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Abstract

This thesis extends the application of Lattice Boltzmann Methods (LBM) to radiation

transport problems in thermal sciences and nuclear engineering. LBM is used to solve the

linear Boltzmann transport equation through discretization into Lattice Boltzmann Equa-

tions (LBE). The application of weighted summations for the scattering integral as set forth

by Bindra and Patil1 are used in this work. Simplicity and localized discretization are the

main advantages of using LBM with fixed lattice configurations for radiation transport prob-

lems. Coupled solutions to radiation transport and material energy transport are obtained

using a single framework LBM.

The resulting radiation field of a one dimensional participating and conducting media are

in very good agreement with benchmark results using spherical harmonics, the P1 method.

Grid convergence studies were performed for this coupled conduction-radiation problem and

results are found to be first-order accurate in space. In two dimensions, angular discretiza-

tion for LBM is extended to higher resolution schemes such as D2Q8 and a generic formula-

tion is adopted to derive the weights for Radiation Transport Equations (RTEs). Radiation

transport in a two dimensional media is solved with LBM and the results are compared to

those obtained from the commercial software COMSOL, which uses the Discrete Ordinates

Method (DOM) with different angular resolution schemes. Results obtained from different

lattice Boltzmann configurations such as D2Q4 and D2Q8 are compared with DOM and

are found to be in good agreement. The verified LBM based radiation transport models

are extended for their application into coupled multi-physics problems. A porous radiative

burner is modeled as a homogeneous media with an analytical velocity field. Coupling is

performed between the convection-diffusion energy transport equation with the analytical



velocity field. Results show that radiative transport heats the participating media prior to

its entering into the combustion chamber.

The limitations of homogeneous models led to the development of a fully coupled LBM

multi-physics model for a heterogeneous porous media. This multi-physics code solves three

physics: fluid flow, conduction-convection and radiation transport in a single framework.

The LBE models in one dimension are applied to solve one-group and two-group eigen-

value problems in bare and reflected slab geometries. The results are compared with ex-

isting criticality benchmark reports for different problems. It is found that results agree

with benchmark reports for thick slabs (>4 mfp) but they tend to disagree when the critical

slab dimensions are less than 3 mfp. The reason for this disagreement can be attributed to

having only two angular directions in the one dimensional problems.
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Chapter 1

Introduction

1.1 Radiation Transport in Matter

As radiation travels through a material medium, there are multiple mechanisms through

which it can interact with that medium. Neutral particles can collide with nuclei, causing

various possible reactions. Charged particles such as electrons and protons can interact

with the negatively charged electron cloud or the positively charged nucleus, thus depositing

energy in the medium. Volumetric transport of radiation is a critically important factor in

many applications ranging from production of wide-bandgap semiconductor materials3 and

ceramic sensors4 to performance of combustion chambers5. The transport mechanisms in

nuclear reactors6, isotope production7 and radiation detector equipment8 are a few more

examples with specific applications to nuclear technology. With the growing interest in high

temperature systems for nuclear and other energy sources, the role of radiation transport

in the design and analysis of such systems is expected to play an important role.

Thermal engineering problems involving radiation transport are traditionally classified

into two categories - systems where surface to surface thermal exchange is quantified using

the Stefan-Boltzmann law, and other problems where radiation transport through the partic-

ipating media should be quantified. For processes such as glass making, the radiation profile

1



in the media becomes a crucial design factor.9 Solving for the radiative transport through-

out the media is computationally expensive compared to using the Stefan-Boltzmann law,

however the results give more information about the physics going on inside the media.

Various methods have been developed to solve the radiation transport equation (RTE).

Radiation transport problems require the full solution of the RTE. Some of the popular

methods to solve the RTE include the Finite Volume Method, Discrete Ordinate Method

(DOM), Spherical Harmonics, Discrete Transfer Method, Collapsed Dimension Method,

Probability Method and Method of Characteristics. The aforementioned methods reduce the

domain for radiation by making various assumptions. The typical approach is to discretize

the angular space in order to represent the entire domain. For stochastic radiation transport

the geometry is often simplified and directions are sampled from a probability distribution.

The Lattice Boltzmann Method (LBM) is a deterministic computational method based

on the cellular gas automata models, discussed later, via a system of lattice Boltzmann

equations (LBE). As will be discussed later in this chapter, LBM implements inter-particle

collisions to simulate physical phenomenon such as fluid motion. The velocity of each particle

is governed by a particle distribution function, although sampling is systematic, making

LBM a deterministic algorithm. Time advances in finite steps, during which collision rules

are applied such that the governing physics are not violated.

A new approach was proposed by Asinari et al. for radiative transport simulations by

using the LBM10 for modeling radiative heat transfer in the participating media. In 2011

Ma et. al.11 re-derived LBE’s for radiation transport using Chapman-Enskog expansion.

They solved for the steady-state radiative profile between gray plates in a non-scattering

media and found good agreement between the LBM results and the analytical profile. In

2012 Bindra and Patil1 applied LBM to one and two dimensional steady-state radiative and

neutron transport problems with isotropic and anisotropic scattering medias. Results were

found to by very agreeable with spherical harmonics and DOM solutions. Some of these

example studies10 showed that LBM used as little as 14% of CPU time as compared to the

2



finite volume method for a one dimensional problem. The application of LBM to radiative

problems makes it a prime candidate for an inherently coupled multiphysics solver, where

radiative transport and material (e.g. fluid) transport can be solved in a single framework.

1.2 Background and History of LBM

LBM is a mesoscopic method in which groups of particles represent the properties of a

material as an ensemble average of the individual particles. To better understand the

modeling scale of LBM it would be helpful to take a brief look at the application of LBM

to fluid mechanics.

LBM uses statistical mechanics to represent the motion of particles. It was developed

from the Lattice Gas Automata (LGA) model which is a microscopic method, enforcing the

physics for each atom. The remainder of Sec. 1.2 gives a background of LGA and shows

how LBM was developed to overcome various problems facing the LGA model.

1.2.1 Lattice Gas Automata

LGA is an artificial microscopic method that was developed to describe gas kinetics. The

first known LGA model was the HPP model,12 which separates the movement of particles

into two steps: collision and streaming. In the collision step local physics are enforced and

in the streaming step the numerical results are propagated in 4 cardinal directions, referred

to as streaming directions.

The HPP collision step enforces a boolean quantity at a particular node. In essence a

particle either exists at a specific node, or it does not. Mathematically the collision operation

is given by Eq. 1.1, where n=0 or 1 and is the number of particles, x is the node location, t

is the time, and Λi is the collision operator for the ith direction and is given in Eq. 1.2.

ni(x+ ∆x, t+ ∆t) = ni(x, t) + Λi(n(x, t)) (1.1)

3



Λi = ni⊕1ni⊕3(1− ni)(1− ni⊕2)− (1− ni⊕1)(1− ni⊕3)nini⊕2 (1.2)

In Eq. 1.2 ⊕ is the modulus operator. The collision operator, Λ, conserves mass, momentum,

and energy, which is readily shown by taking the first 3 moments of Λ about the velocity,

ci, as given in Eq. 1.3.

4∑
i=1

Λi = 0

4∑
i=1

ciΛi = 0

4∑
i=1

c2
iΛi = 0

(1.3)

Macroscopic variables are obtained by taking moments of the probability distribution func-

tion, f , about the velocity, ci, as shown in Eq. 1.4. The probability distribution function

describes the distribution of atoms throughout the lattice. For fluid and thermal applications

the distribution function is accurately described by a Maxwellian distribution.13

ρ =
4∑
i=1

mfi

ρu =
4∑
i=1

mcifi

(1.4)

In Eq. 1.4 m is mass, ρ is density, and ρu is momentum. The particle’s probability distribu-

tion function, f , is difficult to derive, thus it is often replaced by a spatial and/or temporal

average at the node of interest.14

Streaming

The main benefit of LGA and LBM is the separation of the streaming and collision op-

erations. This allows parallel deployment on GPU architectures,15 dramatically reducing

simulation time. The streaming step propagates the information in a specific direction. This

4



is shown mathematically in Eq. 1.5.

ni(x+ ∆x, t+ ∆t) = ni(x, t) (1.5)

Intuitively one can see that a particle will stream in the same direction without change if

there are no other particles to collide with, which is also a paraphrase of Newton’s first law.

There needs to be a mechanism that can alter the trajectory of the particle. In LGA and

LBM this mechanism is the collision operator.

Colliding

The collision operator, Λi as shown in Eq. 1.6, is the only mechanism that prevents a particle

from following a specific trajectory indefinitely.

ni(x+ ∆x, t+ ∆t) = ni(x, t) + Λi(x, t) (1.6)

The collision operator is discussed later in this chapter, so it will suffice to mention here

that the collision operator is the heart of LBM models. Local physics are conserved during

the collision step.

1.2.2 LBM Lattice Configurations

LGA and LBM are employed on nodes in discretized space. A common nomenclature for

lattice configurations is DnQm where n is the dimension of the problem (1, 2, or 3) and m

is the number of directions used to discretize the domain space. Lattice configurations for

one dimensional, two dimensional, and three dimensional domains are shown in Fig. 1.1 and

Fig. 1.2.

5



Figure 1.1: One dimensional LBM lattice configuration.

Figure 1.2: Various two and three dimensional LBM lattice configurations showing (a)
D2Q5, (b) D2Q9, (c) D3Q7, and (d) D3Q19 lattices.
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1.2.3 Benefits and Drawbacks of LGA

The main advantages of LGA are that it has no truncation error because the collision opera-

tor is boolean, it is relatively easy to understand and implement, and it is very parallelizable

due to the fact that the collision operator relies only on local variables.

There are, however, certain drawbacks that keep the model from being sufficient for rep-

resenting hydrodynamic flow. Among these drawbacks are statistical noise from the boolean

variables, violation of Galilean invariance, and a dependence of velocity on pressure.14 LGA

lacks rotational invariance due to only describing motion in the 4 cardinal directions, thus

vorticies appear as squares. Galilean invariance was restored by adding more directional

components to the model, for example using a D2Q9 lattice instead of a D2Q5 lattice.

1.2.4 LBM from LGA

LBM operates with the same stream and collision mechanics as LGA, however various

improvements freed LBM from the shortcomings associated with LGA mentioned in the

previous section. The most significant improvement was the simplification of the collision

operator that reduced the boolean noise. Various methods have been employed to reduce

the complexity of the collision operator in LGA. Bhatnagar, Gross, and Krook developed a

simplified model (BGK approximation) based on the assumption that the collision operator

returns nothing at equilibrium, thus Λ(f eq, f eq) = 016. They represented their model as

Λi(f) = −1

τ
(fi − f eqi ) (1.7)

where Λ is the collision operator, f is a probability distribution function (pdf), τ is a

relaxation parameter, and i is a discrete direction. McNamara and Zanetti first introduced a

distribution function in order to reduce statistical noise and simplify the collision operator.17

Higuera and Jimenez further simplified the collision operator by linearizing the model based

on the assumption that the distribution, f , was close to equilibrium.18 The collision operator

7



was simplified even more by several groups working independently from each other,19,20,21

with the resulting model having an similar structure to the BGK model as given by Eq. 1.7.

The main difference in these models is their handling of the relaxation parameter, τ .

In 1872 Ludwig Boltzmann showed that any system of ideal gas, regardless of its initial

distribution, will reach equilibrium as a Maxwellian distribution.22,13 By using a Maxwellian

distribution function in the collision operator statistical noise is significantly reduced, due

to the calculated probabilities being rational numbers.

For fluid mechanics the equilibrium distribution approaches a Maxwellian distribution,

however for radiative transport this does not hold true. Fluid simulations necessarily take

into account inter-particle collisions, thus the number of collisions is proportional to the

gradient of the concentration of particles at a given location. The inter-particle collision

rate of radiation particles is negligible. For this reason the collision operator for radiative

transport is linear and can be described by absorption and scattering integrals. A scattering

collision operator for the RTE is thus given by

Λs = ωw

Q∑
i=1

I(~r, ~Ω, E, t) (1.8)

where ω is the scattering albedo, w is directional weight, Q is the number of discrete LBM

directions and I(~r, ~Ω, E, t) is the intensity of radiation at position ~r traveling in a direction

~Ω with energy E at time t.

1.3 Boundary Conditions for LBM

The streaming operation carries information from the boundary to the rest of the domain,

as shown in Eq. 1.9,

ni(x+ ∆x, t+ ∆t) = ni(x, t) + Λi(x, t) (1.9)
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however the boundary receives no value from either the streaming operation or the collision

operation. The boundary conditions thus need to be specified depending on the local physics

at each boundary.

Common boundary conditions for fluid mechanics are periodic, no-slip (also known as

bounceback), and sliding wall. The periodic boundary conditions are generally used to

simulate a repeating representative cell of a much larger domain. No-slip conditions are

typically referred to as bounceback boundary conditions, due to how they are enforced in

LBM. When the fluid reaches a wall during the streaming step then the next streaming

step mirrors the distributions at the surface, effectively ”bouncing” what came in off of the

wall. The sliding wall condition is used to allow movement of the bounding surface. These

boundary conditions are enforced by using only the components of the discrete velocities

moving parallel to the surface.

