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Abstract

The motivic Donaldson-Thomas theory of 2-dimensional Calabi-Yau categories can be

induced from the theory of 3-dimensional Calabi-Yau categories via dimensional reduction.

The cohomological Hall algebra is one approach to the motivic Donaldson-Thomas invari-

ants. Given an arbitrary quiver one can construct a double quiver, which induces the

preprojective algebra. This corresponds to a 2-dimensional Calabi-Yau category. One can

further construct a triple quiver with potential, which gives rise to a 3-dimensional Calabi-

Yau category. The critical cohomological Hall algebra (critical COHA for short) is defined

for a quiver with potential. Via the dimensional reduction we obtain the cohomological Hall

algebra (COHA for short) of the preprojective algebra. We prove that a subalgebra of this

COHA consists of a semicanonical basis, thus is related to the generalized quantum groups.

Another approach is motivic Hall algebra, from which an integration map to the quantum

torus is constructed. Furthermore, a conjecture concerning some invariants of 2-dimensional

Calabi-Yau categories is made.

We investigate the correspondence between theA∞-equivalent classes of ind-constructible

2-dimensional Calabi-Yau categories with a collection of generators and a certain type of

quivers. This implies that such an ind-constructible category can be canonically recon-

structed from its full subcategory consisting of the collection of generators.
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Chapter 1

Introduction

The 2-dimensional Calabi-Yau categories and the 3-dimensional Calabi-Yau categories are

related via dimensional reduction. The framework of 3-dimensional Calabi-Yau categories is

appropriate for the theory of motivic Donaldson-Thomas invariants. The dimensional reduc-

tion from 3-dimensional Calabi-Yau categories (3CY categories for short) to 2-dimensional

Calabi-Yau categories (2CY categories for short) gives rise to the corresponding theory of

the latter. It is natural to ask about the meaning of the objects arising as a result of such

dimensional reduction, and the relation between motivic Donaldson-Thomas theory and

some invariants of 2CY categories, e.g. Kac polynomials. M. Kontsevich and Y. Soibelman

established two theories to produce motivic Donaldson-Thomas invariants. One is using

Cohomological Hall algebra (see [43]), and the other is via motivic Hall algebra (see [42]).

Both theories give rise to the Z-valued invariants as limits of motivic Donaldson-Thomas

invariants. (See, e.g., [2] and [25–30] for Z-valued Donaldson-Thomas invariants.)

Cohomological Hall algebra was first introduced in [43]. With a certain class of 4-

dimensional quantum theories with N = 2 spacetime supersymmetry one should be able

to associate the algebra of BPS states. The cohomological Hall algebra (COHA for short)

is a rigorous mathematical definition related to this algebra. It can be defined in a wide

class of situations including quivers with potential. A quiver with potential gives rise to an
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ind-constructible 3CY category. The heart of its t-structure consists of finite-dimensional

representations of the quiver which are critical points of the potential. The 3CY category

is related to 2CY category in the following way. Given a quiver Q with the set of vertices

I = {i, . . . , n} and arrows Ω, the associated preprojective algebra ΠQ gives rise to a 2CY

category. This category can be upgraded to a 3CY category by constructing a “triple”

quiver Q̂ with a cubic potential W . The critical cohomological Hall algebra (critical COHA

for short) of (Q̂,W ) induces the COHA for ΠQ.

The 2CY categories, interesting on their own, are analogues of Kac-Moody algebras.

Thus it is interesting to relate the COHA of 2CY categories to the generalized quantum

groups. In particular, we give a construction of the semicanonical basis of a subalgebra of

the COHA of the preprojective algebra ΠQ associated to a quiver Q.

The critical COHA of an arbitrary quiver with potential (Q,W ) (not necessarily coming

from the above upgrading), which is denoted by HQ,W , is an associative algebra structure on

the dual space of the compactly supported critical cohomology (in other words, compactly

supported equivariant cohomology with coefficients in the sheaf of vanishing cycles) of the

stack MQ of the representations of Q. The stack MQ =
∐

γ∈ZI>0
MQ,γ =

∐
γ∈ZI>0

MQ,γ/Gγ

is a countable union of quotient stacks over dimension vectors γ, so

Hcrit
Q,W =

⊕
γ∈ZI>0

H•,critc (MQ,γ,Wγ)
∨ =

⊕
γ∈ZI>0

H•,critc,Gγ
(MQ,γ,Wγ)

∨ ⊗ T−χQ(γ,γ)

is a direct sum of the dual of compactly supported critical equivariant cohomology. To

define the multiplication, consider the diagram of stacks

MQ,γ1/Gγ1 ×MQ,γ2/Gγ2

p1←−MQ,γ1,γ1/Gγ1,γ2

p2−→MQ,γ/Gγ

for γ = γ1 + γ2, where MQ,γ1,γ1/Gγ1,γ2 is the stack parametrizing pairs (E,F ) such that

E is a representation of dimension γ and F is its subrepresentation of dimension γ1. The
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multiplication is defined as (p2)∗p
∗
1 (see details in [43, Sec. 7.6]).

There is another version of the (non critical) COHA using rapid decay cohomology ([43,

Sec. 4]). For the special case of a quiver without potential, an explicit formula for the

multiplication was obtained using torus localization ([43, Sec. 2]).

We define the COHA of ΠQ in the following way. Since the critical loci of the trace of W

inMQ̂ contains the stack of seminilpotent representations of ΠQ which is denoted byMsp
ΠQ

,

one can transport the multiplication of the critical COHA to the dual space of compactly

supported cohomology of Msp
ΠQ

=
∐

γ∈ZI>0
Msp

ΠQ,γ
=
∐

γ∈ZI>0
Msp

ΠQ,γ
/Gγ (which is a direct

sum of the dual spaces of equivariant cohomology with compact support, or equivalently,

the equivariant Borel-Moore homology). Indeed, by the detailed exposition of dimensional

reduction in [12] (see [43] as well), for a fixed dimension vector γ there is an isomorphism

H•,critc (Msp

Q̂,γ
,Wγ) = H•,critc,Gγ

(Msp

Q̂,γ
,Wγ) ' H•c,Gγ

(Msp
ΠQ,γ

,Q)⊗ Tγ·γ,

where Msp

Q̂,γ
⊂MQ̂,γ is a substack, and T is the Tate motive. In this way we get a degree-

preserving associative multiplication on

HΠQ =
⊕
γ∈ZI>0

H•c,Gγ
(Msp

ΠQ,γ
,Q)∨ ⊗ T−χQ(γ,γ),

where χQ is the Euler form of Q. The above construction in particular proves the following

statement:

• The zero degree part H0
ΠQ

is a subalgebra of HΠQ , and admits a semicanonical basis

consisting of classes of top dimensional irreducible components of Msp
ΠQ

, analogous

to Lusztig’s semicanonical basis of generalized quantum groups (see [46], [47]). This

semicanonical basis and its dual enjoy compatibility with a certain filtration.

In general, we expect intrinsic categorical meaning of the semicanonical basis for a certain

class of 2CY categories.

3



We investigate the correspondence between the A∞-equivalent classes of 2CY categories

with a collection of generators and a certain type of quivers. More precisely, let k be a field

of characteristic zero, and C a k-linear triangulated 2CY A∞-category. Assume that C is

generated by a finite collection E = {Ei}i∈I of generators satisfying

• Ext0(Ei, Ei) = k · idEi ,

• Ext0(Ei, Ej) = 0,∀i 6= j,

• Ext<0(Ei, Ej) = 0,∀i, j.

We prove that

• The equivalence classes of such categories with respect to A∞-transformations pre-

serving the Calabi-Yau structure and E , are in one-to-one correspondence with finite

symmetric quivers with even number of loops at each vertex.

The proof is based on the deformation theory of the canonical 2CY category. This defor-

mation theory is controlled by a DG Lie algebra coming from all cyclic series in coordinates

on Ext•(⊕Ei,⊕Ei)[1]. There is an analog in the 3CY case in [42, Sec. 8.1].

We also studied the motivic Donaldson-Thomas theory of a certain class of 2CY cate-

gories via motivic Hall algebras defined using motivic stack functions. Upgrading the above

2CY categories gives rise to a class of 3CY categories with trivial Euler classes. Motivic

DT-invariants of such 3CY categories do not change inside of a connected component of

the space of stability conditions. As a result, the DT-invariants are in fact invariants of

the t-structure of the underlying 2CY category. We constructed motivic DT-series for 2CY

categories and proved their factorization property. We also formulated a conjecture about

an analog of the Kac polynomial of a 2CY category.

First, for an ind-constructible locally regular triangulated A∞-category C over a field k,

an associative algebra H(C) called motivic Hall algebra is defined on the space of motivic

stack functions on its stack of objects, with negative powers of the Lefschetz motive L
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added (see [42]). Fix a constructible stability condition on C and a strict sector V ⊂ C,

we have the category CV generated by semistable objects with the central charge in V, and

the corresponding completed motivic Hall algebra Ĥ(CV ). There is an invertible element

AHallV ∈ Ĥ(CV ) roughly corresponding to the sum over all isomorphism classes of objects

of CV , each counted with the weight given by the inverse to the motive of the group of

automorphisms. For various strict sectors V the elements AHallV satisfy the Factorization

Property, namely, AHallV = AHallV1
· AHallV2

where V = V1 t V2 is decomposed in the clockwise

order. Next, let C be a 2CY category belonging to the class in Section 6.3, and RΓ the

quantum torus which is a commutative algebra. Then we proved in [58] the following

theorems:

• The integration map Φ : H(C) → RΓ preserves the clockwise order multiplication,

thus leads to the Factorization Property of the motivic DT series AmotV = Φ(AHallV ):

AmotV = AmotV1
· AmotV2

.

• AmotV is constant on each connected component of the space of stability conditions on

C.

The DT-invariants of the 2CY category C are defined using (expected) quantum admissibility

of AmotV . In the case when V is a ray, we conjectured that

• The DT-invariants are polynomials in the Lefschetz motive L, and coincide with the

motivic DT-invariants of some 3CY category.

The conjecture was motivated by [50], in which the motive of the stack of indecomposable

representations of a quiver (Kac polynomial) was expressed in terms of the motives of stacks

of representations of the corresponding preprojective algebra and the DT-invariants of the

corresponding 3CY category. Some related results concerning DT-invariants can be found

in the work of Hausel, Letellier and Rodriguez-Villegas [23], Joyce and Song [30], Reineke

[56], Szendröi [67], etc..
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Contents of the paper

The dissertation is organized as follows:

Chapter 2 gives basics about quivers, some algebras associated to quivers, and the stacks

of their representations.

Chapter 3 is devoted to a reminder of critical COHA of I-bigraded smooth algebras with

potential.

Chapter 4 is devoted to the explicit description of the multiplication of COHA of the

preprojective algebra ΠQ, and the proof of the existence of the semicanonical basis, thus

relate the COHA to the generalized quantum groups.

Chapter 5 introduces the ind-constructible 2 Calabi-Yau categories, and proves the cor-

respondence between them and a certain type of quivers.

Chapter 6 introduces the motivic Donaldson-Thomas theory of a certain class of 2 Calabi-

Yau categories via motivic Hall algebras.
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Chapter 2

Quivers

Given a quiver or a quiver with relations, one considers the stacks of their representations.

The cohomology of these stacks form the underlying vector space of the cohomological Hall

algebras. In particular, we introduce the preprojective algebra associated to a quiver, and

quivers with potential.

2.1 Quivers and the stack of representations

We introduce basic definitions and properties of quivers and their representations. We will

basically follow [15] and [43].

Definition 2.1.1. A quiver Q is a quadruple (I,Ω, s, t) consists of the set I of vertices, the

set Ω of arrows, and the maps s, t : Ω→ I assigning source and target to each arrow.

A quiver is called finite if both I and Ω are finite sets.

All quivers considered in the sequel are finite.

An arrow with source i and target j will be denoted by a : i→ j, where i, j ∈ I are two

vertices.

Definition 2.1.2. A quiver Q is symmetric if it is endowed with an involution ∗ acting on

both I and Ω such that s(a∗) = t(a)∗, t(a∗) = s(a)∗.
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Definition 2.1.3. Let k be a field. A representation E = (Ei, Ea) of a quiver Q over k

consists of a family of k-vector spaces Ei for i ∈ I, together with a family of k-linear maps

Ea : Es(a) → Et(a) for a ∈ Ω. A subrepresentation E ′ = (E ′i, E
′
a) of E is a representation of

Q such that E ′i ⊂ Ei,∀i, and E ′a is the restriction of Ea to E ′s(a) for each a ∈ Ω.

Definition 2.1.4. A morphism f : E → F between two representations E and F is given

by k-linear maps fi : Ei → Fi for all i ∈ I, satisfying Fa ◦ fs(a) = ft(a) ◦ Ea for any a ∈ Ω.

Namely, the following diagram commutes:

Es(a) Et(a)

Fs(a) Ft(a)

Ea //

Fa //

fs(a)

��

ft(a)

��

A representation E = (Ei, Ea) is regarded as finite dimensional if all Ei, i ∈ I are finite

dimensional over k. In this case, the vector dimE = (dimEi)i∈I is called the dimension

vector of E. Denote the category of finite dimensional representations of Q over k by

RepkQ.

We call a sequence of arrows al · · · a2a1 such that t(as) = s(as+1) a path of length l > 1.

If t(as) = s(a1), then the path is said to be an oriented cycle. In particular a loop is an

oriented cycle. Besides paths of length > 1, we also consider the trivial path ei, which is

the path of length 0 with source and target i ∈ Ω. Now we can define

Definition 2.1.5. The path algebra kQ is the k-algebra having a basis the set of all the

paths in Q. The product is given by linearity and the following product rule for paths:

(a1
l · · · a1

1)(a2
r · · · a2

1) =


a1
l · · · a1

1a
2
r · · · a2

1, t(a2
r) = s(a1

1),

0, otherwise.

Clearly, kQ is an associative algebra with the identity 1 = Σi∈Iei. We denote by kQ-mod

8



the category of finite dimensional left kQ-modules. The following statement is well known.

Theorem 2.1.6. The categories RepkQ and kQ-mod are equivalent. Furthermore, RepkQ

is an abelian category.

Given a quiver Q one can define a bilinear form, which is called Euler form, as follows:

χQ(•, •) : ZI × ZI → Z,

(α, β) 7→ −
∑
a∈Ω

αs(a)βt(a) +
∑
i∈I
αiβi,

where α = (αi)i∈I , and β = (βi)i∈I belong to ZI.

Let’s introduce the stack of representations of Q. Fix a dimension vector γ = (γi)i∈I ,

and the complex coordinate vector spaces Vi := Cγi for all i ∈ I. We denote by aij ∈ Z>0

the number of arrows from i to j for i, j ∈ I. Define an affine variety

MQ,γ :=
⊕
a:i→j

HomC(Cγi ,Cγj) '
∏
i,j

Caijγ
iγj .

