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Abstract

The motivic Donaldson-Thomas theory of 2-dimensional Calabi-Yau categories can be
induced from the theory of 3-dimensional Calabi-Yau categories via dimensional reduction.
The cohomological Hall algebra is one approach to the motivic Donaldson-Thomas invari-
ants. Given an arbitrary quiver one can construct a double quiver, which induces the
preprojective algebra. This corresponds to a 2-dimensional Calabi-Yau category. One can
further construct a triple quiver with potential, which gives rise to a 3-dimensional Calabi-
Yau category. The critical cohomological Hall algebra (critical COHA for short) is defined
for a quiver with potential. Via the dimensional reduction we obtain the cohomological Hall
algebra (COHA for short) of the preprojective algebra. We prove that a subalgebra of this
COHA consists of a semicanonical basis, thus is related to the generalized quantum groups.
Another approach is motivic Hall algebra, from which an integration map to the quantum
torus is constructed. Furthermore, a conjecture concerning some invariants of 2-dimensional
Calabi-Yau categories is made.

We investigate the correspondence between the A..-equivalent classes of ind-constructible
2-dimensional Calabi-Yau categories with a collection of generators and a certain type of
quivers. This implies that such an ind-constructible category can be canonically recon-

structed from its full subcategory consisting of the collection of generators.
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Chapter 1

Introduction

The 2-dimensional Calabi-Yau categories and the 3-dimensional Calabi-Yau categories are
related via dimensional reduction. The framework of 3-dimensional Calabi-Yau categories is
appropriate for the theory of motivic Donaldson-Thomas invariants. The dimensional reduc-
tion from 3-dimensional Calabi-Yau categories (3CY categories for short) to 2-dimensional
Calabi-Yau categories (2CY categories for short) gives rise to the corresponding theory of
the latter. It is natural to ask about the meaning of the objects arising as a result of such
dimensional reduction, and the relation between motivic Donaldson-Thomas theory and
some invariants of 2CY categories, e.g. Kac polynomials. M. Kontsevich and Y. Soibelman
established two theories to produce motivic Donaldson-Thomas invariants. One is using
Cohomological Hall algebra (see [43]), and the other is via motivic Hall algebra (see [42]).
Both theories give rise to the Z-valued invariants as limits of motivic Donaldson-Thomas
invariants. (See, e.g., [2] and [25-30] for Z-valued Donaldson-Thomas invariants.)
Cohomological Hall algebra was first introduced in [43]. With a certain class of 4-
dimensional quantum theories with N = 2 spacetime supersymmetry one should be able
to associate the algebra of BPS states. The cohomological Hall algebra (COHA for short)
is a rigorous mathematical definition related to this algebra. It can be defined in a wide

class of situations including quivers with potential. A quiver with potential gives rise to an



ind-constructible 3CY category. The heart of its t-structure consists of finite-dimensional
representations of the quiver which are critical points of the potential. The 3CY category
is related to 2CY category in the following way. Given a quiver ) with the set of vertices
I = {i,...,n} and arrows €, the associated preprojective algebra Il; gives rise to a 2CY
category. This category can be upgraded to a 3CY category by constructing a “triple”
quiver @ with a cubic potential W. The critical cohomological Hall algebra (critical COHA
for short) of (Q, W) induces the COHA for Ig.

The 2CY categories, interesting on their own, are analogues of Kac-Moody algebras.
Thus it is interesting to relate the COHA of 2CY categories to the generalized quantum
groups. In particular, we give a construction of the semicanonical basis of a subalgebra of
the COHA of the preprojective algebra Il associated to a quiver Q.

The critical COHA of an arbitrary quiver with potential (Q, W) (not necessarily coming
from the above upgrading), which is denoted by Hq w, is an associative algebra structure on
the dual space of the compactly supported critical cohomology (in other words, compactly
supported equivariant cohomology with coefficients in the sheaf of vanishing cycles) of the
stack Mg of the representations of ). The stack Mg = HveZgo Mo = ]_[762120 My, /G,

is a countable union of quotient stacks over dimension vectors 7, so

Hg% = @ Hc.’crit(MQm Wv)v = @ H;’gjt(MQ,w, WV)V ® T—xe(1)

T T
76220 76220

is a direct sum of the dual of compactly supported critical equivariant cohomology. To

define the multiplication, consider the diagram of stacks
p p
MQy’Yl/G'Yl X MQ:'YQ/G’YQ — MQ:'YL’YI/G’YI,'D —= MQ,’Y/G’Y

for v = 1 + 72, where Mg -, 4, /G, 4, is the stack parametrizing pairs (£, F') such that

FE is a representation of dimension v and F' is its subrepresentation of dimension ;. The



multiplication is defined as (p2).p] (see details in [43, Sec. 7.6]).

There is another version of the (non critical) COHA using rapid decay cohomology ([43,
Sec. 4]). For the special case of a quiver without potential, an explicit formula for the
multiplication was obtained using torus localization ([43, Sec. 2]).

We define the COHA of Il in the following way. Since the critical loci of the trace of W
in /\/l contains the stack of seminilpotent representations of Il which is denoted by MHQ,
one can transport the multiplication of the critical COHA to the dual space of compactly
supported cohomology of My, = H76Z§0 Moy = HveZI My, /G, (which is a direct
sum of the dual spaces of equivariant cohomology with compact support, or equivalently,
the equivariant Borel-Moore homology). Indeed, by the detailed exposition of dimensional
reduction in [12] (see [43] as well), for a fixed dimension vector 7 there is an isomorphism

Hcc,crit (MS

P
Q.

e crit s ~ . s .
W) = HIGUMZ W)~ Hig (M3, Q) ® T,
where /\/l%p7 cM o~ 1sa substack, and T is the Tate motive. In this way we get a degree-

preserving associative multiplication on

@ Mf—fQ . @)v ® 11‘*—9«;)(%'7)7

VEZ/

where ¢ is the Euler form of ). The above construction in particular proves the following

statement:

e The zero degree part HY o 52 subalgebra of Hy,, and admits a semicanonical basis
consisting of classes of top dimensional irreducible components of /\/lprQ, analogous
to Lusztig’s semicanonical basis of generalized quantum groups (see [46], [47]). This

semicanonical basis and its dual enjoy compatibility with a certain filtration.

In general, we expect intrinsic categorical meaning of the semicanonical basis for a certain

class of 2CY categories.



We investigate the correspondence between the A.-equivalent classes of 2CY categories
with a collection of generators and a certain type of quivers. More precisely, let k be a field
of characteristic zero, and C a k-linear triangulated 2CY A.-category. Assume that C is

generated by a finite collection & = {E; }ic; of generators satisfying
e Ext'(E;, E;) =k -idg,,
o Lut’(E;, E;) =0,Vi # 4,
o Eut<%E;, E;) =0,Vi,].

We prove that

e The equivalence classes of such categories with respect to A.-transformations pre-
serving the Calabi-Yau structure and £, are in one-to-one correspondence with finite

symmetric quivers with even number of loops at each vertex.

The proof is based on the deformation theory of the canonical 2CY category. This defor-
mation theory is controlled by a DG Lie algebra coming from all cyclic series in coordinates
on Ext*(®FE;, ®E;)[1]. There is an analog in the 3CY case in [42, Sec. 8.1].

We also studied the motivic Donaldson-Thomas theory of a certain class of 2CY cate-
gories via motivic Hall algebras defined using motivic stack functions. Upgrading the above
2CY categories gives rise to a class of 3CY categories with trivial Euler classes. Motivic
DT-invariants of such 3CY categories do not change inside of a connected component of
the space of stability conditions. As a result, the DT-invariants are in fact invariants of
the t-structure of the underlying 2CY category. We constructed motivic DT-series for 2CY
categories and proved their factorization property. We also formulated a conjecture about
an analog of the Kac polynomial of a 2CY category.

First, for an ind-constructible locally regular triangulated A..-category C over a field k,
an associative algebra H(C) called motivic Hall algebra is defined on the space of motivic

stack functions on its stack of objects, with negative powers of the Lefschetz motive L



added (see [42]). Fix a constructible stability condition on C and a strict sector V' C C,
we have the category Cy generated by semistable objects with the central charge in V, and
the corresponding completed motivic Hall algebra H (Cy). There is an invertible element
AHall ¢ H (Cy) roughly corresponding to the sum over all isomorphism classes of objects
of Cy, each counted with the weight given by the inverse to the motive of the group of
automorphisms. For various strict sectors V' the elements A satisfy the Factorization
Property, namely, Ajf* = A{let . Aol where V = V4 U V3 is decomposed in the clockwise
order. Next, let C be a 2CY category belonging to the class in Section 6.3, and Rr the
quantum torus which is a commutative algebra. Then we proved in [58] the following

theorems:

e The integration map ® : H(C) — Rr preserves the clockwise order multiplication,
thus leads to the Factorization Property of the motivic DT series A7t = ®(AfHall):

mot __ mot mot
AV — AVl * Av2 .

o A7 is constant on each connected component of the space of stability conditions on

C.

The DT-invariants of the 2CY category C are defined using (expected) quantum admissibility

of A", In the case when V is a ray, we conjectured that

e The DT-invariants are polynomials in the Lefschetz motive L., and coincide with the

motivic DT-invariants of some 3CY category.

The conjecture was motivated by [50], in which the motive of the stack of indecomposable
representations of a quiver (Kac polynomial) was expressed in terms of the motives of stacks
of representations of the corresponding preprojective algebra and the DT-invariants of the
corresponding 3CY category. Some related results concerning DT-invariants can be found
in the work of Hausel, Letellier and Rodriguez-Villegas [23], Joyce and Song [30], Reineke
[56], Szendrdi [67], etc..



Contents of the paper

The dissertation is organized as follows:

Chapter 2 gives basics about quivers, some algebras associated to quivers, and the stacks
of their representations.

Chapter 3 is devoted to a reminder of critical COHA of I-bigraded smooth algebras with
potential.

Chapter 4 is devoted to the explicit description of the multiplication of COHA of the
preprojective algebra Ilg, and the proof of the existence of the semicanonical basis, thus
relate the COHA to the generalized quantum groups.

Chapter 5 introduces the ind-constructible 2 Calabi-Yau categories, and proves the cor-
respondence between them and a certain type of quivers.

Chapter 6 introduces the motivic Donaldson-Thomas theory of a certain class of 2 Calabi-

Yau categories via motivic Hall algebras.



Chapter 2

Quivers

Given a quiver or a quiver with relations, one considers the stacks of their representations.
The cohomology of these stacks form the underlying vector space of the cohomological Hall
algebras. In particular, we introduce the preprojective algebra associated to a quiver, and

quivers with potential.

2.1 Quivers and the stack of representations

We introduce basic definitions and properties of quivers and their representations. We will

basically follow [15] and [43].

Definition 2.1.1. A quiver @ is a quadruple (1,2, s,t) consists of the set I of vertices, the
set ) of arrows, and the maps s,t : Q0 — I assigning source and target to each arrow.

A quiver is called finite if both I and € are finite sets.

All quivers considered in the sequel are finite.
An arrow with source i and target j will be denoted by a : i — j, where i, 7 € I are two

vertices.

Definition 2.1.2. A quiver @) is symmetric if it is endowed with an involution x acting on

both I and Q0 such that s(a*) = t(a)*, t(a*) = s(a)*.

7



Definition 2.1.3. Let k be a field. A representation E = (E;, E,) of a quiver @ over k
consists of a family of k-vector spaces E; for i € I, together with a family of k-linear maps
Eq: Ega) = Eya) for a € Q. A subrepresentation E' = (E!, E)) of E is a representation of
Q such that E! C E;,Vi, and E! is the restriction of E, to Eg(a) for each a € €.

Definition 2.1.4. A morphism f : E — F between two representations E and F is given
by k-linear maps f; : E; — F; for all i € I, satisfying F, o fs@a) = fra) © Ea for any a € L.

Namely, the following diagram commutes:

E,
Ey(a) Eia)

|fs(a) lft(‘l)

Fa
Fy Fya)

A representation E = (F;, E,) is regarded as finite dimensional if all E;,i € I are finite
dimensional over k. In this case, the vector dimE = (dimkFE;);c; is called the dimension
vector of E. Denote the category of finite dimensional representations of ) over k by
Rep, Q.

We call a sequence of arrows q; - - - agay such that t(as) = s(asv1) a path of length | > 1.
If t(as) = s(a1), then the path is said to be an oriented cycle. In particular a loop is an
oriented cycle. Besides paths of length > 1, we also consider the trivial path e;, which is

the path of length 0 with source and target i € 2. Now we can define

Definition 2.1.5. The path algebra k() is the k-algebra having a basis the set of all the

paths in Q). The product is given by linearity and the following product rule for paths:

al--ala?---a?, t(a?) = s(ad),

0, otherwise.

Clearly, k@ is an associative algebra with the identity 1 = ¥;c;e;. We denote by k@Q-mod



the category of finite dimensional left k()-modules. The following statement is well known.

Theorem 2.1.6. The categories Rep,Q) and kQ-mod are equivalent. Furthermore, Rep,Q)

1s an abelian category.

Given a quiver () one can define a bilinear form, which is called Fuler form, as follows:

Xo(e,8): ZI x ZI — 7,
(a,8) = — 3 a* @) 5ol

a€el i€l

where a = (a');ez, and 3 = (%);cr belong to ZI.
Let’s introduce the stack of representations of ). Fix a dimension vector v = (7%);er,
and the complex coordinate vector spaces V; := C"" for all i € I. We denote by a;; € Zxo

the number of arrows from ¢ to j for 7,7 € I. Define an affine variety

My, = @) Home(C",C") ~ [J €7
a:i—j ,J
The reductive linear algebraic group
iel

acts on M via base change

(93)i * (Ba)a = (9iEagi asisy-

Definition 2.1.7. We call My, ., the space of representations of @) of dimension v, and G,
the gauge group of Mg .. The quotient stack Mg /G, is the stack of representations of Q

with dimension 7.



