DESIGN CONSIDERATIONS FOR A NETWORK
CONTROL LANGUAGE (NCL)

by

WAYNE BARRETT CHAPIN

B.S., Kansas State University, 1969

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

Kansas State University
Manhattan, Kansas

1977

Approved:

)
V. E. Hallentine

M%ﬂ
e

Section
1.0
L1
1.2
2.0
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
5.0
5.1
5.2
6.0
6.1

6.2

L5
2L6F
R
14977
C.c2
s

P 5 +
LU e

Introduction . .
Motivation . . .
Overview

Definitions . .

TABLE

Review of Literature . .

Recent Approaches

An All-In-One OSCL

Batch Considerations . .

Measures of Comple

teness

OF CONTENTS

On Dependent and Independent Aspects

Uniform Control Language Dilemma . .

Recommended Language Attributes . .

e

General Implementation Language Considerations

Motivation for a User Profile « ..

OSCL Complexity for Stand-Alone vs. Network

Extended Machine V

Application Point of View .

iew .

Independent and Dependent Systems . .

Computer Communication Network vs. Computer

Computer Communications Network .

Computer Network

Model of System Evolutionm

One User: Omne Machine System

N Users: One Machine System

Page

10
12
12
15
15
19
19
22
22
24
24
26
26
28
31
31

32

6.3
6.4
7.0
7.1
7.2
7.3
7.4
7.5
8.0
9.0
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
10.0
10.1
10.2
11.0

11.1

N Users: M Machine System + . &
One User: M Machine System « . . .
Application Oriented Usability and Simplicity .
Application Evolution and Direction

An Application Oriented View

Usability Considerations-Convenient and Pragmatic .

Simplicity Considerations-Maximum Usability .
The Identity Crisis « « « &« &« &« o « &
The ION (Identity Oriented Network) Alternative .
Perspectives on the Set of Basic Operations ., .
Module Interface Perspective
Dependent and Independent Interface Views ., . .
General Interface Requirements

The User Profile

Basic Operations . « . « + &+ + &+ s = « & 4
First Person Third Person Control .

Network Resource Control

Extended Machine Interface « .« . .

Basic Operations Selection . . « « « & o & & » &
Classification of Basic Operations
Basic Operation Details « + o o & .+ .

Extended Machine Feedback « «
Conclusions and Recommendations . .

Conmcligions v o o w & « 2 % €« 5 % & & » & % &
Recommendations . . + +& ¢« « « & &« & 0 .
Appendices . . . v 4« f 4 v e e e e e e s

Sample User Mapping to Basic Operations

32

. 33

. 34

. 35

36

37

. 38

s 39

. 41

41

. 45
. 45
. 46
. 47
. 49

. 50

. 50

5 Bh)

. 51

. 52

. 57

. 58

58

. D5

63
63

1.0 Introduction

There is an increasing desire to share capabilities by interconnecting
geographically distributed hardware, software and human rescurces. Often,
economy and efficiency dictate the use of machines with differing architec-
tures, operating systems and job control languages. The combination of
heterogeneous computers to form networks faces a networking Ailemma. It is
economically desirable to link computers and provide new capabilities only
if usage complexity does not result. The user of such systems must become
familiar with multiple control languages. The system is viewed as a net-
work of distinct computing facilities. All user levels are affected. Op-
erations control, system support personnel, as well as applications oriented
users are affected by the fussion of new and different combinations of
machines, operating systems and their changing control languages.

[ENSL.P75]

1.1 Motivation

A multiplicity of control languages especially adapted to fit various
user application as well as control and system support environments is
needed. User identity, in our opinion an under-utilized attribute for all
current implementations, can and should be utilized for the benefit of all
users. The operating system control languages (OSCL) of most systems fail
to gain acceptability in netted and non-netted computer systems because
they fail to provide a user tailored view of the OSCL. They fail to pro-
vide application independence from a system support view. Used properly,
user identity can provide for separateness of application languages.

The importance of the application independence issue is evident in two
questions posed in the summary of the Proceedings of the IFIP Working Con-

ference on Computer Language.

1. "Who are the users that should be considered with respect to the

oscL?"

2. "What functions do these users require for their support and how

might these functions be described?" [ENSL.P76]

The answer to the first question requires a user or organization
oriented response. That is, those who can afford a 'unique' language and
an appropriate translator for their specialized application area will be
considered. Question 1 is principally an economic and political question
unless a means for providing application independence is identified.

The second question is a machine-oritneted question. This
question is addressed in section 9.0 covering the minimum set of basic op-
erations. It is noted that whether addressing user views from a networking
standpoint or a stand-alone time sharing system view point, the control

language issues are similar.

1.2 Overview

In order to determine what is desirable and necessary for development
of a tailored set of languages the following analysis is provided and con-
siderations are made. Section 2 contains definitions for terms which are
frequently used in this paper. Section 3 provides a critical review of re-
cent literature covering current and planned efforts for the development of
control languages. Literature covering both stand-alone OSCL and complex
network OSCL is reviewed. Section 4 develops the notion that an extended
machine view of computer networks and stand-alone systems can be viewed as
functionally dependent rather than as machine dependent entities. Section 5
draws a distinction between network systems to develop a notion of what is

the preferred user view of networks. Section 6 provides a model with which

to view the evolution of conventional and computer networks. Section 7 de-
velops a notion of anticipated development needs in application oriented
systems. Section 8 presents an additional altermative to the RAN, VAN, MON
alternatives of Kimbleton and Schneider. [KIMB.J75] The additional alter-
native is the identity oriented network (ION). Section 9 develops a per-
spective within which a set of basic operations are explicated. This set is
what is minimally required for implementation of a set of user oriented con-
trol languages. Section 10 provides recommendations and conclusicns.

The reader interested in skimming the contents of this paper may read

sections 2, 3.1, 3.2, 8, 9 and 10.

2.0 Definitions
Some terms are frequently used in this paper and are defined as follows.

OSCL . . . Operating System Control Language
This is a very general term used to represent sets of both
the network operating system and stand-alone conventional
operating system supported control languages.

JCL . . . Job Control Language
This term refers to the batch oriented set of OSCL commands.

RTE . . . Run Time Environment
This term refers to a set of control languages capability
service utilities. These are usually loaded with the object
modules of the user program to provide an interface to a set
of operating system supported capabilities.

DBMS . . . Data Base Management System
The DBMS is often implemented in an RTE which interfaces to
a set of operating system file and record management supported
capabilities.

C/R . . . Command/Response
This term is introduced and explicated by White in [WHIT.J76].
It is an application independent protocol used to support
run time environments on networks.

0s - « . Operating System
This term refers to the system code which is provided on
stand-alone processors for their resource management.

NOS . . . Network Operating System
This term refers to the system code which is necessary for
support of network resource management and their interface

to the participating computer in a network of computer systems.

HCP

SU

PLC

NCF

Host Control Process

This term refers to the process which more specifically
manages the individual computer systems' participation in
a computer network,

Service Utility

This term refers to the set of software which provide ser-
vices for user application of a stand-alone or netted compu-
ter facility. Such resources as Fortran computers or file
maintenance packages are examples.

Message System

This term identifies the portion of the communications
facilities which most closely support communications with
processes on other machines. It handles complete trans-
actions or messages visible at the user programming level.
Physical Line Control

This software is responsible for communication of message
packets across the machines nodes of a computer network.
It is principally responsible for line controls and flow
control.

Network Control Facility

This set of modules includes those modules which provide
user control of the network resources. The set includes
the extensible contractable translator, the user profiles,
the network machine, the network resource controller and

the extended machine interface.

NFD . . . The network file description provides global access information to
a set of network files. It is accessable to the network user via
a pointer in the user's profile.

NPD . . . The network program directory provides global access and parametric
specifications to a set of network programs. It is accessable to

the network user via a pointer in the user's profile.

3.0 Review of Literature

The literature reviewed was found in two principal research
areas: stand-alone processors and networking. Conventional or stand-
alone computer system's control languages have been the object of ex-
tensive recent analvsis and empirical study. [UNG.C75] The considera-
tions and views found in the literature motivate a new approach to the
OSCL problem.

Two recent approaches to providing unique machine independent and ap-
plication independent solutions to the OSCL problems are described in sub-
section 3.1. A discussion of the search for an all-in-one OSCL is provided
in subsection 3.2. JCL definitions and statement of JCL purposes and re-
quirements are presented in subsection 3.3. Three measures of revised-0SCL
requirements for completeness are presented in subsection 3.4. Dependent
and independent aspects of the OSCL problem are discussed in subsection 3.5.
The uniform control language dilemma is discussed in subsection 3.6. The
generally recommended language attributes are addressed in subsection 3.7.
General implementation language considerations are presented in subsection

3.8. The motivation for a user profile is presented in subsection 3.9.

3.1 Recent Approaches
Recent efforts in the development of control languages for conventional

and networking computer systems have taken either one of two approaches.