The reductive linear algebraic group

Gγ =
∏
i∈I

GL(γi,C)

acts on M via base change

(gi)i · (Ea)a = (gjEag
−1
i )a:i→j.

Definition 2.1.7. We call MQ,γ the space of representations of Q of dimension γ, and Gγ

the gauge group of MQ,γ. The quotient stack MQ,γ/Gγ is the stack of representations of Q

with dimension γ.

9



2.2 Quiver with relations

To any quiver Q, by giving relations we obtain some interesting algebras. In particular, we

will define the Jacobi algebra and preprojective algebra.

Definition 2.2.1. A relation of a quiver Q is a subspace of kQ spanned by linear com-

binations of paths having a common source and a common target, and of length at least

2.

A quiver with relations is a pair (Q, R), where Q is a quiver, and R is a two-sided ideal

of kQ generated by relations. The quotient algebra kQ/R is the path algebra of (Q, R).

A representation of (Q,R) is a kQ/R-module.

Now let’s define quivers with potential, which will give rise to a type of quivers with

relations. Fix a quiver Q, and assume that we are given an element

W ∈ kQ/[kQ,kQ]

represented by some element W̃ ∈ kQ, i.e., W = W̃ (mod[kQ,kQ]). The element W (or its

lifting W̃ ) is called a potential. Indeed, W̃ is a linear combination of oriented cycles in kQ.

For an oriented cycle p = al · · · a2a1, let

∂ap =


as−1 · · · a1al · · · as+1, ∃s ∈ {1, . . . , l} such that a = as,

0, otherwise.

Definition 2.2.2. The cyclic derivative of a potential W with respect to an arrow a is

defined as

∂aW =
∑
s

∂aps,

if W̃ =
∑

s ps for oriented cycles ps.

Given a dimension vector γ ∈ ZI>0 we obtain a function Wγ on MQ,γ, invariant under
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the action of Gγ. The value of Wγ at any representation is given by the trace of the image

of W̃ . For any short exact sequence

0→ E1 → E → E2 → 0

of representations of Q with dimension vectors γ1, γ1 + γ2 and γ2 respectively, we have

Wγ1+γ2(E) = Wγ1(E1) +Wγ2(W2).

Given a quiver with potential (Q,W ), the cyclic derivative ∂aW gives rise to a relation

for any a ∈ Ω. Let R be the ideal generated by {∂aW |a ∈ Ω}, then (Q,R) is a quiver with

relations.

Definition 2.2.3. The quotient algebra

J (Q,W ) := kQ/R

is called the Jacobi algebra of (Q,W ).

Thus the space of representations of J (Q,W ) of dimension γ, which is denoted by

MJ (Q,W ),γ, is a closed subscheme of MQ,γ. Indeed, MJ (Q,W ),γ = Crit(Wγ).

Let Q be a quiver with the set of vertices I and the set of arrows Ω. One constructs a

symmetric quiver called the double quiver Q as follows. Q has the set of vertices I, which

is the same as the original quiver Q. The set of arrows is Ω ∪ Ω, where Ω is the set of dual

arrows, namely, for any arrow a : i→ j ∈ Ω, we add an inverse arrow a∗ : j → i ∈ Ω to Q.

Thus
∑

a∈Ω[a, a∗] is a relation of Q.

Definition 2.2.4. The preprojective algebra associated to Q is the quotient algebra

ΠQ := kQ/
∑
a∈Ω

[a, a∗].

11



Furthermore, we can construct a triple quiver with potential (Q̂,W ). The triple quiver

Q̂ has the set of vertices I the same as Q. The set of arrows is Ω ∪ Ω ∪ L. Namely,

we add a loop li : i → i at each vertex i ∈ I to Q, and denote the set of added loops

by L = {li : i → i|i ∈ I}. The cubic potential W is defined to be
∑

a∈Ω[a, a∗]l, where

l =
∑

i∈I li. Then the preprojective algebra ΠQ is a subalgebra of J (Q̂,W ).

12



Chapter 3

Critical COHA of smooth algebras

with potential

The critical Cohomological Hall algebra of a smooth I-bigraded algebra with potential is

defined in [43, Sec. 7]. We first remind the equivariant critical cohomology with compact

support, which gives the underlying vector space of critical COHA. Then give the definition

of the product. Thus the critical COHA of a smooth I-bigraded algebra with potential is a

unital associative algebra. In particular, the critical COHA can be defined for quivers with

potential.

For the convenience of the reader we will closely follow the very detailed exposition from

[12], which contains proofs of several statements sketched in [43] as well as several useful

improvements of the loc.cit.

3.1 Reminder on the critical cohomology

In this section we will first review the definition of vanishing cycles of sheaves and (equiv-

ariant) critical cohomology with compact support. Then the dimensional reduction relates

the (equivariant) critical cohomology with compact support to ordinary (equivariant) co-
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homology with compact support. This will induce the product of COHA of preprojective

algebras in the next chapter. The pullback and pushforward maps of (equivariant) critical

cohomology with compact support associated to an affine or proper map, which are used in

defining the product of critical COHA, are constructed.

3.1.1 Vanishing cycles of sheaves

Let Y be a complex manifold, and Z ⊂ Y a closed subspace. Then for a sheaf F on Y, the

functor ΓZ is defined as

ΓZF(U) = Ker(F(U)→ F(U \ Z)).

Let f : Y → C be a holomorphic function.

Definition 3.1.1. The vanishing cycles functor ϕf is defined as follows:

ϕfF [−1] := (RΓ{Re(f)≤0}F)f−1(0).

Remark 3.1.2. This is a nonstandard definition of this functor, which is equivalent to the

usual one in the complex case.

From now on we will abbreviate RF to F for any functor F .

Recall that the Verdier dual DF of a sheaf F on Y is defined to be Hom(F , p!Q), where

p : Y → pt. For Y an equidimensional manifold there is a canonical isomorphism of functors

D(•) ∼−→ (•)∨ ⊗ TdimY ,

where (•)∨ = Hom(•,QY ) is the duality functor, and T = Q(−1)[−2] is the Tate motive,

which is a mixed Hodge module of cohomological degree -2 and weight -2. The multiplication

map QY ⊗ QY → QY induces an isomorphism Q∨Y ' QY , so there is an isomorphism
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QY ⊗ TdimY → DQY . It induces an isomorphism

ϕfQY ⊗ TdimY ∼−→ ϕfDQY . (3.1)

In general there is a natural isomorphism

ϕfD ' Dϕf .

If g : Y ′ → Y is a map between manifolds, then the natural transformation of functors

Γ{Re(f)≤0} −→ g∗Γ{Re(fg)≤0}g
∗

induces a natural transformation

ϕf −→ g∗ϕfgg
∗. (3.2)

If g is an affine fibration then (3.2) is a natural equivalence. In general it is not an isomor-

phism.

On the other hand, if g is a closed embedding, then

ϕfg∗
∼−→ g∗ϕfg (3.3)

is a natural isomorphism of functors.

Assume that g is an affine fibration, then by [12, Cor. 2.4] there is a natural equivalence

of functors

ϕfg!g∗ −→ g!ϕfgg∗. (3.4)
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3.1.2 Critical cohomology and dimensional reduction

Let’s introduce the notion of (equivariant) critical cohomology with compact support. The

dimensional reduction theorem relates the (equivariant) critical cohomology with compact

support to the ordinary (equivariant) cohomology with compact support.

Definition 3.1.3. For any submanifold Y sp ⊂ Y , the critical cohomology with compact

support H•,critc (Y sp, f) is defined as the cohomology of the following object in D b(MMHS)

(MMHS denotes the category of monodromic mixed Hodge structures):

(C∗ → A1)!(Y
sp × C∗ → C∗)!(Y

sp × C∗ → Y × C∗)∗ϕ f
u
QY×C∗ ,

where u is the coordinate on C∗.

Let Y = X × An be the total space of the trivial vector bundle, endowed with the

C∗-action that acts trivially on X and with weight one on An. Let f : Y → A1 be a

C∗-equivariant holomorphic function, where C∗ acts with weight one on A1. Then f =∑k=n
k=1 fkxk, where {xk, k = 1, ..., n} is a linear coordinate system on An, and fk are functions

on X. Let Z ⊂ X be the reduced scheme which is the vanishing locus of all functions fk.

Then Z is independent of the choice of xk. Let π : Y → X be the natural projection, and

i : Z → X be the closed inclusion. The following theorem is usually called dimensional

reduction.

Theorem 3.1.4. ( see [12, Cor. A.6])

There is a natural isomorphism of functors in D b(MHM(X)):

π!ϕfπ
∗ ∼−→ π!π

∗i∗i
∗.

In particular,

H•,critc (Y, f) ' H•c (Z × An,Q) ' H•c (Z,Q)⊗ Tn.
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Here MHM(X) denotes the category of mixed Hodge modules on X.

If Yi = Xi×Ani with C∗-equivariant holomorphic functions fi satisfy the above conditions

for i = 1, 2, then we have

Theorem 3.1.5. (see [12, Prop. A.5])

The following diagram of isomorphisms commutes:

H•,critc (Y1 × Y2, f1 � f2) H•,critc (Y1, f1)⊗H•,critc (Y2, f2)

H•c (Z1 × Z2 × An1+n2 ,Q) H•c (Z1 × An1 ,Q)⊗H•c (Z2 × An2 ,Q)

TS //

Ku //
�� ��

Here TS denotes the Thom-Sebastiani isomorphism, and Ku the Künneth isomorphism (see

loc.cit.).

Corollary 3.1.6. (see [12, Cor. A.7])

Let Xsp ⊂ X be a subvariety of X and Y sp = Xsp × An, Zsp = Z ∩ Xsp. There is a

natural isomorphism in MMHS

H•,critc (Y sp, f) ' H•c (Zsp × An,Q).

The above statements also hold in equivariant case. Let us recall that framework. As-

sume that Y is a G-equivariant vector bundle over X, where G is an algebraic group embed-

ded in GL(n,C), and f : Y → A1 is G-invariant. Let fr(n,N) be the space of n-tuples of

linearly independent vectors in CN for N > n, and (Y,G)N := Y ×G fr(n,N). We denote

the induced function by fN : (Y,G)N → A1.

Definition 3.1.7. For a G-invariant closed subset Y sp ⊂ Y , we define the equivariant
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critical cohomology with compact support by

H•,critc,G (Y sp, f) := lim
N→∞

H•,critc (Y sp
N , fN)⊗ T−dim(fr(n,N)),

where Y sp
N ⊂ (Y,G)N is the subspace of points projected to Y sp.

Theorem 3.1.8. (see [12, Cor. A.8])

Let Y sp = Xsp×An be the total space of a sub G-bundle. Then there is an isomorphism

in MMHS

H•,critc,G (Y sp, f) ' H•c,G(Zsp × An,Q).

Moreover, the following diagram of isomorphisms commutes:

H•,critc,G (Y sp
1 × Y

sp
2 , f1 � f2) H•,critc,G (Y sp

1 , f1)⊗H•,critc,G (Y sp
2 , f2)

H•c,G(Zsp
1 × Z

sp
2 × An1+n2 ,Q) H•c,G(Zsp

1 × An1 ,Q)⊗H•c,G(Zsp
2 × An2 ,Q)

TS //

Ku //
�� ��

Remark 3.1.9. For a general Y endowed with a G-action, and a G-invariant function f ,

the dual of the equivariant critical compactly supported cohomology H•,critc,G (Y, f)∨ admits a

H•G(pt,Q)-module structure. This module structure is constructed via

∆N : (Y ×G fr(n,N))→ (Y ×G fr(n,N))× (pt×G fr(n,N)),

(y, z) 7→ ((y, z), (pt, z)).
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More generally, by the diagonal embedding

∆N : (Y ×G fr(n,N))→ (Y ×G fr(n,N))× (Y ×G fr(n,N))

an extended action

H•G(Y,Q)⊗H•,critc,G (Y, f)∨ −→ H•,critc,G (Y, f)∨

of H•G(Y,Q) can be built in the same way.

See the details in [12, Sec. 2.6].

3.1.3 Pullback and pushforward maps

Let g : X → Y be a G-equivariant morphism between complex algebraic manifolds, and

f : Y → A1. Let Y sp ⊂ Y be G-invariant, and Xsp = g−1(Y sp). We wish to have maps

going both ways between H•,critc,G (Y sp, f)∨ and H•,critc,G (Xsp, f)∨. We will assume that g is of

two types: affine fibration and proper.

First, let g be an affine fibration. Then the pullback

g∗ : H•,critc,G (Y sp, f)∨ ⊗ Tdimg ∼−→ H•,critc,G (Xsp, fg)∨ (3.5)

is an isomorphism. Indeed, let gN : (X,G)N → (Y,G)N , there is a natural isomorphism

Q(Y,G)N

∼−→ (gN)∗Q(X,G)N
.

Applying ϕFN to the Verdier dual of the above isomorphism we obtain a map

ϕfN (gN,!DQ(X,G)N

∼−→ DQ(Y,G)N
),
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which by (3.1) gives us an isomorphism

ϕfN (gN,!Q(X,G)N

∼−→ Q(Y,G)N
⊗ T−dim(g)).

By (3.4) we obtain an isomorphism

gN,!ϕfNgNQ(X,G)N

∼−→ ϕfNQ(Y,G)N
⊗ T−dim(g).

Thus by restricting to Q(Y sp,G)N
, taking compactly supported cohomology, passing to the

limit, and taking duals, we have the pullback isomorphism.

To define the pushforward we first define the Euler characteristic of g as follows. Let

V = TX/Y be the relative tangent bundle of g, and z : X → V be the inclusion of the zero

section. Consider the composition

z∗Q(X,G)N
→ Q(V,G)N

⊗ Tdim(g)→ z∗Q(X,G)N
⊗ Tdim(g)

where the first morphism is obtained by taking the Verdier dual of the second. Taking

cohomology and using the isomorphism H•G(Y,Q) ' H•G(X,Q) gives us the map

eug : H•G(Y,Q) −→ H•G(Y,Q).

We further assume that eug(1) is not a zero divisor in Hc,G(Y, f)∨ for the extended action

in Remark 3.1.9. Then the pushforward map associated to g is defined as

g∗ := (g∗)−1 · eug(1)−1 : H•,critc,G (Xsp, fg)∨ −→ H•,critc,G (Y sp, f)∨[eug(1)−1].

Note that the pushforward preserves degree.

Next, assume that g is proper, which induces proper maps gN : (X,G)N → (Y,G)N .
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Using

ϕfN (Q(Y,G)N
→ gN,∗Q(X,G)N

)

and (3.4), we obtain the pushforward

g∗ : H•,critc,G (Xsp, fg)∨ −→ H•,critc,G (Y sp, f)∨. (3.6)

3.2 I-bigraded smooth algebras

Let’s recall the notion of an I-bigraded smooth algebra, where I is a finite set.

