
 

 

Applications of front-face fluorescence spectroscopy and chemometrics to measure casein 

content in milk and detect protein leaks in dairy ultrafiltration permeates 

 

 

by 

 

 

Yizhou Ma  

 

 

 

B.S., University of Minnesota, 2017 

 

 

 

A THESIS 

 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

MASTER OF SCIENCE 

 

 

 

Food Science 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2019 

 

 

 Approved by: 

 

Major Professor 

Jayendra K. Amamcharla 

  



 

 

Copyright 

© Yizhou Ma 2019. 

 

 

  



 

 

Abstract 

Quantitative analysis of casein content in cheese milk can give a better control over 

cheese yield and understand cheese quality. Traditional analytical methods for casein 

measurement rely on nitrogen-based quantification and involve time-consuming sample 

preparation steps. The current study applied front-face fluorescence spectroscopy (FFFS) 

combined with chemometrics to quantify casein and casein-to-crude-protein ratio (CN/CP) in 

milk intended for cheese manufacturing. FFFS spectra of acid-precipitated casein milk dispersion 

(pH = 4.6) were collected from 20 ultrafiltered (UF) model milk samples with different casein 

contents. A preliminary calibration model was developed with principal component regression 

(PCR) using reference casein contents and the FFFS spectra. The model was externally validated 

with 20 raw milk samples and a root mean square error (RMSE) of 0.15% was found between 

the predicted and reference casein contents. A relative prediction error (RPE) of 6.7% indicating 

usefulness for quality control purposes. To further refine the FFFS-based casein quantification 

method, 30 model milk samples prepared from UF and microfiltration (MF) permeates and 

retentates to generate different casein contents and CN/CP. The FFFS spectra were collected 

following the same procedure and used as predictors for casein and CN/CP quantifications. 

Calibration models were developed using partial least squares regression (PLSR) and elastic net 

regression (ENR) and the models were further optimized using 20 samples including raw, skim, 

and UF milk. The optimized PLSR and ENR models were again tested using 20 test samples 

including raw, skim, and UF milk and evaluated in terms of RMSE, residual prediction deviation 

(RPD), and RPE. The PLSR and ENR models reduced the RMSE for casein quantification to 

0.13% with RPD ranged from 3.2 to 3.4, indicating practical model performances. For CN/CP 

quantification, PLSR models resulted in useful predictions with an RMSE of 0.024, an RPD of 



 

 

1.5, and an RPE of 3.0%. The FFFS-based casein quantification method provides a rapid casein 

measurement in fluid milk and can be implemented in the cheese industry for routine 

measurements.  

In a different study, FFFS was utilized to predict the protein leaks in permeate during 

membrane processing of skim milk and whey. Protein leak occurs when proteinous matters pass 

through the UF membrane into the permeate stream leading to financial losses and product 

quality defects. FFFS as a sensitive and specific instrument was applied to characterize protein 

leak occurrences in UF permeate, develop chemometrics models to quantify true protein (TP) 

content in permeate streams, and classify sources of protein leak in the feed material. 

Measurements of crude protein (CP), non-protein nitrogen, TP, tryptone-equivalent peptide, α-

lactalbumin (α-LA), and β-lactoglobulin (β-LG) were performed on 33 lots of commercial whey 

permeate and 29 lots of commercial milk permeate. Protein leaks were attributed to high TP, 

high-peptide, and presence of α-LA or β-LG. Tryptophan was identified as the fluorophore of 

interest for protein leak detection based on the excitation-emission matrix analysis of 

representative permeate with high and low TP contents. Quantitative models based on PLSR 

were developed using tryptophan excitation spectra and true protein content in the permeate. The 

model yielded a RMSE of 0.22% (dry-basis) and RPD of 2.8 based on external validations, 

showing a useful model for quality control purposes. Moreover, classification models based on 

partial least squares discriminant analysis were developed to detect high TP level, high peptide 

level, and presence of α‐LA or β-LG with 83.3%, 84.8%, and 98.5% cross-validated accuracy, 

respectively. This method showed that FFFS and chemometrics can rapidly detect protein leak 

and identify the source of protein leak in UF permeate, which can reduce financial loss from 

protein leak and maintain high-quality permeate production.  
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Chapter 1 - Introduction 

As the food industry continuously seeks innovative analytical methods, the spectroscopy-

based techniques offer rapid and non-invasive analysis with promising possibilities in a wide 

range of applications. The spectroscopy instruments and chemometrics made it possible to 

provide on-line or at-line detection capability during food production in real-time. Food contains 

intrinsic fluorescence-emitting compounds (fluorophores) which can be used as compounds of 

interest in fluorescence spectroscopic analysis. In food science applications, front-face 

fluorescence spectroscopy (FFFS) has been applied due to its specificity, sensitivity, and ability 

to measure turbid samples (Andersen and Mortensen, 2008). The obtained spectra from FFFS 

measurement are analyzed by chemometrics, a field of study applying mathematical and 

statistical methods to extract chemical and physical information from complex data (Wold and 

Sjöström ,1998). Applications of FFFS have shown promising results to analyze dairy food 

composition, processing, and storage-induced changes. 

Cheese is one of the most popular fermented dairy products in the United States with 12.7 

billion pounds produced in 2017 (US Department of Agriculture, 2019). Casein content in milk 

has been identified as one of the yield indicators for cheese production (Emmons and Modler, 

2010). Various cheese yield prediction equations include casein content in milk as a factor, and 

standardizing casein-to-fat ratio has been an industry practice to maintain consistency in the 

cheese production. In addition, casein content in cheese milk can influence the quality of finished 

product as it serves as the flavor substrate during aging and the texture backbone in the finished 

cheese (Fox, 1989). To maintain product consistency in cheese manufacturing, an accurate 

casein measurement in milk is necessary. FFFS combined with chemometrics can potentially 

fulfill such need from the cheese industry.   
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In addition to dairy products, dairy-based ingredients such as milk and whey protein 

concentrates (MPC and WPC, respectively) have gained market shares in the recent years 

(Agarwal et al., 2015). The production of MPC and WPC from skim milk or whey involves 

ultrafiltration (UF) and diafiltration to fractionate the protein-rich retentate from the lactose-rich 

permeate. The liquid permeate can then be evaporated, concentrated, crystalized, and spray-dried 

in powder form. Based on the original source of the permeate, they are branded as “milk 

permeate powder” and “deproteinized whey” and used in confectionary and bakery products. A 

small fraction of protein can leak through the membrane under certain conditions. The protein 

leak during UF can lead to financial losses and permeate powder deficiencies during storage. As 

a standard practice in the dairy industry, permeates are analyzed for total protein content only in 

the powder form resulting in a delay between the protein leak and detection. Moreover, 

measuring only total protein in the finished permeate powders does not reveal the source of 

protein leak, potentially coming from loss of true protein or peptides. FFFS combined with 

chemometrics can potentially offer real-time true protein analysis in liquid permeate to monitor 

protein leak during UF processing.  

This thesis focuses on the development and validation of FFFS and chemometrics to 

measure casein in fluid milk and detect protein leak in UF permeates. The FFFS-based methods 

can be potentially implemented into dairy foods production facilities and maintain product 

qualities.  

References 

Agarwal, S., R. L. W. Beausire, S. Patel, and H. Patel. 2015. Innovative uses of milk protein 

concentrates in product development. J. Food Sci. 80:23-A29.  
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Analyzing Dairy Products. J. Agric. Food Chem. 56:720–729. 
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Chapter 2 - Literature Review 

 Milk composition  

Bovine milk is defined as “the lacteal secretion, practically free from colostrum, obtained 

by the complete milking of one or more healthy cow” (21CFR131.110). Chemically speaking, 

bovine milk consists of water, fat, lactose, protein, and mineral substances. According to Walstra 

et al. (2005), the primary composition of milk is water (87% w/w), which serves as the solvent 

and continuous phase for other chemical compounds in milk. Among the non-water fractions of 

milk, lactose (4.6% w/w) as the distinctive disaccharide of glucose and galactose. Milk dry 

matter also contain fat (4% w/w), which mostly exists in the form of globules. The various fat 

compounds found in milk include triglycerides, phospholipids, cholesterol, free fatty acids, and 

mono and di-glycerides. Milk also contains various mineral substances such as potassium, 

sodium, calcium, magnesium, chloride, and phosphate. These minerals exist in both ionic and 

colloidal forms, contributing to the stabilization of the milk system. About 80% the proteins in 

milk (3.3% w/w) are caseins, with a combination of β-casein, κ-casein, αs1-casein, and αs2-

casein. The reminder proteins are largely serum proteins including ß-lactoglobulin, α-

lactalbumin, blood serum albumin, immunoglobulins, lactoferrin, transferrin, and many other 

proteins and enzymes.  

 This chapter offers reviews of peer-reviewed literature on milk casein, its structure, 

composition, and impacts on cheese manufacturing. The review then introduces various methods 

of measuring casein in milk using standard methods and rapid alternative methods. Front-face 

fluorescence spectroscopy (FFFS) is another focus of this chapter. Its instrumentation, working 

principle, and applications on food products are reviewed in the subsequent sections. Lastly, 
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spectral analysis using chemometrics is discussed in this chapter as an essential step to develop 

accurate and reproducible spectroscopic rapid methods.   

 Casein chemistry  

While milk as a complicated system relies on all compositions interacting harmoniously, 

food consumption trend has bene growing towards its protein fractions (Horne, 2006). Casein as 

the major milk protein has been studied extensively for its unique chemical structure. Casein 

exists in milk as micelles, voluminous, spherical, and negatively charged particles that hold 

water, casein proteins, and inorganic matters (calcium phosphate). Overall, micelle diameters 

were found from 100 to 300 nm with variations occurred based on milk compositions. Namely, 

the amount of κ-casein has been associated to affect casein micelle size, with more κ-casein 

contributing to smaller micelle diameter (Schmidt, 1980).  

While the compositions and size of the casein micelle can be measured with various 

analytical techniques, the structure of casein micelles has not been fully elucidated and in 

agreement among scientists (Dalgleish and Corredig, 2012). The two popular theories 

demonstrating micellar structure of casein are submicelle and nanocluster models. The 

submicelle model, proposed by Schmidt in 1980, hypothesized that casein micelles consisted 

aggregates of casein protein linked by calcium phosphate. Internally, the submicelles are 

predominately formed by protein-protein interactions of caseins. On the other hand, the 

nanocluster model, proposed later by Holt et al. (1992), theocratized the micelle structure based 

on the casein phosphopeptide and calcium phosphate interactions, forming small and stable 

clusters. The enlargement of casein micelle relies on the crosslinking of nanoclusters by 

phosphorylated αs-caseins and noncovalent bonds. Due to the lack of phosphate centers in κ-
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caseins, they will remain on the surface of the micelle as observed from multiple studies 

(Dalgleish and Corredig, 2012).  

 Casein’s role in cheese manufacture 

The understanding of casein micelle structure provides foundation for altering physical, 

chemical, and microbiological environment of milk to produce various milk-derived food 

products such as yogurt, cheese. A representative casein-containing food is cheese. During 

cheese making, casein and fat are concentrated to convert milk into curd by acidification and 

rennet coagulation (Lucey and Kelly, 1994). Cheese making is a dehydration process as whey is 

drained from the curd to increase the total solid content in cheese. Followed by flavoring, 

molding, and aging, various types of cheese are produced for human consumptions (Fox, 1989). 

Figure 2-1 highlights casein’s role in quantity and quality determination of cheese. 

 

Figure 2-1 Overview of casein in milk determining quantity and quality of cheese. 

 Cheese yield determination  

In the cheese industry, improving the quantity of cheese produced from a given amount 

of milk is a constant pursuit. Dairy food scientists have identified multiple factors that can 

influence the cheese yield. Milk compositions, namely the amount of protein and fat, are 
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highlighted in multiple studies as indicators to cheese yield (Barbano and Sherbon, 1984; 

Emmons and Modler, 2010). Protein and fat are the two major solid components in cheese, so 

understanding their amounts in cheese milk can provide direct estimation of the final cheese 

solids. Protein-to-fat-ratio (PFR) has been developed as a reference metrics to understand cheese 

milk. A PFR range from 0.70 to 1.15 has resulted in differences in cheese composition and yield 

(Guinee et al., 2007). Since casein is the primary proteinaceous residual in cheese, knowing 

precisely the casein content in cheese milk can enhance the prediction of cheese yield. Multiple 

cheese yield predictive equations were published, and all of the models included compositions of 

fat and casein in cheese milk as factors (Emmons and Modler, 2010). Several later-identified 

cheese yield determinants included curd firmness, syneresis rate, and moisture retention. These 

qualities of curd or during cheese making have been linked back to the casein content in the 

cheese milk. Standardization of cheese milk became a common practice in cheese 

manufacturing. The standardization procedure serves to meet the legal definition of specific 

cheese varieties and to maximize the cheese yield without losing excessive fat and casein into 

whey (Lucey and Kelly, 1994). By adjusting the casein-to-fat ratio, the standardized milk can 

produce consistent and high yield for a given variety of cheese. Therefore, knowing the casein 

content in milk is a key to control cheese yield.  

 Cheese quality determination 

On top of determining cheese yield, casein in milk has been linked to various quality 

determinations in cheese. Many types of cheese need to be ripened for their  characteristic 

flavors and textures (Fox, 1989). During ripening, casein provides substrates for proteases and 

cultures in cheese to develop proteolysis-induced flavors. From casein hydrolysis, peptides, 

amino acids, acetic acid, ammonia, pyruvate, aldehydes, alcohols, carboxylic acids, and sulfur 
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compounds were produced, contributing to the overall cheese flavor development (Singh et al., 

2003). With the advancement of nontarget omics techniques, genomics and metabolomics 

studies have linked specific lactic acid bacteria to the desirable cheese flavor compounds (Steele 

et al., 2013). Proteolysis-induced flavor development is a key pathway for the overall flavor 

profile of a given cheese, and casein in cheese milk is the substrate for achieving the desirable 

cheese products.  

Meanwhile, during cheese ripening, texture of cheese also changes due to proteolysis. 

Intact casein in cheese refers to the casein that has not been hydrolyzed. Intact casein content in 

the finished cheese has been correlated to cheese rheological and functional properties (Fenelon 

and Guinee, 2000). It provides structural backbone to cheese and contribute to the meltability 

and spreadability of cheese. To produce certain cheese texture, curd firmness and moisture 

retention should be controlled, and casein in cheese milk again determines these quality 

parameters. Intact casein’s functionality extends to manufacturing processed cheese as 

researches have suggested that it can determine processed cheese’s functional and textual 

properties (Kapoor and Metzger, 2008). Since hydrolyzed casein can produce flavors, while 

unhydrolyzed casein can provide structure, understanding the intact casein level in natural cheese 

can determine both flavor and textual profiles of the finished processed cheese.   

 Techniques to concentrate casein content in cheese milk  

Membrane filtration aims to physically separate compounds based on their sizes. With 

the growing understanding of casein’s role in cheese, membrane filtration techniques served as a 

complementary process to cheese manufacturing as it can alter casein content in cheese milk 

(Lipnizki, 2010). The early attempts of membrane filtration in cheese making involved 

ultrafiltration (UF). UF can physically separate milk protein from the other smaller compounds 
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in milk such as lactose and minerals. The first application of UF in cheese making was done by 

Maubois et al. (1969), and the patented method concentrated milk protein by 5 to 7 times prior to 

cheese making. The method resulted in low whey draining and high-quality cheese curd. UF 

concentration of cheese milk can increase yield and improve cheese vat utilizations (Kumar et 

al., 2013). However, the quality of cheese produced by UF milk appeared some differences from 

the conventional cheese. The reduced mineral and retained undenatured whey protein created 

different flavor profiles during semi-hard and hard cheese ripening process (Lelievre and 

Lawrence, 1988). Because of product inconsistency in aged cheese, UF has been more 

successfully applied to fresh cheese production of Feta and fresh acid-curd varieties (Henning et 

al., 2006).  

Another membrane processing technique known as microfiltration (MF) has also been 

applied to cheese manufacturing. Unlike UF, MF only retains micellar casein during the 

concentration process, which limits the whey protein retention issue found in UF-made cheese. 

Applications of MF-made cheese were published by Brandsma and Rizvi (2001), and the 

researchers manufactured Mozzarella cheese from 7-time concentrated MF milk. The study 

found that rheological properties of the MF-made Mozzarella cheese were improved compared to 

the control. The low whey protein retention in the MF-made Mozzarella also decrease the degree 

of proteolysis as compared to the control Mozzarella samples. In another study, Neocleous et al. 

(2002) used low concentration factor MF milk to make cheddar cheese. By standardizing the 

casein-to-fat ratio, the study found that MF can increase cheddar cheese yield, and the yield 

increase is independent from the concentration factor of MF. Various high-casein retentates from 

MF and UF increased cheese yield and maintained textural and flavor properties. Concentrating 
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casein served as a backbone theory to the membrane processing applications in cheese 

manufacturing.  

 Measuring casein in milk  

Due to the important role of casein in cheese manufacturing, determining casein content 

has been a focus of analytical method development. Quantification of casein in milk offers direct 

indication to fluid milk quality and cheese yield. The official method of casein measurement in 

milk relied on the nitrogen-titrimetry method, Kjeldahl. Lynch et al. (1998) published a 

collaborative study to standardize and evaluate the Association of Analytical Chemists (AOAC) 

method for casein content in milk. The method involved two approach to directly or indirectly 

determine casein content in milk. The principle of the method relied on isoelectrically 

precipitating casein in milk and separate casein from the non-casein fraction of milk by filtration. 