3.1.1 Universal Translator Approach
A front end "translator" is developed which is designed to provide all
users with a unified, machine independent, universal control language. The

following diagram depicts this approach. [DAKI.R73] . [NEWM.I73]

UNIQUE CONTROL

N

CONTROL TRANSLATOR .
LANGUAGE TEXT *

FIGURE 3.1 Translator Approach

3.1.2 Basic Operations Approach

A job control program interface or envelope, RTE, is developed which
provides unique interface mapping for the use of a set of system supported

"basic operations" or SVC level functions. [BARR.D74] The following dia-

gram depicts this approach.

APPLTICATION

PROGRAM

DEPENDENT N OBJECT (POM)
CONTROL COMPILER MODULE

PROGRAM

RUN TIME
ERVIRONMENT
MODULE

(RTE)

OPERATING SYSTEM
SUPPORTED BASIC
OPERATIONS OR
SUPERVISOR CALLS

FIGURE 3.2 Basic Operations Approach

The principle difference between the two approaches depends on their
suitability for resolving issues of portability, adaptability and simplicity.

The translator approach offers a relatively high degree of machine in-
dependence and portability. The basic operations appreach requires mapping
mechanisms for each applications language on each machine on which it is in-

stalled. This is less portable than would be one unique mapping for each

different operating system. However, if application orientation is a mea-
sure of control language simplicity the basic operations approach is found

to address the simplicity issue better than the translator approach. This

is so because it supports the user in his own application environment. For
portability and machine independence the translator approach is recommended.
For usage simplicity or application independence the basic operation approach
is preferred.

How important is simplicity or the application oriented issue? Future
projections indicate that by 1985 the end user of computer services will have
no exposure to an academic computer science course. In general, it is pre-
dicted that the level of user and programmer sophistication will be at a
very low level. [ENSL.P75]

Hiﬁh increasing numbers of unsophisticated computer users employing the
computer in their own application areas, the need is clearly established for
control languages or control mechanisms which are highly adaptive and which
can be tailored to fit user application environments. A premise of this
paper is that development of application oriented languages is the key to

simplicity.

3.2 An All-In-One OSCL

The literature was examined for ideas about what would constitute an
ideal control language. It was envisioned that a combination of recommenda-
tions existed which would lead to discovery of that all-in-one general pur-
pose control language.

The literature is quite rich with ideas about what constitutes a good
control language. It is recommended that the-same rules for judgement which

apply to the selection of a programming or "software development'" language

10

be applied as criteria for evaluating an operating system control language,
(0SCL). [BARR.D74] Many favor network command language standardization.
[CROC.S76] The unresolved question seems to be: At what level of user

sophistication?

3.3 Batch Considerations

Much of the recent effort has focused on improving the batch or job
control language, (JCL), situation. We are motivated to understand defi-
nitions, purposes, requirements and implementation viewsAof batch or job
control languages.

M. .en-

A very general definition for a JCL is given by Brinch Hansen:
ables users to identify themselves and describe the requirements of computa-
tional jobs: the types and amounts of resources needed, and the names of
programs and data files used.” [BRIN.P73]

The purposes of a JCL in conventional systems are noted by Barron.

1. to control the sequence of a number of related operations

2. to call programs (compilers, utilities) into action, pro-

viding values for various items of parametric information

3. to provide an environment for these programs by relating

symbolic names to actual files or devices.

4. to set up and manipulate files, directories,etc. [BARR.D74]

Kimbleton and Mondell describe four similar purposes as genmeric capa-
bilities as follows.

1. identify the precedence and priority conditions required

for job step execution

2. making files within a user directory known to the step

which usually has its own expectations regarding the

naming of the files

11

3. insertion of files generated by program into the appropriate

directory

4. controlling the assignment of files to devices and, for a

given file, controlling the layout of the file on the device.
[KIMB.S76]

The following are generally regarded as the minimally expected require-
ments of operating systems which support a batch subsystem environment:

1. "Job step assignment and control

2. step execution and monitoring

3. JCL generation

4. interprocess communication and support." [KIMB.S76]

Job step assignment and control is necessary if conditional execution
of part of a job sequence is to be supported. Step execution and monitoring
is necessary so that accounting of completion conditions can be provided to
the user. JCL generation is necessary for macro expansion of job control
text. Inter-process communication is necessary to allow for data dependent
conditions to be reported between job steps.

Control Language Implementation views are presented here. "JCL should
be viewed as a programming language for a processor with an unusual repertoire
of basic operations." [BARR.D74]

In the Brinch Hansen PASCAL reports we find the assertion that all which

is necessary for a job control language is "

...simply the ability to call
other programs and pass parameters to them.” [BRIN.P75]

The view presented in the above statements is dependent on a translator
(either centralized or distributed among the called command programs) and an

interpreter mechanism which minimally locates the appropriate program object

code or procedure and initiates its execution. In most sophisticated systems

12

there is much tailoring of resource views so that symbolic manipulation of
data files, for example, can be managed (created or destroyed) without de-
tailed knowledge of unsightly physical device attributes.

It is desirable for the commands used in the batch environment to be a
proper subset of the interactive command set. This minimizes the task of

learning to use commands and contributes to usage simplicity.

I . . . interactive command set

B . . . batch command set

FIGURE 3.3 Batch Subset

3.4 Measures of Completeness

If an adequate means for resource control is to be identified, a mea-
sure of completeness must be established to evaluate the replacement OSCL.
The following criteria have been found in the literature.

1. It must reproduce the capabilities of the discipline it

replaces.
2. It must remove known deficiencies.
3. It must provide additional capabilities as required by

more complex systems. [WHIT.J76]

3.5 On Dependent and Independent Aspects
Machine independent solutions appear to be the most popular ones in the
literature. What system entities can be viewed as machine dependent or re-

quiring standards?

13

3.5.1 Machine Independence
The users view of resources such as files should be independent of the
machines on which the control language is used. [WHIT.J76] The language

should be implementable or usable on small or large machines. [WALD.D72]

3.5.2 Machine Dependent

A common command/response, C/R, discipline is needed. The dialogue
between server and user processes (i.e. RTE) should be standardized.
[WHIT.J76] Note that this is a highly machine dependent area. Much of the
literature proposes that a fixed or uniform command language be established.
It is not clear that this is a machine dependent area requiring standardiza-
tion. The key is separation of machine independent from machine dependent soft-
ware. In reference [ENSL.P75] it is estimated that the cost of errors due
to JCL or OSCL goofs amount to 1.45 billion dollars each year and therefore
warrants the consideration for uniform control languages. [ENSL.P75] An
often unquoted tenet of standard or uniform OSCL advocates that the user
will desire to know increasingly more control language features. [DAKI.R73].
[PARS.1I75] On the contrary it is highly unlikely that a user in the appli-
cations environment will need to know more than a few commands which can be
prepared especially for him by a systems specialist. Generally environments
such as educational institutions find it desirable to encourage the standard-
ization of a control language so as to simplify student use of the computer.
This demand for a unique control language is a parochial issue of education-
al institutions. A DBMS requires a different set of control than is gener-
ally required in an academic environment. The problem causing 1.45 billion
dollars losses per year would more likely be resolved by the development of

highly tailored applications oriented control languages.

14

3.5.3 Application Independence

Few articles mention the need for application independence. The common
command/response discipline espoused by White is an example of an applica-
tions independent protocol. It is made so via encapsulation of the applica-
tion process via a run-time-environment which intercedes for the user in
mapping his operating system (0S) or network operating system (NOS) control
requests.

Machine independence is not simplified via the RTE C/R approaph for con-
trolled resource sharing. This is due to the likelihood that as many machine
dependent RTE programs must be developed as there are application languages
on a network machine. This drawback is principally due to the lack of a
'table driven' translator capable of mapping 'n' application dependent com-
mand requests into a common unique and standardized C/R discipline for issu-

ance in the network.

3.5.4 OSCL Translator Independence

The 'level of accuracy' required by an OSCL affects the portability or
machine independence of the O0S5CL. As Kray et al point out:

"Commands of the existing operating systems often force the user to give
more details than is necessary for the problem and the intentions of the
user. By tolerating a lower level of accuracy the user can increase the
number of equivalence classes and thus the probability that his JCL program
can be translated into the envisaged target JCL." [KRAY.H75]

The need is to accomodate languages with excesses of required detail
such as IBM's JCL. This requires a high degree of adaptability. In order
to provide this, a multi-level adapting mechanism is required. By providing

for user and application dependent syntax and interpreter specification, it

15

is expected that any level of detail can be accomodated. This has motivated

a user profile whose objectives and purposes are covered in section 9.4.

3.5.5 User Dependence or Application Dependence

It is often envisioned that the correct command language or ultimate
basic system functions can be resolved by study of current operating system
JCL's with an eye for what is most used and what in the languages could
safely be omitted. As Hertwick so aptly commented in discussions on porta-
bility of JCL programs:

"This is like looking at a FORTRAN program doing some very complicated
integer arithmetic and only to find out it is doing string handling. It is

easier to get insight by asking people what they are trying to do."

3.6 Uniform Control Language Dilemma

The desirable features in such a language are quite extensive. Perhaps
such a high level language does not exist at the user level! That is, it
would seem a contradiction for such a powerful language to support both ease
of use for the simple job and yet provide the flexibility and power required
for large complex jobs while also addressing efficiency considerations. As
per Cheatham and Wickham:

"A system designed to cope with large complex jobs takes so much of the
resources of the machine to discover that a job is small and simple that no

job ever is (small and simple)."

