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Abstract Poly-lactic acid (PLA) derived from renewable resources is considered to be a 1 

good substitute for petroleum-based plastics. The number of poly L-lactic acid 2 

applications is increased by the introduction of a stereocomplex PLA, which consists of 3 

both poly-L and D-lactic acid and has a higher melting temperature. To date, several 4 

studies have explored the production of L-lactic acid, but information on biosynthesis of 5 

D-lactic acid is limited. Pulp and corn stover are abundant, renewable lignocellulosic 6 

materials that can be hydrolyzed to sugars and used in biosynthesis of D-lactic acid. In 7 

our study, saccharification of pulp and corn stover was done by cellulase CTec2 and 8 

sugars generated from hydrolysis were converted to D-lactic acid by a homofermentative 9 

strain, L. delbrueckii, through a sequential hydrolysis and fermentation process (SHF) 10 

and a simultaneous saccharification and fermentation process (SSF). 36.3 g L-1 of D-11 

lactic acid with 99.8% optical purity was obtained in the batch fermentation of pulp and 12 

attained highest yield and productivity of 0.83 g g-1 and 1.01 g L-1 h-1, respectively. 13 

Luedeking-Piret model described the mixed growth-associated production of D-lactic 14 

acid with a maximum specific growth rate 0.2 h-1 and product formation rate 0.026 h-15 

1 ,obtained for this strain. The efficient synthesis of D-lactic acid having high optical 16 

purity and melting point will lead to unique stereo-complex PLA with innovative 17 

applications in polymer industry. 18 

Keywords D-lactic acid, fermentation, corn stover, pulp, biosynthesis 19 

List of symbols  20 

µmax Maximum specific growth rate (h-1) 21 

C0 Initial glucose concentration (g L-1) 22 

Cp Product concentration (g L-1) 23 
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YPS Product yield (g lactic acid g-1 glucose)  1 

Y ´PS
 Product overall yield (g lactic acid g-1 biomass)  2 

YXS Yield of cell dry mass from substrate (g cell dry mass g-1 glucose)  3 

YPX Yield of product from cell dry mass (g D-lactic acid g-1 cell dry mass) 4 

qPS Product formation rate (h-1) calculated based on the equation qPS=
dt

dP

S


1  5 

Qp Productivity (g L-1 h-1)  6 
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Introduction 1 

Lignocellulosic biomass is gaining importance as a potential source of renewable energy 2 

and chemicals as the fossil fuel reserves are eventually getting depleted. Demand 3 

continues to increase for production of high-value chemicals and materials from 4 

renewable resources to attain domestic self-sufficiency and enhanced national security. 5 

Lactic acid is an important and multifunctional organic acid that has wide applications in 6 

the food, pharmaceutical, and chemical industries [1, 2]. It exists in two optical isomeric 7 

forms, L (+) and D (-) poly-lactic acid (PLA), which are being developed as a substitute 8 

for petroleum-derived plastics. The high chemical resistance of poly lactic acid is 9 

advantageous in the manufacture of fibers, nonwoven fabrics, and films [3]; however, the 10 

application of poly L-lactic acid (PLLA) is limited by its melting point [4]. This problem 11 

can be obviated by blending it with poly D-lactic acid (PDLA). The melting point of the 12 

resulting stereocomplex polymer is approximately 50 °C higher than that of the 13 

respective single polymers [5]. The optical purity of lactic acid accentuates the physical 14 

properties of poly D-lactic acid-based polymers [6]. The chemical process of making 15 

lactic acids usually yields a mixture of these two enantiomers, which is an undesirable 16 

feature; therefore, the biological process of making pure lactic acid is preferred [7]. 17 

To date, intense studies have been conducted on the production of L-lactic acid from 18 

different biomass through microbial fermentation [8-11], but information on biosynthesis 19 

of D-lactic acid from biomass is limited. A few wild-type strains such as Lactobacillus 20 

delbrueckii subsp. delbrueckii, Sporolactobacillus inulinus [12], Lactobacillus 21 

coryniformis subsp. torquens [13], and Lactobacillus delbrueckii subsp. lactis QU41 [14] 22 



