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Abstract 

The overall aim of this dissertation is to better understand the mechanisms determining 

skeletal muscle oxygen delivery-utilization matching in health and disease. Emphasis is directed 

toward the role of nitric oxide (NO) bioavailability in modulating muscle microvascular 

oxygenation (PO2mv; the sole driving force for blood-myocyte oxygen flux) during transitions in 

metabolic demand. The first investigation of this dissertation (Chapter 2) demonstrates that 

alterations in NO bioavailability have a major impact on skeletal muscle PO2mv kinetics 

following both the onset and cessation of contractions. Specifically, increased NO levels (via the 

NO donor sodium nitroprusside; SNP) elevates whereas reduced NO levels (non-specific NOS 

inhibition with N
G
-nitro-L-arginine methyl ester; L-NAME) diminishes muscle PO2mv at the 

onset and during recovery from contractions in the spinotrapezius muscle of healthy young rats. 

Consistent with these results, inhibition of the neuronal NO synthase isoform (S-methyl-L-

thiocitrulline; SMTC; Chapter 3) reveals alterations in NO-mediated regulation of skeletal 

muscle PO2mv with advanced age that likely contribute to exercise intolerance in this population. 

In Chapter 4 we observed that pronounced oxidative stress is implicated in these pathological 

responses seen in aged and diseased states. Transient elevations in the oxidant hydrogen peroxide 

to levels seen in the early stages of senescence and cardiovascular diseases promote detrimental 

effects on skeletal muscle contractile function (i.e., augmented oxygen cost of force production). 

Chapter 5 demonstrates that endurance exercise training improves skeletal muscle microvascular 

oxygenation (i.e., greater PO2mv and slower PO2mv kinetics) across the metabolic transient 

partly via enhanced NO-mediated function in healthy young individuals. These data carry 

important clinical implications given that exercise training may ameliorate NO-mediated 

function, muscle microvascular oxygenation deficits and consequently exercise intolerance in 

aged and diseased populations. In conclusion, alterations in NO bioavailability have a major 

impact on the dynamic balance between skeletal muscle oxygen delivery and utilization (i.e., 

PO2mv kinetics) in health and disease. While advanced age or the predations of disease impair 

considerably skeletal muscle microvascular oxygenation, exercise training-induced adaptations 

on the oxygen transport system constitute a non-pharmacological therapeutic intervention 

potentially capable of mitigating these microcirculatory deficits. 
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toward the role of nitric oxide (NO) bioavailability in modulating muscle microvascular 

oxygenation (PO2mv; the sole driving force for blood-myocyte oxygen flux) during transitions in 
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alterations in NO bioavailability have a major impact on skeletal muscle PO2mv kinetics 

following both the onset and cessation of contractions. Specifically, increased NO levels (via the 

NO donor sodium nitroprusside; SNP) elevates whereas reduced NO levels (non-specific NOS 

inhibition with N
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-nitro-L-arginine methyl ester; L-NAME) diminishes muscle PO2mv at the 

onset and during recovery from contractions in the spinotrapezius muscle of healthy young rats. 

Consistent with these results, inhibition of the neuronal NO synthase isoform (S-methyl-L-

thiocitrulline; SMTC; Chapter 3) reveals alterations in NO-mediated regulation of skeletal 

muscle PO2mv with advanced age that likely contribute to exercise intolerance in this population. 

In Chapter 4 we observed that pronounced oxidative stress is implicated in these pathological 

responses seen in aged and diseased states. Transient elevations in the oxidant hydrogen peroxide 

to levels seen in the early stages of senescence and cardiovascular diseases promote detrimental 

effects on skeletal muscle contractile function (i.e., augmented oxygen cost of force production). 

Chapter 5 demonstrates that endurance exercise training improves skeletal muscle microvascular 

oxygenation (i.e., greater PO2mv and slower PO2mv kinetics) across the metabolic transient 

partly via enhanced NO-mediated function in healthy young individuals. These data carry 

important clinical implications given that exercise training may ameliorate NO-mediated 

function, muscle microvascular oxygenation deficits and consequently exercise intolerance in 

aged and diseased populations. In conclusion, alterations in NO bioavailability have a major 

impact on the dynamic balance between skeletal muscle oxygen delivery and utilization (i.e., 

PO2mv kinetics) in health and disease. While advanced age or the predations of disease impair 

considerably skeletal muscle microvascular oxygenation, exercise training-induced adaptations 

on the oxygen transport system constitute a non-pharmacological therapeutic intervention 

potentially capable of mitigating these microcirculatory deficits. 
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Chapter 1 - Introduction 

 

Oxygen is essential for energy metabolism of multicellular complex organisms (e.g., 

mammals; ref. 4). Atmospheric oxygen must be transported by means of convection and 

diffusion through a series of transfer steps within closely integrated systems (pulmonary, 

cardiovascular and muscle metabolic) to reach the mitochondria and support oxidative 

metabolism (30). Physical exercise represents the greatest physiological challenge to those 

systems. Considering the small intramuscular oxygen and high energy phosphates stores, 

sustained elevations in adenosine triphosphate turnover during skeletal muscle contractions 

require an exquisitely tight coupling between oxygen delivery and utilization. 

 The microcirculation within skeletal muscle constitutes the final step in the oxygen 

transport pathway from lungs to myocytes and provides the surface area for oxygen and substrate 

exchange. As described by Fick’s law, oxygen diffuses from the microvascular blood to the 

mitochondria at a rate ( 2OV ) determined by the oxygen partial pressure (PO2) gradient (i.e., the 

PO2 difference between the capillary (PO2mv) and intracellular space (PO2intracel)), which 

constitutes the sole driving force for oxygen flux into the myocyte: 

 

)( 2222 racelintPOmvPODOOV   

 

where DO2 is the muscle effective diffusing capacity. Because PO2intracel falls close to zero 

during muscle contractions (15), PO2mv approximates the pressure gradient driving 

transcapillary oxygen flux. The temporal profile of skeletal muscle PO2mv during transitions in 

metabolic demand is determined by the dynamic matching of oxygen delivery ( 2OQ ) and 2OV  

(i.e., 22 / OVOQ   ratio) (3, 19). Accordingly, alterations in skeletal muscle PO2mv have a direct 

impact on oxidative metabolism and contractile performance (13, 27). Understanding muscle 

microcirculatory control is therefore crucial to resolve the mechanisms that determine the 

dynamic matching between 2OQ  and 2OV  in health and the dysfunction in aged and diseased 

states. Furthermore, as exercise training has become established as a standard non-
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pharmacological treatment for many patient populations, it is important to gain insights into its 

role in muscle microvascular structure and function to assist in the design of therapeutic 

strategies for improving exercise capacity. 

 Nitric oxide (NO) is a ubiquitous signaling messenger synthesized primarily via the 

conversion of L-arginine to L-citrulline by the enzyme NO synthase (NOS). All three major 

NOS isoforms are expressed in mammalian skeletal muscle, namely neuronal NOS (nNOS), 

endothelial NOS (eNOS) and inducible NOS (iNOS) (26). NO and its derivatives modulate 

multiple processes within skeletal muscle including hemodynamic and metabolic control (26). 

Specifically, NO contributes to the increase in skeletal muscle 2OQ  during contractions 

primarily via endothelium-dependent vasodilation (12) and to the inertia of oxidative metabolism 

(i.e., finite 2OV  kinetics) via inhibition of mitochondrial respiration (17). Accordingly, several 

lines of evidence indicate that impairments in NO-mediated function in aged and/or diseased 

states are associated with reduced exercise capacity (21, 22), whereas enhanced NO-mediated 

function following exercise training underlies, at least in part, improved exercise capacity (9, 

18). In this context, we developed the investigation described in Chapter 2 to examine the impact 

of altered NO levels on the dynamic skeletal muscle 22 / OVOQ   matching (i.e., PO2mv kinetics) 

following the onset and cessation of contractions in healthy young rats. These data provide 

mechanistic evidence that alterations in NO bioavailability play a key role in determining 

skeletal muscle microvascular oxygenation and thus the upstream pressure driving capillary-

myocyte oxygen flux during transitions in metabolic demand in healthy young individuals. 

Moreover, based on those data we investigated how advanced age might impair NO-mediated 

control of skeletal muscle microvascular and contractile function (Chapter 3). 

 Advancing age is associated with a variety of cardiovascular perturbations that disrupt 

contracting skeletal muscle vascular control. Impairments in the oxygen transport pathway with 

aging result in temporal mismatch between muscle 2OQ  and 2OV  during transitions in metabolic 

demand (2, 11) and likely contribute to reduced exercise capacity in this population (21). These 

alterations in PO2mv kinetics are considered to emanate, at least in part, from age-related 

disruptions in myocyte redox state. Enhanced reactive oxygen and nitrogen species accumulation 

during muscle contractions (6, 16) coupled with impaired antioxidant mechanisms in old 

individuals (31) might exacerbate the underlying oxidative stress characteristic of aging (7) and 
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promote NOS uncoupling and/or direct NO inactivation (10, 23, 28). In view of the typical 

deterioration of endothelial function in the elderly (21, 31), age-related decrements in NO-

mediated function have been ascribed traditionally to eNOS dysfunction. In Chapter 3 we 

examined whether nNOS dysfunction is mechanistically involved in the 22 / OVOQ   mismatch 

during metabolic transitions in aged skeletal muscle. Identifying the detrimental effects of aging 

on distinct NOS isoforms represents the initial step toward the development of potential 

therapeutic strategies targeting specific enzymes. 

 As mentioned above, alterations in redox state modulate significantly skeletal muscle 

vascular and metabolic control. It is interesting to note that aged and diseased states (e.g., 

chronic heart failure, hypertension, diabetes) are associated with prominent oxidative stress 

(characterized by reactive oxygen species accumulation that overwhelms the buffering capacity 

of the endogenous antioxidant system) and reduced exercise capacity. Oxidants are produced at 

multiple sites within the skeletal muscle and vasculature at rest and during contractions (6, 16, 

24). The reduction of molecular oxygen by one-, two- and three-electron transfer reactions yields 

the oxidizing agents superoxide anion (O2
•-
), hydrogen peroxide (H2O2) and hydroxyl radical 

(
•
OH). H2O2, a small diffusible and ubiquitous molecule with a long half-life relative to other 

reactive oxygen species, is regarded as one of the most influential oxidants in terms of redox 

signaling (8). Accordingly, acute alterations in H2O2 bioavailability have important implications 

for skeletal muscle function at rest and during metabolic transients, including the modulation of 

arteriolar tone (5), mitochondrial respiration (29) and force production (1, 25). In Chapter 4 we 

examined the impact of transient elevations in H2O2 to levels found in the early stages of 

senescence and cardiovascular diseases (e.g., hypertension) on resting and contracting skeletal 

muscle microvascular oxygenation (PO2mv kinetics) and force production in healthy young 

individuals. 

 Contrary to aged and diseased states, endurance exercise training induces multiple 

structural and functional adaptations that enhance the capacities for skeletal muscle 2OQ  and 

2OV  (14, 20). These adaptations rely partially on improvements in NO-mediated function that 

occur via upregulation of NOS expression and/or activity in conjunction with augmented 

antioxidant capacity (9, 18). In Chapter 5 we determined the effects of endurance exercise 

training on skeletal muscle PO2mv kinetics and the mechanistic role of NO to these potential 

adaptations in healthy young rats. These data set the stage for future investigations employing 
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exercise training protocols as a non-pharmacological tool to ameliorate muscle microvascular 

oxygenation deficits and exercise intolerance in aged and diseased populations. 

 Taken together, the investigations described herein were designed to further our 

understanding of the mechanisms determining skeletal muscle 22 / OVOQ   matching in health and 

disease. Significant focus is given to the role of NO bioavailability in modulating muscle PO2mv 

kinetics during transitions in metabolic demand. Each chapter is self-contained following 

standard journal article format and a comprehensive conclusion is provided for this series of 

investigations (Chapter 6). 
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 Summary 

 

Lowered microvascular PO2 (PO2mv) during the exercise off-transient likely impairs 

muscle metabolic recovery and limits the capacity to perform repetitive tasks. The current 

investigation explored the impact of altered nitric oxide (NO) bioavailability on PO2mv during 

recovery from contractions in healthy skeletal muscle. We hypothesized that increased NO 

bioavailability (sodium nitroprusside; SNP) would enhance PO2mv and speed its recovery 

kinetics while decreased NO bioavailability (L-nitro arginine methyl ester; L-NAME) would 

reduce PO2mv and slow its recovery kinetics. PO2mv was measured by phosphorescence 

quenching during transitions (rest - 1 Hz twitch-contractions for 3 min - recovery) in the 

spinotrapezius muscle of Sprague-Dawley rats under SNP (300 μM), Krebs-Henseleit (Control) 

and L-NAME (1.5 mM) superfusion conditions. Relative to recovery in Control, SNP resulted in 

greater overall microvascular oxygenation as assessed by the area under the PO2mv curve 

(PO2AREA; Control: 3471 ± 292 mmHg.s; SNP: 4307 ± 282 mmHg.s; P<0.05) and faster off-

kinetics as evidenced by the mean response time (MRToff; Control: 60.2 ± 6.9 s; SNP: 34.8 ± 5.7 

s; P<0.05), whereas L-NAME produced lower PO2AREA (2339 ± 444 mmHg.s; P<0.05) and 

slower MRToff (86.6 ± 14.5 s; P<0.05). In conclusion, NO bioavailability plays a key role in 

determining the matching of O2 delivery-to-O2 uptake and thus the upstream O2 pressure driving 

capillary-myocyte O2 flux (i.e., PO2mv) following cessation of contractions in healthy skeletal 

muscle. Additionally, these data support a mechanistic link between reduced NO bioavailability 

and prolonged muscle metabolic recovery commonly observed in aging and diseased 

populations. 
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 Introduction 

 

Daily life is rarely accompanied by constant energetic demands (i.e., steady-state oxygen 

utilization ( 2oV )) and consequently prolonged muscle metabolic recovery will impair the ability 

to perform repetitive activities. Reduced O2 availability following the cessation of submaximal 

contractions will decrease the O2 pressure within the microvasculature (PO2mv) and, in so doing, 

slows the rate of skeletal muscle metabolic recovery (28, 33). As described by Fick’s law, O2 

diffuses from the microvascular blood to the mitochondria at a rate ( 2oV ) determined by the 

oxygen pressure (PO2) gradient (i.e., the PO2 difference between PO2mv and the intracellular 

space (PO2intra)), which constitutes the sole driving force for O2 flux into the myocyte: 

 

)( 2222 intraPomvPomDooV   

 

where DO2m is the muscle effective diffusing capacity. Because PO2intra falls close to zero 

during contractions (32), PO2mv approximates the PO2 gradient driving transcapillary O2 flux. 

The temporal profile of skeletal muscle PO2mv during transitions in metabolic demand is 

determined by the dynamic matching of oxygen delivery ( 2oQ ) and 2oV  (i.e., 2oQ / 2oV  ratio) (5, 

48). In this context, evaluation of PO2mv off-kinetics is of crucial importance since a lowered 

2oQ / 2oV  ratio will, via decreased PO2mv and blood-myocyte O2 flux, retard the rate of oxidative 

phosphorylation during recovery thereby impairing subsequent contractile performance (42). 

Conditions associated with reduced nitric oxide (NO) bioavailability and/or 

downregulation of endothelial function such as aging (51, 64) and chronic heart failure (CHF; 

17, 19) are characterized by decreased exercise tolerance (11, 34). Therefore, it is conceivable 

that reduced NO bioavailability is linked mechanistically to compromised muscle function 

through impaired 2oQ / 2oV  matching and lowered PO2mv. NO and its derivatives mediate 

multiple biological responses, including the modulation of vascular smooth muscle tone and 

skeletal muscle oxidative metabolism (rev. 9, 71). Specifically, considerable evidence indicates 

that NO contributes to the sustained vasodilation (and thus 2oQ ) during recovery from 

contractions (25, 59, 67). Moreover, NO synthase (NOS) inhibition (i) accelerates 2oV  kinetics 
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at the onset of contractions in humans (35, 36, 73) and horses (38, 39) but not in the isolated 

canine muscle preparation (26); and (ii) increases skeletal muscle 2oV  at rest and during 

submaximal exercise in dogs (65). 

The purpose of the present investigation was to determine the effects of altered NO 

bioavailability on PO2mv kinetics during recovery from contractions in healthy rat skeletal 

muscle. Considering that NO bioavailability modulates 2oQ / 2oV  matching following the onset 

of contractions in health (23) and is implicated in the 2oQ / 2oV  dysregulation characteristic of 

aging and diseased populations (20), the following hypotheses were tested: (i) increased NO 

bioavailability (via the NO donor sodium nitroprusside; SNP) would elevate PO2mv throughout 

recovery from contractions and accelerate PO2mv off-kinetics; while (ii) reduced NO 

bioavailability (NOS blockade via L-nitro arginine methyl ester; L-NAME) would lower PO2mv 

throughout recovery from contractions and slow PO2mv off-kinetics relative to the control 

condition. 
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 Methods 

 

Animals 

 Seven female Sprague-Dawley rats (body mass = 298 ± 10 g) were used in the present 

study. The on-transient PO2mv response from these animals has been the focus of a previous 

study (23). Results from the present investigation focus on the off-transient PO2mv response. 

Due to animal preparation instability (e.g., movement of the PO2mv measurement plane during 

electrically-induced muscle contractions), off-transient PO2mv profile analysis could not be 

obtained from one rat in the Control, two rats in the SNP, and three rats in the L-NAME groups. 

Therefore, results from the current investigation are presented from animals under the following 

conditions, Control: n = 6; SNP: n = 5; L-NAME: n = 4. Animals were maintained on a 12:12 

hour light-dark cycle and received water and food ad libitum. Upon completion of the study, rats 

were euthanized with an overdose of pentobarbital sodium (>100 mg.kg
-1

, i.a.). All protocols 

described herein were approved by the Kansas State University Institutional Animal Care and 

Use Committee (IACUC). 

 

Surgical preparation and experimental protocol 

 All rats were anesthetized initially with pentobarbital sodium (~35-50 mg.kg
-1

, i.p.) 

administered to effect and maintained at a constant core temperature at ~37-38°C with a heating 

pad. The level of anesthesia was monitored frequently throughout the experimental protocol via 

the toe-pinch reflex and supplemented as necessary. The left carotid artery was surgically 

isolated and cannulated (PE-50; Intra-Medic Tubing, Clay Adams Brand, Sparks, MD, USA) for 

continuous monitoring of mean arterial blood pressure (MAP; Digi-Med BPA model 200, 

Louisville, KY, USA), infusion of the phosphorescent probe palladium meso-tetra (4-

carboxyphenyl) porphyrin dendrimer (R2; 15 mg.kg
-1

 i.a.) and blood sampling. Blood was 

sampled at the end of each experimental protocol for the determination of arterial blood gases 

and pH (Nova Stat Profile M, Waltham, MA, USA). 

 The surgical preparation consisted of opening the skin and fascia from the mid-dorsal 

region of the rat to expose the right spinotrapezius muscle. The spinotrapezius muscle exhibits a 

mixed fiber type composition and citrate synthase activity that resembles the human quadriceps 
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(16, 45), thus representing a useful analog of human locomotor muscle. The spinotrapezius 

muscle was moistened constantly throughout the surgical preparation via superfusion of Krebs-

Henseleit (K-H) bicarbonate-buffered solution (4.7 mM KCl, 2.0 mM CaCl2, 2.4 mM MgSO4,  

131 mM NaCl and 22 mM NaHCO3) equilibrated with 5% CO2–95% N2 at ~38°C. Stainless 

steel electrodes were sutured to the rostral (cathode) and caudal (anode) regions of the 

spinotrapezius muscle using 6-0 sutures to ensure unchanged electrode position throughout the 

procedures. 

 Three separate contraction bouts were performed under distinct superfusion conditions. 

The order of superfusion was SNP (300 μM in K-H), K-H (Control) and L-NAME (1.5 mM in 

K-H). These concentrations were selected based on preliminary studies in our laboratory (23). L-

NAME was in all instances the last treatment because of its relatively long half-life. The muscle 

was superfused with each solution (average flow rate of 1-2 mL.min
-1

, warmed to ~38°C) for a 

total time of 15-20 min prior to electrically-induced muscle contractions. Electrical stimulation 

(1 Hz, 4-6 V, 2 ms pulse duration) of the muscle was evoked via a Grass Stimulator (model S48, 

Quincy, MA, USA) for 3 min. The muscle was then allowed to recover for 3 min before the start 

of a ~10 min period of constant flushing to wash out the respective solution. Subsequent to the 

recovery and wash out periods the next condition was initiated (stimulation parameters held 

constant).  

