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I. INTRODUCTION

The advent of the space age and satellite communication systems
has placed increased emphasis on'the study of estimation in communica-
tion systems. The subject of estimation is a vast one, so attention
will be devoted only to the particular problem of least squares esti-
mation. Emphasis will be placed on an approach which is actually quite
similar to tﬁat originally proposed by Gauss. Least squares theory
not only provides useful solutions to certain specific estimation
problems, but it also has applications to a large number of other
problems of both statistical and deterministic types. The deterministic
form will be emphasized in this report. In many cases the statistical

results are special cases of the results reviewed in this report,
A. OBJECTIVE OF THE REPORT

The object of this report 1s to collect some important results
regarding least squares estimation and apply them to various communi-
cation Problems such as the derivation of optimum receiver structures,
It is shown that the method of least squares and certain types of error
theorems derived therefrom can be defined without using any statistical
concepts, The report summarizes a number of substantive results which
are insufficiently well known or in some cases about which there has
been a great deal of confusion, e.g.

(1) Many important procedures such as recursive parameter
estimation do not require any statistical-concepts or assumptions,

==
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(2) Even when a problem is statistically formulated there need
be no difference in the treatment of the problem where the parameters
are stochastic as opposed to where the parameters are non-stochastic
or deterministic. All problems in which the parameters are stochastic
processes can be considered a subset of the set of problems of esti-
mating a vector of non-stochastic parameters giving identical results.

This is a major argument of Swerling [1].
B. _ STATEMENT OF THE PROBLEM

The general estimation problem to be considered can be formulated
as follows: Let
¥ be an obseryation vector.
x be the parameter vector for which an estimate ¥
is to be made.
g(x) be the noise free observation such that:
r =s8(x) +n 1.1
where n is a vector representing the error in the observation.
Throughout most of the report, vectors will be represented by lower
case letters and capital letters will be used for matrices except for
Q which is always a scalar. In casés where confusion is likely to occur
between vectors and scalars, lower case greek letters are used for
scalars.
If s(x) depends linearly on the parameter x to be estimated,
then equétion 1.1 becomes the "case of linear dependance' or the "linear
case." If x is regarded as a stochastic process, then it will have
a prescribed covariance matrix Cx’ but it can still be treated by the

same methods as a non-stochastic process.
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c. ORGANIZATION OF THE REPORT

The balance of the report is organized along the following lines.
First the early history of least squares estimation from Gauss to
N. Wiener (1795-1942) and more recent developments in the field of
estimation by Blackman (1964) and P. Swerling (1971) are outlined in
Chapter I1I.

Chapter III contains the overview and significant results
obtained from Swerling [1],[3] and Blackman [2]. Throughout, the
least squares estimate is defined as estimate derived by the method
of "least squares" as given in section III-B, This should not be
confused with the minimum mean square error (MMSE) estimate which
is the one for which the statistical mean square error is minimum
among all estimates of a given parameter. In many cases, however,
they are the same.

In section III-C, least square estimates obtained with the
benefit of a priori data are considered. The a priori data is taken
as a set of a priorl estimates X, which could come from an estimate
based on some previous set of observational data, could be the mean
values of an a priori joint statistical distribution or any set of
numbers which could be regarded as estimates of X .

Swerling's method of estimation using least squares is described
in Section III-D. This recursive method avoids the computation of a
large D(xo) matrix and uses updated estimates and covariance
matrices.

The inversion of matrices can be avoided 1f the new data is

introduced one at a time. This is described in Battin's method of
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estimation in section III-E. It is basically a special case of
Swerling's method, the main feature being that it uses scalar obser-
vatlons to avoid need for matrix inversions.
Chapter IV considers the applications of least squares esti-
mation to communication problems. Block diagrams are used to illus-
trate the results for amplitude and phase modulation schemes.