2.2 Quiver with relations

To any quiver (), by giving relations we obtain some interesting algebras. In particular, we

will define the Jacobi algebra and preprojective algebra.

Definition 2.2.1. A relation of a quiver Q) is a subspace of kQ) spanned by linear com-
binations of paths having a common source and a common target, and of length at least
2.

A quiver with relations is a pair (Q, R), where @Q is a quiver, and R is a two-sided ideal
of kQ generated by relations. The quotient algebra kQ/R is the path algebra of (Q, R).

A representation of (Q,R) is a kQ/R-module.

Now let’s define quivers with potential, which will give rise to a type of quivers with

relations. Fix a quiver (), and assume that we are given an element

W e kQ/[kQ, kQ)]

represented by some element We k@, ie, W = w (mod[k@®, kQ)]). The element W (or its
lifting W) is called a potential. Indeed, W is a linear combination of oriented cycles in kQ@).

For an oriented cycle p = a; - - - asaq, let

as_1---aja---agr1, 3s € {l,...,1} such that a = ay,
0, otherwise.

Definition 2.2.2. The cyclic derivative of a potential W with respect to an arrow a is

defined as
aaVV = Z aapsa

zfﬁ; = . ps for oriented cycles ps.

Given a dimension vector v € ZZ%; we obtain a function W, on M ,, invariant under

10



the action of G,. The value of W, at any representation is given by the trace of the image

of W. For any short exact sequence
0—=LE —E—Ey,—0

of representations of () with dimension vectors 7;, 71 + 72 and v, respectively, we have
W’Y1+’Y2 (E> = W% (E1> + W’Y2 (WQ)

Given a quiver with potential (@, W), the cyclic derivative 9,W gives rise to a relation
for any a € 2. Let R be the ideal generated by {0,W|a € Q}, then (Q, R) is a quiver with

relations.

Definition 2.2.3. The quotient algebra
J(Q W) =kQ/R

is called the Jacobi algebra of (Q,W).

Thus the space of representations of J(Q,W) of dimension v, which is denoted by
M7 0,w),, is a closed subscheme of Mg .. Indeed, M (o w),, = Crit(W,).

Let @ be a quiver with the set of vertices I and the set of arrows 2. One constructs a
symmetric quiver called the double quiver @ as follows. @) has the set of vertices I, which
is the same as the original quiver Q. The set of arrows is Q U Q, where € is the set of dual
arrows, namely, for any arrow a : i — j € €, we add an inverse arrow a* : j — i € Q to Q.

Thus Y ,.qla, a*] is a relation of Q.

Definition 2.2.4. The preprojective algebra associated to () is the quotient algebra

Mg = kQ/ Z[a, a’].

a€eN

11



Furthermore, we can construct a triple quiver with potential (@, W). The triple quiver
CA) has the set of vertices I the same as . The set of arrows is Q U Q U L. Namely,
we add a loop l; : i — i at each vertex i € I to O, and denote the set of added loops
by L = {l; : i — ili € I}. The cubic potential W is defined to be ) .gla,a*]l, where
I =73 .c;li- Then the preprojective algebra Il is a subalgebra of j(@, w).

12



Chapter 3

Critical COHA of smooth algebras

with potential

The critical Cohomological Hall algebra of a smooth I-bigraded algebra with potential is
defined in [43, Sec. 7]. We first remind the equivariant critical cohomology with compact
support, which gives the underlying vector space of critical COHA. Then give the definition
of the product. Thus the critical COHA of a smooth I-bigraded algebra with potential is a
unital associative algebra. In particular, the critical COHA can be defined for quivers with
potential.

For the convenience of the reader we will closely follow the very detailed exposition from
[12], which contains proofs of several statements sketched in [43] as well as several useful

improvements of the loc.cit.

3.1 Reminder on the critical cohomology

In this section we will first review the definition of vanishing cycles of sheaves and (equiv-
ariant) critical cohomology with compact support. Then the dimensional reduction relates

the (equivariant) critical cohomology with compact support to ordinary (equivariant) co-

13



homology with compact support. This will induce the product of COHA of preprojective
algebras in the next chapter. The pullback and pushforward maps of (equivariant) critical
cohomology with compact support associated to an affine or proper map, which are used in

defining the product of critical COHA, are constructed.

3.1.1 Vanishing cycles of sheaves

Let Y be a complex manifold, and Z C Y a closed subspace. Then for a sheaf F on Y, the

functor I'; is defined as

T, F(U) = Ker(F(U) — F(U\ Z)).

Let f:Y — C be a holomorphic function.

Definition 3.1.1. The vanishing cycles functor ¢y is defined as follows:

o F1=1] = (Rl {Rre()<0} F ) r-1(0)-
Remark 3.1.2. This is a nonstandard definition of this functor, which is equivalent to the
usual one in the complex case.

From now on we will abbreviate R.% to .# for any functor .%.
Recall that the Verdier dual DF of a sheaf F on Y is defined to be Hom/(F, pQ), where

p:Y — pt. For Y an equidimensional manifold there is a canonical isomorphism of functors

D(e) — (¢)" ® TdimY

where (e)Y = Hom(e,Qy) is the duality functor, and T = Q(—1)[—2] is the Tate motive,
which is a mixed Hodge module of cohomological degree -2 and weight -2. The multiplication

map Qy ® Qy — Qy induces an isomorphism Qy ~ Qy, so there is an isomorphism

14



Qy ® T9™Y — DQy. It induces an isomorphism

0;Qy @ T =5 o DQy. (3.1)

In general there is a natural isomorphism

prD = Dy

If g: Y — Y is a map between manifolds, then the natural transformation of functors

Uire(ry<oy — 9l (Re(rg)<0}9”

induces a natural transformation

©F — g«Prg9" (3.2)

If g is an affine fibration then (3.2) is a natural equivalence. In general it is not an isomor-
phism.
On the other hand, if g is a closed embedding, then

©rgs — 9uPrg (3.3)

is a natural isomorphism of functors.
Assume that g is an affine fibration, then by [12, Cor. 2.4] there is a natural equivalence

of functors

CrGe — G1PrgGs- (3.4)

15



3.1.2 Critical cohomology and dimensional reduction

Let’s introduce the notion of (equivariant) critical cohomology with compact support. The
dimensional reduction theorem relates the (equivariant) critical cohomology with compact

support to the ordinary (equivariant) cohomology with compact support.

Definition 3.1.3. For any submanifold Y*P C Y, the critical cohomology with compact
support H*"{(Y*P_ f) is defined as the cohomology of the following object in 2°( MMHS)

(MMHS denotes the category of monodromic mized Hodge structures):
(C* = AN (YP x C* = C)(Y? x C* = Y x C)*0sQyxce,

where u is the coordinate on C*.

Let Y = X x A" be the total space of the trivial vector bundle, endowed with the
C*-action that acts trivially on X and with weight one on A". Let f : Y — A! be a
C*-equivariant holomorphic function, where C* acts with weight one on A'. Then f =
ZZZL frxy, where {zg, k = 1,...,n} is a linear coordinate system on A", and f; are functions
on X. Let Z C X be the reduced scheme which is the vanishing locus of all functions f.
Then Z is independent of the choice of x;. Let m : Y — X be the natural projection, and
1 : 4 — X be the closed inclusion. The following theorem is usually called dimensional

reduction.

Theorem 3.1.4. ( see [12, Cor. A.6])
There is a natural isomorphism of functors in 2°(MHM(X)):

m Tt s mrriLgt
In particular,

HM(Y, f) =~ H2(Z x A", Q) = H}(Z,Q) ® T".

16



Here MHM(X) denotes the category of mized Hodge modules on X.

IfY; = X; xA™ with C*-equivariant holomorphic functions f; satisfy the above conditions

for 1 = 1,2, then we have

Theorem 3.1.5. (see [12, Prop. A.5])

The following diagram of isomorphisms commutes:

Hco,crit(}/l X }/27]['1 H f2) s H(:,cm't(}/l,fl) & H(:’CTit(Y% f2)

H2(Zy x Zy x Amtm2 Q) Ku H*(Zy x A™, Q) ® H*(Zy x A™,Q)

Here T'S denotes the Thom-Sebastiani isomorphism, and Ku the Kiinneth isomorphism (see

loc.cit.).

Corollary 3.1.6. (see [12, Cor. A.7])
Let X°P C X be a subvariety of X and Y = XP x A", Z°? = Z N X*P. There is a
natural isomorphism in MMHS

Hg,cmf(YSp’ f) ~ HC.(ZSP X AnaQ)

The above statements also hold in equivariant case. Let us recall that framework. As-
sume that Y is a G-equivariant vector bundle over X, where GG is an algebraic group embed-
ded in GL(n,C), and f : Y — A! is G-invariant. Let fr(n, N) be the space of n-tuples of

linearly independent vectors in C¥ for N > n, and (Y,G), :=Y X¢ fr(n, N). We denote

the induced function by fy : (Y,G)y — AL

Definition 3.1.7. For a G-invariant closed subset Y*P C Y, we define the equivariant
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critical cohomology with compact support by

H;,Cc:rit(YSP’ f) — ]\}l_r)noo HC.’CTit(Y]f]py fN) ® deim(fr(n,N)),

where Y' C (Y, G)y is the subspace of points projected to Y*P.

Theorem 3.1.8. (see [12, Cor. A.8])
Let Y = X x A" be the total space of a sub G-bundle. Then there is an isomorphism
n MMHS

HIG" (Y, f) = HE (27 x A", Q).

Moreover, the following diagram of isomorphisms commutes:

HIEM(YP x V5P, fi B f) ™ HIGH (Y, f) @ Heg ™M (YsP, o)

Heo(Z37 x Z57 x Am*m2 Q) — B o He (277 x A™, Q) ® HY((Z37 x A", Q)

Remark 3.1.9. For a general Y endowed with a G-action, and a G-invariant function f,
the dual of the equivariant critical compactly supported cohomology H;’git(Y, £)Y admits a

He(pt, Q)-module structure. This module structure is constructed via

Ay: (Y xg fr(n,N)) = (Y xg fr(n,N)) x (pt x¢g fr(n,N)),

(y,2) = ((y, 2), (pt, 2)).
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More generally, by the diagonal embedding

Ay (Y xg fr(n,N)) = (Y x¢g fr(n,N)) x (Y x¢ fr(n,N))

an extended action

Hg(Y,Q) @ Hyg"(Y, f)Y — Hyg" (Y, f)Y

of HL(Y,Q) can be built in the same way.
See the details in [12, Sec. 2.6].

3.1.3 Pullback and pushforward maps

Let g : X — Y be a G-equivariant morphism between complex algebraic manifolds, and
f:Y — Al Let Y C Y be G-invariant, and X* = ¢~1(Y*?). We wish to have maps
going both ways between HZ g (Y, f)V and HYG (X, f)V. We will assume that g is of
two types: affine fibration and proper.

First, let g be an affine fibration. Then the pullback

g* : H;,(c}rit(ysp’ f)\/ ® Tdimg ;> H;’git(XSP, fg>\/ (35)

is an isomorphism. Indeed, let gy : (X, G)y — (Y, G), there is a natural isomorphism

v, — (9n)-Qxay,-

Applying ¢r, to the Verdier dual of the above isomorphism we obtain a map

Prn (QNJD@(X,G)N — DQ(YVG)N)’
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which by (3.1) gives us an isomorphism

viv (v Qxg, — Qwgy, © T-4m9)),

By (3.4) we obtain an isomorphism

IN v Qxay — i Qray, ® T,

Thus by restricting to QWN, taking compactly supported cohomology, passing to the
limit, and taking duals, we have the pullback isomorphism.

To define the pushforward we first define the Euler characteristic of g as follows. Let
V' = T,y be the relative tangent bundle of g, and z : X — V' be the inclusion of the zero

section. Consider the composition

dim dim
Z*@WN - QWN ® T (g) — Z*Q@N ® Tdim(9)

where the first morphism is obtained by taking the Verdier dual of the second. Taking
cohomology and using the isomorphism Hg (Y, Q) ~ H& (X, Q) gives us the map

euy : Ho (Y, Q) — Hg (Y, Q).

We further assume that eu,(1) is not a zero divisor in H. (Y, f)¥ for the extended action

in Remark 3.1.9. Then the pushforward map associated to g is defined as
g = (g) ey (1)7 s HAGUOXP, f9) —> HAGM (Y, )Y [euy (1))

Note that the pushforward preserves degree.

Next, assume that g is proper, which induces proper maps gy : (X,G)n — (Y, G)n.
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Using

SDfN(@mN — ng*Q@N)

and (3.4), we obtain the pushforward

g HIEM (X7, fg)Y — HIG (Y, f). (3.6)

3.2 I-bigraded smooth algebras

Let’s recall the notion of an I-bigraded smooth algebra, where I is a finite set.

Definition 3.2.1. An associative unital algebra R over a field k is called smooth if it is
finitely generated and formally smooth in the sense of D. Quillen and J. Cuntz, i.e., if
the bimodule Q} := Ker(R @ R mulg R) is projective. Here mult : R ®, R — R is the

multiplication.

The property of formal smoothness is equivalent to the following lifting property for non-
commutative nilpotent extentions: for any associative unital algebra A over k, a nilpotent
two-sided ideal J C A (i.e., J" = 0 for some n > 0), and a homomorphism ¢ : R — A/J,

there exists a lifting of ¢ to a homomorphism R — A.

Definition 3.2.2. Given a finite set I, an unital associative algebra over k is I-bigraded if

R = @i,jEIRij such that Rij . Rjk C le

Equivalently, R is I-bigraded if there is a morphism of unital algebras k! — R.

For a quiver @ = (I,€), the path algebra k@ is an I-bigraded smooth algebra. Indeed,
kQ = &, jer(kQ);; where (kQ);; is the set of paths with source ¢ and target j.

The notion of potential (see 2.2) can be generalized to an I-bigraded smooth algebra R:

W € R/|R,R] and W = W (mod[R, R)).
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3.3 Critical COHA

Let’s recall the definition of the critical COHA of an I-bigraded smooth algebra with po-
tential following [43].