 The spinotrapezius preparation exhibits reproducible PO2mv parameters during 

transitions in metabolic demand when a minimum of 20 min of recovery is allowed between 

contraction bouts (14, 29). Importantly, 25-30 min of recovery (10 min wash out and 15-20 min 

of condition-specific superfusion) was undertaken herein to avoid any priming (6) and drug 

ordering (23) effects that might confound the experimental interpretation of the PO2mv responses 

to muscle contractions.  

 

Measurement of PO2mv 

 PO2mv was measured by phosphorescence quenching using a Frequency Domain 

Phosphorometer (PMOD 1000, Oxygen Enterprises, Philadelphia, PA, USA). As described 

previously (5, 48), the phosphorescence quenching technique applies the Stern-Volmer 

relationship (63) for determination of PO2mv based on the time constant of phosphorescence 

decay at the muscle: 
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)/(]1)/[(2   QkmvPo  

 

where Qk  is the quenching constant and   is the phosphorescence lifetime in an O2-free 

environment. The   of phosphorescence decay was determined using 10 scans (100 ms) in the 

single frequency mode (63, 72). The phosphor R2 (   = 601 μs and Qk  = 409 mmHg.s
-1

 at pH = 

7.4 and temperature ~38°C) was infused ~15 min prior to initiation of spinotrapezius 

contractions. The R2 probe is bound to albumin and is restricted to the intravascular space within 

the muscle (57), providing a signal that corresponds to the weighted average of muscle 

microvascular volume sampled (i.e., mostly capillaries; 58). Therefore, PO2mv describes the O2 

pressure head for diffusive blood-myocyte O2 transfer. The common end of the bifurcated light 

guide was placed 2-4 mm superficial to the dorsal surface of the exposed muscle. The 

phosphorometer modulates sinusoidal excitation frequencies between 100 Hz and 20 kHz, which 

allows phosphorescence lifetime measurements from 10 μs to ~2.5 ms. The excitation light (524 

nm) focuses on a circle of ~2 mm diameter of exposed muscle with a resulting penetration depth 

of ~500 μm. PO2mv measurements were recorded at 2 s intervals during rest and throughout the 

duration of the contraction (3 min) and recovery (3 min) periods. 

 

Analysis of PO2mv kinetics 

 The kinetics of PO2mv were described by nonlinear regression analysis using the 

Marquardt-Levenberg algorithm (SigmaPlot 9.01; Systat Software, San Jose, CA, USA) for the 

recovery period. Transient PO2mv responses were fit with either a one- or two-component model 

(48): 

 

One-component: 
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where PO2mv(t) is the mvPo2  at a given time t, PO2mv (end-con) is the end-contraction PO2mv, Δ1 

and Δ2 are the amplitudes for the first and second components, respectively, TD1 and TD2 are the 

independent time delays for each component, and τ1 and τ2 are the time constants (i.e., time taken 

to reach 63% of the response) for each component. Goodness of fit was determined using three 

criteria: (i) the coefficient of determination (r
2
); (ii) the sum of the squared residuals ( 2 ); and 

(iii) visual inspection. 

The mean response time for the off-transient (MRToff; as calculated by 47) was used to 

describe the overall dynamics of the PO2mv response: 

 

One-component: 

TDMRT  

 

Two-component: 

))(/())(/( 222111   TDTDMRT tottot  

 

where Δ1 and Δ2, TD1 and TD2, and τ1 and τ2 are defined above and Δtot corresponds to the total 

change in PO2mv (i.e., Δ1 + Δ2) when using the two-component model. Furthermore, the overall 

time necessary to reach 63% of the final amplitude of the response during recovery was 

determined independent of modeling procedures (T63; 38) as an additional means of checking the 

model fits to the data. 

The area under the PO2mv curve plotted as function of time (PO2AREA) was calculated 

during 3 min following cessation of contractions to provide an index of overall muscle 

microvascular oxygenation throughout the exercise transient for each condition (i.e., 

incorporating end-contraction and end-recovery PO2mv values, amplitudes, time delays and time 

constants of the response to yield a value expressed in mmHg.s). 

 

Statistical analysis 

The MRT, T63, pre-contracting PO2mv (PO2mv(Baseline)) and PO2mv(end-rec) were compared 

among (Control vs. SNP vs. L-NAME) and within (MRTon vs. MRToff; MRToff vs. T63; 

PO2mv(Baseline) vs. PO2mv(end-rec)) groups with two-way ANOVAs. All other comparisons among 
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groups were conducted with one-way ANOVAs. Post hoc analyses were performed with the 

Student-Newman-Keuls test when a significant F-ratio was detected. The level of significance 

was set at P<0.05. Unidirectional probabilities were considered when examining the effects of 

SNP and L-NAME superfusion on PO2mv kinetics based on initial directional hypotheses (20, 

23). Pearson’s product-moment correlations were conducted to determine association between 

variables using individual animal data. Results are reported as mean ± standard error of the mean 

(SE). 
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 Results 

 

Arterial PO2 was 99 ± 3 mmHg, O2 saturation 93 ± 1 % and blood pH 7.45 ± 0.01. SNP 

superfusion promoted a systemic vasodilation which decreased MAP when compared to Control 

and L-NAME conditions (SNP: 99 ± 5; Control: 126 ± 3; L-NAME: 126 ± 4 mmHg; P<0.05). 

 

Effects of altered NO bioavailability on PO2mv kinetics during the off-transient 

 The time course of PO2mv following the cessation of contractions during SNP and L-

NAME treatments presented significant qualitative and quantitative differences relative to the 

Control condition (Fig. 2.1 and Table 2.1). Specifically, PO2mv(end-con) was higher for SNP and 

lower for L-NAME when compared to Control (P<0.05). The one-component exponential model 

provided an excellent fit to the PO2mv data for Control and SNP. Conversely, a more complex 

two-component exponential model was required to fit the L-NAME response. Within the three 

different experimental conditions (Control, SNP and L-NAME), MRT (model dependent) and 

T63 (model independent) were not different from one another during the recovery protocol 

(P>0.05). 

In accordance with our hypotheses, SNP treatment accelerated PO2mv off-kinetics 

(MRToff, T63; P<0.05) while L-NAME slowed the response (MRToff, T63; P<0.05). It is 

noteworthy that the PO2mv(end-rec) reached during the recovery protocol was not different from 

the corresponding pre-contracting PO2mv value under each condition (PO2mv(Baseline); Control: 

24.0 ± 1.0; SNP: 25.9 ± 1.4; L-NAME: 16.9 ± 1.8 mmHg; P>0.05). The effects of altered NO 

bioavailability on PO2mv off-kinetics were reflected in the overall muscle microvascular 

oxygenation (PO2AREA) throughout the recovery period, as SNP was associated with greater 

PO2AREA whereas L-NAME induced smaller PO2AREA when compared to Control (Fig. 2.2). As 

illustrated in Fig. 2.3, PO2mv(end-con) was inversely correlated with MRToff across conditions (r = 

-0.64; P<0.01). 
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 Discussion 

 

The principal original finding of this investigation is that NO bioavailability exerts a key 

role on the mechanisms determining the dynamic matching between 2oQ  and 2oV  following the 

cessation of contractions in healthy skeletal muscle. Consistent with our hypothesis, increased 

NO bioavailability (SNP) elevated PO2mv during the recovery phase and speeded its kinetics. 

Conversely, reduced NO bioavailability (L-NAME) decreased PO2mv during the recovery phase 

and slowed its kinetics. The effects of altered NO bioavailability on PO2mv off-kinetics can be 

summarized by analysis of the overall muscle microvascular oxygenation (PO2AREA), which was 

increased with SNP and decreased with L-NAME compared to Control. 

 

Effects of altered NO bioavailability on PO2mv off-kinetics 

Altering NO bioavailability in recovery is expected to impact (i) muscle 2oQ  through 

modulation of smooth muscle relaxation and thus vascular conductance (71) and (ii) muscle 2oV  

via regulation of oxidative metabolism (e.g., inhibition of cellular respiration by NO and its 

derivatives; 9). Considering that PO2mv represents the conflation of muscle 2oQ  and 2oV  at any 

given time (5, 48), relative to Control increased NO bioavailability (SNP) should act to increase 

2oQ  and decrease 2oV  while reduced NO bioavailability (L-NAME) is expected to decrease 

2oQ  and increase 2oV  throughout recovery from contractions, thereby impacting PO2mv off-

kinetics. Since PO2mv denotes the sole driving force for blood-myocyte O2 flux, alterations in its 

off-kinetics influence the rate of oxidative phosphorylation during recovery and consequently the 

capacity to perform repetitive tasks (42). 

 SNP increased whereas L-NAME decreased PO2mv(end-con) relative to Control (Table 2.1 

and Fig. 2.1). Despite substantial within-group variability, we found a negative correlation 

between PO2mv(end-con) and MRToff across conditions (Fig. 2.3), suggesting that NO-mediated 

events that compromise microvascular oxygenation during steady-state contractions result in 

sluggish PO2mv recovery, at least in these young healthy muscles. Similar to the Control 

condition, SNP and L-NAME evidenced an initial time delay before any PO2mv increase during 

recovery which must result from a similar rate of change (or lack thereof) in 2oQ  and 2oV  
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during the initial period following cessation of muscle contractions. The fact that PO2mv in 

recovery does not fall below PO2mv(end-con) denotes that 2oQ / 2oV  ratio and thus the driving force 

for capillary-myocyte O2 diffusion does not decrease further even under the L-NAME condition. 

It is noteworthy that the PO2mv profile in recovery during L-NAME was qualitatively similar 

(i.e., markedly slower than healthy control) to that found in conditions associated with reduced 

NO bioavailability such as aging (30) and CHF (3, 49). 

Our results are consistent with previous theoretical studies (3, 24, 30) indicating that the 

altered magnitude and kinetics of 2oQ  and 2oV  impact the PO2mv profile during exercise 

transitions. Specifically, (i) a relatively lower end-contraction 2oQ  amplitude and faster 2oQ  off-

kinetics and/or (ii) a relatively higher end-contraction 2oV  amplitude and slower 2oV  off-kinetics 

act to reduce PO2mv and slow its kinetics during recovery (i.e., 2oQ / 2oV  mismatch), 

consequently impairing muscle microvascular oxygenation. Taken together, these observations 

are consonant with decreased muscle 2oQ  during exercise transitions in aging (1, 15, 27) and 

CHF (61) that result, at least in part, from blunted vasodilation secondary to decrements in 

endothelial function (17, 19, 51, 64). 

 

Effects of altered NO bioavailability on PO2mv on-off asymmetry 

 Comparison between the overall PO2mv kinetic profiles (assessed via MRT) during 

exercise on- and off-transients in healthy skeletal muscle has revealed an asymmetry (i.e., faster 

on- and slower off-kinetics; 50). These findings are consistent with reports of symmetrical on-off 

muscle 2oV  (3, 43, cf. 62) combined with asymmetric 2oQ  (fast on- and relatively slower off-

kinetics; 22, 40) profiles. In healthy muscle, faster on- and slower off-kinetics of capillary red 

blood cell flux (fRBC, an index of convective 2oQ ) relative to muscle 2oV  kinetics act to elevate 

mvPo2  and thereby O2 availability in skeletal muscle across exercise transitions (22, 40). 

Conceptually, the on-off asymmetry in the microvascular 2oQ  profile suggests the participation 

of different mechanisms in the control of the blood flow response during the onset and recovery 

from contractions. Although the precise mechanisms underlying the time course of muscle blood 

flow throughout exercise transitions have not yet been elucidated (e.g., 12), asymmetric capillary 
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hemodynamics may result from the contribution of the muscle pump to exercise hyperemia 

during the onset but not offset of contractions in the healthy rat spinotrapezius muscle (22). 

On the other hand, conditions that impair muscle microvascular control such as CHF 

(61), aging (1, 15, 27) and diabetes (41, 54) are characterized by a lower 2oQ / 2oV  ratio during 

metabolic transients induced by muscle contractions (2, 4, 18, 55) and a greater degree of PO2mv 

on-off asymmetry (30, 49). Notwithstanding appreciable within-group variability, the negative 

correlation found between MRTon and MRToff (r = -0.64; P<0.02; Fig. 2.4) under Control, SNP 

and L-NAME treatments suggests a significant influence of altered NO bioavailability on PO2mv 

kinetics during both on- and off-transitions. This finding is in agreement with the role of NO (i) 

as an important component of the hyperemic response following the onset (31, 53, 65, 66) and 

cessation (25, 59, 67) of contractions; and (ii) as a modulator of the rate of oxidative 

phosphorylation at rest and during exercise transitions (9, 65). Where disease or advanced aging 

mandate an O2 supply dependency of 2oV  kinetics (56), diminished NO bioavailability and/or 

downregulation of endothelial function will ultimately limit capillary-myocyte O2 flux thereby 

compromising pulmonary 2oV  (10, 60, 68) during transitions in metabolic demand. 

 Considering the heterogeneous control of blood flow to skeletal muscle composed of 

distinct fiber types (rev. 44), slow-twitch fibers place a relatively greater reliance on increased 

convective 2oQ  (and thus endothelium-dependent vasodilation; 31) while fast-twitch fibers 

mandate a greater O2 extraction in response to a given metabolic demand (7, 21, 50). In this 

context, the present results support that the progressively greater degree of PO2mv on-off 

asymmetry with increasing severity of CHF observed in slow- but not in fast-twitch fibers (49) 

can be attributed, at least in part, to reduced NO-induced vasodilation in CHF (17, 19). Similarly, 

aging induces muscle-specific dysfunction of endothelium-dependent vasodilation (primarily 

through diminished NO bioavailability; 51, 70) that is likely to increase the degree of PO2mv on-

off asymmetry only in slow-twitch fibers. 

The effects of altered NO bioavailability on microvascular oxygenation of the healthy 

spinotrapezius muscle during exercise transitions were such that the degree of PO2mv on-off 

asymmetry was abolished with SNP (i.e., MRTon and MRToff not significantly different) and 

markedly increased with L-NAME (faster MRTon and slower MRToff) relative to Control (Fig. 

2.5). Collectively, these findings provide a mechanistic basis for the greater degree of PO2mv on-
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off asymmetry (faster on- and slower off-kinetics) observed in conditions accompanied by 

reduced NO bioavailability and/or impaired endothelium-dependent vasodilation, for instance 

aging (30) and CHF (49). This behavior is likely involved in the reduced exercise tolerance 

during muscle contractions along with extended metabolic recovery that impairs the ability to 

perform repetitive tasks. 

 

Clinical implications 

 As noted above, limited O2 transport at the capillary-myocyte level is implicated in 

sluggish pulmonary 2oV  kinetics (10, 68) and muscle metabolic (13, 37) recovery responses that 

may constrain the ability to perform repetitive daily activities (42) in aging and diseased (e.g., 

CHF) populations. Recently, Ferreira et al. (20) demonstrated that L-NAME superfusion had 

virtually no effects on PO2mv kinetics of rats with severe CHF, while SNP practically restored 

their PO2mv profile towards that seen in healthy animals during the onset of contractions. In 

addition, preliminary results from our laboratory suggest that the PO2mv time course during 

contractions in aged muscle responds in a similar fashion to that described previously in severe 

CHF under SNP and L-NAME treatments (SW Copp, KF Herspring, TI Musch, DC Poole; 

unpublished observations). Combined with the present results, these findings suggest that 

therapeutic interventions aimed at improving endothelial function (i.e., enhanced NO 

bioavailability) such as endurance exercise training (46, 70) or possibly augmented 

tetrahydrobiopterin levels (BH4; 69) could potentially ameliorate muscle microvascular 

oxygenation deficits (thereby reducing the pronounced degree of PO2mv on-off asymmetry) and 

increase exercise tolerance in the elderly and patients with CHF. 

 

Experimental considerations 

A lower perfusion pressure (MAP) for SNP compared to Control and L-NAME 

conditions could potentially constrain blood flow dynamics and thus influence PO2mv kinetics 

during exercise transients. However, recent evidence in healthy animals demonstrates that this 

effect is negligible when MAP is above ~70 mmHg (8) as herein. On the other hand, local L-

NAME superfusion of the spinotrapezius muscle prevented the potential confound of the marked 

MAP elevation that is usually seen following systemic NOS blockade which, if present, could 
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have triggered a partial baroreflex-mediated sympathetic withdrawal to compensate for the 

removal of NO vasodilation (66, cf. 59). 

Given the potential of altered NO bioavailability to impact intracellular redox state (52) 

and contractile function, it is important to consider that SNP and L-NAME treatments could 

influence the regulation of muscle microvascular oxygenation and muscle performance through 

mechanisms that do not directly involve NO. 
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 Conclusions 

 

In skeletal muscle, altered NO bioavailability impacts profoundly the dynamic matching 

between 2oQ  and 2oV  during recovery from contractions. Increased NO bioavailability (SNP) 

enhanced muscle microvascular oxygenation (elevated PO2mv throughout recovery and faster 

off-kinetics) while reduced NO bioavailability (L-NAME) impaired muscle microvascular 

oxygenation (decreased PO2mv throughout recovery and slower off-kinetics) relative to Control. 

The importance of a lowered PO2mv is that it reduces the blood-myocyte O2 flux and could 

potentially constrain oxidative phosphorylation during transitions in metabolic demand. Such 

behavior may contribute to the reduced exercise tolerance found in aged individuals and CHF 

patients in whom NO bioavailability may be compromised (17, 19, 51, 64). Enhanced 

endothelial function (through increased NO bioavailability) produced by endurance exercise 

training in these populations (46, 69, 70) could serve to elevate PO2mv and thus benefit muscle 

metabolic control and increase exercise tolerance. The present investigation also supports that 

reduced NO bioavailability is implicated in the greater degree of  PO2mv on-off asymmetry 

(faster on- and slower off-kinetics) that is commonly observed in aging (30) and CHF (49). 
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Table 2.1 Muscle PO2mv kinetics during recovery from contractions under Control, SNP 

and L-NAME 

 Control SNP L-NAME 

PO2mv(end-con), mmHg 14.4 ± 1.3 18.3 ± 1.5* 8.2 ± 1.7*† 

Δ1PO2mv, mmHg 7.7 ± 1.2 7.3 ± 1.2 5.6 ± 1.2 

Δ2PO2mv, mmHg - - 5.7 ± 0.5 

PO2mv(end-rec), mmHg 22.1 ± 1.8 25.6 ± 1.8 16.6 ± 2.8*† 

TD1, s 3.3 ± 1.3 5.4 ± 2.3 3.6 ± 1.4 

TD2, s - - 81.5 ± 1.9 

τ1, s 56.9 ± 6.5 29.4 ± 5.3 52.4 ± 14.9 

τ2, s - - 64.9 ± 21.2 

MRToff, s 60.2 ± 6.9 34.8 ± 5.7* 88.6 ± 14.5*† 

T63, s 59.8 ± 7.2 36.0 ± 5.5* 98.0 ± 17.2*† 

PO2mv(end-con), end-contraction PO2mv; Δ1PO2mv, amplitude of the first component; Δ2PO2mv, 

amplitude of the second component; PO2mv(end-rec), end-recovery PO2mv; TD1, time delay for the 

first component; TD2, time delay for the second component; τ1, time constant for the first 

component; τ2, time constant for the second component; MRToff, mean response time for the 

off-transient; T63, time to reach 63% of the overall amplitude as determined independent of 

modeling procedures. * Significantly different from Control. † Significantly different from SNP. 
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Figure 2.1 Muscle PO2mv profiles during recovery from contractions under Control, SNP 

and L-NAME 

 

 

Figure 2.1 Mean muscle microvascular PO2 (PO2mv) during recovery from contractions under 

Control, sodium nitroprusside (SNP; increased nitric oxide) and L-nitro arginine methyl ester (L-

NAME; decreased nitric oxide) superfusion. Top and bottom panels exhibit absolute and relative 

PO2mv, respectively. SE bars omitted from bottom panel for clarity. Time zero depicts the onset 

of the recovery phase. Note that altered nitric oxide bioavailability markedly affected PO2mv 

kinetics during the off-transition in the healthy rat spinotrapezius muscle. 
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Figure 2.2 Overall muscle microvascular oxygenation during recovery from contractions 

under Control, SNP and L-NAME 

 

 

Figure 2.2 Mean values for the area under the muscle microvascular PO2 curve (PO2AREA) during 

recovery from contractions under Control, sodium nitroprusside (SNP) and L-nitro arginine 

methyl ester (L-NAME) superfusion. PO2AREA was obtained through integration of the area under 

the PO2mv curve over the 3 min of recovery from contractions for each condition. * Significantly 

different from Control. † Significantly different from SNP. 
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Figure 2.3 Correlation between PO2mv(end-con) and MRToff for each animal 