3.7 Recommended Language Attributes
This provides motivation for a table driven translator which is adapt-
able to the user requirements and dependent on a unique set of profiles to

direct its syntactic and semantic actions.

16

Newman points out that '"no widely accepted 'high level' command language
has yet emerged. Yet, "...in programming, a number of high level languages
have emerged which meet the needs of many users and removed the obligation
to learn a machine code." [NEWM.I73] So, do we possibly need a number of
high level control languages? If so, what are some of the high level lang-

uage attributes whose considerations is recommended?

3.7.1 Generally Recommended Language Attributes

An implicit tenet held in much of the literature is that the user should
be provided with a programming language view of job control. This follows
from the notion that the user can be expected to have been endowed with pro-
gramming experience and a background in computing. [BARR.D74] . [PARS.I75] .
[WHIT.J76] This notion is not borne out by predictions about what computer
expertise future users will possess. It is also assumed that the user will
need to become increasingly familiar with the control language, learn more
and more of the features of the language so as to be able to extend or de-
velop new control capabilities with the language. Further, it is recommend-
ed that the grammar should be logical, consistent or stable, and made up of

as few arbitrary rules as possible. [NEWM.I73]

3.7.2 Specifically Recommended Language Attributes
More specific language attributes which are listed as highly desirable
in the literature include: variable storage, inter and intra job communica-

tion, and high level conditionals such as CASE or WHENEVER operators.

3.7.2.1 Variable Store
Variable storage accessibility is desirable so that the status of vari-

ous job steps or events can be saved. These variables can then be used to

17

represent the job state at any point in the sequence of events. This allows
for decisions to be made dynamically to adjust the sequence of job steps or
the job environment, (i.e. re-establish a disk file from back-up storage or
alternate memory medias). Globals, typed variables and constants as well as

variable scope are indicated as desirable. [BARR.D72]

3.7.2.2 Conditionals and Transfer of Control

Conditionals and transfer controls are necessary so that different job
states can be distinguished and appropriate actions or operations can be in-
volved. Some recommend the ability to have loops. [BARR.D, JACK.I172] A
backward transfer is required for this capability. Brinch Hanson and others
strongly recommend against the possibilities of loops in a control language,
OSCL. [BRIN.P] . [DAVI.D73] 1If the language is considered as a developmen-
tal language then perhaps loops are advised, however, as a high level 'end-
user' visable control language, not a developmental language, greater com-
. plexity is introduced in the language and thus a possibility for expanding

costs due to errors in control specifications.

3.7.2.3 Communications and Synchronization

Synchronization is of concern for conventional multi-tasking systems as
well as for network systems. The communications and synchronization issues
are viewed here in two cases.

CASE 1 - Intra Job Communications is desirable so that changes of state
can be reported between ordered or synchronized job operations, steps, phases
or tasks. One method in conventional systems for providing this is via a
"pseudo-register" which can be manipulated within a user program or a job
control level procedure. [CDC.K73] Another method discussed in the litera-

ture calls for supporting parameters through which variable 'type' arguments

18

can be passed or results returned. [WHIT.J76] . [BARR.D72] Some examéles
found in the literature include 'the follows document' of Barron and allow-
ances for 'multiple encoded parameters' recommended by White. The 'follows
document' allows for text to directly follow the command for which it is to
be received as input. The 'multiple encoded parameter' allows for para-
meters to be treated as variables which define a variety of encoded types.
Potentially desirable types include allowance for key and file parameter
types.

It may be desirable to support parallel processing within a job or
interactive session. [BARR.D72] This requires synchronization via event
variables and semaphores which are unique for any job or session occurrance.
It is not considered likely by the author that 'end-users' need or should be
aware of the details of event synchronization but that they would need to
understand certain rules when invoking a set of concurrent or simultaneous
events. The extent of transparency to parallel processing that can be pro-
vided to end users is an open question.

CASE 2 - Inter job communications and shared event variables and sema-
phores are necessary to support mutually exclusive access to shared data
bases or other information succeptable to time dependent errors. Very little
OSCL literature appears to address this '"shared resource control" type of
OSCL. Generally demands for this type of capability have been met by turn
key systems in which specialized control directives are provided the end user
via transaction oriented systems such as the CDC-TOOS system. In cases where
the entire system or mission of the system is not wholly directed toward
support of tramsaction oriented support then multi user job or session sub-
systems such as CDC TRANEX of the KRONOS system are available. In the lat-

ter type of subsystem the user submits a Cobol program to be controlled by

19

the subsystem executive and provides the translator interpreter meéchanisn

to support a highly application adapted set of control directives. Unfor-
tunately the control develcopment language chosen, COBOL, dces not check for
potential problems in which mutually exclusive access is needed. Data Access
synchronization is left totally as a problem for the development staff to
resolve without any automation aids such as are provided by Concurrent

PASCAL. [CDC.K75] . [BRIN.P75]

3.8 General Implementation Language Considerations

"Instruction sets of many contemporary computers were designed with
hardware realization as the foremost constraint. Little attention has been
given to the types of operations the computers will perform. Micro program-
ming remains largely an alternative technique for manufacturer implementation
of basic machine language instruction sets. [TOML.G76] The highly user
oriented OSCL can be made efficient using micro code to interpret a high

level implementation language such as PASCAL.

3.9 Motivation for a User Profile

The preferred view of any resource is dependent on the users applica-
tion environment and level of sophistication with computers. As Barron has
noted:

"The JCL statements are not clearly distinguished from the facilities
they control, and this is the cause of much of the trouble." [BARR.D74]

From Barron's environmental point of view his objections are to visa-
bility of the physical and logical level of resources. It is likely that
another user level or application environment would object to the use of

logical units and even files as resources.

20

It is desirable to consider a means for tailoring the user OSCL to pro-
vide a user preferred application environment. A user profile which con-
tains both the syntax and specialized interpreter code could provide the de-

sired OSCL.

3.9.1 Resource Objections

The reasons a user objects to a specified view of resources minimally
include: identity or resource name convention; accessability; structure
type. Objections to some arbitrary view of resources depend both on close-
ness or user sophistication with the real resources of a system and upon the
user environment or application area. Resource view objections are des-

cribed as follows.
3.9.1.1 Resource Identification

If a named resource is not part of the users psychological set and dis-
tinct from the purpose of its use, the user is likely to be confused by its
name. [LEDG.H75] Most systems provide the capability to relate between
logical and symbolic identifiers and some allow for dynamic pre-specification

of symbolic names (i.e. use short local names rather than long permanent

names). [CDC.K73]

3.9.1.2 Resource Accessability

The resource's addressability may change from time to time or it may be
desirable to change a resource’s origin or residencewithout changing the
software used to access it. Most conventional systems therefore provide
means for requesting a specific resource whose address space is allowed to
be moved. The possibility of resource migration in computer networks pre-

sents a need for resource adaptation.

21

3.9.1.3 Resource Structure

If the resource imposes awkward structure to the user, it tends to com-
plicate theuse of the rescurce. In some applications, such as scientific
use of a data base, the user needs a random or keyed access view of a resource

rather than a sequential resource.

3.9.1.4 Resource Type

If the resource does not conform or fit well with a user application
process due to internal code differences (EBCDIC vs. ASCII), the resource
will impose a conversion effort on the user and force new, probably unwanted,

details about the system upon the user.

3.9.2 Profile User Adaptation

Individuals want a simple to use set of resources. For the above ob-
jections to be covered by a control language facility, there must be a user
tailored point of reference. This point of reference must be such that it
allows a user to identify a set of supported capabilities which are unique
to the user's application environment. This suggests the need for a user

profile.

22

4.0 OSCL Complexity for Stand-Alone vs. Network Systems

An extended machine view is described for stand-alone systems. This
view is shown to cover computer networks. A conclusion is drawn that what
is desirable on a stand-alone system is also desired for network systems.
Thus most literature which deals with the O0SCL requirements can and should

be applied to understand what is desirable for networks.

4.1 Extended Machine View

The degree of usage complexity effecting a user tends to diminish as
the level of abstraction moves away from the physical resource level. We
often see the resources of a general purpose computer system modeled in the
literature via a series of outward extending concentric circles as depicted
below. Each succeding level or outer circle represents system resources
which are one level farther extended or removed from the real or physical
view of resources. It follows that this should be called an "Extended
Machine." We note that it is a commonly held opinion in the OSCL literature
that a set of capabilities exist which would allow the computer machine to

participate in a machine independent manner. [BARR.D74] . [WHIT.J] .

[PARS.I] . [DAKI.R73] . [NEWM.I73] . [MADN.S74]

FIGURE 4.la Extended Machine

23

A common view of distributed networks portrays levels of software processes
with respect to communication protocol between machines. The individual
members of a computer network are of two types. These are differentiated
by their dependence or independence with respect to other member machines.
The following diagrams place distributed networks in per5p§ctive with en-

phasis on an application oriented view.

