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CHAPTER I 

Introduction 

Monomers, single particles, found in gaseous and liquid 

suspensions have a tendency to diffuse and aggregate to form 

clusters. This irreversible aggregation of monomers into clusters 

and clusters into larger clusters has, within the last five years, 

become an important topic in both theoretical and experimental 

physics. There are two principal reasons for this. The first was 

the computer simulation by Witten and Sander which modeled cluster 

formation. The second was the computer simulation by Vicsek and 

Family which monitored the time evolution of cluster number 

densities. 

The computer simulation by Witten and Sander' has stimulated 

interest in the geometric structure of clusters formed from 

random motion of Brownian diffusers. Their simulation modeled the 

single particle growth of a cluster by randomly introducing a single 

monomer on the boundary of a two-dimensional lattice then letting it 

random walk until it contacted a seed monomer at the lattice center. 

After many successive single particle growth steps a product cluster 

resulted which was open and diffuse, displaying a self-similarity 

which could be classified with a fractal dimension2 (see Fig. 1.1). 

Since then, TEM micrographs have shown clusters from aggregated sols 

to have self-similar, fractal structures as well. 
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Fig. 1 The Witten and Sanders single particle cluster growth 
model. A random aggregate of 3600 particles on a square 
lattice. 
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If a structure can be divided into sub-sections that are 

geometrically similar to the encompassing geometry of the whole, the 

structure is said to be self-similar. The length scale chosen to 

investigate the self-similarity of a structure is the characteristic 

length L. The mass of a self-similar structure is related to the 

characteristic length by 

d 

M L (1.1) 

where d 
f 

is the fractal dimension (see Figure 1.2). 

For self-similar particle clusters, the characteristic length 

is taken as the radius of gyration as measured from the cluster 

center of mass. The radius of gyration is defined by 

R2 = 
g m. 

. 

m ri 
i 

(1.2) 

For us, r 
i 

is the distance from the cluster's center of mass to the 

i-th monomer of mass m. The static scaling law for the cluster is 

N Rdf 
g 

(1.3) 

where N is the number of monomers making up the cluster. The number 

of monomers in a cluster is directly proportional to its mass, so 

expressing the cluster scaling in terms of N is for convenience 

only. Using the same argument, Eq. (1.3) must hold for the cluster 
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Fig. 1.2a The Sierpinoki Casket. The self-similarity is evident in 

the triangular sub-sections. They are similar to the 

geometry of the whole. This gasket has sides of length 1 

and a mass of 3. 

Fig. 1.2b The Scaled Slerpinski Casket. The sides are of length 
2 and the mass is 9. From the static scaling law Eq. 
(1.2) we find, dr = In3/1n2. 
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volume as well. The fractal dimension of a self-similar cluster is 

a fraction of the Euclidean space dimension where it exists. This 

accounts for the diffusiveness of these particle clusters, i.e. as 

the clusters become infinitely large their densities approach zero. 

In general, the fractal dimension of a self-similar cluster will 

depend on the dimension of the space in which it has aggregated and 

also on its diffusiveness. More diffuse clusters own a smaller 

fractal dimension. 

The dynamic scaling of particle cluster distributions is the 

second reason for the renewed interest in cluster aggregation. In 

1984 Vicsek and Family3 performed a computer simulation modeling 

irreversible aggregation and measured cluster number densities as a 

function of time. Their results indicated that the cluster size 

distributions obeyed a power law relationship with both the cluster 

mass and the cluster aggregation time (see Figure 1.3). They found 

this behavior could be accurately described with the 'scaling' 

Ansatz 

nk(t) t-w kTf(k/tz) . (1.4) 

In this expression, nk(t) is the number of k-mers at time t, k is 

the number of monomers in a k-mer and t is the aggregation time. 

The function f(x) is a cutoff function with the asymptotic limits 

f(x) ti 1 for x << 1 (1.5) 
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Fig. I.3a The Viscek and Family cluster aggregation model. This is 

a log plot of the cluster number density IVO vs. time. 

The dynamic power law scaling of the Ansatz is indicated 

by the linear behavior. 
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and 

f(x) << 1 for x >> 1 , (1.6) 

where x = k/tz. The expression Eq. (1.4) is valid when the mass of 

a cluster becomes large and the aggregation time becomes long. 