For any I-bigraded smooth algebra with potential (R, W) and any dimension vector
v = (Vier € Zéo, the scheme M., = Mp, of representations of R in coordinate spaces
V, = k”i,i € [ is a smooth affine scheme. Any choice of a finite set of [-bigraded generators
of R gives a closed embedding of M, into the affine space Mg , for some quiver ) with the
set of vertices equal to I.

Assume that we are given a bilinear form yr : Z! ® Z! — 7 such that for any two

dimension vectors vy, 72 € Zéo and any two representations F; € M,, (E), we have
dimHom(Ey, ;) — dimExt* (Ey, Ey) = xr(71,72).
This implies that the smooth scheme M., is equidimensional for any v and

dimM, = —xgr(v,7) + Z('yi)Q.

el

In the case when R is the path algebra of a quiver @), recall a;; € Z>( the number of

arrows from ¢ to j for 7,7 € I. Then

Xo(1.72) = Xxe(11,7%2) = = Y ay s + > i
i,7€1 el

is the Euler form.
Fix a dimension vector v € Z;O, and assume that a complex algebraic group G, acts
on M,. The potential W gives rise to a G, -invariant function W, : M, — k as in 2.2.

Consider a G,-invariant subvariety M=’ C M, satisfying the following conditions (#x):
e M’ C Crit(W,), i.e., the 1-form vanishes at M’",
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e for any short exact sequence 0 — Ey — E — FE5 — 0 of representations of k®y R with
dimension vectors 71,7 := 71 + 72,72 respectively, E' € M2 if and only if £, € M2}

Y1’

and F, € Mff; )

The second condition implies that the representations in M2 (k) for all v € ZL, form
an abelian category, which is a Serre subcategory of the abelian category Crit(W)(k) :=
U, Crit(W,)(k), which is itself a full subcategory of k ®) R-mod. One may always choose
M:P = Crit(W,),Vy € ZL,,.

Example 3.3.1. For a quiver with potential (Q, W), let H, = {re?|r € Roy,0 € (0,7},
and ¢ € H! . Such a ¢ gives rise a Bridgeland stability condition for Rep,Q. The slope of
a representation E of Q is defined to be u(E) := Arg(dim(FE) - (). A representation E of
Q is called C-semistable if for all nonzero subrepresentations E' C E, there is an inequality
C(E") < C(FE). It is called C-stable if this inequality is strict for all proper E' C E. Fiz a
0 € (0, x|, one can check that the condition on a Q-representation E of being (-semistable
and with p(E) = 0 satisfies the second condition of (xx). The (-stable representations with
a fized slope 0 do not satisfy this condition. For instance it’s not closed under taking direct
sum.

In this case, we can take ]\prﬂ to be M(Qﬁss, the space of (-semistable representations.

Fix any 11,72 € Z;O and let v = v; + 72. Denote by M, ., the space of representations
of R in coordinate spaces of dimensions (7} + 74);er such that the subspaces of dimensions

(71)ser form a subrepresentation. The space M is a closed subspace of M,. The group

V1,72

G, +, C G, consisting of elements preserving subspaces (k% C k“’i)ie r acts on M, .,.

The coproduct on P H;gjt(l\/[ip ,W,) is defined in the following way:
7ezéo

. H;’gjt(l\/[ip W) — HGM (M2, W,), which is the pullback associated with the

¢,Gry yg

embedding of groups G,, ,, = G, with proper quotient.

o HXG" (M W,) — HXG" (MP_ W,), where M := M N Mg, »,, is given

Y1572 T Y1,72 Y1,727 71,72

by the pullback of the closed embedding M., ,, — M‘gﬁ.
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Sp
1,727

Ho,crit (Msp W'y) ~ Ho,crit (M

CvG’Yl,’YQ Y1,727 C7G’Yl,’Y2

W.,), where M. . C M, ., is the pullback

V1,72

of M7 x M? under the projection M., ,, — M,, X M,,. The isomorphism follows
from the fact that M~ = Crit(W,) N M

s by the conditions (xx). Hence the

Y1727

— M
sheaf of vanishing cycles of W, vanishes on Mw M

sp
1,727

o Ho,cm’t (MSP Ww. ) S H* ,crit (M

&Gy g 7,727 &Gy o

W, ~,), where W.

1.7, 18 the restriction of W,

to M

Y1720

o HIg" (MSP W"/17’Y2) = Hc.,gjfoyz <Msp x M7, W, B, .)©T¢. This isomorphism

CvG’YI,’YQ Y1727 Y27

comes from the following facts: there is a homotopy equivalence G,, x G, ~ G, ,,,

and M% ~, 18 a bundle over M,, X Mg ,, with affine fibers, and moreover, W, ,, is

the pullback of W,, HW.,,. The shift is given by

c= dimM’Yly’YQ/G’Yl,’YQ - dimM’Yl /G’Yl - dimM’Yz/G’Yz = _XR(V% 71)'

o HIG" g, (MEx MW, BW,,) = HIG (M1, @ HEG™ (M2, WW,,). This i

Y27 Y2’

the Thom-Sebastiani isomorphism.

The composition of the above maps gives us a coproduct

m\/ H;gjt(M?yp’W7> N Ho ,erit (Msp W ) Ho ,crit (MS;D W ) ’]I‘_XR(’YZ,%)'

V1,72 71? Y2’

By letting
Hcmt 0 cmt(Msp w. ) ’]I‘dime/G*y?

we obtain a product
. Hcrit ® Hcrit Hcrit ® Td
My - 71 Y2 ol

on the space H"" = @ HI™.

I
7672420

Theorem 3.3.2. The product m., ~, on the space H™ is associative.
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Proof. See [43]. O

In the case of quivers with potential, since dimG., = >~._;(7")?, we have that the dimen-

sion of the stack
dimMg /G, = dimMgq , — dimG., = —xo(7,7).

Thus
M = HEG (M) © T

and the critical COHA

crit __ crit
H o @ 7{7

A/EZI%)
of the triple quiver with potential induces the COHA of the preprojective algebra in the

next chapter.
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Chapter 4

Cohomological Hall algebras and

semicanonical basis

In this chapter we will give a detailed description of the product of the COHA of the
preprojective algebra, which is induced by the critical COHA of a quiver with potential.
Then show that the degree zero part is a subalgebra of COHA. Moreover, this subalgebra
admits a semicanonical basis, which enjoys the same properties as those of the semicanonical

basis of the generalized quantum groups.

4.1 COHA of preprojective algebras

Let @) be a quiver with the set of vertices I and the set of arrows €2. Recall the double quiver
@, the preprojective algebra Ilg, and the triple quiver with potential (@, W) (see Section
2.2).

e () has the set of vertices I, which is the same as the original quiver (). The set of
arrows is QUQ, where Q is the set of dual arrows, namely, for any arrow a : i — j € €,

we add an inverse arrow a* : j — i € Q) to Q.
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o g =CQ/ Y cqla. a’].

° @ has the set of vertices I the same as ) as well. The set of arrows is QU QU L.
Namely, we add a loop I; : i — i at each vertex i € I to @, and denote the set of

added loops by L = {l; : i — i|i € I}.

It is endowed with the cubic potential W = 3" o la,a*|l, where [ =% ., [;.

i€l

For any dimension vector v = (v');es € Zéo we have the following algebraic varieties:

a) the space Mg, of representations of the double quiver () in the coordinate spaces
(Cﬁ/i)iel )

b) the similar space of representations My, , of Ilp;

c) the similar space of representations Mg, of @

All these spaces of representations are endowed with the action by conjugation of the
complex algebraic group G, = [[,.; GL(7",C).

In the context of Section 3.1.2, let X = Mg, YV = M@ﬁ = Mg, x A7 (dot denotes
the inner product), and f = Tr(W), = > firTik, where f;; are functions on

. 2

Mg, and {z;} is a linear coordinate sySltGe[;; ;n(jx)w Then Z = Mp,,. Denote by
M, 1,4, the space of representations of @ in coordinate spaces of dimension ~; + 7, such
that the standard coordinate subspaces of dimension v; form a subrepresentation, and the
restriction of p € My, -, 5, on the block-diagonal part is an element in My, ,, X M, ,-
The group G, 5, C G, consisting of transformations preserving subspaces (€1 C C)ies
acts on My, 5, ,,- Suppose that we are given a collection of G,-invariant closed subsets

Mg , C Mg ., satisfying the following condition:

(¥) For any short exact sequence 0 — E; — E — Ey — 0 of representations of Q) with

dimension vectors v,y := 71 + 72, 2 respectively, E € M%) ) if and only if E; € M%p ,

a!

sp
and Fy € MQ

2

Then Mg’ = M%p L, X AT satisfy the conditions ().

Y
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We describe the product of the COHA of Il explicitly. First, The critical COHA of

(@, W) (see [43]) induces the coproduct on the vector space

@ HC.,G'Y (:"\/‘[SI_IPQ,",/7 Q)

veZL,
as follows:

e Hg My, .,Q) = Hlg _ (My,,Q), which is the pullback associated to the closed

Y172

embedding of groups G,, ,, = G, with proper quotient.

The projections

PTyi o, N (MQ wG'n,w) — (MQW’G )N

induce natural transformations of functors

Oy N = (DT 2 N 1Py 1 2 N (PP N )

by (3.2) and properness of pr.,, ,, v, thus give us
(7, N )1y fu, N (T, 8 ) [ 1] = (70 M) (DT 70 N )12 (1 72) 1N (PP o) (7, 3) ¥ [ 1

Here ¢, N = @rrw), 1S the vanishing cycles functor of the function tr(W), n on

Mg, G >N’ and @ 5, 5,y corresponds to Tr(W), 5, 5, on (Mg, G’Yly’Y2>N' (Note
that in subscript of ¢, ., 4,,~, 7 indicates the dimension vector of Mg ., and vy, 72

indicate those of G, ,,. We will use similar notations in the subsequent steps.)
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Since the following diagram commutes:

PTy1,v9,N

My Gwrm)N x C*

Oy G7)N x C*

Qn’

Ty,715v2: N Ty, N

PTQ 41 72, N

(Mé,w G'YlfYQ)N x Cr

(Mé,f)/? G'Y)N X C*
we have

(7 N )1 (prsy ,727N)!90(%V1 ~2)/u,N (P71 o, N) (0 3) [ 1]

= (pra;yl,'yz,N)! (77%'71 772,N)!‘P(%71 2)/u,N (7%71 m,N)* (p’f’@m ,WQ,N)* [—1].

By Theorem 3.1.4, we have two isomorphisms:

(7, N )10 (7,0 ) [ 1] 22 (70 N )1 (T, 8) ™ (8, 3 )4 (8, v)
and

(pT@m ,»yg,N)! (T ,WQ,N)!QO(%W v2)/u,N (77%71 nz,N>* (pram ,wz,N)* [—1]

. * (7 . * . *
= (pTQm,yg,N)!(Wv,vl,w,N)!(Wv,vl,vz,N> (i 192, ) (g 1 2, (per,w,N) .
Here i, x and i, ., 1, v are inclusions, and the subscripts have the same meaning as

the vanishing cycles functors above.

Pulling back to M?

IV C* gives us the commutative diagram

e crit sp e crit sp
HIG (M2 W) HIG (M2 W)
! i
H(:,G-y (Mig_iuQ,'y? Q) ® T'Y"Y H;G'n,vz (Mis_fQ,’w @) ® T’Y.’Y
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s
sp
H;Gﬁ 72( HQ Q) — H Gy (MHQ:’YL’)’Q’ Q) @ T~ where MHQ o

= My, , M Mg, ., and M, C Mg 14, is the pullback of My > M

Mg,vi72 Y2

under the projection My, 4, 4, = Mg, X M, 4. This is the pullback associated

to the closed embedding My, +, 5, = Mg, -

The inclusions

j’Yl ,'727N : (MQ\7'}/1 Y2 G’Yly’YZ )N — (MQ ) G'Yl y7Y2 )N
induce natural transformations of functors

Oy y1,72,N (j'n,w,N)*SDm 2,V (jw,w,N)*

by (3.2). So we have

(7%71,72,N)!90(%71772)/%N(7T%71 nz,N)* [—1]

- (ﬂ-’ya’yl 7727N)! (.]’71 7727N)*(’0(’71172)/u1N<j’71’727N)*<7T'Y»'Yl :727N)* [_1] :

By the commutative diagram

" Jv1v9.N .
(M@m,w’ GWW)N x C - (MQ v G’YL’Y2)N x C

Ty1.7v2,N Ty, v1v2,N

JQ 4172 N

(Mém,w’ G“ﬂ,w)N x C* (Mé,w G71772)N x C*

we have

(71-'77’71 )'727N)! (]71 7727N)*(p(’71 ,'YZ)/qu(j'Yl"YQ,N)*(71-'7"71 7727N)* [_1]

>~ (gm0 N+ (Tt 2 N 101 0) /N (T 92,8) T (TG g e, [ 1)
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Then the isomorphisms

<7T%71,72,N)!‘P(%71 mz)/%N(W%% ,72,N)* [—1]

>~ (T 2N )1 (va 2N ) (T 1 90 ) (i%w ,727N) i
and

(j@m ,WQ,N)* (ﬂvm/z,N)!SO(vl ,'72)/u,N<7TV1,72,N)* (jém,yg,N)* [—1]

*

= (J@m ,VQ,N)* (T 2 N U170 ) (g 0 ) (g ) (j§,71,72,N>

obtained from the theorem give us the commutative diagram by pulling back to

AV bt x C*:

677771 2, N

Ho,cm’t (Msp W»y) ~ H.’crit (MSP W,Y>

&G Qmm’ ¢,Gry vo Q2
e.crit sp o.crit Nip
Hig) ,(MZ W) HG" (Mg, Wains)
: n it . ArP l1
HC’G”HWQ (MHQW’ ) ®T HC,G’YL’YQ (MHQv’Yl 2! Q) ® T
where I} = -y — v - 7.
H? (Msp Q) — H? (MSP Q)@ T
&Gy o2 &Gy X Gy g v1,720 .