Casein content can either be quantified by directly measuring the isolated casein solids or 

indirectly calculating the difference between total nitrogen and non-casein nitrogen. This 

Kjeldahl-based method resulted in good repeatability and reproducibility, serving as the industry 

standard method for casein quantification since 1998.  

Meanwhile, multiple chromatographic methods of casein analysis are available to 

separate and quantify casein using high performance liquid chromatography (HPLC). 

Separations based on reverse phase and size exclusion have been developed to fractionate β-

casein, κ-casein, αs1-casein, and αs2-casein (Dimenna and Segall, 1981; van der Ven et al., 2001; 

Bonfatti et al., 2008). External calibrations were established with casein standards to determine 

casein content in milk. Similarly, capillary electrophoresis-based method was also developed to 

quantify serum protein and casein in milk (Recio and Olieman, 1996). While the primary goal of 

these methods was for protein separation, quantification of casein can also be achieved.  
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Automation and rapid sensing development in food analysis have produced several rapid 

quantification methods for casein. These methods are mostly spectroscopic methods involving, 

ultraviolet (UV) spectroscopy, infrared spectroscopy, and nuclear magnetic resonance (NMR) 

spectroscopy.  Table 2-1 provides a summary of the rapid casein quantification methods using 

spectroscopies. The methods relied on calibration of known casein samples from either powder 

standards or milk. Near infrared spectroscopy (NIR) has been approved as a standard method for 

protein quantification in foods. Barbano and Dellavalle (1987) used the indirect approach to 

quantify total protein in milk and the non-casein protein using NIR. The calibration of NIR-

based method was referenced to the Kjeldahl official method. The result of the study suggested 

that the mean casein content measured from the NIR-based method was not significantly 

different from the reference method (P < 0.05). 

With the increasing consumer demand for ultra-high-temperature (UHT) milk, accurately 

quantifying casein in UHT milk created challenges for the precipitation-based methods because 

of casein and whey protein interactions (Belloque and Ramos, 2002). Belloque and Ramos 

developed a 31P-NMR spectroscopy-based method to quantify casein in different pasteurized and 

UHT-processed milk. The method relied on external calibration of milk powder, and it required 

some sample preparations steps for the 31P-NMR detection. The measurement range of this study 

was reported from 2.39 to 2.82%. Although there was no accuracy of the method reported, a 

comparison casein value obtained from the Kjeldahl official method was given.  

Lüthi-Peng and Puhan (1999) published a method of using the 4th derivative of UV 

spectra to quantify milk protein and casein content in milk. The method involved a sample 

preparation step of unfolding milk proteins in guinidine-hydrochloric acid. Calibration was done 

to measure total protein and whey protein in milk, and casein content was then calculated. The 
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method showed no significant effects to homogenization, preservation, or hydrolysis with 

protease, and protein and casein contents can be obtained from one UV spectroscopy scan. The 

accuracy of the method was compared to the Kjeldahl official method using linear model and the 

standard error of the method was found to be 0.06% casein based on a sample size of 34 with 

casein ranged from 1.92 to 3.34%.  

Fourier-transform infrared (FTIR) spectroscopy were developed as a non-destructive 

method to measure various food components. Several applications have been published on casein 

quantifications. Hewavitharana (1997) first reported a FTIR-based method for casein 

quantification on raw milk samples. The method was developed using multivariate statistical 

models and validated with a set of 20 raw milk samples. The measurement range of the method 

was from 2.71 to 3.62% casein in raw milk, and the error of the method was reported from 0.08 

to 0.1%. A follow-up study was done by Luginbühl (2002) using standard milk samples. In this 

study a larger casein measurement range was found, which also increased the measurement 

accuracy, lowering the error to 0.046-0.08%. It appeared that the increase of casein calibration 

range and high sample homogeneity resulted in accuracy improvement in FTIR-based 

measurements of casein. A mid infrared (MIR)-based method was published by McDermott et al. 

(2016) aiming for milk casein and free amino acid quantifications. The method was designed to 

capture casein content variation from different genetic breeds. Though the range of the casein 

measurement was not reported, the error from the study was 0.48%, almost 10 times higher than 

the FTIR method. Overall, the rapid methods focused on minimal sample preparation with 

various calibration ranges. In general, the increase of calibration range of casein improved the 

accuracy of the method.  
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Table 2-1 Summary of spectroscopic casein quantification methods 

Principle Sample preparation Measurement range Accuracy  Reference 

NIR None NA Mean 

difference 

remained 

insignificant 

(P < 0.05) 

(Barbano and 

Dellavalle, 

1987) 

31P-NMR Methylenediphosp

honic acid (internal 

standard) and 

EDTA  

2.39 to 2.82% NA (Belloque and 

Ramos, 2002) 

UV Guinidine-

hydrochloric acid 

1.92 to 3.34% SEP = 0.06% (Lüthi-Peng and 

Puhan, 1999) 

FTIR None 1.8 to 4.5% SEP = 0.046 

to 0.08 % 

(Luginbühl, 

2002) 

FTIR None 2.71 to 3.62% RMSE = 0.08 

to 0.1% 

(Hewavitharana, 

1997) 

MIR None NA RMSE = 

0.48% 

(McDermott et 

al., 2016) 

NIR = Near infrared, 31P-NMR= Phosphorus-31 nuclear magnetic resonance, UV = ultra-violet, 

FTIR = Fourier-transform infrared, MIR = Mid-infrared, SEP = Standard error of prediction, 

RMSE = root mean square error.  

 

 Fluorescence spectroscopy  

With the growing consumer demands on food quality in the recent years, the industrial 

food production continues to seek innovative analytical methods with high accuracy and 

efficiency (Karoui and Blecker, 2011). Compared to the traditional methods, spectroscopic 

instrumentations can increase detection speed, provide non-invasive analysis, and reduce labor 

and time while providing promising analytical results. In dairy productions, rapid detection 

techniques have been applied to compositional analysis of cheese, milk, milk powders. and milk 

curd synthesis using spectroscopic methods (Slobodan and Yukihiro, 2001; Fagan et al., 2011). 

Also, thanks to the nondestructive detection mode of the spectroscopic instrumentations, these 

methods can be used on-line or at-line to monitor quality parameters during production in real-

time. Among the various spectroscopic methods developed by food researchers, fluorescence 
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spectroscopy (FS) is known for its additional sensitivity compared to others. Studies have shown 

that FS is capable to detect food analytes in the sub-parts per billion range (Andersen and 

Mortensen, 2008). 

 Basic principles and instrumentations 

The high sensitivity of FS comes from the measurement of the fluorescent molecules in 

foods known as fluorophores. The Jablonski diagram (Figure 2-2) illustrates the principle of FS. 

The fluorophore is excited by light absorption changing its energy state from ground state (S0) to 

excited state (S1). The excitation process resulted in a vibrational relaxation for the fluorophore, 

meaning that the molecule needs to transfer from the excited state to the lower energy state (with 

no radiation). When the molecule is in such process, the electron returns to the low energy state 

and emits light as the form of energy returned from the excitation. Based on Figure 2.2, the 

energy of emission is lower than the energy of excitation, meaning that the emission wavelength 

of a fluorophore is higher than its excitation wavelength. Such phenomenon is known as Stokes 

Shift. Therefore, fluorescence of a given molecule is described by both excitation and emission 

wavelength. The use of two wavelength parameters allows better specificity of the method, 

compared to other spectroscopic techniques which requires only one wavelength parameter. 

Also, because of the Stokes Shift, little to none spectral interference occurs to the measurement 

of emission wavelength, resulting in high resolution spectral collection, which translates to high 

sensitivity of the analyte measurement (Ahmad et al., 2017). However, the major limitation of 

the FS is that the analyte of FS must be a fluorophore due to unique physical principle. Certain 

analytes may not carry fluorescent properties, so they are not suitable for FS analysis. 
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Figure 2-2 Jablonski diagram showing the basic principle in fluorescence spectroscopy (adapted 

from Karoui and Blecker, 2011). 

To obtain fluorescence spectra, a dual monochromator setup has been widely used. 

Figure 2-3 provides a schematic demonstration of FS measurement process. In short, 

fluorophores are excited by a monochromator at certain wavelengths, and the fluorophore-

containing sample emits light at a different wavelength, which can be filtered and detected by the 

photodetector. Spectral data are then collected into computers and multivariate statistical models 

can be constructed based on various chemometric analyses. There are two orientations of the FS 

sample holder. The right-angle position requires that the excitation light travels through the 

sample from one side, and the detector is positioned at right angles to collect the emission signal. 

The right-angle orientation provides sensitive measurement of fluorophore at low concentration. 

With an emission absorbance less than 0.1, the analyte concentration is proportional to the 

emitting light intensity (Karoui and Blecker, 2011). However, in food analysis, since the matrix 

contains multiple components with various levels of fluorophore’s presence, right-angle 

measurement is limited by scattering and high emission absorbance. Therefore, an alternative 

orientation known as the front-face fluorescence spectroscopy (FFFS) is favored due to its ability 

to measure turbid samples. FFFS compromises some analytical sensitivities as its emission 

spectra are often nosier than those obtained from right-angle orientations. In food analysis, FFFS 
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is used to capture changes in food processing and rapidly estimate compositions, so reasonable 

loss of sensitivity may not affect its intended uses.  

 

Figure 2-3 Basic setup of a fluorescence spectroscopy (adopted Karoui and Blecker, 2011). 

 Fluorescence spectra 

Since there are two monochromators involved in the measurement of FS, various types of 

spectra can be obtained from the same instrument. The fundamental type of spectrum obtained 

from FS measurement is described in the Jablonski diagram (Figure 2-2). With a fixed excitation 

wavelength, the emission monochromator can scan a range of wavelength to capture a 

distribution of light energy emitted from a single excitation. This type of spectrum is known as 

the emission spectrum. Using an opposite approach, by fixing the emission monochromator at a 

single wavelength and varying the excitation wavelength, a fluorophore will be excited with 
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different wavelengths and only emit light in response to some of them. This type of FS spectrum 

is known as the excitation spectrum. Both the emission and excitation spectra are commonly 

used to measure known fluorophores (Karoui and Blecker, 2011). For example, in the early 

studies of FFFS characterization of dairy foods, Herbert et al. (1999) used the known FS 

parameters with excitation of 290 nm and emission wavelength ranged from 305 to 450 nm to 

measure coagulation of milk. The FS parameters were referenced to the pure tryptophan 

fluorescent properties without product-specific fluorescence identification.  

With the development of FS instrumentations, a non-targeted approach of FS 

measurement was more commonly used known as excitation-emission matrix (EEM). EEM 

sometimes is referred as the 3-deminsional or 3-way measurement of fluorescence. It is produced 

by collating continuous scans of emission spectra from a range of excitation wavelengths 

(Bahram et al., 2006). EEM contains large amount of data highlighting all available fluorophores 

in a sample. Therefore, it is normally used as an exploratory tool to understand the specific food 

sample and select the most useful fluorophore as the marker compound. Kokawa et al. (2015) 

used EEM to understand the distribution of intact casein in cheese, and the authors identified the 

tryptophan difference in aged and non-aged cheese, which was used to predict the intact casein 

concentrations. Sometimes, there are more than one fluorophore to be included in the analysis, 

and to rapidly collect fluorescence information from all fluorophores, synchronous fluorescence 

is developed. Synchronous fluorescence spectra are obtained by plotting fluorescence intensity 

against the excitation/emission wavelength combinations. In this way, spectra selectivity is 

increased especially dealing with multi-fluorophore samples. For example, fluorescence spectral 

information from riboflavin, oxidized fatty acids, and vitamin E was used to authenticate virgin 
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olive oil (Poulli et al., 2007). The synchronous fluorescence spectra provided reliable prediction 

and avoid potential scattering effects in normal FS measurement.  

 Fluorophores in foods 

There are multiple intrinsic fluorophores in foods for FS analysis. These fluorophores are 

naturally present in food products or have been synthesized during food processing. 

Representative fluorophores and their excitation/emission wavelengths are summarized in Figure 

2-4. Since food is a dynamic chemical environment, measuring fluorophore concentrations in 

foods can provide both analysis of food compositions and characterization of processing and 

storage changes. Specifically, the source of foods determines the fluorophores present and the 

information generated from FS measurements. In Figure 2.4, fat-containing foods such as whole 

milk and meat carry riboflavin and vitamin A, and researchers have developed FS-based methods 

to measure these fluorophores and correlate with other quality parameters. For example, the 

change in riboflavin in whole milk serves as an indicator to light exposure, so an FS method 

measuring riboflavin in whole milk provides estimation for light exposure of raw milk (Choe et 

al., 2005). Another characteristic fluorophore in foods is chlorophyll. Naturally present in plants, 

chlorophyll has been used to characterize apple fruit maturity and quality (Noh and Lu, 2007; 

Cerovic et al., 2008). Due to the unique excitation/emission wavelength combination of 

chlorophyll, minimal spectral interference occurs to its measurement. Therefore, trace amount of 

chlorophyll can provide reliable fluorescence signals. Chlorophyll is then used as a marker to 

discriminate between grass-fed milk and conventional milk using FS techniques (Bhattacharjee 

et al., 2018).  
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Figure 2-4 Excitation and emission maxima of fluorophores present in food products (adapted 

from Andersen and Mortensen, 2008). 

Also, some fluorophores may not be naturally present in fresh foods, but they can be 

formed during food processing and storage. Fluorescent oxidation products and Maillard 

browning products are examples of such molecules. Oxidation of foods occurs when certain food 

compounds are exposed to oxygen, and such process may result in undesirable quality changes 

of foods. FS have been used as a tool to monitor such changes by using fluorescent oxidation 

products as markers. FS measurement of these products occurs in a wider emission wavelength 

range from 400 to 500 nm, and these compounds are derivatives of riboflavin oxidation and fatty 

acid oxidation primarily found in meat and oil products (Guimet et al., 2005; Gatellier et al., 

2007). Similarly, during heat treatment of foods, Maillard reaction occurs and results in 

browning products. These products contain cyclic structures, giving them fluorescent properties. 

Researchers have been using the Maillard products as markers to characterize heat treatment and 

storage of food products. One of the representative fluorescence-based parameters is known as 

the FAST (Fluorescence of Advanced Maillard products and Soluble Tryptophan) index 



20 

developed by Birlouez-Aragon et al. (2002). The FAST index calculates the ratio between the 

advanced Maillard products and soluble tryptophan in dairy products and estimate the heat load 

of them.  

Table 2-2 Example studies of tryptophan fluorescence for dairy food quantification and 

processing-induced changes characterizations 

Product Function Measurement Spectral parameters Reference 

Milk 

Quantification 

measurement 

β-lg and 

alkaline 

phosphatase 

Ex at 290 nm and 

em ranged 320-360 

nm 

(Kulmyrzaev 

et al., 2005) 

Cheese Intact casein 

Ex at 290 nm 

maximum em at 345 

nm 

(Kokawa et al., 

2015) 

Skim milk 

powder 
Lactulose 

Ex at 290 nm, em at 

307 and 324 nm 

(Ayala et al., 

2017) 

Milk 

Processing-

induced changes 

Estimation of 

heat treatment 

Ex at 290 nm, em at 

340 nm 

(Kulmyrzaev 

et al., 2005) 

Non-fat dry 

milk 

Storage 

temperature 

effects 

Ex at 290 nm, and 

em ranged 305-450 

nm 

(Liu and 

Metzger, 2007) 

Cream cheese 
Formulation 

variations 

Ex ranged from 260-

360 nm, em ranged 

280-600 nm 

(Andersen et 

al., 2010) 

Emmental 

cheese 

Cheese ages 

and origins 

Ex at 290 nm, em 

ranged 305-400 nm 

(Karoui et al., 

2006) 

Ex = excitation wavelength; Em = emission wavelength. 

A more abundant fluorophore in foods is tryptophan in peptides and proteins. Tryptophan 

is therefore extensively studied in protein-containing foods for quantification measurement and 

processing-induced quality changes. Table 2-2 provides some examples of tryptophan-based FS 

measurements of dairy foods. For protein detections, Kulmyrzaev et al. (2005) developed 

characterized heat treatments of milk and its protein denaturation using FFFS. The study 

collected tryptophan and NADH fluorescence spectra and detect protein changes based on 

heating time and temperature of the milk. The models were able to predict alkaline phosphatase 
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and β-lactoglobulin levels using the FFFS spectra. Though in different food matrix, the spectral 

parameters for these studies were similar, aimed to measure tryptophan. The slight variation in 

tryptophan measurement parameters provides specificity to each method, and researchers have 

used multiple methods to select the best-performing wavelengths.  

 Chemometrics overview  

Since most of the FFFS measurement of food samples results in complicated and noisy 

spectra, statistical models are required as a part of the method development process to ensure the 

accuracy and reproducibility. Multivariate statistical analyses (also known as chemometrics) are 

needed to extract quantitative, qualitative, or structural information from these spectra (Karoui et 

al.,2010). It provides variable reductions and calibrations of the spectral data to the reference 

data, enhancing values of the fluorescence measurements. In general, chemometrics methods can 

be divided into unsupervised and supervised analysis. Unsupervised methods focus primarily on 

pattern recognition of the spectral data. Because fluorescence spectra of foods contain multiple 

components, unsupervised methods are helpful to identify individual component’s contribution 

to the obtained spectra. On the other hand, supervised methods aim to manipulate spectral 

information and predict certain reference attributes. It involves multivariate model development 

and validation to connect spectral information to other chemical and physical properties of foods. 