UNIVERSAL VIEW OF
MACHINE SYSTEMS

STAND-ALONE COMP. COMPUTER NETWORKS‘\
INDEPENDENT INDEPENDENT | DEPENDENT
NON-MEMBER MEMBER ‘, MEMBER

M EM + HCP | PARTIAL EM + HCP |
APS | APS | APS |

FIGURE 4.1b Universal View

The universal view of machine systems includes both stand-alone compu-
ters and computer networks. Stand-alcone computer systems can participate
in a computer network if they have an adequate EM (Extended Machine) plus
the HCP (Host Control Program). Dependent members participation in a com~
puter network can take place when the set of basic operations is shared be-
tween a collection of dependent or independent computer systems. The APS
(Application Software) of dependent or independent computers can be shared
when the basic operations of the extended machine are made available to
participating network members. The HCP makes this set or partial set of

basic operations available to the network.

24

4.2 Application Point of View

An application oriented point of view is presented here. Design de-
cisions for both dependent and independent members of a network system are
based on a set of assumptions which directly relate to the end-user's util-

ization of the network. These assumptions follow.

4,2.1 User Specialization

Since users are becoming more specialized, their usage can be classi-
fied according to application areas for determining: the appropriate system
interface or command set; the extent and sophistication level of appropriate
resource views; the level of necessary protection; the level of user close-

ness to the physical hardware.

4.2.2 System Specialization
Systems are specialized and can be classified according to area of spec-
iglization: scientific orientation; business orientation; industry orienta-

tion (i.e. process control, real time).

4.3 Independent and Dependent Systems

We can represent dependent and independent systems as part of a layored
and hierarchical composite system (see figure 4.3). As a special case, sup-
pose that a network system needs to look like a collection of separate comput-
ing systems. Such a system can be viewed as a set or collection of functions
or computing capabilities rather than a machine dependent system. This con-
cept of virtual machines has, of course, been demonstrated on existing conven-
tional systems. Thus, an additional level of abstraction can be added to the
network machine and this exceptional case is covered. We therefore conclude
that whatever may be considered optional or best for a étand-alone system in

terms of high-level usability must also be optimal for network machines.

The combined mini computer systems provide Al ¥

An application coverage for dependent systems.

FIGURE 4.3a

The application complete computer also provides
Al § & s An application coverage for independent

systems.

FIGURE 4.3b

With dependent network components, the communica-
tion interface is often presented with respect
to logical component communications levels of:
HCP . . . host control process
SU . . . service utilities
MS . . . message system
-PLC « » » physical line control

as per the diagram to the right.

FIGURE 4.3c

FIGURE 4.3 Independent and Dependent

Systems

©

25

26

5.0 Computer Communication Network vs. Computer Network

In order to understand the complexity of using distributed network re-
sources a dichotomy is examined. The dichotomy divides all networks into
two types which are "computer communication networks'" and "computer networks."
[ELOV.H74] A set of factors, which is used to contrast and compare the two
possible networks, is examined. The factors used to compare the two net-
working types are:

a. resource access automation

level and extent of machine extension

b. learning requirement

extent and complexity of learning to use, ease of use

c. level of integration and extent of individual machine visability

d. closeness of default fit with the user application

e. complexity of interface with basic operations of the netted

extended machines
The principle intent here is to distinguish between the desirable and
the undesirable class of networks from a users point of view. However, note
that there is an implied assumption that a standard and uniform view of con-
trol language is desirable. No distinction is made between user levels,
unique user needs and application dependence. The importance of minimal

machine dependence is an obvious need.

5.1 Computer Communications Network

With this type of network the user must be familiar with each OSCL of
the serving host. Usability is complicated by this and other factors. O0SCL
consistency is not accomodated because individuals or groups of users are not

easily identified with a set of capabilities.

27

The importance of this lack of association of users with a set of cap-
abilities is exemplified as follows. Suppose the user prefers the features
of a software utility and is highly dependent on its use. For sake of an
example, further suppose that the software utility is an old program library
management utility which is being replaced by a new version. All the users'
software text is in a compacted form which is structured by the old program
library maintenance package. All text files are accessable only via the old
update package; the new package does not support the old package libraries.
There should be a way to detect all users who are using the old utility so
decisions can be made and either assist the use in converting to the new
utility or continue support and offering the old utility. One might argue that
the new utility should be upwards compatable with the old utility. However,
changes may have been made to the new utility which conflict with this possi-
bility. The new utility may provide features which affect the organization

and output of the program library.

FILE A

FORTRAN

COMMUNICATIONS
LINK

FIGURE 5.1 Computer Communications Network

a. Resource Access Automation
The level of machine extensions is likely to vary from machine
system to machine system. The user must be extremely familiar

with each machine system that is to be used.

28

b. Learning Requirement
The learning requirement is likely to be high for hetergeneous
computer communication networks. The user will tend not to use
available resources if the user's capabilities are machine
dependent across the network.

c. Integration Level
Without machine integration the user must view the network as a
collection of distinct computing systems.

d. Default Fit
In an attempt to help users and simplify the use of the O0SCL, a
set of OSCL defaults are developed. These are generally selected
and specified by system maintenance personnel attempting to fit
a general case user. The problem lies in the assumption that a
single generalized user type exists. Few have not rued the day
that a linking default ruined the two hour job near completion.
Defaults tend to reflect the creators application needs for soft-
ware maintenance.

e. Interface Complexity
No standard OSCL interface mechanism is defined to cover all
systems. The interface is likely to be unique for each machine.

Conversion of text files is potentially required for each machine.

5.2 Computer Network
The objective of this empirical study is to develop the concept of an
integrated processing facility which provides the user with a 'computer net-

work' view rather than that of a 'computer communications network' view.

29

With this type of network the user needs only be familiar with one set
of capabilities which are or can be made to be application dependent. Usa-
bility is simplified because the user can select the desired view of re-
sources to fit a specific applications environment.

It is possible and desirable for a set of capabilities to be closely
tied and associated with a specific user or groups of users. In the above
example, the users which are dependent on a specific capability are knowable

without extensive audit processing to determine level of a capabilities

usage.

NETWORK OP SYS _

——
— » — — ——

N.W. COROL FORTRAN
\\\COHMAND LANGUAGE COMPILER COMPILER

|/

FIGURE 5.2 Computer Network

IIIl |

38

a. Resource Access Automation
Systems which are added to this network must be at or above a
prescribed extended machine level to participate in the net-
work.

b. Learning Requirement
The user needs and is restricted to a set of established cap-
abilities (i.e. FORTRAN compiler, text editor, program library
utility, etc.). The user takes part in the selection of and
naming of a set of utilities. Because of the end users par-
ticipation in selecting capabilities and default, there should

be minimal learning time required.

30

Level of Integration

All independent systems possess a minimal set of capabilities
which comprise the universal capability set. System integra-—
tion is minimally at that level or above.

Default Fit

Because defaults are prescribed by the user there should be a
minimum lack of fit throughout the network.

Interface Complexity

A standard for interchange of information is necessary so that
all participating nodes of the network can share commands and
data. An extended machine interface is required for each
machine to perform any necessary mapping from network stand-

ards to EM standards.

31

6.0 Model of System Evolution

In order to describe the evolutionary path over which computing sys-
tems have been moving, the relationship of the user to the machine is char-
acterized as a set of mappings of the user view onto the machine environ-

ment.

6.1 One User: One Machine System

The first systems considered are uniprocessors which operated for each
user in a fairly straight forward and simple manner. The user was a sophis-
ticated analyst or at least a well trained or experienced operator who was
intimately familiar with the system and its 'quirks' and defaults. Initial-
ly, such systems were operated via switches and buttons on the machine con-
sole. Then control languages were developed to provide greater interface

flexibility and simplicity via teletype or CRT consoles. [KRAY.H75] The

problem oriented or applications languages were developed along a problem
oriented semantics level. The application language user pushed for their
standardization. The operations and systems support user was alsoc a form

of applications oriented user, however, the scope and needs of his language
were not well understood. Additionally, there was a certain amount of job
security in knowing how to customize the operating system for various appli-
cation usages. These systems afforded a one on one relationship between
users and the operating system. When additional featureswere needed, they
were usually developed by the user himself as a utility and added to a grow-
ing set of utilities which eventually were amalgamated and scrutinized by

vendors and users to form a vendor or user standard for support.

32

6.2 N Users: One Machine System

These systems are comparable to RAN or time sharing systems. Multi-
tasking systems were developed and provided opportunities for concurrent
sharing of resources. The end user became more of a specialist. Use of the
computer became ancillary although probably essential to the user'smission. The
computer operator and operations staff became specializedan&.principallyover—
saw the security and direct maintenance routine of the op system. A new
group - the control group has formed and administered to scheduling of the
op systems usage. The sophisticated system oriented user was specialized
in the support and development of new system features. Each group had need
for a unique set of machine functional capabilities.

Fortunately the formal and informal interfaces are established easily

for exchange of information needed to use the various system capabilities.

6.3 N Users: M Machine System Hosts

These systems are comparable to VAN systems or computer communication
networks. Such systems are faced with the networking dilemma. It is in-
creasingly difficult to share available resources as a function of hetergene-
ity and number of netted machines.