The physics for radiative transport are much different than for fluid mechanics, thus new

boundary conditions need to be introduced for the case of the RTE. The physics occurring

at the interface include transmission, reflection and emission of radiation.

Boundary conditions for LBM which can be applied to the RTEs include periodic and

fixed conditions for radiative flux and partial currents. Periodic conditions are used the

same way as described for fluid mechanics, what goes out one side comes in the opposite

side. Dirichlet conditions can be used to specify a known flux at the surface. The equivalent

direction dependent flux distributions at the boundaries can be used to specify the partial

currents and gradient of the flux, or the net current at the surface.

Transmission of radiation is defined as radiation passing through a material. Radiative

emission particularly relevant for radiative heat transfer problems is the radiative flux emit-

ted by the surface based on the temperature and emissivity of the object. Together these

correspond to a known radiative flux at the boundary, which can be modeled as a Dirichlet

boundary condition, for which the boundary value is specified. For example, consider solar

radiation incident upon a car windshield. Some radiation passes through, while some is
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reflected from the windshield surface. At the same time the windshield, which has a tem-

perature of its own, is emitting thermal radiation. The total amount of thermal radiation

entering the car is the sum of the transmitted and emitted radiations.

To enforce a Dirichlet boundary condition the radiative intensity on a boundary node is

specified, as shown in Eq. 1.10,

Ii(~r, t) = Io, ~r ∈ boundary (1.10)

where Io is the specified radiative intensity. In this work Dirichlet boundary conditions are

employed mainly for thermal radiation simulations where the emission is based on a known

material temperature and a known material emissivity. Details are provided in Ch. 2.

1.4 Directions and Weight Factors

The most common form of LBM is implemented on a Cartesian grid. This means that

the distance radiation travels in each direction is unique. The time step for propagating

radiation in each direction is the same, and the velocity of the radiation is the same in all

directions, thus a weight factor must be introduced to artificially synchronize the transport

of radiation for a single time step. In this regard LBM is similar to DOM. While DOM

weight factors are derived from geometrical relations, LBM weight factors are derived from

generalized lattice tensors23. The difference between propagation in a single step of LBM

versus DOM is shown in Fig. 1.3.

With LBM the radiation traveling in each direction extends completely to the next grid

location where the solution is sought. In order to account for the varying distances traveled

by each direction apparent discrete velocities are calculated using Eq. 1.11.
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Figure 1.3: Distances traveled in each direction in a single time step using a) LBM and b)
DOM methods.

ci =


c

(
cos

(
(i− 1)π

2

)
, sin

(
(i− 1)π

2

))
i = 1, 2, 3, 4

√
2c

(
cos

(
(i− 5)π

2
+
π

4

)
, sin

(
(i− 5)π

2
+
π

4

))
i = 5, 6, 7, 8

(1.11)

The discrete velocities are used to determine appropriate weight factors, wi, through

tensor moment expansions23. Along with maintaining consistent radiation propagation in

each direction, weight factors are needed to preserve rotational invariance.24 Rotational

invariance means that the lattice can be rotated in 90◦ increments without changing the

results. This is a necessary feature in LBM because the streaming operation is the same in

each direction. Jeffreys explains that a rotationally invariant Cartesian lattice must satisfy

the conservation equations, which are moments about the lattice speed25. Odd moments

will vanish due to symmetry and even moments can be used to find the weight factors and

directional lattice speeds.

For the D2Q8 lattice (radiation has no stationary node) which has discrete velocities
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shown in Eq. 1.11 the odd moment equations vanish due to symmetry

8∑
i=1

ciαwi = 0

8∑
i=1

ciαciβciγwi = 0

(1.12)

and the even moments can be expressed as

8∑
i=1

wi =1

8∑
i=1

ciαciβwi =δαβ

8∑
i=1

ciαciβciγciηwi =δαβδγη + δαγδβη + δαηδβγ

(1.13)

where δ is the Kronecker Delta function. Jeffreys showed that any higher order tensor can

be represented as a combination of 2nd and 4th order tensors. Similarly 4th order tensors can

be represented as a combination of 2nd order tensors. Noting that the velocities evaluate to

ci = c ·


(1, 0), (0, 1), (−1, 0), (0,−1) i = 1, 2, 3, 4

(1, 1), (−1, 1), (−1,−1), (1,−1) i = 5, 6, 7, 8

(1.14)
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Table 1.1: Directional weights for one dimensional and two dimensional lattices used in
radiative simulations.

Lattice Direction, i Weight, wi

D1Q2 1-2 0.50

D2Q4 1-4 0.25

D2Q8

1-4 0.20

5-8 0.05

Eq. 1.13 can be expanded to

Q∑
i=1

wi =4w1 + 4w2 = 1

Q∑
i=1

c2
i1wi =2c2w1 + 4c2w2 = 1

Q∑
i=1

c4
i1wi =2c4w1 + 4c4w2 = 3

Q∑
i=1

c2
i1c

2
i2wi =4c4w2 = 1

(1.15)

Eq. 1.15 is a system of four equations with three unknowns. A unique solution is obtained

by requiring the weights to be non-negative and non-zero. With these constraints, and by

keeping c arbitrary, solving these moment equations for the two unique directional weights

yields w1 =
1

5
and w2 =

1

20
, where 1 and 2 correspond to cardinal and diagonal directions,

respectively. Another point of interest is that in fluid mechanics a rest velocity is assigned to

node 0, the central node. For radiative transfer a stationary node is not physically possible,

thus stationary weights are always 0 for radiation LBM lattices. Tab. 1.1 gives the weights

for various one dimensional and two dimensional lattices with varying numbers of discrete

directions.
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1.5 Radiative Transport LBE

For radiation moving through a material the general form of the RTE can be written as26

1

c

∂I(~r, ~Ω, t, E)

∂t
+ ~Ω · ∇I(~r, ~Ω, t, E) =

κaIb(~r, ~Ω, t, E)− κaI(~r, ~Ω, t, E)− σs(~r, ~Ω, t, E)I(~r, ~Ω, t, E)+

σs
4π

∫
4π

I(~r, ~Ω′, t, E ′)Φ(~Ω′ → ~Ω, E ′ → E)d~Ω′ (1.16)

where c is velocity, Ib(~r, ~Ω, t, E) is the blackbody radiative intensity, I(~r, ~Ω, t, E) is the ra-

diative intensity at position ~r with direction ~Ω at time t with energy E, κa is the absorption

coefficient, σs is the scattering coefficient, and Φ(~Ω′ → ~Ω, E ′ → E) is the scattering phase

function which describes the probability of scattering into direction ~Ω from an initial direc-

tion ~Ω′. The first and second terms on the left hand side of Eq. 1.16 represent the temporal

and spatial change in radiative intensity, respectfully. The first term on the right is the

source of radiation due to black body radiation. The second and third terms account for

radiation sinks due to absorption and scattering with the medium. The fourth term is a

source due to in-scattered radiation, or radiation that initially had a different direction and

energy, but after scattering has the same energy and direction as that being considered. For

isotropic scattering the probability of scattering from any direction into any other direction

is equal, thus the scattering phase function is simply unity, Φ(~Ωi, ~Ω) = 1.

Normally the scattering integral calculation is resource consuming due to the necessity of

evaluating radiative contributions from every other node. Thus the evaluation of intensity

at a point relies on a multidimensional integral. Due to the nature of LBM, directional

information at each individual node can be used to determine the macroscopic quantities.

What would in other methods be a recursive integral becomes a local summation. This is

the main benefit of using the LBM for radiative transport. The ability of LBM to conserve

macroscopic quantities is paramount in the implementation.
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Bindra1 showed that the corresponding LBE for the monoenergetic RTE conserves

macroscopic energy and can be written as

∇I(~r + c~Ω∆t, ~Ω, t+ ∆t)−∇I(~r, ~Ω, t) =

∆x

~Ω

[
κaIb(~r, ~Ω, t)− κaI(~r, ~Ω, t)− σs(~r, ~Ω, t)I(~r, ~Ω, t)+

σs
4π

Q∑
i=1

I(~r, ~Ω, t)Φ(~Ωi, ~Ω)
]

(1.17)

where S(~r, ~Ω, t) is a source term representing radiative emission from within the media and

w~Ω is a weight factor for direction ~Ω. The source term is analogous to an external force

term in the LBE for fluid mechanics as derived by He and Guo.27,28 It can be seen that the

volumetric integral has been replaced by a nodal summation across all discrete directions,

Q. Numerical accuracy is important when representing the macroscopic quantities because

of error propagation. A Taylor series expansion can be used to determine the expected

numerical accuracy of the aforementioned LBE as a function of grid size.

The Taylor series expansion of Eq. 1.17 in space and time, and noting that ∆~r = c∆t,

leads to

I(~r + c∆t, ~Ω, t + ∆t) ≈ I(~r, ~Ω, t) +
∂I(~r, ~Ω, t)

∂t
∆t +

∂I(~r, ~Ω, t)

∂~r
c∆t + O(∆t2) (1.18)

Inserting Eq. 1.18 into Eq. 1.17 and dividing by ∆t yields

1

c

∂I(~r, ~Ω, t)

∂t
+
∂I(~r, ~Ω, t)

∂~r
=

− κaI(~r, ~Ω, t) + w(~Ω)
∑
i

Φ(~Ω, ~Ωi)I(~r, ~Ωi, t) + S(~r, ~Ω, t) +O(∆t) (1.19)

It is worth mentioning that while the LBM for the RTE is first order accurate, the

LBM for fluid mechanics is claimed to be second order accurate in computing velocity.24
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More details on the LBE formulation will be provided in the next chapters along with some

example problems.
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Chapter 2

One Dimensional Multiple-Mode

Heat Transfer

2.1 Introduction

Over the last two decades the number of high temperature applications has dramatically

increased due to the advances made in material science. Some of these industrial applications

include the manufacturing of glass, design of insulating material, porous burners, solar

collectors, high temperature nuclear reactors, etc. Designing high temperature applications

requires a knowledge of the volumetric radiation because at higher temperatures radiative

contributions from each component increases.

In many engineering calculations thermal radiation is quantified by a surface-to-surface

radiative exchange via the Stefan-Boltzmann equation.9 View factors are used to relate

the fractional amount of radiation that leaves a body and interacts with another body.

These types of models assume no interaction of radiation with the medium of propagation

separating two surfaces. This simple model cannot be applied if the medium between the

bodies has a relatively high degree of interaction with the radiation being emitted from the

surfaces.
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There are various numerical methods and codes available which can solve for radiative

heat transfer within a participating media, as mentioned in the last chapter, but practical

problems of high temperature applications involve continuum mechanics of the participating

media and also account for other modes of energy exchange. In a multi-physics simulation

evaluating the radiative heat transfer in conjunction with other heat transfer modes re-

quires tightly coupled simulations. Therefore a simplified deterministic method is required

for multi-physics applications which can reduce the computational demands of the RTE

while still being able to solve continuum mechanics as well. This chapter shows how LBM

compares to existing methods, namely the Spherical Harmonics P1 method, for multi-mode

one dimensional problems.

2.2 Mathematical Formulation

This chapter considers radiation-material interactions for homogeneous materials with isotropic

scattering. For these conditions the governing equations for non-equilibrium monoenergetic

radiative transfer and energy transport are given by

1

ν

∂I(~r, ~Ω, t)

∂t
+ ~Ω∇I(~r, ~Ω, t) = κa

[
1

4π
σT (~r, t)4 − I(~r, ~Ω, t)

]
+ σs

[
1

4π

∫
4π

I(~r, ~Ω, t)d~Ω− I(~r, ~Ω, t)

]
+ S(~r, ~Ω, t) (2.1)

and

ρCp
∂T (~r, t)

∂t
= ∇ · (k∇T ) + κa

[∫
4π

I(~r, ~Ω, t)d~Ω− σT (~r, t)4

]
. (2.2)

In Eq. 2.1 I(~r, ~Ω, t) is the radiative intensity at a spatial location ~r with direction ~Ω at

time t, ν is the speed of the radiation, κa is the absorption coefficient, σs is the scattering

coefficient and S(~r, ~Ω, t) is the volumetric energy source at ~r with direction ~Ω at time t.

The terms on the left side of the Eq. 2.1 account for changes in the radiative field due to
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temporal and spatial effects. For steady-state problems the temporal term goes away. The

first two terms on the right of Eq. 2.1 represent radiative source and sink terms due to

absorption. Likewise the third and fourth terms represent source and sink terms due to

scattering events. The last term on the right side of Eq. 2.1 represents all external source

terms other than those from absorption and scattering of radiation. In the energy transport

equation, Eq. 2.2, T (~r, t) is the temperature at ~r and time t, ρ is density, Cp is specific heat,

σ is the Stefan-Boltzmann constant, V is volume and k is thermal conductivity. The first

term on the left of Eq. 2.2 represents the temporal change in temperature. For steady-state

problems this term goes away. The first term on the right represents thermal diffusion via

conduction. This term goes away for media with infinite thermal resistance, such as air.

The second and third terms represent source and sink terms due to radiation absorption

and emission, respectfully.