 

 

Figure 2.3 Correlation between PO2mv(end-con) and MRToff for each animal. Control (n = 6); 

sodium nitroprusside (SNP; n = 5); L-nitro arginine methyl ester (L-NAME; n = 4). PO2mv(end-

con), end-contraction PO2mv; MRToff, mean response time for the off-transient. Individual (filled 

symbols) and mean (open symbols) values are shown. 
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Figure 2.4 Correlation between MRTon and MRToff for each animal 

 

 

Figure 2.4 Correlation between MRTon and MRToff for each animal. On-transient data from 

Ferreira et al. (23). Control (n = 6); sodium nitroprusside (SNP; n = 5); L-nitro arginine methyl 

ester (L-NAME; n = 4). MRTon, mean response time for the on-transient; MRToff, mean 

response time for the off-transient. Individual (filled symbols) and mean (open symbols) values 

are shown. 
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Figure 2.5 Effects of altered nitric oxide bioavailability on muscle PO2mv on-off kinetics 
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Figure 2.5 Effects of altered nitric oxide bioavailability on the muscle microvascular PO2 

(PO2mv) on-off responses. Panels (a-c) depict the normalized change in mean PO2mv kinetics 

following the onset and cessation of contractions under sodium nitroprusside (SNP), Control and 

L-nitro arginine methyl ester (L-NAME) treatments, respectively. Filled symbols in panels (a-c) 

illustrate the ‘mirror image’ of data from Ferreira et al. (23) for PO2mv on-kinetics. SE bars 

omitted for clarity. Panel (d) shows the mean response time for the exercise on- (MRTon) and 

off- (MRToff) transients under Control, SNP and L-NAME. Note the symmetry between PO2mv 

on-off responses for SNP and the pronounced asymmetry for Control and L-NAME. * 

Significantly different from Control. † Significantly different from SNP. ‡ Significantly different 

from the on-transient within condition. See text for further details. 
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Chapter 3 - Effects of neuronal nitric oxide synthase inhibition on 

microvascular and contractile function in skeletal muscle of aged 

rats 



39 

 

 

 Summary 

 

Advanced age is associated with derangements in skeletal muscle microvascular function 

during the transition from rest to contractions. We tested the hypothesis that, contrary to what 

was reported previously in young rats, selective neuronal nitric oxide synthase (nNOS)-inhibition 

would result in attenuated or absent alterations in skeletal muscle microvascular oxygenation 

(PO2mv; which reflects the matching between muscle O2 delivery and utilization) following the 

onset of contractions in old rats. Spinotrapezius muscle blood flow (radiolabeled microspheres), 

PO2mv (phosphorescence quenching), O2 utilization ( 2OV ; Fick calculation) and submaximal 

force production were measured at rest and following the onset of contractions in anesthetized 

old male Fisher 344 x Brown Norway rats (27-28 mo) pre- and post-selective nNOS inhibition 

(2.1 µmol/kg S-methyl-L-thiocitrulline; SMTC). At rest, SMTC had no effects on muscle blood 

flow (p>0.05) but reduced 2OV  by ~23% (p<0.05), which elevated basal PO2mv by ~18% 

(p<0.05). During contractions, steady-state muscle blood flow, 2OV , PO2mv and force 

production were not altered after SMTC (p>0.05 for all). The overall PO2mv dynamics at 

contractions onset was also unaffected by SMTC (mean response time; pre: 19.7 ± 1.5; post: 20.0 

± 2.0 s; p>0.05). These results indicate that the locus of nNOS-derived NO control in skeletal 

muscle depends on age and metabolic rate (i.e., rest vs. contractions). Alterations in nNOS-

mediated regulation of contracting skeletal muscle microvascular function with aging may 

contribute to poor exercise capacity in this population. 
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 Introduction 

 

Nitric oxide (NO) is a ubiquitous signaling messenger synthesized primarily through the 

conversion of L-arginine to L-citrulline by the enzyme nitric oxide synthase (NOS). Within 

skeletal muscle, NO plays a critical role in the modulation of several physiological processes 

including vascular relaxation, oxidative metabolism and excitation-contraction coupling (56). All 

three major NOS isoforms are expressed in mammalian skeletal muscle, namely neuronal NOS 

(nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS) (56). Several lines of evidence 

indicate that NO derived from nNOS participates significantly in the matching of muscle O2 

delivery and utilization ( 22 / OVOQ  ) at rest and during contractions as well as submaximal force 

production in healthy young individuals (12, see also refs. 13, 15, 19, 28, 33, 36, 39, 45, 52, 53, 

60). 

 Advancing age is associated with impairments in the O2 transport pathway and exercise 

capacity (47). Derangements in NO-mediated function likely represent one of the main 

mechanisms underlying temporal 22 / OVOQ   mismatch during transitions in metabolic demand in 

aged skeletal muscle (5, 16, 23, 25). Impairments in the ability to regulate 2OQ  relative to 2OV  

diminish muscle microvascular O2 pressures (PO2mv) and thus the driving force for blood-

myocyte O2 flux as dictated by Fick’s law of diffusion. These alterations are of functional 

significance given that reductions in PO2mv impact negatively on mitochondrial control and 

could explain, at least in part, poor exercise capacity with aging (29, 57). In view of the typical 

deterioration of endothelial function in the elderly (54, 65), age-related decrements in NO 

bioavailability have been ascribed traditionally to eNOS dysfunction. Whether nNOS 

dysfunction is potentially involved in impaired muscle 22 / OVOQ   control with aging remains 

unexplored. 

Given that advanced aging might impact both nNOS and eNOS function possibly due to 

prominent oxidative stress that promotes NOS uncoupling and/or direct NO inactivation (21, 49, 

54, 58), we examined whether nNOS-derived control of skeletal muscle microvascular and 

contractile function is altered in old rats. The hypothesis was tested that, contrary to what was 

observed previously in young rats (12), selective nNOS inhibition in old rats would result in 
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attenuated or absent alterations in resting and contracting muscle blood flow, 2OV , PO2mv and 

submaximal force production, thus indicating impaired nNOS-mediated microvascular and 

contractile control with aging. 
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 Methods 

 

A total of 21 old (27-28 mo; body mass 614 ± 11 g) male Fisher 344 x Brown Norway 

(F344xBN) rats were used in the present study for measurements of PO2mv and muscle blood 

flow (phosphorescence quenching and radiolabeled microspheres, respectively; n = 11), force 

production (n = 6) and time-control experiments (n = 4). Rats were obtained from Charles Rivers 

Laboratories and maintained on a 12:12-h light-dark cycle with food and water provided ad 

libitum. The selected age represents senescent rats according to the life-span of the F344xBN 

rodent strain (38). The F344xBN rat has the distinct advantage of not acquiring many of the age-

related pathologies that proliferate in their highly inbred counterparts (40). Upon completion of 

the study, rats were euthanized with intra-arterial pentobarbital overdose (~50 mg/kg). All 

procedures described herein were conducted under the guidelines established by the National 

Institutes of Health and approved by the Institutional Animal Care and Use Committee of Kansas 

State University. 

 

Experimental design consideration 

 Comparison with young rats is facilitated using data from ref. 12. The rationale for this 

procedure is based on the IACUC stipulation that additional animals not be sacrificed for 

replication of data. In addition, direct comparison between old and young (12) animals is 

facilitated by the fact that both experimental groups underwent the exact same protocols and old 

and young animal experiments were temporally interdigitated. 

 

Surgical preparation 

 Rats were anesthetized initially with 5% isoflurane-O2 mixture and maintained on 2-3% 

isoflurane-O2. The caudal (tail) artery was isolated surgically and cannulated (PE-50; Intra-

Medic Tubing, Clay Adams Brand) for continuous monitoring of heart rate and mean arterial 

pressure (HR and MAP, respectively; Digi-Med BPA model 200) and infusion of the 

phosphorescent probe palladium meso-tetra (4-carboxyphenyl) porphyrin dendrimer (R2; 15 

mg/kg; Oxygen Enterprises). Blood from the tail artery catheter was sampled at the end of each 

experimental condition (control and selective nNOS inhibition with S-methyl-L-thiocitrulline; 
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SMTC) for the determination of arterial blood gases, pH, systemic hematocrit and plasma lactate 

(n = 11). For blood flow measurements, an additional catheter (PE-10 connected to PE-50) was 

placed in the ascending aorta via the right carotid artery to allow injection of differently 

radiolabeled microspheres into the aortic arch. Anesthetized rats were maintained on a heating 

pad to maintain core temperature at ~37-38°C as measured via rectal probe. 

 Isoflurane-O2 mixture inhalation was progressively discontinued after catheter placement 

procedures and rats were then kept under anesthesia with pentobarbital sodium (administered i.a. 

to effect). The level of anesthesia was monitored frequently via the toe-pinch and blink reflexes 

and supplemented as necessary. Overlying skin and fascia from the middorsal region of the rat 

were reflected surgically to expose the right spinotrapezius muscle. The muscle was moistened 

constantly throughout the surgery and experimental protocol via superfusion of Krebs-Henseleit 

bicarbonate-buffered solution (4.7 mM KCl, 2.0 mM CaCl2, 2.4 mM MgSO4, 131 mM NaCl and 

22 mM NaHCO3; equilibrated with 5% CO2 and 95% N2; pH 7.4; warmed to 37-38°C) and 

surrounding tissue was covered with Saran wrap (Dow Brands). Stainless steel electrodes were 

sutured to the rostral (cathode) and caudal (anode) regions of the spinotrapezius muscle for 

electrically induced contractions. Our laboratory has demonstrated previously that these surgical 

procedures do not alter the microvascular integrity and responsiveness of the spinotrapezius 

muscle (3). 

 

Experimental protocol 

 Two separate contraction bouts were performed under control (1.2 ml heparinized saline) 

and selective nNOS inhibition (2.1 µmol/kg SMTC dissolved in 1.2 ml heparinized saline) 

conditions. This dose of SMTC was selected based on previous studies designed to inhibit 

selectively nNOS in both humans and rodents (18, 30, 53, 64) and our analysis of the highest 

possible SMTC dose that could be administered without affecting the hypotensive response to 

acetylcholine (indicative of non-specific eNOS inhibition; refs. 12, 13). Each solution was 

infused at a rate of 0.2 ml/min into the tail artery catheter for a total time of 6 min, after which a 

~2 min period was allowed for resting muscle PO2mv to stabilize. Subsequently, 1 Hz twitch 

contractions (~7 V, 2 ms pulse duration) were evoked via a stimulator (model s48; Grass 

Technologies) for 3 min. The muscle was then allowed to recover for a minimum of 25 min 

before the next condition was initiated (stimulation parameters held constant). Due to its 
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relatively long half-life (~40 min; refs. 18, 64), SMTC was always the last condition in order to 

prevent residual effects on vascular and skeletal muscle function. Importantly, there is no 

ordering (priming) effect on the PO2mv response to muscle contractions when a minimum of 20 

min of recovery is allowed between stimulations (7, 16). 

 

Effects of SMTC and L-NAME on the hypotensive responses to acetylcholine 

 In a subset of animals (n = 8 of 21 total rats), rapid acetylcholine infusions (5 µg/kg in 

0.2 ml of heparinized saline) were performed under control and SMTC conditions as well as after 

non-selective NOS inhibition with N
G
-nitro-L-arginine-methyl-ester (L-NAME; 10 mg/kg) 

administered into the caudal artery. The hypotensive responses to these infusions were recorded 

via the carotid artery catheter to confirm the efficacy of selective nNOS inhibition with SMTC 

(12, 13). 

 

Measurement of PO2mv 

 PO2mv was measured by phosphorescence quenching using a Frequency Domain 

Phosphorometer (PMOD 5000; Oxygen Enterprises). As described in detail previously (6), this 

method applies the Stern-Volmer relationship (51) which describes quantitatively the O2 

dependence of the phosphorescent probe (i.e., R2) via the following equation: 

 

)/(]1)/[(2   QkmvPo  

 

where Qk  is the quenching constant and   and   are the phosphorescence lifetimes in the 

absence of O2 and at the ambient O2 pressure, respectively. The   of phosphorescence decay 

was determined using 10 scans (100 ms) in the single-frequency mode. The phosphorescent 

probe R2 (   = 601 µs and Qk  = 409 mmHg
-1.

s
-1

 at pH = 7.4 and temperature 38°C) (51, 63) 

was infused approximately 15 min before initiation of muscle contractions. R2 is bound to 

albumin and is distributed uniformly in the plasma, thus providing a signal corresponding to the 

volume-weighted O2 pressure within the microvascular compartment (i.e., mainly the PO2 within 

the capillaries, which volumetrically constitutes the major intramuscular space) (48). The 

negative charge of the R2 probe also facilitates its restriction to the intravascular space (46). 
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 The common end of the light guide was placed ~2-4 mm superficial to the dorsal surface 

of the exposed right spinotrapezius muscle. The phosphorometer modulates sinusoidal excitation 

frequencies between 100 Hz and 20 kHz and allows phosphorescence lifetime measurements 

from 10 µs to ~ 2.5 ms. The excitation light (524 nm) was focused on a randomly-selected area 

of ~2 mm diameter within the central region of the exposed muscle and has a penetration depth 

of ~500 µm. PO2mv was measured continuously and recorded at 2 s intervals throughout the 

duration of the experimental protocols. 

 

Analysis of PO2mv kinetics 

 The kinetics of PO2mv were described by nonlinear regression analysis using the 

Marquardt-Levenberg algorithm (SigmaPlot 11.2; Systat software) for the onset of contractions. 

Transient PO2mv responses were fit with either a one- or two-component model: 

 

One component: 

)1( /)(
2)(2)(2

TDt
BLt emvPOmvPOmvPO   

 

Two-component:  

)1()1( 2/)2(
22

1/)1(
21)(2)(2

 TDtTDt
BLt emvPOemvPOmvPOmvPO


  

 

where PO2mv(t) is the PO2mv at a given time t, PO2mv(BL) corresponds to the pre-contracting 

resting PO2mv, Δ1 and Δ2 are the amplitudes for the first and second components, respectively, 

TD1 and TD2 are the independent time delays for each component, and τ1 and τ2 are the time 

constants (i.e., time to reach 63% of the response) for each component. Goodness of fit was 

determined using three criteria: 1) the coefficient of determination; 2) the sum of squared 

residuals; and 3) visual inspection. 

The amplitude of the first component was normalized to its time constant (Δ1PO2mv/τ1) 

in order to provide an index of the relative rate of PO2mv fall. The overall time necessary to 

attain 63% of the final amplitude of the PO2mv response following contractions onset was 

determined independent of modeling procedures (T63; ref. 34) to ensure appropriateness of the 

model fits. 
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 The mean response time (MRT; ref. 43) was employed to describe the overall dynamics 

of the PO2mv response: 

 

11  TDMRT  

 

where TD1 and τ1 are defined above. The MRT analysis was constrained to the first phase of the 

PO2mv response since inclusion of the emergent second phase underestimates the actual rate of 

PO2mv fall following initiation of contractions (25). 

 The area under the PO2mv curve plotted as function of time (PO2AREA; ref. 23) was 

calculated during the 3 min contraction protocol to provide an index of the overall muscle 

microvascular oxygenation (i.e., incorporating resting and contracting steady-state PO2mv, time 

delays, amplitudes and time constants of the response to yield a value expressed in mmHg.s). 

 

Measurement of blood flow 

 Spinotrapezius muscle blood flow was measured using the radiolabeled microsphere 

technique, as described in detail previously (44). In each condition (control and SMTC), the 

stimulated right and non-stimulated left spinotrapezius muscles represented the contracting and 

resting blood flow measurements, respectively. Briefly, the tail artery catheter was connected to 

a 1 ml syringe, and blood withdrawal at a constant rate of 0.25 ml/min was performed via a 

Harvard pump (model 907). Differently radiolabeled microspheres (
46

Sc or 
85

Sr; 15 µm diameter; 

Perkin Elmer Life and Analytical Sciences) were injected in random order into the aortic arch via 

the carotid artery catheter during the contracting steady-state (i.e., ~3 min after onset of 

stimulation). Upon completion of the experiment, the right and left spinotrapezius muscles, right 

and left kidneys and organs of the splanchnic region (stomach, adrenals, spleen, pancreas, small 

intestine, large intestine and liver) were carefully dissected, removed and weighed immediately 

after euthanasia. The thorax was opened and placement of the carotid artery catheter into the 

aortic arch was confirmed by anatomic dissection. Tissue radioactivity was determined on a 

gamma scintillation counter (Auto Gamma Spectrometer, Cobra model 5003; Hewlett-Packard), 

and blood flow was determined by the reference sample method (31) and expressed as 

ml/min/100 g of tissue. Adequate mixing of the microspheres was verified for each injection by 

demonstrating a <15% difference in blood flow between the right and left kidneys. Blood flow 
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data were also normalized to MAP and expressed as vascular conductance (VC; 

ml/min/100g/mmHg). 

 

Calculation of muscle 2OV  

 Muscle 2OV  was calculated from PO2mv and blood flow measurements as described 

previously (12, 27). Briefly, arterial O2 concentration (CaO2) was calculated directly from 

arterial blood samples, whereas venous O2 concentration (CvO2) was estimated from either the 

baseline (rest) or the contracting steady-state (contractions) PO2mv using the rat O2 dissociation 

curve (Hill coefficient of 2.6), the measured Hb concentration, a P50 of 38 mmHg and an O2 

carrying capacity of 1.34 ml O2/g Hb (1). The measures of the resting and contracting 

spinotrapezius blood flow ( mQ ) were then used to determine 2OV  via the Fick equation [i.e., 

)( 222 CvOCaOmQOV   ]. 

 

Measurement of submaximal muscle force production 

 The caudal end of the spinotrapezius muscle was exteriorized and sutured to a swivel 

apparatus and a non-distensible light-weight (0.4 g) cable, which linked the muscle to a force 

transducer (model FTO3; Grass Technologies). The preload tension was set at ~0.04 N to elicit 

the optimal length of the muscle for twitch force production (12, 27). Muscle force production 

was measured throughout control and SMTC contraction bouts which were identical to the 

contraction protocols described above for the measurement of PO2mv and blood flow. Force 

production was expressed as N/g muscle. 

 

Time-control experiments 

 The stability and reproducibility of the spinotrapezius muscle preparation has been 

addressed previously (12, 27) and was reconfirmed in the current study via time-control 

experiments (i.e., 2 control contraction bouts performed as described above). The average 

coefficient of variation for PO2mv kinetics and muscle force production was 9 ± 5% with no 

ordering effects (p>0.05). These data provide confidence that the significant effects (or lack 

thereof) detected herein were the direct result of selective nNOS inhibition with SMTC. 
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Statistical analyses 

 Data comparison was performed using paired Student’s t-tests, one-way repeated 

measures analysis of variance (ANOVA) or two-way repeated measures ANOVA where 

appropriate. Post hoc analyses were performed with the Student-Newman-Keuls test when a 

significant F ratio was detected. The z-statistic was calculated to determine differences from 

zero. The significance level was set at p<0.05. Results are reported as mean ± SE. 
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 Results 

 

Blood sampling, hemodynamic variables and Ach injections 

 There were no differences in arterial blood O2 saturation (control: 95.3 ± 0.2; SMTC: 

94.4 ± 0.7%), pH (control: 7.41 ± 0.01; SMTC: 7.40 ± 0.01), lactate concentration (control: 1.0 ± 

0.1; SMTC: 1.1 ± 0.1 mM) and systemic hematocrit (control: 35.6 ± 0.6; SMTC: 34.8 ± 0.6%) 

between conditions (p>0.05 for all). 

 The HR and MAP responses during control and SMTC conditions are displayed in Table 

3.1. HR and MAP did not change during the control saline infusion whereas MAP increased and 

HR decreased during the infusion of SMTC. Within each condition, there were no significant 

differences between rest (post-infusion) and contractions (steady-state). 

 The hypotensive responses to acetylcholine infusion during control, SMTC and L-NAME 

conditions are depicted in Fig. 3.1. The relative change in MAP with acetylcholine was not 

different between control and SMTC but decreased significantly with L-NAME. Similarly, the 

time to 50% recovery from the drop in MAP with acetylcholine was not different between 

control and SMTC but speeded significantly with L-NAME. These data are consistent with the 

notion that SMTC did not impair eNOS function in the present study. 

 

Spinotrapezius PO2mv 

 Mean spinotrapezius muscle PO2mv during control and SMTC infusions are shown in 

Fig. 3.2. The control infusion did not change PO2mv (pre-infusion: 36.1 ± 1.2; post-infusion: 

37.4 ± 1.3 mmHg; p>0.05) whereas SMTC infusion increased PO2mv from 35.3 ± 1.6 to 41.9 ± 

2.2 mmHg (p<0.05). PO2mv was not different between control and SMTC at the start or during 

the first 5 min of infusion (p>0.05) but was increased significantly by the end of SMTC infusion. 