Computer services have been extended to include new applications areas.
Computer usage has become highly specialized. Computer users background or
experience with computers is minimal. Economy and efficiency considerations
have produced specialized or turn-key systems. System support and resul-
tant reliability are often at issue. Software components provided by ven-
dors are tending toward standardization in order to address demand for reli-

able and supported software.

33

Computer support personnel are specialized. Computer operations staff,
system support and control personnel are minimally involved in direct and
informal communications with the end user. Application specialists provide

the principle interface with the end user.

6.4 One User: M Machine Systems

This permutation represents systems such as the MON or ION variety;
(see section 8: the ION section). The systems have become highly special-
ized to provide the end-user with a highly tailored view of the otherwise
complex system. Each user may have his own private view of the computing
complex. The novice can be expected to use the system for very specialized

applications with very little time required for tutoring. See figure below.

FIGURE 6.4

User Ui represents an individual user occurrance. Capability C, represents

1

a set of capabilities which are available to the user Ui' Note some or all of

Cl are snared. Each user potentially has a unique view of these capability

sets (Cl - Cm)'

34

7.0 Application Oriented Usability and Simplicity

The applications oriented user does not generally desire to know more
than is fundamental and necessary to accomplish a set of goals. Those who
deny this are to be found among those who support others useof the computer
system and their applications. Those who wish to remain in a specific appli-
cation area will more likely ask how and never ask ‘why' with a desire to

actually know.

7.1 Application Evolution and Direction
The trend in computing is moving towards increased specialization.
Application oriented users are tending to be less sophisticated computer
users as new computer applications are added to the total capability set.
Enslow reported the following four interesting statisitical predictions

for the year 1985.

a. Over 85% of all data processing will be done in event driven,
data base oriented systems;

b. At most 0.5% of all data processing will be done in academic
and research laboratories;

c. None of the 'end users', and no more than 25% of the applica-
tions programmers, will have been exposed to any academic com-
puter science courses;

d. And, at most 2% of the total programmer population will have
computer science degrees." [ENSL.P75]

Jardine reports, "...the trend is to remove from the application program

specific knowledge of the operating system environment under which it is to

be executed." [JARD.D75]

35

The specification of control languages has been slow principally because
very little is understood about them. It is difficult to judge whether a

standard would be restrictive and tend to stifle future work in the area.

7.2 An Application Oriented View
Application orientation would allow the computer system to be controlled
by the "end-user" in a more convenient manner. What is the most convenient
manner for an "end-user?" There are many who take a machine oriented view of
their OSCL. So, it is commonly seen as desirable to provide all users with
a uniform control language. An application oriented view or a goal directed
view asserts the following tenets.
a. The "end-user" is not driven by a desire to understand com-
puter control software any farther than is absolutely neces-
sary. It is preferable to solicit consulting staff for those
occassions when the application environment has grown computer-
wise and needs more application oriented control ware.
b. A control programming development language can be identified
to support any currently visable application oriented control
language.
c. The most convenient control language is one which has close
psychological fit with the user application environment.
d. It is practicable to provide each user or user group with a
control language which can be translated into a standard svn-
tax for flow through the network to an extended machine inter-
face.

€. User identify is umique throughout the network.

36

7.3 Usability Considerations - Convient and Pragmatic

The extent or level of OSCL is determined on the basis of need and
psychological closeness of the OSCL to the “end-user" applications environ-
ment. Recent efforts to simplify and adapt the OSCL to be more usable have
produced defaults. However, the selection of defaults may not fit the users
needs. Defaults tend to reflect the creators application needs. The extent
of usability is a function of the following considerations.

a. The language must be easy to learn. This is influenced by the
closeness of the language to the 'end-user" environment or psycho-
logical set.

b. The language should be extendable.

c. It should provide for user and system protection and security.

d. Tnere should be a minimum of rules.

e. It should be consistent.

f. It should be usable in both the batch and interactive environment.

g. It should allow for a minimum of command data entry which is
tailored to fit the users application environment.

Usability combines with simplicity when considered from the "end-user" view-
point. The user with unique application oriented commands is joined with
other users in the following description. Users and specialized user groups

are represented by focal points depicted below as U Un' Eminating from

1’ U2’
each user and translator interface to the network are nine edges. These

edges represent subsets of goal oriented capabilities. Each user has one or
more goals which must be satisfied in some minimal capability set. Two cap-
abilities are being shared by U, and U,. Three capabilities are shared be-

1 2

tween U2 and Un. One capability is shared between Ul and Un'

37

FIGURE 7.3 Capability Sharing

The sharing of system capabilities is similar to that of sharing use of
a program library in stand-alone computer systems. With centralized, machine
oriented capabilities the user must assure that such objects as file identi-
fication, subroutine names and any other named objects do not conflict with

existing named objects.

7.4 Simplicity Consideration - Maximum Usability

In its most usable form the capability set which fits the user's envi-
ronment is also in simplest form in terms of the user environment. If sim-
plicity is also viewed in terms of a minimum capability set the following
set diagram is used to evaluate the capability set for closeness of fit with
minimum capabilities.

1. Current estimate of capability set need.
2. Future capabilities to be added to the system.

Unused capabilities.

4. Unused capabilities originally perceived as needed.

Unused future capabilities perceived mistakenly as needed.

FIGURE 7.4

6. Used future capabilities

7. Unused future capabilities which were perceived as needed.

38

The smaller that subsets 4 and 5 are, the closer the capability set is to
being simple with respect to minimization of the capability sets. Minimiza-
tion of the user's capability set also contributes to protection and security.
This can be accomplished if the user capability set is scrutinously examined
for potentially harmful user access to unneeded commands which allow the

user to accidentially or intentionally missuse the capability set. The

scrutiny could be automated.

7.5 The Identity Crisis

In reviewing the literature it is noted that user identity is considered
only from an accounting point of view. It would seem desirable to use the
user ID for keeping track of available files and unique user or application
oriented control language syntax. One known exception where user identity
is used for purposes other than billing or accounting is the KRONOS time
sharing system. In this system the user's number servesas a hash key to lo-
cate user files, The system alsouses this identification to provide for the en-
forcement of user restrictions. User identity could also be used to prepare
the system for maximizing access to user store via moving the user stored
data to a more optimal area for accessability on secondary storage medias.
This report proposes that user identity could be used to provide a more com-
plete user directed form of tailoring for the end-user. A set of user de-
faults and special application oriented constructs could be made available
to tne end-user via more complete use of the user identity through use of a

user profile.

39

8.0 The ION (Identity Oriented Network) Alternative

In order that this work may be placed in perspective, another model of
networks is examined. A reasonably good framework for visualizing the evolu-
tion of resource sharing networks is provided by Kimbleton and Schneider.
Three "basic network sharing alternatives' are identified as the RAN (Remote
Access Network), the VAN (Value Added Network) and the MON (Mission Oriented
Network). [KIMB.S76]

The RAN alternative is essentially available according to references in
the article. This type is exemplified by time sharing systems such as
Cybernet [CDC.K73] and Tymnet [BEER.M71]. The VAN alternative is described
as a technological hurdle for which most or many solutions are on the hori-
zon. The principle distinction made between the VAN and MON approaches are
due to differences of degree in technological commitment needed to address
what are considered basically organizational and political issues.

The principle issues addressed in the VAN approach are those of topology,
protocols, user support, and network managment. These issues are basic to
the problems of interconnecting host machines as 'computer communications
networks.' The VAN alternative is seen here as a basic and minimized solu-
tion to the network machine communications problem. It minimally addresses
the network-user communications problem. The MON alternative embraces the
issues of both organizational and technological concern. This alternative
view represents the organization which controls the network as a "single
administrative organization." Another 'alternative' view will be presented
in which multiple individual organizations are in control of the network,
The principle issues addressed in the MON approach are those which are gen-

erally visable at the user level. They include organizational issues such

40

as econony and finance, load leveling, information sharing, protection cen-
tralization, flow of funds, autonomy and technical usage control issues,
such as the network operating system, control language, resource sharing,
etc.

The possibility for another alternative is envisioned as one which
addresses itself or adapts itself to a set or collection of organizations
with the same consideration for organizational and technical concerns ascrib-
ed the MON alternative. This alternative shall be called an ION for Identity
Oriented Network. In this network the emphasis is placed on providing indiv-
idualized views of resources and resource capabilities based on user identity
and associated attributes such as point of origin and potential inmutable

forms which may be made available, such as finger print, ID card, etc.

41

9.0 Perspectives on the Set of Basic Operations

The following subsections are included in this section. The various
modules of the system are placed in perspective in subsection 9.1. The mini-
mization of system dependent modules is discussed in subsection 9.2. General
interface requirements are provided in subsection 9.3. User profile objec-
tives and purposes are given in subsection 9.4. Basic operations considera-
tions for portability or machine independence are given in subsection 9.5.
First person third person command distinctions are discussed in subsection
9.6. The purpose of the network resource controller is discussed in sub-
section 9.7. The purpose of the extended machine interface is discussed in
subsection 9.8. Factors considered in the selection of basic operations are
discussed in subsection 9.9. Basic operations are classified in subsection
9.10. The function and syntax of the set of basic operations are presented
in subsection 9.11. The feedback and reporting requirements for the set of

basic operations are provided in subsection 9.12.