Both approaches provide invaluable knowledge and applications to food analysis, and they 

establish the foundation for spectroscopic analysis of foods.  

 Unsupervised analysis  

Unsupervised chemometric tools focus to decode the complex spectra obtained from 

measuring food samples. Principal component analysis (PCA) has been one of the most common  
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methods of compressing and visualizing 2-dimentional spectral data (Karoui et al., 2010). 

In the data matrix, fluorescence intensity of each corresponding wavelength is transformed into 

latent variables by maximizing the covariance among the wavelength. PCA reduces the number 

of variables in the original data matrix with minimal loss of the spectral information. The 

principal components (PC), can be associated with specific chemical and structural components 

in the food matrix such as analyte concentrations and protein-protein interactions (Herbert et al., 

1999; Kulmyrzaev et al., 2005). PCA also provides data visualizations for high-dimensional data. 

Because the PC explain majority of the spectral variance, plotting the first and second PC can 

often visualize sample differences among treatments. This visualization tool has been used to 

classify samples with different processing process, geographic origins, and formulation 

differences (Table 2.2). 

While PCA has been the dominating unsupervised method in FFFS studies, several other 

unsupervised methods have been applied to analyze fluorescence spectra. For example, 

hierarchical clustering analysis (HCA) is a clustering method based on linkage and distance 

calculations. Various linkage and distance methods can reduce high dimensionalities and 

visualize sample similarities on a dendrogram. Several studies have applied HCA to find 

linkages between edible and lampante virgin olive oil and between brandies and wine distillate 

(Poulli et al., 2005; Sádecká et al., 2009). The flexibility in distance and linkage calculations 

empower HCA as an efficient pattern recognizing tool for unknown samples.  

In the meantime, because of the special data structure of the EEM generated by FFFS, 

researchers have applied multi-way analysis to directly analyze the 3-dimensional data. Parallel 

factor analysis (PARAFAC) is a well-known method developed by Bro (1999). The complicated 

EEM data array is decomposed into several 2-way spectrum known as parallel factors. 
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PARAFAC is considered as a unsupervised method because the parallel factors produced by the 

calculation has been well-correlated to the individual fluorophores in the sample mix (Bro, 

1999). Therefore, for exploratory purposes, the non-targeted EEM approach combined with 

PARAFAC can collect total fluorescence in a sample and decompose the specific fluorophores in 

it. Using this approach, researchers have studied specific fluorophores in yogurt and honey, 

which generated promising classification power (Christensen et al., 2005; Lenhardt et al., 2015). 

However, collecting EEM is relatively time-consuming compared to excitation/emission scans, 

so for relatively simple food matrix, EEM coupled with PARAFAC may not be efficient for 

method development. Also, the number of parallel factors needs to be specified prior to running 

the analysis, meaning that researchers should have some general knowledge on the sample rather 

than blindly relying on the algorithms.  

 Supervised modelling 

Unsupervised tests offer exploratory analysis of spectral data, and they can provide 

extensive understanding of the samples. To expand the use of spectral data, supervised methods 

can establish predictive models between a sample’s spectrum and its reference values. Overall, 

supervised methods can be categorized into classification and regression. The two types of 

supervised methods rely on different reference values. For classifications, the reference values 

are categorical, and the predictive models are designed to classify unknown samples into the 

trained classes. On the other hand, regression models are developed on continuous data, and the 

models are designed to predict specific values from the spectral input. Though with different 

goals, supervised chemometric modelling has a general workflow shown in Figure 2-5.   
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Figure 2-5 General workflow of supervised chemometrics modelling. 

The raw spectral data are normally preprocessed to reveal spectra overlapping and 

instrumental noise (Brown et al., 2000). Numerous preprocessing tools are developed by 

spectroscopists over the years. In general, preprocessing techniques have several categories: 

normalization, derivation, smoothing, and corrections. Although researchers claim to use the 

same spectroscopic technique (e.g. FFFS), the sample preparation, instrumental setup, and 

ambient environment can create much variation in the raw spectra collected. Therefore, the 

fundamental goal of preprocessing is to unify spectra and minimize external effects to the 

spectral variation. There is no “golden rule” of using the best preprocessing technique, rather a 

trial-and-error approach is recommended by many researchers (Coronel-Reyes et al., 2018). In 

FFFS studies, preprocessing techniques have not been applied as widely as they are in infrared 

spectroscopies (IR). One possible reason for it may be that FFFS collects spectral information 

from the fluorophores, which yields more specific spectral pattern than IR.  
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After preprocessing, the spectra datasets are partitioned into calibration and validation 

sets. Though there is no hard rule on the partitioning proportion, a common practice is to 

randomly select 70-80% of the samples in the calibration set and leave 20-30% in the validation 

set. The calibration set is used to develop and tune the predictive models, and the validation set is 

a group of unknown samples intended to test the robustness of the developed model (Wold et al., 

2001). Multiple models can be developed using the calibration set, and model performance is 

evaluated by its error to the reference data via cross validations (CV). CV are internal tests to the 

model, and the results from CV should be validated externally to ensure its robustness (Geladi, 

2002). The evaluation metrics such as root mean square error of cross validation (RMSECV) and 

accuracy are used to tune the model parameters. For example, RMSECV often determines the 

number of latent variables for partial least square regression (PLSR). The optimal number of 

hidden layers can be chosen from the highest classification accuracy generated by artificial 

neutral network (ANN) classifiers. Some studies did not include the validation step in the model 

development and designed the experiments as a “proof-of-concept”. However, it is less likely to 

observe recent publications without the validation step in the field of rapid method development.  

Additionally, to further improve the model performance, variable selections are applied 

to the preprocessed spectra. The aim of variable selection is to determine a subset of the variable 

(wavelength) which can minimize the prediction error compared to the model developed with the 

full spectra (Mehmood et al., 2012). For example, to develop PLSR models, several novel 

approaches of variable selections have been published including backward elimination, genetic 

algorithm, interval PLSR, and elastic net regression (Wang et al., 2018). While variable selection 

have been less commonly found in FFFS studies, Teófilo et al. (2009) demonstrated that ranking 

variables using regression vector, correlation vector, and variable influence on projection can 
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enhance PLSR model performance of a sample fluorescence dataset. Similar approaches have 

been found to determine butter adulteration using the successive projection algorithm 

(Dankowska et al., 2014). In this study, even though the author did not find prediction 

improvement using variable selection, the selection algorithm identified the most contributing 

variables, which revealed the determining emission wavelengths for confirming the butter 

adulteration. Therefore, variable selection techniques can also identify the most informative 

wavelength from the dataset and connect statistical models to the chemical founding principles in 

foods.  

 Predictive FFFS studies 

In the validation step, established models with tuned parameters and selected variables 

are evaluated with unknown samples. Table 2-3 provided some recent publications of FFFS 

prediction studies with external validations. The quantifications and classifications focused on 

authentication and quality parameters, and a common objective for all these studies is to provide 

rapid analysis for the food industry.   

Quantifying adulterants and quality parameters in foods has been a focus of recent 

predictive FFFS publications. Maintaining good reproducibility of FFFS-based method is a 

challenge as the chemometric models are prone to overfitting in the calibration step (Wold et al., 

2001). Therefore, good validation steps ensure functional measurement and spectral processing 

that can be generalized. Tan et al. (2017) developed an authentication FFFS-based method 

including quantifying the percentage of refined frying oil in pure vegetable oil using PLSR 

model. The prediction error was evaluated first using RMSECV during the calibration step, and 

the validation step yielded a similar RMSEP to RMSECV. The authors then concluded the 

method’s validity as a rapid authentication tool for vegetable oil. In a pure statistical sense, 
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RMSEP should be the best way of accessing prediction error (Fearn, 2002). Sometimes, 

secondary parameters are derived based on the RMSEP to enhance understanding of the error 

with the specific dataset. These parameters include coefficient of determination (R2), residual 

prediction deviation (RPD), sensitivity, and specificity. Tan et al. (2017) used R2 to facilitate 

audience’s understanding of the model performance as more people are familiar with R2 than 

RMSEP. An almost identical approach was taken by Markechová et al. (2014) to authenticate 

brandy. The R2 included in both studies was above 0.85, indicating useful model predictions in 

food analysis. However, as some researchers have pointed out, R2 describes linearity between the 

predicted and reference values in a model, which does not necessarily equal to error. Also, R2 is 

sensitive to range of the validation set, making it difficult to judge prediction performance of 

sample sets with low standard deviations (Twomey, 2006).  

Oto et al. (2013) developed a FFFS-based method to quantify ATP content and plate 

count on pork meat surface. The quality parameters prediction is another popular approach of 

using FFFS spectra for prediction purposes. The study measured several fluorophores on pork 

meat surface. Even though the spectra were not directly correlated to the measured compound, 

the FFFS spectra made responses based on the different ATP content and plate count in the 

calibration sample set. The study applied three different linear regression methods to predict the 

two quality parameters. The models yielded similar results and were externally validated for their 

reproducibility. Babu and Amamacharla (2018) conducted a study using a similar approach for 

MPC’s solubility. Even though solubility is an empirical measurement of powder quality, it is 

still determined by fundamental dairy chemistry which involves changes in protein and Maillard 

browning reactions. The authors then made FFFS measurement to capture the changes in 

powders and developed a prediction model based on PLSR. The study included a secondary 
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evaluation parameter called RPD, which was first mentioned by Williams and Norris (2001). 

This parameter is the ratio between the standard deviation of the validation set and the RMSEP, 

which describes the overall model prediction power.  

FFFS-based methods can also provide classifications in foods and beverages. FFFS 

spectra were used to develop classification models for sherry vinegar and Argentine white wines 

(Callejón et al., 2012; Azcarate et al., 2015). For classification studies, accuracy is the primary 

evaluation parameter for the models, and accuracy (correct classified percentage) for the 

validation set provides confirmation of the model’s robustness. In addition, specificity and 

sensitivities can be used to understand the portion of false positives and true negatives in the 

model. There are many classification models that have been used in food science studies. They 

include partial least square discriminant analysis (PLS-DA), support vector machine (SVM), Soft 

independent modelling of class analogies (SIMCA), and linear discriminant analysis (LDA). 

Overall, FFFS combined with chemometrics has shown to be an effective tool for rapid 

food analysis. In this thesis, two applications of FFFS were proposed to measure casein in fluid 

milk and detect protein leak in UF permeate stream. Chapter 3 introduces the specific objectives 

of this thesis. A preliminary study in chapter 4 developed and validated a FFFS-based casein 

quantification method in raw milk. Chapter 5 extended the preliminary method and developed a 

method to measure both casein and casein-to-crude-protein ratio using FFFS and chemometrics. 

In chapter 6, FFFS and chemometrics were applied to understand protein leak during UF 

processing and developed predictive models to determine true protein content in UF permeate 

and identify the source of protein leak.
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Table 2-3 Examples of recent FFFS prediction studies in food science involving external validation 

PLSR = partial least square regression, MLR = multiple linear regression, PCR = principal component regression, PLS-DA = partial 

least square discriminant analysis, SVM = support vector machine, SPA-LDA = successive projection algorithm – linear discriminant 

analysis, RMSECV = root mean square error of crossvalidation, RMSEP = root mean square error of prediction, R2 = coefficient of 

determination, RPD = residual prediction deviation.  

 

 

 

 

 

 

 

 

Product Vegetable oil Brandy Pork meat 
Milk protein 

concentrate 
Sherry vinegar 

Argentine 

white wines 

Objective 

Quantification 

of refined 

frying oil as an 

adulterant in 

vegetable oil 

Quantification 

of mixed wine 

spirit in brandy 

as an adulterant 

ATP content 

and plate count 

quantifications 

Quantification 

of solubility 

Classification 

based on sherry 

vinegar 

categories 

Classification 

based on grape 

varieties 

Model PLSR PLSR 
PLSR, MLR, 

PCR 
PLSR PLS-DA, SVM 

SIMCA, PLS-

DA, SPA-LDA 

Model 

evaluation 

parameters 

RMSECV, 

RMSEP, R2 

RMSECV, 

RMSEP, R2 

RMSECV, 

RMSEP 

RMSECV, 

RMSEP, RPD, 

R2 

Accuracy, 

sensitivity, 

specificity 

Accuracy, 

sensitivity, 

specificity 

Reference 
(Tan et al., 

2017) 

(Markechová et 

al., 2014) 

(Oto et al., 

2013) 

(Babu and 

Amamcharla, 

2018) 

(Callejón et al., 

2012) 

(Azcarate et 

al., 2015) 
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Chapter 3 - Research objectives 

This thesis focused on developing front-face fluorescence spectroscopy (FFFS)-based 

methods to quantify casein in fluid milk and detect protein leaks in permeate during 

ultrafiltration (UF). The specific objectives of the study are  

• To develop and validate a quantification method for casein in raw milk using FFFS 

and principal component regression. 

• To develop and validate a quantification method for casein content and casein to total 

protein ratio in fluid milk using FFFS and feature selections. 

• To apply FFFS to identify the fluorophore of interest associated with protein leak, 

detect the presence of proteinaceous matters in UF permeates, and establish predictive 

models for protein leak in permeate streams. 
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Chapter 4 - Development and validation of a front-face fluorescence 

spectroscopy-based method to determine casein in raw milk1 

 Abstract 

The objective of this study was to develop and validate a front-face fluorescence 

spectroscopy (FFFS)-based method for measuring casein in raw milk. Calibration samples (ncal = 

20) with different casein contents (0.36 - 3.7%) were prepared by mixing ultrafiltered retentate 

(2x concentrate) and permeate at different ratios. A principal component regression model was 

developed using the calibration fluorescence spectra, showing a useful prediction power based 

on a residual prediction deviation of 3.1. The calibration model was independently validated 

using 20 raw milk samples. The FFFS-based method showed a root mean square error of 

prediction of 0.15% and 6.7% relative prediction error. A larger sample size should be included 

in the future to further validate the method and potentially implement it for routine measurement 

of casein levels in raw milk. 

 Introduction 

Spectroscopic methods combined with chemometrics have been used to provide rapid 

analysis of chemical, physical, and functional properties of dairy foods and dairy processes. Prior 

to cheese-making, manufacturers often standardize casein-to-fat ratio in cheese milk to optimize 

the production yield (Guinee et al., 2006). The standard casein measurements from Association 

of Analytical Chemists (AOAC) involve using hazardous reagents and require trained operators. 

Currently, milk casein quantification methods have been developed based on Fourier transform 

mid-infrared spectroscopy (FT-MIR) (McDermott et al., 2016) and near-infrared spectroscopy 

                                                 

1 Published in International Dairy Journal (93): 81-84 
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(NIR) (Barbano and Dellavalle, 1987). The NIR method was based on the indirect measurement 

of casein by taking the difference between total protein and serum phase protein. The study of 

McDermott et al. (2016) applied partial least square regression (PLSR) to FT-MIR spectra 

collected for raw milk to predict casein content, as measured by a high-performance liquid 

chromatography (HPLC)-based method. 

Milk contains several intrinsic fluorophores that are suitable for fluorometric analysis. Front-

face fluorescence spectroscopy (FFFS) has shown the potential to directly measure turbid 

samples for classification and quantification of dairy food composition. Tryptophan, as a 

compound of interest, is commonly used for method development, as its emission spectra can be 

well-correlated with protein content, acid coagulation, and heat treatment in milk (Andersen and 

Mortensen, 2008; Birlouez-Aragon et al., 1998). However, FFFS has not been utilized as a tool 

to measure casein in raw milk but may provide an alternative casein quantification method for 

the cheese industry. The objective of this study was to develop and validate a quantification 

method for casein in raw milk using FFFS and principal component regression.  

 Materials and methods 

Sample preparation for calibration set  

Two batches of commingled raw milk were procured from the Kansas State University 

Dairy Cattle Teaching and Research Unit (Manhattan, KS, USA) on two different random days. 

The raw skim milk was produced using a bench-top cream separator (Motor Sich-100, Ukraine). 

For each batch, ultrafiltration of raw skim milk was carried out at 25ºC using a bench-top plate 

and frame system (SmartFlow Technologies, Apex, NC, USA) equipped with a 10-KDa cut-off 

polyethersulfone membrane (Hannifin Corp., Oxnard, CA, USA). Approximately, 2x retentate 

was produced at a constant transmembrane pressure of 207 KPa. Subsequently, the retentate and 
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permeate were combined to make 10 calibration samples with different casein levels. In total, 20 

calibration samples were prepared with a uniform distribution of casein content ranging from 

0.36 to 3.7% (w/w) and whey protein-to-casein ratio ranging from 0.22 to 0.27.   

Reference measurement of casein 

 Total nitrogen and non-protein nitrogen of retentate and permeate were analyzed using 

AOAC (2016) standard methods (990.20 and 990.21, respectively). Due to the high protein 

content in the retentate, the non-casein nitrogen was measured using the method described in 

Zhang and Metzger (2011). Casein content was obtained from the difference between total 

nitrogen and non-casein nitrogen multiplied by 6.38.  