5 

 

have been identified as D-lactic acid producers. Traditional production of lactic acids 1 

typically uses starch derived from food crops as the fermentation substrate [12, 15], but 2 

this process may affect the global food supply. Lignocellulosic materials are favorably 3 

structured to produce lactic acids, which require the breakdown of cellulose to sugars 4 

[16]. This step usually can be done by acid hydrolysis and enzymatic hydrolysis. The 5 

enzymatic hydrolysis method is preferred, because it can be done under mild reaction 6 

conditions avoiding the use of toxic and corrosive chemicals [17]. The hydrolysis and 7 

fermentation steps can be done sequentially (SHF) or simultaneously (SSF). The SSF 8 

process offers better yields because it avoids product inhibition and results in higher 9 

productivity [18, 19]. 10 

Production of D-lactic acid from cardboard [20, 21], cellulose [13], peanut meal [22], and 11 

rice bran [3] has been studied. Other sources include pulp and corn stover, which have 12 

the potential to become cheap and abundant sources for production of ethanol, organic 13 

acids, and other chemicals [7, 21]. Pulp is prepared by chemically or mechanically 14 

separating cellulose fibers from wood, fiber crops, or waste paper [23]. Corn stover, 15 

which includes the leaves, stalks, and cobs of corn plant, is the most abundant 16 

agricultural residue in the U.S. [24]; to the best of our knowledge, no research has been 17 

reported on D-lactic acid fermentation via pulp and corn stover as substrates. 18 

The purpose of this study was to produce D-lactic acid with high yield and optical purity 19 

from pulp and corn stover by lactobacillus delbrueckii ATCC 9649. L. delbrueckii is a 20 

homofermentative lactic acid bacterium that can provide a continuous bioprocess with 21 

high volumetric productivity and optically high purity of D-lactic acid under anaerobic 22 
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conditions [25]. In addition, kinetic analyses of enzyme hydrolysis and fermentation of 1 

glucose to D- lactic acid also have been studied in this work.  2 

Materials and methods  3 

Raw materials and chemical treatment 4 

Regular pulp and mechanically modified pulp were obtained from the MeadWestvaco’s 5 

Crompton mill. Corn stover was obtained from fields in Manhattan and Tribune, Kansas. 6 

Alkali treatment was performed on corn stover before hydrolysis. Corn stover was 7 

suspended in 20 g L-1 NaOH and heated at 121 °C for 30 min in an autoclave (Tomy SS-8 

325E, Tomy SEKO CO., LTD, Tokyo, Japan), then washed under running distilled water 9 

and filtered through muslin cloth until no color was visible in the wash water. The alkali-10 

treated corn stover was dried at 80 °C for 24 h and ground to fine particle size in a 11 

laboratory mill (3303, Perten Instruments, Springfield, IL) for further enzymatic 12 

hydrolysis.  13 

Enzyme hydrolysis 14 

CTec2 (cellulase) obtained from Novozymes Inc. (Franklinton, NC) was used in this 15 

experiment. Enzyme hydrolysis assays were carried out at 45 °C in 250 mL screw capped 16 

plastic conical flasks with orbital agitation (150 rpm). The substrate concentration was 2% 17 

(w/v). pH was kept at 4.8 using 0.05 mol L-1 citric acid-sodium citrate buffer. The 18 

cellulase activity of CTec2 was measured by the filter paper assay [26], and the activity 19 

was expressed in terms of filter paper units (FPU). CTec2 was added on a dosage of 2, 4, 20 
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and 8 FPU g-1 of dry biomass, respectively. Product yield is based on the amount of 1 

glucose released divided by the amount of biomass consumed.  2 

Microorganism and culture conditions 3 

Lactobacillus delbrueckii ATCC 9649 obtained from the American Type Culture 4 

Collection (Manassas, VA) was used in this work. L. delbrueckii inoculum was prepared 5 

by growing cells in a 100 mL Wheaton serum bottle containing 50 mL of liquid MRS 6 

medium (MRS broth, Difco Laboratories, Detroit, MI) and incubated at 37 °C in a 7 

temperature-controlled shaker (Innova 4300, New Brunswick scientific, NJ) at 120 rpm 8 

for 15 h. CO2 (3 vvm) was sparged into the bottle to create anaerobic growing conditions. 9 