9.1 Module Interface Perspective

In order to place the details of this paper in perspective, the various
interfaces between software modules are outlined and discussed. Specific
network standard protocols are described by providing language rules for the
network machine (M) with:

1. the network resource control (NRC) component,

2. the extended machine interface (EMI) component.

The following abbreviations are used to present software modules and
the protocol requirements or mapping operations.

TC ... terminal control

u +.. end-user

T ... extendable contractable translator

42

P ... profile syntax rules section
NM ... network machine

P ... profile interpreter section
NRC ... network resource control

EMI ... extended machine interface
EM ... extended machine

659 ... two way interface

653 ... one way interface

9.1.1 Extended View

Two models or user views are provided to place the chosen module ele-
ments of NOS in perspective. An extended machine view depicts the hierarch-
ical structure of the network operating system. Note that this view depicts
the message system (¥S) as a common communications vehicle for all interfaces
between translators and network machine. The message system does not pro-
vide communications between NRC and EMI modules on different machines inside

or outside of any given cluster.

ENCL USER

ENCL TRANSLATOR USER

NETWORK
MACHINE

MESSAGE

SYSTEM

CLUSTER 1 CLUSTER 2

FIGURE 9.1a Extended Machine Model of XOS

43

9.1.2 Linear View

A linear view or model depicts flow of control and data interface be-

tween modules of the network operating systems.

FIGURE 9.1b Linear Model

The user interfaces with the ENCL translator via some terminal controller
(TC) which maps physical inputs to a network standard interface. The trans-
lator passes the user command input into an intermediate text code driven by
the compile time profile section, also called the syntax portion (Ps). The
network machine receives the intermediate text which is headed by a resource
request block, (RRB). The RRB is sent to the NRC module. Resources are pre-
allocated for the user by NRC. The NM sends RRB's to other NM's if needed
to reserve resources not under its local control. The NM establishes the
appropriate profile interpreter, also called run time profile section, and
starts the interpretation of command text made available by the translator.
When basic operation command requests are encountered while interpreting the
command text, the commands are sent to the exéended machine interface (EMI)
for execution. If command requests are for another machine, then KM sends

this request to the machines EMI via the controlling ¥M on the appropriate

machine. The XRC module is responsible for the reservation of resources
which are owned by the set of extended machines participating in the net-
work cluster. The EMI module is responsible for mapping network standard
basic operation requests to the appropriate SVC or set of SVC's supported

by the local extended machine.

9.1.3 Overview of Component Interfaces

1. txéza T ... communication interface required for 'end-user'
service with the extensable contractable control
language translator

. 'rQE) PS ... access convention for variable specification of
the control language syntax, capabilities and
access rights (user variable)

3. T E; NM ... network standard for communication between the
translator and network machine

4. lﬂié9 Pi ... standard network protocol between the network
machine and the profile command interpreter.
The sum of all profile interpreters equals the
total network command capability.

%5. N‘{@ NRC ... standardized protocol for network devoted re-
source allocation and deallocation

*6. N é; EMI ... standard network protocol for use of the ex-
tended machine

7. EMI@ EM ... machine dependent protocol for use of extended-

machine-supported basic operations

45

9.2 Dependent and Independent Interface Views

The above view of interfaces is recommended in order to minimize and
segregate the machine dependent and user, application dependent parts. In-
terface items 1 and 2 above provide user dependent interfaces, i.e. table
driven translation, for maximum user adaptability and application dependent
capability views. Interface item 7 above provides highly machine dependent
coverage. Interface items 3 through 6 provide for the machine independent

and application independent network standards of interface.

9.3 General Interface Requirements

1. Communications between the translator and end-user must be bidirec-
tional,<:) , for interactive usage and unidirectional for batch usage. It
is recommended that the translator be transparent to mode of usage. This
is possible if the I/0 interface is distinct for the two usage modes. That
is, there is a virtual terminal interface for Batch usage and a real terminal
for interactive usage.

2. Interface between the Profile syntax section, PS, is unidirectional
and only provides for translator access to the user profile syntax section.
So, the translator must have access capabilities to all user identified pro-
files and make policy decisions on behalf of the user profile access.

3. Interface between the translator and network machine is bidirec-
tional. It must be possible for the translator to communicate command text
to the network machine and also possible for the network machine to communi-
cate feedback through to the end-user. Otherwise, there need be a mechanism
for switching access to the user terminal for mutually exclusive access to

the end-user's terminal or virtual terminal.

46

4., Bidirectional interface is required for the network machine and
user profile interpreter. This is necessary to support conditional execu-
tion of the command text which is data dependent.

5. Bidirectional interface is necessary between the network machine
and the network resource controls to provide feedback as to the success or
failure of the machine dependent command for resource allocation.

6. Bidirectional interface is necessary between the network machine
and the extended machine interface to provide feedback as to the success or
failure of basic operation's executioﬁ.

7. A machine dependent form of bidirectional interface is necessary to

provide feedback of success or failure of basic operations.

9.4 The User Profile
The general objectives and purposes supporting the need for considera-
tion of a user profile are discussed here.

Profile Objectives

1. wvariable syntax definition: to provide user oriented special-

ization of the system environment which provides a framework for
creation of simple to use commands which are tailored to fit the
user environment

2. load leveling efficient resource allocation: to provide user

related information to the system which can allow more efficient
resource allocation development

3. simplify operations management: to provide system use control

4. protection and security: to provide protection and security to

both the user and the system

47

Profile Purposes

The specific purposes addressed in the profile design are:

1. tailored language: to define a translator level which con-

sists of a set of language syntax rules and a base level pro-
file interpreter for determination of the semantics of the
tailored control language

2. user default definition: to define implicit parameters for

the semantic routines

3. define user capabilities: total directed capability require-

ments are explicitely defined through user profile. Both the

semantic and syntax rules are part of the profile. Protection
and security are improved due to the requirement for a master

system profile to increase the user's capability set.

4. define resource requirements and limitations: only the opera-

tions staff (also a specialized applications oriented group)

can increase the capability set

9.5 Basic Operations

This subsection places control language basic operation in perspective
for portability considerations. Basic operations must be at a sufficiently
high enough level to allow for them to be used in systems which otherwise
are in conflict with respect to the order of lower level operations such as

with file linkage, file lookup and logical unit assignment.

9.5.1 Basic Operation Considerations
The basic operations must be at a sufficiently high level to allow a

set of network standard basic operations to be machine-system independent.

48

Batchachine-System Independence

There are essentially two types of operating systems with respect to
batch control. These two types of systems differ in the manner in which
jobs are processed. The two types are referred to as task oriented and job
oriented systems.

1. task oriented: These systems require that each task be initial-

ized and set-up (i.e. loaded) before file resources are linked
and established for the specific task execution. This type is
typical of mini systems.

2. job oriented: This systemdoes not require that the task be es-

tablished prior to file resource linkage with the system.
Files are established prior to or during task establishment by
a loader process. Call by name parameterization is the normal

mode for file passage in such systems.

The following afe examples.,

-A task oriented dialogue is as follows:

Job ident for accounting use
Task 1, ident1 task space reserved and units
assigned
[while
linked to task 1
do
specify symbolic obtain and assign files to task

assignment with units 1

Task, execution
|data”items for task

1

Task , ident
Samenassignmgnt with
another set of files
Task execution
data"items for taskn

last task establishment with file-
set assignment

End of job

49

-A job oriented dialogue is as follows:

Job, ident

[specify files to

be obtained for job

use prior to task assignment

Efaskl (with files to be assigned as parameters

may obtain other files as necessary

Eiaskn (with files to be assigned as parameters)

Data items for all tasks as separate record sets

|End of job

9.6 TFirst Person Third Person Control

In order for the network machine to control the sequence of events in a
job or interactive session, a set of operations must be provided by the ex-
tended machine. These are referred to as "third person" operations. This
set of commands are issued in behalf of the task process. They essentially
provide start, stop, pause and continue control to a third person component,
the network machine. These are necessary if the user is to be provided with
execution control. Also, they provide for scheduling of events for imple-
menting aging and priority based scheduling so that fair schedulingalgorithms
can be developed.

A set of commands must also exist to support "first person" control.
This set of commands are issued by the task process itself in its own behalf.
They provide control over files or data sets. Examples are: file creation,

file destruction, file motion, file lookup.

50

9.7 Network Resource Control
This module provides for the preallocation and deallocation of network
resources local to a given node of the network. PREALLOCATE and DEALLOCATE

are exclusively addressed and provided by NRC.

9.8 Extended Machine Interface
The EMI provides an interface mechanism for mapping between the basic
operations to the network machine and those operations which are generally

supported by local machine operating systems.

9.8.1 Purpose of the EMI

The principle purpose of the EMI and NRC is to provide a machine inde-
pendent and standard view of those basic operations which are required by
the network machine. Since EMI and NRC provide the mapping mechanism for
the transformation of network standard commands to extended machine commands,

they are machine dependent modules.