FFFS measurement of casein 

Sample preparation prior to acquisition of fluorescence spectra involved a patent-pending 

precipitation of caseins. Preliminary experiments have revealed spectral difference between 

casein-precipitated (pH = 4.6) raw milk and raw milk at natural pH (data not shown).  Prior to 

FFFS, 7 mL of calibration sample was taken in a 10-mL test tube and mixed with 0.6 mL of 10 

% acetic acid (Certified ACS, Fisher Scientific, Hampton, NH, USA) to ensure a pH of 4.6 ± 

0.05. The mixture was vortexed for 15 s and transferred immediately into a Quartz cuvette 

(Starna Cells Inc., Atascadero, CA, USA), ensuring no phase separation. Tryptophan emission 

spectra were immediately acquired using a spectrofluorimeter fitted with a 1% attenuator (LS-55; 

Perkin Elmer, Waltham, MA, USA) at an excitation wavelength 280 nm and an emission scan 

from 300 to 440 nm. Triplicate measurements on freshly precipitated milk samples were 

performed at 25ºC and averaged to improve signal-to-noise ratio.  
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Construction of a calibration model 

Pre-processing tools such as normalization and derivation are commonly used to reduce 

drift noise and reveal spectral overlays prior to the model development. In this study, the first 

derivative of the tryptophan emission spectra was obtained using the Savitzky-Golay algorithm 

with 9-point neighbor values (Savitzky and Golay, 1964). No light-scattering effect was 

observed from preliminary experiments, so the scattering subtraction was not conducted as part 

of preprocessing. Supervised prediction models were developed from the first derivative spectra 

using principal component regression (PCR) and evaluated with leave-one-out cross-validation. 

The model performance was evaluated in terms of root mean square error of cross-validation 

(RMSECV; Equation 1). Residual prediction deviation (RPD) was calculated from RMSECV 

divided by the sample standard deviation and used as a parameter to estimate the model 

prediction power. Statistical model building and evaluation were conducted using RStudio 

(version 1.1.442; RStudio, Boston, MA) with the Caret package (Kuhn, 2008).  

Independent validation of the model 

To validate the PCR-based calibration model, raw milk samples were randomly collected 

from 20 individual cows (nval = 20) from the same dairy farm, and casein content was measured 

by the reference method as described above. Subsequently, tryptophan FFFS spectra were also 

collected from the validation samples as described above and preprocessed following the same 

procedure used for calibration samples.  The accuracy of the FFFS-based method was evaluated 

in terms of the mean bias and root mean square error of prediction (RMSEP; Equation 1).  

𝑅𝑀𝑆𝐸𝐶𝑉 𝑜𝑟 𝑅𝑀𝑆𝐸𝑃 =  √
∑ (𝑦𝑗− ŷ𝑗)2𝑛

𝑗=1

𝑛
                              (1) 

Where y is the predicted value from cross-validation or independent validation of the jth sample, 

𝑦̂ is the reference value of the jth sample, and n is sample size.  
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Relative prediction error (RPE) was also calculated dividing the RMSEP by the average casein 

content obtained from the reference method (Amamcharla and Panigrahi, 2010). The range error 

ratio (RER) was calculated by dividing the range of reference casein content by the RMSEP. 

Graphical representation was prepared by plotting the difference and the averaged casein content 

measured by the reference and FFFS-based methods. This difference plot approach allowed the 

comparison of bias and error between the two methods and determine outliers from the 

measurements (Twomey, 2006).  

 Results and discussion 

Tryptophan fluorescence spectra of casein in calibration samples 

Figure 4-1A shows representative tryptophan fluorescence spectra of low (0.36%) and 

high (3.7%) casein samples from the calibration set. The remaining calibration samples also 

produced similar tryptophan spectra ranged between the low and high-casein samples (data not 

shown). The tryptophan emission maximum was observed at 338.5 ± 1 nm for all the samples. 

Shaikh & O’Donnell (2017) reviewed tryptophan fluorescence in milk and reported emission 

maxima around 340 nm with excitation of 290 nm. Figure 4-1B shows the first derivative spectra 

of low and high-casein samples from the calibration set. More spectral variations were observed 

around emission wavelengths of 313 and 363 nm. The derivation also smoothed the spectra and 

unified the fluorescence intensity scale and was subsequently used for calibration model 

development.  
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Figure 4-1 A: Representative front-face tryptophan fluorescence spectra (excitation = 280 nm) 

of low (dashed line) and high-casein (solid line) calibration samples; B: first derivative of spectra 

in Fig. 1A. AU = arbitrary unit. 

Calibration model development 

Figure 4-2 shows the scatter plot between the casein content obtained from the FFFS-

based method and the reference method. For the reference method, the duplicated casein 

measurements showed an average coefficient of variations of 3.5%, providing reliable model 

reference for the calibration. The optimum number of principal components (npc = 2) was chosen 

based on the lowest RMSECV (= 0.35) of the calibration model. The coefficient of determination 

(R2) was found to be 0.89 and the slope for the predicted vs reference casein values was 0.91, 

showing an increasing negative bias towards the high-casein samples. The calibration samples 

were evenly distributed with equal sample size for different casein content. This approach was 

used to minimize the “Dunne effect” which leads the overestimation of the lower range and 

underestimation of the higher range in calibrations (Williams and Norris, 2001). The intercept of 

the scatter plot was 0.18, indicating that the it may result in more measuring error for low-casein 

samples. The difference in casein precipitations between the high and low casein samples may 

lead to spectral variation during measurement and account for the measuring errors. The 
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prediction power of the model was evaluated by RPD, and, according to Williams and Norris 

(2001), an RPD of 3.1 for the model indicates a useful prediction.  

 

Figure 4-2 Principal component regression calibration model: reference versus predicted casein 

content (%). Number of principal components was 2, coefficient of determination was 0.89, 

slope is 0.91, intercept is 0.18, root mean square error of crossvalidation is 0.35, residual 

prediction deviation is 3.1. 

Independent validation  

According to the difference plot shown in Figure 4-3, 19 out of 20 validation samples fall 

within the 95% confidence interval, with only 1 sample falling beyond the lower confidence 

interval. This sample had a reference casein value of 2.34% (w/w) and predicted value of 2.01% 

(w/w). Due to the small cow-to-cow variation in the casein content among validation samples, R2 

may not fully evaluate the model performance (Altman and Bland, 1983). In this study, the mean 

casein content bias between the reference and FFFS-based methods was 0.01%, indicating a 

slight underestimation of the FFFS-based method. The RMSEP was 0.15% and the 

corresponding RPE of the FFFS-based method was 6.7%.   

McDermott et al. (2016) conducted FT-MIR measurement of casein in milk, and the 

external validation of the casein prediction resulted in an RPE of 13% using HPLC-based 
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reference values. Hewavitharana and Brakel (1997) developed a FT-IR method for casein in raw 

milk using PLSR and PCR and results showed an RPE between 2.3 to 4.3%. In general, an RPE 

less than 5% is desirable for accurate analysis, so the FFFS-based method can still be improved 

to fulfill the accuracy requirement. For the present study, the RER of the validation was 8.4. 

According to Williams and Norris (2001), RER describes the practicality of such models, and a 

value above 4.0 is acceptable for sample screening purposes. Therefore, the FFFS-based method 

developed in this study still has practical use to serve the dairy industry.  

Figure 4-3 Difference plot showing the bias between reference and predicted casein contents 

(nval = 20) against the mean casein content (%). The black bars indicate the 95% confidence 

intervals. Mean bias: 0.01%, root mean square error of prediction: 0.15%, relative prediction 

error: 6.7%, range error ratio: 8.4. 

 Conclusions  

This study validated a FFFS-based method to quantify casein in raw milk. Tryptophan 

front-face fluorescence spectra of casein suspension obtained from acidifying raw milk to pH 4.6 

was used to develop a calibration model. The model showed practical prediction power and an 

independent validation confirmed the industry feasibility. For future studies, the FFFS-based 

method should be validated with a larger sample size including more sources of variation such as 
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season, feeding, and cow breed. The method will be further adapted to a portable fluorescence 

device and potentially implemented for routine measurement of casein in raw milk.  
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Chapter 5 - Quantification of casein and casein-to-crude-protein 

ratio in fluid milk by front-face fluorescence spectroscopy combined 

with chemometrics2 

 Abstract 

Casein in fluid milk determines cheese yield and impacts cheese quality. Traditional 

methods of measuring casein in milk involves lengthy sample preparations with labor-intensive 

nitrogen-based protein quantifications. Previous studies have applied front-face fluorescence 

spectroscopy (FFFS) combined with chemometrics to measure physical, chemical, and function 

properties of dairy foods. The objective of this study was to quantify casein and casein-to-crude-

protein ratio (CN/CP) in fluid milk using FFFS and chemometrics. Calibration samples were 

constructed by mixing of microfiltration and ultrafiltration retentate and permeate in different 

ratio to obtain different concentrations of casein and CN/CP ratio. Partial least squares regression 

(PLSR) and elastic net regression models were developed for casein and CN/CP prediction in 

fluid milk using FFFS tryptophan emission spectra and reference casein contents. A set of 20 

validation samples including raw, skim, and UF milk was used to optimize and validate the 

model performance. Another independent set of 20 test samples including raw, skim, and UF 

milk samples were externally tested in terms of root mean square error of prediction (RMSEP), 

residual prediction deviation (RPD), and relative prediction error (RPE). The RMSEP for casein 

content quantification in raw, skim, and UF milk ranged from 0.12 to 0.13% with RPD ranged 

                                                 

2 Submitted for publication: Food and Bioprocess Technology 
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from 3.2 to 3.4, indicating a practical model performance for quality control purposes. For 

CN/CP quantification, PLSR developed useful prediction model with RMSEP of 0.024, RPD of 

1.5, and RPE of 3.0. This FFFS-based method can be implemented to a routine quality control 

tool in the dairy industry, providing rapid quantifications of casein content and CN/CP in fluid 

milk intended for cheese manufacturing.   

 Introduction 

Improving cheese yield is a constant pursuit among cheese manufacturers. Dairy food 

scientists have identified multiple factors that can influence cheese yield. Milk compositions, 

namely the amount of casein and fat, have been highlighted in multiple studies as indicators that 

determine cheese yield (Barbano and Sherbon, 1984; Emmons and Modler, 2010). Several 

cheese yield determinants included curd firmness, syneresis rate, and moisture retention. These 

qualities of the cheese curd have been partially linked back to the casein content in the cheese 

milk (Cipolat-Gotet, 2013). Standardization of cheese milk therefore became a common practice 

in cheese manufacturing. By adjusting the casein-to-fat ratio, the standardized milk can 

maximize cheese yield without losing excessive fat and casein into whey (Lucey and Kelly, 

1994). Moreover, with the advancement in membrane processing technologies, cheese can be 

produced from ultrafiltered (UF) and microfiltered (MF) milk. UF and MF milk contains more 

casein than regular cheese milk which can increase the cheese yield and improve vat utilizations 

(Kumar et al., 2013).  

 The current standard method of casein measurement involves isoelectrically precipitating 

casein at pH of 4.6 in milk and separating casein from the non-casein fraction by filtration. 

According to the AOAC standard method (990.20 and 990.21). Casein content can either be 

directly measured on the isolated casein solids or indirectly calculated as the difference between 
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total protein and non-casein proteins by using a Kjeldahl-based method. This Kjeldahl-based 

method resulted in good repeatability and reproducibility, serving as the industry standard 

method for casein quantification since 1938 (Rowland, 1938; Lynch et al., 1998). However, this 

quantification process is laborious, time-consuming, and uses multiple hazardous chemical 

reagents. Dairy food researchers have proposed two general alternative approaches to measure 

casein based on separation techniques and infrared spectroscopies. High performance liquid 

chromatography separations based on reverse phase, gel permeation, and size exclusion have 

been developed to fractionate β-casein, κ-casein, αs1-casein, and αs2-casein (Dimenna and 

Segall, 1981; van der Ven et al., 2001; Bonfatti et al., 2008). Similarly, capillary electrophoresis-

based method was developed to quantify whey protein and casein in milk (Recio and Olieman, 

1996). While the primary goal of these methods was for protein separation, quantification of 

casein can also be achieved by using appropriate standards. Infrared spectroscopic methods of 

casein quantification have been developed with the help of multivariate statistical models. One 

early attempt of near infrared (NIR) measurement of casein was based on the indirect approach 

by taking the difference between total protein and serum phase protein measured by NIR-based 

protein measurement (Barbano and Dellavalle, 1987). With the advancement of Fourier-

transform infrared spectroscopy (FTIR), Hewavitharana and van Brakel (1997) and Luginbuhl 

(2002) both developed and validated casein quantification with FTIR and multivariate statistical 

models. Foss Electric has also implemented calibration options for measuring casein in fluid 

milk using its FTIR model “MilkoScan FT 120” (Foss Electric, 1997). These spectroscopic 

methods aimed to reduce labor investment and analysis time for casein quantification in fluid 

milk.  
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 There are multiple intrinsic fluorophores in milk which are suitable for fluorescence 

spectroscopic analysis. Front-face fluorescence spectroscopy (FFFS) is known for its sensitivity 

and ability to analyze turbid samples. Tryptophan, a commonly studied fluorophore in milk, can 

measure milk coagulation, degrees of heat treatment, and dairy powder solubility during storage 

(Herbert et al., 1999; Kulmyrzaev et al, 2005; Babu and Amamcharla, 2018). Herbert et al. 

(1999) studied tryptophan emission spectra and characterize acid coagulation process in milk. 

The study indicated that in acidic conditions, casein in milk yielded fluorescence spectral 

difference compared to milk with native pH. Ma et al. (2019) measured precipitated casein 

tryptophan fluorescence in raw milk and established multivariate calibration models to quantify 

casein. This study extends the previous study aiming to measure casein content and casein-to-

crude-protein ratio (CN/CP) in raw, skim, and ultrafiltrated (UF) milk using FFFS and 

chemometrics.                                

 Materials and methods 

Experimental approach 

Calibration samples were constructed by mixing permeates and retentates obtained from 

UF and MF of pasteurized skim milk in different ratios to obtain different concentrations of 

casein and CN/CP ratio. Multivariate calibration models were developed using tryptophan 

emission spectra and reference values for casein content and CN/CP based on the Kjeldahl 

method. Validation and test samples from raw, skim, and UF milk optimized and tested the final 

model performance for casein content and CN/CP measurements. Detailed methods are 

described in the following sections.  
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Calibration, validation, and test sample  

UF retentate and permeate (about 5X concentrated) made from one lot of pasteurized 

skim milk were donated by a commercial milk protein concentrate manufacturer in the United 

States. MF retentate and permeate (about 3X concentrated) from one lot of pasteurized skim milk 

were donated by the Southeast Dairy Foods Research Center (Raleigh, NC). Both UF and MF 

milk fractions arrived under refrigerated conditions and were analyzed for casein content based 

on the Kjeldahl method (AOAC 990.20 and 990.21).  

After measuring the casein content in UF and MF permeate and retentate, the UF and MF 

retentates were diluted with various amount of UF and MF permeates to vary casein content and 

CN/CP in calibration samples. Consequently, 30 calibration samples (ncal = 30) were prepared 

with casein contents ranged from 1.21 to 4.45% and CN/CP ranged from 0.66 to 0.88 and used 

for calibration model development (Table 5-1). 

 For validation and test samples, 10 pasteurized skim milk and 10 UF milk with different 

production days were purchased from local supermarkets. Additional 20 raw milk samples from 

individual cows were randomly collected from Kansas State University Dairy Cattle Teaching 

and Research Unit (Manhattan, KS). The validation and test samples (nval/test = 40) were stored at 

5 °C until further analysis.  

Table 5-1 Mean (range) protein fractions of calibration samples (n = 30), ultrafiltered milk (n = 

10), pasteurized skim milk (n = 10), and raw milk (n = 20) 

 
Calibration 

samples 

Validation and test samples 

 Raw milk 
Pasteurized 

Skim milk 

Ultrafiltered 

milk 

Crude protein (%) 
3.29  

(1.82 – 5.17) 

2.91  

(2.57 – 3.34) 

3.16  

(2.75 – 3.42) 

3.77  

(3.54 – 3.93) 

Casein (%) 
2.57  

(1.21 – 4.45) 

2.25  

(1.88 – 2.66) 

2.37  

(2.03 – 2.64) 

3.17  

(2.90 – 3.34) 

Non-protein 

nitrogen (% 

protein-equivalent) 

0.14  

(0.10 – 0.26) 

0.12  

(0.09 – 0.14) 

0.12 

 (0.10 – 0.14) 

0.17  

(0.14 – 0.20) 
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Casein-to-crude-

protein ratio 

0.77  

(0.66 – 0.88) 

0.77  

(0.73 – 0.80) 

0.76  

(0.70 – 0.79) 

0.84  

(0.82 – 0.86) 

 

 Reference measurement of casein and calibration sample preparation 

Crude protein (CP) and non-protein nitrogen (NPN) of UF and MF retentate, permeate, 

and validation and test milk samples were analyzed by AOAC (2016) standard methods (990.20 

and 990.21, respectively). Due to the high protein content in the MF and UF retentate, the non-

casein nitrogen (NCN) was measured according to Zhang and Metzger (2011). Casein content 

was obtained from the difference between CP and NCN and multiplied by 6.38. CN/CP ratio was 

calculated using the casein content divided by the crude protein to represent the proportion of 

casein in relationship to total protein of the milk sample.  