2.3 Numerical Examples

2.3.1 Radiation: Su-Olson Wave

Su and Olson published an analytical solution to the problem of non-equilibrium radiative

transport in a one dimensional participating media.29 The problem considered has a source

term appearing in the radiation equation, which changes the temperature profile along the

one dimensional slab. The heated slab emits radiation, which appears as a source term

in the RTE. Note that the coupled differential equations are linearized before being solved

by assuming that κa and σs are constant and that Cp is proportional to the cube of the

temperature, Cp ∝ T 3.30 This coupled behavior is captured for the transient case. For

this problem thermal resistance is neglected and the one dimensional radiation and energy
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equations become

1

ν

∂I(x, µ, t)

∂t
+ µ

∂I(x, µ, t)

∂x
= κa

[
1

2
σT (x, t)4 − I(x, µ, t)

]
+ σs

[
1

2

∫ 1

−1

I(x, µ, t)dµ− I(x, µ, t)

]
+ S(x, µ, t) (2.3)

and

ρCp
∂T (x, t)

∂t
= κa

[∫ 1

−1

I(x, µ, t)dµ− σT 4(x, t)

]
(2.4)

where µ is the direction cosine that describes the direction of motion of the radiation.

The radiative field is found by solving Eq. 2.3 with LBM using the approach described

in Ch. 1. In this problem the source term S(x, µ, t) appearing in Eq. 2.3 is a finite source in

time and space. The source is turned on for a specified time between −xo and xo, as shown

in Eq. 2.5

S(x, µ, t) =
1

2
Sx(x, µ)St(t, µ)

Sx(x, µ) =
1

2xo
[H(x+ xo)−H(x− xo)]

St(t, µ) =H(t)−H(t− to)

(2.5)

where xo and to are initial conditions.

Through the simplifying assumptions mentioned, the equations for radiation and energy

can be linearized. By defining non-dimensional variables Ψ(x, µ, t) =
I(x, µ, t)

σT 4
r

, θ(x, t) =

T (x, t)4

T 4
r

and s(x, µ, t) =
S(x, µ, t)

σT 4
r

the coupled linear differential equations for radiation and

energy become

1

ν

∂Ψ(x, µ, t)

∂t
+ µ

∂Ψ(x, µ, t)

∂x
=

κa

(
1

2
θ(x, t)−Ψ(x, µ, t)

)
+ σs

(
1

2

∫ 1

−1

Ψ(x, µ, t)dµ−Ψ(x, µ, t)

)
+ s(x, µ, t) (2.6)
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and

ρ
∂θ(x, t)

∂t
= κa

[∫ 1

−1

Ψ(x, µ, t)dµ− θ(x, t)
]

(2.7)

For this example κa = 1, σs = 0, ν = 1, xo = 0.5, ρ = 1 and to = 10. The cardinal directions

for this problem are µ = ± 1√
3

and the initial profile and boundary conditions are given by

Eq. 2.8. It is important to note that the values of µ come from truncating the expansion

representing angular discretization, similar to P1 methods where, in many instances, poly-

nomials higher than P2 =
1

2
(3µ2− 1) are assumed to have a negligible contribution and are

thus ignored.

Ψµ(x = −∞, t) = 0

Ψ−µ(x =∞, t) = 0

Ψ±µ(x, t = 0) = 0

(2.8)

A half domain of L = 10xo was used in the simulation. The results in Fig. 2.1 show excellent

agreement between LBM and the analytical solution.

Figure 2.1: Su-Olson results for the case of κa = 1, σs = 0, ν = 1, xo = 0.5, ρ = 1 and
to = 10.
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2.3.2 Radiation-Conduction: One Dimensional Media

Formulation

The previous example demonstrated the capability of LBM to solve a set of linear non-

equilibrium RTE and energy transport equations without spatial resistance. In a more

realistic example for a stationary participating media, the emissive term is non-linear and

the heat conduction term is finite. This work solves the non-linear coupled interaction using

LBM for both the radiation and the energy equations with the heat conduction term.

For this example LBM is used to find the steady-state radiation and energy profiles of a

slab of participating material with fixed outer temperatures. The one dimensional steady-

state representations of Eq. 2.1 and Eq. 2.2 describing radiation and material temperature

are given in Eq. 2.9 and Eq. 2.10, respectively.23

µ
dI(x, µ)

dx
= κa

[
1

2
σT (x)4 − I(x, µ)

]
+ σs

[
1

2

∫ 1

−1

I(x, µ)dµ− I(x, µ)

]
+ S(x, µ) (2.9)

k
d2T

dx2
= κa

(
σT 4 −

∫ 1

−1

I(x, µ)dµ

)
(2.10)

In Eq. 2.10 k is thermal conductivity, T is material temperature, σ is the Boltzmann con-

stant, κa is the absorption coefficient, I is the intensity of radiation and µ is the direction

cosine. The non-dimensional forms of Eq. 2.9 and Eq. 2.10 can be obtained by making the

following substitutions:

τx =
βx

τL
τL = βL N =

kβ

4σT 3
L

θ =
T

TL
Ψ =

I

σT 4
L

S∗ =
S

σT 4
L

(2.11)

The resulting dimensionless equations are shown in Eq. 2.12 and Eq. 2.13 for radiation and
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energy, respectively.

µ
dΨ(τx, µ)

dτx
= (1− ω)

θ4(τx)

2
− Psi(τx, µ) +

ω

2

∫ 1

−1

Ψ(τx, µ)dµ (2.12)

∂2θ(τx)

∂τ 2
x

=
1− ω
N

(
θ4(τx)−

∫ 1

−1

Ψ(τx, µ)dµ

)
(2.13)

where τx is the non-dimensional optical thickness in the x direction, N is the conduction-

radiation parameter, otherwise known as the Stark number, that relates radiative and con-

ductive heat fluxes, ω =
σs

κa + σs
is the scattering albedo, θ is the dimensionless temperature

and I is the dimensionless radiation intensity. It should be mentioned that, by definition,

κa = β − σs. Thus,
κa
β

=
β

β
− σs
β

= 1− ω. The LBE’s for Eq. 2.12 and Eq. 2.13 are given

by Eq. 2.14 and Eq. 2.15 as shown in Ch. 1 and literature,13,23 respectively.

Ψi(τx + ∆τx, t+ ∆t) = Ψ(τx, t)+

∆t

[
−Ψ(τx, t) + (1− ω)wiθ

4(τx, t) + ωwi
∑
j

Ψj(τx, t)

]
(2.14)

fi(τx + ∆τx, t+ ∆t) = fi(τx, t)−
1

c−2
s + 0.5∆t

[fi(τx, t)− f eqi (τx, t)] +

wi

(
1− ω
N

(
θ4(τx, t)−

1

4

∑
j

Ψj(τx, t)

))
∆t (2.15)

In Eq. 2.14 the scattering integral is approximated by numerical quadrature and wi are the

weights associated with the ith direction. In Eq. 2.15 cs =
∆x

∆t
is the lattice speed, fi is the

distribution function and f eqi is the equilibrium distribution function. The non-dimensional

temperature variable, θ, couples the radiation and material energy equations.

Boundary conditions for the radiation equation are calculated based on emissivities of
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the walls along with the known temperatures at the boundary, as shown in Eq. 2.16.

Ψw = εθ4
w +

(1− ε)
4π

∫
|~n·µ′<0|

Ψ(µ′ → µ)dµ′ (2.16)

In Eq. 2.16 Ψw is the non-dimensional radiative intensity at the wall, ε is the emissivity

of the wall, θw is the temperature at the wall and ~n is the outward normal of the wall.

Modest gives the dimensionless equations for the P1 approximation for this one dimen-

sional slab geometry as31

d2G

dτx
+ 3(θ4 −G) = 0 (2.17)

d2θ

dτ 2
x

=
1

N
(θ4 −G) (2.18)

dG

dτx
+

3

2

εL
2− εL

(1−G) = 0 τ = 0 (2.19)

dG

dτx
− 3

2

εR
2− εR

(θ4
R −G) = 0 τx = τL (2.20)

In Eq. 2.17 through Eq. 2.20 G is the non-dimensional total radiative flux, τx is the

optical thickness and εL and εR are the emissivities of the left and right faces, respectively.

Results

The steady-state results with a two directional LBM in one dimension (D1Q2) using w1,2 =

0.5 are compared with P1 benchmark solutions. The effect of Stark number, N , is shown

in Fig. 2.2 for (a) walls with emissivities of ε1 = ε2 = 0 and (b) walls with emissivities

ε1 = ε2 = 1. The time step for each simulation is ∆t = ∆τ =
1

Nx − 1
where Nx = 1000 is

the number of nodes used to discretize the domain. Direction cosines are µ = ± 1√
3

. The

media is non-scattering, ω = 0. Effect of emissivities are shown in Fig. 2.3.
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Figure 2.2: Temperature profile with varying optical thicknesses. θL = 1, θR = 0.5, τL =
κaL = 1 and (a) ε0 = ε2 = 0 (b) ε1 = ε2 = 1.

Figure 2.3: Temperature profile with varying optical thicknesses. N = 0.01, θL = 1,
θR = 0.5 and τL = κaL = 1.

Error Analysis

It was shown in Ch. 1 that LBM for radiative transfer is first order accurate. The grid

convergence results presented in Fig. 2.4 show that error, as defined by Eq. 2.21, reduces

linearly with grid size. Other established methods such as DOM can also be first order
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accurate, depending on the level of truncation.32

Error =
θnew − θold

θold
(2.21)

Figure 2.4: Error as a function of node spacing for the participating slab example. The
slope of the log of the error follows a 1:1 ratio with ∆x, thus the method is observed to be
first order accurate.

It can be seen in Fig. 2.4 that the slope of the error follows a first order slope, thus the

observed order of accuracy is first order.

2.4 Conclusions

The LBM based RTE models were extended for their application into coupled multi-physics

problems. The results of this chapter on simple examples in multi-mode heat transfer show

that LBM has potential in solving coupled multi-physics problems. A benchmark problem

with conduction-radiation heat transfer in a slab geometry was solved using a LBM model

and results are in good agreement with the benchmark P1 results. Agreement between

P1 and LBM is expected because in the limit of ∆x → 0 the methods become identical.

The effect of Stark number and wall emissivity on thermal behavior was studied. A grid
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convergence study was performed which showed that LBE for RTE’s is a first order accurate

method.

This chapter introduced the application of LBM to coupled radiation-conduction prob-

lems in one dimension. The non-linear emissivity source term with uniform weight distribu-

tion was modeled in LBM. The results showed that LBM is comparable to the P1 method

for one dimensional problems.
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Chapter 3

Two Dimensional Multiple-Mode

Heat Transfer

3.1 Introduction

Most multi-mode heat transfer problems can be modeled practically in two or three dimen-

sions. This chapter extends the multi-mode work into two dimensions. Models for fluid

flow and convective heat transfer are coupled to the previous models of conduction and

radiation. A LBM framework to solve multiphysics problems is developed and implemented

to solve the case of a porous burner with convection, conduction, radiation and fluid flow.

Mathematical formulations are explained in detail in Ch. 2.

3.2 Radiative Validation

LBE solutions to two dimensional RTE problems were developed by Bindra1 and Asinari10.

In one basic two dimensional example the temperature of the entire domain is kept constant

and the radiative flux was computed using a D2Q4 lattice. Prior to adopting higher accuracy

lattices for multi-mode heat transfer problems, such as the D2Q8 lattice introduced in Ch. 1,
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these higher angular resolution schemes must be validated for the single physics of radiative

transport. To validate the radiative component of the simulations in this chapter LBM was

compared to DOM for the steady state case of a 1 m × 1 m square geometry with cold

black walls surrounding a participating media. The governing equation for steady-state,

mono-energetic radiative transport is given in Eq. 3.1.23

Ω∇I(~r, ~Ω) = κa

[
Ib(~r)− I(~r, ~Ω)

]
+ σs

[
1

4π

∫
4π

I(~r, ~Ω, t)d~Ω− I(~r, ~Ω)

]
+ S(~r, ~Ω) (3.1)

By making the substitutions

θ =
T

Tm
Ψ =

I

σT 4
m

~τ =
~r

‖~r‖

the non-dimensional form of Eq. 3.1 can be written as

Ω∇Ψ(~τ , ~Ω) = −Ψ(~τ , ~Ω) + (1− ω)Ψb(~τ , ~Ω) +
1

4π

∫
4π

Ψ(~τ , ~Ω)d~Ω + S(~τ , ~Ω). (3.2)

The LBE for Eq. 3.2 is given by23

Ψ(~τ + ∆τ, ~Ω) − Ψ(~τ , ~Ω) =
∆τ

~Ω

[
−Ψ(~τ , ~Ω) + (1− ω)Ψb(~τ , ~Ω) + ωw~Ω

Q∑
i=1

Ψ(~τ , ~Ωi)

]
. (3.3)

DOM solutions are obtained using the commercial code COMSOL. The resulting profiles

and contour plots are normalized by the blackbody radiation, Ib.