 Mean spinotrapezius muscle PO2mv following the onset of contractions during control 

and SMTC conditions are shown in Fig. 3.3 and average kinetics parameters displayed in Table 

3.2. Although the time delay of the PO2mv fall following the onset of contractions (TD1; p<0.05) 

was reduced, SMTC did not change the PO2mv time constant (τ1; p>0.05). Furthermore, no 

differences in the overall dynamics of PO2mv as represented by the MRT (model dependent), T63 

(model independent) and Δ1PO2mv/τ1 (relative rate of PO2mv fall) were observed between 
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conditions (p>0.05 for all). SMTC did, however, increase the amplitude of the PO2mv fall during 

contractions (Δ1PO2mv; p<0.05) such that the contracting steady-state PO2mv (PO2mv(SS); 

p>0.05) was not different between conditions. Although SMTC elevated resting PO2mv, the 

overall muscle microvascular oxygenation during contractions as represented by the PO2AREA 

was not significantly different between conditions. 

 

Spinotrapezius blood flow and 2OV  

 At rest, blood flow (Fig. 3.4, top left panel) and VC (control: 0.09 ± 0.02; SMTC: 0.07 ± 

0.01 ml/min/100g/mmHg; p>0.05) were not different between control and SMTC. During 

contractions, blood flow (Fig. 3.4, top right panel) was not different whereas VC (control: 1.01 ± 

0.09; SMTC: 0.82 ± 0.08 ml/min/100g/mmHg; p<0.05) was reduced with SMTC compared to 

control. Accordingly, SMTC did not alter the change in blood flow from rest to contractions 

(Δblood flow; control: 98.0 ± 9.1; SMTC: 97.1 ± 10.8 ml/min/100g; p>0.05) but attenuated the 

change in VC during the rest-contraction transient (ΔVC; control: 0.92 ± 0.09; SMTC: 0.75 ± 

0.07 ml/min/100g/mmHg; p<0.05). 

 Relative to the control condition, SMTC reduced significantly resting but not contracting 

spinotrapezius muscle 2OV  (Fig. 3.4, bottom panels). However, from rest to contractions the 

change in muscle 2OV  was not different between conditions (Δ 2OV ; control: 10.5 ± 1.0; SMTC: 

10.2 ± 1.5 ml/min/100g; p>0.05). 

 

Spinotrapezius muscle force production 

 As illustrated in Fig. 3.5, mean spinotrapezius muscle force production throughout the 

contraction protocol and the force-time integral were not significantly different between control 

and SMTC conditions. Similarly, the average steady-state force production-to- 2OV  ratio was 

also unaffected by SMTC (force/ 2OV ; control: 0.024 ± 0.001; SMTC: 0.023 ± 0.001 N/ml 

O2/min; p>0.05). 

 

Abdominal organ blood flow and VC 

The effects of SMTC on resting blood flow and VC in the kidneys and organs of the 

splanchnic region are displayed in Table 3.3. Relative to control, SMTC decreased blood flow in 
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the kidneys, stomach, adrenals, spleen and large intestine (p<0.05 for all). SMTC decreased VC 

in the kidneys, stomach, adrenals, spleen, pancreas, small intestine and large intestine (p<0.05 

for all). 
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 Discussion 

 

The present investigation determined the effects of selective nNOS inhibition on skeletal 

muscle function at rest and during contractions in old rats. The principal novel finding was that 

the changes in contracting muscle blood flow, 2OV , PO2mv kinetics and submaximal force 

production produced by nNOS-inhibition in healthy young rats (12) were absent in old rats (see 

Fig. 3.6). Specifically, selective nNOS inhibition in old rats resulted in 1) alterations in resting 

muscle 2OV  (↓23%) and PO2mv (↑18%) but not blood flow; 2) no changes in steady-state blood 

flow, 2OV  or PO2mv during contractions; 3) no changes in the overall dynamics of PO2mv 

following the onset of contractions; and 4) no changes in muscle force production. These data 

suggest that nNOS-mediated control of contracting skeletal muscle microvascular and contractile 

function is altered in old rats. 

 

Effects of selective nNOS inhibition on skeletal muscle function in old rats 

Skeletal muscle PO2mv is dictated by the dynamic 22 / OVOQ   matching within the 

microvascular space (6). We reported recently that selective nNOS inhibition with SMTC in 

healthy young rats increased resting spinotrapezius PO2mv via reductions in 2OV  concomitant 

with no alterations in muscle blood flow (12). In the present study, similar effects were observed 

following SMTC infusion in old rats (Figs. 3.2 and 3.4, Table 3.2), thus suggesting that nNOS-

mediated function is preserved within aged skeletal muscle at least at rest. The lack of an effect 

of SMTC on resting skeletal muscle blood flow in both young (12) and old (Fig. 3.4, top left 

panel) anesthetized rats contrasts with that seen previously in the human forearm (53) and awake 

rat hindlimb (13) circulations. The reasons for this discrepancy are not entirely clear but could 

relate partially to the effects of anesthesia. However, the reductions in blood flow to the kidneys 

and organs of the abdominal region following SMTC infusion in old rats at rest (Table 3.3) are 

consistent with the role of nNOS-derived NO in regulating renal and splanchnic blood flow as 

reported previously in the awake young rat at rest (13, see also refs. 30, 32). These findings also 

suggest preserved nNOS-mediated function in the renal and splanchnic circulations with aging at 

rest. 
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 The SMTC-induced reductions in resting spinotrapezius 2OV  in both young (12) and old 

(Fig. 3.4, bottom left panel) rats are surprising considering the well-known inhibitory effects of 

NO on mitochondrial respiration (56) that may actually act to increase resting muscle 2OV  

following non-selective NOS inhibition (e.g., dogs, ref. 20, human, ref. 22). Although our data 

could be interpreted as reflecting a stimulatory role of NO from nNOS on mitochondrial 

respiration (66; see also refs. 4, 37) and/or relate to possible differences in NOS isoform 

compartmentalization across species, evidence from isolated cardiac muscle suggests rather that 

nNOS-derived NO does not control directly tissue 2OV  (35, 41). In the latter scenario, reduced 

resting 2OV  with SMTC in old rats could result from blockade of uncoupled nNOS which 

alleviates the inactivation of NO from eNOS and restores partially mitochondrial respiratory 

inhibition (cf. 35). These intriguing possibilities remain to be tested empirically in aged skeletal 

muscle. 

 Despite the apparent preserved contribution of nNOS-derived NO to resting skeletal 

muscle function with aging (as discussed above), the effects of SMTC on contracting muscle 

blood flow, 2OV , PO2mv kinetics and force production observed presently in old rats differ 

markedly from those reported previously in young rats (12). Specifically, selective nNOS 

inhibition in young rats 1) reduced contracting steady-state muscle blood flow and 2OV ; 2) 

speeded the fall in PO2mv following the onset of contractions (i.e., shorter MRT, T63 and 

Δ1PO2mv/τ1); and 3) increased submaximal force production (12). In old rats, however, SMTC 

had no significant effects on any of these variables during muscle contractions (Table 3.2, Figs. 

3.4 and 3.5). Figure 3.6 summarizes these results and illustrates the contrasting effects of SMTC 

on skeletal muscle hemodynamic, metabolic and contractile function in young (12) compared 

with old (present study) rats during contractions. These data thus suggest that nNOS-mediated 

regulation of skeletal muscle microvascular and contractile function during transitions in 

metabolic demand is altered with advanced aging. 

 Alterations in nNOS-mediated regulation of skeletal muscle during contractions, but not 

at rest, with aging could emanate from age-related disruptions in myocyte redox state. Enhanced 

reactive oxygen and nitrogen species accumulation during muscle contractions (2, 8) coupled 

with impaired antioxidant mechanisms in old individuals (65) may exacerbate the underlying 

oxidative stress characteristic of aging (17) and promote nNOS uncoupling and/or direct NO 
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inactivation (21, 49, 58). This leads to reduced nNOS-derived NO bioavailability which likely 

impacts contracting skeletal muscle microvascular and contractile function via multiple 

mechanisms. Specifically, considerable evidence in young subjects suggests critical regulatory 

roles for NO derived from nNOS on contracting muscle blood flow (via cGMP formation and/or 

functional sympatholysis; refs. 15, 39, 60), 2OV  (contribution to oxidative enzyme inertia at 

contractions onset; e.g., ref. 34) and, therefore, PO2mv kinetics (12). In addition, nNOS-derived 

NO bioavailability likely modulates submaximal force production via inhibitory influences on 

myofibrillar contractile elements (36). 

 

Clinical implications 

 Understanding how aging impacts the functional role of nNOS-derived NO on skeletal 

muscle represents the initial step towards the development of potential therapeutic strategies 

targeting this isoform. Utilization of isoform selective NOS inhibitors is therefore crucial in such 

investigations. As discussed in detail elsewhere (12, 13) and demonstrated by previous 

pharmacological studies (18, 64) and the current hypotensive responses to Ach (Fig. 3.1), SMTC 

represents a viable tool for this purpose based on its selectivity for nNOS over both eNOS and 

iNOS inhibition. Acute selective pharmacological inhibition as utilized herein also minimizes the 

potential for chronic compensation of genetically modified nNOS models by other isoforms (33). 

 It is noteworthy that alterations in skeletal muscle nNOS expression and/or activity with 

aging (9, 11, 50, 55) may not predict nNOS-mediated function particularly in conditions 

associated with significant oxidative stress (e.g., aging, chronic heart failure and diabetes), which 

promotes nNOS uncoupling and/or direct NO inactivation (21, 49, 58). Our current results 

therefore suggest that nNOS-mediated regulation of skeletal muscle microvascular and 

contractile function is altered in old individuals. Important clinical implications arise from these 

findings when considering that endurance exercise training could improve nNOS-mediated 

function via upregulation of nNOS expression and/or activity (55) in conjunction with 

augmented antioxidant capacity (62). 

 Besides its effects on nNOS-mediated function, it is important to acknowledge that 

advanced age results in downregulation of eNOS alongside upregulation of iNOS which is 

consistent with a greater role for NO in inflammatory processes and a reduced participation in 

contractile function in aged skeletal muscle (55). This shift in the muscle NOS isoform profile 
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with aging is hallmarked by oxidative stress and endothelial dysfunction (14, 24, 26, 54, 59, 61, 

65) which likely contribute to exercise intolerance in this population (47). 

 

Experimental considerations 

In view of the greater relative expression and activity of nNOS in fast-twitch compared to 

slow-twitch muscles (36, 39), potential alterations in skeletal muscle fiber type composition with 

aging could partly underlie the responses seen herein following SMTC. However, it must be 

noted that potential age-related shifts in muscle phenotype may not only favor an increased 

abundance of slow-twitch fibers as traditionally considered, but also promote alterations in the 

opposite direction (i.e., increased abundance of fast-twitch fibers) in both humans and animals 

(see ref. 10 for discussion). Despite these possibilities, F344xBN rats do not appear to experience 

significant changes in fiber type composition within representative skeletal muscles across the 

age range used herein (42). 

In accordance with the latter and the fact that F344xBN rats do not develop many of the 

age-related pathologies seen in their highly inbred counterparts (which is essential to discern 

healthy aging from pathological decay; ref. 40), the National Institutes of Health supports 

currently the use of the F344xBN rat as a model of aging. In the absence of evidence to the 

contrary, we therefore consider that these key facets outweigh any likely interspecies differences 

in nNOS-mediated control and thus facilitate comparison with young Sprague-Dawley rats (12) 

and suggest that differences in strain are unlikely to play a major role in the responses seen 

herein following selective nNOS inhibition with SMTC (Fig. 3.6). 
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 Conclusions 

 

Pharmacological isoform-specific NOS inhibition revealed that nNOS-mediated control 

of contracting skeletal muscle function is altered with advanced aging. In marked contrast to the 

responses seen previously in young rats (12), nNOS inhibition with SMTC evoked no alterations 

in contracting muscle blood flow, 2OV , PO2mv kinetics and submaximal force production in old 

rats (as illustrated in Fig. 3.6). These novel findings suggest that, in addition to the documented 

deterioration in eNOS function (e.g., refs. 54, 65), alterations in nNOS-mediated regulation of 

contracting skeletal muscle microvascular function with aging may contribute to reduced 

exercise capacity in this population. 
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Table 3.1 Heart rate (HR) and mean arterial pressure (MAP) before (control) and after 

selective nNOS inhibition with SMTC 

 Control SMTC 

At rest (pre-infusion)   

HR, bpm 297 ± 9 307 ± 4 

MAP, mmHg 109 ± 3 112 ± 3 

   

At rest (post-infusion)   

HR, bpm 305 ± 6 294 ± 4*† 

MAP, mmHg 111 ± 4 126 ± 3*† 

   

Contractions (steady-state)   

HR, bpm 309 ± 7 292 ± 6*† 

MAP, mmHg 107 ± 3 129 ± 3*† 

Values are mean ± SE. * p<0.05 vs. control. † p<0.05 vs. rest (pre-infusion). Within each 

condition, there were no significant differences between rest (post-infusion) and contractions 

(steady-state). 
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Table 3.2 Muscle PO2mv at rest and following the onset of contractions before (control) and 

after selective nNOS inhibition with SMTC 

 Control SMTC 

PO2mv(BL), mmHg 37.7 ± 1.2 44.2 ± 2.1* 

Δ1PO2mv, mmHg 12.4 ± 0.9 17.6 ± 2.1* 

Δ2PO2mv, mmHg 2.3 ± 0.2 2.6 ± 0.5 

ΔTotalPO2mv, mmHg 11.0 ± 0.7 17.2 ± 2.1* 

PO2mv(SS), mmHg 26.9 ± 1.3 27.3 ± 2.4 

TD1, s 10.1 ± 1.5 6.3 ± 0.7* 

TD2, s 73.1 ± 11.7 52.8 ± 14.5 

τ1, s 9.6 ± 0.9 13.7 ± 1.8 

τ2, s 59.5 ± 15.1 55.7 ± 4.7 

MRT, s 19.7 ± 1.5 20.0 ± 2.0 

T63, s 20.9 ± 1.9 19.6 ± 1.4 

Δ1PO2mv/τ1, mmHg/s 1.3 ± 0.1 1.4 ± 0.2 

PO2AREA, mmHg.s 4920 ± 244 5195 ± 402 

Values are mean ± SE. PO2mv(BL), pre-contracting PO2mv; Δ1PO2mv, amplitude of the first 

component; Δ2PO2mv, amplitude of the second component; ΔTotalPO2mv, overall amplitude 

regardless of one- or two-component model fit; PO2mv(SS), contracting steady-state PO2mv; TD1, 

time delay for the first component; TD2, time delay for the second component; τ1, time constant 

for the first component; τ2, time constant for the second component; MRT, mean response time; 

T63, time to reach 63% of the overall amplitude as determined independent of modeling 

procedures; Δ1PO2mv/τ1, relative rate of PO2mv fall; PO2AREA, area under the PO2mv curve over 

the 3 min contraction period. The two-component exponential model was used to analyze the 

PO2mv kinetics in the majority of instances (7 out of 11) in the control condition while the one-

component model was required to fit the SMTC response in most rats (9 out of 11). * p<0.05 vs. 

control. 
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Table 3.3 Resting blood flow and vascular conductance in the kidneys and organs of the 

splanchnic region before (control) and after selective nNOS inhibition with SMTC 

 
Blood flow, 

ml/min/100g 
 

Vascular conductance, 

ml/min/100g/mmHg 

 Control SMTC  Control SMTC 

Kidneys 515 ± 52 319 ± 25*  4.88 ± 0.57 2.49 ± 0.19* 

Stomach 55 ± 7 34 ± 2*  0.52 ± 0.08 0.27 ± 0.02* 

Adrenals 798 ± 75 542 ± 55*  7.47 ± 0.72 4.20 ± 0.39* 

Spleen 256 ± 28 217 ± 26*  2.43 ± 0.29 1.72 ± 0.21* 

Pancreas 105 ± 19 101 ± 26  0.98 ± 0.16 0.76 ± 0.17* 

Small intestine 342 ± 37 290 ± 18  3.24 ± 0.40 2.27 ± 0.17* 

Large intestine 116 ± 8 95 ± 5*  1.09 ± 0.08 0.75 ± 0.05* 

Liver † 23 ± 3 25 ± 5  0.21 ± 0.03 0.19 ± 0.04 

Values are mean ± SE. † Designates arterial, not portal blood flow and vascular conductance. * 

p<0.05 vs. control. 
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Figure 3.1 Effects of SMTC and L-NAME on the hypotensive responses to acetylcholine 

 

 

Figure 3.1 Effects of selective nNOS inhibition (SMTC) and non-selective NOS inhibition (L-

NAME) on the hypotensive responses to acetylcholine. Top and bottom panels depict the relative 

drop in mean arterial pressure (MAP) and time to 50% recovery from the hypotensive response 

to acetylcholine, respectively. * p<0.05 vs. control and SMTC. 



61 

 

Figure 3.2 Muscle PO2mv during infusion of saline or SMTC 

 

 

Figure 3.2 Mean resting spinotrapezius muscle PO2mv during infusion of saline (control) or 

SMTC (selective nNOS inhibition). Time zero denotes start of infusion. * p<0.05 vs. control for 

end-infusion PO2mv (last 10 s average). 



62 

 

Figure 3.3 Muscle PO2mv at rest and following the onset of contractions under control and 

SMTC conditions 

 

 

Figure 3.3 Mean spinotrapezius muscle PO2mv at rest and following the onset of contractions 

under control and selective nNOS inhibition (SMTC) conditions. Time zero denotes the onset of 

muscle contractions. Average kinetics parameters are displayed in Table 3.2. See text for further 

details. 
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Figure 3.4 Muscle blood flow and O2 utilization at rest and during contractions under 

control and SMTC conditions 

 

 

 

Figure 3.4 Mean spinotrapezius muscle blood flow (top panels) and O2 utilization ( 2OV ; bottom 

panels) at rest and during contractions under control and selective nNOS inhibition (SMTC) 

conditions. Note different scales on vertical axes.* p<0.05 vs. control. 
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Figure 3.5 Muscle force production under control and SMTC conditions 

 

 

Figure 3.5 Mean spinotrapezius muscle force production under control and selective nNOS 

inhibition (SMTC) conditions. Note that muscle force production was not significantly different 

throughout the contraction period between control and SMTC. The inset shows that force-time 

integral values were also not significantly different between conditions. 
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Figure 3.6 Effects of SMTC on contracting muscle blood flow, 2OV , PO2mv kinetics and 

force production in young and old rats 

 

 

Figure 3.6 Effects of selective nNOS inhibition (SMTC) on contracting spinotrapezius muscle 

blood flow, O2 utilization ( 2OV ), overall PO2mv kinetics (MRT, mean response time) and 

submaximal force production in young Sprague-Dawley (data from ref. 12; n = 10) and old 

F344xBN (present study; n = 11) rats. Note that SMTC evoked significant changes in these 

variables in young but not old rats. * p<0.05 vs. zero. See text for discussion. 
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 Summary 

 

Reactive oxygen species such as hydrogen peroxide (H2O2) exert a critical regulatory role 

on skeletal muscle function. Whether acute increases in H2O2 modulate muscle microvascular O2 

delivery-utilization ( 2OQ / 2OV ) matching (i.e., microvascular partial pressure of O2; PO2mv) at 

rest and following the onset of contractions is unknown. The hypothesis was tested that H2O2 

treatment (exogenous H2O2) would enhance PO2mv and slow PO2mv kinetics during contractions 

compared to control. Anesthetized healthy young Sprague-Dawley rats had their spinotrapezius 

muscles either exposed for measurement of blood flow (and therefore 2OQ ), 2OV  and PO2mv or 

exteriorized for measurement of force production. Electrically stimulated twitch contractions (1 

Hz, ~7 V, 2 ms pulse duration, 3 min) were evoked following acute superfusion with Krebs-

Henseleit (control) and H2O2 (100 µM). Relative to control, H2O2 treatment elicited 

disproportionate increases in 2OQ  and 2OV  that elevated PO2mv at rest and throughout 

contractions and slowed overall PO2mv kinetics (i.e., ~85% slower mean response time; P<0.05). 

