%%

ITER=0 '
ITER=ITER+1.

DO4C1lJ=1,12

OSDX(JeND)=0

DIDA{J,ND)=1

DSDX{IS,ND)=1

K=0

N=NC-K

SUMINI=0
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CUMIN]=0
DO4C2KL=1,12Z
SUMIN)=SUMIN)+DSDX(KL,N)
402 CUMIN)=CUMIN)+DZDX(KLsN)
IF{{K+1)-ND)403,;404,404%
403 DO4CS5KM=1,12
DSOX{KMoN—1)=DSDX{KMyN)+SUM{N)
405 DZIDX{KMgN—1)=DZDX{KM4N}+CUMIN)
DSOXEIS,N-1)=DSDX(IS¢N)*2
K=K+1]
GO TO 406
404 LS=C
409 NK=ND-LS
DO4C8BKT=1,112
DSDT{KTyNK—1)=SUMINK ) +DSDX({IS,NK)={A{KT yNK-1)#2%BI(KT,NK=-1)*TI(KT¢N
IK-1)-A(IS,NK=1)-2%B(IS,NK-1)*TI(ISyNK-1))
408 DZDTU{KTyNK-1)=CUM{NK)
LS=LS+1
IF((LS+1)-ND)409,410,410
410 DO411KM=1,1Z
*+2VYALUE OF DS/DT AT END POINT IS TAKEN FROM USUAL GRADIENT TECH.¥*
DSDT{KM,NDI=A(KM ND)+2%B (KM, NDI*TI(KM,NDI-A{IS,ND)-2%B{IS,ND})*TI(]
LS¢NC)
411 DZOT(KM,ND)=DZDT{KMyND-1)
L=0
9 L=L+1.
XN{L }=0
CHANGE NEXT CARD FOR VALUE OF DELTABARFAAY
DFI{L)=10000.0
DO 99MY=1,ND
99 XN(LI=XNIL)+TI(L.,MY)
DZELY=XN{L)-W{L)
YUMIL)=0
BUMIL)=0
ZUumMiL)=0
DO 106NP=1,ND
YUMIL)=YUM{L)+DSDT{(L,NP}*DZDT{L NP)
BUMIL)=BUMIL)+DSDT(L NP)%%2
106 ZUMIL)I=ZUMIL)+DZDT{L ;NP )%%x2
SOLVING SIMULTANEOQUSLY FOR K1 AND K2
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SILY=C(BUMILY I=(ZUM(LY I-(YuMIL ) I (YUM(LY))
CLIL)=T(DF{L) I *(ZUMIL) )—(YUMIL) )=(DZIL)))/SIL)
C2(L)Y=( (BUMIL))*(DZ(L))={(DF(L) ) *{YUMIL)))/S(L)
DO314M=1,ND
DTEL M)=CL(L)*DSDT(L4M)+C2{L)*DZDT{LeM)
TI(LM)=TI(L,M)-DT(L,M)
IF{TI(L,M))121:22:22
21 Ti{L,M}=0
22 TFETIL(L,M)—-DIM))314,314,24
24 TI{L.M)=D(M)
314 CONTINUE
IF11~12)9,10.10
10 MX=C
11 MX=PX+1l.
QUM IMX)=0
DO 1071I=1,12
107 QUMIMX)=0UM(MX)+TI(I,MX)
TICISMX)=DI{MX)-0UMIMX)
IF{¥X-ND)11,12,12
12 M0=C
CasT=0
Castmn)=0
DO 108I=1,1S
FII,MO)={A{T MO} I=(TI(I,MO)})+(B{TI,MO}I*{(TI(I,MD)*%2)
108 COS{MO)=COS{MO)+F{I,MO)
COST=COST+COS{MO)
IF{NMO-ND) 13414414
14 PRINT 203,{DZ{L).L=1.121
203 FORMAT(1H—,*ADDITIONAL CONSTRAINT VALUE =',E15.8/)
PRINT 111,ITER,COST
111 FDRFAT{IH_,f************#*###*#t#**t***##*t*t** ITERATION ND.",14
1 7 COST=',F15.8,1 kkkdkdbkkbhkbkk kR khkdd bk rhbhed ek ket )
PRINT 112
112 FORMAT(1H-,'SUM OF DS/DT SQUARE",4X,"SUM OF DZ/DT SQUARE®,4X,?*S5UM
1LOF CS/DT#DZ/0T*)
DO 201I=1,12
PRINT 113,8BUM{I),ZUMIT),YUMII)
113 FORMAT{1H ,3(E15.8,7X)}/)
201 CONTINUE
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C CHANGE NEXT DO LOOP.,AS WELL AS HEADINGS.AS PER 'IS' VARIES
PRINT 1146
114 FORFAT(1H ,* [IMPROVEMENTS 192Xo? NUMBER OF UNITS TRANSPORT
LED" 92X, DS/DXI 92X,y pS/0T Te2Xy? DZ/DT o
Le2Xy? DS/0XS*)

