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Abstract

Minimum average variance estimation (MAVE, Xia et al. 2002) is an ef-

fective dimension reduction method. It requires no strong probabilistic as-

sumptions on the predictors, and can consistently estimate the central mean

subspace. It is applicable to a wide range of models, including time series.

However, the least squares criterion used in MAVE will lose its efficiency when

the error is not normally distributed. In this article, we propose an adaptive

MAVE which can be adaptive to different error distributions. We show that

the proposed estimate has the same convergence rate as the original MAVE. An

EM algorithm is proposed to implement the new adaptive MAVE. Using both

simulation studies and a real data analysis, we demonstrate the superior finite

sample performance of the proposed approach over the existing least squares

based MAVE when the error distribution is non-normal and comparable per-

formance when the error is normal.
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1 Introduction

Since the pioneer work of Li (1991), sufficient dimension reduction has received

much attention as an efficient tool to tackle the challenging problem of high di-

mensional data analysis. The basic idea of sufficient dimension reduction in a re-

gression problem is to replace the original high dimensional predictor with its appro-

priate low dimensional projection while preserving full regression information. Let

y and X be a univariate response and a p-dimensional predictor vector respectively.

A d-dimensional (d ≤ p) subspace S=Span{Bp×d = (β1, β2, · · · , βd)} is called a

dimension reduction subspace of y|X if

y X|PSX, (1.1)

where indicates independence and P(·) stands for an orthogonal projection operator

in the standard inner product. When the intersection of all subspaces satisfying (1.1)

also satisfies (1.1), it is called the central subspace (CS; Cook 1994, 1996, 1998) and is

denoted by Sy|X. Its dimension, denoted by D, is then called the structural dimension

of y|X. When the conditional mean function is of primary interest, the objective of

sufficient dimension reduction is to seek a d-dimensional subspace S such that

y E(y|X)|PSX. (1.2)

Subspaces satisfying condition (1.2) are called mean dimension reduction subspaces

(Cook and Li, 2002). When the intersection of all subspaces satisfying condition
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(1.2) also satisfies condition (1.2), it is called the central mean subspace (CMS) and

is denoted by SE(y|X). Its dimension is called the structural dimension of E(y|X). As

shown in Cook (1998) and Yin, Li and Cook (2008), under mild conditions, the CS

and the CMS exist and are unique respectively. We assume the existence of the CS

and the CMS throughout the article.

Knowledge of the central subspace or the central mean subspace is very useful for

parsimoniously characterizing the conditional distribution of y|X or E(y|X). All the

existing dimension reduction methods can be classified into three groups according

to the distribution form of interest. Sliced inverse regression (SIR; Li 1991), sliced

average variance estimation (SAVE; Cook and Weisberg 1991), principal Hessian di-

rections (PHD; Li 1992), and contour regression (CR; Li, Zha and Chiaromonte 2005)

are among the methods to estimate the dimension reduction subspace through the

inverse conditional distribution of X|y. They are computationally efficient, but do

impose certain probabilistic assumptions on the predictors. Forward regression ap-

proach directly targets on the conditional distribution y|X through the use of kernel

smoothing techniques. Xia et al. (2002) proposed the minimum average variance esti-

mation (MAVE) as the first attempt in this category. It is a nice combination of local

linear smoothing and projection pursuit regression. It requires no strong assumptions

on the probabilistic structure of predictor X, and can be applied to time series models

as well. MAVE can estimate the directions in the central mean subspace consistently

without undersmoothing the link function. With the use of low dimensional kernel,

the refined MAVE (rMAVE) can achieve a faster consistency rate and better estima-

tion accuracy. The third group, the correlation approach such as Yin, Li and Cook

(2008), investigates the joint information of (y,X). OLS (Li and Duan, 1989) and

PHD (Li, 1992) can be flexibly regarded as in this group as well.

Since the introduction of this novel tool, many related studies have been carried
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out to improve MAVE in both theory and applications. Antoniadis et al. (2003)

applied MAVE to tumor classification using gene expression data. Amato et al. (2006)

extended MAVE to functional data analysis. Xia and Härdle (2006) applied MAVE to

partially linear single-index models so that no
√

n-consistent pilot estimator is needed

and the choice of bandwidth is more flexible. Č́ıžek and Härdle (2006) proposed

a robust version by replacing the least squares with local L- or M- estimation so

that MAVE is robust to outliers in the dependent variable. Wang and Yin (2008)

incorporated shrinkage estimation to MAVE so that variable selection and dimension

reduction can be achieved simultaneously. Recently, Wang and Xia (2008) extended

MAVE to the whole central subspace and proposed a new efficient estimation method

called sliced regression (SR).

Despite the nice properties of MAVE as a useful tool in both dimension reduction

and semi-parametric modeling, it is not the most efficient in the semi-parametric

sense because of the use of least squares. This is also briefly mentioned in Xia and

Härdle (2006). In many real applications, the error is very likely to be non-normally

distributed and sometimes far from the normal. So it is natural to treat the error

density as another unknown parameter similar to the link function.

In this article, we propose an adaptive estimation procedure based on the com-

bination of kernel density estimation and MAVE so that the new estimator can be

adaptive to different error distributions and thus improve the estimation efficiency

when the error is not normal. We show that the proposed estimate has the same con-

vergence rate as the original MAVE. A stable EM algorithm is proposed to implement

the adaptive estimation. Using a Monte Carlo simulation study, we demonstrate that

the proposed approach provides more efficient estimate than the existing least squares

based MAVE when the error distribution is not normal. In addition, when the error

is exactly normal, the new method is comparable to the existing MAVE. We illustrate
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the proposed adaptive estimation method with an analysis of a real data set.