Tryptophan fluorescence collection for calibration and validation samples 

Based on preliminary studies, completely precipitating casein at pH of 4.6 yielded 

distinctive spectra compared to the rest of the pH-adjusted and native samples. The FFFS 

spectral collection was achieved according to Ma et al. (2019). Prior to FFFS measurement, 7 

mL of sample was taken in a 10-mL test tube and mixed with 0.6 mL of 10 % acetic acid (Fisher 

Scientific, Hampton, NH) to ensure a pH of 4.60 ± 0.05. The mixture was vortexed for 15 s and 

transferred immediately into a Quartz cuvette (Starna Cells Inc., Atascadero, CA, USA) ensuring 

no phase separation. Tryptophan emission spectra were immediately acquired using a 

spectrofluorimeter fitted with a 1% attenuator (LS-55; Perkin Elmer, Waltham, MA, USA) at an 

excitation wavelength 280 nm and an emission scan from 300 to 440 nm with a scan speed of 

300 nm/min. Triplicate measurements on freshly precipitated calibration samples were 

performed at 25ºC and averaged improve signal-to-noise ratio. In total, tryptophan fluorescence 

spectra were collected on 30 calibration and 40 validation and test samples for the chemometric 

model development.  
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Chemometric model development, optimization, and validation 

Developing chemometric models involves optimization and test of the finalized models 

(Bevilacqua et al., 2017). A detailed model development approach followed in this study can be 

found in Figure 5-1. Calibration models were developed using FFFS tryptophan spectra and 

reference casein content and CN/CP of calibration samples (ncal = 30). The validation and test 

samples (nval/test = 40) were randomly partitioned into a validation set (nval = 20) and a test set 

(ntest = 20). A summary of the casein content and CN/CP of the validation and test sets can be 

found in Table 5-1. The validation set was used to validate and optimize the preliminary models, 

while the test set was used to evaluate the optimized model performance for casein content and 

CN/CP quantifications. The quantification results from the test set provide estimation of the 

future performance of the developed model on new data.  
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Figure 5-1 Chemometric model development overview with casein (range) and casein-to-crude-

protein ratio (CN/CP; range). SG = Savitzky-Golay; Ncal = number of calibration samples, Nval 

= number of validation samples, Ntest = number of test samples; PLSR = Partial least square 

regression; ENR = Elastic net regression; RMSE = Root mean square error, RPD = Residual 

prediction deviation; RPE = Relative prediction error. 

Spectral preprocessing and construction of calibration models   

Preprocessing tools such as normalization, derivation, and smoothing are commonly used 

to reduce drift noise and reveal spectral overlays prior to the model development (Brown et al. 

2000). In this study, raw fluorescence spectra were transformed using the Savitzky-Golay 

smoothing (SG-S) and first derivative (SG-1st) algorithms with 9-point neighbor values to 

reduce the spectral noise from directly measuring turbid milk samples and reveal additional 

spectral information (Savitzky and Golay, 1964).  
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Supervised prediction models were developed using partial least square regression 

(PLSR) and elastic net regression (ENR). In chemometrics, PLSR is a popular method for 

relating two data matrices using a linear multivariate model capable of handling large number 

variables with noise and collinearity (Wold et al., 2001). ENR is a type of panelized linear 

regression with the capability to eliminate and shrink variable contributions in multivariate 

models (Chen et al., 2014). Chemometric researchers have applied both PLSR and ENR to 

model spectral data for their ability to handle large number of predictors (Filzmoser et al. 2012). 

The model input consisted either the smoothed or first derivative of the tryptophan emission 

spectra, and casein content and CN/CP were predicted independently using the preprocessed 

spectra. In this study, up to 15 latent variables were considered in the initial model development 

of PLSR and considered as the model optimization parameter. For ENR, elastic net parameter 

(alpha) and regularization parameter (lambda) were considered as optimization parameters. In 

this study, an increment of 0.1 was used for alpha optimization using leave-one-out 

crossvalidation to find the best performing lambda. A total of 10 models from ENR was 

produced from the calibration step and they were later optimized by the validation set for the 

optimal alpha value.   

Model optimizations 

The established calibration models were optimized by predicting the validation set. 

Model performance was evaluated in terms of root mean square error of validation (RMSEV; 

Equation 1) and coefficient of determination (R2) between the reference and predicted values. 

Optimization parameters for PLSR (number of latent variables) and ENR (alpha, and lambda 

values) were selected based on the lowest RMSEV. The R2 evaluated the linearity of the model 

prediction to the reference values, and calibration transfer based on linear models was used to 
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correct the estimated bias from the preliminary PLSR or ENR predictions. The optimal 

parameters of PLSR and ENR were recorded and used for the final test set predictions. 

Model performance evaluation 

The model evaluation was achieved by predicting the test set with the finalized PLSR and 

ENR models. The final model performance was evaluated by the root mean square error of 

prediction (RMSEP), showing the difference between predicted values and the reference values.  

Residual prediction deviation (RPD) was calculated from RMSEP divided by the standard 

deviation of reference values and used as a parameter to estimate model’s prediction power. 

Relative prediction error (RPE) were calculated dividing the average reference values by the 

RMSEP to evaluate the relative error of the prediction to the reference method. Spectral 

preprocessing, statistical model building and evaluation were conducted using an in-house 

program developed in RStudio (version 1.1.442; RStudio, Boston, MA) with the Caret, pls, and 

glmnet packages (Kuhn, 2008; Friedman et al., 2010; Mevik and Wehrens, 2007).  

  Results and discussion 

 Reference Casein and CN/CP Measurements 

In general, average casein content in milk is reported between 2.6 to 2.8 % (Walstra and 

Jenness, 1984; Fox and McSweeney, 1998). However, the reported average casein content in 

milk can be impacted by season, diet, and genetic variations of dairy cows (Lin et al., 2017). Lin 

et al. reported the casein content in comingled pasteurized skim milk from Holstein Friesian over 

one year and found that casein content could range from 2.61 to 3.02%. Chen et al. (2014) 

monitored comingled raw milk casein content ranged from 2.08 to 2.52 % for one year. With the 

recent popularity of high-protein beverages, UF milk as a consumer product has entered the 

market. According to a high-protein milk application developed by Ur-Rehman et al. (2017), 
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casein in UF and delactosed milk can range from 2 to 8% during production, and for the finished 

product, CP content can range from 4.9% to 5.2%. Even though casein content was not specified 

for the finished product, the casein content was assumed to be less than the reported total protein 

content. Table 5-1 summarized the protein fractions of UF milk obtained from this study. For the 

10 commercial UF milk samples obtained, the casein content ranged from 2.90 to 3.34% with CP 

ranged from 3.54 to 3.93%. For the commercial pasteurized skim milk samples, the casein 

content ranged from 2.03 to 2.64% with CP ranged from 2.75 to 3.42%. Casein content for raw 

milk samples in this study had a range from 1.88 to 2.66% with CP ranged from 2.57 to 3.39%. 

The casein content variation observed from this study suggested that the calibration range for 

measuring casein need to cover the casein range for raw, skim, and UF milk. In Table 5-1, the 

casein content of the calibration samples ranged from 1.21 to 4.45%, providing a sufficient 

calibration range for measuring casein in raw, skim, and UF milk.  

The casein content variation in milk can also cause CN/CP variations. Lin et al (2017). 

reported the CN/CP for pasteurized skim milk from Holstein Friesian cows ranged from 0.75 to 

0.81 during the one-year observation. According to Schaar et al. (1985), genetic variants affected 

κ-casein and β-lactoglobulin synthesis during lactation which led to variations in casein number 

(CN/CP x 100) and cheese compositions (Lundén et al., 1997). The CN/CP variation was 

observed in this study. The CN/CP variation in UF milk ranged from 0.82 to 0.86, pasteurized 

skim milk ranged from 0.71 to 0.79, and raw milk ranged from 0.73 to 0.80 (Table 1). The 

variation in milk samples requires a set of calibration samples that covers the target CN/CP 

range. Table 5-1 showed that the calibration sample range was obtained by mixing various 

amount of UF and MF retentate and permeate, which produced CN/CP ranged from 0.66 to 0.88.  
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Tryptophan Fluorescence Emission Spectra of Calibration Samples 

Tryptophan fluorescence emission spectra of acid-precipitated calibration samples were 

collected using FFFS. The emission maxima (λmax) of the calibration samples (ncal = 30) 

ranged from 338 to 341 nm. According to Andersen and Mortensen (2008), emission maxima 

around 340 nm confirms the fluorophore to be tryptophan. The calibration set varied in casein 

contents and CN/CP (Table 1) and led to tryptophan emission intensity differences. Figure 5-2A 

shows the casein content in sample I (1.6%) is less than sample II (2.1%). The NCN level 

between samples I and II was also different showing 0.9% and 0.4%, respectively. The CP level 

for samples I and II end up being very similar at 2.5%. In Figure 5-2B, the tryptophan emission 

spectra of samples I and II appeared to have large fluorescence emission intensity difference with 

an emission maximal (λmax) increase of 23.3%. On the other hand, a similar amount of casein 

present in samples II and III (2.1%), but their CP contents were different because the NCN of 

sample III is higher than sample II (1.3% and 0.4%, respectively). The emission spectra of 

samples II and III appeared to be similar with 2.3% change in λmax. Samples III and IV had 

similar amount of CP (3.4%) but different casein content (2.1 and 2.7%, respectively). The 

difference in casein content is again highlighted in the change of emission spectra shown in 

Figure 5-2B. The emission spectral difference among samples I, II, III, and IV illustrated that the 

tryptophan emission spectra of the acid-precipitated casein are more sensitive to casein content 

as oppose to CP content.   
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Figure 5-2 A: protein fractions (casein and non-casein nitrogen) of 3 representative calibration 

samples (I, II, III, and IV). B: tryptophan emission spectra of the corresponding samples. 

At pH of 4.6, casein reaches its isoelectric point and aggregates in the milk dispersion 

system while the serum phase remains as a transparent liquid. The tryptophan-containing casein 

aggregates can absorb excitation light (280nm) and emit fluorescence at 300 to 400 nm (Herbert 

et al., 1999). In the meantime, the casein aggregates have surface protuberances, which could 

randomly scatter the excitation light (McMahon et al., 2009). The scattered excitation light may 

be again absorbed and emit more fluorescence by the casein aggregates. In the serum phase, 

tryptophan-containing whey proteins, peptides, and free amino acids will also absorb the 

excitation light and emit fluorescence (Birlouez-Aragon et al., 2002). However, due to the low 

optical density of the serum phase, less scattering effects could occurr. With the scattering of 

casein aggregate, tryptophan fluorescence observed in Figure 5-2 may reflect the change in 

casein content more than the change of crude protein content in a given milk system at pH of 4.6. 

Calibration model development and optimization 

PLSR and ENR models were constructed using the acid-precipitated casein tryptophan 

emission spectra as inputs. Since the calibration samples were lab-constructed, a validation set 
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was necessary to ensure the model’s validity on real milk samples. For PLSR model validation 

and optimization, the number of latent variables determined the model performance in terms of 

RMSEV and R2 (Wold, 2001).  

Model optimization for PLSR 

A typical latent variable selection process is shown in Figure 5-3A for PLSR prediction 

of casein content using the SG-S preprocessing technique. The RMSEV (0.66%) showed 

minimal value with 2 latent variables, meaning the lowest prediction error for casein content. 

The R2 (0.90) also had the highest value with 2 latent variables in the model, so the PLSR model 

with 2 latent variables was selected for the final prediction model. However, it is observed that 

the RMSEV from the validation was high, resulting in an RPE of 26.3%. The prediction of the 

validation set was visualized in Figure 5-3B, and both proportional and constant errors were 

observed with a slope of 0.46 and intercept of 1.14. Considering the high R2 obtained from the 

validation, a linear model was applied to correct the estimation bias in the validation set. This 

approach of linear model correction is known as calibration transfer. These calibration transfer 

methods are more commonly seen in near infrared (NIR) spectroscopy model development to 

account for instrument signal drifts (Bouveresse et al., 1999; Liu et al., 2016). Less common is 

the calibration transfer method used on the same instrument. However, in this study, the 

calibration samples were lab-constructed samples. Although generated from milk, the calibration 

samples may yield different fluorescence intensity due to possible variations in total solids and 

mineral contents. The validation set was able to capture the high estimation bias and correct it as 

part of the model development process. The rest of PLSR models was optimized using the same 

approach and corrected with estimation bias using linear regression.  
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Figure 5-3 A: example of parameter optimization for partial least square regression (PLSR) for 

latent variable selections using the validation set. The solid line represents the change in root 

mean square error of validation (RMSEV) and the dotted line represents the represents the 

change in coefficient of determination (R2). B: reference vs predicted casein (%) of the 

validation set using PLSR. The solid line represents the least-square fit of the scatter plot and the 

dot line presents ideal prediction target (x = y).  

Model optimization for ENR 

To optimize the ENR model optimization, the optimal alpha was selected using the 

lowest RMSEV generated from the validation set. In Figure 5-4A, a representative elastic net 

parameter selection process is shown for the casein content prediction using SG-S as the 

preprocessing step. The lowest RMSEV observed was 0.64% when alpha equals to 0.9. When 

alpha equals 0.1, R2 reached the highest value of 0.9. When different alpha values were observed 

for the optimal RMSEV and R2, the RMSEV was chosen as the evaluating criterium because it 

judges the true prediction power of the model (Geladi, 2002). Therefore, an alpha value of 0.9 

was chosen to optimize the ENR model. Similar to the PLSR models, linear model correction 

was used to adjust the biased estimation plotted in Figure 5-4B for ENR predictions.   
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Figure 5-4 A: example of parameter optimization for elastic net regression (ENR)for elastic net 

parameter selections using the validation set. The solid line represents the change in root mean 

square error of validation (RMSEV) and the dotted line represents the change in coefficient of 

determination (R2). B: reference vs predicted casein (%) of the validation set using ENR. The 

solid line represents the least-square fit of the scatter plot and the dot line presents ideal 

prediction target (x = y). 

Optimized casein content prediction models 

Table 5-2 shows the optimized PLSR and ENR calibration models for casein and CN/CP 

quantifications with the corresponding optimization factors. For the casein content predictions, 

different preprocessing and regression techniques yielded similar prediction powers. PLSR and 

ENR showed similar model performance when predicting casein, which agreed with other 

studies when compared PLSR with ENR (Giglio and Brown, 2018). Unlike NIR spectral 

measurement which are prone to uninformative wavelength intensities, FFFS measures specific 

fluorophores in food matrix. Even though ENR can conduct variable selection due to specific 

tryptophan emission spectra, it did not improve the model performance compare to PLSR. 

According to Williams and Norris (2001), a R2 above 0.95 indicates a reliable model prediction 

power in food analysis. The low RMSEV for the casein predictions also indicated that the model 
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carries potential as a rapid casein quantification method. The optimized models need to be tested 

externally with unknown samples prior to estimate their final model performance.  

Table 5-2 Optimized PLSR and ENR calibration model performance of casein and casein-to-

crude-protein ratio (CN/CP) quantification 

  PLSR ENR 

 Preprocessing R2 
RMSEV 

(%) 
Nlv R2 

RMSEV 

（%） 
Alpha Lambda 

Casein (%) 
SG-S 0.95 0.18 2 0.96 0.18 0.90 0.088 

SG-1st 0.97 0.14 2 0.97 0.17 0.30 0.33 

CN/CP 
SG-S 0.93 0.019 2 0.61 0.045 0 4.52 

SG-1st 0.93 0.018 2 0.97 0.013 0.5 0.64 

SG-S = Savitzky-Golay smoothing; SG-1st = Savitzky-Golay 1st derivative; R2 = Coefficient of 

determinations; RMSEV = Root mean square error of validation; Nlv = number of latent 

variables. 

 

Optimized CN/CP prediction models 

For CN/CP prediction, PLSR models yielded R2 of 0.93 with both SG-S and SG-1st 

preprocessing techniques. The model optimizations have confirmed the validity of the calibration 

and optimization step, but the models need to be externally tested again to confirm its true 

prediction power. PLSR models are prone to overfittings, meaning that the model may perform 

well during the calibration and optimization step but fail to predict unknown samples (Wold et 

al., 2001). In the ENR predictions for CN/CP, model established with SG-S preprocessing failed 

the prediction with R2 of 0.61. The RMSEV of this model was 0.045. Connecting to the 

previously reported CN/CP variation from 0.75 to 0.81 in pasteurized skim milk, the error range 

(± 0.045) from this model exceeded the natural variation of CN/CP in pasteurized skim milk. 

Therefore, the estimation would not have any practical use. However, with preprocessing of SG-

1st, the ENR model performed well on CN/CP prediction with RMSEV of 0.013 and R2 of 0.97, 

showing potential to predict unknown sample’s CN/CP.  
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External testing of casein and CN/CP quantifications 

Casein content prediction models 

The externally tested model performance for casein and CN/CP quantification in UF, 

skim, and raw milk testing samples (Table5-3). For casein predictions, PLSR and ENR yielded 

similar test results with RMSEP ranged from 0.12 to 0.13% and R2 of 0.91. To further analyze 

the casein quantification error, the RPD of the models ranged from 3.2 to 3.4. According to 

Willams and Norris (2001), RPD greater than 3 shows very good prediction power for food 

analysis purposes. The RPE (ranged from 4.9 to 5.1%) illustrate the relative error of the 

predictions in context of the average casein content (2.51%) of the test set, showing that the 

model estimated casein content is within 4.9 to 5.1% of the reference method. The test 

predictions were plotted in Figure 5-5, and the slope of least-square fit between the reference 

versus prediction is not significantly different from slope of 1, showing no prediction bias in 

casein content estimations (P < 0.05). 