DO 202N=1,ND

PRINT 115, (DT (T N)oI=1,1Z)o(TIC(IyN)»I=1,1S5),(DSDX{I,N),DSDT(I,N),D

LZDT{T4N) o I=1412),DSDX(ISsN)
115 FORMATI(1IH ,7T{2X,E15.8))
202 CONTINUE

IF(ITER-ITNO)154,16.16

16 STOP
END
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Appendix L

cdmputer Program for (3x3) Problem

€ TRANSPORTATION PROBLEM B8Y -GRADIENT TECHNIOQUE
s xxCHANGE DIMENSION CARDS AS PER VALUES OF IS AND ND###%&¥
DIMENSION A{10,10),8{10,10),T71(10,10),W(10),D(10),EUM({10,10)}
DIMFENSION COSIN(10),FI(10.,10)
DIMENSION DSDX(10,10),0DZDX(10,10),SUM(10),CUM(10),DSDT(10,101}
DIMFENSION DZDT(10,10)
DIMFNSICN XN(1O0),OF(10),DZ{10),YUM(10),BUM{10),ZUM(10),5(10)
DIMENSION C1(10),C2(10),DT(10,10)}
DIMFNSION AUM(10).,DEPRI(10)
DIMENSION OUM(10),C0S{10),F(10,10)
CHANGE NEXT THREE CARDS ASPER CHANGES
[INC=250
ND=7%
[Z=715-1
NZ=ND-1
READ- IN INITIAL VALUES (UPTO 92)
CHANGE NEXT FOUR FORMAT STATEMENTS AS PER VALUES OF IS AND ND

101 FORVWAT(1H ,9(1X,F6.2})

102 FORVPATI(1H ,6(1X4F8.2))

g1l FORMAT(1H ,3(1X,F8.2))

92 FORNAT(1H +3{1X,F8.2))
REAT 101, ((A{TIN)eI=1,I5)sN=1,ND)
REAT 101, ((B(I4N)eI=1,1IS):N=1,ND)
READT 102, ({TITI4N)sI=1412),N=1,ND)
REAT 91,{WI{I).1I=1,15)
REAT 92,(D(N}sN=1,ND)
PRINT 300