Chapter V concludes the report.
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I1. HISTORICAL BACKGROUND

Estimation can be defined as the process of making a decision or
judgment, concerning the approximate value of a certain undefined
variable when the decision is weighted or influenced by all available
information, Ffom the earliest times, people have been concerned with
making estimates and predictions. An early force in the development
of estimation theory was provided by astronomical studies in which
planet and comet motions were studied. The method of least squares
was invented to solve the problems concerning the revolution of
heavenly bodies. It was separately and almost simultaneously, postulated
by two men [5). Legendre was the first to put forward his ideas in
1806. He was closely followed by Gauss who presented a paper in 1809,
in which he derived the method from fundamental principles., Gauss also
claimed that in 1795 he used the method of least squares to solve a
problem concerning the orbit determination of minor planets.

Gauss showed the generality of the least squares estimator for
treating scientific data. The following quotation [5] from Theoria Motus
illustrates the understanding Gauss had of this method as well as its
application beyond the field of dynamical astronomy. "The most probable
value of the desired parameters will be that in which the sum of the
squares of the difference between the aqtual observed and computed
values multiplied by numbers that measure the degree of precision, is
a minimum." It is interesting to note that Gauss tried to minimize
other efen powers [4th, 6th powers etc.] of the sum of the difference
between observed data and the corresponding true values. Soon after

the publications of "Theoria Motus" the method of least squares estimation

.,
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was quickly adopted as a standard technique for the determination of
orbit parameters. Many astronomers since Gauss have used the method
of least squares for solving the problems relating to astronomical
observations. The significant names are Bessel, Laplace, Poisson.

More recently Swerling and Blaclman have applied the method to
satellite orbit determination.

Perhaps the next major development In estimation theory after
least squares, was the introduction of "Method of moments," given by
K. Pearson [5]. This method is not widely used, the main disadvantage
being that the estimates obtained are not the best froﬁ the viewpoint
of computational efficiency. The contributions of R. A. Fisher pro-
vide the basis for much of modern estimation theory. He showed that
the method of maximum likelihood was usually superior to the methéd of
moments. Gauss had felt that the maximum likelihood estimator would be
inferior to least square estimation but in many cases they are the same.

A frequent problem in communication systems relates to the random
noise signal added during transmission. Early attempts made to reduce
the unwanted noise by means of filters were often unsatisfactory because
of the lack of a theory that could be used to synthesize the required
filters. An alternate approach to the study of information trans-
mission in presence of noise is generally attributed to N. Wiener
(1942). Two important contributions were made by Wiener were:

(a) Estimation theory could be applied to synthesize an elec-
trical filter that would provide the best separation of a desired
signal in presence of undesired noise.

(b) Wiener emphasized treating signals and noise as stochastic

processes, rather than viewing them in terms of their frequency
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spectra. Wener theory appears to be basically a least squares estiF
mation process, but the similarities to Gauss's method‘soon disappear,
because Wiener made use of data parameters input in the form of a
stochastic process. He derived an optimum estimator which was capable
of making the best separation between a desired signal and undesired
noise. He required that the estimator be a linear physically realizable
filter.

Since the middle fifties several methods of orbit refinement
were developed for determining the orbits of artificial satellites
and spacecraft., Until then, one of the mﬁst frequently used methods
was the classical method, the so called "differential correction”
method, (which is more or less the method of least squares developed
by Gauss). However, this technique was not very helpful for large
quantities of observational data. Till 1955; this method was good
enough, but after the development of artificial satellites the mneed
for alternative methods for orbit refinement began to be felt. The
first definite proposal for an alternate method was given by P. Swerling
[8] in 1958. A little different method developed by Blackman (2] in
1958 was used with Telestar I. A similar but improved version of this
method was put forward by A, J. Claus and R, H, Battin [9] [0] in
1962, All the methods basically use the background of least squares.

It was not till 1966 that P, Swerling [3] gave a new application
of the least squares method to the estimation of a signal or signal
parameters, in the presence of ngise. In 1971, another paper was pre-
sented by Swerling on the subject of state estimation. This paper
was an elaboration of Gauss's method of least squares, which differs

in viewpoint some what from the more conventional development, that
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is, the development from the viewpoint of Wiener's linear filter
theory. It was shown by Swerling that the results obt;ined from
linear filter theory are speclal cases of results that are obtained

from a generalized least squares (gls) method.
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111, AN OVERVIEW OF MAJOR REFERENCES AND
SIGNIFICANT RESULTS
This chapter deals with an overview of major references and
extracts the significant results from each. The definitions and
the mathematical approach of the important methods are presented in

the following sections.
A. SUMMARY OF MAJOR RE.FERENCES

The significant results of interest are obtained from three
major references [1] [2] [3]. The references [1] [3] by P. Swerling
deal with the general topic‘of estimation, whereas [2] describes
the special methods developed for orbit refinement but which actually
have wider application.