Accordingly, H2O2 resulted in ~33% greater overall microvascular oxygenation as assessed by 

the area under the PO2mv curve (P<0.05). Muscle force production was not altered with H2O2 

treatment (P>0.05), evidencing reduced economy during contractions (~40% decrease in the 

force/ 2OV  relationship; P<0.05). These findings indicate that, although increasing the driving 

force for blood-myocyte O2 flux (i.e., PO2mv), transient elevations in H2O2 impair skeletal 

muscle function (i.e., reduced economy during contractions) which mechanistically may 

underlie, in part, the reduced exercise tolerance in conditions associated with oxidative stress. 
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 Introduction 

 

Reactive oxygen species (ROS) are pivotal elements in signal transduction (8, 20, 21, 46, 

56). Hydrogen peroxide (H2O2), a small diffusible and ubiquitous molecule with a long half-life 

relative to other ROS, is regarded as one of the most influential ROS in terms of redox signaling 

(21). H2O2 is generated constantly within skeletal muscle and its vasculature via direct reduction 

of molecular O2 (e.g., by NADPH oxidase, xanthine oxidase and uncoupled nitric oxide (NO) 

synthases) or dismutation of superoxide radicals either spontaneously or enzymatically by 

superoxide dismutase (SOD) (8, 46, 56). Key scavengers of H2O2 include the enzymes catalase, 

glutathione peroxidase and peroxiredoxin (8, 46, 56). 

Alterations in H2O2 bioavailability have important implications for skeletal muscle 

function at rest and during metabolic transients. Transient elevations in H2O2 levels could 

mediate an initial compensatory response to acute oxidative stress (traditionally defined as a 

disturbance in the oxidant-antioxidant balance in favor of the former) by acting as an 

endothelium-derived hyperpolarizing factor (EDHF; refs. 34, 51) and/or increasing endothelial 

NO synthase (eNOS) activity (12, 27, 63, 64), therefore minimizing potential deleterious effects 

on vasomotor control (15, 35, 43). Consistent with this notion, Csekő et al. (16) reported that 

exogenously applied H2O2 promotes concentration- and time-dependent effects on skeletal 

muscle arteriolar tone (and by implication O2 delivery; 2OQ ). At 100 µM concentration, there is 

a biphasic effect composed of a brief constriction followed by a vasodilation that reaches steady-

state within approximately 3 min. In addition to its effects on the vasculature, acute increases in 

H2O2 also modulate skeletal muscle O2 utilization ( 2OV ; ref. 57) and contractile function (4, 37, 

49, 55). Exposure of isolated skeletal muscle mitochondria to H2O2 (100 µM) uncouples 

oxidative phosphorylation and reduces energy transfer efficiency (expected to result in relatively 

greater muscle 2OV ) (57). Brief application of exogenous H2O2 (~100 µM) increases force 

production in isolated unfatigued skeletal muscle fibers (49). However, whether acute redox state 

modulation via increased H2O2 improves the dynamic matching between skeletal muscle 2OQ  

and 2OV  (i.e., enhanced muscle microvascular oxygenation; PO2mv) at rest and during 

contractions is unknown. Resolution of this issue is important given that, as dictated by Fick’s 
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law of diffusion, low PO2mv impairs blood-myocyte O2 flux and consequently dysregulates 

skeletal muscle metabolism (26), an effect that could impact negatively upon contractile 

performance in oxidative stress conditions such as aging, chronic heart failure, hypertension and 

diabetes. 

The present study examined the effects of acutely increased H2O2 on muscle 

microvascular oxygenation (PO2mv) and force production following the onset of contractions in 

healthy rat skeletal muscle in situ. Aiming to gain insights into how brief H2O2 exposure 

modulates the 2OQ / 2OV  ratio and therefore PO2mv, we also determined resting and contracting 

steady-state 2OQ  and 2OV  responses. Based on the evidence summarized above, the hypotheses 

were tested that acute oxidant treatment (exogenous 100 µM H2O2) would increase (i) blood 

flow (and thus 2OQ ) and 2OV ; (ii) PO2mv and slow PO2mv kinetics during contractions and (iii) 

muscle force production. 
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 Methods 

 

Animals 

A total of 43 young male Sprague-Dawley rats (3-4 months old; body mass 354 ± 13 g) 

were used in the present study for measurements of PO2mv (phosphorescence quenching; n = 

20), muscle blood flow (radiolabelled microspheres; n = 13) and force production (n = 10). Rats 

were obtained from Charles River Laboratories and maintained on a 12:12-h light-dark cycle 

with food and water provided ad libitum. Upon completion of the study, all rats were euthanized 

with pentobarbital sodium overdose. All experimental procedures were conducted under the 

guidelines established by the National Institutes of Health and approved by the Institutional 

Animal Care and Use Committee of Kansas State University. 

 

Surgical preparation 

Animals were anesthetized initially with 5% isoflurane gas. Subsequently, while being 

maintained on a 2-3% isoflurane-O2 mixture, the caudal (tail) artery was isolated surgically and 

cannulated (PE-10 connected to PE-50; Intra-Medic Tubing, Clay Adams Brand) for continuous 

monitoring of mean arterial pressure (MAP; Digi-Med BPA model 200) and infusion of the 

phosphorescent probe palladium meso-tetra (4-carboxyphenyl) porphyrin dendrimer (R2; 15 

mg/kg; Oxygen Enterprises). Blood from the tail catheter was sampled at the end of each 

experimental protocol within a subset of ten animals for the determination of arterial blood 

gases, pH, systemic hematocrit and plasma lactate. For blood flow measurements, an additional 

catheter (PE-10 connected to PE-50) was placed in the ascending aorta via the right carotid 

artery to allow the injection of differently radiolabelled 15 µm diameter microspheres into the 

aortic arch as described previously (38). Anesthetized rats were kept on a heating pad to maintain 

core temperature, measured via rectal probe, at ~37-38 °C. 

 After catheter placement procedures, isoflurane inhalation was progressively 

discontinued and rats were kept under anesthesia with intra-arterial pentobarbital sodium 

throughout the experiment. The level of anesthesia was monitored frequently via the toe-pinch 

and blink reflexes and supplemented as necessary. Overlying skin and fascia from the mid-dorsal 

region of the rat was removed carefully to expose the spinotrapezius muscle. The muscle was 
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moistened constantly during the surgical preparation via superfusion of Krebs-Henseleit (K-H) 

bicarbonate-buffered solution (4.7 mM KCl, 2.0 mM CaCl2, 2.4 mM MgSO4, 131 mM NaCl and 

22 mM NaHCO3) equilibrated with 5% CO2 and 95% N2 at ~38 °C whereas surrounding tissue 

was covered with Saran Wrap (Dow Brands). Stainless steel electrodes were sutured to the 

rostral (cathode) and caudal (anode) regions of the spinotrapezius muscle for electrically-induced 

contractions. We have previously demonstrated that these surgical procedures do not alter the 

microvascular integrity and responsiveness of the spinotrapezius muscle (9). 

 

Experimental protocol 

 Two separate contraction bouts were performed under control (3 mL K-H) and H2O2 (100 

µM in 3 mL K-H) superfusion conditions. This concentration was selected based on previous 

studies in which similar exogenous H2O2 concentrations impacted significantly rat skeletal 

muscle arteriolar tone (16), mitochondrial respiration (57) and force production (49). Given that 

intracellular H2O2 reaches a value that is approximately an order of magnitude lower than that of 

the applied exogenous concentration (6), our experimental protocol was expected to elevate 

acutely H2O2 to those levels measured in the early stages of senescence and cardiovascular 

diseases (i.e., from ~10 µM in the healthy young rat skeletal muscle interstitial fluid and 

mesenteric artery in vivo to ~20-40 µM in conditions such as hypertension; refs. 59, 63, 64). Also 

relevant in this regard is that exposure of isolated skeletal muscle fibers to 100 µM H2O2 does 

not produce gross histological damage (41, see also ref. 47). Exogenous H2O2 treatment does not 

produce oxidative damage to hemoglobin in intact red blood cells (12.5-100 µM; refs.33, 39) or 

myoglobin in isolated skeletal muscle (1 mM; ref. 19). Due to its time-dependent actions on 

eNOS and NADPH oxidase activity (12, 27), H2O2 was the last treatment to prevent residual 

long-term effects on vascular and skeletal muscle function. 

The experimental protocol is illustrated in Fig. 4.1. The spinotrapezius muscle was 

superfused with each solution (average flow rate ~2 mL/min) for a total time of ~1.5 min, after 

which a 3 min incubation period followed to allow arteriolar vasodilation (and consequently 

2OQ  and PO2mv) to reach steady-state under H2O2 treatment based on data from Csekő et al. 

(16) and preliminary studies from our laboratory (Hirai DM, Copp SW, Schwagerl PJ, Musch TI, 

Poole DC; unpublished data). Subsequently, electrical stimulation (1 Hz, ~7 V, 2 ms pulse 

duration) of the muscle was evoked via a Grass Stimulator (model s48) for 3 min. The muscle 
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was then allowed to recover for ~25 min before the next condition was initiated (stimulation 

parameters were held constant). 

 The spinotrapezius preparation exhibits reproducible PO2mv kinetic parameters during 

transitions in metabolic demand evoked by 1 Hz twitch contractions when a minimum of 20 min 

of recovery is allowed between contraction bouts (14, 23). Accordingly, highly reproducible 

overall PO2mv kinetics (mean response time; MRT) from repeated contraction bouts separated 

by ~25 min were obtained herein (within-animal coefficient of variation: 3 ± 2 s; n = 6) with no 

ordering effect (overall within-animal difference: 1 ± 3 s; P>0.05). Moreover, the 25-30 min 

period between contractions (3 min off-transition, ~20 min recovery, ~1.5 min superfusion, 3 

min incubation; see Fig. 4.1) was employed herein to avoid any priming effect that might 

confound the experimental interpretation of the PO2mv responses to muscle contractions (11). 

 

Measurement of PO2mv 

 PO2mv was measured by phosphorescence quenching using a Frequency Domain 

Phosphorometer (PMOD 5000; Oxygen Enterprises). The principles of the phosphorescence 

quenching method have been discussed in detail previously (10). Briefly, this method applies the 

Stern-Volmer relationship (50), which describes quantitatively the O2 dependence of the 

phosphorescent probe (i.e., R2) via the following equation: 
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where Qk  is the quenching constant and   is the phosphorescence lifetime in an O2-free 

environment. The   of phosphorescence decay was determined using 10 scans (100 ms) in the 

single frequency mode (50, 61). The phosphor R2 ( 601 µs and 409Qk  mmHg
-1.s

-1
 at pH 

= 7.4 and temperature ~38 °C) was infused ~15 min prior to initiation of muscle contractions. 

The R2 probe is bound to albumin and is distributed uniformly in the plasma thus providing a 

signal corresponding to the volume-weighed O2 pressure in the microvascular compartment 

(mainly the PO2 within the capillaries, which volumetrically constitutes the major intramuscular 

space; ref. 45). In addition to albumin binding, the negative charge of the R2 probe also 
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facilitates its restriction to the intravascular space within the muscle (44). Data from Oter and 

Ribou (42) suggest that it is highly unlikely that our H2O2 treatment could affect oxygen 

measurements with probes such as metalloporphyrin complexes (e.g., R2). In fact, no 

interference is expected to occur in lifetime-based measurements using H2O2 concentrations 

lower than 0.1 M. 

The common end of the bifurcated light guide was placed 2-4 mm superficial to the 

dorsal surface of the exposed spinotrapezius muscle. The phosphorometer modulates sinusoidal 

excitation frequencies between 100 Hz and 20 kHz and allows phosphorescence lifetime 

measurements from 10 µs to approximately 2.5 ms. The excitation light (524 nm) was focused 

on a randomly selected area of ~2 mm diameter of exposed muscle and has a resulting 

penetration depth of ~500 µm which is somewhat less than the spinotrapezius muscle thickness 

in the region sampled. PO2mv was recorded at 2 s intervals throughout the duration of the 

experimental protocol (superfusion, incubation, electrical stimulation and recovery periods). 

 Movement of the light guide (or animal) was avoided so as to monitor the same sampling 

site throughout the entire experimental protocol. However, alteration of the PO2mv measurement 

plane during muscle contractions precluded kinetic curve fitting in some instances. Therefore, 

microvascular oxygenation results from the present study are presented from animals under the 

following conditions: control, n = 20; H2O2, n = 12. 

 

Analysis of PO2mv kinetics 

 The kinetics of PO2mv were described by nonlinear regression analysis using the 

Marquardt-Levenberg algorithm (SigmaPlot 9.01; Systat Software) for the onset of contractions. 

Transient PO2mv responses were fit with either a one- or two-component model (10): 
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where PO2mv(t) is the PO2mv at a given time t, PO2mv(BL) corresponds to the pre-contracting 

resting PO2mv, Δ1 and Δ2 are the amplitudes for the first and second components, respectively, 

TD1 and TD2 are the independent time delays for each component, and τ1 and τ2 are the time 

constants (i.e., time taken to achieve 63% of the response) for each component. Goodness of fit 

was determined using three criteria: (i) the coefficient of determination; (ii) the sum of squared 

residuals; and (iii) visual inspection. 

 The mean response time (MRT; ref. 31) was used to describe the overall dynamics of the 

PO2mv response: 

 

TDMRT  

 

where TD and τ are defined above. The MRT analysis was limited to the first phase of the 

PO2mv response since inclusion of the emergent second phase underestimates the actual rate of 

PO2mv fall following the onset of contractions (25). The overall time necessary to attain 63% of 

the final amplitude of the PO2mv response during the onset of contractions was determined 

independent of modeling procedures (T63; ref. 29) as an additional means of checking the 

accuracy of the model fits to the data. 

 The area under the PO2mv curve plotted as function of time (PO2AREA; ref. 24) was 

calculated during 3 min following the onset of contractions to provide an index of the overall 

muscle microvascular oxygenation throughout the exercise transient for each condition (i.e., 

incorporating resting and contracting steady-state PO2mv, time delays, amplitudes and time 

constants of the response to yield a value expressed in mmHg.s). 

 

Measurement of muscle blood flow 

 Spinotrapezius blood flow was measured using the radiolabelled microsphere technique 

as described in detail previously (38). In each condition (control and H2O2), the stimulated right 

and non-stimulated left spinotrapezius muscles represented the contracting and resting blood 

flow measurements, respectively (14, 23). Briefly, the tail artery catheter was connected to a 1 

mL syringe and blood withdrawal was initiated at a constant rate of 0.25 mL/min via a Harvard 

pump (model 907). Differentially radiolabelled 15 µm diameter microspheres (
46

Sc or 
85

Sr; 

Perkin Elmer Life and Analytical Sciences) were injected in random order into the aortic arch via 
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the carotid artery catheter during the contracting steady-state (i.e., ~3 min after initiation of 

muscle contractions). Upon completion of the experiment, the right and left spinotrapezius 

muscles and right and left kidneys were carefully dissected, removed and weighed immediately 

after euthanasia. The thorax was opened, and placement of the carotid artery catheter into the 

aortic arch was confirmed by anatomical dissection. 

 Tissue radioactivity was determined on a gamma scintillation counter (Packard Auto 

Gamma Spectrometer, Cobra model 5003) and muscle blood flow was determined by the 

reference sample method (28) and expressed as mL/min/100 g tissue. Adequate mixing of the 

microspheres was verified for each injection by demonstrating a <15% difference in blood flow 

between the right and left kidneys. 

 

Calculation of muscle 2OV  

 Muscle 2OV  was calculated from PO2mv and blood flow ( mQ ) measurements as 

described previously (14, 23). Briefly, arterial O2 concentration (CaO2) was calculated from 

arterial blood samples, while venous O2 concentration (CvO2) was calculated from both the mean 

resting or contracting steady-state PO2mv using the rat O2 dissociation curve (Hill coefficient of 

2.6), the measured hemoglobin (Hb) concentration, a PO2 at which hemoglobin is 50% saturated 

(P50) of 38 mmHg, and an O2 carrying capacity of 1.34 mL O2/g Hb (2). Mean resting and 

contracting steady-state spinotrapezius mQ ’s were then used to calculate muscle 2OV ’s via the 

Fick equation (i.e., )( 222 CvOCaOmQOV   ). Muscle 2OV  standard errors were estimated 

from mQ  measurements. 

 

Measurement of muscle force production 

The caudal end of the spinotrapezius muscle was exteriorized and sutured to a swivel 

apparatus and a non-distensible light weight (0.4 g) cable, which linked the muscle to a Grass 

force transducer (model FTO3). The preload tension of the muscle was set at ~4 g, which evoked 

the optimal length of the muscle for twitch force production (14, 23). Superfusion and 

contraction protocols were performed as described above. Force production was expressed as g/g 

muscle. 
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 Time-control experiments demonstrated excellent reproducibility of force production 

measurements (within-animal coefficient of variation: 1 ± 1 g/g muscle; i.e., ≤5%; n = 6) with no 

ordering effect (overall within-animal difference: 2 ± 1 g/g muscle; i.e., ≤10%; P>0.05) between 

two consecutive contraction bouts. Therefore, based on these findings and our previous reports 

demonstrating the stability and reproducibility of the spinotrapezius preparation (9, 14, 23), it is 

highly unlikely that fatigue and/or deterioration of the preparation per se could account for any 

changes (or lack thereof) in measured variables under different treatments. 

 

Statistical analyses 

 PO2mv and MAP data comparison was performed using unpaired Student’s t-tests. Blood 

flow, 2OV  and force production data comparison was performed using ANOVA techniques. Post 

hoc analyses were performed with the Bonferroni test when a significant F-ratio was detected. 

The level of significance was set at P<0.05. Results are reported as mean ± standard error (SE). 
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 Results 

 

Arterial PO2 averaged 91.5 ± 2.3 mmHg, O2 saturation 89.0 ± 2.1 %, blood pH 7.38 ± 

0.01, systemic hematocrit 34.9 ± 0.7 % and plasma lactate 1.5 ± 0.1 mmol/L. 

 

Muscle microvascular oxygenation (PO2mv) 

 The control treatment did not change resting PO2mv (i.e., similar values before and after 

K-H superfusion and incubation periods, PO2mv(Pre) and PO2mv(Post); Table 4.1). Representative 

PO2mv profiles during K-H (control) and H2O2 superfusion and incubation periods are depicted 

in Fig. 4.2. A transient fall in PO2mv following H2O2 superfusion, consistent with the brief 

arteriolar constriction response reported by Csekő et al. (16) in isolated vessels exposed to 100 

µM H2O2, was observed in only 2 rats. Nonetheless, H2O2 treatment increased PO2mv in all 

cases beyond ~30 s. 

 The time course of PO2mv following the onset of contractions during H2O2 treatment 

presented significant quantitative differences relative to the control condition (Table 4.1 and Fig. 

4.3). The post-treatment resting PO2mv (PO2mv(Post)) was significantly higher for H2O2 compared 

with control. The one-component exponential model provided an excellent fit to the PO2mv data 

for the majority of instances (16 out of 20) in the control condition and in all profiles for H2O2. 

Within the different experimental treatments (control and H2O2), MRT (model dependent) and 

T63 (model independent) were not significantly different from one another. 

 The overall dynamics of the PO2mv response (MRT and T63) were ~80-90% slower with 

H2O2 compared to control. As a result of the similar overall PO2mv amplitude regardless of the 

one- or two-component model fit (ΔTotalPO2mv) in the two experimental treatments, the 

contracting steady-state PO2mv (PO2mv(SS)) was ~30% greater with H2O2 compared with control. 

The acute effects of H2O2 treatment on PO2mv kinetics were reflected in the overall muscle 

microvascular oxygenation (PO2AREA) throughout the on-transition, as H2O2 increased PO2AREA 

by ~33% relative to control (Fig. 4.3, bottom panel). 

 

Muscle blood flow ( mQ ) 
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 MAP values were not different during mQ  measurements when comparing distinct 

conditions (control: 95 ± 3; H2O2: 96 ± 5 mmHg; P>0.05). H2O2 treatment augmented 

significantly resting and contracting mQ when compared to control (Fig. 4.4). However, no 

further increases in mQ  during the rest-contraction transient occurred with H2O2 (P>0.05). 

 

Muscle O2 utilization ( 2OV ) 

 Relative to the control condition, H2O2 treatment augmented significantly resting and 

contracting 2OV  (Fig. 4.5). A similar magnitude of increase in muscle 2OV  (Δ 2OV ) from rest to 

contractions was observed for both conditions (control: 5.7 ± 0.8; H2O2: 6.0 ± 1.1 mL/min/100g; 

P>0.05). 