Definition 3.2.1. An associative unital algebra R over a field k is called smooth if it is

finitely generated and formally smooth in the sense of D. Quillen and J. Cuntz, i.e., if

the bimodule Ω1
R := Ker(R ⊗k R

mult−→ R) is projective. Here mult : R ⊗k R → R is the

multiplication.

The property of formal smoothness is equivalent to the following lifting property for non-

commutative nilpotent extentions: for any associative unital algebra A over k, a nilpotent

two-sided ideal J ⊂ A (i.e., Jn = 0 for some n > 0), and a homomorphism φ : R → A/J ,

there exists a lifting of φ to a homomorphism R→ A.

Definition 3.2.2. Given a finite set I, an unital associative algebra over k is I-bigraded if

R = ⊕i,j∈IRij such that Rij ·Rjk ⊂ Rik.

Equivalently, R is I-bigraded if there is a morphism of unital algebras kI → R.

For a quiver Q = (I,Ω), the path algebra kQ is an I-bigraded smooth algebra. Indeed,

kQ = ⊕i,j∈I(kQ)ij where (kQ)ij is the set of paths with source i and target j.

The notion of potential (see 2.2) can be generalized to an I-bigraded smooth algebra R:

W ∈ R/[R,R] and W = W̃ (mod[R,R]).
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3.3 Critical COHA

Let’s recall the definition of the critical COHA of an I-bigraded smooth algebra with po-

tential following [43].

For any I-bigraded smooth algebra with potential (R,W ) and any dimension vector

γ = (γi)i∈I ∈ ZI>0, the scheme Mγ = MR,γ of representations of R in coordinate spaces

Vi = kγ
i

, i ∈ I is a smooth affine scheme. Any choice of a finite set of I-bigraded generators

of R gives a closed embedding of Mγ into the affine space MQ,γ for some quiver Q with the

set of vertices equal to I.

Assume that we are given a bilinear form χR : ZI ⊗ ZI → Z such that for any two

dimension vectors γ1, γ2 ∈ ZI>0 and any two representations Ei ∈Mγi(k), we have

dimHom(E1, E2)− dimExt1(E1, E2) = χR(γ1, γ2).

This implies that the smooth scheme Mγ is equidimensional for any γ and

dimMγ = −χR(γ, γ) +
∑
i∈I

(γi)2.

In the case when R is the path algebra of a quiver Q, recall aij ∈ Z>0 the number of

arrows from i to j for i, j ∈ I. Then

χQ(γ1, γ2) = χkQ(γ1, γ2) = −
∑
i,j∈I

aijγ
i
1γ

j
2 +

∑
i∈I

γi1γ
i
2

is the Euler form.

Fix a dimension vector γ ∈ ZI>0, and assume that a complex algebraic group Gγ acts

on Mγ. The potential W gives rise to a Gγ-invariant function Wγ : Mγ → k as in 2.2.

Consider a Gγ-invariant subvariety Msp
γ ⊂Mγ satisfying the following conditions (∗∗):

• Msp
γ ⊂ Crit(Wγ), i.e., the 1-form vanishes at Msp

γ ,
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• for any short exact sequence 0→ E1 → E → E2 → 0 of representations of k⊗kR with

dimension vectors γ1, γ := γ1 + γ2, γ2 respectively, E ∈Msp
γ if and only if E1 ∈Msp

γ1
,

and E2 ∈Msp
γ2

.

The second condition implies that the representations in Msp
γ (k) for all γ ∈ ZI>0 form

an abelian category, which is a Serre subcategory of the abelian category Crit(W )(k) :=

tγCrit(Wγ)(k), which is itself a full subcategory of k ⊗k R-mod. One may always choose

Msp
γ = Crit(Wγ),∀γ ∈ ZI>0.

Example 3.3.1. For a quiver with potential (Q,W ), let H+ := {reiθ|r ∈ R>0, θ ∈ (0, π]},

and ζ ∈ HI
+. Such a ζ gives rise a Bridgeland stability condition for RepkQ. The slope of

a representation E of Q is defined to be µ(E) := Arg(dim(E) · ζ). A representation E of

Q is called ζ-semistable if for all nonzero subrepresentations E ′ ⊂ E, there is an inequality

ζ(E ′) 6 ζ(E). It is called ζ-stable if this inequality is strict for all proper E ′ ⊂ E. Fix a

θ ∈ (0, π], one can check that the condition on a Q-representation E of being ζ-semistable

and with µ(E) = θ satisfies the second condition of (∗∗). The ζ-stable representations with

a fixed slope θ do not satisfy this condition. For instance it’s not closed under taking direct

sum.

In this case, we can take Msp
Q,γ to be Mζ−ss

Q,γ , the space of ζ-semistable representations.

Fix any γ1, γ2 ∈ ZI>0 and let γ = γ1 + γ2. Denote by Mγ1,γ2 the space of representations

of R in coordinate spaces of dimensions (γi1 + γi2)i∈I such that the subspaces of dimensions

(γi1)i∈I form a subrepresentation. The space Mγ1,γ2 is a closed subspace of Mγ. The group

Gγ1,γ2 ⊂ Gγ consisting of elements preserving subspaces (kγ
i
1 ⊂ kγ

i

)i∈I acts on Mγ1,γ2 .

The coproduct on
⊕

γ∈ZI>0

H•,critc,Gγ
(Msp

γ ,Wγ) is defined in the following way:

• H•,critc,Gγ
(Msp

γ ,Wγ) → H•,critc,Gγ1,γ2
(Msp

γ ,Wγ), which is the pullback associated with the

embedding of groups Gγ1,γ2 → Gγ with proper quotient.

• H•,critc,Gγ1,γ2
(Msp

γ ,Wγ)→ H•,critc,Gγ1,γ2
(Msp

γ1,γ2
,Wγ), where Msp

γ1,γ2
:= Msp

γ ∩MQ,γ1,γ2 , is given

by the pullback of the closed embedding Mγ1,γ2 ↪→Msp
Q,γ.
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• H•,critc,Gγ1,γ2
(Msp

γ1,γ2
,Wγ) ' H•,critc,Gγ1,γ2

(M̃
sp

γ1,γ2
,Wγ), where M̃

sp

γ1,γ2
⊂ Mγ1,γ2 is the pullback

of Msp
γ1
×Msp

γ2
under the projection Mγ1,γ2 → Mγ1 ×Mγ2 . The isomorphism follows

from the fact that Msp
γ1,γ2

= Crit(Wγ) ∩ M̃
sp

γ1,γ2
, by the conditions (∗∗). Hence the

sheaf of vanishing cycles of Wγ vanishes on M̃
sp

γ1,γ2
−Msp

γ1,γ2
.

• H•,critc,Gγ1,γ2
(M̃

sp

γ1,γ2
,Wγ)→ H•,critc,Gγ1,γ2

(M̃
sp

γ1,γ2
,Wγ1,γ2), where Wγ1,γ2 is the restriction of Wγ

to Mγ1,γ2 .

• H•,critc,Gγ1,γ2
(M̃

sp

γ1,γ2
,Wγ1,γ2) ' H•,critc,Gγ1×Gγ2

(Msp
γ1
×Msp

γ2
,Wγ1�Wγ2)⊗Tc. This isomorphism

comes from the following facts: there is a homotopy equivalence Gγ1 ×Gγ2 ∼ Gγ1,γ2 ,

and M̃
sp

γ1,γ2
is a bundle over Mγ1 ×MQ,γ2 with affine fibers, and moreover, Wγ1,γ2 is

the pullback of Wγ1 �Wγ2 . The shift is given by

c = dimMγ1,γ2/Gγ1,γ2 − dimMγ1/Gγ1 − dimMγ2/Gγ2 = −χR(γ2, γ1).

• H•,critc,Gγ1×Gγ2
(Msp

γ1
×Msp

γ2
,Wγ1 �Wγ2) ' H•,critc,Gγ1

(Msp
γ1
,Wγ1) ⊗H

•,crit
c,Gγ2

(Msp
γ2
,Wγ1). This is

the Thom-Sebastiani isomorphism.

The composition of the above maps gives us a coproduct

m∨γ1,γ2 : H•,critc,Gγ
(Msp

γ ,Wγ)→ H•,critc,Gγ1
(Msp

γ1
,Wγ1)⊗H

•,crit
c,Gγ2

(Msp
γ2
,Wγ2)⊗ T−χR(γ2,γ1).

By letting

Hcrit
γ := H•,critc,Gγ

(Msp
γ ,Wγ)

∨ ⊗ TdimMγ/Gγ ,

we obtain a product

mγ1,γ2 : Hcrit
γ1
⊗Hcrit

γ2
−→ Hcrit

γ ⊗ Td

on the space Hcrit =
⊕

γ∈ZI>0

Hcrit
γ .

Theorem 3.3.2. The product mγ1,γ2 on the space Hcrit is associative.
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Proof. See [43].

In the case of quivers with potential, since dimGγ =
∑

i∈I(γ
i)2, we have that the dimen-

sion of the stack

dimMQ,γ/Gγ = dimMQ,γ − dimGγ = −χQ(γ, γ).

Thus

Hcrit
γ = H•,critc,Gγ

(Msp
γ ,Wγ)

∨ ⊗ T−χQ(γ,γ),

and the critical COHA

Hcrit =
⊕
γ∈ZI>0

Hcrit
γ

of the triple quiver with potential induces the COHA of the preprojective algebra in the

next chapter.
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Chapter 4

Cohomological Hall algebras and

semicanonical basis

In this chapter we will give a detailed description of the product of the COHA of the

preprojective algebra, which is induced by the critical COHA of a quiver with potential.

Then show that the degree zero part is a subalgebra of COHA. Moreover, this subalgebra

admits a semicanonical basis, which enjoys the same properties as those of the semicanonical

basis of the generalized quantum groups.

4.1 COHA of preprojective algebras

Let Q be a quiver with the set of vertices I and the set of arrows Ω. Recall the double quiver

Q, the preprojective algebra ΠQ, and the triple quiver with potential (Q̂,W ) (see Section

2.2).

• Q has the set of vertices I, which is the same as the original quiver Q. The set of

arrows is Ω∪Ω, where Ω is the set of dual arrows, namely, for any arrow a : i→ j ∈ Ω,

we add an inverse arrow a∗ : j → i ∈ Ω to Q.
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• ΠQ = CQ/
∑

a∈Ω[a, a∗].

• Q̂ has the set of vertices I the same as Q as well. The set of arrows is Ω ∪ Ω ∪ L.

Namely, we add a loop li : i → i at each vertex i ∈ I to Q, and denote the set of

added loops by L = {li : i→ i|i ∈ I}.

It is endowed with the cubic potential W =
∑

a∈Ω[a, a∗]l, where l =
∑

i∈I li.

For any dimension vector γ = (γi)i∈I ∈ ZI>0 we have the following algebraic varieties:

a) the space MQ,γ of representations of the double quiver Q in the coordinate spaces

(Cγi)i∈I ;

b) the similar space of representations MΠQ,γ of ΠQ;

c) the similar space of representations MQ̂,γ of Q̂.

All these spaces of representations are endowed with the action by conjugation of the

complex algebraic group Gγ =
∏

i∈I GL(γi,C).

In the context of Section 3.1.2, let X = MQ,γ, Y = MQ̂,γ = MQ,γ × Aγ·γ (dot denotes

the inner product), and f = Tr(W )γ =
∑

i∈I,k=1,...,(γi)2
fikxik, where fik are functions on

MQ,γ, and {xik} is a linear coordinate system on Aγ·γ. Then Z = MΠQ,γ. Denote by

MΠQ,γ1,γ2 the space of representations of Q in coordinate spaces of dimension γ1 + γ2 such

that the standard coordinate subspaces of dimension γ1 form a subrepresentation, and the

restriction of ρ ∈ MΠQ,γ1,γ2 on the block-diagonal part is an element in MΠQ,γ1 ×MΠQ,γ2 .

The group Gγ1,γ2 ⊂ Gγ consisting of transformations preserving subspaces (Cγi1 ⊂ Cγi)i∈I

acts on MΠQ,γ1,γ2 . Suppose that we are given a collection of Gγ-invariant closed subsets

Msp

Q,γ
⊂MQ,γ satisfying the following condition:

(∗) For any short exact sequence 0 → E1 → E → E2 → 0 of representations of Q with

dimension vectors γ1, γ := γ1 +γ2, γ2 respectively, E ∈Msp

Q,γ
if and only if E1 ∈Msp

Q,γ1
,

and E2 ∈Msp

Q,γ2
.

Then Msp

Q̂,γ
= Msp

Q,γ
× Aγ·γ satisfy the conditions (∗∗).
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We describe the product of the COHA of ΠQ explicitly. First, The critical COHA of

(Q̂,W ) (see [43]) induces the coproduct on the vector space

⊕
γ∈ZI>0

H•c,Gγ
(Msp

ΠQ,γ
,Q)

as follows:

• H•c,Gγ
(Msp

ΠQ,γ
,Q)→ H•c,Gγ1,γ2

(Msp
ΠQ,γ

,Q), which is the pullback associated to the closed

embedding of groups Gγ1,γ2 → Gγ with proper quotient.

The projections

prγ1,γ2,N : (MQ̂,γ,Gγ1,γ2)N → (MQ̂,γ,Gγ)N

induce natural transformations of functors

ϕγ,N → (prγ1,γ2,N)!ϕγ,γ1,γ2,N(prγ1,γ2,N)∗

by (3.2) and properness of prγ1,γ2,N , thus give us

(πγ,N)!ϕγ/u,N(πγ,N)∗[−1]→ (πγ,N)!(prγ1,γ2,N)!ϕ(γ,γ1,γ2)/u,N(prγ1,γ2,N)∗(πγ,N)∗[−1].

Here ϕγ,N = ϕTr(W )γ,N is the vanishing cycles functor of the function tr(W )γ,N on

(MQ̂,γ,Gγ)N , and ϕγ,γ1,γ2,N corresponds to Tr(W )γ,γ1,γ2,N on (MQ̂,γ,Gγ1,γ2)N . (Note

that in subscript of ϕγ,γ1,γ2,N , γ indicates the dimension vector of MQ̂,γ, and γ1, γ2

indicate those of Gγ1,γ2 . We will use similar notations in the subsequent steps.)
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Since the following diagram commutes:

(MQ̂,γ,Gγ1,γ2)N × C∗ (MQ̂,γ,Gγ)N × C∗

(MQ,γ,Gγ1,γ2)N × C∗ (MQ,γ,Gγ)N × C∗

prγ1,γ2,N //

prQ,γ1,γ2,N //

πγ,γ1,γ2,N

��

πγ,N

��

we have

(πγ,N)!(prγ1,γ2,N)!ϕ(γ,γ1,γ2)/u,N(prγ1,γ2,N)∗(πγ,N)∗[−1]

' (prQ,γ1,γ2,N)!(πγ,γ1,γ2,N)!ϕ(γ,γ1,γ2)/u,N(πγ,γ1,γ2,N)∗(prQ,γ1,γ2,N)∗[−1].