Hewavitharana (1997) first reported a Fourier-transform infrared (FTIR)-based method 

for casein quantification on raw milk samples. The method was developed using multivariate 

statistical models and validated with a set of 20 raw milk samples. The measurement range of the 

method was from 2.71 to 3.62% casein in raw milk, and the error of the method was reported 

from 0.08 to 0.1%. A follow-up study was done by Luginbühl (2002) using standard milk 

samples with casein range from 1.8 to 4.5%. The increased ranged also decreased the 

measurement error to 0.046-0.08 %. It appeared that the increase of casein calibration range and 

high sample homogeneity resulted in accuracy improvement in FTIR-based measurements of 

casein. A mid infrared (MIR)-based method was published by McDermott et al. (2016) aiming 

for milk casein and free amino acid quantifications. The method was designed to capture casein 
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content variation from different genetic breeds. Though the range of the casein measurement was 

not reported, the error from the study was 0.48%, almost 10 times higher than the FTIR method. 

Though varied on individual sample predictions, the overall FFFS-based prediction results from 

PLSR and ENR are comparable to the existing literature. Test samples from UF, skim, and raw 

milk improved the robustness of the method measuring casein contents from various source of 

casein.   

 

 

Figure 5-5 A: test model of reference versus predicted casein (%) using Savitzky-Golay 

smoothed (SG-S) spectra and partial least square regression (PLSR):, and B: test model of 

reference versus predicted casein (%) using SG-S spectra and elastic net regression (ENR), C: 

test model of reference versus predicted casein (%) using Savitzky-Golay first derivative (SG-

1st) spectra and PLSR, and D: test model of reference versus predicted casein (%) using SG-1st 

and ENR. The solid line represents the least-square fit of the scatter plot and the dot line presents 

ideal prediction target (x = y).  



65 

 

CN/CP prediction models 

In Table 5-3, the CN/CP test results showed similar RMSEP ranged from 0.024 to 0.027. 

The RMSEP are found to be higher than those yielded from the optimized models (0.013-0.019). 

The increase in prediction error showed that the optimized model suffered from overfitting, and 

the model failed to predict CN/CP in unknown milk samples (Geladi, 2002). Considering the 

obtained RMSEP and RPD, the model did not have any practical use in food analysis because the 

RPD equals to or less than 1.5. Even though the RPE of the model predictions was less than 5% 

from the reference values, considering the natural variation of the CN/CP (0.75-0.81) in 

pasteurized skim milk, the prediction values will result in large variations for CN/CP 

estimations. In Figure 5-6, reference versus predicted CN/CP was plotted for PLSR and ENR 

models. The scatters found from 0.72 to 0.80 showed that the prediction cannot yield accurate 

predictions for CN/CP. Therefore, with the current prediction model, it is still challenging to 

estimate CN/CP in UF, skim, and raw milk samples.   

Table 5-3 Final PLSR and ENR test model performance of casein and casein-to-crude-protein 

ratio (CN/CP) quantification 

  PLSR ENR 

 Preprocessing R2 
RMSEP 

(%) 
RPD 

RPE 

（%） 
R2 

RMSEP 

(%) 
RPD 

RPE 

（%） 

Casein 

(%) 

SG-S 0.91 0.12 3.4 4.9 0.91 0.13 3.3 5.0 

SG-1st 0.91 0.13 3.2 5.1 0.91 0.13 3.3 5.0 

CN/CP 
SG-S 0.60 0.024 1.5 3.0 0.56 0.026 1.4 3.3 

SG-1st 0.58 0.024 1.5 3.1 0.50 0.029 1.2 3.8 

SG-S = Savitzky-Golay smoothing; SG-1st = Savitzky-Golay 1st derivative; R2 = Coefficient of 

determinations; RMSEP = Root mean square error of prediction; RPD = Residual prediction 

deviation; RPE = Relative prediction error.  



66 

 

 

 

Figure 5-6 A: test model of reference versus predicted casein-to-crude-protein ratio (CN/CP) 

using Savitzky-Golay smoothed (SG-S) spectra and partial least square regression (PLSR):, and 

B: test model of reference versus predicted CN/CP using SG-S spectra and spectra and elastic net 

regression (ENR), C: test model of reference versus predicted CN/CP using Savitzky-Golay first 

derivative (SG-1st) spectra and PLSR, and D: test model of reference versus predicted CN/CP 

using SG-1st and ENR. The solid line represents the least-square fit of the scatter plot and the dot 

line presents ideal prediction target (x = y).  

 Conclusions  

 Natural variation in casein and CN/CP can impact cheese yield and quality. In this study, 

a FFFS-based method to measure casein and CN/CP in raw, skim, and UF milk was developed 

and validated. Using PLSR and ENR with external validations, the prediction models quantified 

casein in raw, skim, and UF milk with a RMSEP of 0.12%, an RPD of 3.4, and an RPE of 4.9% 

compared to the reference method. The FFFS-based method provides practical prediction power 
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to serve the dairy industry as a rapid tool to measure casein content in fluid milk. The CN/CP 

quantification showed to have an RMSEP of 0.024, an RPD of 1.5, and an RPE of 3%. Though 

with less prediction power, the CN/CP prediction can provide preliminary indications of CN/CP 

variation in fluid milk. The FFFS-based method combined with chemometrics can be potentially 

adapted to portable fluorescence devices and implemented to dairy farms and processing plants.   
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Chapter 6 - Front-face fluorescence spectroscopy combined with 

chemometrics to detect proteinaceous matter in dairy ultrafiltration 

permeate3 

 Abstract 

Protein leak into permeate stream can occur during ultrafiltration (UF) of milk and whey 

and can result in financial losses. While manufacturers can measure protein content in the 

finished permeate powders, there is no rapid monitoring tool during UF to identify protein leak. 

This study applied front-face fluorescence spectroscopy (FFFS) and chemometrics to identify the 

fluorophore of interest associated with the protein leak, develop predictive models to quantify 

true protein content, and classify the source of protein leak in permeate streams. Crude protein 

(CP), non-protein nitrogen, true protein (TP), tryptone-equivalent peptide, α-lactalbumin (α-LA), 

and β-lactoglobulin (β-LG) contents were measured for 33 lots of whey permeate and 29 lots of 

milk permeate from commercial manufacturers. A bimodal distribution of true-protein-to-crude-

protein ratio was observed from the density plot, revealing protein leak occurrence in some whey 

and milk permeate. Whey permeate contained more tryptone-equivalent peptide than milk 

permeate, while α-LA and β-LG were only detected in 59% milk permeate. The source of protein 

leak was therefore identified and labeled for predictive model development. Representative 

permeate with high and low TP contents were analyzed using excitation-emission matrix (EEM) 

and tryptophan was identified as the fluorophore of interest for protein leak detection. 

Tryptophan excitation spectra were collected for predictive model development using partial 

                                                 

3 Submitted for publication: Journal of Dairy Science 
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least square regression to quantify the true protein content in the permeate. With external 

validations, a useful model for quality control purposes was developed with a root mean square 

error of prediction of 0.22% (dry-basis) and a residual prediction deviation of 2.8. Moreover, 

classification models were developed using partial least square discriminant analysis, and the 

classification methods can detect high TP level, high tryptone-equivalent peptide level, and 

presence of α‐LA or β-LG with 83.3%, 84.8%, and 98.5% cross-validated accuracy, respectively. 

This method showed that FFFS and chemometrics can rapidly detect protein leak and identify the 

source of protein leak in UF permeate. Implementation of this method in UF processing plants 

can reduce financial loss from protein leak and maintain high-quality permeate production.  

 Introduction 

Ultrafiltration (UF) is commonly used to fractionate proteins from skim milk and cheese 

whey, resulting in protein-rich retentate and lactose-rich permeate. The protein-rich retentate is 

further processed into milk protein concentrate/isolate and whey protein concentrate/isolate in 

powder forms. The lactose-rich permeate of milk or whey is then processed into milk permeate 

powder (MPP) or deproteinized whey (DPW) powder, respectively. Since diafiltration is often 

performed during UF, the resulting permeate is diluted with various amounts of water and 

consequently the permeate composition can vary largely among different manufacturers. 

Therefore, the composition of permeates is normally reported on a dry basis after the liquid 

permeate is concentrated, crystalized, and spray dried. According to the American Dairy 

Products Institute (ADPI), permeate powder contains at least 76% lactose and at most 7% crude 

protein (CP), among other components. The CP may include non-protein nitrogen (NPN) and 

some fractions of proteinaceous matter such as peptides and proteins from milk or whey (Walstra 

et al., 2006).    
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A fraction of proteinaceous matter can pass through the membrane into the permeate 

during UF. Because protein is the most profitable component in the UF processing, leaking of 

protein into the permeate results in financial losses. In addition, the presence of protein in 

permeate powder can accelerate loss of quality during storage (Sithole et al., 2005). However, 

detection of CP in the permeate powders only occurs after processing several batches at 

industrial scale resulting in a considerable lag time between the occurrence of protein leak and 

corrective action needed to prevent any protein leak. Currently, there are limited at-line or on-

line technologies to monitor the quality of the permeate stream and detect abnormal levels of 

proteinaceous matter during UF. Therefore, an accurate and rapid method is needed to detect the 

protein leak during UF.  

Front-face fluorescence spectroscopy (FFFS) is known for its high sensitivity and ability 

to analyze turbid samples. Milk contains intrinsic fluorescence compounds such as tryptophan, 

nicotinamide adenine dinucleotide (NADH), vitamin A, and Maillard browning products which 

are identified as fluorophores of interest to characterize dairy products (Shaikh and O’Donnell, 

2017). Multivariate statistical analyses were used to extract quantitative, qualitative, or structural 

information from fluorescence spectra (Karoui et al., 2011). FFFS has been used for protein 

detection in dairy products. Kulmyrzaev et al (2005) has used FFFS to characterize thermal 

effects on different milk proteins during pasteurization. To expand the applications of FFFS, 

supervised chemometric models can provide quantification and classification of non-fat dry milk, 

milk protein concentrate, and crude synthesis (Liu and Metzger, 2007; Babu and Amamcharla, 

2018; Fagan et al., 2011).  

Moreover, fluorescence spectroscopy can detect conformational differences in proteins 

(Vivian and Callis, 2001). The band shape, maximum intensity, and the fluorescence lifetime are 
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sensitive to polypeptide structures and chemical environment (Royer, 2006). In some instances, 

UF membrane failure can lead to irreversible changes to the membrane porous size, which can 

lead to full protein (α-LA and β-LG) leak through the membrane. UF feeds (skim milk and 

whey) are also prone to proteolysis coming from enzyme residue and microbial growth, leading 

to various sizes of protein hydrolysate. The protein hydrolysates are small in molecular size 

which allows them to pass through properly functioned UF membranes. FFFS spectra may 

provide information on the source of protein leak in permeate from either full protein or peptides 

due to its specificity to protein conformations.   

The objectives of this study were to identify the fluorophore of interest associated with 

the protein leak and develop predictive models to quantify true protein content and classify the 

source of protein leak in permeate streams. 

 Materials and methods 

Experimental approach 

Milk and whey permeate powders were randomly collected from 2 commercial 

manufacturers (37 lots of DPW and 29 lots of MPP) and were analyzed for crude protein (CP), 

non-protein nitrogen (NPN), and true protein (TP). Based on the true-protein-to-crude protein 

ratio (TP/CP), permeates were classified as either high or low-TP permeate. In addition, 

tryptone-equivalent peptides, α‐LA, and β-LG were also carried out to further understand the TP 

fraction of the permeates and were used to identify the source of protein leak. Non-target FFFS 

analysis of permeates discovered the available fluorophores and identified the fluorophore of 

interest in representative high and low TP permeates. Chemometric models were developed 

based on the permeate classes and FFFS spectra of the target fluorophore. Detail experimental 

procedures are included in the following sections.  
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 Permeate samples 

Milk and whey permeate powders were randomly collected from 2 commercial 

manufacturers (37 lots of DPW and 29 lots of MPP). The permeate powder was reconstituted to 

5% solution (w/w) at 25°C for 1 hour. The 5% concentration was selected to simulate the 

permeate stream coming from the UF process and were used for all subsequent analyses unless 

specifically notified. Solutions made from MPP were referred as milk permeate and solutions 

made from DPW were referred as whey permeate. Collectively, permeates were used to indicate 

both milk and whey permeates.  

True-protein-to-crude-protein ratio (TP/CP ratio) 

CP and NPN of the permeates were analyzed by the Kjeldahl nitrogen method (AOAC 

Methods 991.20 and 991.21) in duplicates with a nitrogen conversion factor of 6.38. TP was 

calculated as the difference between CP and NPN. TP/CP as calculated using the TP divided by 

the CP. The proportion of the TP in CP determines the protein leak in permeates. A density plot 

of TP/CP was produced to identify protein leak occurrence and classify permeates as high- and 

low-true-protein (HTP and LTP), respectively.  

True protein fraction characterizations 

Tryptone-equivalent peptide quantification 

Tryptone-equivalent peptide content in permeates was quantified by a fluorescence-based 

method developed by Udenfriend et al. (1972) with some modifications. In a microplate, 150 µL 

permeates and 50 µL fluorescamine (Sigma Aldrich, St. Louis, USA) reagent solution (10.8 mM 

in acetone) were added to each well. The microplate was shaken for 1 min in dark prior to the 

fluorescence measurement using a spectrofluorometer (BioTek, Winooski, USA) with a 355 nm 

excitation filter and 460 emission filter at 25°C. Tryptone-equivalent peptide content was 
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quantified using a series of tryptone standards (Sigma Aldrich, St. Louis, USA) in duplicates and 

expressed as tryptone equivalent.  

α‐LA and β-LG analysis 

α‐LA and β-LG were quantified using an HPLC-based method developed by Bonfatti et 

al. (2008) with modifications. Briefly, permeate powders were dissolved in 6 M Guanidine 

hydrochloride (5% w/w) at 25°C for 1 hour. The solution was filtered through a membrane filter 

(Millipore Millex®-FH, Polyethylene, 0.22µm pore size) and 8 μL of the filtered sample was 

injected into a HPLC system equipped with a diode-array detector (DAD; HP 1050 series, Palo 

Alto, CA)). Separation was achieved by using a silica-based packing C8 column (Zorbax 300SB-

C8 RP, 3.5 μm, 300 Å, 150 × 4.6 I.D., Agilent Technologies) and a pre-column (Widepore C4 4 

mm × 3.0 mm, Phenomenex). A gradient elution was performed using two solvents. Solvent A 

consisted of 0.1% trifluoroacetic acid (TFA) in water and solvent B was 0.1% TFA in 

acetonitrile. Total analysis time was 45 min beginning with a linear gradient from 33 to 35% B in 

5 min, from 35 to 37% B in 4 min, from 37 to 40% B in 9 min, from 40 to 41% B in 4 min, 

followed by an isocratic elution at 41% B during 5.5 min, then linear gradient from 41 to 43% B 

in 0.5 min, from 43 to 45% B in 8 min, and return linearly to the starting condition in 1 min. The 

column was re-equilibrated under the starting conditions for 8 min prior to the next injection. 

The analysis was done at a flow rate of 0.5 ml/min and 45 °C. The detection was made at 214 nm 

using the DAD detector.  

Pure whey protein standards (> 99%) of α‐LA and β-LG were purchased from Sigma–

Aldrich (St. Louis, MO, USA). Standard solutions were prepared in 6 M Guanidine 

hydrochloride using the same procedure described above, and α‐LA and β-LG quantifications of 

permeate were achieved using the external standard curves.  
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Front-face fluorescence spectroscopy analysis 

Excitation-emission-matrix of permeate  

Non-targeted FFFS analysis of representative HTP and LTP whey and milk permeates 

was achieved using the excitation-emission matrix (EEM). To collect the EEM, 7 mL of 

permeates was transferred into a quartz cuvette (Starna Cells Inc., Atascadero, CA). The front-

face EEM was acquired at 25°C by recording the emission (λEm) spectra from 300 to 500 nm 

(with 0.5 nm interval) corresponding excitation wavelengths (λEx) ranging from 220 to 360 nm 

(with 10 nm interval) using a spectrofluorometer (LS-55; Perkin Elmer, Waltham, MA). The 

emission and excitation slit width were set at 4 nm and scan speed was set at 100 nm/min.  

Excitation spectra of tryptophan 

After preliminary examination of the EEM, tryptophan was selected as the fluorophore of 

interest. Tryptophan front-face excitation spectra (λEm at 340 nm; λEx 200-300 nm) were 

collected using the spectrofluorometer at 25°C. The emission and excitation slit width was set at 

5 nm and the scan speed was set at 300 nm/min. For each sample, triplicate analysis was carried 

out and the scans were averaged to improve signal-to-noise ratio. 

Spectral preprocessing and principal component analysis 

The tryptophan fluorescence excitation spectra were normalized by the standard normal 

variate (SNV) technique prior to chemometric analysis. This normalization process unified 

fluorescence intensity scale and minimize bias for the subsequent chemometric analysis (Li et 

al., 2015). Principal component analysis (PCA) was applied to reduce the dimensionality and 

redundancy in the dataset, and the PCA similarity plots were generated to provide visualization 

of permeate sample clustering.  
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Partial least square regression and discriminative analysis  

Partial least squares regression (PLSR) is a supervised chemometric algorithm which has 

been widely used to model spectral data (Diez et al., 2008). PLSR extracts latent variables from 

the spectral data and maximize their covariance to the reference values. In this study, TP content 

was predicted using PLSR with SNV-normalized tryptophan excitation spectra as input. The 

original permeate dataset was partitioned randomly to a calibration set (ncal = 47) and a 

validation set (nval = 19). The calibration models were developed and validated using the leave-

one-out cross validation (LOOCV). The cross-validated model was evaluated by root mean 

square error of cross-validation (RMSECV) as shown in Equation 1. Residual prediction 

deviation (RPD) was calculated by dividing the RMSECV by the standard deviation of the 

reference dataset to estimate model prediction power (Williams and Norris, 2001). The 

calibration model was also externally tested by predicting the validation set. Root mean square 

error of prediction (RMSEP) and RPD of the prediction confirmed the model validity on unseen 

samples, which can estimate the future model applicability of TP quantification (Wold et al. 