The rest of the article is organized as follows. Section 2 introduces the new

adaptive estimation approach, including a brief review of the original MAVE, the

adaptive estimation procedure, and the investigation of its asymptotic properties.

Section 3 evaluates the numerical performance of the proposed approach through

both simulation studies and a real data analysis. A short discussion is in section 4.

All technical details are deferred to appendix.

2 Adaptive MAVE

2.1 A brief review of MAVE

The regression-type model of interest in MAVE can be written as

y = g(BT
0 X) + ε, (2.1)

where g(·) is an unknown smooth link function, B0 = (β01, . . . , β0D) is a p × D

orthogonal matrix (BT
0 B0 = ID×D) with the structural dimension D < p and E(ε |

X) = 0.

Given a random sample {(Xi, yi), i = 1, . . . , n}, the MAVE estimates the CMS

directions B0 by solving the following minimization problem

min
B,aj ,bj ,j=1,...,n

(
n∑

j=1

n∑
i=1

[
yi −

{
aj + bT

j BT (Xi −Xj)
}]2

wij

)
, (2.2)

with respect to aj ∈ R1, bj ∈ Rd and Bp×d, where BTB = Id and d is the working

dimension. The kernel weight wij is a function of the distance between Xi and Xj

satisfying
∑n

i=1 wij = 1. The minimization of (2.2) can be solved iteratively with
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respect to {(aj,bj), j = 1, · · · , n} and B separately. The estimation of MAVE is very

efficient since only two quadratic programming problems are involved and both have

explicit solutions. To improve the estimation accuracy, a lower dimensional kernel

weight w̃ij as a function of B̃T (Xi −Xj) can be used after an initial estimate B̃ was

obtained. The use of a smaller bandwidth in the refined procedure can also improve

the consistency rate.

Note that in (2.2), the least square criterion is used. It corresponds to the maxi-

mum likelihood estimation (MLE) when the error is normally distributed. However,

when the error distribution is not normal, the existing least squares based MAVE

will lose some efficiency. Therefore, it is desirable to derive an estimator which can

be adaptive to different error distributions. In the following, we will propose such an

adaptive estimator based on the extension of the MAVE and kernel density estimate.

In this article, we focus mainly on the estimation of the CMS directions B0 while the

structural dimension D is assumed to be known. To determine the dimension D, the

cross-validation approach proposed in Xia et al. (2002) and some other information

based criteria can also be applied in our adaptive estimation framework. More details

can be found in the previous paper and the references therein.

2.2 Adaptive estimation of the central mean subspace

Let fε(ε) be the density function of ε. If fε is known, one would estimate the CMS

directions by maximizing the following objective function

max
B,aj ,bj ,j=1,...,n

(
n∑

j=1

n∑
i=1

logfε

[
yi −

{
aj + bT

j BT (Xi −Xj)
}]

wij

)
. (2.3)
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However, in practice, fε is usually unknown but can be estimated by

f̃ε(ε) =
1

n

n∑
i=1

Kh1(ε− ε̃i),

where Kh1(ν) = h−1
1 K(ν/h1) with K(ν) being a kernel function and h1 being the

bandwidth, ε̃i = yi − g̃(B̃TXi), and g̃(B̃TXi) = ãi is the initial estimate based on

either the traditional MAVE or other dimension reduction methods. Thus, our new

adaptive MAVE (aMAVE), based on the initial residuals {ε̃i, i = 1, . . . , n}, maximizes

`(θ) =
n∑

j=1

n∑
i=1

log

(
n∑

l=1

Kh1

[
yi −

{
aj + bT

j BT (Xi −Xj)
}− ε̃l

]
)

wij, (2.4)

where θ = {B, (aj,bj), j = 1, . . . , n}, and

wij =
Kh{(Xi −Xj)}∑n
l=1 Kh{(Xl −Xj)} ,

with Kh(ν) = h−p
∏p

k=1 K(νk/h), ν = (ν1, . . . , νp)
T being a p-dimensional vector and

h being the bandwidth. The refined estimate can be obtained by replacing wij with

w̃ij =
Kh2{B̃T (Xi −Xj)}∑n
l=1 Kh2{B̃T (Xl −Xj)}

,

where B̃ is an initial estimate of B0.

Theorem 2.1. Suppose that the Conditions C1-C10 in the Appendix hold and model

(2.1) is true. Let B be the CMS direction estimated from the adaptive MAVE. If

nhp/ log n →∞, h → 0, d ≥ D, and h1 = h/ log(n), then

||(I −BBT )B0|| = Op(h
3 + hδn + h−1δ2

n),
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where δn = {log n/(nhp)}1/2.

The condition of h1 = h/ log(n) is used by Linton and Xiao (2007) for the simplic-

ity of adaptiveness proof. They claimed that a wider range of bandwidth for h1 can be

used without changing the convergence rate but with more complicated proof. In ad-

dition, it can be seen that our adaptive MAVE achieves the same convergence rate as

the traditional MAVE. It would be desirable to compare the asymptotic variances of

both estimators. However, similar to the traditional MAVE, it is not easy to provide

the asymptotic variance and the asymptotic distribution for the proposed adaptive

MAVE. Our simulation study demonstrates that the proposed estimate has better

finite sample performance than the existing MAVE for various error distributions.

The idea of adaptiveness is not new. Beran (1974) and Stone (1975) considered

adaptive estimation for location models. Bickel (1982), Manski (1984), Steigerwald

(1992), Schick (1993), Drost and Klaassen (1997), Hodgson (1998), Yuan and De

Gooijer (2007), and Yuan (2010) extended this adaptive idea to regression, time series

and some other models. Linton and Xiao (2007) proposed an adaptive nonparametric

regression estimator by maximizing the estimated local likelihood function, in which

the unknown error density was replaced by a kernel density estimate using some initial

regression estimate. Our proposed new estimation procedure uses similar kernel error

idea of Stone (1975) and Linton and Xiao (2007) to gain the adaptiveness based on

some consistent initial estimate.