 

Muscle force production 

 As illustrated in Fig. 4.6, muscle force production was not significantly different 

throughout the contraction period between control and H2O2. Thus, as a consequence of the 

relatively greater contracting steady-state 2OV  (Fig. 4.5), H2O2 treatment decreased the 

force/ 2OV  relationship by ~40% when compared to control (Fig. 4.6, inset). 
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 Discussion 

 

This study evaluated the effects of acute H2O2 exposure on skeletal muscle function at 

rest and during contractions in healthy young rats. Consistent with our hypothesis, redox 

modulation via H2O2 treatment elevated PO2mv at rest and during contractions while slowing its 

kinetics, an effect that reflected significant disproportionate increases in muscle 2OQ  and 2OV . 

However, contrary to our expectation, H2O2 treatment did not increase muscle force production. 

These results demonstrate that, although enhancing the driving force for blood-myocyte O2 

transfer, increased H2O2 reduces acutely the economy of contractions (i.e., decreased force/ 2OV  

relationship). 

 

H2O2 modulates skeletal muscle function 

Acute exposure of isolated skeletal muscle arterioles to H2O2 modulates myogenic tone in 

a concentration- and time-dependent manner, such that exogenous 100 µM H2O2 produces 

biphasic changes composed of a brief constriction followed by a substantial vasodilation that 

reaches steady-state within ~3 min (16). Enhanced arteriolar tone appears to be primarily 

mediated by the release of endothelium- and smooth muscle-derived constrictor prostaglandins 

(prostaglandin H2 and thromboxane A2), whereas decreased arteriolar tone is caused mainly by 

the activation of both eNOS and K
+
 channels (including Ca

2+
-activated and ATP-sensitive K

+
 

channels) in the smooth muscle (16). These effects are consistent with the stimulatory actions of 

H2O2 on eNOS activity (12, 27, 63, 64) and the identification of H2O2 as an EDHF (34, 51). 

Although the relative importance of each vasodilatory pathway in skeletal muscle is currently 

unknown, augmented accumulation of endogenous H2O2 contributes substantially to functional 

vasodilation given that catalase treatment blunts the increase in skeletal muscle arteriolar 

diameter during contractions (32). Elevated mQ  at rest and during contractions under H2O2 

treatment in the present investigation (Fig. 4.4) corroborates and extends significantly the 

aforementioned studies by demonstrating that acute increases in H2O2 modulate skeletal muscle 

blood flow and microvascular oxygenation in situ. 

 Although not every PO2mv profile exhibited a transient fall consistent with the biphasic 

arteriolar diameter response reported by Csekő et al. (16), exogenous H2O2 increased resting 
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spinotrapezius PO2mv in all instances within ~30 s (Fig. 4.2). In addition to differences in 

experimental design (see below), this behavior could also be explained by the fact that PO2mv is 

directly proportional to the 2OQ / 2OV  ratio (10) while arteriolar diameter measurements only 

provide an index of 2OQ . This is particularly important considering that altered H2O2 levels also 

impact mitochondrial function (and thus muscle 2OV ). Tonkonogi et al. (57) documented a 

significant impairment in the coupling between respiration and phosphorylation (as assessed by a 

decrease in the respiratory control index; i.e., the ratio of state 3 to state 4 mitochondrial 

respiration) and an approximately 19% reduction in phosphorylation efficiency (decreased P/O 

ratio; i.e., the relationship between ATP resynthesis and O2 consumption) in isolated skeletal 

muscle mitochondria exposed to 100 µM H2O2. These effects are partially mediated by an 

increase in proton leakage through the adenine nucleotide translocase protein (an antiporter that 

exchanges ADP for ATP across the inner mitochondrial membrane) (57). Teleologically, a 

greater proton leakage promoted by elevated H2O2 levels could serve as a compensatory 

mechanism, since the consequent reduction in mitochondrial proton gradient and membrane 

potential would attenuate ROS production and thus limit potential oxidative damage (54, 60). It 

is important to note that participation of other ROS such as the hydroxyl radical (which can be 

generated via the interaction between ferrous iron and H2O2; i.e., the Fenton reaction) is unlikely 

to occur given that the iron chelator deferoxamine does not attenuate the effects of H2O2 

treatment on mitochondrial respiration (52). Our data are consistent with those of Tonkonogi et 

al. (57) and reveal that H2O2 treatment markedly increased resting and contracting steady-state 

2OV  in healthy rat skeletal muscle (Fig. 4.5). The observation of similar Δ 2OV  from rest to 

contractions for control and H2O2 treatment supports the notion that H2O2 impacted 

mitochondrial control rather than the contractile apparatus. Although increased NO 

bioavailability (induced by the stimulatory actions of H2O2 on eNOS activity; refs. 12, 27, 63, 

64) could act to inhibit mitochondrial respiration (13), that the net effect of acute H2O2 treatment 

is increased basal and contracting 2OV  (Fig. 4.5) suggests that the actions of H2O2 on oxidative 

phosphorylation overcame those of NO. 

The temporal profile of PO2mv during metabolic transitions reflects the dynamic 

2OQ / 2OV  ratio within the microvascular space (10, 25). Collectively, our data indicate that the 

elevated PO2mv response from rest to submaximal contractions under H2O2 treatment (Table 4.1 
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and Fig. 4.3) resulted from disproportionate increases in 2OQ  and 2OV  (Figs. 4.4 and 4.5). 

These effects can be summarized by analysis of the PO2AREA, which was ~33% greater with 

H2O2 compared to control (Fig. 4.3, bottom panel). However, the greater potential for blood-

myocyte O2 flux under H2O2 treatment occurs at the expense of an elevated O2 cost of 

contraction as evidenced by an increased muscle 2OV  (Fig. 4.5) concurrent with unchanged 

force production (i.e., ~40% decrease in the force/ 2OV  relationship; Fig. 4.6). Such reduced 

muscle economy could compromise sustained contractile activity by exacerbating perturbations 

of the intramyocyte physicochemical milieu (e.g., accentuated depletion of phosphocreatine and 

glycogen stores; ref. 1). 

 Skeletal muscle contractile function is influenced by ROS bioavailability and its effects 

on myocyte redox state (20, 46, 48). The conceptual model developed by Reid et al. (4, 48, 49) 

describes the relationship between muscle redox balance and submaximal force production as a 

bell-shaped response profile (Fig. 4.7). This model predicts that a certain level of ROS 

accumulation is necessary to cause a rightward shift along the response curve from the relatively 

reduced redox state of unfatigued skeletal muscle towards the optimal redox state where force 

production is maximized. Exogenous H2O2 evokes concentration- and time-dependent effects on 

skeletal muscle force production (4, 49). Specifically, brief exposure of isolated muscle fibers to 

H2O2 (100-300 µM for 3 min) increases submaximal force production without alterations in 

myoplasmic Ca
2+

 concentration, supporting the notion of a redox modulation of Ca
2+

 sensitivity 

(4, see also refs. 37, 55). Elevated myofiber Ca
2+

 sensitivity with increased H2O2 could alleviate 

fatigue momentarily until prolonged exposure and/or further ROS accumulation decrease Ca
2+

 

sensitivity and force production (4, 55). The mechanisms involved in the modulation of Ca
2+

 

sensitivity by H2O2 appear to depend on its interaction with myoglobin and glutathione (a non-

enzymatic thiol antioxidant in muscle fibers) in a concentration- and time-dependent manner 

(37). 

Contrary to our hypothesis, we observed that H2O2 treatment did not change force 

production compared to control (Fig. 4.6). The reasons for this divergence are unclear, but may 

relate to: (i) the utilization of distinct experimental protocols (including the influence of 

temperature on ROS bioavailability and myofiber Ca
2+

 sensitivity since studies conducted in 

isolated preparations are commonly performed at subphysiological temperatures to promote 

stability; refs. 7, 36); (ii) muscle fiber type; as the mixed fiber type spinotrapezius muscle (18) 
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could retain the resistance to ROS-induced increases in Ca
2+

 sensitivity of the contractile 

apparatus characteristic of predominantly slow-twitch fibers (37); (iii) a rightward shift along the 

bell-shaped response profile that places the muscle past the optimal redox state and results in 

similar force production compared to control (see Fig. 4.7); (iv) compartmentalized ROS 

scavenging that suppresses the potential effects of H2O2 treatment on force production (see 

below); (v) the opposing effects of endogenous NO on contractile function (e.g., reduced 

myofiber Ca
2+

 sensitivity; refs. 5, 55). 

 

Experimental considerations 

 Modulation of physiological responses to altered H2O2 bioavailability appears to be 

specific to the tissue under consideration. Within the cardiovascular system, H2O2 is capable of 

evoking vasoconstriction, vasodilation or a biphasic response depending on the vascular bed (i.e., 

location and branch order), vascular tone (i.e., basal contractile state, method utilized to induce 

tone in isolated preparations), resting membrane potential, age and/or disease status (8, 16, 22, 

32, 34, 35, 43, 51, 53, 58, 63, 64). Distinct localization, activity and/or expression of antioxidant 

systems as well as differences in individual peroxidase enzyme kinetics result in redox 

compartmentalization (i.e., specific tissue and cellular concentrations of ROS) (40). These and 

potentially other factors interact to regulate local redox state and dictate spatial and temporal 

heterogeneity in the physiological responses to transient changes in H2O2 levels. Caution is 

therefore required when extrapolating findings from different sites within the cardiovascular 

system (e.g., skeletal muscle, coronary, cerebral and mesenteric circulations). Furthermore, 

marked skeletal muscle fiber type differences in ROS generation and scavenging (3, 46) suggest 

that a given stimulus (e.g., contractions, redox modulation via oxidant or antioxidant treatment) 

might produce dissimilar outcomes. In this regard, it is pertinent that the rat spinotrapezius 

muscle exhibits a mixed fiber type composition and oxidative capacity that resemble closely the 

human quadriceps (18, 30), thus representing a useful surrogate of human skeletal muscle. The 

spinotrapezius preparation also allows superfusion as a method to deliver specific compounds to 

the muscle, which is expected to modify only local redox state and avoid the potential for 

systemic influences (e.g., alterations in MAP). 

 It is unlikely that our acute H2O2 treatment (100 µM) produced loss of vascular and/or 

skeletal muscle function. Accordingly, H2O2 washout in preliminary studies from our laboratory 
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(Hirai DM, Copp SW, Schwagerl PJ, Musch TI, Poole DC; unpublished data) revealed that 

PO2mv returned to pre-treatment values (i.e., PO2mv(Pre)) in approximately 20 min. Data from 

these preliminary studies also indicated no impairment in force production during an additional 

third contraction bout performed in identical fashion to the control condition. These findings are 

consistent with previous studies utilizing similar H2O2 concentrations. Specifically, Csekő et al. 

(16) reported that H2O2 washout restored baseline arteriolar diameter and Andrade et al. (4) 

documented reversible effects of H2O2 on muscle force production after incubation with the 

reductant dithiothreitol. 

 Although increased H2O2 is capable of stimulating metabosensitive afferents in skeletal 

muscle (17, 62), that no changes in MAP were observed for H2O2 treatment when compared to 

control argues against that possibility. It is feasible that the present H2O2 concentration and/or 

relatively small muscle mass of the spinotrapezius limited the triggering of these events. 

 

Limitations 

Given the nature of our experimental protocol, muscle tissue analysis for ROS was not 

feasible due to the two required contraction bouts (control and H2O2). Blood samples were not 

taken for ROS measurements since, as noted above, the superfusion method utilized herein was 

expected to impact only local redox state. Nevertheless, the exogenous application of H2O2 via 

superfusion of the rat spinotrapezius muscle is similar to that employed by others and has been 

demonstrated, although indirectly, to impact effectively intracellular H2O2 levels (32). 
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 Conclusions 

 

The current study demonstrates for the first time that acute H2O2 treatment promoted 

disproportionate increases in skeletal muscle 2OQ  and 2OV  both at rest and during submaximal 

contractions in situ. These alterations modified significantly microvascular O2 delivery-

utilization balance such that PO2mv was elevated at rest and throughout contractions (along with 

~85% slower overall kinetics) compared to the control condition. However, the greater potential 

for blood-myocyte O2 flux under H2O2 treatment occurred concurrently with reduced economy 

of contractions as revealed by the significant decrease in the force/ 2OV  relationship. These novel 

findings indicate that, while potentially improving vascular function, transient increases in H2O2 

have detrimental effects on skeletal muscle function (i.e., augmented O2 cost of force production) 

that may contribute to exercise intolerance in conditions associated with oxidative stress. 



92 

 

Table 4.1 Muscle PO2mv at rest and following the onset of contractions under control and 

H2O2 treatments 

 Control H2O2 

PO2mv(Pre), mmHg 31.6 ± 1.6 33.5 ± 2.3 

PO2mv(Post), mmHg 31.9 ± 1.6 39.0 ± 2.6* 

Δ1PO2mv, mmHg 11.7 ± 0.7 12.6 ± 1.4 

Δ2PO2mv, mmHg 2.9 ± 0.2 - 

ΔTotalPO2mv, mmHg 12.3 ± 0.9 12.6 ± 1.4 

PO2mv(SS), mmHg 20.8 ± 1.4 27.0 ± 2.6* 

TD1, s 5.5 ± 1.2 0.2 ± 0.2* 

TD2, s 54.5 ± 15.2 - 

τ1, s 18.7 ± 3.2 43.3 ± 6.6* 

τ2, s 19.0 ± 6.4 - 

MRT, s 24.2 ± 3.0 43.5 ± 6.6* 

T63, s 24.2 ± 3.1 46.5 ± 7.4* 

PO2mv(Pre), pre-treatment resting PO2mv; PO2mv(Post), post-treatment resting PO2mv; Δ1PO2mv, 

amplitude of the first component; Δ2PO2mv, amplitude of the second component; ΔTotalPO2mv, 

overall amplitude regardless of one- or two-component model fit; PO2mv(SS), contracting steady-

state PO2mv; TD1, time delay for the first component; TD2, time delay for the second 

component; τ1, time constant for the first component; τ2, time constant for the second 

component; MRT, mean response time; T63, time to reach 63% of the overall amplitude as 

determined independent of modeling procedures. The one-component exponential model was 

used to analyze the PO2mv kinetics in the majority of instances (16 out of 20) in the control 

condition and in all cases for H2O2. * Significantly different from control. 
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Figure 4.1 Experimental protocol 

 

 

Figure 4.1 Schematic representation of the protocol utilized in the current study (diagram not to 

scale). Control, Krebs-Henseleit solution; H2O2; hydrogen peroxide. See text for details. 
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Figure 4.2 Muscle PO2mv during control and H2O2 superfusion conditions 

 

 

Figure 4.2 Typical relative changes in spinotrapezius muscle microvascular PO2 (PO2mv) during 

K-H (control; dotted line) and H2O2 (100 µM; continuous lines) superfusion and incubation 

periods (approximately 0-90 and 90-250 s, respectively). Note that, although not all PO2mv 

profiles exhibited an initial transient fall following H2O2 superfusion consistent with the brief 

arteriolar constriction response to exogenous H2O2 (100 µM) in isolated vessels reported by 

Csekő et al. (16), we observed that H2O2 treatment increased basal PO2mv in all instances. 

Steady-state PO2mv values were reached within ~3 min following H2O2 superfusion. Time zero 

denotes start of the H2O2 superfusion period. See text for discussion. 
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Figure 4.3 Muscle PO2mv following the onset of contractions under control and H2O2 

conditions 
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Figure 4.3 Mean spinotrapezius muscle microvascular PO2 (PO2mv) following the onset of 

contractions under control and H2O2 treatments. Top and middle panels exhibit absolute and 

relative PO2mv, respectively. SE bars omitted from middle panel for clarity. Time zero depicts 

the onset of muscle contractions. Note that exogenous H2O2 affected markedly PO2mv kinetics 

during submaximal contractions (see Table 4.1 for details). The bottom panel shows the mean 

values for the area under the microvascular PO2 curve (PO2AREA) following the onset of 

contractions under control and H2O2 treatments. PO2AREA was determined through integration of 

the area under the PO2mv curve over the 3 min stimulation period for each condition. * 

Significantly different from control. 
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Figure 4.4 Muscle blood flow at rest and during contractions under control and H2O2 

conditions 

 

 

Figure 4.4 Mean spinotrapezius muscle blood flow at rest and during contractions under control 

and H2O2 treatments. * Significantly different from control within the same condition (i.e., rest 

or contractions). † Significantly different from rest. 
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Figure 4.5 Muscle 2OV  at rest and during contractions under control and H2O2 conditions 

 

 

Figure 4.5 Mean spinotrapezius muscle O2 utilization ( 2OV ) at rest and during contractions 

under control and H2O2 treatments. * Significantly different from control within the same 

condition (i.e., rest or contractions). † Significantly different from rest. 



99 

 

Figure 4.6 Muscle force production under control and H2O2 conditions 

 

 

Figure 4.6 Mean spinotrapezius muscle force production under control and H2O2 treatments. 

Note that muscle force production was not significantly different throughout the contraction 

period between control and H2O2. The inset shows the force/ 2OV  relationship for both 

treatments. As a result of the greater muscle 2OV  induced by H2O2 (Fig. 4.4), a reduction of 

~40% in the force/ 2OV  relationship was observed. * Significantly different from control. 
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Figure 4.7 Redox regulation of submaximal muscle force production 

 

 

Figure 4.7 Hypothetical model illustrating the redox regulation of submaximal muscle force 

production as proposed originally by Reid et al. (4, 48, 49). The model predicts that deviations 

from optimal redox state are associated with reduced muscle force production. For any given 

condition, the putative location on the biphasic response profile is depicted as a potential range 

(i.e., circles demarcated by dotted lines) and not as a definite point since it is not possible to 

precisely and directly determine redox state (46, 48). Unfatigued muscle redox state at rest is 

located slightly to the left of the optimal for contractile function, whereas muscle contractions 

under control conditions enhance ROS accumulation thus shifting the muscle to the right towards 

greater force production. Acute oxidant treatment with H2O2 is expected to further push muscle 

redox state to the right compared to control contractions. Similar force production under H2O2 

treatment relative to control in the current study may have resulted, in part, from a rightward 

shift along the bell-shaped response profile placing muscle redox state beyond the optimal point 

as depicted in the figure. As such, the correspondence between force production in the control 

and H2O2 conditions would be coincidental. See text for discussion. 
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 Summary 

 

Exercise training induces multiple adaptations within skeletal muscle that may improve 

local O2 delivery-utilization matching (i.e., PO2mv). We tested the hypothesis that increased 

nitric oxide (NO) function is intrinsic to improved muscle PO2mv kinetics from rest to 

contractions after exercise training. Healthy young Sprague-Dawley rats were assigned to 

sedentary (n=18) or progressive treadmill exercise training (n=10; 5 d/wk, 6-8 wks, final 

workload of 60 min/d at 35 m/min, -14% grade) groups. PO2mv was measured via 

phosphorescence quenching in the spinotrapezius muscle at rest and during 1 Hz twitch 

contractions under control (Krebs-Henseleit solution), sodium nitroprusside (SNP, NO donor; 

300 µM) and N
G
-nitro-L-arginine methyl ester (L-NAME, non-specific NOS blockade; 1.5 mM) 

superfusion conditions. Exercise trained rats had greater peak oxygen uptake ( peakOV 2
 ) than 

their sedentary counterparts (81 ± 1 vs. 72 ± 2 ml/kg/min, respectively; p<0.05). Exercise trained 

rats had significantly slower PO2mv fall throughout contractions (τ1; time constant for the first 

component) during control (sedentary: 8.1 ± 0.6; trained: 15.2 ± 2.8 s). Compared to control, 

SNP slowed τ1 to a greater extent in sedentary rats (sedentary: 38.7 ± 5.6; trained: 26.8 ± 4.1 s; 

p<0.05) whereas L-NAME abolished the differences in τ1 between sedentary and trained rats 

(sedentary: 12.0 ± 1.7; trained: 11.2 ± 1.4 s; p<0.05). Our results indicate that endurance exercise 

training leads to greater muscle microvascular oxygenation across the metabolic transient 

following the onset of contractions (i.e., slower PO2mv kinetics) partly via increased NO-

mediated function which likely constitutes an important mechanism for training-induced 

metabolic adaptations. 
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 Introduction 

 

Endurance exercise training induces multiple structural and functional adaptations that 

enhance the capacities for skeletal muscle O2 delivery and utilization ( 2OQ  and 2OV , 

respectively; refs. 37, 58, 71). At any given submaximal contractile activity, this cluster of 

adaptations reduces the level of metabolic perturbations (e.g., changes in ADP, PCr and Cr 

concentrations) required to drive 2OV  and improves the coupling between energy utilization and 

muscle mitochondrial ATP production (70). These properties reduce the rate of glycolysis and 

reliance on finite energy sources and increase exercise tolerance (37). 