The profile along the τy = 0.5 coordinate was compared for LBM D2Q4 and DOM

S2. Another comparison was done for D2Q8 against S4. Weights for each LBM lattice are

given in Ch. 1. The channel walls are black with emissivities of ε = 1 and are held at a

constant dimensionless temperature of 0. The medium was held at a constant dimensionless

temperature of unity. For the LBM simulation 200 nodes were used in each direction and

the lattice converged within 1,200 iterations. The geometry was discretized using 24,912
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domain elements and 400 boundary elements on a finite element mesh.

Fig. 3.1 shows the profiles for LBM and DOM along the centerline for various absorption

coefficients, κ. The radiative fields are shown in Fig. 3.2 for D2Q4 and S2. It can be seen

that there is good agreement between the results of both methods.

Figure 3.1: Radiative intensity profile along the coordinate τy = 0.5 with σs = 1 for (a)
D2Q4 versus DOM S2 and (b) D2Q8 versus DOM S4. θwall = 0 and θm = 1.
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Figure 3.2: Radiative intensity field for σs = 1, θwall = 0 and θm = 1. Maximum absolute
relative errors between the profiles are ε = 0.0045, ε = 0.0024 and ε = 0.0217 for κ = 0.01,
κ = 1 and κ = 10, respectively.
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3.3 Convection-Radiation: Homogeneous Radiative

Porous Burner

The high temperature practical applications such as a radiative porous burner involve cou-

pled radiative, conductive and convective heat transfer in a highly complex geometrical

configuration. Porous burners are getting increased attention due to their ability to burn

very low combustion energy materials or to allow higher degree of thermal mixing. This is

achieved by uniform material mixing and allowing the transmission of radiative heat fluxes

absorbed by the outer walls, which conduct and convect heat in the axial direction away

from the combustion chamber via fluid transport. Accurate and high fidelity modeling of

such systems require fully coupled computer simulations of radiative heat transport with

conjugate heat transfer in porous media. Talukdar et al. modeled a similar problem in two

dimensions using LBM for evaluating the convective flux and Finite Volume Method (FVM)

for the radiative flux.33 In this example a porous media is placed between two plates and

fluid is allowed to flow through the media. The geometry and boundary conditions for this

problem are shown in Fig. 3.3. Steady state thermal transport with convection, conduction

and radiation in two dimensional homogenous porous media is governed by Eq. 3.4.

ρCp

(
u
∂T

∂x
+ v

∂T

∂y

)
= k

(
∂2T

∂x2
+
∂2T

∂y2

)
−
(
∂qr
∂x

+
∂qr
∂y

)
(3.4)

where u and v are velocities parallel and perpendicular to the flow, respectively. In Eq. 3.4,

the left-hand side terms are convection terms, and the right-hand side terms represent

conduction and radiation heat transfer in the fluid/solid continuum. The radiative heat flux

terms are explicitly modeled as

(
∂qr
∂x

+
∂qr
∂y

)
= κa

(
σT 4 −

∫
Ω=4π

I(x, y, ~Ω)dΩ

)
(3.5)
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Neglecting the conductive and the radiative heat fluxes in the axial direction (x-direction),

and assuming fully developed velocity field yields the non-dimensional form of the governing

energy transport equation, Eq. 3.6.33

u
∂θ

∂τx
=

(
2

Pe

)
∂2θ

∂τ 2
y

−
(

βW

2NPe

)
∂Ψr

∂τy
(3.6)

The left-hand side of Eq. 3.6 is the convection of heat due to the bulk motion of the fluid

passing through the channel. It is assumed that the velocity in the transverse direction

(y direction) is negligible, thus temperature is only convected axially, or in other words

convection is considered only for the x direction. The first term on the right hand side of

Eq. 3.6 represents temperature diffusion throughout the media in the transverse direction,

where Pe =
2UmWρCp

k
is the Peclet number which relates the rate of convection to the

rate of diffusion and um is the mean axial velocity. It is assumed that in the axial direction

diffusion is negligible, thus diffusion is only considered in the transverse direction of thickness

W . The dimensionless thicknesses in this example are defined as τx =
x

W
and τy =

y

W
, and

dimensionless axial velocity u =
u

um
. The second term on the right-hand side of Eq. 3.6 is

the thermal source term due to radiation. The Stark number as defined earlier in previous

example is slightly modified to N =
βk

4σT 3
R

, where TR is the reference temperature used to

non-dimensionalize the energy equation, and ΨR =
qr
σT 4

R

is the non-dimensional radiative

heat flux. The dimensionless form of radiative heat flux can be simplified to

∂Ψr

∂τy
= βW (1− ω)

[
θ4 −

∫
Ω=4π

ψdΩ

]
(3.7)

where non-dimensional radiation intensity ψ can be obtained from two-dimensional RTE,

Eq. 3.8,

µ
∂ψ

∂τx
+ η

∂ψ

∂τy
= βW

(
(1− ω)

θ4

4π
− ψ +

ω

4π

∫
Ω=4π

ψdΩ

)
(3.8)
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Eq. 3.8 is similar to the one-dimensional RTE, with the additional term η
∂ψ

∂τy
, where η is the

directional cosine in second dimension. The separate physics of radiative heat transfer in

two dimensions was modeled using D2Q4 LBM in a previous work1 for uniform (constant)

temperature everywhere in the domain and the results compared well against the S2 DOM

solutions. The LBE equation for Eq. 3.8 with the constant temperature θc everywhere in

the media can be obtained by re-writing it with dimensionless variables as

ψi(τx + vi,τx∆t, τy + vi,τy∆t, t+ ∆t) = ψi(τx, τy, t)+

∆tβW

(
wi(1− ω)θ4

c − ψ(τx, τy, t) + ωwi
∑
j

ψj(τx, τy, t)

)
(3.9)

Both LBE (D2Q4) and DOM (S2) solutions were relatively less accurate due to use of

only four angular directions in two-dimensional planar geometry. As expected in solving

the RTE, the accuracy of the solution increases with number of directions. Higher angular

resolution results, i.e. the S4 scheme, agree with the exact solution.34 The S4 configuration

has been shown34,35 to be sufficient to capture the radiative heat transfer physics in two-

dimensional rectangular or square enclosures. Therefore, Eq. 3.9 was solved with higher

angular directions, i.e. the D2Q8 lattice configuration, with weights given in the Ch. 1.

Similar to other existing LBE algorithms, the problem is solved by explicit time marching

which requires the condition ∆tβ < 1 for stability.

The simplification of the geometry into a homogeneous porous media enables the evalua-

tion of the velocity field analytically. An analytical expression for flow inside a homogeneous

porous media was obtained from literature,36 i.e.

u(τy, γ) =
1− e−2γ − (1− e−γ)(eγ(τy−1) + e−τyγ)

1− e−2γ − 2(1− e−γ)2γ−1
(3.10)

The fully-developed velocity field is a function of the porosity parameter γ and dimensionless

transverse distance, τy. For γ → 0, a non-porous media, the velocity profile asymptotically
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approaches a laminar Poiseuille flow velocity profile. The velocity field scaled by the maxi-

mum Poiseuille flow velocity of 0.1 (for a porosity parameter of γ = 0.1) is then substituted

in the energy equation which can be solved using LBM.

Mishra et al.37 derived LBE to solve material energy equation with radiation term as

a source. The radiation source term was computed using collapsed dimension method and

then substituted into the LBE form of energy equation. LBE models for convection-diffusion

equations with source term have been developed in the past.38,39 Based on these existing

LBE models for solving convection-diffusion equations with source terms, the LBE form of

Eq. 3.6 can be written as Eq. 3.11.

∂fi
∂t

+ ~ci · ∇fi = − 1

2Pe(c2
s)
−1 + 0.5∆t

[fi − f eqi ] + wi

(
− βW

2NPe
∇ΨR

)
(3.11)

where the equilibrium function for Eq. 3.11 is given as

f eqi = wmi θ

[
1 +

~ci · ~u
cs

]
(3.12)

In Eq. 3.12 i is the unit vector in the streaming direction and cs =
∆τs
∆t

is the lattice

speed. The D2Q4 LBE template with appropriate weights for distribution functions wmi as

mentioned in the literature38 for convection diffusion equation were used for these computa-

tions. Numerical stability is ensured if the factor (2Pe(c2
s)
−1+0.5∆t) was always maintained

greater than 0.6, which has been reported by Huang et al.38 to ensure stable convergence

for solving convection-diffusion equations with source terms.

The physical example problem, as presented in Fig. 3.3, has two walls maintained initially

at higher temperature than the porous medium. These walls dissipate thermal energy into

the porous media with fully developed fluid flow via radiative, conductive and convective

heat transfer. These computations are performed for ω = 0.35, N = 0.001, Pe = 1600

and surface wall emissivity of ε = 1. In the case of a non-participating media β = 0 and

radiation does not affect the temperature of the fluid in the channel as there is no absorption
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Figure 3.3: Geometry for the case of a homogeneous porous burner.

or scattering within the media (Fig. 3.4). For the case of a participating media β = 2 and

radiation emitted from hot walls is absorbed by the homogeneous porous matrix resulting

in a higher temperature distribution in the domain. It can be seen in Fig. 3.5 that the

radiation interaction causes the entire domain to heat up instantaneously after entering the

channel.

Figure 3.4: Temperature distribution for the case of a non-participating homogeneous
porous media, i.e. without any radiation absorption in the domain.

Due to the assumption of homogeneity, which allowed the use of a single porosity pa-

rameter γ, the approach used in this problem cannot capture differential scattering and ab-

sorption in a real porous matrix. Therefore, accurate analysis of thermal transport at high

temperatures can only be considered reliable if a heterogeneous medium with anisotropic

properties is modeled.

36



Figure 3.5: Temperature distribution for the case of a participating homogeneous porous
media, i.e. with radiation absorption in the domain.

3.4 Radiation-Convection: Heterogeneous Radiative

Porous Burner

Figure 3.6: Heterogeneous porous burner with large flow obstacles with different mate-
rial properties. Size, aspect ratio and grid size are chosen to be exactly the same as the
homogeneous case.

The detailed analysis of radiation-conduction-convection in heterogeneous porous media

with realistic void fraction of 30 - 40% and much smaller characteristic dimension of ther-

mal transport as compared to the entire geometry is a computationally challenging task.

Moreover, the analytical velocity profile used in the homogeneous case is no longer valid

for this heterogeneous region. A simple heterogenous model with a few solid obstacles is

used for the detailed analyses of coupled radiative-conductive-convective heat transfer. The

geometry and boundary conditions for this problem are shown in Fig. 3.6. The size of each

obstacle is 0.1×0.1 dimensionless units. The velocity field around the obstacles is solved by
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LBM and then substituted in energy transport equation. Conduction, convection, and radi-

ation from the walls, obstacles and fluid media were solved simultaneously. In other words

all the multi-physics processes involved here are simulated via a fully coupled LBM solver.

The fluid flow in the continuum regime is modeled using the non-dimensional steady-state

form of the Navier-Stokes equations for incompressible flow with no body force along with

the continuity equation40

u
∂u

∂τx
+ v

∂u

∂τy
=− ∂p

∂τx
+

1

Re

(
∂2u

∂τ 2
x

+
∂2u

∂τ 2
y

)
u
∂v

∂τx
+ v

∂v

∂τy
=− ∂p

∂τx
+

1

Re

(
∂2v

∂τ 2
x

+
∂2v

∂τ 2
y

)
∂u

∂τx
+
∂v

∂τy
=0

(3.13)

In these equations u and v are non-dimensional velocities in the τx and τy directions, re-

spectively, p is non-dimensional pressure, Re =
2umW

ν
is the Reynolds number and ν is

the kinematic viscosity. The LBE’s to solve this classical non-dimensional fluid mechanics

problem have been developed and presented in multiple references24,41. The most commonly

used LBE form for fluid dynamics is

∂gk
∂t

+ ~cfk · ∇gk = − 1

2ν(c2
fs)
−1 + 0.5∆t

[gk − geqk ] (3.14)

The corresponding equilibrium function for Eq. 3.14 using LBM with the BGK approxima-

tion16,42,41 is shown in Eq. 3.15.

geqk = wfk

[
1 +

~cfk · ~u
c2
fs

+
1

2

(~cfk · ~u)2

c4
fs

− 1

2

~u2

c2
fs

]
(3.15)

In Eq. 3.15 cfs =
cfk√

3
is the lattice speed, ~cfk =

∆τx
∆t

~i +
∆τy
∆t

~j is the unit vector in the

streaming direction, wfk is the weight of the k-th direction and ρ is density. The standard
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D2Q9 with weights of
1

36
for the diagonal directions,

1

9
for the cardinal directions and

4

9
for

the stationary microscopic velocity24 were used for solving the fluid mechanics problem.

The equation governing the temperature distribution is given by Eq. 3.16.23

ux
∂θ

∂τx
+ uy

∂θ

∂τy
=

2

Pe

(
∂2θ

∂τ 2
x

+
∂2θ

∂τ 2
y

)
− βW

2NPe

(
∂ΨR

∂τx
+
∂ΨR

∂τy

)
(3.16)

The significance of individual terms in Eq. 3.16 and its LBE form are identical to the

homogeneous case and the LBE form of this convection-diffusion equation is identical to

the homogeneous case. The radiative heat flux term ∇ΨR is computed using Eq. 3.7-

Eq. 3.9 as described before. The fluid mechanics in this problem are not affected by the

thermal calculations so this model only presents one-way coupling with the fluid model.