By Theorem 3.1.4, we have two isomorphisms:

(πγ,N)!ϕγ/u,N(πγ,N)∗[−1] ' (πγ,N)!(πγ,N)∗(iγ,N)∗(iγ,N)∗

and

(prQ,γ1,γ2,N)!(πγ,γ1,γ2,N)!ϕ(γ,γ1,γ2)/u,N(πγ,γ1,γ2,N)∗(prQ,γ1,γ2,N)∗[−1]

' (prQ,γ1,γ2,N)!(πγ,γ1,γ2,N)!(πγ,γ1,γ2,N)∗(iγ,γ1,γ2,N)∗(iγ,γ1,γ2,N)∗(prQ,γ1,γ2,N)∗.

Here iγ,N and iγ,γ1,γ2,N are inclusions, and the subscripts have the same meaning as

the vanishing cycles functors above.

Pulling back to Msp

Q,γ,N
× C∗ gives us the commutative diagram

H•,critc,Gγ
(Msp

Q̂,γ
,Wγ) H•,critc,Gγ1,γ2

(Msp

Q̂,γ
,Wγ)

H•c,Gγ
(Msp

ΠQ,γ
,Q)⊗ Tγ·γ H•c,Gγ1,γ2

(Msp
ΠQ,γ

,Q)⊗ Tγ·γ

//

//

o

��

o

��
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• H•c,Gγ1,γ2
(Msp

ΠQ,γ
,Q)→ H•c,Gγ1,γ2

(M̃
sp

ΠQ,γ1,γ2
,Q)⊗ T−γ1·γ2 , where Msp

ΠQ,γ1,γ2

= Msp
ΠQ,γ
∩MΠQ,γ1,γ2 , and M̃

sp

ΠQ,γ1,γ2
⊂MΠQ,γ1,γ2 is the pullback of Msp

ΠQ,γ1
×Msp

ΠQ,γ2

under the projection MΠQ,γ1,γ2 → MΠQ,γ1 ×MΠQ,γ2 . This is the pullback associated

to the closed embedding MΠQ,γ1,γ2 →MΠQ,γ.

The inclusions

jγ1,γ2,N : (MQ̂,γ1,γ2
,Gγ1,γ2)N → (MQ̂,γ,Gγ1,γ2)N

induce natural transformations of functors

ϕγ,γ1,γ2,N → (jγ1,γ2,N)∗ϕγ1,γ2,N(jγ1,γ2,N)∗

by (3.2). So we have

(πγ,γ1,γ2,N)!ϕ(γ,γ1,γ2)/u,N(πγ,γ1,γ2,N)∗[−1]

→ (πγ,γ1,γ2,N)!(jγ1,γ2,N)∗ϕ(γ1,γ2)/u,N(jγ1,γ2,N)∗(πγ,γ1,γ2,N)∗[−1].

By the commutative diagram

(MQ̂,γ1,γ2
,Gγ1,γ2)N × C∗ (MQ̂,γ,Gγ1,γ2)N × C∗

(MQ,γ1,γ2
,Gγ1,γ2)N × C∗ (MQ,γ,Gγ1,γ2)N × C∗

jγ1,γ2,N //

jQ,γ1,γ2,N //

πγ1,γ2,N

��

πγ,γ1,γ2,N

��

we have

(πγ,γ1,γ2,N)!(jγ1,γ2,N)∗ϕ(γ1,γ2)/u,N(jγ1,γ2,N)∗(πγ,γ1,γ2,N)∗[−1]

' (jQ,γ1,γ2,N)∗(πγ1,γ2,N)!ϕ(γ1,γ2)/u,N(πγ1,γ2,N)∗(jQ,γ1,γ2,N)∗[−1].

30



Then the isomorphisms

(πγ,γ1,γ2,N)!ϕ(γ,γ1,γ2)/u,N(πγ,γ1,γ2,N)∗[−1]

' (πγ,γ1,γ2,N)!(πγ,γ1,γ2,N)∗(iγ,γ1,γ2,N)∗(iγ,γ1,γ2,N)∗

and

(jQ,γ1,γ2,N)∗(πγ1,γ2,N)!ϕ(γ1,γ2)/u,N(πγ1,γ2,N)∗(jQ,γ1,γ2,N)∗[−1]

' (jQ,γ1,γ2,N)∗(πγ1,γ2,N)!(πγ1,γ2,N)∗(iγ1,γ2,N)∗(iγ1,γ2,N)∗(jQ,γ1,γ2,N)∗

obtained from the theorem give us the commutative diagram by pulling back to

Msp

Q,γ,γ1,γ2,N
× C∗:

H•,critc,Gγ1,γ2
(Msp

Q̂,γ
,Wγ) H•,critc,Gγ1,γ2

(M̃
sp

Q̂,γ1,γ2
,Wγ1,γ2)

H•c,Gγ1,γ2
(Msp

ΠQ,γ
,Q)⊗ Tγ·γ H•c,Gγ1,γ2

(M̃
sp

ΠQ,γ1,γ2
,Q)⊗ Tl1

H•,critc,Gγ1,γ2
(Msp

Q̂,γ1,γ2
,Wγ) H•,critc,Gγ1,γ2

(M̃
sp

Q̂,γ1,γ2
,Wγ)

//

o

��

o

��

??

∼ //

��

where l1 = γ · γ − γ1 · γ2.

• H•c,Gγ1,γ2
(M̃

sp

ΠQ,γ1,γ2
,Q)

∼−→ H•c,Gγ1×Gγ2
(M̃

sp

ΠQ,γ1,γ2
,Q)⊗ T−γ1·γ2 .

The affine fibrations

qγ1,γ2,N : (MQ̂,γ1,γ2
,Gγ1 ×Gγ2)N → (MQ̂,γ1,γ2

,Gγ1,γ2)N

induce isomorphisms

ϕ(γ1,γ2)/u,N(Q(M
Q̂,γ1,γ2

,Gγ1,γ2 )
N
×C∗

∼−→ (qγ1,γ2,N)∗Q(M
Q̂,γ1,γ2

,Gγ1×Gγ2 )
N
×C∗).
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By applying Verdier duality we get

ϕ(γ1,γ2)/u,N((qγ1,γ2,N)!DQ(M
Q̂,γ1,γ2

,Gγ1×Gγ2 )
N
×C∗

∼−→ DQ(M
Q̂,γ1,γ2

,Gγ1,γ2 )
N
×C∗).

Then

ϕ(γ1,γ2)/u,N((qγ1,γ2,N)!Q(M
Q̂,γ1,γ2

,Gγ1×Gγ2 )
N
×C∗

∼−→ Q(M
Q̂,γ1,γ2

,Gγ1,γ2 )
N
×C∗ ⊗ Tγ1·γ2)

by (3.1), and

(qγ1,γ2,N)!ϕ(γ1,γ2,γ1×γ2)/u,NQ(M
Q̂,γ1,γ2

,Gγ1×Gγ2 )
N
×C∗

' (qγ1,γ2,N)!ϕ(γ1,γ2,γ1×γ2)/u,N(qγ1,γ2,N)∗Q(M
Q̂,γ1,γ2

,Gγ1,γ2 )
N
×C∗

∼−→ ϕ(γ1,γ2)/u,N(Q(M
Q̂,γ1,γ2

,Gγ1,γ2 )
N
×C∗ ⊗ Tγ1·γ2)

by (3.4). Then we have isomorphisms

(πγ1,γ2,N)!ϕ(γ1,γ2)/u,N(πγ1,γ2,N)∗(Q(MQ,γ1,γ2
,Gγ1,γ2 )

N
×C∗ ⊗ Tγ1·γ2)

→ (πγ1,γ2,N)!(qγ1,γ2,N)!ϕ(γ1,γ2,γ1×γ2)/u,N(qγ1,γ2,N)∗(πγ1,γ2,N)∗Q(MQ,γ1,γ2
,Gγ1,γ2 )

N
×C∗ .

The commutative diagram

(MQ̂,γ1,γ2
,Gγ1 ×Gγ2)N × C∗ (MQ̂,γ1,γ2

,Gγ1,γ2)N × C∗

(MQ,γ1,γ2
,Gγ1 ×Gγ2)N × C∗ (MQ,γ1,γ2

,Gγ1,γ2)N × C∗

qγ1,γ2,N //

qQ,γ1,γ2,N //

πγ1,γ2,γ1×γ2,N

��

πγ1,γ2,N

��

gives us isomorphisms

(πγ1,γ2,N)!(qγ1,γ2,N)!ϕ(γ1,γ2,γ1×γ2)/u,N(qγ1,γ2,N)∗(πγ1,γ2,N)∗[−1]

' (qQ,γ1,γ2,N)!(πγ1,γ2,γ1×γ2,N)!ϕ(γ1,γ2,γ1×γ2)/u,N(πγ1,γ2,γ1×γ2,N)∗(qQ,γ1,γ2,N)∗[−1].
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Theorem 3.1.4 implies isomorphisms

(πγ1,γ2,N)!ϕ(γ1,γ2)/u,N(πγ1,γ2,N)∗[−1] ' (πγ1,γ2,N)!(πγ1,γ2,N)∗(iγ1,γ2,N)∗(iγ1,γ2,N)∗

and

(qQ,γ1,γ2,N)!(πγ1,γ2,γ1×γ2,N)!ϕ(γ1,γ2,γ1×γ2)/u,N(πγ1,γ2,γ1×γ2,N)∗(qQ,γ1,γ2,N)∗[−1]

' (qQ,γ1,γ2,N)!(πγ1,γ2,γ1×γ2,N)!(πγ1,γ2,γ1×γ2,N)∗(iγ1,γ2,γ1×γ2,N)∗(iγ1,γ2,γ1×γ2,N)∗(qQ,γ1,γ2,N)∗.

Pulling back to Msp

Q,γ1,γ2,N
× C∗ gives us the commutative diagram

H•,critc,Gγ1,γ2
(M̃

sp

Q̂,γ1,γ2
,Wγ1,γ2) H•,critc,Gγ1×Gγ2

(M̃
sp

Q̂,γ1,γ2
,Wγ1,γ2)⊗ T−γ1·γ2

H•c,Gγ1,γ2
(M̃

sp

ΠQ,γ1,γ2
,Q)⊗ Tγ·γ−γ1·γ2 H•c,Gγ1×Gγ2

(M̃
sp

ΠQ,γ1,γ2
,Q)⊗ Tγ·γ−2γ1·γ2

∼ //

∼ //

o

��

o

��

• H•c,Gγ1×Gγ2
(M̃

sp

ΠQ,γ1,γ2
,Q)

∼−→ H•c,Gγ1×Gγ2
(Msp

ΠQ,γ1
×Msp

ΠQ,γ2
,Q)⊗ TΣaijγ

i
1γ
j
2+Σaijγ

i
2γ
j
1 .

Similar as the previous step, the affine fibrations

pγ1,γ2,N : (MQ̂,γ1,γ2
,Gγ1 ×Gγ2)N → (MQ̂,γ1

×MQ̂,γ2
,Gγ1 ×Gγ2)N

induce isomorphisms

(pγ1,γ2,N)!ϕγ1,γ2,γ1×γ2,N(pγ1,γ2,N)∗Q(M
Q̂,γ1
×M

Q̂,γ2
,Gγ1×Gγ2 )

N
×C∗

∼−→ ϕγ1�γ2,N(Q(M
Q̂,γ1
×M

Q̂,γ2
,Gγ1×Gγ2 )

N
×C∗ ⊗ Tl),

where l =
∑

a:i→j∈Q̃1

γj1γ
i
2.
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Then we have isomorphisms

(πγ1×γ2,N)!(pγ1,γ2,N)!ϕ(γ1,γ2,γ1×γ2)/u,N(pγ1,γ2,N)∗(πγ1×γ2,N)∗Q(MQ,γ1
×MQ,γ2

,Gγ1×Gγ2 )
N
×C∗

∼−→ (πγ1×γ2,N)!ϕ(γ1�γ2)/u,N(πγ1×γ2,N)∗(Q(MQ,γ1
×MQ,γ2

,Gγ1×Gγ2 )
N
×C∗ ⊗ Tl).

The commutative diagram

(MQ̂,γ1,γ2
,Gγ1 ×Gγ2)N × C∗ (MQ̂,γ1

×MQ̂,γ2
,Gγ1 ×Gγ2)N × C∗

(MQ,γ1,γ2
,Gγ1 ×Gγ2)N × C∗ (MQ,γ1

×MQ,γ2
,Gγ1 ×Gγ2)N × C∗

pγ1,γ2,N //

pQ,γ1,γ2,N //

πγ1,γ2,γ1×γ2,N

��

πγ1×γ2,N

��

implies isomorphisms

(πγ1×γ2,N)!(pγ1,γ2,N)!ϕ(γ1,γ2,γ1×γ2)/u,N(pγ1,γ2,N)∗(πγ1×γ2,N)∗[−1]

' (pQ,γ1,γ2,N)!(πγ1,γ2,γ1×γ2,N)!ϕ(γ1,γ2,γ1×γ2)/u,N(πγ1,γ2,γ1×γ2,N)∗(pQ,γ1,γ2,N)∗[−1].

By Theorem 3.1.4, we have

(πγ1×γ2,N)!ϕ(γ1�γ2)/u,N(πγ1×γ2,N)∗[−1] ' (πγ1×γ2,N)!(πγ1×γ2,N)∗(iγ1×γ2,N)∗(iγ1×γ2,N)∗

and

(pQ,γ1,γ2,N)!(πγ1,γ2,γ1×γ2,N)!ϕ(γ1,γ2,γ1×γ2)/u,N(πγ1,γ2,γ1×γ2,N)∗(pQ,γ1,γ2,N)∗[−1]

' (pQ,γ1,γ2,N)!(πγ1,γ2,γ1×γ2,N)!(πγ1,γ2,γ1×γ2,N)∗(iγ1,γ2,γ1×γ2,N)∗(iγ1,γ2,γ1×γ2,N)∗(pQ,γ1,γ2,N)∗.
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By pulling back to (Msp

Q,γ1
×Msp

Q,γ2
,Gγ1 ×Gγ2)

N
× C∗, we have

H•,critc,Gγ1×Gγ2
(M̃

sp

Q̂,γ1,γ2
,Wγ1,γ2) H•,critc,Gγ1×Gγ2

(Msp

Q̂,γ1
×Msp

Q̂,γ2
,Wγ1 �Wγ2)⊗ Tl

H•c,Gγ1×Gγ2
(M̃

sp

ΠQ,γ1,γ2
,Q)⊗ Tl1 H•c,Gγ1×Gγ2

(Msp
ΠQ,γ1

×Msp
ΠQ,γ2

,Q)⊗ Tl2

∼ //

∼ //

o

��

o

��

where l1 = γ · γ − γ1 · γ2, and l2 = γ1 · γ1 + γ2 · γ2 + l.