2.3 Estimation Algorithm

Note that the maximizer of (2.4) does not have an explicit formula. In this section,

we propose an EM algorithm to maximize (2.4) by noticing its mixture log-likelihood

structure.
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Algorithm 2.1. Given the initial estimates {ε̃i, i = 1, . . . , n} and the initial value of

θ = {B, (aj, bj), j = 1, . . . , n}, denoted by θ(0), the EM algorithm to maximize (2.4)

at the (k + 1)st step is as follows:

E step: find the classification probabilities

p
(k+1)
ijl =

wijKh1

[
yi −

{
a

(k)
j + b

(k)
j

T
B(k)T (Xi −Xj)

}
− ε̃l

]

∑n
m=1 Kh1

[
yi −

{
a

(k)
j + b

(k)
j

T
B(k)T (Xi −Xj)

}
− ε̃m

] .

M step: update parameter estimates of θ by maximizing

n∑
j=1

n∑
i=1

n∑

l=1

p
(k+1)
ijl log Kh1

[
yi −

{
aj + bT

j BT (Xi −Xj)
}− ε̃l

]
,

i.e., minimizing

n∑
j=1

n∑
i=1

n∑

l=1

p
(k+1)
ijl

[
yi −

{
aj + bT

j BT (Xi −Xj)
}− ε̃l

]2
, (2.5)

when K(ν) is chosen to be a Gaussian kernel.

Remark 1. The choice of a Gaussian kernel for K(ν) gives us a nice quadratic

form as in (2.5). However, the kernel function in the calculation of wij and w̃ij need

not be Gaussian. Other symmetric kernel functions can be used as well. Note that,

however, as in most nonparametric regression, the choice of kernel function is not

critical in terms of numerical results.

Remark 2. After getting the updated estimate of B, one might also update the

refined kernel weight w̃ij to improve the estimation accuracy but with more compu-

tation.
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Similar to MAVE, (2.5) can be minimized with respect to {(aj,bj), j = 1, · · · , n}
and B iteratively.

1. Given B = B(t), the estimate of (aj,bj) is




a
(t+1)
j

b
(t+1)
j


 =

{
n∑

i=1

n∑

l=1

p
(k+1)
ijl XijX T

ij

}−1 {
n∑

i=1

n∑

l=1

p
(k+1)
ijl Xij(yi − ε̃l)

}
, (2.6)

where Xij = (Xi −Xj),Xij = (1,XT
ijB

(t))T .

2. Update B with estimated (a
(t+1)
j ,b

(t+1)
j )

vec(B̃(t+1)) =

{
n∑

i=1

n∑
j=1

n∑

l=1

p
(k+1)
ijl XijlXT

ijl

}−1 {
n∑

i=1

n∑
j=1

n∑

l=1

p
(k+1)
ijl Xijl(yi − a

(t+1)
j − ε̃l)

}
,

(2.7)

where vec(B) = (βT
1 , · · · , βT

d )T , Xijl = b
(t+1)
j ⊗ Xij and ⊗ represents the Kro-

necker product.

3. Orthonormalize the estimated B as

B(t+1) = B̃(t+1)(B̃(t+1)T

B̃(t+1))−
1
2 .

4. Repeat step 1 through step 3 until some convergence criterion is met. For

example, the matrix norm ||B(t+1)B(t+1)T −B(t)B(t)T || can be used to compare

with some pre-specified tolerance value.

The above EM algorithm monotonically increases the local log-likelihood (2.4)

after each iteration, as shown in the following theorem.

Theorem 2.2. Each iteration of the above E and M steps will monotonically increase
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the local log-likelihood (2.4), i.e.,

`(θ(k+1)) ≥ `(θ(k)),

for all k, where `(·) is defined as in (2.4).

3 Examples

In this section, we first conduct a simulation study to compare our proposed adaptive

MAVE (aMAVE) with the traditional least squared based refined MAVE (rMAVE)

for different kinds of error densities. Then a baseball hitters’ salary data is applied

to illustrate the new adaptive MAVE. For aMAVE, we simply use a rule of thumb

bandwidth h1 = 1.06n−1/5σ̂ for the kernel density estimate of fε(ε), where σ̂ is a

robust estimate of σ based on the initial residuals {ε̃1, . . . , ε̃n}, i.e.,

σ̂ = min{(ε̃(0.75) − ε̃(0.25))/1.34, σ(ε̃)},

where ε̃(p) is the pth sample quantile of {ε̃1, . . . , ε̃n} and σ(ε̃) is the sample standard

deviation of {ε̃1, . . . , ε̃n}. Better estimates might be obtained if using some more

sophisticated bandwidth for kernel density estimation. See, for example, Sheather

and Jones (1991) and Raykar and Duraiswami (2006). In addition, one might also use

cross validation method to select the bandwidth, which requires more computation.

The Gaussian kernel is used in the calculation of wij and the choice of bandwidth

follows Xia et al (2002).
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3.1 Simulation studies

The following four error distributions fε of ε (with mean 0 and standard error around

1) are considered in our numerical experiment. The standard normal distribution

serves as a baseline in our comparison. The second one is a scaled t-distribution with

3 degrees of freedom. The third density is bimodal and the last one is left skewed.

1. N(0, 1);

2. t3/
√

3;

3. 0.5N(−1, 0.52) + 0.5N(1, 0.52);

4. 0.3N(−1.4, 1) + 0.7N(0.6, 0.42).