In his ana}ysis Swerling uses a weighting matrix which may or
may not be the inverse covariance matrix of the error (noise). The
classical method described by Gauss had a diagonal weighting matrix.
Swerling allowed the matrix to be non-daigonal and termed the resulting
procedure a "generalized least squares" (gls) method. He shows [1]
that if the weighting matrix equals the inverse covariance matrix of
the error (noise), then the components of the estimates are minimum
méan square error (MMSE) among all linear estimates of the unknown para-
meter also, Swerling further shows that if the errors have joint
Gaussian statistics, the components of the estimate are then maximum
likelihood (ML) estimates,

-]2=
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Swerling also demonstrates how a priori data can be used to
improve gls estimates when available. The a priori data may be in
the form of estimates based on a previous set of observations, the
mean value of an a priori joint statistical distribution or any set
of numbers which may be regarded as estimates. It is shown that the
a priori data may be considered'as additional observations which
effect the estimate. If in this case the weighting matrix equals
the inverse covariance matrix of the error, and in addition the a
priorl statistics of the observation error and the statistics of
the actual error are jointly Gaussian, then the estimate obtained
becomes the maximum a posteriori (MAP) estimate and 1s (MMSE)
minimum mean square error among all estimates. It was also shown
by Swerling [l] that the results obtained by linear filtering and
prediction theory are similar to the results obtained by the general-
ized least squares method if the stochastic parameters used in
;inear filtering and prediction are used to form the weighting matrix
for the gls approach.

The other major reference [2] describes several methods for
orbit refinement, which were specifically developed for use with arti;
ficial satellites and spacecraft. In addition to these methods, the
paper also describes the classical method. It also compares the
reiative advantages and disadvantages for practical system applica-
tions,

Battin's method is also considered which 1s essentially the
improved version of Swerling's method. Battin's method uses scalar
quantities to avold the inversion of matrices and hence decreases

the computational time.
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Mathematical explanation for the methods described are given

in the following sections.
B. CLASSICAL LEAST SQUARES METHOD

The "classical least squares" procedure for obtaining estimate
% of the parameter x is as follows:
Let:

Q= [r = S(x)]T Cn"1 [r - s(x)]. 3.1

T
where: x = (xl. 5 .xn).

Cn- is a positive definite symmetric matrix that is

not necessarily the inverse covariance matrix of the observation error
but which might be 1f some statistical information is available. Then
by definition a procedure in which the estimate & is obtailned by mini-
mizing Q with respect to x is a least squares procedure. For the
classical least squares method, the matrix C“ml is a diagonal matrix.
For the generalized least squares procedure as defined by Swerling [1]
a non-diagonal matrix is used. Except for this, the development is
the same.

Let X be an initially assumed value of x, close to the true
value. Then to the first order term in (x—xo), a Taylor series
expansion of s(x)} is given by:

as(x ) T

s 0 -
se(x) = s(xo) + a(xo) {x xo) 4+ higher order terms. 3.2

The derivative matrix is defined by:

T T
Bs(xo) 3s(x) T
— 9 = A = 3.3
a(xo) a(x) x=x I (xo)

s}
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where:
DT(x) i le(x) asl(x) _____ le(x)
Bxl ax2 , an
]
9s, (x)
82 ' 3.4
b4
L |
|
l
Bsm(x) Bsm(x)
Bxl axn
l_ -
Then:
T
-s8(x) = s(xo) +D (xo) (xwxo) 3.5
and Equation 3.1 becomes: ' ' 3.6
~ T S | ' T
Q=[r - s(xo) -D (xo) Cx—xo)} c, [r - s(xo) -D (xo) (x—xo)]