The affine fibrations

Tyry2,N - <M@W1Wz’ Gy X C"VQ)N - (Méﬁlﬂz’ C"Vl"YQ)N

induce isomorphisms

~

Gy z) | XC? — (431708 Qg

‘P(vmz)/u,N(Q(M .G, xGm)Nx(c*)'

@WLW2 @,Wlﬂz
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By applying Verdier duality we get

P 2) N (G100, N D Qg Gy xGoy)  XC? — DQuy Gy17y2)NXC*)'

Q71,72 Q1727

Then

T’Yl"Y2)

! * - *
P ,72)/U,N((q’717'Y2,N>-Q(M@ﬁ1W2,Gwl XGry)  XC Q(MQﬁﬁz’G”l”?)NXC ®

by (3.1), and

(G121 (1 2 ><’Y2)/U,NQ(M Gy XGiy) | XC*

Q71572

*
= (@192, N )12 (1 72,71 x72) f10,N (Gt 2, ) Q(MA Gy 4y)  XC*
Qy1,y2’ L2/

~

— 90(71,72)/%N(@(M

J xc Q T’Yr’Yz)
N

5 G
Q vy vg? L2

by (3.4). Then we have isomorphisms

* Y172
(71 2N 1P (1 2) N (T 70, (Q(Mml,w(}vmz)NW* ® T 2)
* *
— (7T717’YQ,N)!(Q’Y17’727N)!90('y1,fy2,'ylx»yg)/u,N(qul;yz,N) (71'717727]\]) Q(Mf G J xCx-
Q,v1,y2’ VL2 N
The commutative diagram
9v1,7v2,N
—~ * . *
(MQO’L’Yz’ GVI X GW)N xC (MQ,%,W’ G71772>N x C
Ty1:72,71 X 72, N 192, N
q@ﬁpwg,N
_ * — *
(MQ%W’ Gy X G'VQ)N xC (MQm,w’ G’Yl»'D)N xC

gives us isomorphisms

(T, nz,N)! (q717~/2,N)!§0(71 271 sz)/%N(qw 7727N)*(7771 aN)" [—1]

= (qém ,72,N>!(7T'Yl Y2571 X’Yz,N)!SO(% Y2571 X72)/U7N<7T71 Y271 X’Y2:N)* (q@m ,’yz,N)* [_ 1] :
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Theorem 3.1.4 implies isomorphisms

<7T’y1 ,72,N)!90(717’Y2)/U,N(7T71 ,'727N)* [_1] = (T‘-’Yl 7’727N)! (7T’Yl ,’Yz,N)* (Z.M :'727N)*<Z"}’1,'Y2,N>*
and

(q@m ,VQ,N)! (7T'y1,“/2m XW,N)!SO(w 2,7 X2) /N (Wm 2 ><’72,N)* (q@m ,»yg,N)* [—1]

*

* [ o *
= (CI@M,%N)!(771,72,71XVQ,N)!(WMNQMXW,N) (i 2,1 72, ) (Bn 32 7 72, (q@,’yl,’yg,N) :
Pulling back to Mg N X C* gives us the commutative diagram
V1,772,

ecrit A g°P ~ o, crit W —yy-
’ ~ ’ ~ Y172
¢,Grq 70 ( Q,y1,720 W’Yl 7’}’2) [—[c,GAYl X Gy, (MQ,'yl Y20 W'Yl fYQ) ® T
l l
H* MSP TY =7y =~ o [e ﬁsp Ty =272
C,qu Y2 ( HQ7'71 27 Q) ® C,qu XG’YQ ( HQ7'71 27! Q) ®
—~—Sp ~ i~ J i
L4 (] sp sp Saiiviv,+Sai vy
hd ¢,Gry XGqyy (MHQ,%,W; @) > HC7G71><G72 (MHQ,M X MHQﬂQ’ ) & T*%57172 ij Y201
Similar as the previous step, the affine fibrations
Pryiy2,N - (M@,yl,yg’ G, x GW)N - (M@,% X M@,ryg7 G, % Gw)N

induce isomorphisms

*
(p“/17727N)!(10"/17’YQ,71 xy2,N (p717“/27N) Q(M 5. XMg Gy XGry) XC*
Q1 Qg L2

;> 90’7153727N(Q(MA X

l
~ LT
om MQ,W2,G.Y1><G.Y2)N><(C )’

where [ = S0 ~dni.

a:i—>j€é1
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Then we have isomorphisms

<7T71 X’Yz,N)! (p% »'Y2,N)!S0(71a’72{71 xXy2)/u,N (p'Yl ,’7271\7)*(7(’}'1 xXvy2,N ) @(MQ 1 *Mg .Gy xGry)  XC*

AN (71'71x'yg,N)!W(ylﬁﬂyg)/u,NOHl X2, N ) (@(M Q'y 7G71><G72)N><‘C* X Tl)

The commutative diagram

(Mg

* D172, N ~ "
Gy G X Gy) X € ———=— (Mg x Mg _ .G, xG,,), xC

172,71 %72, N Ty Xy9, N

PQ,v1 72N

(M@qu’GVlXG) x C* (M@ XMQ'y7G XG) x C*

7’Y1

implies isomorphisms

(T‘-'Yl ><72,N)! (p’Yl 7727N)!¢(71 2,71 Xy2) /u,N (p’h,'m,N)* (7T'Yl ><’Y2,N)* [_1]

(p@;qug,N)!(ﬂ-% 2,71 xvz,N)!SO('n A2 sz)/u,N<7T”/1,v2,71 sz,N)*(p@m ,72,N)* [_1]-
By Theorem 3.1.4, we have
(7T71 X“/z,N)!SO('leHvz)/u,N(WM sz,N)* [—1] ~ (7T71 ><727N)! (7T71 X“/z,N)*(i% X“/z,N)*(iM sz,N)*
and

(p@m/mmN)! (W% 2,71 X%N)!QO(% 2 Xw)/u,N(mn 2 X'yz,N)* (p@m ,WQ,N)* [—1]

~

(p@mﬁz, D1 (71 92,1 %72, N ) (T s 1 92,8 ™ (B 1 120 ) (s 1y 1 2, N) (pém,w,N)*-
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By pulling back to (NI%’N1 X M%pm, G, X G'YZ)N x C*, we have

o crit arP
Hc,GW1 X Gy (MQm yy2? W’Yl 7’72)

~ e crit l
Hc’g; X Gy (Mgpﬁl x MS@P,W’ W’yl b W’YQ) ®T

l l

—~sp

I o sp sp [
HC.va X Gy (MHQ»’Yl,W’ Q) ® T €,Gyy XGry (MHQWl X MHQﬁz’ @) ® T*

where [y =y -y—m -y, and o =7 -n+72-72+1

. sp sp
b HQG»YI XG»Y2 (MHQ,’yl X MHQ,’)Q’

@) % H‘;G’Yl (Mls'?Q;yl ) Q) ® HC.7G»Y2 (MSHPQWQJ @)

This is the Kiinneth isomorphism compatible with the Thom-Sebastiani isomorphism

by Theorem 3.1.5.

The above computations can be summarized for convenience of the reader in the form

of the following statement.

Proposition 4.1.1. The coproduct making the vector space P HJ,G(WQW@) into a

wezéo
coalgebra is given by the composition of the maps

C.,G»y (Mf'fQ,’y’ Q) - Hc.vG’YL’YQ (M?[DQW’ Q)
. 5P -
— ¢, Gy vy (MHQv’Yl,’W’ Q) ® T
~ . ~sp oy
— ¢ Gy X Gy (MHQWI Y27 Q) ® T i
L) C., G’Yl X G'yz (MSHPQv’Yl X M.ls_an"Q? Q) ® TﬁXQ (’YI 772)7XQ (72’71)
SRR HC.7G’}/1 (M.‘f-foh ) @) & Hg,G"/Q (W@:’YQ’ Q) ® T-xe(2)=x@(2m),
Now let
H»y — H:’GW (MSHPQ;W Q)V R ’]I‘*XQ('WY)’
and

=P .

I
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Then the above coproduct makes H an associative algebra with product

H'Yl ® H’Yz = hrc.,GAYl (Msp

w QY @ T @ Heg

(& "/2

H;Gﬂ (M HQ . Q) ® H.Gwz (Mig‘ﬁg Y’ Q)Y ® ® T—Xxe(:m)=xq(v2:72)

— H'g (M7 i Q)Y ® TXemm2)=xe(2m) @ T-Xe(n7)=xe(122)
GGy 472 Q1+72?

(M,

T e @)V ® T—XxQ(v2:72)

I{c,(}.”_k.y2 (MHQ Y1727 @)

—xQMm+y2,71+72) —
® Txel )_H’Y1+’Y2‘

Definition 4.1.2. The associative algebra H s called the Cohomological Hall algebra of the

preprojective algebra Ilg associated with the quiver Q).

Remark 4.1.3. In the framework of equivariant K-theory a similar notion was introduced

in [72].

Corollary 4.1.4. This product preserves the modified cohomological degree, thus the zero

degree part
-2
= D H = D HET (M, Q)Y e T

WEZ/ WEZ>O

is a subalgebra of H.

Remark 4.1.5. We can reformulate the definition of COHA of Il using language of stacks.

The natural morphism of stacks
MHQmm/G%,Wz — MHQW/G’Y

is proper, hence it induces the pushforward map on H. Composting it with the pullback by
the morphism

MHQ7’Y1,“/2/G’717’72 - MHQKH/G’Yl X MHQ,’D/G“Q?

we obtain the product.
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4.2 Lusztig’s seminilpotent Lagrangian subvariety

In this section we work in the framework close to the one from [6].
Let @ be a quiver (possibly with loops) with vertices I and arrows €2, and denote by ;
the set of loops at i € I. We call i imaginary if the number of loops w; = [€;| > 1, and real

if w; = 0. Let I™ be the set of imaginary vertices and I" real vertices.

Definition 4.2.1. A representation x € Mg is seminilpotent if there is an I-graded filtra-
tion W =Wy =V, D... D> W, ={0}) of the representation space Vo, = (V)ier, such that
Tar(We) € Wepr, and x,(W,) C W, fora € Q.

Remark 4.2.2. Our definition of seminilpotency is slightly different from that in [6]. We
put nilpotent condition on the dual arrows a* rather than a. But main results of [6] hold in

our situation as well.

We denote by M ., the space of seminilpotent representations of dimension . Then

by [6, Th. 1.15], the space of seminilpotent representations of Il of dimension v, Mj} ~ C

HQ)V
M% I is a Lagrangian subvariety of Mg .
Let
My, ... = {z € My, [codim( @ Imz,) = 1}.
j#i,a:j—iinQ
Then MSHPQ;Y = ieJUl>1 Mf{’@mi’l by the seminilpotency condition. There is a one to one
correspondence of the sets of irreducible components (see [6, Prop.1.14])
Irr(Mf{)Q;y,i,l) % Irr<Mls_fQ;y—l6i,i,0) X Irr(Mf{)Q,lei)? (41)

— ; sp _ sp
where e; = (0;;)jer. For any vertex ¢, we have Irr(Mjy, ) = l|;!) Irr(My,, ;). Now let us
discuss case by case.

1) Ifi € I" then Irr(Myy ;.. ) consists of only one element, namely the zero representation.

We denote by Z;; the only element in Irr(My, ., ).
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2) If i € I'™, then there are two cases.

a) If the number of loops w; = 1, then Irr(MsHpQJei) is parametrized by €;; = {c = (¢x)},

the set of partitions of [ (i.e., >, cx =1, ¢ > 0,Vk, and cpq1 > ).

b) If w; > 1, then it is parametrized by the set of compositions also denoted by &;;
(i.e., Zk e, =1, ¢ > O,Vk‘)

We put |c| = ), ¢ for ¢ € &, and denote by Z; . € Irr(Mf-fQ’lei) the irreducible component
corresponding to c¢. Let Z € Irr(Mf-fQﬂ), then there exists ¢+ € I and [ > 1 such that
ZN MSHPQ,W,Z is dense in Z. We denote by ¢;(Z) the corresponding partition or composition
if i € I' and ¢;(Z) =1 if ¢ € I"*, via the one to one correspondence (4.1).

Now let .#, be the Q-vector space of constructible functions f : Mffw — @Q which are
constant on any G,-orbit, and .#Z = @7 A.,. Then one can define a product * on .Z in
the way which is analogous to the definition of Lusztig for nilpotent case in [46, Section 12].

More precisely, let us denote by MSHPQVV the space of seminilpotent representations of
IIy with /-graded vector space V', and .#y the Q-vector space of constructible functions
f Mf]pr — Q constant on any G,-orbit. Let Vi, V5 and V be I-graded vector spaces of
dimensions 71, 2 and v = 7y + ¥, respectively, and f; € #y,,i = 1,2. Then fi x fo € Ay

is defined using the diagram

p2

Sp sp P ’ 7 p3 sp
MHQ,V1 X MHQ,V2 F F MHQ,V

where the notations are as follows:

e [ is the variety of pairs (z,U) with z € Mf-[pQ’V and U an x-stable [-graded subspace

of V with dimension 7,;

e [ is the variety of quadruples (x,U, R", R') where (z,U) € F", R" : Vo, — U and
R :V, = V/U;

e The map pi(z,U, R", R') = (x1,23) where zR' = R'x; and xR" = R"x,,
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i p2<3§', U7 RﬂvR,) = (QZ, U)7
o pa(@U) =1

Note that py is a Gy, X Gy,-principal bundle and ps is proper. Let f(zq,x2) = fi(z1) fa(x2),
then there is a unique function f; € .#p» such that pif = pifs. Finally, define f; x fo =
(p3)i(fs). By identifying the vector spaces .#y for various V with .#, in a coherent way
(dim (V') = ), we define the product * on .#, making it an associative Q-algebra.