For each of the above error distributions, we consider the following three models:

Model 1: y = βTX + ε, where β = (1, 1, 0, · · · , 0)T /
√

2.

Model 2:

y =
βT

1 X

0.5 + (1.5 + βT
2 x)2

+ 0.5ε,

where β1 = (1, 0, · · · , 0)T and β2 = (0, 1, 0, · · · , 0)T .

Model 3: y = cos(2βT
1 X) − cos(βT

2 X) + 0.5ε, where β1 = (1, 0, · · · , 0)T and β2 =

(0, 1, 0, · · · , 0)T .

Given the generated data {(X1, y1), . . . , (Xn, yn)} where X = (x1, · · · , xp) are inde-

pendent standard normal random variables, we estimate the CMS directions based

on our new aMAVE and the traditional rMAVE. In order to compare different esti-

mators, we use the space distance measure m defined as ||(I − B0B
T
0 )B|| if d < D

and ||(I−BBT )B0|| if d ≥ D (Xia et al, 2002). The number of data replicates is 500.
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Let p and n be the dimension of β and the sample size, respectively. Tables 1,

2, and 3 report the estimation accuracy comparison based on the average m2 for

three models with different combinations of (n, p) and various error distributions fε,

respectively. From the summary of all three models, we can see that the proposed

aMAVE is comparable to the rMAVE for normal errors but more efficient than the

rMAVE when the error is non-normal and the efficiency gain can be quite substantial

even for small sample sizes.

Table 1: Model 1 Estimation Accuracy Comparison m2

fε n = 50, p = 5 n = 50, p = 10 n = 100, p = 5 n = 100, p = 10

1 rMAVE 0.081 0.213 0.038 0.099

aMAVE 0.084 0.212 0.040 0.100

2 rMAVE 0.067 0.169 0.036 0.084

aMAVE 0.055 0.145 0.026 0.067

3 rMAVE 0.106 0.258 0.048 0.123

aMAVE 0.070 0.231 0.022 0.076

4 rMAVE 0.116 0.261 0.046 0.125

aMAVE 0.060 0.187 0.017 0.062

Table 2: Model 2 Estimation Accuracy Comparison (m2
1, m2

2)

fε n = 50, p = 5 n = 100, p = 5 n = 100, p = 10 n = 200, p = 5 n = 200, p = 10

1 rMAVE 0.063, 0.196 0.020, 0.043 0.096, 0.215 0.008, 0.013 0.029, 0.060

aMAVE 0.058, 0.191 0.018, 0.041 0.089, 0.205 0.007, 0.012 0.026, 0.053

2 rMAVE 0.055, 0.138 0.016, 0.034 0.082, 0.181 0.006, 0.011 0.028, 0.048

aMAVE 0.050, 0.121 0.012, 0.026 0.066, 0.156 0.004, 0.007 0.020, 0.033

3 rMAVE 0.074, 0.215 0.025, 0.056 0.120, 0.275 0.009, 0.016 0.035, 0.073

aMAVE 0.067, 0.198 0.021, 0.047 0.105, 0.260 0.005, 0.009 0.025, 0.055

4 rMAVE 0.080, 0.223 0.025, 0.058 0.113, 0.273 0.010, 0.017 0.042, 0.077

aMAVE 0.067, 0.202 0.017, 0.040 0.093, 0.243 0.005, 0.008 0.025, 0.048
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Table 3: Model 3 Estimation Accuracy Comparison (m2
1, m2

2)

fε n = 50, p = 5 n = 100, p = 5 n = 100, p = 10 n = 200, p = 5 n = 200, p = 10

1 rMAVE 0.030, 0.082 0.008, 0.025 0.046, 0.111 0.002, 0.010 0.011, 0.031

aMAVE 0.030, 0.079 0.008, 0.024 0.046, 0.110 0.002, 0.009 0.011, 0.029

2 rMAVE 0.024, 0.070 0.005, 0.022 0.039, 0.070 0.002, 0.009 0.010, 0.028

aMAVE 0.023, 0.059 0.004, 0.017 0.034, 0.061 0.001, 0.006 0.008, 0.020

3 rMAVE 0.043, 0.101 0.009, 0.031 0.063, 0.139 0.003, 0.013 0.015, 0.039

aMAVE 0.040, 0.097 0.007, 0.025 0.059, 0.126 0.002, 0.008 0.010, 0.028

4 rMAVE 0.037, 0.092 0.009, 0.031 0.063, 0.138 0.003, 0.013 0.014, 0.036

aMAVE 0.031, 0.078 0.006, 0.019 0.059, 0.126 0.002, 0.006 0.008, 0.022

3.2 Hitters’ salary data

This data concerns the salary of 263 major league baseball hitters in 1987 and their

performance. An obvious question of interest is “Are they paid based on their perfor-

mance?”. It has drawn much attention from statisticians. Among others, Chaudhuri

et al. (1994) proposed a piece-wise polynomial regression tree (SUPPORT) approach.

Li et al. (2000) proposed a dimension-reduction based regression tree, PHDRT, and

identified several outliers. Xia et al. (2002) applied MAVE to find the low dimensional

projection and chose a partially linear model to fit the data. All previous studies sug-

gested using different models to fit different parts of the data. Along the same line,

we split the data into two groups (junior/veteran) based on ‘the years in the major

leagues’ and the cutoff is chosen to be 7 as suggested by Chaudhuri et al. (1994). The

response variable is taken to be the logarithm of the annual salary in 1987 as in all

previous studies, and the 13 predictors used in our analysis are listed in Table 4.