Now observe that if a scalar Q is defined by a function of this form.
T 5 .
Q=f& A f(k) 3.7

where A 1s a symetric matrix, then

A . a—g—i(“—l A 0 % B A a—’;—:—g—’—‘l | 3.8
but
| g ) - £ = A £ gl T 3.9
= '@ AT g7t 3.10
Because of the symmetric matrix A
g ) [A £G)] = £() A g 3.11

Hence Equation 3.7 can be written as:

T
an . oz L& .y g 3.12

X 9x
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Applying this result to Equation 3.6 ylelds

2o eyt - st) - DT(x) Gex )] 3.13

Now Q 1s minimum if:

0= -2 Dx) cn"1 [r - sx)) - DT(xo) (e-x )] 3.14
0= D(xo) Cn-1 [r - s(xo) - DT(xo) (x—xo)] 3.15
D(x_) cn"1 [r - s(x )] = D(x) c:n"1 - DT(xo) Gx ) 3.16

If DT(xD) is non singular and if the value of x which satifies Equation

3.16 is % then:

2 1

X + [D(xo) Cn_l DT(}{O)]m1 D(xo) Cn‘ [r - s(xo)] 3.17
The procedure for computing estimates is to substitute the value of
% back in Equation 3.17 for X in order to obtain another %. This
process is diterated until % has essentially converged. The final

value of £ is the least squares estimate of the parameter vector X.

Equation 3.17 can be further written in a more compact form as:

~ -1
% = x + B (xo)P 3.18
where
B(x) = [D&x) ¢ ' Dlx)] 3.19
x ) = %) - % ’
P = [ D(xo) Cn_l} [r - s(xo)} 3.20

In linear case this can be simplified somewhat because s(x) = DT(x).
In the linear case 3.17 is exact and B and D are independent

of x, a simpler formula for calculating ® is obtained as follows:

$ = slpct {r'—DTx]+x 4.0
n (o] (o]



& = B DC '"Dx + B 'DC [r -Dx ] 3.29
n o] (o]

2 = Yo 'ox + Blopeclr-slpc ot 3.23
n o] n n (o]

2 = plp cn'lr. 3,24

The above equation 3.24 is true whether or not errors are regarded
as statistical variables. In this case 1t is not necessary to assume
the initial value X, or iterate the solution to find X.

The average or mean of the error is found by rearranging 3.24

and forming:

E [%-x] = E[B DC_ r-x] 3.25
= E [B"1 i 2% s % u) )
- @Bl cn"1 * n] 3.26
= Enl-2'0p cn“1 3.27
=0 3.28

Since n is a zero mean. The covariance matrix of the error can be
found from

T T

]

E [(%-x) G—x)"] = E [~ ! D Cn_ln) @l p cn'ln)T] 3.29

= gl pT ¢l E o) B oT e T

3.30

1
=

=
i
—

Since C
Therefore ‘

E [(&-x) (2-x)" ] 3.31

L]
==}
=]
@]
(@]

=
=
o
(9]
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Therefore, for the linear case:

-1

E [(%~%) (&-x)"] = B 3.32

1

The matrix B~ 1s the covariance matrix of the estimation error. The

eomputation of % are winimum mean square error among all linear
estimates of x [1]. In practice, Cn-1 may or may not be the inverse
eovariance matrix, The actual choice of Cn_l is just a trade off

between the estimation accuracy, computational speed and simplicity

[1].

G LEAST SQUARES ESTIMATE WITH A PRIORI DATA

In this section generalized least squares estimation is extended
te incorporate an a priori estimate in addition to the observational
data.

Here it is supposed that in addition to the observational data
r there are alsc available a set of a priori estimates x . These a
prieri data might arise in several different ways:

(1) Estimatcs based on some previous set of observational

' data.
(2) Mean value of an a priori joint statistical distribution.
(3) A set of numbers which may be regarded as estimates of
xa.
The generaliéed least squares estimation procedure which consists of
ebservational data r and an a priori estimates x, can be defined by
the gquadratic equation given below:

T - sl + " xox) 3033

Q= I[r-as!" ¢
n - a
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This equation is minimized with respect to the components of x in

order to get the estimate. In the above equation:

C. X positive definite symmetric matrix which may not

be the inverse covariance matrix of the observation error (noise).