One can also reformulate this product using the diagram of stacks
MHQNz/G’Yz X MHQ7’Y1/G’Y1 — MHQ,’YQ,’H/G’YQKH - MHQ,’Y/G’Y'

We denote by 1, . (resp. 1;;) the characteristic function of Z; . (resp. Z;;), and A4, C A
the subalgebra generated by 1;) and 1;;. For any Z € Irr(MsHpQﬁ) and f € A, let
pz(f)=cif Z( f~'(c) is open dense in Z.

Theorem 4.2.3. (see [6, Prop. 1.18]) For any Z € Irr(My, ) there exists f7 € My, =
Mo N M-, such that pz(fz) =1, and pz(fz) =0 for Z' # Z.

4.3 Generalized quantum group

We recall some definitions and facts about generalized quantum group introduced in [6].
Let (e,®) be the symmetric Euler form on Z! defined by (i,j) = 28;; — a;; — aj;, and
(e,5) =1(i,7) if e = (4,]) € Io = (I"® x {1})J(I"™ x N5;) and j € I.

Definition 4.3.1. Let F be the Q(v)-algebra generated by (E,).er.., N'-graded by |E,| = li

forv=(i,1). If AC N/, then let F[A] = {F € F||E| € A}.
For any v = (v")ier € Z', let ht(y) = ;7" be its height, and v, = ivzi, where

v; = v®92. We endow F with a coproduct §(E;;) = . wl'E;; F;y,, where E;o = 1.
l1+1a=1
Then for any family (v,),er., € Q(v), there is a bilinear form {e, e} on F' such that
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o {E F'} =0if |[E| #|F|
o {E, E}=uv,Y €,

o {EE E"} = {E®E, §E")},VE,E E" €F,

151 lo

It turns out that > (—1)lliELi is in the radical of {e,e}.
. Ll T

1T2=—(4]

Definition 4.3.2. Let U* be the quotient of F by the ideal generated by the above element
and the commutators [E;;, E; i) for w; = 1. Then {e, e} is well-defined on Ut. Let U be
the quotient OfZ/N{Jr by the radical of {e,e}.

Theorem 4.3.3. (see [6, Th. 3.34]) There is an isomorphism of algebras

E@(l) — 17;7(1), 1€ [im,

E@l — 12'71, 1€ ™.

Definition 4.3.4. The semicanonical basis of UL, is o~ ({fz|Z € Irr(Miy,)}).

4.4 Semicanonical basis of Y

We have already seen that for an appropriate subspace M% , C Mg ., the degree 0 part
H® C H is a subalgebra of COHA. In particular, we can take M%pﬁ to be the space of
seminilpotent representations of . Then Mf—f@w is the space of seminilpotent representa-
tions in My, , and dim(My, |
{[Z)|1Z € Irr(Mf{’Qﬂ)} lie in H°. In fact, these classes form a basis of H° by the following

/G,) = —xq(7,7), so the classes of irreducible components

theorem.

Theorem 4.4.1. Let X be a scheme with top dimensional irreducible components {C*}, and
a connected algebraic group G acts on it. Then Hztép(X) has a basis one to one corresponding

to {C*}, where top is the dimension of the stack X/G.
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Proof. Choose an embedding of groups G < GL(n,C). Let fr(n,N) be the space of n-
tuples of linearly independent vectors in CV for N > n. Then X x fr(n, N) has irreducible
components {C* x fr(n, N)}. Thus

X xg fr(n,N) = (X x fr(n,N))/G

has irreducible components {C*} one to one corresponding to {C*} since G is irreducible.

Then the Borel-Moore homology HEM (X x¢ fr(n, N)) has a basis {[C*]}, where
e = dim(X) + dim(fr(n, N)) — dimG,

implying that
HZ* (X xg fr(n,N))" = Hu" (X g fr(n,N))

has basis one to one corresponding to {C*} (For details of Borel-Moore homology, see [11,

Section 2.6]). Then

HftGOP(X) = A}im H?*(X x¢ fr(n,N)) ® T—dimfr(n,N)
’ —00

has basis one to one corresponding to {C*}, where top = e — dim(fr(n, N)) = dim(X/G).

L]

Definition 4.4.2. We call the basis defined above the semicanonical basis of the subalgebra

HO.

Given an element F in 2°(X) with constructible cohomology, and x € X, the func-
tion x(F)(z) = x(Fu) = >.,(—1)"dim(H*(F,)) is constructible. Moreover, the standard
operations (pullback, pushforward, etc.) in 2°(X) and the corresponding operations on
constructible functions are compatible.

Recall the family of constructible functions {fz|Z € Irr(Mi7,)}. Then Uz = f; (1) is
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constructible. Let fz n be the characteristic function of (Uz, G,),, and Qzx be the con-

N
stant sheaf on mzv' Since the operations on constructible functions and constructible
sheaves agree, there is an isomorphism of algebras W : H° — .#,",[Z] — fz. It is obtained
by taking the dual of compactly supported cohomology and passing to the limit.

Furthermore, notice that H° ~ (U,£,)°?, and that Lusztig’s product * is opposite to the
product of COHA.

The semicanonical basis of H? is compatible with a certain filtration. More precisely, we

have the following result.

Theorem 4.4.3. Fiz d = (d;) € ZL,. Then the subspace spanned by
{[Z]|134, s.t.le;(Z)| = d;}

coincides with > H°[Z;.], where Z;. € Irr(M, .,) s the irreducible component cor-
iEI,‘C‘:di
responding to ¢ (defined in Section 2.3), and ¢ =1 ifi € I"®.

Proof. By definitions, Y, H°[Z;.] is contained in the subspace spanned by
iEI,|c|=d¢

(12|36, s.t.|:(2)| = d;}.

To prove the reverse inclusion it suffices to show that for any i € I, v € ZL, and [Z] € H°

such that Z € Irr(Myy ) and [;(Z)| = [, we have [Z] € HO[Z;.]. We use descending

le|=t

induction on [ < #*. For above Z, we have 7 — le; € N/| and by the proof of [6, Pro. 1.18],

there exists a unique Z' € Irr(Mf-fQﬁflei) and Z;. € Irr(MSHprlei) such that |&;(Z")| = 0 and

2Nz =2+ Y azlZ]

lei(Z)|>1

for some a; € Q. By applying the induction hypothesis to Z we have that the subspace
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spanned by
is contained in > H"[Z;.]. Thus the two subspaces coincide. O
iEI,|C|=d¢

The dual of representations of Il induces a bijection
«: Irr(Miy, ) — Ire(Mp, ),

A AR
thus an antiautomorphism of H". Then the dual of the above theorem holds:

Theorem 4.4.4. The subspace spanned by
{[Z]|34, s.t.|e;(Z7)| = d;}

coincides with Y. [Z; JJH°.

4.5 COHA as a shuflle algebra

The critical COHA of any quiver with potential (Q, W) is a shuffle algebra according to [12,
Sec. 4], thus induces a shuffle algebra structure on the COHA of a preprojective algebra.

To be precise, for a dimension vector v € Zéo: let

T, = H(C*Wi cG,

i€l

be a maximal torus, and consider the T,-equivariant critical cohomology with compact

support H;’riﬂjt(Mstﬁ, W,), and its dual H;L;Tt(Mstﬂ, W.)". Both of them admit an action

of the product of symmetric groups Sym,, := [],.; Sym.:. Recall that there is a Hy. (pt, Q)-

el

43



e crit

module structure on Ho'w" (Mg, W,)". Furthermore,

Hg, (06,Q) = Hi (01, Q)%™ = Q) Clana, o, 13,

iel
Definition 4.5.1. Fix two dimension vectors v, and v,, we denote

St

¢(@Q.7.7) =[] II T] =2 200,

i€l m=1m/=1
where 931(1% € Hg, (pt, Q) and $§2n)1, € Hg  (pt, Q).
Proposition 4.5.2. (see [12, Prop. 4.3]) There are natural maps

o.cri ()= o o.cri
g (M WS e TR S g (M, W)

R

which are isomorphisms.

Let

4 4 —x@(r+ X (v)* =)
Tycmt — (H;l;?t(Mst W}y)V)Symﬂ, ® T Q = 7

”\/’

and

crit crit
T =D T

I
76220

The product on the space 7<% is defined as follows.
First consider H:;’:t(l\/[g W.,)Y.

7’y’

e crit sp v e crit sp
b Hc,T71 (MQ,'pr’Yl) ®Hc,TW2 (MQ,'D,

is the Thom—Sebastiani isomorphism.

Ve e crit sp sp
W’Y2) - HC,T’Y <MQ771 X MQ:’YZ’

e crit e crit
o Hix (Mg, x Mg, Wy BW,,)Y — Hig (Mg

Q1,727

pullback associated to the affine fibration Mg ., 5, = Mg, X Mg ,,.
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W%n@)v ® Tise!

W,,BW.,,)Y. This

is the



Ww.

e crit sp
i I—Ic,T7 (M V1,72

O VY = H;’r?jt(MSQpﬁ, W,)Y is the pushforward induced by the in-

clusion Mg+, v, — Mg .

° H:,g?ft(Mziw’Wv)v - Hc.fi“:it<Mstm/7WW)V[Q(QJ’M%)A] ® T~ is the division by
6(@771772)'

All the above maps are Sym,, x Sym.,-equivariant. By restricting to invariant parts,
composing the above maps and taking sum over all the shuffles of (v;,72) into v, we get a

map

(A (VI Wi )Y )50 @ (HEGT (M W2)) ™™ — (HE (M, W) ™™ 9 T,

CvT’YI C7T72

where the subscript L means m,&(Q, v1,72) is formally inverted for every shuffle 7.

Proposition 4.5.3. (see [12, Cor. 4.7])
The above map factors through (H;’;:it(]\@w W)V )%™ and induces an associative mul-

tiplication (T-equivariant multiplication) on T,

Proposition 4.5.4. (see [12, Cor. 4.8]) The algebra T is isomorphic to the critical
COHA of (Q,W) defined in Chapter 3.

Given a quiver (), we apply the above definition to the triple quiver with potential
(@, W). Using dimensional reduction, we obtain an associative algebra (T-equivariant

COHA of the preprojective algebra Ilg)

where

. s o —xQ(r N+ X ()2 =)
T = (Hz, (M, , Q)Y)>™ @ T =

It is straightforward to see
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Theorem 4.5.5. Given a quiver @, the T-equivariant COHA T of its preprojective algebra
1y is isomorphic to the COHA H of Ilg.
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Chapter 5

2 Calabi-Yau categories and quivers

In this chapter we first recall the definition of ind-constructible Calabi-Yau categories. Then
we will prove that the equivalence classes of a certain class of 2 Calabi-Yau categories are in
one-to-one correspondence with a certain type of quivers. This is an analog of the statement

of 3 Calabi-Yau case in [42, Sec. §].

5.1 Calabi-Yau categories

We give a basic introduction of ind-constructible Calabi-Yau categories following [42].

5.1.1 Ind-constructible categories

Let k be a field with k its algebraic closure.

Definition 5.1.1. Let S be a variety over k, i.e., a reduced separated scheme of finite type
over k. A subset X C S(k) is called constructible over k if it belongs to the Boolean algebra

generated by k-points of open (equivalently closed) subschemes of S.

In other words, a constructible set is the union of a finite collection of k-points of disjoint

locally closed subvarieties (S; C S);.
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The category CON of constructible sets over k has objects (X,S) as above. The
morphisms Homeon, ((X1,51), (X2, 52)) is defined to be the set of maps f : X; — X5 such
that there exists a decomposition of X; into the finite disjoint union of k-points of varieties

(S; C S1); so that the restriction of f to each S;(k) is a morphism of schemes S; — Ss.

Definition 5.1.2. An ind-constructible set over k is given by a chain of embeddings of
constructible sets X = (X1 — Xo — X3 — -+-). A morphism of ind-constructible sets

X=X1=-Xo—=>Xs5—> - )andY := (Y1 = Yo — Y5 — ---) is defined as g : U; X;(k) —

U;Yi(k), such that for any i there is an n; so that g|y,g) X;(k) = Y, (k) comes from a

constructible map.
We have the following ind-constructible version of the notion of an A..-category:
Definition 5.1.3. An ind-constructible A, -category over k consists of the data:

1) The set of objects
M = 0b(C) = Uier X,

which s an ind-constructible set over k.

2) The bundles of morphisms of degree n, which is a collection of ind-constructible vector

bundles

HOM"™ — M x M,n € Z.

The restriction HOM"™ — X, x X, is a finite-dimensional constructible vector bundle
for anyn € Z,i,j € I, and there exists a constant C; ; such that HOM"™ — X; x X

is a zero bundle for n < C; ;.

3) The higher composition maps, which are ind-constructible morphisms of ind-constructible

bundles

mp : pi2HOMll ® ttt ® p27n+1HOMln — pT’n+1HOMl1+"'+ln+2—TL’
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forn > 1,0;,...,l, € Z. Here p;;y1 and D141 denote the natural projections from

ML o M2,
The above data satisfy the axioms:

A1) Higher associativity property for m,,n > 1 in the sense of A -categories.

A2) (weak unit) There exists a constructible section s of the ind-constructible bundle

”HOM?dmg — M such that the image of s belongs to the kernel of my, and gives

rise to the identity morphisms in Z-graded k-linear category H*(C(k)).

An ind-constructible A..-category C gives rise to a collection of ind-constructible bun-

dles over Ob(C) x Ob(C) given by
EXT":= H(HOM®),i € Z,
whose fiber over a pair of objects (F, F) is

Ext'(E,F) = H'(HOMS, o, my).

A3) (local reqularity) There exists a family of schemes (S;) of finite type overk, a collection
of algebraic k-vector bundles HOM]',n € Z over S; x .S; for all i, and ind-constructible

identifications

L;S;(k) ~ M, HOM]' ~ HOM[s. 5., n € Z,
such that all higher compositions m,,n = 2 are morphisms of algebraic vector bundles
considered for objects in S; for any given i.

The basic example of an ind-constructible A -category is the category Perf(A) of per-

fect A-modules, where A is an A.-algebra over k with finite dimensional cohomology.