• H•c,Gγ1×Gγ2
(Msp

ΠQ,γ1
×Msp

ΠQ,γ2
,Q)

∼−→ H•c,Gγ1
(Msp

ΠQ,γ1
,Q)⊗H•c,Gγ2

(Msp
ΠQ,γ2

,Q).

This is the Künneth isomorphism compatible with the Thom-Sebastiani isomorphism

by Theorem 3.1.5.

The above computations can be summarized for convenience of the reader in the form

of the following statement.

Proposition 4.1.1. The coproduct making the vector space
⊕

γ∈ZI>0

H•c,G(Msp
ΠQ,γ

,Q) into a

coalgebra is given by the composition of the maps

H•c,Gγ
(Msp

ΠQ,γ
,Q)→ H•c,Gγ1,γ2

(Msp
ΠQ,γ

,Q)

−→ H•c,Gγ1,γ2
(M̃

sp

ΠQ,γ1,γ2
,Q)⊗ T−γ1·γ2

∼−→ H•c,Gγ1×Gγ2
(M̃

sp

ΠQ,γ1,γ2
,Q)⊗ T−2γ1·γ2

∼−→ H•c,Gγ1×Gγ2
(Msp

ΠQ,γ1
×Msp

ΠQ,γ2
,Q)⊗ T−χQ(γ1,γ2)−χQ(γ2,γ1)

∼−→ H•c,Gγ1
(Msp

ΠQ,γ1
,Q)⊗H•c,Gγ2

(Msp
ΠQ,γ2

,Q)⊗ T−χQ(γ1,γ2)−χQ(γ2,γ1).

Now let

Hγ := H•c,Gγ
(Msp

ΠQ,γ
,Q)∨ ⊗ T−χQ(γ,γ),

and

H =
⊕
γ∈ZI>0

Hγ.
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Then the above coproduct makes H an associative algebra with product

Hγ1 ⊗Hγ2 = H•c,Gγ1
(Msp

ΠQ,γ1
,Q)∨ ⊗ T−χQ(γ1,γ1) ⊗H•c,Gγ2

(Msp
ΠQ,γ2

,Q)∨ ⊗ T−χQ(γ2,γ2)

= H•c,Gγ1
(Msp

ΠQ,γ1
,Q)∨ ⊗H•c,Gγ2

(Msp
ΠQ,γ2

,Q)∨ ⊗ T−χQ(γ1,γ1)−χQ(γ2,γ2)

→ H•c,Gγ1+γ2
(Msp

ΠQ,γ1+γ2
,Q)∨ ⊗ T−χQ(γ1,γ2)−χQ(γ2,γ1) ⊗ T−χQ(γ1,γ1)−χQ(γ2,γ2)

= H•c,Gγ1+γ2
(Msp

ΠQ,γ1+γ2
,Q)∨ ⊗ T−χQ(γ1+γ2,γ1+γ2) = Hγ1+γ2 .

Definition 4.1.2. The associative algebra H is called the Cohomological Hall algebra of the

preprojective algebra ΠQ associated with the quiver Q.

Remark 4.1.3. In the framework of equivariant K-theory a similar notion was introduced

in [72].

Corollary 4.1.4. This product preserves the modified cohomological degree, thus the zero

degree part

H0 =
⊕
γ∈ZI>0

H0
γ =

⊕
γ∈ZI>0

H
−2χQ(γ,γ)
c,Gγ

(Msp
ΠQ,γ

,Q)∨ ⊗ T−χQ(γ,γ)

is a subalgebra of H.

Remark 4.1.5. We can reformulate the definition of COHA of ΠQ using language of stacks.

The natural morphism of stacks

MΠQ,γ1,γ2/Gγ1,γ2 →MΠQ,γ/Gγ

is proper, hence it induces the pushforward map on H. Composting it with the pullback by

the morphism

MΠQ,γ1,γ2/Gγ1,γ2 →MΠQ,γ1/Gγ1 ×MΠQ,γ2/Gγ2 ,

we obtain the product.
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4.2 Lusztig’s seminilpotent Lagrangian subvariety

In this section we work in the framework close to the one from [6].

Let Q be a quiver (possibly with loops) with vertices I and arrows Ω, and denote by Ωi

the set of loops at i ∈ I. We call i imaginary if the number of loops ωi = |Ωi| > 1, and real

if ωi = 0. Let I im be the set of imaginary vertices and Ire real vertices.

Definition 4.2.1. A representation x ∈MQ,γ is seminilpotent if there is an I-graded filtra-

tion W = (W0 = Vγ ⊃ . . . ⊃ Wr = {0}) of the representation space Vγ = (Vi)i∈I , such that

xa∗(W•) ⊆ W•+1, and xa(W•) ⊆ W• for a ∈ Ω.

Remark 4.2.2. Our definition of seminilpotency is slightly different from that in [6]. We

put nilpotent condition on the dual arrows a∗ rather than a. But main results of [6] hold in

our situation as well.

We denote by Msp

Q,γ
the space of seminilpotent representations of dimension γ. Then

by [6, Th. 1.15], the space of seminilpotent representations of ΠQ of dimension γ, Msp
ΠQ,γ
⊂

Msp

Q,γ
, is a Lagrangian subvariety of MQ,γ.

Let

Msp
ΠQ,γ,i,l

= {x ∈Msp
ΠQ,γ
|codim(

⊕
j 6=i,a:j→iinQ

Imxa) = l}.

Then Msp
ΠQ,γ

=
⋃

i∈I,l>1

Msp
ΠQ,γ,i,l

by the seminilpotency condition. There is a one to one

correspondence of the sets of irreducible components (see [6, Prop.1.14])

Irr(Msp
ΠQ,γ,i,l

)
∼−→ Irr(Msp

ΠQ,γ−lei,i,0)× Irr(Msp
ΠQ,lei

), (4.1)

where ei = (δij)j∈I . For any vertex i, we have Irr(Msp
ΠQ,γ

) =
⊔
l>0

Irr(Msp
ΠQ,γ,i,l

). Now let us

discuss case by case.

1) If i ∈ Ire then Irr(Msp
ΠQ,lei

) consists of only one element, namely the zero representation.

We denote by Zi,l the only element in Irr(Msp
ΠQ,lei

).
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2) If i ∈ I im, then there are two cases.

a) If the number of loops ωi = 1, then Irr(Msp
ΠQ,lei

) is parametrized by Ci,l = {c = (ck)},

the set of partitions of l (i.e.,
∑

k ck = l, ck > 0,∀k, and ck+1 > ck).

b) If ωi > 1, then it is parametrized by the set of compositions also denoted by Ci,l

(i.e.,
∑

k ck = l, ck > 0,∀k).

We put |c| =
∑

k ck for c ∈ Ci,l, and denote by Zi,c ∈ Irr(Msp
ΠQ,lei

) the irreducible component

corresponding to c. Let Z ∈ Irr(Msp
ΠQ,γ

), then there exists i ∈ I and l > 1 such that

Z
⋂

Msp
ΠQ,γ,i,l

is dense in Z. We denote by εi(Z) the corresponding partition or composition

if i ∈ I im, and εi(Z) = l if i ∈ Ire, via the one to one correspondence (4.1).

Now let Mγ be the Q-vector space of constructible functions f : Msp
ΠQ,γ
→ Q which are

constant on any Gγ-orbit, and M =
⊕

γ Mγ. Then one can define a product ∗ on M in

the way which is analogous to the definition of Lusztig for nilpotent case in [46, Section 12].

More precisely, let us denote by Msp
ΠQ,V

the space of seminilpotent representations of

ΠQ with I-graded vector space V , and MV the Q-vector space of constructible functions

f : Msp
ΠQ,V

→ Q constant on any Gγ-orbit. Let V1, V2 and V be I-graded vector spaces of

dimensions γ1, γ2 and γ = γ1 + γ2 respectively, and fi ∈MVi , i = 1, 2. Then f1 ∗ f2 ∈MV

is defined using the diagram

Msp
ΠQ,V1

×Msp
ΠQ,V2 F′ F′′ Msp

ΠQ,V
p1oo p2 // p3 //

where the notations are as follows:

• F ′′ is the variety of pairs (x, U) with x ∈Msp
ΠQ,V

and U an x-stable I-graded subspace

of V with dimension γ2;

• F ′ is the variety of quadruples (x, U,R′′, R′) where (x, U) ∈ F ′′, R′′ : V2
∼−→ U and

R′ : V1
∼−→ V/U ;

• The map p1(x, U,R′′, R′) = (x1, x2) where xR′ = R′x1 and xR′′ = R′′x2,
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• p2(x, U,R′′, R′) = (x, U),

• p3(x, U) = x.

Note that p2 is a GV1×GV2-principal bundle and p3 is proper. Let f(x1, x2) = f1(x1)f2(x2),

then there is a unique function f3 ∈ MF ′′ such that p∗1f = p∗2f3. Finally, define f1 ∗ f2 =

(p3)!(f3). By identifying the vector spaces MV for various V with Mγ in a coherent way

(dim(V ) = γ), we define the product ∗ on M , making it an associative Q-algebra.

One can also reformulate this product using the diagram of stacks

MΠQ,γ2/Gγ2 ×MΠQ,γ1/Gγ1 ←MΠQ,γ2,γ1/Gγ2,γ1 →MΠQ,γ/Gγ.

We denote by 1i,c (resp. 1i,l) the characteristic function of Zi,c (resp. Zi,l), and M0 ⊆M

the subalgebra generated by 1i,(l) and 1i,1. For any Z ∈ Irr(Msp
ΠQ,γ

) and f ∈ Mγ, let

ρZ(f) = c if Z
⋂
f−1(c) is open dense in Z.

Theorem 4.2.3. (see [6, Prop. 1.18]) For any Z ∈ Irr(Msp
ΠQ,γ

) there exists fZ ∈ M0,γ =

M0 ∩Mγ such that ρZ(fZ) = 1, and ρZ′(fZ) = 0 for Z ′ 6= Z.

4.3 Generalized quantum group

We recall some definitions and facts about generalized quantum group introduced in [6].

Let (•, •) be the symmetric Euler form on ZI defined by (i, j) = 2δij − aij − aji, and

(ι, j) = l(i, j) if ι = (i, l) ∈ I∞ = (Ire × {1})
⋃

(I im × N>1) and j ∈ I.

Definition 4.3.1. Let F be the Q(v)-algebra generated by (Eι)ι∈I∞, NI-graded by |Eι| = li

for ι = (i, l). If A ⊆ NI , then let F[A] = {E ∈ F||E| ∈ A}.

For any γ = (γi)i∈I ∈ ZI , let ht(γ) =
∑

i γ
i be its height, and vγ =

∏
i v

γi

i , where

vi = v(i,i)/2. We endow F with a coproduct δ(Ei,l) =
∑

l1+l2=l

vl1l2i Ei,l1Ei,l2 , where Ei,0 = 1.

Then for any family (vι)ι∈I∞ ⊆ Q(v), there is a bilinear form {•, •} on F such that
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• {E,E ′} = 0 if |E| 6= |E ′|,

• {Eι, Eι} = vι, ∀ι ∈ I∞,

• {EE ′, E ′′} = {E ⊗ E ′, δ(E ′′)}, ∀E,E ′, E ′′ ∈ F.

It turns out that
∑

l1+l2=−(ι,j)+1

(−1)l1
E
l1
j,1

l1!
Eι

E
l2
j,1

l2!
is in the radical of {•, •}.

Definition 4.3.2. Let Ũ+ be the quotient of F by the ideal generated by the above element

and the commutators [Ei,l, Ei,k] for ωi = 1. Then {•, •} is well-defined on Ũ+. Let U+ be

the quotient of Ũ+ by the radical of {•, •}.

Theorem 4.3.3. (see [6, Th. 3.34]) There is an isomorphism of algebras

φ : U+
v=1 →M0,

Ei,(l) 7→ 1i,(l), i ∈ I im,

Ei,1 7→ 1i,1, i ∈ Ire.

Definition 4.3.4. The semicanonical basis of U+
v=1 is φ−1({fZ |Z ∈ Irr(Msp

ΠQ
)}).

4.4 Semicanonical basis of H0

We have already seen that for an appropriate subspace Msp

Q,γ
⊂ MQ,γ, the degree 0 part

H0 ⊂ H is a subalgebra of COHA. In particular, we can take Msp

Q,γ
to be the space of

seminilpotent representations of Q. Then Msp
ΠQ,γ

is the space of seminilpotent representa-

tions in MΠQ,γ, and dim(Msp
ΠQ,γ

/Gγ) = −χQ(γ, γ), so the classes of irreducible components

{[Z]|Z ∈ Irr(Msp
ΠQ,γ

)} lie in H0. In fact, these classes form a basis of H0 by the following

theorem.

Theorem 4.4.1. Let X be a scheme with top dimensional irreducible components {Ck}, and

a connected algebraic group G acts on it. Then H2top
c,G (X) has a basis one to one corresponding

to {Ck}, where top is the dimension of the stack X/G.
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Proof. Choose an embedding of groups G ↪→ GL(n,C). Let fr(n,N) be the space of n-

tuples of linearly independent vectors in CN for N > n. Then X × fr(n,N) has irreducible

components {Ck × fr(n,N)}. Thus

X ×G fr(n,N) = (X × fr(n,N))/G

has irreducible components {Ck} one to one corresponding to {Ck} since G is irreducible.

Then the Borel-Moore homology HBM
2• (X ×G fr(n,N)) has a basis {[Ck]}, where

• = dim(X) + dim(fr(n,N))− dimG,

implying that

H2•
c (X ×G fr(n,N))∨ = HBM

2• (X ×G fr(n,N))

has basis one to one corresponding to {Ck} (For details of Borel-Moore homology, see [11,

Section 2.6]). Then

H2top
c,G (X) = lim

N→∞
H2•
c (X ×G fr(n,N))⊗ T−dimfr(n,N)

has basis one to one corresponding to {Ck}, where top = • − dim(fr(n,N)) = dim(X/G).

Definition 4.4.2. We call the basis defined above the semicanonical basis of the subalgebra

H0.

Given an element F in D b(X) with constructible cohomology, and x ∈ X, the func-

tion χ(F)(x) = χ(Fx) =
∑

i(−1)idim(H i(Fx)) is constructible. Moreover, the standard

operations (pullback, pushforward, etc.) in D b(X) and the corresponding operations on

constructible functions are compatible.

Recall the family of constructible functions {fZ |Z ∈ Irr(Msp
ΠQ

)}. Then UZ = f−1
Z (1) is
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constructible. Let fZ,N be the characteristic function of (UZ ,Gγ)N , and QZ,N be the con-

stant sheaf on (UZ ,Gγ)N . Since the operations on constructible functions and constructible

sheaves agree, there is an isomorphism of algebras Ψ : H0 →M op
0 , [Z] 7→ fZ . It is obtained

by taking the dual of compactly supported cohomology and passing to the limit.

Furthermore, notice that H0 ' (U+
v=1)op, and that Lusztig’s product ∗ is opposite to the

product of COHA.