9.9 Basic Operations Selection

The need to use existing extended machine capabilities motivates the
specification of this set of basic operations.

The following factors were considered in selecting and specifying a set
of network standard basic operations.

1. The minimum set must be supported by a computer system before it
can fully participate in the network.

2. The operations must not impose an order of specification at the net-
work command processor level which is not compatable with existing system
software. The following examples are provided.

-With Interdata systems,file assignment follows task/program

loading for each occassion of task load operation.

Bl

-With CDC-CYBER systems, file assignment preceeds program loading

and is an implicit loader function once files have been assigned
within a job or session.

3. Efficiency considerations dictate the inclusion of frequently used
operations. It is noted that all basic operations can be accomodated via
one basic operation. The RUN command could allow the invocation of all
other basic operations. However, the RUN command must assume that the pro-
gram module which it initiates is not resident or part of primary memory.

An exception to this assumption requires RUN command processing to differ-
entiate between resident and non-resident modules or makes the RUN command
implementation dependent on an extended machine supported directory.

4. The need for more elaborate file management or record management
functions is not addressed in this set of basic operations. Data base man-
agement implementations may require other than sequential files. Additional
file structures such as random (word addressable or direct) access may be
required. This may be accomodated by the addition of open and close opera-
tions.

5. The need for adding additional basic operations should be considered

in the development of the extended machine interface.

9.10 C(Classification of Basic Operations

The basic operations recommended for support of the network command pro-
cessor may be classified according to closeness to the primative levels of
the host operating system or "extended machine" support software. Opera-
tions listed below are explicated in the section "Basic Operations." The
three classes of basic operations are as follows.

Class 1: This set of operations are those which support process manage-

ment, such as start, stop, pause and resume. They are commonly available in

52

the standard set of supervisor level calls provided by vendor system soft-
ware. These operations can be used by a supervisory process to contrel the
execution of a subordinate process.

Class 2: This set of operations supports file managment. The operations
which are generally available are: (Create, Delete, Modify and Lookup).
These are commonly available via supervisor components. For ease of imple-
mentation, it may be desirable to map the network command syntax into that
of the host-extended-machines command processor. This would introduce one
level of software above the supervisor call interface level. Also, the EXEC
commands are submitted directly without mapping to the command processor
level.

Class 3: This set of operations requires a composite of Class 1 and
Class 2 extended machine software support. These operations are: (RUN,
'pre-allocate and de-allocate). The RUN command represents a composite of
object loading, file assignment and execution. The pre-allocate and de-
allocate operations may require interface to existing dead lock prevention
software or the inclusion of special software in the NRC module to manage

resources dedicated specifically for shared network usage.

9.11 Basic Operation Details

For an exampleof the mapping of user application commands to appropri-
ate basic operations see Appendix A.

The following are Class 1 extended machine operations.

STOP (discontinue task process permanently)

This operation causes the task against which it is issued to be

terminated. |

Syntax example:_

STOP (<ntid>)

53

The <ntid> is a network task identifier. For more detail refer
to the "RUN" operation.

PAUSE (halt task execution temporarily)

This operation causes the task against which it is issued to be
suspended until a RESUME operation is performed.

Syntax example:

PAUSE (<ntid>)

For a description of <ntid> refer to the "RUN" operation.
RESUME (continue task execution)

This operation causes the task against which it is issued to be
removed from a suspended state and made ready for execution.
Syntax example:

RESUME (<ntid>)

For a description of <ntid> refer to the "RUN" operation.

The following are Class 2 extended machine operations.

EXEC (machine dependent operations)

This operation allows the user who has familiarity with the Host
extended machine to employ that set of operations. The machine
dependent code which follows this command is sent directly to the
extended machine command processor.

Syntax example:

EXEC <machine.dependent.code> <eol>

The <machine.dependent.code> may be any valid command on the host
machine on which this command is issued.

CREATE (define and allocate file)

The operation establishes a file control block, binds a symbolic

54

file identifier to the file and performs any initial operations
required to define or create a permanent file storage area on
secondary memory.
Syntax example:
CREATE (<f.name>, <password>)
The <f.name> parameter is a unique file name at the machine on
which it resides. It is made unique by appending the user
identifier to the file name. Access to the files is accomplished
in the profile through use of a network file directory (NFD)
pointer. The NFD provides a unique machine source address which
defines the source of the named file.
DELETE (destroy file)
This operation returns all primary and secondary storage associated
with the named file.
Syntax example:
DELETE (<f.name>, <password>)
For a description of <f.name> and <password> refer to the above
"CREATE" operation.
MODIFY (change fdb attributes)
This operation allows file definition attributes to be changed
and protection mechanism to be specified (i.e. file name, account
identification, password, hash identifier).
Syntax example:
MODIFY (<f.name>, <password>, ky = <new.syms>+)

where: ky is some keyword such as:

NF, for new file name;

Al, for new account id;

PW, for new password;
HI, for new hash identifer.
<new.sym> is a character string
For a description of <f.name> and <password>, refer to
the above "CREATE" operation.
LOOKUP (find and report fdb attributes)
This operation provides a means for file definition attributes to
be examined by an authorized user.
Syntax example:
LOOKUP (<f.name>, password)
For a description of <f.name> and <password>, refer to the above

"CREATE" operation.

The following are Class 3 extended machine operatioms.

RUN (establish, load, assign, execute)

It must be possible to direct the system to load an absolutized
or runable object module into primary memory, bind files to log-
ical units referenced by the program module being loaded and
start the program into execution.

Because systems perform a variety of functions with their load
operation and may not support explicit binding of files to units
with assignment operations, the high level RUN operation is used
to represent this composite function.

Syntax example:

RUN (<ntid>, <net.task>)

The <ntid> parameter is the network task-identifier and is unique
within the network. This parameter consists of three parts (CMT);
C for cluster identifier, M for machine identifier and T for task

identifier.

55

The <net.task> parameter represents a position dependent
string of files and or key words which are task dependent.
The network program directory (NPD), accessed via the user's
profile, establishes the order and type of parameters required.
RESERVE (pre-allocate resources for specified job)
This operation is required to allow for deadlock prevention in
the network. Implementation of this operation is dependent on
the resources associated with the host extended machine. The im-
plementation is also dependent on the sophistication of the ex-
tended machine. Some operating systems provide for resource allo-
cation and deadlock prevention while less developed systems do not.
Thus, the Network Resource Control module software will need to
adapt for those systems which do not provide rescurce allocation
commands.
The set of resources which may be pre-allocated should not be per-
manently fixed or restricted. However, a minimal set of resources
should be accomodated. These are:
central memory requirement (512 bytes);
maximum # of sub jobs to run concurrently;
file storage requirements;
file directory logical units.
Syntax example:
RESERVE ([SJmmm,ll]+, FSEf£ff)
where: mmmm represents central memory requirements in
512 byte units;
11 represents logical file units needed;

ffff represents file storage requirements.

56

57

RELEASE (return resources for a specified job)
This operation is the counter part to the reserve operation. It
must therefore be capable of returning all resources types which
were reserved.
Syntax example:
RELEASE ([SJ<ntid>)", FSffff)

where: <ntid> isdescribed under the RUN operation;

ffff represents file storage being returned.

9.12 Extended Machine Feedback

E.M. Feedback/Reporting

RUN: After all task terminations, a return code (RC) and completion mes-
sage is sent to the NCP which issued the RUN request.

EXEC: The above without a network standard return code.

STOP, PAUSE, RESUME: A coded status indicating the completion condi-

tion is returned to the NCP which issued the request. A message may or may
not be present.

CREATE, DELETE, MODIFY, LOOKUP: A coded status plus a message report

are always returned.

RESERVE: A reject message is sent if resources are not currently avail-
able. A network task identifier is returned if resources are available for
each task requested.

RELEASE: (a) A normal completion message is issued to the network
machine if all resources could be released (i.e. check made to assure limits
not exceded).

(b) An alarm message is issued if resources are in excess.

The operator is notified.

58

10.0 Conclusions and Recommendations

The following conclusions and recommendations are provided.

10.1 Conclusions

This paper has principally addressed the two questions cited in the in-
troduction. The basic modules of NCP and the necessary basic operations have
been identified to support a variety of user application environments. It
is the author's opinion that the correct resolution of question two will
make question one a more or less mute question. That is, the multiplicity of
supported application environments tends to eliminate political and economic
concern for which users are to be considered. They can all be considered.

The need for application and machine independent NCL views is identi-
fied. The literature review of section 3 identifies two current approaches.
These approaches were found to be individually lacking due to either lack of
application independence or machine independence in their approach to the
OSCL problem.

Several individual factors have been discussed. The importance of a
simple OSCL is identified along with what constitutes OSCL simplicity from
the 'end-user' standpoint. The lack of existence of an 'all-in-ome' 0OSCL
is shown. Definitions, objectives and requirements for an OSCL from a batch
use standpoint are identified. The need for an OSCL which serves both batch
and interactive use is identified. Measure of solution completeness are
described. Various OSCL considerations are explicated. The need for a
user set of individualized capabilities motivates the need for a table-
driven tramslator whose table is the user profile.