Sequential hydrolysis and fermentation (SHF) 10 

Shake flask fermentation was modified according to the procedure described by 11 

Mukhopadhyay [27]. Fermentation was performed in 100 mL Wheaton serum bottles 12 

containing 50 mL of synthetic medium, pulp, modified pulp, or corn stover hydrolyzate, 13 

and lasted for 30 h. The synthetic medium consisted of 10 g L-1 of glucose, 10 g L-1 of 14 

peptone, 5 g L-1 of yeast extract, 2 g L-1 of ammonium citrate, 2 g L-1 of sodium acetate, 2 15 

g L-1 of ammonium citrate, 2 g L-1 of K2HPO4, 0.1 g L-1 of MgSO4.7H2O, 0.05 g L-1 of 16 

MnSO4.4H2O, and 1 g L-1 of Tween 80. Pulp, modified pulp, and corn stover hydrolyzate 17 

were supplemented with all the components (except glucose) of the synthetic medium. 18 

pH of the media was adjusted to 6.5 by 10 mol L-1 NaOH, and 3% (w/v) of calcium 19 

carbonate was added to control the pH. Temperature was maintained at 37 °C, and 20 

agitation was 120 rpm. Batch and fed-batch fermentation were performed in a 7 L 21 

fermenter with a working volume of 5 L (Bioflo 110, New Brunswick Scientific Inc. 22 
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Enfield, CT). In the batch fermentation experiment, paper pulp was added in quantity 1 

(270 g) that would possibly achieve a glucose concentration of 40 g L-1 in the medium. 2 

After hydrolysis, the pulp hydrolyzate was supplemented with all the components (except 3 

glucose) of the synthetic medium. The synthetic medium was used in fed-batch 4 

fermentation as a control. After 36 h, 1 L of fermentation medium was taken out and 1 L 5 

of feeding medium, which consisted of 40 g L-1 of glucose, 2 g L-1 of ammonium citrate, 6 

2 g L-1 of sodium acetate, 2 g L-1 of ammonium citrate, 2 g L-1 of K2HPO4, 0.1 g L-1 of 7 

MgSO4.7H2O, and 0.05 g L-1 of MnSO4.4H2O, was added. During the fermentation, the 8 

temperature was maintained at 37 ºC; agitation speed at 100 rpm; and pH at 6.5. CO2 was 9 

sparged at 3 vvm through the vessel to maintain anaerobic conditions.  10 

Simultaneous saccharification and fermentation (SSF) 11 

SSF process was modified according to the procedure described by Mukhopadhyay 12 

[27]The optimal temperature and pH for the enzymatic hydrolysis and the bacterial 13 

fermentation are different;  In SSF, temperature was at 40 °C and pH was at 5.5, which 14 

were conducive for both enzymatic hydrolysis and bacterial activity.  2 g of dried pulp 15 

and corn stover was suspended in 50 ml 0.05 mol L-1 sodium citrate buffer (pH 5.5) with 16 

all the components (except glucose) of the synthetic medium. 3% (w/v)calcium carbonate 17 

was added to control the pH. CTec2 was added at 8 FPU g-1 of biomass, and 18 

L.delbrueckii was inoculated at 5% (v/v), and agitation rate was 150 rpm.  19 
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Analyses  1 

Fermentation samples were centrifuged at 15,000×g for 10 min in an Eppendorf 2 

centrifuge (5415R, Eppendorf, Hauppauge, NY). The supernatant was collected in 3 

sample vials and stored at -4 °C for product and residue glucose analyses.  4 

Sugars were quantified by a binary HPLC system (Shimadzu Scientific Instruments, 5 

Columbia, MD) equipped with a refractive Index detector (RID-10A) and phenomenex 6 