The semicanonical basis of H0 is compatible with a certain filtration. More precisely, we

have the following result.

Theorem 4.4.3. Fix d = (di) ∈ ZI>0. Then the subspace spanned by

{[Z]|∃i, s.t.|εi(Z)| > di}

coincides with
∑

i∈I,|c|=di
H0[Zi,c], where Zi,c ∈ Irr(Msp

ΠQ,lei
) is the irreducible component cor-

responding to c (defined in Section 2.3), and c = l if i ∈ Ire.

Proof. By definitions,
∑

i∈I,|c|=di
H0[Zi,c] is contained in the subspace spanned by

{[Z]|∃i, s.t.|εi(Z)| > di}.

To prove the reverse inclusion it suffices to show that for any i ∈ I, γ ∈ ZI>0, and [Z] ∈ H0

such that Z ∈ Irr(Msp
ΠQ,γ

) and |εi(Z)| = l, we have [Z] ∈
∑
|c|=l
H0[Zi,c]. We use descending

induction on l 6 γi. For above Z, we have γ − lei ∈ NI , and by the proof of [6, Pro. 1.18],

there exists a unique Z ′ ∈ Irr(Msp
ΠQ,γ−lei) and Zi,c ∈ Irr(Msp

ΠQ,lei
) such that |εi(Z ′)| = 0 and

[Z ′][Zi,c] = Z +
∑
|εi(Z̃)|>l

aZ̃ [Z̃]

for some aZ̃ ∈ Q. By applying the induction hypothesis to Z̃ we have that the subspace
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spanned by

{[Z]|∃i, s.t.|εi(Z)| > di}

is contained in
∑

i∈I,|c|=di
H0[Zi,c]. Thus the two subspaces coincide.

The dual of representations of ΠQ induces a bijection

∗ : Irr(Msp
ΠQ,γ

)→ Irr(Msp
ΠQ,γ

),

Z 7→ Z∗,

thus an antiautomorphism of H0. Then the dual of the above theorem holds:

Theorem 4.4.4. The subspace spanned by

{[Z]|∃i, s.t.|εi(Z∗)| > di}

coincides with
∑

i∈I,|c|=di
[Zi,c]H0.

4.5 COHA as a shuffle algebra

The critical COHA of any quiver with potential (Q,W ) is a shuffle algebra according to [12,

Sec. 4], thus induces a shuffle algebra structure on the COHA of a preprojective algebra.

To be precise, for a dimension vector γ ∈ ZI>0, let

Tγ :=
∏
i∈I

(C∗)γi ⊂ Gγ

be a maximal torus, and consider the Tγ-equivariant critical cohomology with compact

support H•,critc,Tγ
(Msp

Q,γ,Wγ), and its dual H•,critc,Tγ
(Msp

Q,γ,Wγ)
∨. Both of them admit an action

of the product of symmetric groups Symγ :=
∏

i∈I Symγi . Recall that there is a H•Tγ (pt,Q)-

43



module structure on H•,critc,Tγ
(Msp

Q,γ,Wγ)
∨. Furthermore,

H•Gγ
(pt,Q) = H•Tγ (pt,Q)Symγ =

⊗
i∈I

C[xi,1, . . . , xi,γi ]
Symγi .

Definition 4.5.1. Fix two dimension vectors γ1 and γ2, we denote

C(Q, γ1, γ2) =
∏
i∈I

γi1∏
m=1

γi2∏
m′=1

(x
(2)
i,m′ − x

(1)
i,m),

where x
(1)
i,m ∈ H•Gγ1

(pt,Q) and x
(2)
i,m′ ∈ H•Gγ2

(pt,Q).

Proposition 4.5.2. (see [12, Prop. 4.3]) There are natural maps

H•,critc,Tγ
(Msp

Q,γ,Wγ)
Symγ ⊗ T

∑
i∈I

((γi)2−γi) ∼−→ H•,critc,Gγ
(Msp

Q,γ,Wγ)

which are isomorphisms.

Let

T critγ := (H•,critc,Tγ
(Msp

Q,γ,Wγ)
∨)Symγ ⊗ T

−χQ(γ,γ)+
∑
i∈I

((γi)2−γi)
,

and

T crit =
⊕
γ∈ZI>0

T critγ .

The product on the space T crit is defined as follows.

First consider H•,critc,Tγ
(Msp

Q,γ,Wγ)
∨.

• H•,critc,Tγ1
(Msp

Q,γ1
,Wγ1)

∨⊗H•,critc,Tγ2
(Msp

Q,γ2
,Wγ2)

∨ = H•,critc,Tγ
(Msp

Q,γ1
×Msp

Q,γ2
,Wγ1�Wγ2)

∨. This

is the Thom–Sebastiani isomorphism.

• H•,critc,Tγ
(Msp

Q,γ1
×Msp

Q,γ2
,Wγ1 �Wγ2)

∨ → H•,critc,Tγ
(Msp

Q,γ1,γ2
,Wγ1,γ2)

∨ ⊗ T
∑
i,j∈I

aijγ
i
2γ
j
1

is the

pullback associated to the affine fibration MQ,γ1,γ2 →MQ,γ1 ×MQ,γ2 .
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• H•,critc,Tγ
(Msp

Q,γ1,γ2
,Wγ1,γ2)

∨ → H•,critc,Tγ
(Msp

Q,γ,Wγ)
∨ is the pushforward induced by the in-

clusion MQ,γ1,γ2 →MQ,γ.

• H•,critc,Tγ
(Msp

Q,γ,Wγ)
∨ → H•,critc,Tγ

(Msp
Q,γ,Wγ)

∨[C(Q, γ1, γ2)−1] ⊗ T−γ1·γ2 is the division by

C(Q, γ1, γ2).

All the above maps are Symγ1 × Symγ2-equivariant. By restricting to invariant parts,

composing the above maps and taking sum over all the shuffles of (γ1, γ2) into γ, we get a

map

(H•,critc,Tγ1
(Msp

Q,γ1
,Wγ1)

∨)Symγ1 ⊗ (H•,critc,Tγ2
(Msp

Q,γ2
,Wγ2)

∨)Symγ2 → (H•,critc,Tγ
(Msp

Q,γ,Wγ)
∨
L)Symγ ⊗ Tc,

where the subscript L means π∗C(Q, γ1, γ2) is formally inverted for every shuffle π.

Proposition 4.5.3. (see [12, Cor. 4.7])

The above map factors through (H•,critc,Tγ
(Msp

Q,γ,Wγ)
∨)Symγ , and induces an associative mul-

tiplication (T-equivariant multiplication) on T crit.

Proposition 4.5.4. (see [12, Cor. 4.8]) The algebra T crit is isomorphic to the critical

COHA of (Q,W) defined in Chapter 3.

Given a quiver Q, we apply the above definition to the triple quiver with potential

(Q̂,W ). Using dimensional reduction, we obtain an associative algebra (T-equivariant

COHA of the preprojective algebra ΠQ)

T =
⊕
γ∈ZI>0

Tγ,

where

Tγ = (H•c,Tγ (M
sp
ΠQ,γ

,Q)∨)Symγ ⊗ T
−χQ(γ,γ)+

∑
i∈I

((γi)2−γi)
.

It is straightforward to see
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Theorem 4.5.5. Given a quiver Q, the T-equivariant COHA T of its preprojective algebra

ΠQ is isomorphic to the COHA H of ΠQ.
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Chapter 5

2 Calabi-Yau categories and quivers

In this chapter we first recall the definition of ind-constructible Calabi-Yau categories. Then

we will prove that the equivalence classes of a certain class of 2 Calabi-Yau categories are in

one-to-one correspondence with a certain type of quivers. This is an analog of the statement

of 3 Calabi-Yau case in [42, Sec. 8].

5.1 Calabi-Yau categories

We give a basic introduction of ind-constructible Calabi-Yau categories following [42].

5.1.1 Ind-constructible categories

Let k be a field with k its algebraic closure.

Definition 5.1.1. Let S be a variety over k, i.e., a reduced separated scheme of finite type

over k. A subset X ⊂ S(k) is called constructible over k if it belongs to the Boolean algebra

generated by k-points of open (equivalently closed) subschemes of S.

In other words, a constructible set is the union of a finite collection of k-points of disjoint

locally closed subvarieties (Si ⊂ S)i.
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The category CON k of constructible sets over k has objects (X,S) as above. The

morphisms HomCONk
((X1, S1), (X2, S2)) is defined to be the set of maps f : X1 → X2 such

that there exists a decomposition of X1 into the finite disjoint union of k-points of varieties

(Si ⊂ S1)i so that the restriction of f to each Si(k) is a morphism of schemes Si → S2.

Definition 5.1.2. An ind-constructible set over k is given by a chain of embeddings of

constructible sets X := (X1 → X2 → X3 → · · · ). A morphism of ind-constructible sets

X := (X1 → X2 → X3 → · · · ) and Y := (Y1 → Y2 → Y3 → · · · ) is defined as g : ∪iXi(k)→

∪iYi(k), such that for any i there is an ni so that g|Xi(k) : Xi(k) → Yni(k) comes from a

constructible map.

We have the following ind-constructible version of the notion of an A∞-category:

Definition 5.1.3. An ind-constructible A∞-category over k consists of the data:

1) The set of objects

M = Ob(C) = ti∈IXi,

which is an ind-constructible set over k.

2) The bundles of morphisms of degree n, which is a collection of ind-constructible vector

bundles

HOMn →M×M, n ∈ Z.

The restriction HOMn → Xi×Xj is a finite-dimensional constructible vector bundle

for any n ∈ Z, i, j ∈ I, and there exists a constant Ci,j such that HOMn → Xi ×Xj

is a zero bundle for n 6 Ci,j.

3) The higher composition maps, which are ind-constructible morphisms of ind-constructible

bundles

mn : p∗1,2HOMl1 ⊗ · · · ⊗ p∗n,n+1HOMln → p∗1,n+1HOMl1+···+ln+2−n,
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for n > 1, l1, . . . , ln ∈ Z. Here pi,i+1 and p1,n+1 denote the natural projections from

Mn+1 to M2.

The above data satisfy the axioms:

A1) Higher associativity property for mn, n > 1 in the sense of A∞-categories.

A2) (weak unit) There exists a constructible section s of the ind-constructible bundle

HOM0
|diag → M such that the image of s belongs to the kernel of m1, and gives

rise to the identity morphisms in Z-graded k-linear category H•(C(k)).

An ind-constructible A∞-category C gives rise to a collection of ind-constructible bun-

dles over Ob(C)×Ob(C) given by

EXT i := H i(HOM•), i ∈ Z,

whose fiber over a pair of objects (E,F ) is

Exti(E,F ) := H i(HOM•
E,F ,m1).

A3) (local regularity) There exists a family of schemes (Si) of finite type over k, a collection

of algebraic k-vector bundles HOMn
i , n ∈ Z over Si×Si for all i, and ind-constructible

identifications

tiSi(k) 'M, HOMn
i ' HOMn

|Si×Si , n ∈ Z,

such that all higher compositions mn, n > 2 are morphisms of algebraic vector bundles

considered for objects in Si for any given i.

The basic example of an ind-constructible A∞-category is the category Perf(A) of per-

fect A-modules, where A is an A∞-algebra over k with finite dimensional cohomology.

Definition 5.1.4. An ind-constructible A∞-category is called minimal on the diagonal if

the restriction of m1 to the diagonal ∆ ⊂M×M is trivial.
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Any ind-constructible A∞-category is equivalent to one which is minimal on the diagonal.

Remark 5.1.5. One can define the property of an ind-constructible weakly unital A∞-

category C to be triangulated using the notion of a functor between two ind-constructible

A∞-categories. See [42, Sec. 3.1].

5.1.2 Ind-constructible Calabi-Yau categories

Assume that the field k has characteristic zero.

Definition 5.1.6. A Calabi-Yau category of dimension d is a weakly unital k-linear triangu-

lated A∞-category C, such that the Z-graded vector space Hom•(E,F ) = ⊕n∈ZHomn(E,F )

is finite-dimensional for any objects E and F. This implies that Ext•(E,F ) is also finite-

dimensional. Moreover, we have the following data:

• A non-degenerate pairing

(•, •) : Hom•(E,F )⊗Hom•(F,E)→ k[−d],

which is symmetric with respect to interchaging E and F.

• A polylinear Z/NZ-invariant map

WN : ⊗16i6N(Hom•(Ei, Ei+1)[1])→ k[3− d],

for any N > 2 and objects E1 = EN+1, . . . , EN .

• The above maps are compatible in the sense of

WN(a1, . . . , aN) = (mN−1(a1, . . . , aN−1), aN).

The collection (WN)N62 is called the potential of C.
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In the following sections we will consider d = 2 case, namely, 2-dimensional Calabi-Yau

categories.

5.2 Correspondence between quivers and 2CY cate-

gories

In Section 8 of [42], M. Kontsevich and Y. Soibelman proved that the equivalence classes of

a certain type of 3-dimensional Calabi-Yau categories are in one-to-one correspondence with

the gauge equivalence classes of quivers with minimal potential (Q,W ). This section gives

an analogue in 2-dimensional Calabi-Yau case. We assume that k is a field of characteristic

zero.

Theorem 5.2.1. Let C be an ind-constructible 2-dimensional k-linear Calabi-Yau category

generated by a finite collection E = {Ei}i∈I of generators satisfying

• Ext0(Ei, Ei) = k · idEi,

• Ext0(Ei, Ej) = 0,∀i 6= j,

• Ext<0(Ei, Ej) = 0,∀i, j.

The equivalence classes of such categories with respect to A∞-transformations preserving the

Calabi-Yau structure and E, are in one-to-one correspondence with finite symmetric quivers

with even number of loops at each vertex.

Proof. Let’s denoted by A the set of equivalence classes of such 2 Calabi-Yau categories,

and B the set of finite symmetric quivers with even number of loops at each vertex.

Given such a category C, we associate a quiver Q whose vertices {i}i∈I are in one-to-

one correspondence with E = {Ei}i∈I , and the number of arrows from i to j is equal to

dimExt1(Ei, Ej). Since C is 2 Calabi-Yau, we have

dimExt1(Ei, Ej) = dimExt1(Ei, Ej)
∨ = dimExt1(Ej, Ei),
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so Q is symmetric. The supersymmetric non-degenerate pairing on Ext•(Ei, Ei) leads to

a symplectic pairing on Ext1(Ei, Ei), thus dimExt1(Ei, Ei) is even, which means that the

number of loops at each vertex is even. This construction defines a map Φ : A → B.

To prove that Φ is a bijection, we consider a category C with single generator E, and a

quiver Q with single vertex for simplicity. The general case can be proved in a similar way.

Let Q be a quiver with one vertex and |J | = 2n loops, where J is the set of loops. We will

construct a 2 Calabi-Yau category with one generator E, such that 2n =dim Ext1(E,E).