We apply the adaptive MAVE to both groups, and one significant direction is

identified for each group as shown in Table 4. The scatter plot of response vs the

direction (Figure 1) shows clear linear patterns in both groups, which is consistent

with previous studies. The sign change of the coefficient estimates for the variable
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Table 4: Hitters’ salary data

Performance β̂junior β̂veteran

in 1986 x1 time at bat -0.242 0.192

x2 hits 0.372 -0.035

x3 home runs 0.134 -0.016

x4 runs -0.069 0.004

x5 runs batted in -0.115 -0.049

x6 walks 0.111 0.058

up to 1986 x7 years in major leagues 0.305 -0.206

x8 time at bat -0.113 -0.704

x9 hits 0.751 0.552

x10 home runs -0.048 -0.026

x11 runs 0.164 0.202

x12 runs batted in 0.207 0.266

x13 walks 0.114 0.007

x7 (years in the major league) between the two groups supports the existence of an

‘aging effect’ as discovered by Li et al. (2000) and Xia et al. (2002).

Furthermore, to compare the performance of our adaptive approach with the tradi-

tional MAVE, 100 bootstrap samples are drawn from the original data. Both aMAVE

and rMAVE are applied to each bootstrap sample. The average distance of the di-

rection estimates from bootstrap samples to the direction from the original data is

calculated. For the veteran group, the average distance from rMAVE is 0.282, com-

pared to 0.240 from aMAVE. For the junior group, the average distances from rMAVE

and aMAVE are 0.571 and 0.564, respectively. A detailed look of the residual Q-Q

plots in Figure 1 from the local linear estimation might give some explanations to

the improvement of aMAVE over rMAVE, especially for the veteran group. For the

junior group, the residual is very close to normal distribution since the Q-Q plot is

almost a straight line. Our adaptive MAVE gives comparable result as rMAVE. But
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Figure 1: Hitters’ salary: the plot of response vs the direction from aMAVE and the
residual Q-Q plot

for the veteran group, a clear long tail shows up in the Q-Q plot, which explains the

improved estimation efficiency from aMAVE over rMAVE.

4 Discussion

We have developed an adaptive MAVE to estimate the dimension reduction subspace

more efficiently. Its estimation can be easily implemented with the proposed EM-type

algorithm. Based on our empirical study for various error densities and models, the

proposed aMAVE is more efficient than the existing least squares based MAVE, even

for small sample sizes, when the error density is not normally distributed. In addition,

the aMAVE is comparable to MAVE if the error distribution is exactly normal. It is

proved that the adaptive MAVE has the same consistency rate as the MAVE.

In this paper, we focus only on estimating the CMS directions through MAVE

16



formulation. The proposed approach can be easily adapted to other dimension re-

duction methods. It can also be combined with shrinkage estimation to estimate the

CMS directions and to select informative variables simultaneously. Such extensions

are of great interest in our future research.
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Appendix

A. Regularity conditions

C1. {(Xi, yi), i = 1, . . . , n} are iid sequence from the joint density fX,y(x, y).

C2. {εi} are i.i.d. with E(εi) = 0, E(|εi|3) < ∞. {Xi}and {εi} are mutually indepen-

dent. Additionally, the predictor X has a bounded support.

C3. The density fε(·) of ε has bounded continuous derivatives up to order 4. Let

`(ε) = logfε(ε). Assume `′′′(·) is bounded and E{`′(ε)2 + |`′′(ε)|+ |`′′′(ε)|} < ∞.

C4. E|y|k < ∞ for all k > 0, E||X||k < ∞ for all k > 0.

C5. The density function fX(·) of X has bounded derivatives up to order 4 and is

abounded away from 0 in a neighbor around 0.

C6. The density function fy(·) of y has bounded derivative and is bounded away from

0 on a compact support.

C7. The conditional densities fX|y(·) of X given y and f(X0,Xl)|(y0,yl)(·) of (X0,Xl)

given (y0, yl) are bounded for all l ≥ 1.

C8. g(·) has bounded, continuous 3rd derivatives.

C9. E(X | y) and E(XXT | y) have bounded, continuous 3rd derivatives.

C10. K(·) is a spherical symmetric density function with a bounded derivative and

support. All the moments of K(·) exist and
∫

UUT K(U)dU = I.

The above conditions are imposed to facilitate the proof and most of them are similar

to Xia et al (2002). They are not the weakest possible conditions. For example,

for C1, {(Xi, yi), i = 1, . . . , n} can be weakened to have a stationary and absolutely
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regular sequence. The independence of {Xi} and {εi} can be also relaxed based on the

discussion of Section 4 of Linton and Xiao (2007). In addition, C4 can be weakened

to have the existence of finite moments.

B. Proof of Theorem 2.1

Note that the estimate θ̂ = {âj, b̂j, j = 1, . . . , n, B̂} is the maximizer of the

following objective function

max
B,aj ,bj ,j=1,...,n

(
n∑

j=1

n∑
i=1

logf̃ε

[
yi −

{
aj + bT

j BT (Xi −Xj)
}]

wij

)
, (4.1)

where

f̃ε(ε) =
1

n

n∑
i=1

Kh1(ε− ε̃i)

is the kernel density estimate of fε(·), and ε̃i is the residual based on the traditional

MAVE estimate. Based on the adaptive nonparametric regression result of Linton

and Xiao (2007), the convergence rate of θ̂ in (4.1)is the same as the true density fε(·)
is used. Therefore, we will mainly prove the convergence rate of θ̂ assuming fε(·) is

known. Since the basic idea of our proof is very similar to Xia et al. (2002), we adopt

the same notations for the ease of readers to follow.