RPM monosaccharide column (300×7.8 mm, Phenomenex, Torrance, CA). Deionised 7 

water was used as the mobile phase at a flow rate of 0.6 mL min-1. The oven (Prominence 8 

CTD-20A) temperature was maintained at 80 oC. 9 

Lactic acids were quantified by a Chirex Chiral column (150×4.6 mm, Phenomenex, 10 

Torrance, CA) with isocratic 1 mmol L-1 copper (II) sulfate mobile phase at 1 mL min-1. 11 

Peaks were monitored using a UV detector at 254 nm (Shimadzu, PDA).  12 

Results and discussion  13 

Enzymatic hydrolysis  14 

Experiments with different loads of cellulase were performed to determine a suitable 15 

enzyme loading for enzymatic hydrolysis of pulp, modified pulp, and alkali-treated corn 16 

stover. The maximum reaction rate (vmax) was calculated from the Michaelis-Menten 17 

equation (
][

][max

SK

Sv
v

m 
 ). vmax increased almost linearly with the increase of enzyme 18 

concentration in all three biomass cases (Fig. 1). The hydrolysis rate of corn stover and 19 

modified pulp was about to reach a plateau when the enzyme loading increased, perhaps 20 

due to substrate saturation [28]. Increased enzyme loading from 2 to 8 FPU g-1 of 21 
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substrate increased glucose yield by 24% after 48 h of pulp saccharification (Fig.2a); 1 

however, increasing the enzyme dosage did not significantly change the final glucose 2 

yield in the saccharification of mechanically modified pulp (12%) (Fig. 2b) and alkali 3 

treated corn stover (11%) (Fig. 2c). The highest glucose yield was observed at 24 h for 4 

mechanically modified pulp as well as corn stover. The initial saccharification rate of 5 

mechanically modified pulp and corn stover was higher than that of pulp.  Mechanically 6 

modified pulp had finer fiber size, which made it much easier for the enzymes to break 7 

down. Alkali treatment caused the cellulose in corn stover to swell, which led to an 8 

increase in the internal surface area and a decrease in the degree of crystallinity of 9 

cellulose [29], therefore making cellulose in alkali-treated corn stover much easier for the 10 

enzyme to access.  11 

Production of D-lactic acid by SHF 12 

The purpose of this portion of the study was to produce D-lactic acid by L. delbrueckii 13 

using sugars derived from biomass as a cheap carbon source. We also tested another 14 

strain Sporolactobacillus inulinus ATCC 15538. Unlike in the results obtained by 15 

Fukushima et al. [12], S. inulinus produced L-lactic acid instead of D-lactic acid in our 16 

experiments. This result may be due to the difference in strain or the possible alternation 17 

of bacterial character after receiving it.  18 

In shake flask fermentation, the amount of pulp (1 g), mechanically modified pulp (1.3 g), 19 

and corn stover (1.2 g) was set up to obtain 10 g L-1 glucose after enzymatic hydrolysis. 20 

No residual glucose was observed after 30 h fermentation, and the final pH of the 21 

medium was between 5 to 5.5. The optical purity of D-lactic acid was 99.9%. These 22 
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results were in close agreement with Demirci and Pometto [30]. The highest yield of D-1 

lactic acid was observed in corn stover hydrolyzate (Table 1). Besides glucose, 5.6 g L-1 2 

xylose and 1.7 g L-1 arabinose were also present in the corn stover hydrolyzate; however, 3 

xylose remained unused, and arabinose was below detectable levels at the end of 4 

fermentation. L.delbrueckii cannot use xylose due to the lack of xylose isomerase and 5 

xylulokinase, two key enzymes in xylose assimilation [31].  6 

In fed-batch fermentation, almost all glucose was consumed within the first 36 h (first 7 

stage). In the second stage, feeding medium was added, and fermentation was completed 8 

within 80 h. The Luedeking-Piret equation (  
dt

dX

Xdt

dP

X

11
) was used to describe 9 

the D-lactic acid production from synthetic medium in the first stage. Growth-associated 10 

constant (α) and non-growth associated constant (β) can be calculated from the graph of 11 

the specific production rate (qp) versus the specific growth rate (µ); the correlation 12 

coefficient (R2) was 0.88 (Fig. 3). Compared with other strains listed in Table 2, in our 13 

study L. delbrueckii had lower µmax and higher α values. Lower µmax suggests lower 14 

growth efficiency, and a high α value indicates a higher contribution of the cell growth to 15 