300 FORMAT(1H-,*DIFFERENT VALUES READ IN *)
PRINT 301

301 FORMAT(1H-,*VALUES OF CONSTANTS A")
PRINT 1014 ((ACI4N)4I=1,1S)N=1,ND}
PRINT 302

302 FORVWAT(1H-,"VALUES OF CONSTANTS B')
PRINT 1014((B{IsN)yI=1,1S)sN=1,ND)
PRINT 303

303 FORVYAT(1H-,'VALUES OF CONTROL VARIABLES ASSUMED')
PRINT 102, ((TI(I N}sI=1o12Z)4N=1,ND)
PRINT 304

304 FORV¥AT(l1H=-,*VALUES OF TDOTAL RESOURCE AVAIBLE®)
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PRINTOL,(W{1),1=1,1S)
PRINT 305
305 FORWAT(1H-,'"VALUES OF TOTAL DEMAND')
PRINT92,(D{N)sN=1,ND)
CALCULATIONS OF REMAINING CONTROL VARIABLES W.R.TO INITIAL VALUES
My="*
Jy=1§
307 MY=FNY+]
EUMUJY MY )=0
DO 2WelI=1,12
306 EUMUJY MY )=EUM{JY,MY)+TI(I,MY)
TI(JY MY )=DI{MY)-EUM{JY,MY)
IF{™Y-ND}307,308,308
308 PRINT 309
309 FORMAT(1lH-, *REMAINING VALUES OF CONTROL VARIABLES CALCULATED FROM-
1TOTAL DEMANDS')
PRINT 92, (TI(ISy,N)yN=1,ND)
CALCULATION OF TOTAL COST CORRESPONDING TO INI. CONTROL VARIABLES
MD=0C
COSTIN=0
311 MD=MD+1
COSTNIMD)=0
DO 310I=1,1IS
FI(CI,MD)=A{I,MD)*TI(I,MD)+B(I,MD)*(TI(I,MD)%*%2)
310 COSIN(MD)=COSINIMD)+FI{I,MD)
COSTIN=COSTIN+COSIN(MD)
IF(¥D-ND)311,312,312
312 PRINT 313,COSTIN
313 FORMAT(1H—, 9%k INITIAL COST=',F15.8, ' %%%%%x?)
*xx2&MAIN PROGRAM FOR ITERATIONS*%%%%
1TE®=0
15 ITER=ITER+1.
DO4ClJ=1,12Z
DSDX{J,ND)=0
401 DZDX{J,ND)I=1
DSDX{IS,ND)=1
K=0
406 N=NO-K
SUMIN)=0
CUMIN)=0
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DO402KL=1,1Z

SUMIN)=SUM(N)+DSDX {KL,N)
402 CUMIN)=CUM{N)+DZDX(KL,N)

IF{(K+1)-ND)403,404,404
403 DO405KM=1,1Z

DSOX(KMyN=1)=DSDX(KMsN)+SUM{N)
405 DIDX{KMyN-1)=DZDX(KMsN)+CUM(N)

DSOX{ISyN-1)=DSDX(IS,N)*2

K=K+1

GO TO 406
404 LS=C
409 NK=ND-LS

DO408KT=1,12

DSDT(KToNK—1)=SUM(NK)}+DSDX(ISsNK)*({A(KT4NK—1)+2%B(KT,NK-1)*TI(KT,N

1K-1)-A(IS,NK=1)=2#B{ISyNK=1)2TI(IS,NK-1))
408 DIDT(KT,NK=1)=CUM(NK)

LS=LS+1

IF(({LS+1)=ND)409,410,410
410 DO411KM=1,1Z

**#VALUE OF DS/DT AT END POINT IS TAKEN FROM USUAL GRADIENT TECH.*

DSDT(KMyND)=A(KMyND)+2%B (KM,ND)} *TI1 (KM,ND)—A{IS,ND)-2#B(IS,ND)*TI (I

1S,NC) ‘
411 DIDT(KM,ND)=DZDT{KM,ND-1)

L=0

9 L=L+1.

XN(L)=0

CHANGE NEXT CARD FOR VALUE OF OELTABARFAAY

DFIL)=1.0

DO 99MY=1,ND
99 XN(L)=XN({L)+TI(L,MY)

DZ(L)=XN(L)-WIL)

YUMIL}=0

BUMIL)=0

ZUMTL)=0

DO YO6NP=14ND

YUMTL)=YUM(L)+DSDT (LoNP)*DZDT (L ,NP)

BUMTL)=BUM(L)+DSDT(L,NP)**2
106 ZUMIL)=ZUM(L)4DZDT(L,NP)*%2

SOLVING STMULTANEOUSLY FOR K1 AND K2

S(LY=((BUMIL) )% {ZUMI(L) )= {YUMIL) )*{YUM(L)))



21
22
24
314

10
505

501
503

504
502
506

11

107
12
13

108

14

CLIW)=C(DF(L) )= (ZUM(L) ) —(YUMIL})*{(DZIL)))2/S{L)
C2{U)=0{BUMIL) )*={DZIL)})-(DF{L) Y =(YUMIL)))I/SIL)
DD314M=1,ND
DT{LyM)=CLIL)=DSDT (L M)+C2{L)*DZIDTIL, M)
TIILM)=TI(LyM)=DT(L,M)
IFITIIL,M))21,22,22
TI{L.,®)=0
IFITI(L,M)-D(M))314,314,24
TIIL,M)=DIM)

CONTINUE

IF(L-1Z2)9,10,10

MG=0

MG=FMG+1

AUMIMG)=0

DO SO011ID=1,12
AUMIMG)=AUMIMG)+TI(ID,MG)
CONTINUE

IFTAUM{MGI-D(MG) 502,502,503
DEPRIIMG)=0.5%(AUM(MG)-DIMG))
DO 504IA=1,11
TI{TA,MG)=TI(TA,MG)-DEPRIING]
CONTINUE

IF{MG~-ND)505,506,506

MX=0D

MX=PX+1.