Cxl is a positive definite symmetric matrix for the a priori
a 5
data.

Therefore,as before s(x) = s(xo) + DT(XO) (x—xo).

Q=[r-sx) - DTCxo) (x—xo)]T Cn-l [r - s(x) - DT(xo) Gmx)] +
[xa-x]T c;i [x,-x] 3,34
L2 ) ¢ -skx) =D ) Gex )]+ (-2) c;j (e %)

If % is a solution the above equation then:

cn"1 D (x) [r- sx) - DT(xo) (#-x )1 + c;l (x,~%) = 0.

a

4 DT(xo) (%-x_) + c;l (x,-%) = 0.

D(xo) Cn—1 [r - s(xo)] = D(xo) Cn- X

fr - s(x )1 ¢ 1D () +Dx) ¢TI D k) )+ Ot (x) =

a
-1 N T -1 n
D(xo) c,~ % D (xo) +C %
a
Solving for x yields:
G o Tl ~1 ~1.,-1 -1 _
£ =[D (XO) c, D (XO)A+ Cxa] [Cn D (xo) [ S(xo)] 4
-1 T -1
D(xo) C D (xo) (xo) + cxa xa]
T -1 -1.-1
If C=1[D (xd) Cn D (xo) + Cxa] . 3.35
g=cCcD&)C Fr-sE) +px)ct dlTex) x) 4
(o] n (o] (o] n (o] 0
¢l ox 3.36
x a
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This value of X is substituted back in equation 3.34 to obtain
another estimate. The process is iterated until % is essentially
converged. The final value of % is the generalized least squares
estimate of the parameter.
In general it is logical to set X, =X, i.e. the initial

guess is taken as the a priori data estimate. This leads to:

Q= [x- s(xy) = D'Gx) Gex )17 € Nr - sx) - DTGx) Gex )]+

T =1 :
[xa-x] Dxa [xa—x] _ 3.37

~

Letting X =X, in equation 3.36 the estimate £ obtained 1s given

as.:
% = C[D(xa) cn'l {r - s(xa)} +D(x_) cn"1 . DT(xa) (x_) f
-1
¢ x) 3.38
a
2=CD&x)C ¥ {r-sx)} +cCD&)D&x)c tx +
a n a ’ a a 9] a
-1
Cx xa]
a
% =c[p(x ) C Lo = s(x )} +¢C ¢l x
a n a a
%= x_+CID(x) cn"l (r - s(x )] 3.39

It is clear that the a priori estimate. X effects the least
squafe estimate 1n exactly the same way as a set of n additional
observations. It follows that the following statements hold good
for the n additional observations.

1. The observed values are X,

2. The observation errors are xa - X.
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The general equation r = s(x) + n equals

x, = x+ (xa - X) 3.40

(xa -~ x) are considered to have a prioril statisﬁics with zero mean

and are to be statistically un-correlated with actual observation
errors. In addition to the estimate obtained in equation 3,36 the

a priori statistics of (x - xa) and the statistics of error are jointly
Gaussain, then X becomes the maximum a posteriori (MAP) estimate and

minimum mean square error (MMSE) among all the estimates.
D. SWERLING'S METHOD OF LEAST SQUARES

The main feature of Swerling's method is th#t computation invelving lar
matrices can be avoided by calculating a sequence of estimates. The
procedure is as follows.

Let & be an estimate of the element at time tl and let Cﬁ be its
covariance matrix, Also let r be the new vector observation at time t2
having covariance matrix Cn' To obtain the least squares estimate of

the elements at time t the estimate % and its covarilance matrix C;

2’
are first updated, i.e., extrapolated to time t,. If %l is the

result of updating X, the updated matrix C; is given by:

1
cr = MM 3.41
X X
1
where
31 |
Moo= 32 3.42

Then assuming that the errors in the new data are not correlated
with the errors in the old data, the quadratiec form to be minimized

is:
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Q= (x-2)" Cﬁll (%) +[r-sG)] ¢ Ir-s(]  3.43
vhere

8(x) = (&) + D (%) (%)) ' 3.44
and A

p'(2)) = az;jl) 3.45

Then to second order terms Q is gilven by

_ -1 T T
Q= (x-%)) Cil (x=%)) +[r - s(&)) - D (%)) (X~&l)] .

cn'1 [r - s(2) - D' (%) (x-2,)] 3.46

The minimization is the same as in case of classical method with a
priori data, hence the result can be written directly.