2001).  

𝑅𝑀𝑆𝐸𝐶𝑉/𝑃 =  √
∑ (𝑦𝑗− ŷ𝑗)2𝑛

𝑗=1

𝑛
                              [1] 

Where y is the predicted value from cross validation (CV) or prediction (P) of the jth sample, y is 

the reference value of the jth sample, n is sample size.  

Classification models using partial least squares discriminative analysis (PLS-DA) were 

developed to identify the source of protein leak. PLS-DA is a supervised classification method 

based on linear discriminant models (Lenhardt et al., 2015). The reference variables in PLS-DA 

are dummy variables indicating whether 1 sample belongs to a certain class. In this study, the 

reference classes used for PLS-DA included TP levels, tryptone-equivalent peptide levels, and α‐
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LA or β-LG presence/absence. Using the same predictor as PLSR, the classification models were 

cross-validated using LOOCV. Accuracy, sensitivity, and specificity were used to evaluate 

model performance.  

Statistical analysis 

Unpaired t-test was used to compare means of CP, TP, and tryptone-equivalent peptide 

between milk and whey permeates. T-tests, chemometric visualization and modelling were 

performed using RStudio (version 1.1.442; RStudio, Boston, MA) with the Caret and pls 

packages (Kuhn, 2008; Mevik and Wehrens, 2007) 

RESULTS AND DISCUSSION 

Proteinaceous matter characterization 

Proteinaceous fractions of permeate powders 

Even though UF has been a common practice in dairy food processing, protein analysis 

of permeate powders has not been widely reported. As shown in Figure 6-1A, the average NPN 

contents in whey and milk permeate were found to be 2.51 and 2.35% (expressed as protein-

equivalent on dry basis), respectively, with no significant difference (P > 0.05). Smith et al. 

(2016) reported the NPN in UF cheese permeate to be between 2.5 to 3.6% (dry basis) using the 

Kjeldahl-based method. The variation in NPN is related to the cheese making process, and low-

pH whey with more proteolysis can lead to increase of soluble nitrogen. Smith et al. (2016) also 

measured TP in the whey and milk permeates ranged from not detectable to 0.003 ± 0.003%, 

showing negligible TP presence in permeate powders. However, the pilot-scale permeate 

manufacturing process featured in that study was designed for research purposes. The minimal 

TP content can represent the ideal situation of the UF efficiency. Frankowski et al. (2014) 

collected spray-dried and liquid whey permeate from commercial manufacturers. Though some 
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permeates had no TP detected, the reported maximum TP found in that study was 0.88% (dry 

basis). In this study, whey and milk permeates showed a higher TP content for whey and milk 

permeates with averages (±SD) of 0.69 ± 0.48 and 1.17 ± 0.51 %, respectively (P < 0.05). The 

TP contents were higher than the previously reported values because the samples were collected 

from the commercial production runs. Due to the large variation in TP, CP in whey and milk 

permeate ranged from 2.51 to 3.40% and 2.72 to 3.58%, respectively, with no significant 

difference (P > 0.05). The variation in TP content from whey and milk permeates showed that 

protein leak may have occurred in some of the samples considered in the study.  

  

Figure 6-1 Protein fraction comparison between A: whey permeates and milk permeates, B: low-

true protein permeates and high-true protein permeates. *(P < 0.05). 

Relatively a large variation in TP indicated existence of subgroups among the permeates. 

The TP/CP ratio was calculated to highlight TP differences while minimizing the variation in CP 

and shown in Figure 6-1B. Figure 6-2 shows the TP/CP ratio density plot of the permeates as a 

bimodal distribution with 2 distinct groups. The mean of the TP/CP (μ = 0.25) was used as a cut-

off to classify permeates as low-true-protein permeate (LTP, where TP/CP < 0.25, n = 34) and 

high-true-protein permeate (HTP, where TP/CP > 0.25, n = 32). Figure 6-1B illustrated protein 
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fractions of LTP and HTP. The NPN fraction of LTP and HTP was similar to the prior 

comparison, but larger difference was observed in the TP fraction indicating the occurrence of 

protein leak in the HTP group. Among the LTP permeates, there is still some proteinaceous 

matter in the sample indicating presence of proteins or peptides. even though with a reduction of 

average TP content (0.46%).  

 

Figure 6-2 Density plot of true protein ratio (n =66). The dashed line represented the distribution 

of low-protein permeate (n = 34) and the solid line represented the distribution of the high-

protein permeate (n = 32). The vertical dot-line represented the mean of the overall true protein 

ratio (μ = 0.25).  

Tryptone-equivalent peptide analysis 

The average peptide content of permeates using tryptone as standard is shown in Figure 

6-3A. The fluorometric method utilized a primary amine reaction to attach a fluorescence dye 

and quantify peptides or proteins using the corresponding standard. Tryptone has been used as 

the standard measure peptide content and degree of protein hydrolysis in dairy foods (Minervini 

et al., 2003; Oh et al., 2013). Therefore, tryptone equivalence can be used as an effective 

measurement of peptide content in permeates. It should be noticed that the tryptone-equivalent 
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peptides quantified in permeates were less than 10 kDa since the samples have gone through UF. 

The leak of proteinaceous matter as tryptone-equivalent peptides (< 10 kDa) does not indicate 

membrane performance failures, but it may correspond to proteolysis prior to UF. Whey 

permeate showed an average tryptone-equivalent peptide content (±SD) of 0.37 ± 0.04% 

tryptone equivalent) and milk permeate showed an average tryptone-equivalent peptide content 

(±SD) of 0.32 ± 0.07% tryptone equivalent; P < 0.05). The higher tryptone-equivalent peptide 

content in whey permeate agreed with the proteolysis process from cheese making. Residual 

rennet and cheese culture are both proteolytic (Fox, 1989). Especially after whey draining, timely 

inactivation of rennet and bacteria are needed to minimize proteolysis occurrence. On the other 

hand, to produce milk permeate, skim milk is directly processed as the feed for UF, so less 

exposure of proteolytic enzymes or bacteria will occur in UF of milk.  

  

Figure 6-3 Tryptone-equivalent peptide comparison between A: whey permeates and milk 

permeates, B: low-peptide permeates and high-peptide permeates. 

Two subgroups with high- and low-tryptone-equivalent peptide contents in Figure 6-3B. 

The subgrouping was achieved by plotting tryptone-equivalent peptide content on a density plot. 

In Figure 6-4, the distribution of the tryptone-equivalent peptide content is shown, and high- and 
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low-tryptone-equivalent peptide permeates were classified base on the average dry-basis content 

of 0.35%. Subgrouping shows 25 out of 37 whey permeates were classified as high-tryptone-

equivalent peptide permeate, whereas only 5 milk permeates were in the high-peptide category. 

On the other hand, 24 out of 29 milk permeates was classified as low-peptide permeate, which 

agrees with the lesser proteolysis occurred. The high- and low-peptide permeate class allows 

supervised chemometric model development to predict the source of protein leak.  

 

Figure 6-4 Density plot of tryptone-equivalent peptide content (n =66). The dashed line 

represented the distribution of low-peptide permeate (n = 31) and the solid line represented the 

distribution of the high-peptide permeate (n = 35). The vertical dot-line represents the mean of 

the overall peptide content (μ = 0.35% tryptone equivalent).  

α‐LA and β-LG analysis 

HPLC analysis of α‐LA and β-LG revealed the full protein presence in the permeates. 

Overall, whey permeates had no detectable α‐LA or β-LG. In milk permeate, 25 and 17 lots 

contained detectable levels of α‐LA and β-LG, respectively. The detection limits of the method 

by Bonfatti et al. (2008) were 0.6 µg for both whey protein fractions. On a dry basis, in Figure 6-

5, more α‐LA (μ = 0.27%) was found in the milk permeate than β-LG (μ = 0.04%), and the 
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presence of full protein indicated another source of protein leak. The UF membrane contains a 

pore distribution with the average pore cutoff reported as 10 kDa; however, depending on the 

processing conditions such as transmembrane pressure, the membrane pore cutoff is altered and 

consequently some whey proteins can pass through. Based on Figure 6-5, more α‐LA (~14kDa) 

was detected in the permeate than β-LG (~18kDa), agreeing with the hypothesized pore cutoff 

expansion for smaller protein during UF. Considering the similar true protein content between 

whey and milk permeates, more TP fractions of whey permeates may come from peptide rather 

than full whey protein, in agreement with the tryptone-equivalent peptide data. Milk permeates 

contained full α‐LA and β-LG, which contributed to the true protein content shown in Figure 6-1. 

For chemometric predictions, the presence and absence of α‐LA or β-LG was used as a binary 

class for the permeate samples.  

The bimodal distribution of TP/CP, presence of peptides, α‐LA, and β-LG indicated that 

protein leak occurred in some permeates. The sources of protein leak can vary based on either 

whey or milk as the UF feed material. Subsequent FFFS analysis aimed to identify the 

fluorophore of interests associated with true protein presence in permeates. Chemometric 

analysis will further model spectral data to predict true protein contents and identify sources of 

protein leak. 
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Figure 6-5 whey protein fractions: α-LA (n = 25) and β-LG (n = 17) presence in permeate 

samples. 

Fluorescence spectra of HTP and LTP permeates 

Excitation-emission-matrix of permeate stream 

The EEM (Figure 6-6) characterizes representative HTP and LTP permeates of whey and 

milk in terms of differences and similarities in their fluorescence intensities at various excitation 

and emission wavelengths. There were 4 fluorescence maxima found on the EEM (Figure 6-6) of 

permeates corresponding to 3 fluorophores commonly found in permeates. In Figure 6-6A and B, 

riboflavin appeared in HTP and LTP whey permeates at fluorescence maxima λEx 270 nm and 

λEm 430 nm. Andersen and Mortensen (2008) summarized common fluorophores in dairy 

products and riboflavin was reported to have three maxima at λEx 270, 360, and 450 nm and  λEm 

430 nm. However, riboflavin showed similar peak intensity for both HTP and LTP whey 

permeate and consequently riboflavin was not selected as the fluorophore of interest for protein 

leak detection. Fluorescence intensities of the Maillard browning products are found in a range 

from λEx from 310 to 350 nm and λEm from 380 to 430 nm for whey permeate (Figures 6-6A and 
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6-6B). Fluorescence of Maillard browning products in dairy products have been widely reported 

to characterize heat treatments and storage changes in dairy foods. Kulmyrzaev et al. (2005) 

applied FFFS for heat-induced changes of protein concentration in pasteurized milk, and Babu 

and Amamcharla (2018) measured Maillard browning FFFS spectra to characterize storage-

induced solubility changes in milk protein concentrate. However, the fluorescence intensity from 

Maillard browning products can be influenced by other factors such as storage time and 

temperature exposure history of the permeate powders (Birlouez-Aragon et al., 2002). Therefore, 

Maillard browning products may not be suited as the fluorophore of interest for protein leak 

detection and were not considered for further chemometric analysis. A similar trend of riboflavin 

and Maillard browning products EEM appearance was also observed in Figures 6-6C and 6-6D 

for milk permeates.  

There are 2 regions in the permeate EEM corresponding to the tryptophan fluorescence 

and labeled as T1 and T2 in Figure 6-6A. The T1 with intensity maxima at λEx 280 nm and λEm 

340 nm is commonly measured in FFFS analysis of food products (Karoui and Blecker, 2011). 

This tryptophan region has been reported as indicators for classifying cheese origins and storage 

effects on non-fat dry milk (Liu and Metzger, 2007; Karoui et al., 2006). Region T2 (Figure 6-

6A) with maxima λEx 225 nm and λEm 340 nm has been reported as the tryptophan side chain 

fluorescence corresponding to tryptophan-containing peptides (Becker, 2005). Whey permeate 

(Figure 6-6B) and milk permeate (Figure 6-6D) indicated high fluorescence intensities in both 

T1 and T2 regions for the HTP permeates compared to the LTP permeates. The consistent 

intensity difference between HTP and LTP permeates indicated that tryptophan has potential as 

the fluorophore of interest for protein leak detection. To enrich the spectral information 
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collected, tryptophan excitation spectra can highlight both tryptophan peak intensities with one 

single scan.  

 

Figure 6-6 Excitation-emission matrices of A: high-true-protein whey permeate, B: low-true-

protein whey permeate, C: high-true-protein milk permeate, and D: low-true-protein milk 

permeate. Area T1: tryptophan fluorescence from protein, area T2: tryptophan fluorescence from 

peptides, area M: Maillard browning products, and area R: riboflavin. Arrows point the major 

intensity differences among the samples. 

Excitation Spectra of Tryptophan 

Tryptophan excitation spectra were collected based on the intensity maxima found from 

Figures 6A-D. Figure 6-7A shows representative baseline-corrected excitation spectra (λEm at 

340 nm) of LTP and HTP permeates characterizing the spectral variation in both tryptophan 

regions. The maximum fluorescence intensity was found at 227 nm and spectral variation 

occurred at 220-225 nm and 260-290 nm. The intensity maxima region from 260-290 nm 
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corresponds to tryptophan-containing proteins found in dairy products (Karoui and Blecker, 

2011). Backer (2005) reported that fluorescence maxima from 220-225 nm represented the 

tryptophan-containing amino acids and peptides. The 2 tryptophan regions agreed with the EEM 

and the tryptophan fluorescence spectra can characterize the protein leak in UF permeates. The 

spectral variation showed a similar trend (Figure 6-7B) with less variation observed in the high- 

and low-peptide permeates, corresponding to the tryptone-equivalent peptide difference 

characterized by FFFS (region T2). Therefore, chemometric analysis used tryptophan excitation 

spectra as inputs to classify HTP and LTP permeates, high- and low-peptide permeates, presence 

and absence of α‐LA or β-LG in permeates and quantifying true protein content in permeates.  

 

Figure 6-7 Representative tryptophan excitation fluorescence spectra of A: low-protein and 

high-protein permeate solution and B: low-peptide and high-peptide permeate. 

Chemometric analysis 

Principal component analysis 

Tryptophan excitation spectra were used to extract principal components. The first, 

second, and third principal components (PC1, PC2, and PC3) explained 95% of the spectral 

variation in the tryptophan excitation spectra. In Figure 6-8A, the similarity plot using PC1 and 

PC2 is shown to characterize TP changes among permeate samples. Based on the differences 
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highlighted from tryptophan peak intensities in Figure 6-7A, the TP difference among the 

permeates can be described by the arrow shown on Figure 6-8A. Variations in fluorescence 

intensity came from both protein and tryptone-equivalent peptide contents in the permeates as 

they contribute to TP content measured by the Kjeldahl method. PCA has shown robust 

dimension reduction from various studies based on tryptophan fluorescence spectra (Kulmyrzaev 

et al., 2005; Karoui et al., 2006). Data obtained from this study confirmed tryptophan 

fluorescence as a reliable source to quantify dairy proteins. The overall TP increase trend from 

PCA also indicated potential supervised regression prediction for the TP contents in permeates.  

According to Figure 6-6-8B, the low and high-peptide permeates classifications are used 

to label the similarity map. After preliminary visual comparison, PC1 and PC3 were used to best-

visualize the different types of permeate based on tryptone-equivalent peptide contents. From 

Figure 6-8B, it is observed that the high and low-peptide permeates are not well separated using 

PCA while some low-peptide permeates are found in the high-peptide cluster. Connecting to 

Figure 6-7B, the peptide fluorescence intensity differences are not reflected as largely as the TP 

difference due to the tryptophan-containing protein’s signal interference with the peptide. 

However, fluorescence spectra are sensitive enough to differentiate peptide and whey protein 

compositions from the permeate source. The clusters observed from the similarity plot indicated 

the feasibility of classification models to predict low or high-peptide permeate for unknown 

sources.  
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Figure 6-8 Principal component analysis similarity plot of A: high- and low-protein permeate 

the darker the shade indicates the increase of true protein content; B: high- and low-peptide 

permeate; C: presence or absence of full whey proteins (α-LA and β-LG) in permeate samples. 

In Figure 6-8C, PC1 and PC2 provided visualization of the presence and absence of α‐LA 

or β-LG among the permeate samples. Overall, PCA was able to distinguish the permeates with 

full protein from those that only contain fragments of protein or peptides. The fluorescence 

signal difference for full protein presence can be related to the quenching of tryptophan, and 

according to Chen and Barkley (1998), the side chain of the tryptophan can alter the fluorescence 

signal in proteins. In this study, fluorescence spectroscopy can distinguish the α‐LA or β-LG 
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corresponding side chains difference from the rest of the proteinaceous matters. The clear 

separation of the two groups also allows supervised classification for detection of α‐LA or β-LG 

presence in permeate samples.  

Partial least squares regression 

PLSR was used to predict TP content in permeate, and Figure 6-9 provides the 

visualization for the prediction accuracy with external validation. The calibration model was 

established using 6 latent variables, and the RMSECV of the model was 0.20% (Figure 6-9A). 