DUMIMX )=0

DO 107I=1,.12
QUMIMX)=0UMIMX}+TI(I MX]
TI(IS,MX)=DI{MX)-0OUM[MX)
IF{¥X-ND)11,12,12

M0O=0

COST=0

MO=FD+1.

cCastMo)=0

DO 1081=1,I1S

FII,MD)=(ACI,MO))}*={(TI(I,MO))+{BLI,MO))*{TI(I,MO)*%2)

COS{MD)}=COS(MD)+F(I,MO)
COST=COST+COS(MO)
IF{MO-ND)13414,14

PRINT 203,(DZ(L)eL=1,112)
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203 FORMAT(1H-,"ADDITIONAL CONSTRAINT VALUE ='4E15.8/)
PRINT 111,ITER,COST

111 FORMAT(1H=, '&:kikkkkksbbdhbhekhkkssrhhesksrs® [TERATION NO.",14
1 ,° COST=?,F15.8," kxRS RRRRERERXREERAEEREERTEEI )
PRINT 112

112 FORMAT(1H-,'SUM OF DS/DT SQUARE®',4X,"SUM OF DZ/DT SQUARE",4X,"SUM
10F DS/DT*DZ/DT*)
DO 2011=1,1Z
PRINT 113,BUMII)oZUMII),YUM(I)

113 FORMAT(1H ,3(EL15.8,5X)/)

201 CONTINUE
CHANGE NEXT TWO DO LOOPS,AS WELL AS HEADINGS,AS PER'IS' VARIES**

PRINT 115

115 FORMAT(1H ,° DS/DX1 "92Xe"* DS/DX2 ¢ 92Xy!? DS/DX3
1 V92X, DS/DT1 "e2X,o! DS/DT2 Ye2Xy? DZ/DT1 5
lo4X,?® DZ/DT2 ')

DO 202N=1,ND

PRINT 116, (DSDX{IsN)yI=151S), (DSDTU(IsN)»I=1,1Z),{DZDT(I4N)oI=1,12)
116 FORMAT{1H ,7(E15.842X))
202 CONTINUE

PRINT 117
L17 FORMAT{(1H ,°'IMPROVEMENTS IN CONTROL VARIABLES',4X," NUMBERS
1 OF UNITS TRANSPORTED ')

DO 200N=1,ND
118 FORMAT(1H 32(E15.8,2X)4X,3(EL5.8,2X))
PRINT 118, (DT(IPsN)IP=1,IZ){TI(I,N)I=1,1S)
200 CONTINUE
IF(ITER~-ITNO)1S,16,416
16 STOP
END
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Transportation-problems with linear cost function can be solved ef-
ficiently by linear programming. The same type of problems with non-
linear cost function have been approached by dynamic programming and the
maximum principle. However these two techniques have computational
difficulties for problems with a large number of state variables. It has
been shown that the gradient technique is useful for industrial management
systems such as inventory and advertising models. 1In tﬁis report, this
technique is applied to the transportation problem.

The technique is discussed briefly and the equations are derived in
a fairly general form. The matrix form of the transportation problem is
converted into multistage serial processes. In deriving the equations,

a problem with s depots and N demand points is comnsidered. For this
general problem there are s state variables with the sth state wvariable
representing the cost of transportation. The process has N stages.

Three problems are solved., In the first there are two origins and
three demand points; In the second there are two origins but ten demand
points. In the last there are three origins and three demand points.

This particular choice of problems helps show that the gradient technique
does not have difficulty in handling more state variables.

In actual computation it was found that the gradient technique
with the assumption that the gradient at Nth stage is equal to that of
(N-1)th stage gives different values for the optimal if different starting
values of the control sequences are used. However, this difficulty can be
overcome if the gradient at the Nth stage is obtained directly by dif=-
ferentiation. The accuracies on the additional constraints are fairly

good in all the problems solved.