I1f & satisfies the above equation then

% = 21 + Cﬁ Y , 3.47
where
-1 -1 T,. -1
Cy [Cil +D(%)) C " D(X))] 3.48
—1 A A~
Yy = ¢ D &) [y - s(&,)] 3.49

Equations 3.4l and 3.42, together with 3.47, 3.48 and 3.49 constitute
Swerling's procedure for calculating an up-dated estimate X using a

previous estimate as a starting point.
E. BATTIN'S METHOD FOR SCALAR OBSERVATIONS

This method is basically a special case of Swerling's method.
Its main feature is that, by introducing new data one at a time it

avoids the inversion of matrices and saves computation time.
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The estimate obtained from Swerling's method is:

D(%, }iC L g o 8 (%)) 3.51

8 = & +C Lo

1 p3

Let the observation r be a scalar r = L, The vector s(ﬁl) also becomes
a scalar and the matrix D(ﬁl) becomes a vector and is written as
d(ﬁl). Since % is a scalar, the matrix Cn is also a scalar and

equation 3.51 can be further reduced to

i 1 5
& = il + Cft d(xl) E;E'[Q_ s(xl)} 3.52
where
¢ ~o 2 ‘ ' 3.53
n n
and
o - " PR ~f =l
Gﬁ = [d(xl) T3 d (xl) + Cfc | 3.54
n 1
Substituting ,
1 1 T ~ -'1 "1 A
& = 21 + ) [E—_:?.- d(ﬁl) d (xl) + C& ] d(xl) [E‘— S(ﬁl)}
n n - 1
Rearranging yields
% =&+ [d(&,) dT(R y+02¢ "Ll a)) [ s @) 3.55
1 1 1 n % 1/t 1

The troublesome aspect of using this result for calculating % is the
inverse operation. Suppose that a scalar a is defined by

2

T
a=d (21) C2 d(ﬁl) + s 3.56

1

Since a is a scalar, it can be written as

T 2. 1
d(ﬁl) = d(xl) [d (stl) cjtl d(stl) 2P -

Rearranging

3 T 2 -1
d(kl) m = [d(ﬁl) d (21) Gﬂl d(Rl) + o C21 Cil d(kl)]
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Finally
= l i T" 2 _1
d(ﬂl) S [d(xl) d (xl) + o Cil ] cﬁl d(ﬁl) 3.57

Substituting Equation 3.57 in 3.55 results

-1
) LT 2 -1.-11 ... T, 2 ]
& = g+ [d(xl) d (xl) + o C:gl ] = [d(xl) d (xl) + o, Cil
Cil d(xl) [l—s(ﬁl)] 3.58
Making the obvious cancelations leads to
R =g +=c, d&) [g-s(%,)] 3.59
% 1 « ﬁl R 1 '
where Ci is an update of the matrix Ci' Since . Equation 3.54 can
1
be written as
_ 2 ~ T,\ 2 -l _1 .
Cp =0 [dx;) d ;) to, c},&l] : 3.60

Following the steps given by Blackman [2], this can be manipulated to
eliminate the implied inversion operation of the matrices. Subtracting

Ci from both sides of Equation 3.60 gives

1
B . P 2  -1.-1
Cﬁ - Ci =g [d(xl) d (xl) +a C, | Co 3.61
1 1 1
Multiplying both sides to clear the inverse yields
5 5 alaa 2 -1 2
[d@) 4Gy 4o 70 7] € ~C ) =0y - Cy 3.62
1 1 1
" T 2. -1
[4e) a°@p) +o, )