The parameters Re = 100, Pe = 1600 and inlet maximum velocity u(τx = 0) = 0.1 are used

for these calculations to maintain similarity with the homogeneous case in simulating fluid

flow and the role of the convection term in energy transport. The inlet velocity profile was

chosen to be Poiseuille flow. The velocity calculations as obtained from the solutions of the

LBE (Eq. 3.15) are presented in Fig. 3.7.

Figure 3.7: Velocity field for flow around the obstacles inside the porous burner, solved with
LBM. Colors correspond to the non-dimensional velocity magnitude along the streamline.

After obtaining the velocity field and initialized radiation field, Eq. 3.16 is solved using its

LBE form (Eq. 3.11). The temperature and radiative fields are mutually coupled, so they

were solved iteratively. The resulting temperature profiles for specific obstacle material
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properties of obstacles are shown in Figs. 3.8 and 3.9. The fluid media in both these

cases is assumed to absorb negligible radiation. In the first case, the solid obstacles are

assumed to be non-absorbers. The results show no temperature change in solids and the

fluid near boundaries is hot due to convection near the walls. Due to very high Peclet

number, Pe = 1600, there is no change in the fluid temperature away from the walls. The

second case is modeled with an absorbing and conducting material comprising the obstacles.

As fluid is essentially transparent to radiation, the wall radiation instantly starts heating

up the obstacles and raising their temperatures. Therefore, the fluid eventually gets heated

up from the wall and obstacles both due to convection and conduction.

Figure 3.8: Temperature contour for the entire two dimensional domain with radiatively
transparent obstacles (β = 0).

Figure 3.9: Temperature contour for the entire two dimensional domain with radiatively
opaque obstacles (β = 2 and N = 0.001).
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3.5 Conclusions

The LBM based RTE models were extended for their application into coupled multi-physics

problems. The results of this work on simple examples in multi-mode heat transfer show

that LBM has a potential in solving coupled multi-physics problems. A D2Q8 LBE tem-

plate was used to model radiative transport in a two dimensional square enclosures with

constant temperature θc = 1 throughout the domain, to check the validity of these LBE

templates for solving RTE problems. The results were found to be in good agreement

with existing S4 solutions in the literature.34 A porous radiative burner was modeled using

a homogeneous approximation with an analytical velocity field of the fluid stream. The

results showed a qualitative effect of the radiation transport in homogeneous participating

media. The challenges of this modeling approach were highlighted and an LBM based single-

framework approach for solving multi-physics in a heterogeneous model was presented. The

fluid transport around the solid obstacles, conduction-convection modeling in the entire

domain (solid-fluid) and radiation transport were solved using LBM. A fully coupled LBE

model was developed and simulation results were presented for a simplified heterogeneous

porous media. The effect of material properties in the entire spatial domain was studied

and results were physically interpreted. This work involves only one-way coupling with the

fluid model i.e. no feedback is provided to the fluid model based on thermal calculations.

However, with this example the LBE approach for modeling the phenomenon of radiative

heating of obstacles and in-turn conjugate heating of the fluid stream was demonstrated.

Due to its simplified single framework model, LBM is well-suited and has a clear advantage

over other deterministic/stochastic numerical techniques for modeling novel mesoscopic ap-

plications, such as photo-thermal heating and optical tweezers where fluid motion is directly

or indirectly impacted by radiative heat transport. There is, however, significant effort re-

quired in the area of LBM based solutions to RTE’s prior to its implementation for solving

more sophisticated practical problems. One of the important future tasks is to improve

the accuracy of the method, i.e. exploring the LBE schemes with higher than first order
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accuracy. A second important aspect is to rigorously understand the numerical stability

envelopes of using LBE as a single framework for solving multi-physics problems. Finally,

extending the LBM for solving multi-energetic RTE’s is important to explore its advantages

as compared to existing multi-energetic algorithms.
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Chapter 4

Nuclear Reactor Criticality

Designing and operating nuclear reactors requires a knowledge of the distribution of neutrons

within the reactor. The neutron transport equation (NTE) takes into account the spatio-

temporal neutron balance in a nuclear reactor constituted of fissile material. In this chapter

LBM is used to solve the NTE to find a reactor configuration (one dimensional) for stable

or steady neutron population.

4.1 Chain Reaction

When an atom undergoes fission the result is a combination of fission products and energy.

Fission products typically include smaller atoms and neutrons. Reactor materials absorb

the excess energy in the form of heat, and the neutron interacts with different nuclei to

sustain nuclear reactions.

A fission event can be either spontaneous or induced. Spontaneous fission occurs for

heavier nuclei, and typically has a low occurrence for naturally occurring elements. Induced

fission is caused by a nucleus absorbing either energy or subatomic particles, which absorp-

tion then causes instability in the attractive/repelling forces binding the nucleus together

and ultimately results in fission which produces multiple smaller, more stable nuclei. 235U
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is an ideal candidate for nuclear reactors because it has a high absorption cross-section and

higher fission reaction for neutrons as compared to most of the known elements in nature.

Upon absorbing a neutron the nucleus is no longer stable and fissions, resulting in daughter

nuclei accompanied by a large emission of energy, typically around 200 MeV. The average

number of neutrons emitted per fission, ν, depends on the energy of the neutron whose

absorption led to fission. The neutrons emitted from a fission event have different energies,

defined by the isotope undergoing fission as well as the energy of the absorbed neutron. A

fission neutron energy spectrum, χ(E), is used to describe the energy of emitted neutrons

given an initial incident neutron energy.

4.2 Neutron Transport Equation

The neutron transport equation (NTE) describes the change in neutrons within a volume via

balancing the neutrons gained or lost due to various mechanisms. The following derivation

of the NTE is given in more detail by Duderstadt and Hamilton26 and can also be found in

other introductory texts on nuclear engineering from authors including Lamarsh,43 Shultis

and Faw,44 and Dunn45.

Conceptually the balance of neutrons in a volume, V , can be expressed as

Rate of Change of n = Gains− Losses

4.2.1 Rate of Change

Assuming the volume does not change with time, the rate of change of neutrons in a volume

can be expressed as ∫
V

∂n(~r, E, ~Ω, t)

∂t
dV∆E∆~Ω (4.1)

where n(~r, E, ~Ω, t) is the angular neutron density at position ~r with energy E traveling in

direction ~Ω at time t. In order to obtain a number of neutrons from the neutron density it
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is necessary to multiply by the range of energy, ∆E, as well as the range of direction ∆~Ω,

which represent energies and directions in ∆E and ∆~Ω about E and ~Ω.

4.2.2 Gains

The volume gains neutrons through sources such as fission products, neutrons entering the

volume, and from scattering from initial energy and/or direction E ′ and ~Ω′ into the energy

and direction of interest, E and ~Ω.

Neutron sources can be expressed as

∫
V

S(~r, E, ~Ω, t)dV∆E∆~Ω (4.2)

The source term, S, can be decomposed into two terms: neutrons resulting from fission, Sf ,

and neutrons from non-fission sources, Snf , such as radioactive elements. Assuming fission

neutrons are created instantaneously upon a fission event, and that emission is isotropic,

then the number of neutrons created from fission events can be written as

χ(E)

4π

∫ ∞
0

∫
4π

v′ν(E ′)Σf (E
′)n(~r, E ′, ~Ω′, t)d~Ω′dE ′ (4.3)

The number of neutrons scattering from energy E ′ and direction ~Ω′ into energy E and

direction ~Ω is expressed as

∫
V

v′Σs(E
′ → E, ~Ω′ → ~Ω)n(~r, E, ~Ω, t)dV∆E∆~Ω (4.4)

The total number of inscattered neutrons is the sum of contributions over all energies E ′

and all directions ~Ω′ given by

∫
V

∫ ∞
0

∫
4π

v′Σs(E
′ → E, ~Ω′ → ~Ω)n(~r, E, ~Ω, t)d~Ω′dE ′dV∆E∆~Ω (4.5)
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4.2.3 Losses

Neutrons are lost by neutrons traveling beyond the volume or interacting with the media

inside the volume. Interactions result in neutrons either being absorbed or scattered into

a different energy and/or direction. The net number of neutrons traveling beyond the

boundary of the volume with energy E and direction ~Ω can be expressed as

j(~r, E, ~Ω, t) · dS = v~Ωn(~r, E, ~Ω, t) · dS, (4.6)

where j is the neutron current. Using Gauss’s Theorem the surface integral (Eq. 4.6) can

be converted to a volume integral. Since direction, ~Ω, is independent of position the del

operator becomes associative, ∇ · v~Ω = v~Ω · ∇, and the number of neutrons crossing the

surface of the volume becomes

∫
V

v~Ω · ∇n(~r, E, ~Ω, t)dV∆E∆~Ω. (4.7)

Neutrons scattering out of ∆E about E and out of ∆~Ω about ~Ω depends on the total cross

section, Σt, which is the total cross section for interacting with the media inside the volume

and is a combination of the scattering cross section Σs and the absorption cross section Σa.

The resulting expression for scattered neutrons becomes

∫
V

vΣt(~r, E)n(~r, E, ~Ω, t)dV∆E∆~Ω (4.8)
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4.2.4 Neutron Balance

Combining all of the gaines and sources results in the integral form of the NTE,

∫
V

∂n(~r, E, ~Ω, t)

∂t
dV∆E∆~Ω =

∫
V

∫ ∞
0

∫
4π

vΣs(E
′ → E, ~Ω′ → Ω)n(~r, E, ~Ω, t)d~Ω′dE ′dV∆E∆~Ω

+

∫
V

S(~r, E, ~Ω, t)dV∆E∆~Ω−
∫
V

v~Ω · ∇n(~r, E, ~Ω, t)dV∆E∆~Ω

−
∫
V

vΣtn(~r, E, ~Ω, t)dV∆E∆~Ω (4.9)

The volume was assumed constant with respect to time, thus the balance of neutrons in the

volume, V , becomes

∂n(~r, E, ~Ω, t)

∂t
=

∫ ∞
0

∫
4π

vΣs(E
′ → E, ~Ω′ → ~Ω)n(~r, E, ~Ω, t)d~Ω′dE ′ + S(~r, E, ~Ω, t)

− v~Ω · ∇n(~r, E, ~Ω, t)− vΣtn(~r, E, ~Ω, t) (4.10)

Using Eq. 4.3 to decompose the source term, the NTE can be rewritten as

∂n(~r, E, ~Ω, t)

∂t
=

∫ ∞
0

∫
4π

vΣs(E
′ → E, ~Ω′ → ~Ω)n(~r, E, ~Ω, t)d~Ω′dE ′

+
χ(E)

4π

∫ ∞
0

∫
4π

v′ν(E ′)Σf (E
′)n(~r, E ′, ~Ω′, t)d~Ω′dE ′ + Snf (~r, E, ~Ω, t)

− v~Ω · ∇n(~r, E, ~Ω, t)− vΣtn(~r, E, ~Ω, t) (4.11)
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By defining the angular flux as φ = vn(~r, E, ~Ω, t), where v is velocity and n(~r, E, ~Ω, t) is the

angular neutron density, the NTE can be written in terms of φ as

1

v

∂φ(~r, E, ~Ω, t)

∂t
=

∫ ∞
0

∫
4π

Σs(E
′ → E, ~Ω′ → ~Ω)φ(~r, E, ~Ω, t)d~Ω′dE ′

+
χ(E)

4π

∫ ∞
0

∫
4π

ν(E ′)Σf (E
′)φ(~r, E ′, ~Ω′, t)d~Ω′dE ′ + Snf (~r, E, ~Ω, t)

− ~Ω · ∇φ(~r, E, ~Ω, t)− Σtφ(~r, E, ~Ω, t) (4.12)

4.3 Reactor Criticality

4.3.1 Operating Conditions

Nuclear reactors operate on a steady, continuous chain reaction. Reactors are typically com-

prised of three basic components: 1) fissile fuel containing enriched uranium, 2) a moderator

to slow neutrons to the point that they are easily absorbed by the fuel and also to serve as a

coolant for the reactor core, and 3) control rods capable of absorbing thermal neutrons that

otherwise would have led to fission events. Control rods are typically made from elements

with a high neutron affinity such as 10B.

If more neutrons are being created than are being removed the reactor is called super-

critical. Conversely, if more neutrons are being removed than are being created the reactor

is called subcritical. If the number of created neutrons balances the number of neutrons

being removed the reaction is called critical. If the reactor is subcritical external sources

must be introduced to sustain the fission events, or the reaction will exponentially decay. If

the reactor is supercritical there is an excess of neutrons that are not being used for fission

which leads to faster fuel burn up, thus expensive fuel rods need to be replaced more often.

If the reactor is supercritical without bound it will cause more reactions and thus more heat

which needs to be removed. If the heat cannot be removed the reactor will rise in temper-

ature until physically melting. Thus, the optimum condition for an operating reactor is a
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critical condition.

For the case of a critical reactor there is no change in neutrons with respect to time.