Definition 5.1.4. An ind-constructible A -category is called minimal on the diagonal if

the restriction of my to the diagonal A C M x M is trivial.
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Any ind-constructible A, -category is equivalent to one which is minimal on the diagonal.

Remark 5.1.5. One can define the property of an ind-constructible weakly unital A -
category C to be triangulated using the notion of a functor between two ind-constructible

Ano-categories. See [[2, Sec. 3.1].

5.1.2 Ind-constructible Calabi-Yau categories
Assume that the field k has characteristic zero.

Definition 5.1.6. A Calabi- Yau category of dimension d is a weakly unital k-linear triangu-
lated Ay -category C, such that the Z-graded vector space Hom®*(E, F) = @pezHom"(E| F)
is finite-dimensional for any objects E and F. This implies that Ext*(E, F) is also finite-

dimensional. Moreover, we have the following data:

o A non-degenerate pairing

(e,0) : Hom*(E, F) ® Hom®(F, E) — k[—d|,

which is symmetric with respect to interchaging E and F.

e A polylinear Z/NZ-invariant map

Wy : @1<isn(Hom®(E;, Eiq)[1]) — k[3 —d],

for any N > 2 and objects £y = Eny1,...,EN.

e The above maps are compatible in the sense of

WN(al, e ,CLN) = (mN_l(al, Ce ,aN_l),aN).

The collection (Wx)n<2 is called the potential of C.
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In the following sections we will consider d = 2 case, namely, 2-dimensional Calabi-Yau

categories.

5.2 Correspondence between quivers and 2CY cate-
gories

In Section 8 of [42], M. Kontsevich and Y. Soibelman proved that the equivalence classes of
a certain type of 3-dimensional Calabi-Yau categories are in one-to-one correspondence with
the gauge equivalence classes of quivers with minimal potential (Q, W). This section gives
an analogue in 2-dimensional Calabi-Yau case. We assume that k is a field of characteristic

Zero.

Theorem 5.2.1. Let C be an ind-constructible 2-dimensional k-linear Calabi- Yau category

generated by a finite collection € = {F;}ic; of generators satisfying
o Ext'(E;, E;) =k -idg,,
o Ext'(E;, E;) =0,Yi # j,
o Ext<"(E;, E;) =0,Vi,j.
The equivalence classes of such categories with respect to Ao -transformations preserving the

Calabi-Yau structure and £, are in one-to-one correspondence with finite symmetric quivers

with even number of loops at each vertex.

Proof. Let’s denoted by o7 the set of equivalence classes of such 2 Calabi-Yau categories,
and A the set of finite symmetric quivers with even number of loops at each vertex.

Given such a category C, we associate a quiver () whose vertices {i};c; are in one-to-
one correspondence with €& = {F;};cr, and the number of arrows from i to j is equal to

dimEzt' (E;, E;). Since C is 2 Calabi-Yau, we have

dimExt' (E;, E;) = dimExt' (E;, E;)Y = dimExt' (E;, E;),
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so @ is symmetric. The supersymmetric non-degenerate pairing on Ext®(E;, E;) leads to
a symplectic pairing on Ext!'(FE;, E;), thus dimFEzt'(E;, E;) is even, which means that the
number of loops at each vertex is even. This construction defines a map @ : o — A.

To prove that ® is a bijection, we consider a category C with single generator F, and a
quiver () with single vertex for simplicity. The general case can be proved in a similar way.

Let @ be a quiver with one vertex and |J| = 2n loops, where J is the set of loops. We will
construct a 2 Calabi-Yau category with one generator E, such that 2n =dim Ezt'(E, E).
Assuming that such a category exists, we will find an explicit formula for the potential on

A= Hom*(E,E). Let’s consider the graded vector space
Ext*(E,E)[1] = Ext°(E, E)[1] ® Ext'(E, E) ® Ext*(E, E)[-1] = k[1] ® k¥*" @ k[-1].

We introduce graded coordinates on Ext®(E, E)[1]:

a) the coordinate « of degree 1 on Ezt’(E, E)[1],

b) the coordinate 3 of degree —1 on Fxt?*(E, E)[—1],

c) the coordinates x;,&;,i = 1,...,n of degree 0 on Ext'(F, F) = Ext'(E,E)V.

The Calabi-Yau structure gives rise to the minimal potential W = W (a, x;,&;, #), which is a
series of cyclic words on the space Fxt®*(E, E)[1]. Furthermore, A defines a non-commutative
formal pointed graded manifold endowed with a symplectic structure (c.f. [42]). The po-
tential W satisfies the equation {W, W} = 0, where {e, o} is the corresponding Poisson
bracket.

We need to construct the formal series W of degree 1 in cyclic words on the graded

vector space k(1] @ k*" @ k[—1], satisfying {W, W} = 0 with respect to the Poisson bracket

(F.9) = Za el + 5 ()
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Let
Wcan = QQﬁ + Z(angz - afzxz)

i=1
This potential makes Fzt®*(E, E) into a 2 Calabi-Yau algebra with associative product and
the unit. The multiplications are as follows: the multiplication of Ext°(E, F) and the other

components is scalar product, and is a non-degenerate bilinear form on the components
Ext'(E,E)® Ext'(E,E) — Ext*(E,E) ~ k.

In addition,

n

{Wcana chm} = Zl[a‘g/;jna ag/gf"] + [mg;an7 3"([9/?71]
i=

n

= > (&G — o) (az; — zi0) — (ax; — 700) (G — a;)

=1

+(af + fa+ i(rcjfj —&zj))a’ — o (af + fa + kfl(:ckfk — &)
= —

=0

The above construction from ) to C shows that ® is a surjection.

Finally, we need to check that ® is an injection. The 2 Calabi-Yau algebras we are con-
sidering can be thought of as deformations of the 2 Calabi-Yau algebra A.,,, = Ext*(E, E)
corresponding to the potential W,,,. The deformation theory of A.,, is controlled by a
differential graded Lie algebra (DGLA for short)

Yean = @ g?an’

nel

which is a DG Lie subalgebra of the DGLA

g =[] Cvel* (A1)’ = P 7"

k>1 nez
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Here we write

g" = {W]coh.degWV = n},

and

an.. =AW € g"|cyc.degW > n + 2},

where coh.deg means the cohomological degree of W, and cyc.deg means the number of
letters o, x;, &, 5,1 = 1, ...,n that W contains. In these DGLAs, the Lie bracket is given by
the Poisson bracket and the differential is given by d = {W_,4,,, ®}. The DGLA g4, is a DG

Lie subalgebra of g since d increases both coh.deg and cyc.deg by 1. As vector spaces,

a = gcan@gv

where

s=Pg",

nez
and

g" = {W € g"|cyc.degW < n + 2}.

For the same reason as g.,, we have that g is also a DG Lie subalgebra of g. It follows
that geqn is a direct summand of the complex g. The latter is quasi isomorphic to the cyclic
complex CCy(Aean)”. Let AT C Aean be the non-unital A, -subalgebra consisting of terms

can

of positive cohomological degree. Then for cyclic homology,

HC\(Awan) ~ HCW(AL,) @D HCW(K).

can

In terms of dual complex g, this isomorphism means the decomposition into a direct sum of
the space of cyclic series in variables x;,&;, 5,1 = 1,...,n (corresponds to HC. (A )Y), and

the one in variable a (corresponds to HC,e(k)"). We have that series in o don’t contribute to

the cohomology of geq, since {Wean, a} = —a?. Moreover, the cohomological degree of series
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in z;,&,53,i = 1,...,n is non-positive. Hence H>!(gean) = 0. In particular, H'(geun) = 0,

which means that deformation of A.,, is trivial. Thus, ® is an injection. O

Thus the ind-constructible category C can be canonically reconstructed from its full

subcategory consisting of the collection £.
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Chapter 6

2 Calabi-Yau categories and

Donaldson-Thomas series

In Chapter 4 we discussed the semicanonical basis obtained as a result of the dimensional
reduction from 3CY category to the 2CY category. In this chapter we are going to discuss
Donaldson-Thomas series for 2C'Y categories. We will first review the notion of stability
structures, and then define the motivic Hall algebra of a 2C'Y category C. A map from
this algebra to the quantum torus gives rise to the motivic Donaldson-Thomas series, which
satisfy the Factorization Property. There is a conjecture about DT-invariants in Section

6.6. This theory appears in [58].

6.1 Stability structures

In this section we will follow [42, Sec. 3.4].
Let C be an ind-constructible weakly unital A.-category over a field k of arbitrary

characteristic. Let ¢l : Ob(C) — T' ~ Z"™ be a map of ind-constructible sets, such that the

induced map Ob(C)(k) — I' factors through a group homomorphism ¢l : Ko(C(k)) — I

For any field extension k' D k we obtain a homomorphism cly : Ko(C (E/)) — T
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If C is a Calabi-Yau category, then we assume that I' is endowed with an integer-valued

bilinear form (e, ®), and the homomorphism ¢l is compatible with (e, @) and the Euler form

on K[) (C(k))
For ind-constructible triangulated A..-categories we have the following version of stabil-

ity structure.
Definition 6.1.1. A constructible stability structure on (C, cl) is giver by the following data:

e an ind-constructible subset

C* C Ob(C)

consisting of semistable objects, and for each object it contains all the objects isomor-

phic to it,

e an additive map

Z . I'—C
called the central charge, such that Z(E) := Z(cl(E)) # 0 if E € C**,

e a choice of the branch of logarithm LogZ (E) € C for any E € C* which is constructible

as a function of E.
These data satisfy the axioms

e for all E € C* and n € Z we have E[n] € C**, and

ArgZ(E[n]) = ArgZ(E) + nm,

where Arg(E) € R is the imaginary part of LogZ(E),

o for all Ey, Ey € C** with Arg(E,) > Arg(Fs) we have

El’t?o(El, E2> = O,
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e for any E € C there is ann > 0 and a chain of morphisms

0:E0—>E1—>—>Ean

such that
F,:=Cone(E;_1 — E;),i=1,...,n

are semistable and Arg(Fy) > --- > Arg(F},),

e for each v € T'\ {0}, in C5°* C Ob(C), consisting of semistable objects E such that

cl(E) =~ and Arg(FE) is fized, the set of isomorphism classes is a constructible set,

o (Support Property) For a norm || - | on I'rx =T ® R, there ezists C > 0 such that

|E| < C|Z(E)| for all E € C*.
Equivalently, one has the following data and axioms.
Definition 6.1.2. A constructible stability structure on (C,cl) is given by the data:
e an additive map Z : ' — C,

e for any bounded connected set I C R, an ind-constructible subset
P(I) C 0b(C)(k),

such that if E € P(I) then all the isomorphic objects belong to P(I).
These data satisfy the axioms
e the zero object of the category C(k) belongs to all P(I),
o Unez.,P([—n,n]) = 0b(C)(k),

o if [y < Iy, i.e., every element of I is strictly less than any element of Iy, then for any

E) € P(Iy),k = 1,2 one has Ext<°(Ey, Ey) =0,
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e P(I +1)=P(I)[1], where [1] is the shift functor in C(k),

e (Extension Property) if [ = I, U Iy and I} < Iy, then the ind-constructible set P(I)
is isomorphic to the ind-constructible subset consisting of objects E € Ob(C)(k) which
are extensions Ey — E — Ey with E, € P(I), k= 1,2,

e if I is an interval of length strictly less than 1, and 0 # E € P(I), then Z(E) belongs

to the strict sector

Vi={z=re™ cC*r > 0,0 €I},

e there is a non-degenerate quadratic form @ on I'r such that Qkez < 0, and for an

interval I with length strictly less than 1, the set

{d(E)eT|EeP()}CT

belongs to the convex cone C(Vi, Z,Q) generated by the set

SV, Z,Q) = {y € Tr \ {0}|Z(y) € V1,Q(7) = 0},

o if I has length strictly less than 1, and v € T, then the set

{E e P)|d(E) =7}

18 constructible.

For a fixed category C and a class map cl, we denote the set of stability conditions

(Z,C*%, (LogZ(FE))pecss) by Stab(C) := Stab(C, cl).

Remark 6.1.3. The space Stab(C) can be endowed with a Hausdorff topology.
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Theorem 6.1.4. The forgetting map

Stab(C) — C" ~ Hom(T',C),
(Z, CSS, (LOgZ(E))EECSS) H Z

18 a local homeomorphism.

Now let’s introduce a subcategory Ca 104 of C. Let A C C be a triangle with one vertex
at the origin. We choose an branch of the function z — Logz for z € A, and denote by

Arg(z) the corresponding argument function.

Definition 6.1.5. The A -subcategory Ca 1os of C is generated by the zero object 0, the
semistable objects E with Z(FE) € A, Arg(FE) € Arg(A), and the extensions F of such
objects such that Z(F) € A.

If A=V for a sector V, then we denote this subcategory by Cy r.og-

It turns out that Ca 10g is an ind-constructible category. In the language of the ind-

constructible sets P (1) we have Ob(Cy, 1.04) = P(I) for some choice of the branch Log.

6.2 Motivic Hall algebras

In this section we will introduce motivic stack functions and the motivic Hall algebras

following [42].

6.2.1 Motivic stack functions

Let X be a constructible set over a field k of characteristic zero, and GG an affine algebraic
group acting on X. In this section we are going to recall the definition of the abelian
group of stack functions Mot ((X,G)) following [42, Section 4] (see also [25] for a different
exposition).

Let us consider the following 2-category of constructible stacks over k.
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1) The objects are pairs (X, G), where X is a constructible set, and G is an affine algebraic

group acting on it.
2) The category of 1-morphisms Hom((X;, G1), (X2, G)) consists of pairs (Z, f), where

e 7 is a (G1 x Gy-constructible set such that {e} x Gy acts freely on Z in such a

way that we have the induced Gi-equivariant isomorphism Z/Gy ~ X,
o f:7Z — Xyis a Gy X Gy-equivariant map with trivial action of G; on Xs.
Furthermore, objects of Hom((X1, G1), (X2, G2)) form naturally a groupoid.