Literature providing stand-alone computing considerations are shown to

be relevant with respect to networking systems. The idea of user and system

54

specialization is discussed and shown to fit the networking model of extend-
ed machines. A user preferred view of networks is discussed. A model of
system evolution is presented which places networks in perspective as a many-
on-many relationship of users to machines. The trend in application special-
ization is examined. It is shown that user language simplicity is a key
issue in the development of an OSCL.

The motivation of this effort is placed in perspective with recent work
which categorizes a set of network alternatives. The I0Y approach is pre-
sented as an additional alternative to network systems.

Finally, the modules which constitute the NCF are placed in perspective

and discussed. The set of recommended basic operations are presented.

10.2 Recommendations

The set of basic operations are possibly weak in one application area.
That is, the set does not provide for record management commands explicitly,
This type of command can be added and invoked via the RUN command. It is an
open question whether this is appropriate or not. It is therefore recommend-
ed that further study be done to determine whether or not a record management
command is needed. It could be added to the CREATE command or a unique com-
mand could be provided.

In providing record management contreol the 'first person', third person'
considerations should be made. Is it possible that the user would need the
ability in a program to dynamically redefine, as 'first person', the expected
record format from within the user's program? Or, is it sufficient to pro-
vide a "third person' type of command capability via the CREATE command?

It is the author's opinion that the néed for an alternative, or ION,
view of networking has been established. Further work with an actual imple-

mentation is the next step toward solving the networking dilemma.

10.

11.

60

BIBLIOGRAPHY

BAIR.G75
Baird, George N. (U.S. Navy)
"Fredette's Operating System Interface Language', in Command
Languages, edited by Unger, C., published by North-Holland
Publishing Co., 1975, pp. 267-279.

BARR.D72
Barron, D. W. and Jackson, I. R., "The Evolution of Job Control

Languages", Software Practice and Experience, Vol. 2, pp. 143-
164.

BARR.D74
Barron, D. W., "Job Control Languages and Job Control Programs",
The Computer Journal, Ag '74, pp. 282-288.

BEER.M71
Beere, M. and Sullivan, N., "Tymnet-A Serendipitous Evolution",
Second ACM Symposium on Problems in the Optimization of Data
Communications Systems-Proceedings, October 1971.

BRIN.P73
Brinch Hansen, Per, "An Overview of Operating Systems'", Chapter 1,
Operating System Principles, Printice-Hall, p. 2, 1973.

BRIN.P75
Brinch Hansen, Per, "The Solo Operating System-A Concurrent Pascal
Program”, The Solo Operating System, private report, 1975.

CDC.K73
"KRONOS 2.1 Reference Manual", Publication No. 60407000, Control
Data Corporation, 1973.

CROC.S72
Crocker, S. D., et al., "Function-Oriented Protocols for the
ARPA Computer Network', Spring Joint Computer Conference, 1972,
pp. 271-280.

DAKI.R73
Dakin, R. J., "A General Control Language: Language Structure

and Translation', The Computer Journal, Vol. 18, No. 4, pp. 325-
332.

DAVI.D73
Davies, D. W. and Barber, D. L. A., Chapter 11, "Protocols, Ter-
minals and Network Monitoring", Communication Networks for Com-
puters, John Wiley and Sons, New York, 1973.

ELOV.H74 :
Elovitz, Honey S. and Heitmeyer, Constance L., "What is a Computer

Network?", National Telecommunications Conference, 1974 Record,
pp. 1007-1014.

12,

13.

14,

T8

16.

17.

18.

19.

20.

21.

22,

ENSL.

GAGL.

JARD.

JERS.

KELL.

KIMB.

KIMB.

KRAY

LEDG.

MADN.

NEED.

61

P75

Enslow, Philip H., "Summary of the IFIP Working Conference on
Operating System Command Languages', Command Languages, North-
Holland Publishing Company., 1975, pp. 389-395.

U75
Gagliardi, U. 0., "Trends in Computing System Architecture'",
Proceedings of the IEEE, Vol. 63, No. &, June 1975.

D75

Jardine, D. A., "The Structure of Operating System Control
Languages'', Command Languages, North-Holland Publishing Company,
1975, Ppl 27_42¢

J75
Jensen, Jorn and Lanesen, Soren, '"Programming Language Extensions
Which Render Job Control Languages Superfluous', Command Languages,

North-Holland Publishing Company, 1975, pp. 137-152.

c6e8
Kelley, C. R., Manual and Automatic Control, John Wiley and Sons,
Inc., New York.London.Sydney, 1968.

575

Kimbleton, Stephen R. and Schneider, G. Michael, "Computer Com-
munication Networks: Approaches, Objectives, and Performance
Considerations', Computing Surveys, Vol. 7, No. 3, September 1975.

S76

Kimbleton, Stephen R. and Mandell, Richard L., "A Perspective on
Network Operating Systems'", AFIPS Conference Proceedings, Vol. 45,
1976, pp. 551-559.

H75

Krayl, H., Unger, C., Weller, T., "Portability of JCL Programs",
Command Languages, North-Holland Publishing Company, 1975, pp.

293-304.

H75
Ledgard, Henry F., Programming Proverbs for FORTRAN Programmers,
Hayden Book Company, Inc., 1975, 130 pages, pp. 95.

S74
Madnick, Stuart E. and Donovan, John J., Operating Systems,
McGraw-Hill Book Company, 1974, pp. 17-19.

R74

Needham, R. M. and Wilkes, M. V., "Domains of Protection and the
Management of Processes', The Computer Journal, Vol. 17, No. 2,
May 1974.

23.

24,

25.

26.

27.

28.

NEWM.

PARS.

TOML.

UNGE.

WHIT.

WULF.

62

173
Newman, I. A., "The Unique Command Language-Portable Job Control".

175
Parsons, I. T., "A High-Level Job Control Language', Software

Practice and Experience, John Wiley and Sons, Ltd., Vol. 5, 19753,
pp. 69-82. :

G76

Tomlinson, G. R. and Ashok, K. A., "Developing Application Ori-
ented Computer Architectures on General Purpose Micro-Programmable
Machines'", National Computer Conference, 1976, pp. 715-722.

C75
Unger, C., Command Languages, North-Holland Publishing Company,
1975.

J76
White, James E., "A High-Level Framework for Network-Based Re-
source Sharing", National Computer Conference, 1976, pp. 561-570.

W74

Wulf, William A., "Issues in Higher-Level Machine-Oriented Lang-
uages'', Machine Oriented Higher-Level Languages, North-Holland
Publishing Company, 1974, pp. 7-12.

63

APPENDIX 11.1

Sample User Mapping to Basic Operations

A program text is to be compiled on Machine 1, M1, with the source text

on Machine 2, M2. The resultant object module is executed on Ml.

User Commands Basic Operations

COMPILE, I = PROGA, B = LGO 01

CREATE (LGO.uid%*)

02 - CREATE (PROGA.uid)

03 - RUN (COPY, M2, M1, PROGA.uid)
04 - RUN (FTN, PROGA.uid, LGO.uid, OUTPUT.uid)
EXECUTE, LGO RUN (LGO.uid)

- The translation identifies COMPILE as a Machine 1 operation via the profile
network program directory, NPD.

- The translator identifies LGO as a temporary file because it is not in the
profile network file directory NFD for this user. Thus, it produces line 01.

- The translator identifies PROGA through the NFD as resident on Machine 2, M2.
It produces line 02 and 03 to make the file resident for compilation on
Machine 1.

- The translator produces line 04 to cause the FTN compiler identifier from the
NPD to be executed with the appropriate input and output files. Note the
OUTPUT.uid file is a unique user default 'output' file for listing test
output.

- The translator identifies EXECUTE as a command to run the binary object

module, LGO.uid.

*General Comment: wuid represents the user identity which is required to unique-

ly define files on a Host machine.

DESIGN CONSIDERATIONS FOR A NETWORK
CONTROL LANGUAGE (NCL)

WAYNE BARRETT CHAPIN

B.S., Kansas State University, 1969

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCILXCE

Department of Computer Science

Kansas State University
Manhattan, Kansas

1977

ABSTRACT

This report presents considerations for the develop=-
ment of network control languages. The report is motivated
by the need for a simplified means of resource sharing on
heterogeneous computer networks, the networking dilemma.

The user profile is motivated by the need for application
dependent control languages provided through use of a
table~driven translator. A minimal basic set of operations
is motivated by the need for a machine independent implemen-
tation of control languages.

A review of the literature reveals the need for more
than a unique, all=in-one, control language when usage sim-
plicity is considered. Current approaches are found to be
wanting either due to lack of machine independence or aps
plication dependence. The application of user identity 1is
found to be limited to use in accounting for computer serve
lces. Application of user identity can and should be extend-
ed to aid in providing a set of tallored user capabilities.
This extended application of user identity metivates & net=
working alternative called the identity oriented network,
(ION).

The importance of user identity for tailoring control
languages to meet individual user needs is stressed. The
objectives and purposes of the user identified profile are
presented. A minimal set of basic operations 1s prescribed.

Conclusions and recommendations are provided.