Typically, at steady state operation the neutron contribution from non-fission sources, Snf ,

are negligible. These simplifications result in the critical NTE, which balances created and

removed neutrons in a reactor, given by

∫ ∞
0

∫
4π

Σs(E
′ → E, ~Ω′ → ~Ω)φ(~r, E ′, ~Ω′)d~Ω′dE ′+

χ(E)

4π

∫ ∞
0

∫
4π

ν(E ′)Σf (E
′)φ(~r, E ′, ~Ω′)d~Ω′dE ′ =

~Ω · ∇φ(~r, E, ~Ω) + Σtφ(~r, E, ~Ω) (4.13)

4.3.2 Eigenvalue Problem

A primary goal in reactor design is to create a reactor capable of critical operation. Since

geometry is normally constrained and criticality is desired, the main control factor is the

composition of the reactor fuel. Criticality of a given geometry and fuel composition can be

determined by solving an eigenvalue problem with the NTE. This is achieved by introducing

a scalar, λ, into the fission source term, Sf . With the scalar λ, and assuming negligible non-

fission sources, the time-independent critical NTE can be expressed as

λχ(E)

4π

∫ ∞
0

∫
4π

ν(E ′)Σf (E
′)φ(~r, E ′, ~Ω′)d~Ω′dE ′ =

~Ω · ∇φ(~r, E, ~Ω) + Σtφ(~r, E, ~Ω)−
∫ ∞

0

∫
4π

Σs(E
′ → E, ~Ω′ → ~Ω)φ(~r, E ′, ~Ω′)d~Ω′dE ′ (4.14)

The fundamental or principle eigenvalue of Eq. 4.14 describes the criticality of the reactor.

If λ > 1 the reactor is subcritical, if λ < 1 the reactor is supercritical, and if λ = 1 the

reactor is critical. Typically a new variable, the multiplication factor Keff = λ−1, is defined

and used for reactor criticality. Keff has an inverse relation to λ, thus if Keff > 1 the

reactor is supercritical, if Keff < 1 the reactor is subcritical, and if Keff = 1 the reactor is
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critical.

This work only deals with the one dimensional multi-energetic criticality problems, thus

Eq. 4.14 simplifies to

µ
∂φ(x,E, µ)

∂x
=
λχ(E)

2

∫ ∞
0

∫ 1

−1

ν(E ′)Σf (E
′)φ(x,E ′, µ′)dµ′dE ′

− Σtφ(x,E, µ) +

∫ ∞
0

∫ 1

−1

Σs(E
′ → E, µ′ → µ)φ(x,E ′, µ′)dµ′dE ′ (4.15)

where, as in Ch. 1, µ = cos θ is a direction cosine, where θ is the elevation angle. The

corresponding LBE for Eq. 4.15 is

φ(x,E, µ) = φ(x,E, µ) + wµ
dx

µ

[
− Σtφ(x,E, µ)

+

∫ ∞
0

∫ 1

−1

λχ(E)ν(E ′)Σf (E
′)φ(x,E ′, µ′) + Σs(E

′ → E, µ′ → µ)φ(x,E ′, µ′)dµ′dE ′

]
(4.16)

where wµ is the weight factor for the direction µ.

4.4 Boundary Conditions

Boundary information is required to determine a non-trivial solution for a given reactor

configuration. Commonly employed boundary conditions are vacuum, reflected, and peri-

odic. Each of these conditions represent a physical phenomenon, which dictates their use

in solving the NTE. Fig. 4.1 shows vacuum, reflected and periodic boundary conditions for

the left face of a two dimensional rectangular domain.

4.4.1 Vacuum Boundary Conditions

For a reactor with non-reentrant surfaces the neutrons leaving the surface have no physi-

cal way of reentering the reactor. This phenomenon is represented by vacuum boundary
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Figure 4.1: A two dimensional domain with (a) vacuum (b) reflected and (c) periodic
boundary conditions on a single surface.

conditions which state that there are no incoming neutrons traveling through that surface.

Mathematically this is represented as

φ(~r, E, ~Ω, t) = 0 for ~Ω · ~n(~r) < 0 and ~r ∈ ∂V (4.17)

where ~n(~r) is the unit normal vector to the surface and ∂V is on the boundary of volume

V .

4.4.2 Reflected Boundary Conditions

Reflected boundary conditions represent the more realistic scenario of a nuclear reactor

where some amount of neutrons are reflected by the moderator. In this case neutrons reenter

the surface from which they left. A simplified model implementing reflected boundary

conditions would be to let the entering flux be the same as the flux leaving the surface. If

the direction of the neutron entering the volume is ~Ω then the corresponding direction of flux

leaving the surface would be ~Ω′ which satisfies the relations ~Ω = −~Ω′ and (~Ω× ~Ω′) ·~n(~r) = 0

and the boundary conditions at the surface can be expressed as

φ(~r, E, ~Ω, t) = φ(~r, E, ~Ω′, t) for ~Ω · ~n(~r) < 0 and ~r ∈ ∂V (4.18)
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4.4.3 Periodic Boundary Conditions

In a nuclear reactor hundreds of fuel pins are approximately equidistant and nearly symmet-

rically distributed. Rather than solving for the contribution from each pin simultaneously, a

single fuel pin can be simulated with periodic boundary conditions. For periodic boundary

conditions whatever leaves one surface enters the opposite surface while retaining the same

energy and direction. Given a neutron entering surface 1 with direction ~Ω then, noting that

~Ω = ~Ω′, the appropriate boundary value is expressed as

φ(~r1, E, ~Ω, t) = φ(~r2, E, ~Ω
′, t) (4.19)

where surface 2 is one that satisfies ~n1 = −~n2.

4.5 Criticality Condition

4.5.1 Lattice Boltzmann Equation

For mono-energetic, isotropic, steady-state operation with negligible neutron contributions

from non-fission sources the eigenvalue criticality equation becomes

~Ω · ∇φ(~r, ~Ω) =
χ

4πKeff

∫
4π

νΣfφ(~r, ~Ω′)d~Ω′ +

∫
4π

Σsφ(~r, ~Ω′)d~Ω′ − Σtφ(~r, ~Ω) (4.20)

For a one dimensional domain the gradient operator becomes
∂

∂x
, which is still a partial

derivative due to the fact that the angular flux still depends on direction. Assuming a

one dimensional domain and introducing the weighted quadrature leads to the LBE for
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criticality, which for the ith discrete direction can be expressed as

φ(x+ v∆t, ~Ωi) =

φ(x, ~Ωi) + ∆t

[
wi

χ

Keff

N∑
i=1

νΣfφ(x, ~Ωi) +
N∑
i=1

Σsφ(x, ~Ωi)− Σtφ(x, ~Ωi)

]
. (4.21)

LBM can be used to solve for the criticality in a source iteration manner as described by

Duderstadt and Hamilton26 and discussed further in Sec. 4.5.3.

4.5.2 P1 Method

For some of the benchmark problems where the flux profile values are not given LBM is

compared with P1 methods. Assuming no up-scattering and no thermal neutrons are born

from fission, the P1 equation for neutron flux is given by46

d

dx

(
− 1

3Σt(x,E)

dφ(x,E)

dx

)
+ Σt(x,E)φ(x,E) = S(x,E) (4.22)

For the thermal flux the source on the right hand side of Eq. 4.22 is comprised of thermalized

fast neutrons and self-scattering thermal neutrons. The source for the fast neutrons includes

those from fission events and self-scattering.

Classical neutron diffusion theory can be derived from the P1 approximation by assuming

the current is proportional to the neutron concentration such as

D =
1

3Σt

(4.23)

where D is the diffusion coefficient. Using this approximation the one dimensional monoen-

ergetic neutron transport equation in a homogeneous medium with no source term takes

the form

−Dd
2φ

dx2
+ Σaφ−

νΣf

Keff

φ = 0 (4.24)
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Various boundary conditions can be applied to diffusion problems. Typically diffusion theory

uses Marshak boundary conditions, however LBM uses Mark boundary conditions, thus

Mark boundary conditions will be used for neutron diffusion in this work. Mark boundary

conditions can be derived by expanding the flux using Legendre polynomials, i.e.

Ψ(x, µ) =
N∑
n=0

dnφ(x)

dxn
Pn(µ) (4.25)

For a specified flux value on the boundary, and expanding with only two terms, the appro-

priate boundary condition is given by

Ψin(x, µ) ≈ 1

2
φ(x) +

3

2

dφ(x)

dx
µ (4.26)

where the first two Legendre polynomials are P0(µ) = 1 and P1(µ) = µ. The current on the

diffusion boundaries can therefore be expressed as

J± =
1

2
φ+

3

2
µ±D

dφ

dx
(4.27)

For non-reentrant boundaries this simplifies to

φ+ 3µ±D
dφ

dx
= 0 (4.28)

By determining the flux through one of the methods discussed in this section the criticality

for a specified reactor configuration and composition can be found using the power iteration

method.

4.5.3 Power Iteration Method

The power iteration method is a method for iteratively calculating the multiplication factor

or critical dimension for a given reactor setup.47 First the geometry, initial source due to
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Figure 4.2: Algorithm for the power iteration method.
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fission, and multiplication factor are guessed. Flux for each group is calculated at each

discretized node. After the flux is calculated the fission source term is updated at each node

using Eq. 4.29. Using the new fission source a new multiplication factor is determined by

Eq. 4.30.

Sf (~r)
t+1 =

N∑
i=1

νiΣfiφi(~r) (4.29)

Kt+1 ≈ Kt

∫
St+1
f d~r∫
Stf~r

(4.30)

Various convergence criterion can be used, however the most common is to apply a

tolerance to the change in fission source and multiplication factor from each iteration, shown

mathematically in Eq. 4.31. If both the source and multiplication factor stop changing more

than the convergence criterion the solution is assumed to have sufficiently converged.

∣∣∣∣Kt −Kt−1

Kt

∣∣∣∣ < ε1∣∣∣∣St − St−1

St

∣∣∣∣ < ε2

(4.31)

Criticality is assessed after the solution has converged for a particular reactor setup.

Based on the resulting criticality parameters such as reactor dimension or material com-

position may be adjusted and the entire process repeated until the desired criticality is

achieved. The power iteration algorithm is shown in Fig. 4.2.

4.6 Benchmark Problems

The benchmark problems in this chapter are taken from a technical report from Los Alamos

National Laboratory.48 All of the problems are for a slab reactor with or without cladding

and moderator. The critical dimensions are given as rc =
slab width

2
unless otherwise

specified. To validate the use of LBM in reactor criticality problems the critical geometry
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will be set to the dimensions given in the benchmark report and the eigenvalues, Keff , will

be compared.

All of the problems in this chapter are solved with 1000 nodes on a D2Q1 lattice. The

directional weights are w1,2 = 0.5. Source and criticality tolerances are ε1,2 = 1× 10−6.

Table 4.1: One-group macroscopic cross sections.

Material ν Σf (cm−1) Σs (cm−1) Σt (cm−1)

Pu (a) 3.24 0.081600 0.225216 0.32640

Pu (b) 2.84 0.081600 0.225216 0.32640

235U (a) 2.70 0.065280 0.248064 0.32640

235U (b) 2.50 0.069227 0.328042 0.40740

U-D2O 1.70 0.054628 0.464338 0.54628

Fe 0.00 0.000000 0.232094 0.23256

Na 0.00 0.000000 0.086368 0.08636

H2O 0.00 0.000000 0.491652 0.54628

4.6.1 One Group Bare Reactor

Macroscopic cross section data is given in Tab. 4.1 for 1 group reactor materials. For a slab

reactor made of material Pu (a) the critical dimension is given as rc = 1.853722 cm. Using

this dimension in the LBM code produces Keff = 0.8050. For material Pu (b) rc = 2.256751

cm, which yields Keff = 0.8366. For a slab reactor made of 235U (a) the critical dimension

is rc = 2.872934 cm, which yields Keff = 0.8595. For a bare U-D2O reactor the critical

dimension is rc = 10.371065 cm. Using this dimension with LBM results in Keff = 0.9946.

Note that the estimate for Keff shows a dependence on the fuel region width. This will be

discussed further in the conclusions section.
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4.6.2 One Group Reflected Reactor

Using the cross sections given in Tab. 4.1 for U-D2O with an H2O reflector, the critical

dimension depends on reflector thickness. For core and reflector thicknesses of rc = 9.214139

cm and tr = 1.830563 cm, respectively, Keff = 0.9992. For core and reflector thicknesses of

rc = 8.428096 cm and tr = 18.30563 cm, respectively, Keff = 0.9995.

4.6.3 One Group Reactor with Cladding and Moderator

This benchmark problem involves a non-symmetric reactor configuration. A 235U (b) reactor

core is surrounded by a thin layer of iron cladding. One side is exposed to vacuum conditions,

while the opposite side has a sodium moderator. Fuel, cladding and moderator thicknesses

are tf = 5.120 cm, tc = 0.317 cm and tm = 2.003 cm, respectively. Note that tf , the

thickness of the fuel, is given as the complete width and not as the critical half-width, rc.

Cross sectional data for each material is given in Tab. 4.1. For this configuration LBM

calculated a Keff = 0.8792. Diffusion theory with Mark boundary conditions as discussed

in Sec. 4.5.2 calculated Keff = 0.87800. The resulting flux profiles for diffusion and LBM

are shown in Fig. 4.3. A more detailed explanation of applying diffusion theory for this

specific problem is provided in the appendix.