Let V denote the gradient of g(·) w.r.t its arguments, i.e.,

V(u1, . . . , uD) = ∂g(u1, . . . , uD)/∂U

and Vk(u1, . . . , uD) = ∂g(u1, . . . , uD)/∂uk. Similarly we define V2
k,l(u1, . . . , uD) =

∂2g(u1, . . . , uD)/(∂uk∂ul) and V3
k,l,m(u1, . . . , uD) = ∂3g(u1, . . . , uD)/(∂uk∂ul∂um), 1 ≤

k, l,m ≤ D.
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Based on the Taylor expansion of g(BT
0 Xi) for Xi close to x, we have

g(BT
0 Xi) = g(BT

0 x) + (Xi − x)TB0V(BT
0 x) + P2,i(x) + P3,i(x) + Ri(x), (4.2)

where B0 = (β01, . . . , β0D),

P2,i(x) = h2P2,h,i(x) =
1

2

D∑

k,l=1

V2
k,l(B

T
0 x){βT

0k(Xi − x)}{βT
0l(Xi − x)},

P3,i(x) = h3P3,h,i(x) =
1

6

D∑

k,l,m=1

V3
k,l,m(BT

0 x){βT
0k(Xi − x)}{βT

0l(Xi − x)}{βT
0m(Xi − x)},

and Ri(x) is defined as the reminder. Let Xh,i(B,x) = (1, (Xi − x)TB/h)T and

Kh,i(x) = Kh(Xi − x). Since B0 = BBTB0 + (I −BBT )B0, we have

yi = XT
h,i(B,x)




g(BT
0 x)

BTB0V(BT
0 x)h




+ (Xi − x)T (I −BBT )B0V(BT
0 x) + h2P2,h,i(x) + h3P3,h,i(x) + Ri(x) + εi. (4.3)

Consider the local likelihood criterion based on local linear kernel smooth

Tn(B,x) =
n∑

i=1

`





yi −XT
h,i(B,x)




a(x)

b(x)h








Kh,i(x),

where `(·) = log fε(·). Note that for any fixed x and B, {â(x), b̂(x)h} is the maximizer

of Tn(B,x). Based on the Taylor expansion and the order of third derivative of
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Tn(B,x), we have




â(x)

b̂(x)h


 =




g(BT
0 x)

BTB0V(BT
0 x)h


 + S−1

n (B,x)Wn(B,x)

where

Sn(B,x) = n−1

n∑
i=1

Kh,i(x)Xh,i(B,x)XT
h,i(B,x)`′′(εi)(1 + Op(an))

and

Wn(B,x) = n−1

n∑
i=1

Kh,i(x)Xh,i(B,x)`′(ri),

with an = h2 + δn, δn = (nhp)−1/2(log n)1/2, and

ri = yi −XT
h,i(B,x)




g(BT
0 x)

BTB0V(BT
0 x)h


 .

From Taylor expansion and the bounded `′′′(·), we have




â(x)

b̂(x)h


 =




g(BT
0 x)

BTB0V(BT
0 x)h


 + S−1

n (B,x)n−1

n∑
i=1

Kh,i(x)Xh,i(B,x)`′(εi)

+ S−1
n (B,x)n−1

n∑
i=1

Kh,i(x)Xh,i(B,x)`′′(εi)(ri − εi) (4.4)

21



Let

Ln,i(B,x) = (Xi − x)T −XT
h,i(B,x)S−1

n (B,x)n−1

n∑
i=1

`′′(εi)Kh,i(x)Xh,i(B,x)(Xi − x)T ,

Qn,i(B,x) = XT
h,i(B,x)S−1

n (B,x)n−1

n∑
i=1

`′′(εi)Kh,i(x)Xh,i(B,x){P2,h,i(x) + P3,h,i(x)h},

Ξn,i(B,x) = XT
h,i(B,x)S−1

n (B,x)n−1

n∑
i=1

Kh,i(x)Xh,i(B,x)`′(εi),

Rn,i(B,x) = XT
h,i(B,x)S−1

n (B,x)n−1

n∑
i=1

`′′(εi)Kh,i(x)Xh,i(B,x)Ri(x).

Replace the estimator of â(x) and b̂(x) in Tn(B,x), we have

n∑
j=1

Tn(B,Xj)

ςn(Xj)
=

n∑
j=1

n∑
i=1

l
{
Ln,i(B,Xj)(I −BBT )B0V(BT

0 Xj) + ∆ij(B)
} Kh,i(Xj)

ς(Xj)
,

(4.5)

where ς(x) = n−1
∑n

i=1 Kh,i(x), and

∆ij(B) = εi+{P2,h,i(Xj)+P3,h,i(Xj)h}h2+Ri(Xj)−Qn,i(B,Xj)h
2−Ξn,i(B,Xj)−Rn,i(B,Xj).

Note that

n∑
j=1

Tn(B,Xj)

ςn(Xj)
=

n∑
j=1

n∑
i=1

l
{

Ln,i(B,Xj)(I −BBT )β0kVk(B
T
0 Xj)

+
∑

l 6=k

Ln,i(B,Xj)(I −BBT )β0lVl(B
T
0 Xj) + ∆ij(B)

}
Kh,i(Xj)/ς(Xj),

(4.6)
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Following Xia et al (2002), we have

(I −BBT )β0k = D−1
k,k

n∑
j=1

n∑
i=1

{
`′

(∑

l 6=k

Ln,i(I −BBT )β0lVl + ∆ij

)
Kh,i(Xj)VkL

T
n,i

}
ς−1
n (Xj)

(4.7)

where

Dk,l = −
n∑

j=1

n∑
i=1

`′′
(∑

l 6=k

Ln,i(I −BBT )β0lVl + ∆ij

)
Kh,iVkVlL

T
n,iLn,i/ςn(Xj).