Replacing d(ﬁl) by Equation 3.57 on the right hand side of Equation 3.62

gives

C.=C, —=C, d(®) d (&,) C 3.63

% ¥ o & 1 17 7% e

1 1 1 -
Summariziﬁg:
i 1
¢ = = [ -
b's xl + = Cil d(ﬁl) { s(ﬁl)}
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T 3
= 3 0]
o d (ﬁl) Cﬁl d(xl) + »
| 1 T
C.= C, -=¢C. d@)Yd ®,) C
® Rl V) ﬁl 1 1 ﬁl
C.= McC. ML
*
- 9%,
3%

The preceding defines a procedure for caleculating an estimate £
without the need for matrix inversion. It uses scalar quantities and
because there are no inversions the computational speed is faster

than Swerling's Method.
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1v, THE COMMUNICATION APPLICATIONS

A problem of interest to communication theorists 1is that of
finding an optimum receiver for éafious modulation schemes. In this
chapter a general method is first considered, then it is applied to
double side band amplitude modulation (DSB-AM) and phase modulation
(PM) schemes.

A. GENERALIZED LEAST SQUARE CRITERION FOR
THE CONTINUOUS CASE

The block diagram for the model assumed is shown in Figure 1.
Let

r{t) be the observed signal.

n(t) be the error (noise) in the observation.

s[t,x(t)] be the transmitted signal; a no memory function of

the message x(t).

The output of the channel and receiver input is given by

r(t) = s{t,x(t)} + n(t) 4.1
In the search for optimum receivers, the term optimum will be taken
to mean the receiver with output %(t) where %(t) is the value of
x(t) which minimizes the generalized least squares criterion.

2

t . -
Q= {[r(a) - s{a,x(a)}] qn(t,a) da + .g{x(a) - X, (a)}z.

. 9y (t,a)da 6.2
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qn(t,u) and qx(t,a) are taken ﬁs arbitrary weighting functions which
may or may not be the inverse covariance matrices of the error n(t)
and message x(t) respectively. Differentiating and setting the

result equal to zero.

t A
Q1 - forr( - sle,g@)) [- 22RO o) ga s

A
X=X 0

t
[ 208 - x (@] 1) q,(5,0) da =0
[4]

A more convenilent form is

t A t
[ i@ - slo,g(@)) 22RE@) o () da= 186 - x @)
o ' o
q (t,a) da 4.3

Block diagrams representing - Equation 4.3 are shown in Figure 2
and Figure 3, where the integrals have been interpreted as linear
filtering operations with time varying impulse responses qx(t,a) and
qn(t,a). Assuming that these filters have inverses e.g. q;l(t,a)
for qx(t,m) as in Figure 4 and q;l(t,u) for the filter qn(t,a). The
two systems of Figure 2 and Figure 4 can be combined as shown in
Figure 5 which is a complete block diagram for the system. Applica-

tions to amplitude and phase modulation are considered next.
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B. AMPLITUDE MODULATION

One of the most Important and widely used schemes of linear
modulation is amplitude modulation (AM). One common form, double

side-band AM, 1s mathematically represented as

s [t,x(t)} = A =x(t) Cos Wt 4.3
In this case,
9s [t,x(t) ]
=
—m3§%23—~' A COs wot

Assuming that the message x(t) is a zero mean signal so that the a
priori estimate x, can be set to zero, then Figure 6 shows the block
diagram fof obtaining estimate of the signal x(t) when using
amplitude modulation.. In Figure 6 the terms r(t) and A #&(t) Cox Wot
do not contribute anything to the estimate, hence this output of the
balanced modulator is removed as shown in the improved version of

Figure 7. Also the output from the two multipliers of Figure 7 can
2 2 2

be written as 5 + %— Cos 2wot. Only the low pass term %—-will
produce an output and hence the other double frequency term can be
discarded. These changes are shown in Figure 8,

Assuming that the weighting functions are dependent only on the
time difference so that qn(t,a) = qn(t~a), the filters will no longer
be time varying. Then a frequency domainanalysis is useful. In

Figure 9, the filters are represented by their transfer functions

Hx(f) and Hn(f) respectively, where Hn(f) and Hx(f) are given by

t
& -J2nfy
B = [aq e dg

8

H() = [ o (o eI
X

dg

I
8
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A final block diagram for amplitude modulation scheme is shown in

Figure 10 where all filters have been combined.