4.6.4 Two Group Bare Reactor

This problem involves the criticality of a university research reactor with 93% enriched

uranium, 235U (c). Cross sectional data is given in Tab. 4.2. The critical dimension for the

bare slab reactor is given as rc = 7.566853 cm. Using this dimension with LBM results in

Keff = 0.9820. Fig. 4.4 shows the normalized LBM flux profile compared to the benchmark

profile at given slab locations for the 235U (c) reactor.

For a reactor made of U-D2O with the cross sectional data from Tab. 4.2 rc = 846.632726

cm. For this configuration LBM yields Keff = 0.9992. The number of nodes was increased
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Figure 4.3: Normalized flux profile for the one-group 235U (b) reactor with iron cladding and
a sodium moderator using LBM and diffusion theory, both with Mark boundary conditions
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Table 4.2: Two-group macroscopic cross sections.

Material ν Σf (cm−1) Σss (cm−1) Σsg (cm−1) Σt (cm−1) χ

235U (c) Fast 2.500 0.001048 0.6256800 0.0292270 0.6569600 1.0

235U (c) Thermal 2.500 0.050632 2.4438300 0.0000000 2.5202500 0.0

235U (d) Fast 1.004 0.614750 0.0000000 0.0342008 0.6509170 1.0

235U (d) Thermal 2.500 0.045704 2.0688000 0.0000000 2.1380000 0.0

235U (e) Fast 2.500 0.000836 0.8389200 0.0463500 0.8872100 1.0

235U (e) Thermal 2.500 0.029564 2.9183000 0.0007670 2.9727000 0.0

U-D2O Fast 2.500 0.002817 0.3198000 0.0045550 0.3358800 1.0

U-D2O Thermal 2.500 0.097000 0.4241000 0.0000000 0.5462800 0.0

H2O (a) Fast 0.000 0.000000 0.1096742 0.0010005 0.1106832 0.0

H2O (a) Thermal 0.000 0.000000 4.3547000 0.0000000 4.3735000 0.0

H2O (b) Fast 0.000 0.000000 1.2263812 0.1046395 1.3315180 0.0

H2O (b) Thermal 0.000 0.000000 4.3547000 0.0000000 4.3735000 0.0

to 20,000 for this simulation, due to the magnitude of the reactor width.

4.6.5 Two Group Reflected Reactor

The cross sectional data is given in Tab. 4.2 for a 235U reactor with an H2O reflector.

For a reflector thickness of tr = 1.126152 cm the critical dimension is rc = 6.696802 cm.

Using these dimensions with LBM results in Keff = 0.9912. For a reflector thickness of

tr = 5.630757 cm the critical dimension is rc = 4.863392 cm. Using these dimensions with

LBM results in Keff = 0.9964.

4.6.6 Two Group Infinite Slab Lattice Cell Reactor

Cross sectional data for the two-group infinite slab lattice reactor made of 235U (d) and

reflected by H2O (b) is given in Tab. 4.2. For a reflector half-thickness of tr = 0.751023
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Figure 4.4: Normalized flux profile for the two-group bare research reactor composed of
235U (c).
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Figure 4.5: Normalized flux profile for the two-group infinite slab lattice cell 235U reactor
with rc = 2.719087 cm and tr = 7.510225 cm for both P1 and LBM methods.

cm the critical dimension is rc = 0.341011 cm. Using these dimensions with LBM results

in Keff = 0.6848. For a reflector half-thickness of tr = 7.510225 cm the critical dimension

is rc = 2.719087 cm. Using these dimensions with LBM results in Keff = 0.9990. Fig. 4.5

shows the normalized LBM flux profile for the latter case of the 235U (d) reflected reactor.

Fig. 4.5 shows the neutron flux profile, which highlights the effect of a reflector on both fast

and thermal fluxes. Fast neutrons are produced in the fuel and not absorbed, but rather

travel out of the fuel to the reflector. The reflector has a high cross section for scattering

and not for absorption, thus the neutrons collide, losing energy until they are in a thermal

energy state. Thus the thermal flux appears to originate in the reflector. Fig. 4.5 shows
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excellent agreement between P1 and LBM methods, as expected based on the discussions

in Ch. 2 of this work regarding such a comparison.
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4.7 Conclusions

For fuel regions wider than approximately 3 mean free paths (mfp), or for fuel regions

with wide reflectors, the results are very agreeable with benchmark values and P1 methods.

The case of thin (fuel width less than approximately 3 mfp) bare reactors show that the

fuel width is not sufficiently wide for LBM to accurately predict the reactor criticality. As

the fuel width increases the estimate of Keff becomes more accurate. For the case of a

reflected reactor thinner fuel regions become less crucial due to the thermal neutron flux

being reflected back into the fuel. This is illustrated well in the case of the 2 group infinite

slab lattice cell reactor from Sec. 4.6.6, which has reflecting boundary conditions for the

thermal neutron flux. In the case of the 1 group reflected and moderated reactor from

Sec. 4.6.3 the iron reflector region is too thin, thus neutrons are escaping that should be

returning to the reactor. The results indicate that in this case, if the reflector region was

increased then criticality could be more accurately represented by LBM. The problems in

this chapter show the capability of LBM to solve reactor criticality eigenvalue problems.

Results compare well with literature and benchmark problems for sufficiently thick fuel and

reflector regions.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

It was shown in Ch. 2 that LBM is well suited for solving coupled non-equilibrium radiative

transport problems with participating media. For the case of a linearized set of coupled

differential equations representing energy and radiation, results showed that LBM compares

well with the semi-analytical solutions. This one dimensional algorithm was further extended

for the case of non-linearly coupled energy and radiation transport equations and results

showed good agreement with P1 methods for wall emissivities from ε = 0 to ε = 1 and Stark

number parameters from N = 0.01 to N = 10. The error analysis was done and shown to

be a first-order accurate method.

The two dimensional LBM lattice configurations were derived for isotropic transport.

The LBM results from D2Q4 and D2Q8 configurations were compared to DOM configu-

rations of S2 and S4, respectively, for the case of a participating media with a constant

non-dimensional temperature of θm = 1 surrounded by cold black walls. Results showed

good agreement, especially when the number of discrete directions were exactly equal in

both methods.

One of the goals of this work was to extend the application of LBM to coupled modeling

65



of radiation and material energy transport. Two dimensional porous burners were used

to demonstrate this coupled modeling. The case of a homogeneous porous burner was

used to illustrate the effects of having a participating or a non-participating media. An

analytical velocity profile was used to represent fluid flow in the porous media based on

a porosity parameter, γ. The results showed that for the case of a participating porous

media the fluid heated up almost immediately upon entering the channel, whereas for the

case of a non-participating media the fluid only heated up very close to the hot walls. To

capture a more realistic application of LBM to radiative transfer a heterogeneous porous

burner was considered in which detailed modeling of conjugate heat transfer was conducted

using LBM. The Navier-Stokes equations for incompressible flow with no body force along

with the continuity equation were solved using LBM. The resulting velocity field was used

to calculate the energy equation with LBM, which considered thermal contributions via

convection, conduction and radiation. The radiative field was solved for with LBM. Due

to the dependence of the energy and radiation equations the coupled equations were solved

iteratively. The cases of non-participating and participating obstacles were considered. For

the case of non-participating obstacles the fluid heated near the walls due to convection,

however because of the high Peclet number the fluid did not change considerably away from

the walls, thus the solid obstacles did not rise in temperature. For the case of participating

obstacles the solid obstacles absorbed radiation and heated up, which heated the fluid due

to convection from the surface of the obstacles. The application of LBM to a heterogeneous

porous burner showed the capability of LBM to solve coupled multi-physics simulations

including fluid, temperature and radiation interactions. While this problem included one-

way fluid and energy coupling, an additional term could readily be added to fully couple the

fluid and energy equations thus incorporating buoyancy effects due to thermal gradients.

Chapter 4 showed the application of LBM to neutron criticality problems in a one dimen-

sional slab geometry. The well-known source iteration method described by Duderstadt26

was adopted for LBM to obtain critical slab dimensions for various benchmarked compo-
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sitions. Results showed very good agreement between LBM and the reported benchmark

values as well as with P1 methods for multi-group flux profiles. LBM produced very good

results for sufficiently thick (> 4 mfp) slab reactors. Two-group flux profiles of bare and

reflected reactor configurations matched very well with reported values and with P1 profiles.

5.2 Future Work

The most immediate work to be done is to extend the application of LBM for radiative

transport into realistic three dimensional domains. This includes deriving the directional

weights for three dimensional isotropic lattices such that the macroscopic variables are

conserved and the local physics are accurately balanced.

There is little room to adopt a polar angle in one and two dimensional cases due to

fixed lattice configurations, which limits the accuracy of LBM for some cases. The effect of

azimuthal variation in one dimension and the effect of polar angle variation in two dimensions

is necessary to improve the accuracy of the method. For example, this will enable the

LBM based solution of thin slabs. Another limitation with the current formulation is that

discrete LBEs are only first order accurate with respect to spatial grids. The solution can

be enhanced by using more nodes to discretize the domain, but this becomes exponentially

expensive with added dimensions. Adaptive mesh refinement (AMR) has been used in LBM

applications for fluid simulations to dynamically address the allocation of computational

resources during run time. With AMR regions of interest, such as on interfaces or areas

with high concentrations, are discretized with a finer mesh using a higher node density

while areas that are not of particular interest are discretized with a coarser mesh using

a lower node density. This saves computational resources, but does not fully address the

problem of first order accuracy thus higher order accurate LBEs must be derived for solving

larger domain problems. The second order accurate method for radiation transport will be

conveniently coupled to the second order method for advection-diffusion and fluid transport
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problems, and the second order of accuracy for the coupled system can be preserved.
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Appendix A

Example Codes

A.1 2D LBM Code

This example code determines the steady state radiative field in a square of length L=1.

The x = 0 face has a specified non-dimensional radiative flux of 1 and a constant source of

strength 0.5 is present throughout the media. Neumann boundary conditions are applied to

the remaining faces of the square. The media is non-scattering. Fig. A.1 shows the radiative

field. Fig. A.2 shows the radiative flux profile along the centerline of the medium normal to

the face with the specified radiative flux.
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Figure A.1: Radiative field strength throughout the medium.

Figure A.2: Radiative field strength along the centerline y = 0.5.
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1 % SOLVING FOR A RADIATIVE FIELD USING THE LATTICE BOLTZMANN METHOD.
2 %
3 % This program c a l c u l a t e s the steady s t a t e r a d i a t i v e f i e l d in a square
4 % of l ength L . The l e f t f a c e has a s p e c i f i e d r a d i a t i v e f l u x o f 1 and a
5 % constant source o f s t r ength 0 .5 i s p re sent throughout the media .
6 % Neumann boundary c o n d i t i o n s are app l i ed to the remaining f a c e s o f the
7 % square . The media i s non−s c a t t e r i n g .
8 %
9 % Author : Richard McCulloch

10 % Date : 17 Feb 2015
11

12 c l e a r a l l
13 c l o s e a l l
14 c l c
15

16 Q=4; % Number o f d i r e c t i o n s
17 N=100; % Number o f nodes in each d i r e c t i o n
18 x=l i n s p a c e (0 , 1 ,N) ; % Opt ica l t h i c k n e s s matrix
19 L=1; % Total o p t i c a l t h i c k n e s s
20 dx=L/(N−1) ; % Node spac ing
21 w=0.25; % D i r e c t i o n a l weight f a c t o r s
22 f=ze ro s (N,N,Q) ; % D i s t r i b u t i o n matrix
23 fL =1; % Boundary f l u x value
24 S=0.5; % Uniform source s t r ength
25 e r r =1; % Error v a r i a b l e
26 t o l=1E−10; % Convergence t o l e r a n c e
27

28 whi le ( err>t o l )
29 % Store the prev ious s o l u t i o n
30 f o l d=f ;
31

32 % Boundary Condit ions
33 f ( 1 , : , 1 )=fL ; % D i r i c h l e t bc on Le f t Wall
34 f (N, : , 3 )=f (N−1 , : ,3 ) ; % Neumann bc on Right Wall
35 f ( : , 1 , 2 )=f ( : , 2 , 2 ) ; % Neumann bc on Bottom Wall
36 f ( : ,N, 4 )=f ( : ,N−1 ,4) ; % Neumann bc on Top Wall
37

38 % C o l l i d i n g
39 f=f−dx . ∗ ( f−w∗S) ;
40

41 % Streaming
42 f ( 2 :N, : , 1 )=f ( 1 :N−1 , : ,1 ) ; % Di r e c t i on 1 streams to the r i g h t
43 f ( : , 2 :N, 2 )=f ( : , 1 :N−1 ,2) ; % Di r e c t i on 2 streams to the top
44 f ( 1 :N−1 , : ,3 )=f ( 2 :N, : , 3 ) ; % Di r e c t i on 3 streams to the l e f t
45 f ( : , 1 :N−1 ,4)=f ( : , 2 :N, 4 ) ; % Di r e c t i on 4 streams to the bottom
46

47 % Compute the maximum e r r o r by the change in f
48 e r r=max(max(max( abs ( ( f−f o l d ) . / f ) ) ) ) ;
49 end
50