(4.8)

Since

n−2Dk,l

= −n−2

n∑
j=1

n∑
i=1

`′′(εi)Kh,i(Xj)Vk(B
T
0 Xj)Vl(B

T
0 Xj)L

T
n,i(B,Xj)Ln,i(B,Xj)/ςn(Xj)(1 + op(1))

= −h2n−1

n∑
j=1

Vk(B
T
0 Xj)Vl(B

T
0 Xj)(I −BBT )E{`′′(ε)}+ Op(h

3 + hδn)

and

`′
(∑

l 6=k

Ln,i(I −BBT )β0lVl + ∆ij

)

=

{
`′(εi) + `′′(εi)

∑

l 6=k

Ln,i(I −BBT )β0lVl + `′′(εi) {∆ij(B0)− εi}
}

(1 + op(1)),
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so, we have

− (I −BBT )
D∑

l=1

β0l

{
n−1h2

n∑
j=1

Vk(B
T
0 Xj)Vl(B

T
0 Xj)E{`′′(ε)}+ Op(h

3 + hδn)

}

= n−2

n∑
j=1

n∑
i=1

`′(εi)Kh,i(Xj)Vk(B
T
0 Xj)L

T
n,i(B,Xj)/ςn(Xj)

+ n−2

n∑
j=1

n∑
i=1

`′′(εi)Kh,i(Xj)Vk(B
T
0 Xj)L

T
n,i(B,Xj){∆ij(B0)− εi}/ςn(Xj)

, C1 + C2. (4.9)

Let

Nn(B,x) = S−1
n n−1

n∑
i=1

`′′(εi)Kh,i(x)Xh,i(B,x)(Xi − x)T ,

then we have

Sn(B,x) =




f(x) BT∇f(x)h

BT∇f(x)h f(x)BBT


 E{`′′(ε)}+ Op(h

2 + δn)

and

Nn(B,x) =




f−1(x)∇T f(x)(I −BBT )h2

BT h


 + Op(h

3 + hδn).
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Therefore,

n−1

n∑
i=1

`′′(εi)Kh,i(x){Ln,i(B,x)}T Ξn,i(B,x)

=n−1

n∑
i=1

`′′(εi)Kh,i(x)(Xi − x)XT
h,i(B,x)S−1

n n−1

n∑
i=1

Kh,i(x)Xh,i(B,x)`′(εi)

−NT
n (B,x)n−1

n∑
i=1

`′′(εi)Kh,i(x)Xh,i(B,x)XT
h,i(B,x)S−1

n n−1

n∑
i=1

Kh,i(x)Xh,i(B,x)`′(εi)

=NT
n (B,x)n−1

n∑
i=1

Kh,i(x)Xh,i(B,x)`′(εi)−NT
n (B,x)n−1

n∑
i=1

Kh,i(x)Xh,i(B,x)`′(εi)(1 + Op(an))

=Op(h
3δn + hδ2

n),

and

n−2

n∑
j=1

n∑
i=1

`′′(εi)Kh,i(Xj)Vk(B
T
0 Xj)L

T
n,i(B,Xj)Ξn,i(B,x)/ςn(Xj) = Op(h

3δn + hδ2
n).

(4.10)

Note that

n−1

n∑
i=1

`′′(εi)Kh,i(x){Ln,i(B,x)}T [P2,h,i(x) + P3,h,i(x)h−Qn,i(B,x)]

=n−1

n∑
i=1

`′′(εi)Kh,i(x)(Xi − x)[P2,h,i(x) + P3,h,i(x)h−Qn,i(B,x)]

−NT
n (B,x)n−1

n∑
i=1

`′′(εi)Kh,i(x)Xh,i(B,x)[P2,h,i(x) + P3,h,i(x)h−Qn,i(B,x)]

=n−1

n∑
i=1

`′′(εi)Kh,i(x)(Xi − x)[P2,h,i(x) + P3,h,i(x)h]

−NT
n (B,x)n−1

n∑
i=1

`′′(εi)Kh,i(x)Xh,i(B,x)[P2,h,i(x) + P3,h,i(x)h],
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Since the expectation of the right-hand side can be calculated by taking expecta-

tion with respect to εi at first, which gives E{`′′(εi)}, following the results in Xia et

al (2002), we have

n−2h2

n∑
j=1

n∑
i=1

`′′(εi)Kh,i(Xj)Vk(B
T
0 Xj)L

T
n,i(B,Xj)[P2,h,i(x) + P3,h,i(x)h−Qn,i(B,x)]/ςn(Xj)

=(I −BBT )B0n
−1

n∑
j=1

f−1(Xj)

{
V̄(Xj)− 1

2

D∑

l=1

V2
l,l(B

TXj)B0∇f(x)

}
E{`′′(ε)}h4

+ Op(h
5 + h3δn), (4.11)

where V̄(BT
0 x) = Ṽ

2
(BT

0 x)BT
0∇f(x) + Ṽ

3
(BT

0 x) with Ṽ
2
(BT

0 x) being a D × D

matrix of the upper left part of
∑D

m,l=1

{
V2

m,l(B
T
0 x)× ∫

K(U)UUT ulumdU
}
, κ4 =

∫
u4K(u)du and

B0Ṽ
3
(BT

0 x) =
1

6

{
D∑

l=1

V3
l,l,l(B

T
0 x)κ4β0l +

∑

m6=l

V3
m,m,l(B

T
0 x)β0l

}
.