-36-

RV-4SA I0F TIPOoH TeOFsAyg

*g 2an313

o
1 M S0) VY

<03

21y b
( uVﬁl

(®3) b

I03BTNPOR
peoueTERg

[+}
3 M S0QV

uo@ s0) {33V




1% s0p ¥

9 9an8TJ JO UOFSISA PITITPOH

(P€3)

.Hul

-

(0*3)

*f 2an813

(Dx

(°3) Pl

.hu.uvnd

o
1M S0)V

(2):



-38-

vam.

Gunm

4

N<

[ 2an8}J Fo uorsiasp Par3FFIdurs

(V3

*g 2an8TJg

M »H7E

o
1 M S0) VW




w3

(€2 £

'@ @an314 o3 uol3edTyrrdurg Ieyzang

(1) 1 " m + 1
.z

1

< (1'H

) 'H &

6 2an813

(o]
1 A S0V

3)=x



wex3eTq ¥20Td TBUTJ

@'E @)

x
HwMW¢.H
z

"01 2an8Ta

(¢}
3 M 80D Y

€3]

e

(3)=



<41~

C. PHASE MODULATION

Phase modulation (PM) is another scheme widely used by communi-
cation theorists. Phase modulation is an example of angle modulation

which is very similar to frequency modulation. Let

s[t x(t)] = A Cos {wbt +-km x(t)] 4.5
Then

ds[t,x(t)] _ ' &

ax (0) km A  sin [wot km s(t)] 4.6

where

x(t) = message signal for which an estimate %(t) is

desired.

A = peak amplitude of the input signal.
and

k. = galn constant of the modulator.

The block diagrams of the optimum PM reciever based on Equation 4.3
are shown in Figuresll and 12. Here as before, tﬁe a priori data are
taken equal to zero, i.e., x(t) is assumed to be a zero mean signal.
The modification of Figure 11 to Figure 12 is justified by noting

that the received signal r(t) is given by

r(t)

L[]

A Cos [wot + km x(t)] + n(t) 4.7
where
noise (error).

n{t)

The output of the modulator A  Cos [wot + km %(t)] when subtracted

It

from r(t) and subsequently multiplied by sin [wot + km 2(t)] produces
only double frequency terms. Since these will not be passed by the
low pass filter, they may be discarded and the differencing operation

may be deleted as it makes no useful contribution to the estimation

process.
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An important aspect of the two examples involving AM and PM

is that the receiver structures derived are essentlally the same as

the optimum
for example
derivations

require any

recelvers derived by others using a statistical approach,
see VanTrees [13]. The significant feature of these
is that they result from a gls approach which does not

statistical foundation.
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CHAPTER V



V. CONCLUSIONS

In the preceding pages a survey of important methods used for
finding estimates of unknown parameters using the least squares technique
have been described. Estimation of parameters with and without a
priori data have been considered. Swerling's method which uses an
update of the estimate and its covarlance matrix is also considered.

It is shown that Battin's method which uses scalar obsérvations does
not involve any inversion of matrices and consequently which the
computatioﬁal time required by this method is less. It is also

shown that the receiver structures derived are essentially the same as
the optimum receivers derived by using a statistical approach, whereas

the results from the gls approach do neot require any statistics.

-4 B~
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A general approach due to Swerling is presented for the problem
of estimation where the parameters are non-stochastic or "deterministic."
It i1s shown that an alternate method which does not require statistics
is the generalized least squares method. The development is presented
as an elaboration of Gauss's method of least squares, and consequently
differs from the morg_cqnygnt{gygl dgyelggmgnt{ivhich is based on
statistical methods. All the methods considered, use vector para-
meters except Battin's method, in which scalar quantities are used.
Battin's method also suggests that if the new data are introduced one
at a time, the inversion of matrices can be avoided. Because of this
the computational time is reduced and accurate results are more easily
obtained. The results obtained are applied to communication problems
for finding the optimum receivers for various modulation schemes, e.g.
amplitude and phase modulation. It is observed that the resulting
receivers structures are the same as those obtained by statistical
methods when statistical properties are assumed for the noise and

message. An advantage of the approach is discussed here, is that no

statistical assumptions are required to specify the optimum receiver.