Assuming that such a category exists, we will find an explicit formula for the potential on

A = Hom•(E,E). Let’s consider the graded vector space

Ext•(E,E)[1] = Ext0(E,E)[1]⊕ Ext1(E,E)⊕ Ext2(E,E)[−1] = k[1]⊕ k2n ⊕ k[−1].

We introduce graded coordinates on Ext•(E,E)[1]:

a) the coordinate α of degree 1 on Ext0(E,E)[1],

b) the coordinate β of degree −1 on Ext2(E,E)[−1],

c) the coordinates xi, ξi, i = 1, ..., n of degree 0 on Ext1(E,E) = Ext1(E,E)∨.

The Calabi-Yau structure gives rise to the minimal potential W = W (α, xi, ξi, β), which is a

series of cyclic words on the space Ext•(E,E)[1]. Furthermore, A defines a non-commutative

formal pointed graded manifold endowed with a symplectic structure (c.f. [42]). The po-

tential W satisfies the equation {W,W} = 0, where {•, •} is the corresponding Poisson

bracket.

We need to construct the formal series W of degree 1 in cyclic words on the graded

vector space k[1]⊕ k2n ⊕ k[−1], satisfying {W,W} = 0 with respect to the Poisson bracket

{f, g} =
n∑
i=1

[
∂

∂xi
,
∂

∂ξi
](f, g) + [

∂

∂α
,
∂

∂β
](f, g).
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Let

Wcan = α2β +
n∑
i=1

(αxiξi − αξixi).

This potential makes Ext•(E,E) into a 2 Calabi-Yau algebra with associative product and

the unit. The multiplications are as follows: the multiplication of Ext0(E,E) and the other

components is scalar product, and is a non-degenerate bilinear form on the components

Ext1(E,E)⊗ Ext1(E,E)→ Ext2(E,E) ' k.

In addition,

{Wcan,Wcan} =
n∑
i=1

[∂Wcan

∂xi
, ∂Wcan

∂ξi
] + [∂Wcan

∂α
, ∂Wcan

∂β
]

=
n∑
i=1

(ξiα− αξi)(αxi − xiα)− (αxi − xiα)(ξiα− αξi)

+(αβ + βα +
n∑
j=1

(xjξj − ξjxj))α2 − α2(αβ + βα +
n∑
k=1

(xkξk − ξkxk))

= 0

The above construction from Q to C shows that Φ is a surjection.

Finally, we need to check that Φ is an injection. The 2 Calabi-Yau algebras we are con-

sidering can be thought of as deformations of the 2 Calabi-Yau algebra Acan = Ext•(E,E)

corresponding to the potential Wcan. The deformation theory of Acan is controlled by a

differential graded Lie algebra (DGLA for short)

gcan =
⊕
n∈Z

gncan,

which is a DG Lie subalgebra of the DGLA

ĝ =
∏
k>1

Cyclk(Acan[1])∨ =
⊕
n∈Z

ĝn.
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Here we write

ĝn = {W |coh.degW = n},

and

gncan = {W ∈ ĝn|cyc.degW > n+ 2},

where coh.deg means the cohomological degree of W , and cyc.deg means the number of

letters α, xi, ξi, β, i = 1, ..., n that W contains. In these DGLAs, the Lie bracket is given by

the Poisson bracket and the differential is given by d = {Wcan, •}. The DGLA gcan is a DG

Lie subalgebra of ĝ since d increases both coh.deg and cyc.deg by 1. As vector spaces,

ĝ = gcan
⊕

g,

where

g =
⊕
n∈Z

gn,

and

gn = {W ∈ ĝn|cyc.degW < n+ 2}.

For the same reason as gcan, we have that g is also a DG Lie subalgebra of ĝ. It follows

that gcan is a direct summand of the complex ĝ. The latter is quasi isomorphic to the cyclic

complex CC•(Acan)∨. Let A+
can ⊂ Acan be the non-unital A∞-subalgebra consisting of terms

of positive cohomological degree. Then for cyclic homology,

HC•(Acan) ' HC•(A
+
can)

⊕
HC•(k).

In terms of dual complex ĝ, this isomorphism means the decomposition into a direct sum of

the space of cyclic series in variables xi, ξi, β, i = 1, ..., n (corresponds to HC•(A
+
can)∨), and

the one in variable α (corresponds to HC•(k)∨). We have that series in α don’t contribute to

the cohomology of gcan since {Wcan, α} = −α2. Moreover, the cohomological degree of series
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in xi, ξi, β, i = 1, ..., n is non-positive. Hence H>1(gcan) = 0. In particular, H1(gcan) = 0,

which means that deformation of Acan is trivial. Thus, Φ is an injection.

Thus the ind-constructible category C can be canonically reconstructed from its full

subcategory consisting of the collection E .
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Chapter 6

2 Calabi-Yau categories and

Donaldson-Thomas series

In Chapter 4 we discussed the semicanonical basis obtained as a result of the dimensional

reduction from 3CY category to the 2CY category. In this chapter we are going to discuss

Donaldson-Thomas series for 2CY categories. We will first review the notion of stability

structures, and then define the motivic Hall algebra of a 2CY category C. A map from

this algebra to the quantum torus gives rise to the motivic Donaldson-Thomas series, which

satisfy the Factorization Property. There is a conjecture about DT-invariants in Section

6.6. This theory appears in [58].

6.1 Stability structures

In this section we will follow [42, Sec. 3.4].

Let C be an ind-constructible weakly unital A∞-category over a field k of arbitrary

characteristic. Let cl : Ob(C) → Γ ' Zn be a map of ind-constructible sets, such that the

induced map Ob(C)(k) → Γ factors through a group homomorphism clk : K0(C(k)) → Γ.

For any field extension k′ ⊃ k we obtain a homomorphism cl
k
′ : K0(C(k′))→ Γ.
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If C is a Calabi-Yau category, then we assume that Γ is endowed with an integer-valued

bilinear form 〈•, •〉, and the homomorphism clk is compatible with 〈•, •〉 and the Euler form

on K0(C(k)).

For ind-constructible triangulated A∞-categories we have the following version of stabil-

ity structure.

Definition 6.1.1. A constructible stability structure on (C, cl) is giver by the following data:

• an ind-constructible subset

Css ⊂ Ob(C)

consisting of semistable objects, and for each object it contains all the objects isomor-

phic to it,

• an additive map

Z : Γ −→ C

called the central charge, such that Z(E) := Z(cl(E)) 6= 0 if E ∈ Css,

• a choice of the branch of logarithm LogZ(E) ∈ C for any E ∈ Css which is constructible

as a function of E.

These data satisfy the axioms

• for all E ∈ Css and n ∈ Z we have E[n] ∈ Css, and

ArgZ(E[n]) = ArgZ(E) + nπ,

where Arg(E) ∈ R is the imaginary part of LogZ(E),

• for all E1, E2 ∈ Css with Arg(E1) > Arg(E2) we have

Ext60
C (E1, E2) = 0,
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• for any E ∈ C there is an n > 0 and a chain of morphisms

0 = E0 → E1 → · · · → En = E

such that

Fi := Cone(Ei−1 → Ei), i = 1, . . . , n

are semistable and Arg(F1) > · · · > Arg(Fn),

• for each γ ∈ Γ \ {0}, in Cssγ ⊂ Ob(C)γ consisting of semistable objects E such that

cl(E) = γ and Arg(E) is fixed, the set of isomorphism classes is a constructible set,

• (Support Property) For a norm ‖ · ‖ on ΓR = Γ ⊗ R, there exists C > 0 such that

‖E‖ 6 C|Z(E)| for all E ∈ Css.

Equivalently, one has the following data and axioms.

Definition 6.1.2. A constructible stability structure on (C, cl) is given by the data:

• an additive map Z : Γ→ C,

• for any bounded connected set I ⊂ R, an ind-constructible subset

P(I) ⊂ Ob(C)(k),

such that if E ∈ P(I) then all the isomorphic objects belong to P(I).

These data satisfy the axioms

• the zero object of the category C(k) belongs to all P(I),

• ∪n∈Z>0P([−n, n]) = Ob(C)(k),

• if I1 < I2, i.e., every element of I1 is strictly less than any element of I2, then for any

Ek ∈ P(Ik), k = 1, 2 one has Ext60(E2, E1) = 0,
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• P(I + 1) = P(I)[1], where [1] is the shift functor in C(k),

• (Extension Property) if I = I1 t I2 and I1 < I2, then the ind-constructible set P(I)

is isomorphic to the ind-constructible subset consisting of objects E ∈ Ob(C)(k) which

are extensions E2 → E → E1 with Ek ∈ P(Ik), k = 1, 2,

• if I is an interval of length strictly less than 1, and 0 6= E ∈ P(I), then Z(E) belongs

to the strict sector

VI = {z = reπiϕ ∈ C∗|r > 0, ϕ ∈ I},

• there is a non-degenerate quadratic form Q on ΓR such that Q|KerZ < 0, and for an

interval I with length strictly less than 1, the set

{cl(E) ∈ Γ|E ∈ P(I)} ⊂ Γ

belongs to the convex cone C(VI , Z,Q) generated by the set

S(VI , Z,Q) = {γ ∈ ΓR \ {0}|Z(γ) ∈ VI , Q(γ) > 0},

• if I has length strictly less than 1, and γ ∈ Γ, then the set

{E ∈ P(I)|cl(E) = γ}

is constructible.

For a fixed category C and a class map cl, we denote the set of stability conditions

(Z, Css, (LogZ(E))E∈Css) by Stab(C) := Stab(C, cl).

Remark 6.1.3. The space Stab(C) can be endowed with a Hausdorff topology.
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Theorem 6.1.4. The forgetting map

Stab(C)→ Cn ' Hom(Γ,C),

(Z, Css, (LogZ(E))E∈Css) 7→ Z

is a local homeomorphism.

Now let’s introduce a subcategory C∆,Log of C. Let ∆ ⊂ C be a triangle with one vertex

at the origin. We choose an branch of the function z 7→ Logz for z ∈ ∆, and denote by

Arg(z) the corresponding argument function.

Definition 6.1.5. The A∞-subcategory C∆,Log of C is generated by the zero object 0, the

semistable objects E with Z(E) ∈ ∆, Arg(E) ∈ Arg(∆), and the extensions F of such

objects such that Z(F ) ∈ ∆.

If ∆ = V for a sector V, then we denote this subcategory by CV,Log.

It turns out that C∆,Log is an ind-constructible category. In the language of the ind-

constructible sets P(I) we have Ob(CVI ,Log) = P(I) for some choice of the branch Log.

6.2 Motivic Hall algebras

In this section we will introduce motivic stack functions and the motivic Hall algebras

following [42].

6.2.1 Motivic stack functions

Let X be a constructible set over a field k of characteristic zero, and G an affine algebraic

group acting on X. In this section we are going to recall the definition of the abelian

group of stack functions Motst((X,G)) following [42, Section 4] (see also [25] for a different

exposition).

Let us consider the following 2-category of constructible stacks over k.
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1) The objects are pairs (X,G), whereX is a constructible set, andG is an affine algebraic

group acting on it.

2) The category of 1-morphisms Hom((X1, G1), (X2, G2)) consists of pairs (Z, f), where

• Z is a G1 × G2-constructible set such that {e} × G2 acts freely on Z in such a

way that we have the induced G1-equivariant isomorphism Z/G2 ' X1,

• f : Z → X2 is a G1 ×G2-equivariant map with trivial action of G1 on X2.

Furthermore, objects of Hom((X1, G1), (X2, G2)) form naturally a groupoid.

The 2-category of constructible stacks carries a direct sum operation induced by disjoint

union of stacks

(X1, G1) t (X2, G2) = ((X1 ×G2 tX2 ×G1), G1 ×G2),

and a product induced by the Cartesian product

(X1, G1)× (X2, G2) = (X1 ×X2, G1 ×G2).

After these preliminaries we have the following definition of motivic stack functions:

Definition 6.2.1. The group of motivic stack functions Motst((X,G)) is the abelian group

generated by isomorphism classes of 1-morphisms of stacks [(Y,H)→ (X,G)] with the fixed

target (X,G), subject to the relations

• [((Y1, H1) t (Y2, H2))→ (X,G)] = [(Y1, H1)→ (X,G)] + [(Y2, H2)→ (X,G)],

• [(Y2, H) → (X,G)] = [(Y1 × Ad
k, H) → (X,G)] if Y2 → Y1 is an H-equivariant con-

structible vector bundle of rank d.

One can define the following operations of elements of Motst((X,G)) in the natural way.

Let (Z, f) ∈ Hom((X1, G1), (X2, G2)). Then we define
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• pullback

f ∗ : Motst((X2, G2))→Motst((X1, G1)),

[(Y,H)→ (X2, G2)] 7→ [(Y,H)×(X2,G2) (X1, G1)→ (X1, G1)],

• pushforward

f! : Motst((X1, G1))→Motst((X2, G2)),

[(Z1, f1) : (Y,H)→ (X1, G1)] 7→ [(Z, f) ◦ (Z1, f1) : (Y,H)→ (X2, G2)],

• fiber product

· : Motst((X,G))×Motst((X,G))→Motst((X,G)),

[(Y1, H1)→ (X,G)] · [(Y2, H2)→ (X,G)] 7→ [(Y1, H1)×(X,G) (Y2, H2)→ (X,G)].

6.2.2 Motivic Hall algebras

Let’s remind the notion of motivic Hall algebra of a certain type of categories.

Let C be an ind-constructible locally regular (e.g. locally Artin) triangulated A∞-

category over a field k (see [42]). Then the stack of objects admits a countable decomposition

into the union of quotient stacks

Ob(C) = ti∈I(Yi, GL(Ni)),

where Yi is a reduced algebraic scheme acted on by the group GL(Ni).

Definition 6.2.2. (cf. [42]) The motivic Hall algebra H(C) is the Mot(Spec(k))−module

⊕
i∈I

Motst(Yi, GL(Ni))[Ln, n < 0]

(i.e. we extend the direct sum of the groups of motivic stack functions by adding negative

powers of the Lefschetz motive L), endowed with the product defined below.

The product is defined as follows. Let us denote dimExti(E,F ) by (E,F )i, and use the
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truncated Euler characteristic

(E,F )≤N =
∑
i≤N

(−1)i(E,F )i.

Let [πi : Yi → Ob(C)], i = 1, 2 be two elements of H(C), then for any n ∈ Z we have

constructible sets

Wn = {(y1, y2, α)|yi ∈ Yi, α ∈ Ext1(π2(y2), π1(y1)), (π2(y2), π1(y1))≤0 = n}.

Then

[tot((π1 × π2)∗(EXT 1))→ Ob(C)] =
∑
n∈Z

[Wn → Ob(C)].

Define the product

[Y1 → Ob(C)] · [Y2 → Ob(C)] =
∑
n∈Z

[Wn → Ob(C)]L−n,

where the map Wn → Ob(C) is given by

(y1, y2, α) 7→ Cone(α : π2(y2)[−1]→ π1(y1)).