An RPD of 2.6 was found from the calibration model, and according to Williams and Norris 

(2001), an RPD above 2 provides some practical applications for quality control purposes. The 

external validation yielded a RMSEP of 0.22 and an RPD of 2.8, showing that the calibration 

model is robust to test new samples (Figure 6-9B). The model developed using tryptophan 

excitation spectra can provide rapid estimation to the UF membrane processing industry. 

Kulmyrzaev et al. (2005) quantified the specific fraction of milk protein using fluorescence and 

PLSR, but the predictions were only useful for alkaline phosphatase and β-LG. In the present 

study, true protein value measured by Kjeldahl method seeks for less specificity but more 

accuracy towards estimating the overall proteinaceous matter in the permeate samples.  

Partial least squares discriminative analysis  

Since quantification may not be necessary when monitoring protein leak during UF, 

classification methods provides simpler outcomes and easy-to-interpret results. In Table 6-1, the 

LTP and HTP permeate are predicted and cross validated using PLS-DA. The accuracy of the 

model was 83.3% with sensitivity of 0.75 and specificity of 0.90. The sensitivity showed the 

model’s ability to successfully distinguish true HTP among all samples, and the specificity 

indicates the probability to confirm true LTP samples. Since the specificity is greater than the 
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sensitivity, the classification error leads towards to predict false positives, meaning misclassified 

LTP to HTP samples (Ballabio and Consonni, 2013). Overall, the PLS-DA model provides 

useful prediction accuracy for quality control purposes. The flagged potential HTP products can 

be further tested with reference methods to confirm the protein leaks during UF.  

 

Figure 6-9 A: calibration model: reference true protein value vs. partial least square regression 

predictions of permeate samples. B: validation model: reference true protein value vs. partial 

least square regression predictions of permeate samples. The dashed line indicates the least-

square fit of the predictions. Nlv = number of latent variables, RMSECV/P = root mean square 

error of cross validation/prediction, RPD = ratio of prediction to deviation. 

To examine the specific leaked proteinaceous matters, Table 6-1 provides the predictions 

for tryptone-equivalent peptide contents and full whey protein presence. The accuracy for 

tryptone-equivalent peptide content classification (low vs. high) was 84.8% with a sensitivity of 

0.91 and specificity of 0.78. The tryptone-equivalent peptide content prediction can serve as an 

indicator to the quality of the UF feed, and possible proteolysis from bacteria and enzyme 

residuals may lead to the high peptide content in permeates. Unlike the TP prediction, the 

specificity of the model is lower than the sensitivity, meaning that the model error comes from 

falsely classifying high-peptide samples as low-peptide, resulting in type II errors (Ballabio and 
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Consonni, 2013). Connecting to the tryptone-equivalent peptide discussion, the reference method 

for measuring peptide can be improved in the future to fully characterize the presence of high 

peptide content in permeates. The present method can successfully recognize permeates with α‐

LA or β-LG presence with an accuracy of 98.5%, sensitivity of 1.0, and specific of 0.98. The 

results agreed with previous studies of fluorescence spectroscopy characterizing proteins in dairy 

foods (Babu and Amamcharla, 2018). The model is capable of monitoring full protein presence 

which can be an indicator to the membrane processing quality. This accurate method to measure 

full protein presence can help the manufacturers monitor the UF processing and control 

production quality.  

Table 6-1 Sensitivity, specificity, and classification error of partial least squares discriminant 

analysis models for true protein, peptide and full whey protein presence. 

Classification Class Sensitivity Specificity Accuracy (%) 

True Protein Low/High  0.75 0.90 83.3% 

Peptide  Low/High  0.91 0.78 84.8% 

Full whey 

protein 
Presence/Absence 1.00 0.98 98.5% 

  

 Conclusion 

In this study, protein leak in UF permeates of whey and milk was characterized by 

various proteinaceous matters (e.g. TP, NPN, tryptone-equivalent peptide, α‐LA, and β-LG). 

FFFS revealed available fluorophores in UF permeates and identified tryptophan as the 

fluorophore of interest for protein leak detection during UF. Chemometric analysis of the 

tryptophan excitation spectra classified permeates based on their TP, tryptone-equivalent peptide, 

and α‐LA or β-LG presence. The cross-validated prediction methods yielded useful 

quantification of TP in permeates, and the classification methods was able to detect high TP 
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level, high tryptone-equivalent peptide level, and presence of α‐LA or β-LG with 83.3%, 84.8%, 

and 98.5% accuracy, respectively. The FFFS-based method can be further adopted to at-line and 

on-line modules in processing plants and provide real-time monitoring of protein leak in UF 

permeates. 
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Chapter 7- Conclusions  

Front-face fluorescence spectroscopy (FFFS) and chemometrics offer rapid and sensitive 

analysis in dairy foods. Using intrinsic fluorophores such as tryptophan, chemical properties of 

dairy foods can be characterized based on the FFFS spectra. Chemometric modelling of the 

obtained spectra extracts useful information for quantification and classification of dairy foods in 

a predictive manner. Chapters 4 and 5 developed a FFFS-based casein quantification method that 

can serve the cheese and fluid milk industry. Based on external validations, this method showed 

that:  

• FFFS combined with chemometrics provides useful quantification of casein in raw, 

skim, and ultrafiltrated milk with a root mean square error ranged from 0.12 to 0.15% 

and relative error of 4.9 to 6.7% compared to the reference method. 

• FFFS combined with partial least squares regression (PLSR) can estimate the casein-

to-crude-protein ratio with a relative error of 3.0%.  

• The practical prediction power from the FFFS-based method suggested that it can be 

implement as a rapid measurement for routine casein quantification in the dairy 

industry. 

Chapter 6 applied FFFS and chemometrics to characterize protein leak during of skim 

milk and whey. Using both non-target and target FFFS approaches, this study concludes that: 

• Full whey proteins (α-LA and β-LG) and tryptone-equivalent peptides were present in 

commercial UF permeates.  

• Tryptophan was selected as the fluorophore of interest for protein leak detection in 

UF permeate.  
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• PLSR of the tryptophan excitation spectra quantified true protein content in liquid 

permeate stream with practical model performance for quality control purposes. 

• Partial least squares discriminant analysis (PLSDA) of the tryptophan excitation 

spectra identified the source of protein leak and detected high true protein content, 

high tryptone-equivalent peptide content, and presence of α‐LA or β-LG with 83.3%, 

84.8%, and 98.5% cross-validated accuracies.   
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Appendix A - R code for chapter 4 

#packages needed# 

install.packages("caret") 

install.packages("pls") 

install.packages("clusterSim") 

install.packages("prospectr") 

 

 

library(caret) 

library(pls) 

library(clusterSim) 

library(prospectr) 

 

 

#data loading and explorotory analysis# 

rawmilk<-read.csv(file="....csv", header= T) 

View(rawmilk) 

dim(rawmilk) 

#Emission maxima# 

max<-vector(length = 20) 

for (i in 1:20){ 

 max[i]<-max(rawmilk[i,4:281]) 

} 

print(max) 

 cols<-character(length = 20) 

for (j in max){ 

  cols[1:20]<-which(rawmilk == j, arr.ind = T) 

} 

cols 

max[1] 

which(rawmilk == 235.69, arr.ind = T) 

 

#Spectra normalization and find derivatives# 

rawmilk.std<-data.Normalization(rawmilk[,-

c(1:5,203:282)],type="n0",normalization = "row") 

 

# p = polynomial order w = window size (must be odd) m = m-th derivative 

(0 

# = smoothing) The function accepts vectors, data.frames or matrices. For 

a 

# matrix input, observations should be arranged row-wise 

SG.1st<- savitzkyGolay(rawmilk.std, p = 2, w = 19 , m = 1) 

 

#Principle component analysis and visualization# 

pcrm<-prcomp(SG.1st) 

pcscores<-pcrm$x 

PCAlab<-as.factor(rawmilk$protein) 

plot(pcrm$x[,1], pcrm$x[,2], pch = 19, lwd = 4,cex.lab =1.5,cex.axis = 

1.3, 

     xlab="PC1 - 99.0%",ylab="PC2 - 0.3%") 

abline(h=0, v=0, lty = 2) 

text(pcrm$x[,1], pcrm$x[,2], labels = PCAlab, cex=1.4, pos = 2) 
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#model building and calibration visualization# 

rawmilk.normed<-cbind(rawmilk$Casein, SG.1st) 

colnames(rawmilk.normed)[1]<-"protein" 

rawmilk.normed<-as.data.frame(rawmilk.normed) 

tc<-trainControl(method = "LOOCV") #tune parameters# 

plsrm<-train(protein ~.,  data = rawmilk.normed, tuneLength = 10, method = 

"pcr", trControl = tc) 

plsrm 

predics<-as.data.frame(plsrm$pred) 

plot(ncomp1$pred,ncomp1$obs, main = "GS.1st with PLS 22 variables") 

abline(lm(ncomp1$pred~ncomp1$obs)) 

text(ncomp1$pred, ncomp1$obs, labels = rawmilk$Sample) 

#RPD# 

sd(rawmilk.normed$protein)/0.697 

 

#validation# 

rawval<-read.csv(file="....csv", header= T) 

 

rawval.std<-data.Normalization(rawval[,-c(1,3)],type="n0",normalization = 

"row") 

rawval.all<- savitzkyGolay(rawval.std, p = 2, w = 19, m = 1) 

rawval.all<-as.data.frame(rawval.all) 

dim(rawval.all) 

preds<-predict(plsrm$finalModel, newdata = rawval.all) 

preds 

plot(preds$`.outcome.1 comps`,rawval$Protein) 
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Appendix B - R code for chapter 5 

#############packages################ 

install.packages("caret") 

install.packages("pls") 

install.packages("clusterSim") 

install.packages("prospectr") 

install.packages("glmnet") 

 

library(clusterSim) 

library(prospectr) 

library(pls) 

library(caret) 

library(glmnet) 

 

############evaluation functions######### 

rmse<-function(x,y){ 

  sqrt(mean((x-y)^2)) 

} 

bias<-function(x,y){ 

  mean(abs(x-y)) 

} 

sep<-function(x,y){ 

  (sqrt(mean((x-y)^2)))^2-(mean(abs(x-y)))^2 

} 

 

rsq <- function(x, y){cor(x, y) ^ 2}  

 

rpd<-function(x, y){ 

  sd(x)/rmse(x,y) 

} 

 

rpe <- function (x,y){ 

  rmse(x,y)/mean(x)*100 

} 

 

diag<-function(x,y){ 

  result<-cbind(rmse(x,y), bias(x,y), rsq(x,y), rpd(x,y), rpe(x,y)) 

  colnames(result)<-c("RMSE", "bias","R-2", "RPD", "RPE") 

  options(digits = 4) 

  return(result) 

} 

##########load data################# 

cal<-read.csv(file = "...csv", header = T) 

dim(cal) 

val<-read.csv(file = "...csv", header = T) 

dim(val) 

 

#########preprocessing####### 

calsg<-savitzkyGolay(cal[,-c(1:4)], p = 2, w = 19 , m = 1) 

calnorm<-data.Normalization(calsg, type = "n4", normalization = "row") 

valsg<-savitzkyGolay(val[,-c(1:7)], p = 2, w = 19 , m = 1) 

valnorm<-data.Normalization(valsg, type= "n4" ,normalization = "row") 
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##########data partition################ 

set.seed(2007) 

index<-createDataPartition(val$CN,times = 1, p = 0.5, list = F) 

val.train<-val$CN[index] 

val.test<-val$CN[-index] 

valsg.train<-as.data.frame(valsg[index,]) 

valsg.test<-as.data.frame(valsg[-index,]) 

 

##########PLSR calibration model training######### 

pls<-plsr(cal$ratio~calsg, ncomp = 10, validation = "none") 

summary(pls) 

pre<-as.data.frame(pls$fitted.values) 

 

##########validations and diagnostics ################ 

error<-data.frame(matrix(nrow = 10, ncol = 5)) 

for (i in 1:10){ 

  preds<-predict(pls, ncomp = i, as.matrix(valsg.train)) 

  error[i,]<-diag(val.train, preds) 

} 

error 

 

preds<-predict(pls, ncomp = which.min(error$X1) , as.matrix(valsg.train)) 

diag(val.train, preds) 

 

lcor<-lm(val.train~preds) 

lcor 

 

##########test the final model################ 

predscor<-predict(pls, ncomp = which.min(error$X1), as.matrix(valsg.test)) 

new<-predscor*0.641+0.270 #taken from the slope and intercept from lcor# 

diag(val.test,new) 

 

 

##########Elastic Net Regression######### 

set.seed(2018) 

 

diagnosis<-data.frame(matrix(nrow = 10, ncol = 5)) 

for (i in 0:10){ 

  fit <- cv.glmnet(calsg, cal$ratio, type.measure="mse",  

                   alpha=(i/10), family="gaussian") 

  predsen<-predict(fit, s = fit$lambda.1se,  

                   newx = as.matrix(valsg.train)) 

  diagnosis[i,]<-diag(val.train, predsen) 

} 

 

diagnosis 

 

set.seed(2018) 

fit <- cv.glmnet(calsg, cal$ratio, type.measure="mse",  

                 alpha=((which.min$X1)/10), family="gaussian") 

val.en<-predict(fit, s = fit$lambda.1se,  

                         newx = as.matrix(calsg)) 

diag(cal$ratio, val.en) 
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predsen<-predict(fit, s = fit$lambda.1se,  

                 newx = as.matrix(valsg.train)) 

predsen 

 

lcor.en<-lm(val.train~predsen) 

lcor.en 

 

predsen.test<-predict(fit, s = fit$lambda.1se,  

                 newx = as.matrix(valsg.test)) 

 

new.en<-predsen.test*0.530+0.326 #taken output from lcor.en# 

diag(val.test, new.en) 
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Appendix C – R code for chapter 6 

###########Loading library################ 

install.packages("caret") 

install.packages("pls") 

install.packages("clusterSim") 

install.packages("prospectr") 

 

library(clusterSim) 

library(prospectr) 

library(pls) 

library(caret) 

 

############evaluation functions######### 

rmse<-function(x,y){ 

  sqrt(mean((x-y)^2)) 

} 

bias<-function(x,y){ 

  mean(abs(x-y)) 

} 

sep<-function(x,y){ 

  (sqrt(mean((x-y)^2)))^2-(mean(abs(x-y)))^2 

} 

 

rsq <- function(x, y){cor(x, y) ^ 2}  

 

rpd<-function(x, y){ 

  sd(x)/rmse(x,y) 

} 

 

rpe <- function (x,y){ 

  rmse(x,y)/mean(x)*100 

} 

 

diag<-function(x,y){ 

  result<-cbind(rmse(x,y), bias(x,y), rsq(x,y), rpd(x,y), rpe(x,y)) 

  colnames(result)<-c("RMSE", "bias","R-2", "RPD", "RPE") 

  options(digits = 4) 

  return(result) 

} 

 

 

#######PCA and normalization####### 

Ex<-read.csv(file="C:/GradSchool/Grad research/Membrane processing 

Fluorescence Study/excitation spectra/Excitation.csv", header = T) 

Exmean<-data.Normalization(Ex[,14:209],type="n9",normalization = "row") 

pc<-prcomp(Exmean, center = T, scale = T) 

summary(pc) 

 

#######plsr protein, 70/30 Split###### 

set.seed(2003) 

index<-createDataPartition(Ex$Protein,times = 1, p = 0.7, list = F) 

Ex.train<-Exmean[index,] 
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Ex.test<-Exmean[-index,] 

EP.train<-Ex$Protein[index] 

EP.test<-Ex$Protein[-index] 

 

pls<-plsr(EP.train~ as.matrix(Ex.train), ncomp = 10, validation = "LOO") 

summary(pls) #find the optimal number of components using the lowest 

RMSECV# 

diag(EP.train, cal$`EP.train.6 comps`) 

pre<-predict(pls,ncomp = 6, newdata = as.matrix(Ex.test)) 

diag(EP.test, pre) 

 

##########classification protein############## 

proclass<-cbind(Ex$Proteincat,Exmean) 

colnames(proclass)[1]<-"proteincat" 

plsdapro<-train(proteincat ~., data = proclass,tuneLength = 10, method = 

"pls", trControl = tc) 

plsdapro 

daresult<-as.data.frame(plsdapro$pred) 

ncomp <- subset(daresult, ncomp == 5) 

xtabs(~ncomp$obs+ncomp$pred) 

 

##########plsda peptide############### 

 

pepclass<-cbind(Ex$pepcat,Exmean) 

colnames(pepclass)[1]<-"pepclass" 

plsdapep<-train(pepclass ~. , data = pepclass, tuneLength = 10, method = 

"pls", trControl = tc) 

plsdapep 

daresult<-as.data.frame(plsdapep$pred) 

ncomp <- subset(daresult, ncomp == 5) 

xtabs(~ncomp$pred+ncomp$obs) 

 

##########plsda mppvsdpw############# 

 

sampleclass<-cbind(Ex$Spcat,Exmean) 

colnames(sampleclass)[1]<-"samplecat" 

plsdasp<-train(samplecat ~. , data = sampleclass, tuneLength = 10, method 

= "pls", trControl = tc) 

plsdasp 

daresult<-as.data.frame(plsdasp$pred) 

ncomp <- subset(daresult, ncomp == 2) 

xtabs(~ncomp$pred+ncomp$obs) 
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