D-lactic acid production [32]. The value of α multiplied by µmax was 1.56, which was 16 

larger than the β value, indicating that the specific growth rate played an important role in 17 

specific D-lactic acid production.  18 

Figures 4 and 5 show the fermentation profile of the synthetic medium and pulp 19 

hydrolyzate, respectively. Table 3 summarizes the results of the first stage of fed-batch 20 

fermentation and batch fermentation. 37.4 g L-1 of D-lactic acid was obtained by the end 21 

of first-stage fermentation, and the product yield and productivity obtained were 0.93 g g-22 
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1 and 1.04 g L-1 h-1, respectively. These results were in agreement with other studies in 1 

literature [8, 33]. Fed-batch fermentation was completed within 80 h; at the end of 2 

fermentation, about 5.5 g L-1 glucose was left and up to 57.3 g L-1 D-lactic acid with 3 

optical purity of 99.8% was accumulated, which led to a productivity of 0.72 g L-1 h-1. 4 

After pulp hydrolysis, the glucose concentration was 50 g L-1 and was used in the batch 5 

fermentation. After 30 h, glucose was hardly consumed, and even if we extended the 6 

fermentation time to 36 h, 6.2 g L-1 residual glucose remained. At the end of fermentation, 7 

36.3 g L-1lactic acid was produced, the yield of D-lactic acid was calculated by the 8 

amount of D-lactic acid produced divided by the amount of glucose consumed, which 9 

was 0.83 g g-1, and productivity was 1.01 g L-1 h-1. In a similar study undertaken in our 10 

laboratory, L-Lactic acid was synthesized from cheese whey and a yield (0.98 g g-1) and 11 

productivity (1.14 g L-1 h-1) was obtained [8]. The product formation rate of batch 12 

fermentation of pulp hydrolyzate was quite close to the product formation rate of first-13 

stage fed-batch fermentation using the synthetic medium. The yield of D-lactic acid (0.83 14 

g g-1) from pulp hydrolyzate was lower than the first-stage yield (0.93 g g-1) from 15 

synthetic medium. The reason might be due to substrate inhibition; therefore, the SSF 16 

process was preferred in subsequent experiments.  17 

Production of D-lactic acid by SSF 18 

After demonstrating the feasibility of producing D-lactic acid from biomass hydrolyzate 19 

in the batch process, SSF was carried out using pulp and corn stover in a shake flask. In 20 

SSF, samples were collected after 4 h of incubation; the profiles obtained for corn stover 21 

and pulp SSF experiments are shown in Figure 6.. In SSF, cellulose hydrolysis and 22 
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glucose assimilation were combined into a single fermentation process [34]. During the 1 

first 8 h, bacteria were in low activity and glucose accumulated to around 8 g L-1 and 14 g 2 

L-1 in the case of pulp and corn stover, respectively. After the first 8 h cultivation, 3 

glucose concentration was kept low, which indicated that bacterial cells were 4 

metabolically active during the entire course of the fermentation and also meant that 5 

enzymatic hydrolysis of cellulose was the rate limiting step for D-lactic acid production 6 

as already observed by other groups [35, 36]. Xylose accumulated and remained nearly 7 

constant throughout the process. It was impossible to know the exact amount of glucose 8 

consumed in the SSF process; therefore, in order to compare SSF and SHF, results were 9 

expressed as an overall yield (the amount of D-lactic acid produced divided by the 10 

amount of biomass used)(Table 1). The highest D-lactic acid overall yield was 0.48 and 11 