The 2-category of constructible stacks carries a direct sum operation induced by disjoint

union of stacks

(Xl,Gl) L (Xg,Gg) = ((X1 X G2 L]XQ X Gl),Gl X GQ),

and a product induced by the Cartesian product

(Xl,G1> X (XQ,GQ) = (Xl X Xg,Gl X Gg)

After these preliminaries we have the following definition of motivic stack functions:

Definition 6.2.1. The group of motivic stack functions Mot ((X,G)) is the abelian group
generated by isomorphism classes of 1-morphisms of stacks [(Y, H) — (X, G)] with the fized

target (X, G), subject to the relations
o (Y1, Hi)U (Yo, Hy)) = (X, G)] = [(V1, H1) = (X, G)] + [(Y2, H2) — (X, G)],

o (Yo, H) = (X,G)] = (V1 x AY H) — (X,G)] if Yo — Yy is an H-equivariant con-

structible vector bundle of rank d.

One can define the following operations of elements of Mot ((X,G)) in the natural way.

Let (Z, f) € Hom((X1, G1), (X2, G2)). Then we define
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e pullback
f* . MOtst((XQ,GQ)) — MOtSt((XhGl)),
(Y, H) = (X2, G2)] = [(Y, H) X(x,,60) (X1, G1) = (X1, G1)),

e pushforward
f! . MOtSt((Xl,G1>) — MOtst((XQ,GQ)),
[(Z1, f1) : (Y, H) = (X0, G1)] = [(Z, f) o (Zy1, f1) : (Y, H) = (X2, Ga)],

e fiber product
- Moty (X, G)) x Motu((X,G)) = Motu((X,G)),
(Y1, Hy) = (X, G)] - [(Ya, Hy) — (X, G)] = [(Y1, H1) X (x,¢) (Y2, H2) = (X, G)].

6.2.2 Motivic Hall algebras

Let’s remind the notion of motivic Hall algebra of a certain type of categories.
Let C be an ind-constructible locally regular (e.g. locally Artin) triangulated A..-
category over a field k (see [42]). Then the stack of objects admits a countable decomposition

into the union of quotient stacks
Ob(C) = Uier(Yi, GL(N;)),

where Y; is a reduced algebraic scheme acted on by the group GL(N;).

Definition 6.2.2. (cf. [42]) The motivic Hall algebra H(C) is the Mot(Spec(k))—module

D Mot (Yi, GL(N;))[L",n < 0]

iel

(i.e. we extend the direct sum of the groups of motivic stack functions by adding negative

powers of the Lefschetz motive L), endowed with the product defined below.

The product is defined as follows. Let us denote dimExt'(E, F) by (E, F);, and use the
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truncated Euler characteristic

(B.F)ex = 3 (~1)/(E, F):.

i<N

Let [m : Y; — Ob(C)],i = 1,2 be two elements of H(C), then for any n € Z we have

constructible sets

W = {(y1, 42, 0)|yi € i, 0 € Bt (ma(ya), m1 (1)), (ma2(y2), m1(y1)) <o = n}.

Then
[tot((m x m) (EXTY)) — Ob(C)] = Z[Wn — Ob(C)].

neL

Define the product

Y1 = O0b(C)] - [Ya = Ob(C)] = > _[W, = Ob(C)IL ™",

neEL

where the map W,, — Ob(C) is given by

(y1, Y2, @) = Cone(a : ma(y2)[—1] = m1(y1)).

Theorem 6.2.3. (see [42, Prop. 10]) The algebra H(C) is associative.

For a constructible stability condition on C with an ind-constructible class map ¢l :
Ky(C) = T, a central charge Z : I' — C, a strict sector V' C R? and a branch Log of the
logarithm function on V', we have (see [42]) the category Cy := Cy,10g generated by semistable

objects with the central charge in V. Then we define the corresponding completed motivic

Hall algebra
H(Cy) = 1T H(Cy N (7).

~e(ITNC(V,Z,Q))u{0}
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It contains an invertible element
A = T4 = Lomen)nmicnn),
icl

where 1 comes from the zero object. The element Ay corresponds (roughly) to the sum over
all isomorphism classes of objects of Cy, each counted with the weight given by the inverse

to the motive of the group of automorphisms.

Theorem 6.2.4. (see [42, Prop. 11]) The elements A4 satisfy the Factorization Property:
AHell _ A‘I}Tlall ) A‘I};all

for a strict sector V.=V, U Va (decomposition in the clockwise order).
Let’s fix the following data:

(1) a triple (T, (o, @), ()) consisting of a free abelian group I' of finite rank endowed with
a bilinear form (e, @) : ' ® I' — Z, and a quadratic form Q on I'g =T' ® R,

(2) an ind-constructible , Gal(k/k)-equivariant homomorphism
i : Ko(C(k)) — T

compatible with the Euler form of C and the bilinear form (e, e),

(3) a constructible stability condition o € Stab(C, cl) compatible with the quadratic form
@ in the sense that Q|xer(z) < 0 and Q(cl(E)) > 0, VE € C*(k).

Given a commutative unital ring R containing an invertible symbol IL.%, we have
Definition 6.2.5. The quantum torus Rr g over R is an R-linear associative algebra

RF,R = @R : é:,,

vyer
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where the generators e,y € I' satisfy the relations

~ o~ 1 ~
€yCye = L2<’71772>€’Y1+727 (6 1)
e =1

For any strict sector V. C R, we define the quantum torus associated with V by

RV,R = H R- ay,
YerNCo(V,Z,Q)

where

Co(V, Z,Q) := C(V, Z,Q) u{0},

and C(V,Z,Q) is the convex cone generated by
S(V,Z,Q) ={x €T\ {0}|Z(x) € V,Q(z) > 0}.

In the case when C is a 3C'Y category, one can define a homomorphism from the algebra
H (Cv) to an appropriate motivic quantum torus (the word “motivic” here means that the
coefficient ring R is a certain ring of motivic functions). This homomorphism was defined
in [42] via the motivic Milnor fiber of the potential of the 3CY category. The notion of
motivic DT-series was also introduced in the loc.cit.

It was later shown in [43] that in the case of quivers with potential one can define motivic
DT-series differently, using equivariant critical cohomology (cf. our Chapter 3). In that case

instead of the motivic Hall algebra one uses COHA.

6.3 A class of 2CY categories

Let us consider a class of 2-dimensional Calabi-Yau categories C which are:

1) Ind-constructible and locally ind-Artin in the sense of [42] (cf. Chapter 5).
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2)

Endowed with a constructible homomorphism of abelian groups (class map)
cl - K()(C) — F,

where I' ~ Z! carries a symmetric integer-valued bilinear form (e, e), and the class

map cl satisfies

(cl(E),cl(F)) = x(E,F) =Y (~1)'dimExt'(E, F).
i€Z
Generated by a spherical collection & = (F;);er in the sense of loc. cit. such that
cl(E;) € Ty ~ Z%,. This means that Ext*(E;, E;) ~ H*(S?), and that Ext™(E;, E;)

can be non-trivial for m = 1 only as long as i # j.

For any v € 'y the stack C,(£) of objects F' of the heart of the ¢- structure corre-
sponding to (E;);e; such that ¢l(F') = v is a countable disjoint union of Artin stacks

of dimensions less or equal than —1(v,7).

For any strict sector V' C R? with the vertex at (0,0), and a constructible stability
central charge Z : I' — C such that Im(Z(E;)) := Z(cl(E;)) € V,i € I, the stack of
objects of the category Cy generated by semistable objects with central charges in V

is a finite union of Artin stacks satisfying the inequality of 4) above.

With the category from our class one can associate a symmetric quiver as in Chapter 5.

Similarly to [42, Sec. 8] one can prove a classification theorem for our categories in terms of
Ginzburg algebras associated with quivers. Many 2C'Y categories which appear in “nature”
belong to our class. For example, if ) is not an ADE quiver, then the derived category of
finite-dimensional representations of Il belongs to our class. Without any restrictions on
(@ one can construct a 2C'Y category as the category of dg-modules over the corresponding

Ginzburg algebra.
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6.4 Stability conditions and braid group action

Assume that C is a 2C'Y category from our class described in Section 6.3. We consider an

open subset of the space Stab(C) of stability conditions which is defined as

U:= H(]mzi > 0),
iel
i.e. it is a product of upper-half planes. A point Z = (z;);e; € U defines the central charge
Z : T := 7! — C which maps classes of spherical generators to the open upper-half plane
(hence the stability condition is determined by Z and the t-structure in C generated by
(Ei)ier)-
Recall that with every ig € I we can associate an autoequivalence of C (called refilection

functor) by the formula

Rp, : F' Cone(Ext*(E;

7,

F)®@ F — F).

0

Then Rg, (Ei) = Ei,[—1], and Rg, (Ej),j # io is determined as the middle term in the
extension

0— Ej — REiO (E]) — Eio (%9 E:Ct1<Eio,

The inverse reflection functor R is given by
20

Ry (Ei,) = By [1],

i

0 — Ej, ® Bat'(E,,, E;) — Ry, (Ej) > E; — 0.

Reflection functors Rp,,i € I generate a subgroup Braide C Aut(C), which induces
an action on Stab(C). The orbit D := Braide(U) C Stab(C) is the union of consecutive

“chambers” obtained one from another one by reflection functor Rg;. Such consecutive
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chambers have a common real codimension one boundary singled out by the condition

Im Z(E;) = 0.

Remark 6.4.1. The group Braide plays a role of the braid group (or Weyl group) in the
theory of Kac-Moody algebras. If we add also the group Z of shifts F +— F[n|,n € Z then

we obtain an affine version of the braid group Braide X 7. In some examples Z C Braide.

6.5 Motivic DT-series for 2CY categories

Let C be an ind-constructible locally regular 2CY category over k. Let us fix
R = Mot(Spec(k))[Lz, L™, [GL(n)], L]

as the ground ring for the quantum torus Rr . We will denote the latter by Rr. It is a

commutative algebra generated by the elements €.,y € I' such that

€, =e,,6,,
Y1+72 Y12 (6.2)
e =1
Let us also fix a stability condition on C with the central charge Z : I' — C.
Definition 6.5.1. The motivic weight w € Mot(Ob(C)) is defined by
w(E) = L2(EE),
Then we proved the following result.
Proposition 6.5.2. (see [58]) The map
®:. H(C)— Rr,
(©) = Rr s

v (r,w)e,,v e H(C),
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satisfies the condition

CI)(I/l . VQ) = (I)(l/l)(I)(Vg)

for Arg(v) > Arg(ye), where v; € H(C),,.

k3

(here (e, @) is the pairing between motivic

measures and motivic functions.)

In other words, ® can be written as

T Y = Ob(C)] = / LA m@g, o

Y

Proof. Tt suffices to prove the theorem for
ve, = [0g, : pt = Ob(C)],

where dg, (pt) = E; € Ob(C). Recall that we denote dim Ext'(E, F) by (E, F);,i € Z.

We have ®(vp,) = LeX(FoB)g. | which implies that
O (vp, ) (vp,) = L%(X(El7E1)+X(E2,E2))’6\71+72'
On the other hand,
vp, - vp, = LT EP)o [, - Bat' (B, Ey) — Ob(C)).

Then

. — T —(E2,E1 1y (Ea,Ea) o
q)(VEl VE2) =L~ <o faeEactl(Ez,El)L2 (e a)e’ﬂ+'yz

— —(B2,E1)<oT 2 (X(B1,E1)+x(E2,E2)+x(E1,EB2)+x(E2,E1)) >
L oL faEEactl(Eg,El) €142

— —(E2,F1) <o+ (x(F1,E1)4+x(E2,E2))+x(B2,E1 E,E1)15
L~ (B2 B <ot 4 (B B (o Ba) (B B0 (BB

1
_ 5 (X(E1,E1)+x(E2,E2))+(E2,E1)25
LAEL B (B )+ Er)ag,

69



If Arg(v1) > Arg(y2), then (Es, E)s = (E1, Ez)o = 0. Thus
(I)<VE1 ) VEQ) = (I)(VE1>(D<VE2)'

]

Recall the categories Cy and set V = [ be a ray. For a generic central charge Z let us

consider the generating function

E)e,
Almot _ Z w( )6 1(E)

mpeoney AP
_ LAC(EB) ﬂ7
[E],E€0b(C)) [Aut(E)]

where t = €,, for a primitive vy such that Z(v) € [ generates Z(I')Nl, and [Aut(E)]| denotes
the motive of the group of automorphisms of E. More invariantly, A" = ®(Af%!) where
ARl ¢ [ (C;) corresponds to the characteristic function of the stack of objects of the full

subcategory C; C C generated by semistables E such that Z(F) € [ (cf. loc.cit.).
Definition 6.5.3. We call A7"" the motivic DT-series of C corresponding to the ray .

Suppose that C is associated with the preprojective algebra IIg. One can show that A
can be obtained from the motivic DT-series for the 3CY category associated with (@, W)
by the reduction to C. Similarly to A" we define A" for any strict sector V.

The Proposition 6.5.2 implies that the series A" is the (clockwise) product of A" over

all rays [ C V. This can be also derived from the dimensional reduction and the results of

[42].

Corollary 6.5.4. The collections of elements AT = ®(AHYN) parametrized by strict sectors

V C R? with the vertex at the origin satisfies the Factorization Property: if a strict sector
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V' 1s decomposed into a disjoint union V = Vi U Vy in the clockwise order, then
AT‘)/wt — AT‘ZOtA%Ot.

Proposition 6.5.5. (see [58]) Motivic DT-series A" is constant on each connected com-

ponent of the space of stability conditions.

Proof. Similarly to the case of 3C'Y" categories, each element A" does not change when
we move in the space of stability conditions on C in such a way that central charges of
semistable object neither enter nor leave the sector V. But in the case of 2CY categories
the Euler form is symmetric, hence the motivic quantum torus is commutative. It follows

that the wall-crossing formulas from [42] are trivial. This implies the result. O

For a 2C'Y category form our class one can construct the corresponding 3C'Y category
(see Introduction). We expect that the motivic DT-series arising in this situation are quan-
tum admissible in the sense of [43] and can be described in terms of the corresponding
COHA (the latter is expected to exist for quite general 3CY categories, see [66]).