51 % Plot the r e s u l t s
52 f i g u r e
53 imagesc (x , x , sum( f , 3 ) )
54 daspect ( [ 1 1 1 ] )
55 co l o rba r
56 x l a b e l ( ’X ’ )
57 y l a b e l ( ’Y ’ )
58 t i t l e ( ’LBM D 2Q 4 ’ )

Listing A.1: Matlab D2Q4 code.
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1 /∗ SOLVING FOR A RADIATIVE FIELD USING THE LATTICE BOLTZMANN METHOD.
2 ∗
3 ∗ This program c a l c u l a t e s the steady s t a t e r a d i a t i v e f i e l d in a square
4 ∗ o f l ength L . The l e f t f a c e has a s p e c i f i e d r a d i a t i v e f l u x o f 1 and a
5 ∗ constant source o f s t r ength 0 .5 i s p re sent throughout the media .
6 ∗ Neumann boundary c o n d i t i o n s are app l i ed to the remaining f a c e s o f the
7 ∗ square . The media i s non−s c a t t e r i n g .
8 ∗
9 ∗ Author : Richard McCulloch

10 ∗ Date : 17 Feb 2015
11 ∗/
12

13 #inc lude<iostream> // cout
14 #inc lude<fstream> // ofstream
15 #inc lude<cmath> // fabs
16 us ing namespace std ;
17

18 i n t main ( ) {
19 i n t Nx=100 , // Number o f nodes in the x d i r e c t i o n
20 Ny=100 , // Number o f nodes in the y d i r e c t i o n
21 Q=4; // Number o f d i r e c t i o n s
22 double f [ 1 0 0 ] [ 1 0 0 ] [ 4 ] = { 0 . 0 } , // D i s t r i b u t i o n matrix
23 f o l d [ 1 0 0 ] [ 1 0 0 ] [ 4 ] , // Previous d i s t r i b u t i o n matrix
24 fL =1.0 , // Boundary f l u x value
25 e r r =1.0 , // Error v a r i a b l e
26 t o l =1.0E−10, // Convergence t o l e r a n c e
27 L=1.0 , // Total o p t i c a l t h i c k n e s s
28 dx=L/(Nx−1.0) , // Node spac ing
29 S=0.5 , // Uniform source s t r ength
30 w=0.25 , // D i r e c t i o n a l weight f a c t o r s
31 temp ; // Temporary v a r i a b l e
32

33 whi le ( e r r > t o l ) {
34 // Store prev ious s o l u t i o n
35 f o r ( i n t j =0; j<Ny; j++)
36 f o r ( i n t i =0; i<Nx; i++)
37 f o r ( i n t k=0; k<Q; k++)
38 f o l d [ i ] [ j ] [ k]= f [ i ] [ j ] [ k ] ;
39

40 // Boundary Condit ions
41 f o r ( i n t j =0; j<Ny; j++){
42 f [ 0 ] [ j ] [ 0 ] = fL ; // D i r i c h l e t BC on Le f t Wall
43 f [ Nx−1] [ j ] [ 2 ] = f [ Nx−2] [ j ] [ 2 ] ; // Neumann BC on Right Wall
44 }
45 f o r ( i n t i =0; i<Nx; i++){
46 f [ i ] [ 0 ] [ 1 ] = f [ i ] [ 1 ] [ 1 ] ; // Neumann BC on Bottom Wall
47 f [ i ] [ Ny−1] [3]= f [ i ] [ Ny− 2 ] [ 3 ] ; // Neumann BC on Top Wall
48 }
49

50 // C o l l i d i n g
51 f o r ( i n t j =0; j<Ny; j++)
52 f o r ( i n t i =0; i<Nx; i++)
53 f o r ( i n t k=0; k<Q; k++)
54 f [ i ] [ j ] [ k]= f [ i ] [ j ] [ k]−dx∗( f [ i ] [ j ] [ k]−w∗S) ;
55

56 // Streaming
57 f o r ( i n t j =0; j<Ny; j++)
58 f o r ( i n t i =0; i<Nx−1; i++){
59 f [ Nx−i −1] [ j ] [ 0 ] = f [ Nx−i −2] [ j ] [ 0 ] ;
60 f [ i ] [ j ] [ 2 ] = f [ i +1] [ j ] [ 2 ] ;
61 }
62

63 f o r ( i n t j =0; j<Ny−1; j++)
64 f o r ( i n t i =0; i<Nx; i++){
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65 f [ i ] [ Ny−j −1] [1]= f [ i ] [ Ny−j − 2 ] [ 1 ] ;
66 f [ i ] [ j ] [ 3 ] = f [ i ] [ j + 1 ] [ 3 ] ;
67 }
68

69 // Compute the maximum e r r o r by the change in f
70 e r r =0.0 ;
71 f o r ( i n t j =0; j<Ny; j++)
72 f o r ( i n t i =0; i<Nx; i++)
73 f o r ( i n t k=0; k<Q; k++){
74 temp=fabs ( ( f [ i ] [ j ] [ k]− f o l d [ i ] [ j ] [ k ] ) /( f [ i ] [ j ] [ k ] ) ) ;
75 i f ( temp > e r r )
76 e r r=temp ;
77 }
78 }
79

80 // Output the r e s u l t s f o r post−p r o c e s s i n g
81 ofstream output ( ” lbm output . dat” ) ;
82 f o r ( i n t j =0; j<Ny; j++){
83 f o r ( i n t i =0; i<Nx; i++)
84 output << f [ i ] [ j ] [ 0 ] + f [ i ] [ j ] [ 1 ] + f [ i ] [ j ] [ 2 ] + f [ i ] [ j ] [ 3 ] << ” ” ;
85 output << endl ;
86 }
87

88 r e turn 0 ;
89 }

Listing A.2: C++ D2Q4 code.
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A.2 1D Criticality Code

This code solves for the critical eigenvalue of a bare 1 group U-D2O reactor using LBM.

1 % This code s o l v e s the e i g enva lue c r i t i c a l i t y problem f o r a bare 1
2 % dimens iona l s l ab r e a c t o r made o f U−D2O.
3 %
4 % Author : Richard McCulloch
5 % Date : 5 March 2015
6

7 c l e a r a l l ; c l o s e a l l ; c l c
8

9 nu =1.70; % Average number o f neutrons emitted per f i s s i o n event
10 Sigma f =0.054628; % Macroscopic c r o s s s e c t i o n f o r f i s s i o n
11 Sigma s =0.464338; % Macroscopic c r o s s s e c t i o n f o r s c a t t e r
12 Sigma t =0.54628; % Macroscopic t o t a l c r o s s s e c t i o n
13 L=2∗10.371065; % Slab width
14 mu=1/ s q r t (3 ) ; % L a t t i c e speed in 1 dimension
15 N=10000; % Number o f nodes
16 x=l i n s p a c e (0 ,L ,N) ; % D i s c r e t i z e d width
17 dx=(x (2 )−x (1) ) ; % Node spac ing
18 w=0.5; % Weight f a c t o r s
19 S2 ( 1 :N) =10; % Source term
20 f 1 ( 1 :N) =1; % Flux in the p o s i t i v e d i r e c t i o n
21 f 2 ( 1 :N) =1; % Flux in the negat ive d i r e c t i o n
22 e1=1E−5; % Tolerance f o r Kef f
23 e2=1E−5; % Tolerance f o r the source
24 e r r 1 =1; % Error f o r Kef f
25 e r r 2 =1; % Error f o r the source
26 K1=0.001; % F i r s t Kef f e s t imate
27 K2=1; % Second Kef f e s t imate
28

29 whi le ( err1>e1 | | err2>e2 )
30 % BOUNDARY CONDITIONS
31 f 1 (1 ) =0; % Vacuum c o n d i t i o n s
32 f 2 (N) =0; % Vacuum c o n d i t i o n s
33

34 % Store the prev ious source term
35 S=S2 ;
36

37 % COLLISION
38 f 1=f1+dx/mu. ∗ (w∗( Sigma s+nu∗Sigma f /K1) . ∗ ( f 1+f2 )−Sigma t .∗ f 1 ) ;
39 f 2=f2+dx/mu. ∗ (w∗( Sigma s+nu∗Sigma f /K1) . ∗ ( f 1+f2 )−Sigma t .∗ f 2 ) ;
40

41 % STREAMING
42 f 1 ( 2 :N)=f1 ( 1 :N−1) ;
43 f 2 ( 1 :N−1)=f2 ( 2 :N) ;
44

45 % CONVERGENCE
46 S2=nu∗Sigma f . ∗ ( f 1+f2 ) ;
47 e r r 2=max( abs ( ( S2−S) . / S2 ) ) ;
48 K2=K1∗(sum( S2 ) /sum(S) ) ;
49 e r r 1=abs ( (K2−K1) /K2) ;
50 K1=K2 ;
51 end
52 phi=f1+f2 ;
53

54 f i g u r e ; hold on
55 p lo t (x , phi . / phi (1 ) )

Listing A.3: Matlab criticality code.
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A.3 4 Region Critical Reactor

In Ch. 4 criticality is reported for a 4 region monoenergetic reactor using neutron diffusion

theory as described in 4.5.2. A more detailed explanation of the diffusion theory solution

for this problem is presented in this section for added clarity.

Table A.1: One-group macroscopic cross sections for the 4 region reactor

Material ν Σf (cm−1) Σs (cm−1) Σt (cm−1)

235U 2.50 0.06922744 0.328042000 0.407407000

Fe 0.00 0.00000000 0.232094880 0.232560000

Na 0.00 0.00000000 0.086368032 0.086368032

Figure A.3: Slab geometry for the non-symmetric monoenergetic 4 region reactor with
cladding and a moderator

In this problem the reactor configuration is a uranium core surrounded on both sides by

an iron cladding with a sodium reflector on the outside of only one side of the cladding, as

shown in Fig. A.3. Let each region be denoted by subscripts 1-4 and introduce a buckling
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term B =

√
χνΣf/K − Σa

D
in the core and B =

√
Σa

D
outside the core. Now the governing

equations are given by

d2φ

dx2
=


−B2φ in the core

B2φ otherwise

(A.1)

For the material cross sections, listed in Tab. A.1, it can be seen that B = 0 for the reflector

region. This implies that the current, or first derivative of the flux, is constant in this

region. With this information assumed flux profiles that satisfy Eq. A.1 in each region can

be expressed as

φ(x) =



A1 cosh(B1x) + C1 sinh(B1x) Left Fe cladding

A2 cos(B2x) + C2 sin(B2x) U core

A3 cosh(B3x) + C3 sinh(B3x) Right Fe cladding

A4x+ C4 Na reflector

(A.2)

There are 9 unknown parameters: the Ai and Ci coefficients and the criticality coefficient,

K. A system of equations can be derived using boundary conditions as discussed in 4.5.2

and interface conditions such as

φ1(i) = φ2(i) and D1
dφ1

dx

∣∣∣
i

= D2
dφ2

dx

∣∣∣
i

for i ∈ interface (A.3)

Denoting the interface locations as x0 through x4 the system of equations for the reactor

81



can be written as

A1 cosh(B1x0) + C1 sinh(B1x0) =0

A1 cosh(B1x1) + C1 sinh(B1x1) =A2 cos(B2x1) + C2 sin(B2x1)

A2 cos(B2x2) + C2 sin(B2x2) =A3 cosh(B3x2) + C3 sinh(B3x2)

A3 cosh(B3x3) + C3 sinh(B3x3) =A4x3 + C4

A1B1D1 sinh(B1x1) + C1B1D1 cosh(B1x1) =− A2B2D2 sin(B2x1) + C2B2D2 cos(B2x1)

−A2B2D2 sin(B2x2) + C2B2D2 cos(B2x2) =A3B3D3 sinh(B3x2) + C3B3D3 cosh(B3x2)

A3B3D3 sinh(B3x3) + C3B3D3 cosh(B3x3) =A4D4

A4x4 + C4 =0

(A.4)

or in matrix form
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

cosh(B1x0) sinh(B1x0) 0 0 0 0 0 0

cosh(B1x1) sinh(B1x1) − cos(B2x1) − sin(B2x1) 0 0 0 0

0 0 cos(B2x2) sin(B2x2) − cosh(B3x2) − sinh(B3x2) 0 0

0 0 0 0 cosh(B3x3) sinh(B3x3) −x3 −1

B1D1 sinh(B1x1) B1D1 cosh(B1x1) B2D2 sin(B2x1) −B2D2 cos(B2x1) 0 0 0 0

0 0 −B2D2 sin(B2x2) B2D2 cos(B2x2) −B3D3 sinh(B3x2) −B3D3 cosh(B3x2) 0 0

0 0 0 0 B3D3 sinh(B3x3) B3D3 cosh(B3x3) −D4 0

0 0 0 0 0 0 x5 1





A1

C1

A2

C2

A3

C3

A4

C4



= 0 (A.5)
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The non-trivial solution requires the determinant of this matrix to be equal to zero. K is

found by solving the resulting transcendental equation after setting the determinant equal

to zero. Once K is known the resulting normalized flux profile can be obtained by taking

A1 = 1 and solving for the remaining coefficients.
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