0.38 g g-1 of pulp in SSF and SHF, respectively. For corn stover, the maximum D-lactic 12 

acid overall yield was 0.58 and 0.41 g g-1 in SSF and SHF, respectively, demonstrating 13 

that the SSF process was more efficient than the SHF process. The reason for the higher 14 

overall yield in SSF may be that glucose released during the hydrolysis step was rapidly 15 

consumed as substrate during the fermentation step, therefore reducing the end-product 16 

inhibition of hydrolysis [37].  17 

Conclusions 18 

In this study, we demonstrated efficient D-lactic acid production with high optical purity 19 

from pulp, modified pulp, and corn stover by L. delbrueckii ATCC 9649. Enzymatic 20 

hydrolysis of biomass was achieved effectively by CTec2 enzyme system. D-lactic acid 21 

productivity was not only high, but also cost-effective because pulp and modified pulp 22 
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need no pretreatment. The SSF process demonstrated the advantages of avoiding 1 

substrate inhibition and increasing the productivity and yield of D-lactic acid. The yield 2 

obtained in the present study would have been even higher if xylose from corn stover 3 

hydrolyzate could be completely used by the microorganism. Future study should be 4 

directed toward complete use of the available carbohydrate for efficient D-lactic acid 5 

production.  6 
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Table 1 D-lactic acid production through SHF and SSF process in shake flask  1 

  C0
a  CP

b  YPS
c  Y´PS

d QP
e 

SHF Synthetic  
medium  

10 7.7±0.05 0.77±0.01 --- 0.25±0.01 

Pulp 9.7±0.17 7.5±0.47 0.77±0.66 0.38±0.02 0.25±0.03 
Modified 
pulp 

11.2±0.09* 8.5±0.39 0.76±0.03 0.42±0.02 0.28±0.01 

Corn 
stover  

9.9±0.05 8.3 ±0.04 0.83±0.01 0.41±0.01 0.27±0.01 

SSF Pulp  --- 19.2±1.63* --- 0.48±0.04* 0.31±0.04 
Corn 
stover  

--- 20.1±0.65* --- 0.58±0.03* 0.32±0.07 

Each mean is based on three replications (p < 0.05; REGWQ; one-way ANOVA) 2 
a Initial glucose of  modified pulp hydrolyzate was significantly different  3 
b D-lactic acid concentration in SSF process was significantly different in SHF process 4 
c Product yield was not significantly different in SHF process; product yield was calculated by the amount 5 
of D-lactic acid produced divided by the amount of glucose consumed.  6 
d Product overall yield was significantly different between SSF and SHF; product overall yield was 7 
calculated by the amount of D-lactic acid produced divided by the amount of biomass used. 8 
e Productivity was not significantly different.  9 
 10 
Table 2 Kinetic parameters of different lactic acid bacteria  11 

Microorganism Substrate µmax  α β 
L. delbrueckii 
(this study) 

Glucose  0.2 7.8 0.18 

L. lactis [38] Lactose   1.1 0.392 3.02 
E. faecalis 
RKY1 [39] 

Molasses  1.6 0.26 --- 

Lactobacillus 
helveticus [40] 

Whey permeate 0.48 2.33 0.77 

 12 

Table 3 Kinetic parameters of fed-batch and batch fermentation   13 

 Cp 

 

YPS  YPX

 
YXS qPS   

 
QP  

  
Fed-batch (stage I) 37.4 0.93 10.9 0.086 0.026 1.04 
Pulp hydrolyzate batch 36.3 0.83 --- --- 0.023 1.01 
 14 
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Fig. 1 Plot of vmax of different biomass versus enzyme concentration  2 
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Fig. 2 Enzymatic hydrolysis of pulp (a), mechanically modified pulp (b), and alkali-treated corn stover (c) 5 
at varying cellulase levels  6 
 7 
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Fig. 3 Specific production rate versus specific growth rate for L. delbrueckii growing on the synthetic 2 

medium 3 
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Fig. 4 Fed-batch fermentation profile of D-lactic acid from the synthetic medium 6 
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Fig. 5 Batch fermentation profile of D-lactic acid production from pulp hydrolyzate  2 
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Fig. 6 Time course of SSF process with L.delbrueckii using pulp (a) and alkali-treated corn stover (b) 3 
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