Similarly we have

n−1

n∑
i=1

`′′(εi)Kh,i(x)LT
n,i(B,x)[Ri(x)−Rn,i(B,x)]

=n−1

n∑
i=1

`′′(εi)Kh,i(x)(Xi − x)Ri(x)−NT
n (B,x)n−1

n∑
i=1

`′′(εi)Kh,i(x)Xh,i(B,x)Ri(x)

=Op(h
5),
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and

n−2

n∑
j=1

n∑
i=1

`′′(εi)Kh,i(Xj)Vk(B
T
0 Xj)L

T
n,i(B,Xj)[Ri(x)−Rn,i(B,x)]/ςn(Xj)

=Op(h
5). (4.12)

Therefore, from (4.10), (4.11) and (4.12) we have

C2 =(I −BBT )B0n
−1

n∑
j=1

f−1(Xj)

{
V̄(Xj)− 1

2

D∑

l=1

V2
l,l(B

TXj)B0∇f(x)

}
E{`′′(ε)}h4

+ Op(h
5 + h3δn + hδ2

n). (4.13)

Next we will check the order of C1. Note that,

n−1

n∑
i=1

Kh,i(x)LT
n,i(B,x)`′(εi)

=n−1

n∑
i=1

Kh,i(x)(Xi − x)`′(εi)

− n−1

n∑
i=1

`′′(εi)Kh,i(x)(Xi − x)XT
h,i(B,x)S−1

n n−1

n∑
i=1

Kh,i(x)`′(εi)Xh,i(B,x)

=n−1

n∑
i=1

Kh,i(x)(Xi − x)`′(εi)−NT
n (B,x)n−1

n∑
i=1

Kh,i(x)Xh,i(B,x)`′(εi).

=n−1

n∑
i=1

Kh,i(x)(Xi − x)`′(εi)− n−1f−1(x)(I −BBT )h2∇f(x)
n∑

i=1

Kh,i(x)`′(εi)

− n−1BBT

n∑
i=1

Kh,i(x)(Xi − x)`′(εi) + Op(h
3δn + hδ2

n)

=(I −BBT )n−1

{
n∑

i=1

Kh,i(x)(Xi − x)`′(εi)− h2

f(x)
∆f(x)

n∑
i=1

Kh,i(x)`′(εi)

}
+ Op(h

3δn + hδ2
n),
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since E{`′(ε)} = 0, we have

C1 = n−2

n∑
j=1

n∑
i=1

Kh,i(Xj)Vk(B
T
0 Xj)L

T
n,i(B,Xj)`

′(εi)/ςn(Xj) = Op(δnh
3 + hδ2

n).

(4.14)

Therefore, from (4.13) and (4.14),

− (I −BBT )
D∑

l=1

β0l

{
n−1h2

n∑
j=1

Vk(B
T
0 Xj)Vl(B

T
0 Xj)E{`′′(ε)}+ Op(h

3 + hδn)

}

=(I −BBT )B0n
−1

n∑
j=1

f−1(Xj)

{
V̄(Xj)− 1

2

D∑

l=1

V2
l,l(B

TXj)B0∆f(x)

}
E{`′′(ε)}h4

+ Op(h
5 + h3δn + hδ2

n),

for k = 1, . . . , D. Hence,

(I −BBT )B0n
−1

n∑
j=1

V(BT
0 Xj)V

T (BT
0 Xj)E{`′′(ε)} = Op(h

3 + hδ + h−1δ2
n).

Since n−1
∑n

j=1 V(BT
0 Xj)V

T (BT
0 Xj) = Op(1), we have

||(I −BBT )B0|| = Op(h
3 + hδ + h−1δ2

n).
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C. Proof of Theorem 2.2

Note that

`(θ(k+1))− `(θ(k))

=
n∑

j=1

n∑
i=1

log





∑n
l=1 Kh1

[
yi −

{
a

(k+1)
j + b

(k+1)
j

T
B(k+1)T (Xi −Xj)

}
− ε̃l

]

∑n
l=1 Kh1

[
yi −

{
a

(k)
j + b

(k)
j

T
B(k)T (Xi −Xj)

}
− ε̃l

]


 wij

=
n∑

j=1

n∑
i=1

log





n∑

l=1


 Kh1

[
yi −

{
a

(k)
j + b

(k)
j

T
B(k)T (Xi −Xj)

}
− ε̃l

]

∑n
l=1 Kh1

[
yi −

{
a

(k)
j + b

(k)
j

T
B(k)T (Xi −Xj)

}
− ε̃l

]

×
Kh1

[
yi −

{
a

(k+1)
j + b

(k+1)
j

T
B(k+1)T (Xi −Xj)

}
− ε̃l

]

Kh1

[
yi −

{
a

(k)
j + b

(k)
j

T
B(k)T (Xi −Xj)

}
− ε̃l

]





 wij

=
n∑

j=1

n∑
i=1

log





n∑

l=1

p
(k+1)
ijl

Kh1

[
yi −

{
a

(k+1)
j + b

(k+1)
j

T
B(k+1)T (Xi −Xj)

}
− ε̃l

]

Kh1

[
yi −

{
a

(k)
j + b

(k)
j

T
B(k)T (Xi −Xj)

}
− ε̃l

]


 wij,

where

p
(k+1)
ijl =

Kh1

[
yi −

{
a

(k)
j + b

(k)
j

T
B(k)T (Xi −Xj)

}
− ε̃l

]

∑n
l=1 Kh1

[
yi −

{
a

(k)
j + b

(k)
j

T
B(k)T (Xi −Xj)

}
− ε̃l

] .

From the Jensen’s inequality, we have

`(θ(k+1))− `(θ(k))

≥
n∑

j=1

n∑
i=1




n∑

l=1

p
(k+1)
ijl log





Kh1

[
yi −

{
a

(k+1)
j + b

(k+1)
j

T
B(k+1)T (Xi −Xj)

}
− ε̃l

]

Kh1

[
yi −

{
a

(k)
j + b

(k)
j

T
B(k)T (Xi −Xj)

}
− ε̃l

]


 wij




Based on the property of M-step of (2.5), we have `(θ(k+1))− `(θ(k)) ≥ 0.
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