Microcirculatory adaptations to training are particularly important considering that the 

greatest resistance to O2 flux into skeletal muscle fibers resides primarily in the short distance 

between the red blood cell and the adjacent subsarcolemmal space (23, 29). As dictated by Fick’s 

law of diffusion, the O2 pressure within the microvasculature (i.e., muscle PO2mv) constitutes the 

exclusive driving force for blood-myocyte O2 transfer. The time course of skeletal muscle 

PO2mv during transitions in metabolic demand is determined by the dynamic matching between 

2OQ  and 2OV  (i.e., 22 / OVOQ   ratio) (8). Therefore, because alterations in muscle PO2mv have a 

direct impact on oxidative metabolism and contractile performance (36, 68), increased PO2mv 

during contractions likely contributes to the beneficial effects of exercise training on muscle 

function. 

Substantial evidence indicates that increased nitric oxide (NO) function is a key factor 

improving skeletal muscle hemodynamic and metabolic control following exercise training (28, 

53). Moreover, previous reports from our laboratory indicate that alterations in NO levels impact 

profoundly muscle PO2mv during transitions in metabolic demand in health and disease (24, 25, 

31) and suggest that increased NO-mediated function could underlie, at least in part, enhanced 

muscle microvascular oxygenation in the trained state. 

 The purpose of the present study was to determine the effects of endurance 

exercise training on muscle PO2mv and whether augmented NO-mediated function contributes 

mechanistically to potential increases in PO2mv from rest to contractions in rat skeletal muscle in 

situ after training. Based on the potential enhancement of NO-mediated function following 

endurance exercise training (28, 53), the hypotheses were tested that 1) exercise training would 
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elevate muscle PO2mv and slow PO2mv kinetics (i.e., resulting in higher PO2mv across the on-

contraction transient); 2) increased NO levels (via the NO donor sodium nitroprusside; SNP) 

would elevate PO2mv and slow PO2mv kinetics to a greater extent in sedentary compared to 

trained rats; and 3) reduced NO levels (non-specific NO synthase blockade with N
G
-nitro-L-

arginine methyl ester; L-NAME) would lower PO2mv and speed PO2mv kinetics to a greater 

extent in trained compared to sedentary rats during the transition from rest to contractions. 
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 Methods 

 

Animal selection and care 

A total of 28 male Sprague-Dawley rats (4-5 months old; Charles Rivers Laboratories, 

Boston, MA, USA) were used to investigate the effects of exercise training on, and the NO 

contribution to, skeletal muscle microvascular oxygenation. Additional rats were used in 

supplementary experiments to 1) evaluate the reproducibility and demonstrate the lack of an 

ordering effect of the protocol (n=7); and 2) assess potential cyanide-induced impairment of 

skeletal muscle function with the current SNP superfusion protocol (n=9). All experimental 

procedures followed guidelines established by the National Institutes of Health and were 

approved by the Institutional Animal Care and Use Committee of Kansas State University. Rats 

were maintained on a 12:12-h light-dark cycle with food and water provided ad libitum. Before 

initiation of the experimental protocol, rats were familiarized with downhill running on a 

custom-built motor-driven treadmill over the course of a 1 wk period (5-10 min/day at a speed of 

20 m/min and -14% grade). After the familiarization phase, rats were assigned randomly to either 

sedentary (n=18) or endurance exercise trained (n=10) groups. Sedentary control rats were 

confined to cage activities whereas trained rats ran 5 days/wk for 6-8 wks on the declined 

treadmill (-14% grade). All rats underwent the same training program, in which treadmill 

running duration and speed were increased progressively from 10 min at 25 m/min to 60 min at 

35 m/min. This final workload was kept for at least 3-4 wks. Previous work from our laboratory 

has demonstrated that downhill treadmill running recruits the rat spinotrapezius muscle (41, 57) 

and constitutes an effective model for exercise training programs (30). 

 

peakOV 2
  measurements 

Upon completion of the training program, peak oxygen uptake ( peakOV 2
 ) was measured 

in sedentary and trained rats during a downhill (-14% grade) running test performed in a 

metabolic chamber placed on the treadmill. As described in detail previously (16, 30), the speed 

was set initially to 25 m/min for 2-3 min and then increased progressively in a ramp-like fashion 

by ~5-10 m/min until the rat was unable to keep pace with the treadmill belt or no further 

elevations in 2OV  were observed despite continued increases in treadmill speed. At this point of 
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the test peakOV 2
  was measured and recorded. Alterations in gait (e.g., lowering of the 

hindlimbs, dropping of the tail and elevation of the snout) normally occurred immediately prior 

to termination of the test. Six of the 28 rats tested had to repeat their maximal tests on a separate 

day (i.e., ≥24 hours of recovery) due to failure to achieve the predetermined criteria. Gas 

measurements were performed in real time via an inline O2 analyzer (model S-3A/I; AEI 

Technologies; Pittsburgh, PA, USA). The analyzer was calibrated before and after each maximal 

exercise test with precision-mixed gases that spanned the expected range of gas concentrations 

based on previous studies. We have reported recently highly reproducible peakOV 2
  

measurements using the aforementioned techniques and protocol (16). 

 

Surgical preparation 

On the day of data collection, rats were anesthetized initially with 5% isoflurane-O2 

mixture and subsequently maintained on 2-3% isoflurane-O2 (Butler Animal Health Supply, 

Dublin, OH, USA). The left carotid and caudal (tail) arteries were cannulated (PE-10 connected 

to PE-50; Intra-Medic Tubing, Clay Adams Brand, Sparks, MD, USA) for continuous 

monitoring of mean arterial pressure (MAP; Digi-Med BPA Model 200, Louisville, KY, USA) 

and infusion of the phosphorescent probe palladium meso-tetra (4-carboxyphenyl) porphyrin 

dendrimer (R2; 15 mg/kg; Oxygen Enterprises, Philadelphia, PA, USA). Blood from the tail 

catheter was sampled at the end of each experimental protocol for determination of arterial blood 

gases, pH and systemic hematocrit (Nova Stat Profile M, Waltham, MA, USA). Anesthetized 

rats were placed on a heating pad to maintain core temperature, measured via rectal probe, at 

~37-38°C. 

Following catheter placement procedures, isoflurane inhalation was discontinued 

progressively and rats were kept under anesthesia with intra-arterial pentobarbital sodium 

throughout the experiment. The level of anesthesia was monitored frequently via the toe-pinch 

and blink reflexes and supplemented as necessary. Overlying skin and fascia from the mid-dorsal 

region of the rat were reflected carefully to expose the right spinotrapezius muscle. The 

spinotrapezius was moistened constantly during the surgical preparation via superfusion of 

Krebs-Henseleit (K-H) bicarbonate-buffered solution (4.7 mM KCl, 2.0 mM CaCl2, 2.4 mM 

MgSO4, 131 mM NaCl and 22 mM NaHCO3; pH = 7.4; equilibrated with 5% CO2 and 95% N2 

at ~38°C). Surrounding tissue was covered with Saran wrap (Dow Brands, Indianapolis, IN, 
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USA). Stainless steel electrodes were sutured to the rostral (cathode) and caudal (anode) regions 

of the spinotrapezius for electrically induced contractions. Previous reports from our laboratory 

demonstrate that these surgical procedures do not impact the microvascular integrity and 

responsiveness of the spinotrapezius muscle (3). 

 

Experimental protocol 

 Three separate contraction bouts were performed under control (5 ml K-H), SNP (NO 

donor; 5 ml of a 300 µM solution) and L-NAME (non-isoform specific NO synthase inhibitor; 5 

ml of a 1.5 mM solution) superfusion conditions. Drugs were purchased from Sigma-Aldrich (St. 

Louis, MO, USA) and concentrations were chosen based on previous studies in our laboratory 

(24, 25, 31). All solutions were maintained at ~38°C. The dose of SNP was titrated to elicit 

consistent alterations in PO2mv without compromising systemic hemodynamics (i.e., a decrease 

in MAP below 70 mmHg at any time; refs. 10, 25). Preliminary experiments indicate that 

significantly greater hypotensive responses and increases in resting PO2mv are evoked by 

progressively higher SNP doses (up to 1200 µM; unpublished data). In order to prevent SNP 

photodecomposition and potential cyanide release (11, 13), SNP solutions were protected from 

light sources by covering containers and syringes with aluminum foil and, as a mandate for 

PO2mv measurements using phosphorescence quenching, performing our experiments in a dark 

room. While superfusion order was randomized between control and SNP conditions, L-NAME 

was always the last treatment because of its relatively long half-life. The spinotrapezius was 

superfused with each solution (average flow rate of ~1.5 ml/min) for a total time of 3 min, 

followed by a 2-3 min incubation period to allow resting muscle PO2mv to stabilize. 

Subsequently, electrical stimulation (1 Hz, 6-7 V, 2 ms pulse duration) of the muscle was evoked 

via a Grass stimulator (model s48, Quincy, MA, USA) for 3 min. The muscle was then allowed 

to recover for ~25 min before the next condition was initiated (stimulation parameters were held 

constant). During the recovery period following the SNP trial, the muscle was superfused at an 

average flow rate of ~1.5 ml/min with K-H to wash out SNP. At the end of each experiment, rats 

were euthanized with intra-arterial pentobarbital sodium overdose (~50 mg/kg). 

 

Supplementary experiments 
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The spinotrapezius preparation exhibits reproducible PO2mv parameters during 

transitions in metabolic demand evoked by 1 Hz twitch contractions when a minimum of 20 min 

of recovery is allowed between contraction bouts (31, 34). A >30 min period between 

consecutive contractions (i.e., 3 min off-transition, ~25 min recovery, 3 min superfusion, 2-3 min 

incubation) was employed herein to prevent any priming and drug ordering effects that could 

confound the experimental interpretation of the PO2mv responses to muscle contractions (9, 25). 

Accordingly, supplementary time control experiments (n=7) revealed reproducible PO2mv 

profiles from three contraction bouts separated by ~30 min (within-animal coefficient of 

variation: 13 ± 2% for baseline, steady-state and all primary component kinetics parameters) 

with no ordering effect (p>0.05 for baseline, steady-state and all kinetics parameters). 

Considerable controversy exists surrounding potential cyanide generation from SNP (11, 

13, 27) despite widespread usage of this NO donor in both clinical and research arenas (human 

and animal models). A major source of this controversy may lie within the methods utilized for 

assaying blood cyanide concentrations and the importance of photodecomposition in generating 

cyanide from SNP (during both SNP infusion and cyanide measurement; refs. 11, 13). As 

described above, in the current study SNP solutions were protected from light sources by 

covering containers and syringes with aluminum foil and performing experiments in a dark 

room. Nonetheless, supplementary experiments were conducted to examine potential cyanide-

induced impairment of skeletal muscle function with the current SNP superfusion protocol. 

Three contraction bouts were conducted in the following superfusion order: control 1 (K-H), 

SNP (300 µM), control 2 (K-H). Recovery time and washout procedures were identical to those 

described above. Spinotrapezius muscle PO2mv was measured at rest and throughout 

contractions (n=9). Spinotrapezius muscle blood flow ( mQ ) and oxygen utilization ( 2OV ) were 

determined at rest and during the contraction steady-state via radiolabeled microspheres and 

direct Fick calculation (as described in detail previously, ref. 34), respectively (n=4). In each 

condition, the stimulated right and non-stimulated left spinotrapezius muscles represented the 

contracting and resting mQ  and 2OV  measurements, respectively. 

During mQ  measurements, the tail artery catheter was connected to a 1 ml syringe and 

blood withdrawal was initiated at a constant rate of 0.25 ml/min via a Harvard pump (model 

907). Differentially radiolabelled microspheres (
46

Sc and 
85

Sr, 15 µm diameter; Perkin Elmer 

Life and Analytical Sciences) were injected in random order into the aortic arch via the carotid 
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artery catheter during the contracting steady-state (i.e., ~3 min after onset of muscle 

contractions). Upon completion of the experiment, the right and left spinotrapezius muscles and 

kidneys were dissected, removed and weighted immediately after euthanasia. The thorax was 

opened and placement of the artery catheter into the aortic arch was confirmed. Tissue 

radioactivity was determined on a gamma scintillation counter (Packard Auto Gamma 

Spectrometer, Cobra model 5003) and mQ  was determined by the reference method (39) and 

expressed as ml/min/100 g of tissue. Adequate mixing of the microspheres was verified for each 

injection by demonstrating a <15% difference in mQ  between the right and left kidneys. 

 Spinotrapezius muscle 2OV  was estimated from PO2mv and mQ  measurements as 

described in detail previously (34). Briefly, arterial O2 concentration (CaO2) was calculated from 

arterial blood samples whereas venous O2 concentration (CvO2) was calculated from the resting 

or contracting steady-state PO2mv using the rat O2 dissociation curve (Hill coefficient of 2.6), the 

measured hemoglobin (Hb) concentration, a P50 of 38 mmHg, and an O2 carrying capacity of 

1.34 ml O2/g Hb (1). Resting and contracting steady-state spinotrapezius mQ  values were then 

used to calculate 2OV  using the Fick equation (i.e., )( 222 CvOCaOmQOV   ). As illustrated in 

Fig. 5.1, results from these experiments suggest that mitochondrial and vascular control were not 

impaired following the SNP condition. 

 

Muscle PO2mv measurement 

 PO2mv was measured by phosphorescence quenching using a Frequency Domain 

Phosphorometer (PMOD 5000; Oxygen Enterprises, Philadelphia, PA, USA). The principles of 

the phosphorescence quenching method have been described in detail previously (8). Briefly, this 

method applies the Stern-Volmer relationship (63), which describes quantitatively the O2 

dependence of the phosphorescent probe (R2) via the following equation: 

 

)/(]1)/[(2   QkmvPO  

 

where Qk  is the quenching constant and   and   are the phosphorescence lifetimes in the 

absence of O2 and the ambient O2 concentration, respectively. The phosphor R2 (   = 601 µs 
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and Qk  = 409 mmHg
-1.s

-1
 at pH = 7.4 and temperature ~38°C) (50) was infused ~15 min before 

initiation of muscle contractions. The R2 probe binds to albumin and is distributed uniformly in 

the plasma, therefore providing a signal corresponding to the volume-weighted O2 pressure in the 

microvascular compartment (mainly the PO2 within the capillaries, which volumetrically 

represents the major intramuscular space; ref. 59). The negative charge of the R2 probe also 

facilitates its restriction to the muscle intravascular space (60). The common end of the 

bifurcated light guide was positioned 2-4 mm superficial to the dorsal surface of the exposed 

spinotrapezius muscle. The phosphorometer modulates sinusoidal excitation frequencies between 

100 Hz and 20 kHz and allows phosphorescence lifetime measurements from 10 µs to ~2.5 ms. 

The excitation light (524 nm) was focused on a randomly selected area of ~2 mm diameter of 

exposed muscle and has a penetration depth of ~500 µm. PO2mv was recorded at 2 s intervals 

throughout the duration of the experimental protocol (i.e., superfusion, incubation, electrical 

stimulation and recovery periods). 

 Movement of the light guide and/or animal was avoided so as to monitor the same 

sampling site during experiments. However, alteration of the PO2mv measurement plane (e.g., 

deep sighs, accidental splash of the light guide during superfusion) during muscle contractions 

precluded kinetic curve fitting in some instances. Thus, PO2mv results from the present study are 

presented from animals under the following conditions: sedentary control (n=18); sedentary SNP 

(n=14); sedentary L-NAME (n=14); trained control (n=10); trained SNP (n=9); trained L-NAME 

(n=10). 

 

PO2mv kinetics analysis 

 The kinetics of PO2mv were described by nonlinear regression analysis using the 

Marquardt-Levenberg algorithm (SigmaPlot 11.2; Systat software, San Jose, CA, USA) for the 

onset of contractions. Transient PO2mv responses were fit with either a one- or two-component 

model (7, 8): 

 

One-component: 

)1( /)(
2)(2)(2

TDt
BLt emvPOmvPOmvPO   
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Two-component: 

)1()1( 2/)2(
22

1/)1(
21)(2)(2

 TDtTDt
BLt emvPOemvPOmvPOmvPO


  

 

where PO2mv(t) is the PO2mv at a given time t, PO2mv(BL) corresponds to the pre-contracting 

resting PO2mv, Δ1 and Δ2 are the amplitudes for the first and second components, respectively, 

TD1 and TD2 are the independent time delays for each component, and τ1 and τ2 are the time 

constants (i.e., time to achieve 63% of the response) for each component. Goodness of fit was 

determined using three criteria: 1) the coefficient of determination; 2) the sum of squared 

residuals; and 3) visual inspection. 

The mean response time (MRT; ref. 51) was used to describe the overall dynamics of the 

PO2mv response: 

 

TDMRT  

 

where TD and τ are defined above. The MRT analysis was limited to the first component of the 

PO2mv response given that inclusion of an emergent second component underestimates the 

actual speed of PO2mv fall following the onset of contractions (33, 34). 

 

Citrate synthase activity measurement 

 The activity of the mitochondrial enzyme citrate synthase (a marker of oxidative 

capacity) from the spinotrapezius and select individual hindlimb muscles or muscle parts (soleus, 

red gastrocnemius, mixed gastrocnemius and plantaris) was measured in duplicate from muscle 

homogenates by a modification of the method described by Srere (66). Upon termination of the 

experimental protocol and euthanasia, the muscles were removed, dissected free of connective 

tissue and weighed. Citrate synthase activity was measured spectrophotometrically (Spectramax 

M5 microplate, Molecular Devices, Sunnyvale, CA, USA) in 300 µL aliquots at 30°C. 

 

Statistical analyses 

 Data comparison was performed using unpaired Student’s t-test, Mann-Whitney rank-

sum test or two-way repeated measures ANOVA where appropriate. F-statistics were calculated 

using Type III (adjusted) sums of squares due to the unbalanced nature of the data. Student-
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Newman-Keuls post hoc test was utilized to determine where the differences were located. A 

one-tail test was performed when a priori directional hypotheses were tested (24, 25). The level 

of significance was set at p<0.05. Results are presented as mean ± SE. 
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 Results 

 

Body mass and spinotrapezius muscle mass were not different between sedentary (462 ± 

12 and 0.43 ± 0.1 g; respectively) and exercise trained (480 ± 9 and 0.44 ± 0.1 g; respectively) 

rats after the training program was completed (p>0.05 for both). There were no differences in 

arterial O2 saturation (sedentary: 91.0 ± 1.7; trained: 93.6 ± 1.7%), PO2 (sedentary: 91.9 ± 3.3; 

trained: 94.2 ± 3.6 mmHg), PCO2 (sedentary: 37.3 ± 1.7; trained: 35.5 ± 0.5 mmHg), pH 

(sedentary: 7.40 ± 0.01; trained: 7.42 ± 0.01) and systemic hematocrit (sedentary: 34.9 ± 0.8; 

trained: 37.2 ± 0.7%) when comparing sedentary and trained rats (p>0.05 for all). 

Exercise trained rats evidenced higher peakOV 2
  (sedentary: 72 ± 2; trained: 81 ± 1 

ml/kg/min; p<0.05) than sedentary rats. Citrate synthase activity was higher in the soleus 

(sedentary: 17.5 ± 0.5; trained: 20.9 ± 1.5 µmol/g/min) and red gastrocnemius (sedentary: 24.2 ± 

0.5; trained: 30.2 ± 1.1 µmol/g/min) muscles from trained rats (p<0.05 for both). There was a 

tendency for greater citrate synthase activity in the mixed gastrocnemius (sedentary: 15.9 ± 1.1; 

trained: 18.7 ± 1.9; µmol/g/min; p=0.064) and plantaris (sedentary: 13.5 ± 0.8; trained: 16.3 ± 

1.8 µmol/g/min; p=0.058) muscles from trained rats. Unexpectedly, citrate synthase activity from 

the spinotrapezius was not different between sedentary and trained rats (13.4 ± 0.7 and 12.9 ± 0.7 

µmol/g/min, respectively; p>0.05). 