Theorem 6.2.3. (see [42, Prop. 10]) The algebra H(C) is associative.

For a constructible stability condition on C with an ind-constructible class map cl :

K0(C) → Γ, a central charge Z : Γ → C, a strict sector V ⊂ R2 and a branch Log of the

logarithm function on V , we have (see [42]) the category CV := CV,Log generated by semistable

objects with the central charge in V . Then we define the corresponding completed motivic

Hall algebra

Ĥ(CV ) :=
∏

γ∈(Γ∩C(V,Z,Q))∪{0}

H(CV ∩ cl−1(γ)).
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It contains an invertible element

AHallV = 1 + · · · =
∑
i∈I

1(Ob(CV )∩Yi,GL(Ni)),

where 1 comes from the zero object. The element AV corresponds (roughly) to the sum over

all isomorphism classes of objects of CV , each counted with the weight given by the inverse

to the motive of the group of automorphisms.

Theorem 6.2.4. (see [42, Prop. 11]) The elements AHallV satisfy the Factorization Property:

AHallV = AHallV1
· AHallV2

for a strict sector V = V1 t V2 (decomposition in the clockwise order).

Let’s fix the following data:

(1) a triple (Γ, 〈•, •〉, Q) consisting of a free abelian group Γ of finite rank endowed with

a bilinear form 〈•, •〉 : Γ⊗ Γ→ Z, and a quadratic form Q on ΓR = Γ⊗ R,

(2) an ind-constructible , Gal(k/k)-equivariant homomorphism

clk : K0(C(k)) −→ Γ

compatible with the Euler form of C and the bilinear form 〈•, •〉,

(3) a constructible stability condition σ ∈ Stab(C, cl) compatible with the quadratic form

Q in the sense that Q|Ker(Z) < 0 and Q(clk(E)) ≥ 0, ∀E ∈ Css(k).

Given a commutative unital ring R containing an invertible symbol L 1
2 , we have

Definition 6.2.5. The quantum torus RΓ,R over R is an R-linear associative algebra

RΓ,R :=
⊕
γ∈Γ

R · êγ,
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where the generators êγ, γ ∈ Γ satisfy the relations

êγ1 êγ2 = L 1
2 〈γ1, γ2〉êγ1+γ2 ,

ê0 = 1
(6.1)

For any strict sector V ⊂ R2, we define the quantum torus associated with V by

RV,R :=
∏

γ∈Γ∩C0(V,Z,Q)

R · êγ,

where

C0(V, Z,Q) := C(V, Z,Q) ∪ {0},

and C(V, Z,Q) is the convex cone generated by

S(V, Z,Q) = {x ∈ ΓR \ {0}|Z(x) ∈ V,Q(x) ≥ 0}.

In the case when C is a 3CY category, one can define a homomorphism from the algebra

Ĥ(CV ) to an appropriate motivic quantum torus (the word “motivic” here means that the

coefficient ring R is a certain ring of motivic functions). This homomorphism was defined

in [42] via the motivic Milnor fiber of the potential of the 3CY category. The notion of

motivic DT-series was also introduced in the loc.cit.

It was later shown in [43] that in the case of quivers with potential one can define motivic

DT-series differently, using equivariant critical cohomology (cf. our Chapter 3). In that case

instead of the motivic Hall algebra one uses COHA.

6.3 A class of 2CY categories

Let us consider a class of 2-dimensional Calabi-Yau categories C which are:

1) Ind-constructible and locally ind-Artin in the sense of [42] (cf. Chapter 5).
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2) Endowed with a constructible homomorphism of abelian groups (class map)

cl : K0(C) −→ Γ,

where Γ ' ZI carries a symmetric integer-valued bilinear form 〈•, •〉, and the class

map cl satisfies

〈cl(E), cl(F )〉 = χ(E,F ) :=
∑
i∈Z

(−1)idimExti(E,F ).

3) Generated by a spherical collection E = (Ei)i∈I in the sense of loc. cit. such that

cl(Ei) ∈ Γ+ ' ZI≥0. This means that Ext•(Ei, Ei) ' H•(S2), and that Extm(Ei, Ej)

can be non-trivial for m = 1 only as long as i 6= j.

4) For any γ ∈ Γ+ the stack Cγ(E) of objects F of the heart of the t- structure corre-

sponding to (Ei)i∈I such that cl(F ) = γ is a countable disjoint union of Artin stacks

of dimensions less or equal than −1
2
〈γ, γ〉.

5) For any strict sector V ⊂ R2 with the vertex at (0, 0), and a constructible stability

central charge Z : Γ → C such that Im(Z(Ei)) := Z(cl(Ei)) ∈ V, i ∈ I, the stack of

objects of the category CV generated by semistable objects with central charges in V

is a finite union of Artin stacks satisfying the inequality of 4) above.

With the category from our class one can associate a symmetric quiver as in Chapter 5.

Similarly to [42, Sec. 8] one can prove a classification theorem for our categories in terms of

Ginzburg algebras associated with quivers. Many 2CY categories which appear in “nature”

belong to our class. For example, if Q is not an ADE quiver, then the derived category of

finite-dimensional representations of ΠQ belongs to our class. Without any restrictions on

Q one can construct a 2CY category as the category of dg-modules over the corresponding

Ginzburg algebra.
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6.4 Stability conditions and braid group action

Assume that C is a 2CY category from our class described in Section 6.3. We consider an

open subset of the space Stab(C) of stability conditions which is defined as

U :=
∏
i∈I

(Im zi > 0),

i.e. it is a product of upper-half planes. A point Z = (zi)i∈I ∈ U defines the central charge

Z : Γ := ZI → C which maps classes of spherical generators to the open upper-half plane

(hence the stability condition is determined by Z and the t-structure in C generated by

(Ei)i∈I).

Recall that with every i0 ∈ I we can associate an autoequivalence of C (called reflection

functor) by the formula

REi0
: F 7→ Cone(Ext•(Ei0 , F )⊗ F → F ).

Then REi0
(Ei0) = Ei0 [−1], and REi0

(Ej), j 6= i0 is determined as the middle term in the

extension

0→ Ej → REi0
(Ej)→ Ei0 ⊗ Ext1(Ei0 , Ej)→ 0.

The inverse reflection functor R−1
Ei0

is given by

R−1
Ei0

(Ei0) = Eii0 [1],

0→ Ei0 ⊗ Ext1(Ei0 , Ej)→ R−1
Ei0

(Ej)→ Ej → 0.

Reflection functors REi , i ∈ I generate a subgroup BraidC ⊂ Aut(C), which induces

an action on Stab(C). The orbit D := BraidC(U) ⊂ Stab(C) is the union of consecutive

“chambers” obtained one from another one by reflection functor REj . Such consecutive
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chambers have a common real codimension one boundary singled out by the condition

ImZ(Ej) = 0.

Remark 6.4.1. The group BraidC plays a role of the braid group (or Weyl group) in the

theory of Kac-Moody algebras. If we add also the group Z of shifts F 7→ F [n], n ∈ Z then

we obtain an affine version of the braid group BraidC × Z. In some examples Z ⊂ BraidC.

6.5 Motivic DT-series for 2CY categories

Let C be an ind-constructible locally regular 2CY category over k. Let us fix

R = Mot(Spec(k))[L
1
2 ,L−1, [GL(n)]−1

n>1]

as the ground ring for the quantum torus RΓ,R. We will denote the latter by RΓ. It is a

commutative algebra generated by the elements êγ, γ ∈ Γ such that

êγ1+γ2 = êγ1 êγ2 ,

ê0 = 1.
(6.2)

Let us also fix a stability condition on C with the central charge Z : Γ→ C.

Definition 6.5.1. The motivic weight ω ∈Mot(Ob(C)) is defined by

ω(E) = L
1
2

(χ(E,E)).

Then we proved the following result.

Proposition 6.5.2. (see [58]) The map

Φ : H(C)→ RΓ,

ν 7→ (ν, ω)êγ, ν ∈ H(C)γ
(6.3)
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satisfies the condition

Φ(ν1 · ν2) = Φ(ν1)Φ(ν2)

for Arg(γ1) > Arg(γ2), where νi ∈ H(C)γi. (here (•, •) is the pairing between motivic

measures and motivic functions.)

In other words, Φ can be written as

[π : Y → Ob(C)] 7→
∫
Y

L
1
2
χ(π(y),π(y))êcl(π(y)).

Proof. It suffices to prove the theorem for

νEi = [δEi : pt→ Ob(C)],

where δEi(pt) = Ei ∈ Ob(C). Recall that we denote dimExti(E,F ) by (E,F )i, i ∈ Z.

We have Φ(νEi) = L 1
2
χ(Ei,Ei)êγi , which implies that

Φ(νE1)Φ(νE2) = L
1
2

(χ(E1,E1)+χ(E2,E2))êγ1+γ2 .

On the other hand,

νE1 · νE2 = L−(E2,E1)≤0 [π21 : Ext1(E2, E1)→ Ob(C)].

Then

Φ(νE1 · νE2) = L−(E2,E1)≤0
∫
α∈Ext1(E2,E1)

L 1
2
χ(Eα,Eα)êγ1+γ2

= L−(E2,E1)≤0L 1
2

(χ(E1,E1)+χ(E2,E2)+χ(E1,E2)+χ(E2,E1))
∫
α∈Ext1(E2,E1)

êγ1+γ2

= L−(E2,E1)≤0+ 1
2

(χ(E1,E1)+χ(E2,E2))+χ(E2,E1)L(E2,E1)1 êγ1+γ2

= L 1
2

(χ(E1,E1)+χ(E2,E2))+(E2,E1)2 êγ1+γ2 .
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If Arg(γ1) > Arg(γ2), then (E2, E1)2 = (E1, E2)0 = 0. Thus

Φ(νE1 · νE2) = Φ(νE1)Φ(νE2).

Recall the categories CV and set V = l be a ray. For a generic central charge Z let us

consider the generating function

Amotl =
∑

[E],E∈Ob(Cl)

ω(E)êcl(E)

[Aut(E)]

=
∑

[E],E∈Ob(Cl)

L
1
2

(χ(E,E)) tcl(E)

[Aut(E)]
,

where t = êγ0 for a primitive γ0 such that Z(γ0) ∈ l generates Z(Γ)∩ l, and [Aut(E)] denotes

the motive of the group of automorphisms of E. More invariantly, Amotl = Φ(AHalll ) where

AHalll ∈ H(Cl) corresponds to the characteristic function of the stack of objects of the full

subcategory Cl ⊂ C generated by semistables E such that Z(E) ∈ l (cf. loc.cit.).

Definition 6.5.3. We call Amotl the motivic DT-series of C corresponding to the ray l.

Suppose that C is associated with the preprojective algebra ΠQ. One can show that Amotl

can be obtained from the motivic DT-series for the 3CY category associated with (Q̂,W )

by the reduction to C. Similarly to Amotl we define AmotV for any strict sector V .

The Proposition 6.5.2 implies that the series AmotV is the (clockwise) product of Amotl over

all rays l ⊂ V . This can be also derived from the dimensional reduction and the results of

[42].

Corollary 6.5.4. The collections of elements AmotV = Φ(AHallV ) parametrized by strict sectors

V ⊂ R2 with the vertex at the origin satisfies the Factorization Property: if a strict sector
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V is decomposed into a disjoint union V = V1 t V2 in the clockwise order, then

AmotV = AmotV1
AmotV2

.

Proposition 6.5.5. (see [58]) Motivic DT-series AmotV is constant on each connected com-

ponent of the space of stability conditions.

Proof. Similarly to the case of 3CY categories, each element AmotV does not change when

we move in the space of stability conditions on C in such a way that central charges of

semistable object neither enter nor leave the sector V . But in the case of 2CY categories

the Euler form is symmetric, hence the motivic quantum torus is commutative. It follows

that the wall-crossing formulas from [42] are trivial. This implies the result.

For a 2CY category form our class one can construct the corresponding 3CY category

(see Introduction). We expect that the motivic DT-series arising in this situation are quan-

tum admissible in the sense of [43] and can be described in terms of the corresponding

COHA (the latter is expected to exist for quite general 3CY categories, see [66]).

Therefore, by analogy with the case of 3CY categories, we can define DT-invariants

Ω(γ) in 2CY case using (quantum) admissibility (see [43], Section 6) of our DT-series by

the formula:

AmotV = Sym

∑
n≥0

Ln
∑

γ 6=0,Z(γ)∈V

Ω(γ)êγ

 =

= Sym

(∑
γ 6=0,Z(γ)∈V Ω(γ)êγ

1− L

)
.

By Proposition 6.5.5 our motivic DT-invariants Ω(γ) depend only on the connected

component of Stab(C) which contains Z. The Conjecture 6.6.1 (see next section) says that

Ω(γ) is (essentially) the same as Kac polynomial aγ(L) (or the motivic DT-invariant of the

corresponding 3CY category, see Introduction).
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Let us fix the connected component in Stab(C) which contains such central charge Z

that for each spherical generator Ei of C we have Z(Ei) = (0, ..., 1, ...0) (the only nontrivial

element 1 at the i-th place). We will call the corresponding t-structure standard. We denote

the corresponding motivic DT-invariants by Ωmot
C (γ).

6.6 Kac polynomial of a 2CY category

We can now introduce an analog of the Kac polynomial in the case of a 2CY category from

our class following the ideas of [50].

Notice that the coefficient ring

Mot(Spec(k))[L
1
2 ,L−1, [GL(n)]−1

n>1]

of the quantum torus RΓ has a λ−ring structure, which can be lifted to the quantum torus

(which is commutative in the case of 2CY categories). Recall that for a λ-ring we can

introduce the operation of symmetrization by the formula:

Sym(r) =
∑
n>0

Symn(r) =
∑
n>0

(−1)nλn(−r) = (
∑
n>0

(−1)nλn(r))−1.

For any ray l ⊂ H+, where H+ is the upper half plane, we have the (quantum) admissible

element Amotl .

Let C be a 2CY category from our class. We fix the standard t-structure. Recall the

motivic DT-series Amotl .

Conjecture 6.6.1. (see [58]) There exist elements

amotγ (L) ∈Mot(Spec(k))[L
1
2 ,L−1, [GL(n)]−1

n>1]

which are polynomials in L and such that the following formula holds in the (commutative)
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motivic quantum torus:

Amotl = Sym

(∑
γ,Z(γ)∈l(−amotγ (L) · L)êγ

1− L

)
.

Furthermore, there exists a 3CY category B such that the elements amot(L) coincide with

motivic DT -invariants with respect to some stability condition on B.

Some related results can be found in [10], [13] [23], and especially in [50]. In fact Theorem

5.1 from [50] establishes the Conjecture in the framework of quivers. More precisely, if C is

the 2CY category associated with the preprojective algebra of a quiver, then for its standard

t-structure the element amotγ (L) coincides with the Kac polynomial aγ(L) of the Kac-Moody

algebra corresponding to the quiver.
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