Therefore, by analogy with the case of 3CY categories, we can define DT-invariants
Q(7v) in 2CY case using (quantum) admissibility (see [43], Section 6) of our DT-series by

the formula:

APt =Sym [ > 1" Y Q) | =

n>0  4#0,Z(y)eV

Z#o,zw)ev Q(’Y)%)

= Sym L

By Proposition 6.5.5 our motivic DT-invariants €2() depend only on the connected
component of Stab(C) which contains Z. The Conjecture 6.6.1 (see next section) says that
() is (essentially) the same as Kac polynomial a,(L) (or the motivic DT-invariant of the

corresponding 3CY category, see Introduction).
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Let us fix the connected component in Stab(C) which contains such central charge Z
that for each spherical generator F; of C we have Z(F;) = (0,...,1,...0) (the only nontrivial
element 1 at the i-th place). We will call the corresponding t-structure standard. We denote

the corresponding motivic DT-invariants by Q7% ().

6.6 Kac polynomial of a 2CY category

We can now introduce an analog of the Kac polynomial in the case of a 2CY category from
our class following the ideas of [50].

Notice that the coefficient ring
Mot(Spee(k))[L2, L™, [GL(n)], 1]

of the quantum torus Rr has a A—ring structure, which can be lifted to the quantum torus
(which is commutative in the case of 2C'Y categories). Recall that for a A-ring we can

introduce the operation of symmetrization by the formula:

Sym(r) =Y _ Sym™(r) =Y (=1)"A"(=r) = Y _(=1)"A"(r)) "

n=>0 n=0 n=0

For any ray [ C H,, where H, is the upper half plane, we have the (quantum) admissible
element A7
Let C be a 2CY category from our class. We fix the standard ¢-structure. Recall the

motivic DT-series Aj™".

Conjecture 6.6.1. (see [58]) There exist elements

(L) € Mot(Spec(k))[L2, L™, [GL(n)], 1]

Y

which are polynomials in 1L and such that the following formula holds in the (commutative)
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motivic quantum torus:

mo 2 zmal=ay (L) - L)e
Al t:Sym( A 1_7[[4 )

Furthermore, there exists a 3C'Y category B such that the elements a™° (L) coincide with

motivic DT -invariants with respect to some stability condition on B.

Some related results can be found in [10], [13] [23], and especially in [50]. In fact Theorem
5.1 from [50] establishes the Conjecture in the framework of quivers. More precisely, if C is
the 2C'Y category associated with the preprojective algebra of a quiver, then for its standard
t-structure the element a'*(IL) coincides with the Kac polynomial a,(IL) of the Kac-Moody

algebra corresponding to the quiver.

73



Bibliography
[1] V. F. Alday, D. Gaiotto, and Y. Tachikawa, Liouville correlation functions from four
dimensional gauge theories, Lett. Math. Phys. 91 (2010), 167-197.

[2] K. Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann. of Math.

(2), 170(3), 2009, 1307-1338.

[3] K. Behrend, on the de Rham cohomology of differential and algebraic stacks, arXiv:
0410255.

[4] K. Behrend, J. Bryan, B. Szendrdi, Motivic degree zero Donaldson-Thomas invariants,

Inventiones mathematicae, Vol. 192, Issue 1, 2013, 111-160.

[5] A. I. Bondal, M. Kapranov, Enhanced triangulated categories, Math. USSR Sbornik,
Vol. 70 (1991), No. 1.

[6] T. Bozec, Quivers with loops and generalized crystals, arXiv: 1403.0846.
[7] I. Burban, O. Schiffmann, On the Hall algebra of an elliptic curve, I, arXiv: 0505148.

[8] T. Bridgeland, Stability conditions on triangulated categories, Annals of Mathematics,
166 (2007), 317-345

[9] W. Crawley-Boevey, Preprojective algebras, differential operators and Conze embedding

for deformations of Kleinian singularities, Comment. Math. Helv., 74 (1999), 548-574.

[10] W. Crawley-Boevey, M. Van den Bergh, Absolutely indecomposable representations and
Kac-Moody Lie algebras (with an appendiz by Hiraku Nakajima), arXiv:math/0106009.

74



[11] N. Chriss, V. Ginzburg, Representation Theory and Complex Geometry, Birkhéuser,
Boston-Basel-Berlin, 1997.

[12] B. Davison, The critical COHA of a quiver with potential, arXiv: 1311.7172.
[13] B. Davison, Purity of critical cohomology and Kac’s conjecture, arXiv: 1311.6989.

[14] F. Denef, G. W. Moore, Split states, entropy enigmas, holes and halos, JHEP 1111
(2011), 129.

[15] B. Deng, J. Du, B, Parshal, J. Wang, Finite dimensional algebras and quantum groups,
AMS, 2008

[16] A. Efimov, Non-commutative Hitchin systems, preprint, 2014.

[17] A. Efimov, Cohomological Hall algebra of a symmetric quiver, Compos. Math., 148(4),
2012, 1133-1146.

[18] J. Engel, M. Reineke, Smooth models of quiver moduli, Math. Z., 262(4), 2009, 817-848.

[19] E. Frenkel, Vertex algebras and algebraic curves, Séminaire Bourbaki, 52éme année,

1999-2000.
[20] B. Feigin, E. Frenkel, Integrals of motion and quantum groups, arXiv: hep-th/9310022.
[21] V. Ginzburg, Calabi-Yau algebras, arXiv: 0612139.
[22] V. Ginzburg, Lectures on Nakajima’s quiver varieties, arXiv: 0905.0686.

[23] T. Hausel, E. Letellier, F. Rodriguez-Villegas, Positivity of Kac polynomials and DT-
invariants for quivers, Ann. of Math. 177 (2013), 1147-1168.

[24] D. Huybrechts, Introduction to stability conditions, arXiv: 1111.1745.

[25] D. Joyce, Motivic invariants of Artin stacks and ‘stack functions’, arXiv: 0509722.

5



[26]

[27]

28]

[29]

[30]

[31]

D. Joyce, Configurations in abelian categories. I. Basic properties and moduli stacks,

Adv. Math., 203(1), 2006, 194-255.

D. Joyce, Configurations in abelian categories. II. Ringel-Hall algebras, Adv. Math.,
210(2), 2007, 635-706.

D. Joyce, Configurations in abelian categories. IIl. Stability conditions and identities,

Adv. Math., 215(1), 2007, 153-219.

D. Joyce, Configurations in abelian categories. IV. Invariants and changing stability

conditions, Adv. Math., 217(1), 2008, 125-204.

D. Joyce, Y. Song, A theory of generalized Donaldson-Thomas invariants, arXiv:

0810.5645.

M. Kapranov, Fisenstein series and quantum affine algebras, Journal of Mathematical

Sciences. Vol. 84, No. 5, 1997.

M. Kapranov, O. Schiffmann, E. Vasserot, The Hall algebra of a curve, arXiv:
1201.6185.

M. Kashiwara, P. Schapira, Sheaves on Manifolds, Springer-Verlag, 1990.

B. Keller, Introduction to A-infinity algebras and modules, Homology Homotopy Appl.,
Vol. 3, No. 1 (2001), 1-35.

B. Keller, A-infinity algebras, modules and functor categories, arXiv: 0510508.

B. Keller, Calabi-Yau triangulated categories, Trends in representation theory of alge-

bras and related topics, EMS, 467—489.

B. Keller, Deformed Calabi- Yau completions (with an appendiz by M. Van Den Bergh),
J. Reine Angew. Math. 654 (2011), 125-180.

76



[38]
[39]

[40]

[41]

[44]

[47]

T. Kimura, V. Pestun, Quiver W-algebras, arXiv: 1512.08533.
T. Kimura, V. Pestun, Quiver elliptic W-algebras, arXiv: 1608.04651.

A. D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math.
Oxford Ser. (2), 45(180), 1994, 515-530.

M. Kontsevich, Y. Soibelman, Notes on A.-algebras, A -categories and non-

commutative geometry. I, arXiv: 0606241v2.

M. Kontsevich, Y. Soibelman, Stability structures, motivic Donaldson-Thomas invari-

ants and cluster transformations, arXiv: 0811.2435.

M. Kontsevich, Y. Soibelman, Cohomological Hall algebra, exponential Hodge structures
and motivic Donaldson-Thomas invariants, Comm. Num. Th. and Phys. 5 (2011), no.

2 231-252.

M. Kontsevich, Y. Soibelman, Lectures on motivic Donaldson-Thomas invariants and
wall-crossing formulas, originate in two lecture courses: the master class on wall-
crossing given by M.K. at the Centre for Quantum Geometry of Moduli Spaces, Aarhus
University in August 2010 and the Chern-Simons master class on motivic Donaldson-
Thomas invariants given by Y.S. at the University of California, Berkeley in October
2010, December 2011.

M. Kontsevich, Y. Soibelman, Deformation theory (book in preparation, preliminary

draft is available at www.math.ksu.edu/~soibel).

G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras, Journal of

the AMS, Vol. 4, No. 2 (1991), 365-421.

G. Lusztig, Semicanonical bases arising from enveloping algebras, Adv. Math. Vol. 151,

Iss. 2 (2000), 129-139.

7



[48]

[51]

[52]

[53]

[54]

[55]

[56]

I. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press,

1995.

S. Mozgovoy, Motivic Donaldson-Thomas invariants and Kac conjecture, arXiv:

1103.2100

S. Mozgovoy, Motivic Donaldson-Thomas invariants and McKay correspondence, arXiv:

1107.6044.

H. Nakajima, Quiver varieties and finite-dimensional representations of quantum affine

algebras, J. AMS. 14 (2001), 145-238.

H. Nakajima, Lectures on Hilbert schemes of points on surfaces, volume 18 of University

Lecture Series, American Mathematical Society, Providence, RI, 1999.

N. Nekrasov, BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations
and qq-characters, arXiv: 1512.05388.

N. Nekrasov, BPS/CFT correspondence II: Instantons at crossroads, Moduli and Com-
pactness Theorem, arXiv: 1608.07272.

C. Peters, J. Steenbrink, Mixed Hodge structures, Ergebnisse der Mathematik und ihrer
Grenzgebiete, vol. 52, 2008.

M. Reineke, Cohomology of quiver moduli, functional equations, and integrality of

Donaldson-Thomas type invariants, arXiv: 0903.0261.

M. Reineke, Poisson automorphisms and quiver moduli, J. Inst. Math. Jussieu, 9(3),

2010, 653-667.

J. Ren, Y. Soibelman, Cohomological Hall algebras, semicanonical bases and Donaldson-
Thomas invariants for 2-dimensional Calabi-Yau categories (with an appendiz by
Ben Davison), arXiv: 1508.06068. To appear in Algebra, Geometry an Physics,
Birkh&user/Springer.

78



[59]

[60]
[61]

[62]

[63]

[64]

[65]

[66]

[70]

[71]

J. Ren, Correspondence between 2 Calabi-Yau Categories and Quivers,

arXiv: 1602.06427.
A. Rudakov, Stability for an abelian category, J. Algebra, 197(1), 1997, 231-245.
O. Schiffmann, On the Hall algebra of an elliptic curve, II, arXiv: 0508553.

O. Schiffmann, Lectures on canonical and crystal bases of Hall algebras, arXiv:

0910.4460v2.

O. Schiffmann, E. Vasserot, Cherednik algebras, W-algebras and the equivariant coho-
mology of the moduli space of instantons on A?, Pub. Mat. de 'THES (2012).

O. Schiffmann, E. Vasserot, The elliptic Hall algebra, Cherednik Hecke algebras and
Macdonald polynomials, arXiv: 0802.4001.

O. Schiffmann, E. Vasserot, The elliptic Hall algebra and the equivariant K-theory of
the Hilbert scheme of A%, arXiv: 0905.2555.

Y. Soibelman, Remarks on Cohomological Hall algebras and their representations,

arXiv:1404.1606.

B. Szendroi, Non-commutative Donaldson-Thomas theory and the conifold,

arXiv: 0705.3419.
B. Toén, Derived algebraic geometry, EMS Surv. Math. Sci. 1 (2014), 153-240.

L. W. Tu, Computing characteristic numbers using fived points, CRM Proceedings and
Lecture Notes, Vol. 50, 2010.

M. Van den Bergh, Calabi- Yau algebras and superpotentials, Selecta Mathematica, Vol.
21, Issue 2, 2015, 555-603.

X. Xiao, The double of representations of Cohomological Hall Algebra for A:-quiver,
arXiv: 1407.7593.

79



[72] Y. Yang, G. Zhao, Cohomological Hall algebra of a preprojective algebra,
arXiv:1407.7994.

(73] The Stacks Project, http://stacks.math.columbia.edu/.

80



	Title Page
	Abstract
	Acknowledgements
	Introduction
	Quivers
	Quivers and the stack of representations
	Quiver with relations

	Critical COHA of smooth algebras with potential
	Reminder on the critical cohomology
	Vanishing cycles of sheaves
	Critical cohomology and dimensional reduction
	Pullback and pushforward maps

	I-bigraded smooth algebras
	Critical COHA

	Cohomological Hall algebras and semicanonical basis
	COHA of preprojective algebras
	Lusztig's seminilpotent Lagrangian subvariety
	Generalized quantum group
	Semicanonical basis of H0
	COHA as a shuffle algebra

	2 Calabi-Yau categories and quivers
	Calabi-Yau categories
	Ind-constructible categories
	Ind-constructible Calabi-Yau categories

	Correspondence between quivers and 2CY categories

	2 Calabi-Yau categories and Donaldson-Thomas series
	Stability structures
	Motivic Hall algebras
	Motivic stack functions
	Motivic Hall algebras

	A class of 2CY categories
	Stability conditions and braid group action
	Motivic DT-series for 2CY categories
	Kac polynomial of a 2CY category

	Bibliography