 

Effects of exercise training on muscle PO2mv 

 MAP was not different in sedentary compared to exercise trained rats either before or 

after K-H superfusion (Table 5.1; p>0.05). Although PO2mv values at rest (PO2mv(BL)) and 

during the contracting steady-state (PO2mv(SS)) were not different between groups (p>0.05 for 

both), exercise training induced significant differences in the time course of PO2mv at the onset 

of contractions under the control condition (Figs. 5.2 and 5.3, Table 5.2). Specifically, the speed 

of PO2mv fall during contractions (as assessed by the time constant for the first component and 

relative rate of PO2mv fall; τ1 and Δ1PO2mv/τ1, respectively) was markedly slowed in trained 

compared to sedentary rats (Fig. 5.3). No significant differences in the time delay for the first 

component (TD1, p>0.05) were observed whereas the mean response time (MRT) tended to be 

longer in trained rats (p = 0.13; Table 5.2). 
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Effects of altered NO on muscle PO2mv in sedentary and exercise trained rats 

 SNP superfusion decreased MAP to a greater degree in trained compared to sedentary 

rats (Table 5.1; p<0.05). Relative to the control condition, SNP increased PO2mv(BL) in both 

sedentary and trained rats (Table 5.2; p<0.05). Although SNP increased the overall amplitude of 

PO2mv fall during contractions (ΔTotalPO2mv) only in trained rats, there were no differences in 

PO2mv(SS) between sedentary and trained rats (Table 5.2). Both groups exhibited greater 

PO2mv(SS) with SNP when compared to the control condition (p<0.05; Table 5.2). As illustrated 

in Fig. 5.2, SNP had strikingly distinct effects on the PO2mv time course following the onset of 

contractions in sedentary and trained rats. Albeit no differences between groups were found in 

TD1 with SNP (p>0.05), τ1 and MRT were increased to a greater extent in sedentary compared to 

trained rats (p<0.05; Table 5.2 and Fig. 5.3). Analysis of Δ1PO2mv/τ1 indicates that SNP slowed 

the relative rate of PO2mv fall during contractions in sedentary but not trained rats (Fig. 5.3; 

p<0.05). Additionally, there was a tendency for Δ1PO2mv/τ1 to be slower in sedentary compared 

to trained rats during the SNP condition (Fig. 5.3; p = 0.12). 

 L-NAME superfusion did not change MAP in either sedentary or exercise trained rats 

(Table 5.1; p>0.05). Although L-NAME did not significantly modify PO2mv(BL) and 

ΔTotalPO2mv, both sedentary and trained rats had lower PO2mv(SS) compared to their control 

conditions (Table 5.2; p<0.05). The effects of NO synthase inhibition with L-NAME were such 

that the spinotrapezius muscle PO2mv profile from rest to contractions in trained rats was similar 

to that of sedentary rats (Figs. 5.2 and 5.3, Table 5.2). Relative to the control condition, L-

NAME significantly speeded TD1 in both sedentary and trained rats (Table 5.2). Notably, L-

NAME abolished the differences in τ1, Δ1PO2mv/τ1 and MRT between sedentary and trained rats 

evident during the control condition (p>0.05 for all; Table 5.2 and Fig. 5.3). Moreover, L-NAME 

speeded Δ1PO2mv/τ1 in trained rats to similar values found in sedentary rats (Fig. 5.3). 
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 Discussion 

 

The present study demonstrates that endurance exercise training improves significantly 

the microvascular oxygenation profile (i.e., slowed PO2mv kinetics and therefore enhanced 

PO2mv) across the metabolic transient following the onset of contractions in the spinotrapezius 

muscle of healthy young rats. Compared to the control condition, increased NO with SNP slowed 

the PO2mv fall throughout contractions (τ1) to a greater extent in sedentary rats whereas 

decreased NO with L-NAME abolished the differences in τ1 between sedentary and trained rats. 

These results suggest that the enhanced driving force for blood-myocyte O2 flux during 

contractions with exercise training is mediated, at least in part, via increased NO-mediated 

function. 

 

Exercise training and muscle microvascular oxygenation 

 As stated above, muscle PO2mv kinetics is dictated by the dynamic 22 / OVOQ   matching 

within the microvascular space (8). Slowed PO2mv kinetics in trained rats (Figs. 5.2 and 5.3, 

Table 5.2) therefore suggest that the rate of adjustment in 2OQ  during contractions was 

relatively faster than that of 2OV  compared to sedentary rats (5, 21, 26), such that fractional O2 

extraction was reduced up until the steady-state is achieved. The unexpected lack of change in 

citrate synthase activity found herein with training further supports this notion (see discussion 

below). Enhanced 2OQ  across the rest-contractions transient with training is important to 

support potential augmented mitochondrial function (37, 70) and/or attenuate regional 

22 / OVOQ   mismatch (45), both of which might be linked mechanistically to faster muscle 2OV  

kinetics and improved exercise tolerance. With respect to the capacity to extract O2 it is 

important to note that there is an interdependence between the diffusive and conductive O2 

transport components (62): 
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where DO2 is the effective muscle O2 diffusing capacity, β corresponds to the slope of the O2 

dissociation curve in the physiologically relevant range and mQ is muscle blood flow. Although 

DO2 represents a lumped parameter that includes the impediments to blood-myocyte O2 transfer 

and is determined by a complex interaction between structural and functional factors, it appears 

that DO2 is dictated largely by capillary hematocrit and the volume density of red blood cell 

flowing capillaries (23, 29, 58, 62). As β is unlikely to be affected appreciably by exercise 

training, alterations in O2 extraction will depend on the DO2/ mQ  ratio (62). The significance of 

the abovementioned relationship is that it provides information regarding alterations in diffusive 

and conductive components of O2 transport. Given that exercise training is known to improve 

both DO2 (4, 54, 62) and mQ  kinetics (65), it can be surmised that trained rats had a relatively 

greater increase in microvascular mQ  than in DO2 (i.e., lower DO2/ mQ  ratio, which dictates 

reduced fractional O2 extraction) across the rest-contractions transient. This analysis suggests 

that adaptations in conductive (mainly red blood cell flux; fRBC) rather than diffusive capillary 

mechanisms with exercise training are of relatively greater importance in setting enhanced 

muscle microvascular oxygenation during metabolic transients as measured herein (Fig. 5.2 and 

Table 5.2). Importantly, the resultant slowed PO2mv kinetics and reduced fractional O2 

extraction act to increase the pressure head for O2 diffusion at a time when 2OV  is rising at its 

fastest rate and would therefore be expected to improve muscle O2 supply and oxidative function 

(5, 8, 36, 44, 68). 

 

Effects of altered NO on PO2mv kinetics 

 NO and its derivatives modulate multiple physiological processes including muscle 

hemodynamic and metabolic control (12, 67). More specifically, NO contributes to the increase 

in muscle 2OQ  during contractions mainly via endothelium-dependent vasodilation (28, 32, 35, 

53) and to the inertia of oxidative metabolism (i.e., finite 2OV  kinetics) via inhibition of 

mitochondrial respiration (40, 43). Accordingly, alterations in NO levels modulate the dynamic 

22 / OVOQ   matching during metabolic transitions in health and disease (24, 25, 31). The lack of 

change in citrate synthase activity with training in the current investigation support that SNP and 

L-NAME treatments had similar effects on 2OV  dynamics of sedentary and trained rats. 
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Consequently, this implies that differences in the PO2mv profiles between sedentary and trained 

rats with SNP and L-NAME resulted primarily from alterations in 2OQ . 

 The main effects of altered NO with either SNP or L-NAME were seen during the 

contraction transient (Figs. 5.2 and 5.3, Table 5.2). Specifically, SNP slowed τ1 to a greater 

extent in sedentary rats whereas L-NAME abolished the differences in τ1 between sedentary and 

trained rats that were evident in the control condition (Fig. 5.3). These results suggest that 

exercise training increases the contribution of NO to the dynamic 22 / OVOQ   matching and 

enhances the capacity for O2 flux across metabolic transients in healthy skeletal muscle. 

 

Primary mechanisms for slowed PO2mv kinetics with training 

 From the above it becomes apparent that the principal mechanisms improving 

microvascular oxygenation with exercise training likely involve enhanced NO-mediated 

regulation of fRBC. Potential candidates include 1) enhanced endothelial-mediated vasodilation 

(28, 53); and/or 2) enhanced attenuation of sympathetic vasoconstriction (i.e., functional 

sympatholysis; ref. 69); and/or 3) training-induced alterations in mQ  distribution (2, 35) that 

could attenuate spatial heterogeneities in contracting muscle microvascular oxygenation (45). 

Although it must be acknowledged that aging and disease states also present impairments 

in muscle DO2, it is interesting to note that these conditions are characterized by reduced NO-

mediated function (20, 32, 56) and demonstrate opposite effects on capillary hemodynamics (i.e., 

impaired fRBC; refs. 17, 61) and 22 / OVOQ   matching (i.e., faster PO2mv kinetics; refs. 6, 21) 

during contractions when compared to healthy young individuals. In this context, endurance 

exercise training has profound clinical implications especially for aged and diseased populations 

as it constitutes a non-pharmacological therapeutic intervention capable of mitigating 

microcirculatory deficits. 

  Vascular control mechanisms (35, 48) and vascular adaptations to exercise training (2, 

52) are known to vary according to muscle fiber type composition and oxidative capacity. 

Consequently, differences might exist in the relative contribution of NO to alterations in gas 

exchange properties of the microcirculation with training in muscles comprised of distinct fiber 

types. In this regard, it is noteworthy that the spinotrapezius possesses a mixed fiber type 
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composition and oxidative capacity that resembles the human quadriceps (19, 49), therefore 

representing a useful analogue of human locomotor muscle. 

 

Experimental considerations 

 Downhill treadmill running was used herein as a model of endurance exercise training 

given that this protocol recruits the rat spinotrapezius muscle (41, 57) and may promote training 

adaptations that include increased peakOV 2
 , muscle citrate synthase activity and resistance to 

fatigue (30). Accordingly, exercise training protocols that do not recruit the spinotrapezius (e.g., 

inclined treadmill running) do not induce changes in PO2mv kinetics in healthy young rats (55, 

cf. refs. 46, 47). It is important to note that, in the current investigation, trained rats had ~12% 

greater peakOV 2
  as well as distinct MAP and PO2mv responses following SNP and L-NAME 

superfusion (Tables 5.1 and 5.2, Figs. 5.2 and 5.3) when compared to sedentary rats, thus 

providing compelling evidence of a training effect. Furthermore, the markedly slowed PO2mv 

kinetics (Figs. 5.2 and 5.3, Table 5.2) is consistent with expected adaptations to training. While 

the lack of change in citrate synthase activity of the spinotrapezius muscle in trained rats is 

surprising, it suggests that adaptations in vascular control (i.e., improved fRBC as discussed 

above) likely facilitated the enhanced microvascular oxygenation seen herein during contractions 

in the trained state. In this sense, potential structural and/or functional vascular adaptations (i.e., 

↑ flow capacity; the potential for conductive delivery of blood to and from exchange vessels) that 

occurred independent of alterations in mitochondrial oxidative capacity in trained rats could 

enhance the dynamic 22 / OVOQ   matching and improve the ability of the microcirculation to 

support skeletal muscle metabolism. 

Eccentric exercise such as downhill running promotes muscle damage that impairs 

capillary hemodynamics and microvascular O2 transfer during subsequent contractile activity 

(42, see also ref. 18). Interestingly, evidence from both human and animal studies indicates that 

muscle damage from a single bout of eccentric exercise is considerably reduced following 

repeated bouts as performed herein and any damage from the first bout(s) would be expected to 

have ameliorated during the ~2 month training period (14, 64). Although unlikely, any potential 

deleterious effects of eccentric exercise on muscle function would therefore only underestimate 

the improvements in PO2mv kinetics with training. 
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 Reduced driving pressure with SNP (Table 5.1) could constrain blood flow dynamics and 

influence PO2mv kinetics during metabolic transitions. However, previous studies from our 

laboratory (10) indicate that this effect is negligible when MAP is above ~70 mmHg as herein. 



126 

 

 Conclusions 

 

Resolution of muscle PO2mv kinetics and their mechanistic bases in the exercise trained 

state are essential to understand how muscle microcirculatory plasticity evokes improvements in 

contractile performance. The current novel findings in healthy skeletal muscle suggest that 

endurance exercise training enhances microvascular oxygenation during contractions (i.e., 

slowed PO2mv kinetics) partly via increased NO-mediated function. As mentioned above, 

enhanced PO2mv during metabolic transitions facilitates blood-myocyte O2 flux to support 

oxidative phosphorylation and consequently reduces the rate of anaerobic glycolysis and reliance 

on finite energy sources, all of which likely contribute to improved muscle contractile 

performance following exercise training (36, 37, 58, 68, 70). Important clinical implications arise 

from our results considering that aged and patient (e.g., chronic heart failure; CHF) populations 

are characterized by reduced NO signaling (20, 32, 56), impaired microvascular oxygenation (6, 

21) and poor exercise capacity (15, 38). It is noteworthy that CHF patients, for instance, retain 

considerable plasticity within their skeletal muscle O2 transport system (both convective and 

diffusive components) in response to exercise training programs (22). Taken together, these 

observations suggest that exercise training is a powerful non-pharmacological strategy to 

improve NO-mediated function, thereby likely ameliorating muscle microvascular oxygenation 

deficits and exercise intolerance in aging and disease states.
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Table 5.1 Mean arterial pressure (MAP; expressed in mmHg) pre- and post-superfusion of Krebs-Henseleit (Control), SNP 

and L-NAME in sedentary and exercise trained rats 

 Control  SNP  L-NAME 

 Pre Post  Pre Post  Pre Post 

Sedentary 123 ± 4 124 ± 4  125 ± 5 111 ± 4*  128 ± 4 132 ± 5 

Trained 132 ± 3 133 ± 4  134 ± 5 95 ± 6*†  134 ± 4 137 ± 4 

Values are mean ± SE. Results are presented from animals under the following conditions: sedentary control (n=18); sedentary SNP 

(n=14); sedentary L-NAME (n=14); trained control (n=10); trained SNP (n=9); trained L-NAME (n=10). Significantly different from: 

* all other conditions within group; † sedentary post-SNP superfusion. 
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Table 5.2 Muscle PO2mv kinetics following the onset of contractions under control, SNP and L-NAME conditions in sedentary 

and exercise trained rats 

 Control  SNP  L-NAME 

 Sedentary Trained  Sedentary Trained  Sedentary Trained 

PO2mv(BL), mmHg 29.2 ± 1.3 27.8 ± 1.2  38.7 ± 2.3* 42.9 ± 3.5*  25.5 ± 1.7† 26.4 ± 1.5† 

Δ1PO2mv, mmHg 11.4 ± 1.2 10.6 ± 0.8  9.3 ± 2.3 15.6 ± 3.3‡  13.0 ± 1.0 13.0 ± 1.2 

Δ2PO2mv, mmHg 2.3 ± 0.3 2.5 ± 0.3  - -  2.3 ± 0.4 2.8 ± 1.3 

ΔTotalPO2mv, mmHg 9.8 ± 1.2 8.6 ± 0.8  9.3 ± 1.5 15.6 ± 3.3*‡  11.2 ± 0.9 12.1 ± 1.1 

PO2mv(SS), mmHg 19.4 ± 1.0 19.2 ± 1.5  29.4 ± 1.5* 27.3 ± 1.4*  14.3 ± 0.8*† 14.2 ± 0.9*† 

TD1, s 10.2 ± 0.7 10.3 ± 1.6  8.3 ± 1.6 11.8 ± 3.6  6.2 ± 0.5* 6.5 ± 0.9*† 

TD2, s 55.1 ± 9.5 53.4 ± 12.4  - -  55.0 ± 6.8 41.3 ± 7.2 

τ2, s 39.5 ± 7.8 32.3 ± 10.1  - -  55.5 ± 8.9 51.9 ± 18.9 

MRT, s 18.3 ± 0.9 25.5 ± 3.3
#
  47.0 ± 5.8* 38.6 ± 5.2*‡  18.1 ± 1.7† 17.7 ± 1.6† 

Values are mean ± SE. PO2mv(BL), resting PO2mv; Δ1PO2mv, amplitude of the first component; Δ2PO2mv, amplitude of the second 

component; ΔTotalPO2mv, overall amplitude regardless of one- or two-component model fit; PO2mv(SS), contracting steady-state 

PO2mv; TD1, time delay for the first component; TD2, time delay for the second component; τ2, time constant for the second 

component, MRT, mean response time. The time constant for the first component (τ1) and relative rate of PO2mv fall (Δ1PO2mv/τ1) are 

shown in Fig. 5.3. The one-component exponential model was used to analyze the PO2mv kinetics in the following conditions: 

sedentary control (6/18), sedentary SNP (14/14), sedentary L-NAME (3/14), trained control (2/10), trained SNP (9/9), trained L-

NAME (7/10). Significantly different from: * control within group; † SNP within group; ‡ sedentary within superfusion condition. # 

p=0.13 vs. sedentary control. 
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Figure 5.1 Investigation of potential cyanide-induced impairment of skeletal muscle 

function 

 

 

Figure 5.1 Results from experiments performed to examine potential cyanide-induced 

impairment of skeletal muscle function with the current SNP superfusion protocol. Three 

contraction bouts were conducted in the following superfusion order: control 1 (K-H), SNP (300 

µM), control 2 (K-H). Spinotrapezius muscle PO2mv was measured at rest and throughout 

contractions (n=9). Spinotrapezius muscle blood flow ( mQ ) and oxygen utilization ( 2OV ) were 

determined at rest and during the contraction steady-state via radiolabeled microspheres and 

direct Fick calculation, respectively (n=4). Top panels: Spinotrapezius mQ  and 2OV  at rest and 

during the contraction steady-state during the first and third bouts (i.e., control 1 and 2, 

respectively). Bottom panel: Spinotrapezius PO2mv at rest and following the onset of 

contractions under all three conditions (control 1, SNP and control 2). Time zero denotes the 
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onset of contractions. That resting and contracting spinotrapezius muscle 2OV  did not differ 

between the first and third bouts (i.e., control 1 vs. control 2; p>0.05) suggests preserved 

mitochondrial function post-SNP condition. The possibility of prolonged and/or irreversible 

vasodilation following the SNP condition is not supported based on similar resting and 

contraction steady-state mQ  between the first and third bouts (i.e., control 1 vs. control 2; 

p>0.05). Similar PO2mv profiles during the first and third bouts (i.e., control 1 vs. control 2; 

p>0.05 for all kinetics parameters) are also consistent with the notion that mitochondrial and 

vascular control were not impaired following the SNP condition (i.e., second bout). n.s., not 

significantly different. 



131 

 

Figure 5.2 Muscle PO2mv from sedentary and exercise trained rats under control, SNP and 

L-NAME conditions 

 

 

Figure 5.2 Spinotrapezius muscle PO2mv response from representative sedentary and exercise 

trained rats under control, SNP and L-NAME conditions. Time zero denotes the onset of 

contractions. Note that exercise training slowed the PO2mv fall during contractions (τ1, time 

constant for the first component) under control. SNP slowed τ1 to a greater extent in sedentary 

rats whereas L-NAME abolished the differences in τ1 between sedentary and trained rats (see 

text for details). 
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Figure 5.3 Muscle PO2mv kinetics in sedentary and exercise trained rats under control, 

SNP and L-NAME conditions 

 

 

Figure 5.3 Spinotrapezius muscle PO2mv kinetics (top panel: τ1, time constant for the first 

component; bottom panel: Δ1PO2mv/τ1; relative rate of PO2mv fall) in sedentary and exercise 

trained rats under control, SNP and L-NAME conditions. Significantly different from: * control 

within group; † SNP within group; ‡ sedentary within superfusion condition. # p=0.12 vs. 

sedentary SNP. 
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Chapter 6 - Conclusions 

Integrating the investigations described in this dissertation, we conclude that alterations 

in NO bioavailability have a substantial impact on skeletal muscle 22 / OVOQ   matching 

following both the onset and cessation of contractions. Disparate muscle PO2mv kinetics in 

health and disease can be ascribed partially to alterations in NO levels. Specifically, our data 

demonstrate that increased NO levels (via the NO donor sodium nitroprusside; SNP) elevates 

muscle PO2mv whereas reduced NO levels (non-specific NOS inhibition with N
G
-nitro-L-

arginine methyl ester; L-NAME) diminishes muscle PO2mv across the metabolic transient 

following the onset and cessation of contractions in the spinotrapezius muscle of healthy young 

rats. Moreover, utilization of selective nNOS inhibition (S-methyl-L-thiocitrulline; SMTC) 

reveals that alterations in nNOS-mediated regulation of contracting skeletal muscle 

microvascular function with advanced age likely contribute to reduced exercise capacity in this 

population. Pronounced oxidative stress is implicated in these pathological responses observed in 

aged and diseased states. Accordingly, transient elevations in the oxidant H2O2 to levels found in 

the early stages of senescence and cardiovascular diseases have detrimental effects on skeletal 

muscle function (i.e., augmented oxygen cost of force production). On the other hand, endurance 

exercise training improves muscle microvascular oxygenation (i.e., greater PO2mv across the 

metabolic transient and slower PO2mv kinetics) partly via enhanced NO-mediated function in 

healthy young individuals. Important clinical applications arise from these investigations when 

considering that exercise training could ameliorate NO-mediated function, muscle microvascular 

oxygenation deficits and exercise intolerance in aged and diseased populations. 
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