The term 'scaling' Ansatz has been used in reference to Eq. 

(1.4). The question that needs to be addressed is, "what does it 

mean for a distribution to be scaling?" If we rewrite Eq. (1.4) as 

twkTnk(t) f(k/tz) , (1.7) 

we can arrive at the following general conclusion. Independent of 

their starting shapes, all distributions when multiplied by the 

dynamic scaling factor tw and the static scaling factor kT fall on 

the same universal curve, namely f(k/tz) when plotted as a function 

of k/tz. This can only happen if the shapes of the scaling 

distributions nk(t) remain fixed. 

Do cluster distributions actually scale? For 'slow' 

aggregation processes, static measurements have revealed that 

cluster distributions do scale.4'5 However, there is no data 

accounting for the time evolution of a cluster distributing into its 

final scaling form. How can the evolution of a cluster distribution 

into its scaling form be described? If a cluster distribution's 

shape could be monitored while the clusters were aggregating then 

the scaling behavior could be characterized with an unchanging 

shape. One could imagine the arbitrary initial shape of a non- 

scaling distribution evolving into a final unchanging shape, thereby 

characterizing a scaling distribution. 
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This thesis focuses on the dynamic scaling behavior of cluster 

size distributions. In particular, this thesis presents in situ 

measurements on the dynamic scaling behavior of cluster size 

distributions. 

We will watch the cluster size distributions in gold sols. 

These colloidal suspensions are initially stable and they are 

equipped with a relatively narrow distribution of gold monomers. 

The gold monomers carry an excess of like charge and therefore the 

suspensions are stabilized by Coulombic repulsions. The suspensions 

are destabilized by reducing the net charge on each monomer. As a 

consequence, aggregation is induced and time-dependent cluster 

distributions result. 

All cluster size distributions have a unique set of moments 

{MN} associated with them. Because of this, it is common to 

classify cluster distributions in terms of their moments. 

Knowing that moments can characterize a distribution, we use 

the dynamic light-scattering technique, photon correlation 

spectroscopy, as a probe for investigating the time evolution of the 

cluster size distributions in aggregating gold sols. Dynamic light- 

scattering measures the intensity-weighted moments of distributions. 

In particular, the first two cumulants pi and 122 of the dynamic 

light-scattering spectrum are intensity-weighted moments with a time 

dependence. We will show the time dependent behavior of pi and 42 

to be directly related to the evolving shape of a cluster size 

distribution. 

8 



In this thesis, photon correlation spectroscopy was used to 

measure the time evolution of pi and p2 from aggregating gold sols. 

The two cumulants showed characteristic behaviors for all 

experimental runs. For example, an effective relative width for a 

cluster distribution is commonly defined by the ratio Q a p2/p.T. Q 

has shown the characteristic behavior of approaching nearly the same 

asymptotic values for all aggregated sols. Also, at the same time 

during a particular aggregation process that Q appeared to go 

asymptotic, 41 exhibited a dynamic scaling that was power law in 

time. The approach of Q to an asymptotic constant and the dynamic 

scaling of pi happened within a few characteristic times from the 

onset of aggregation in all the sols. These results are explained 

by considering the general behavior of the asymptotic moments from 

the scaling Ansatz, the aggregation kinetics describing the dynamics 

between the aggregating clusters, and the fractal nature of the 

clusters. 
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CHAPTER II 

Theory 

A. Moments of the Scaling Ansatz 

Although the exponents w, T, and z cannot be explicitly 

determined without considering the kinetics involved during 

aggregation, we can get a feeling for their physical representation 

by considering the first two moments of the asymptotic distribution 

[see Eq. (1.4)]. 

The first moment of any distribution is defined by 

co 

M 
1 

= 2 k nk 
k=1 

(2.1) 

and represents the total mass in the distribution. Substitution of 

Eq. (1.4) into the expression for M1 leaves 

co 

M 
1 

t 
-w 

2 kl Tf(k/tz) 
k=1 

co 

t-w f k1-Tf(k/tz)dk . 

1 

(2.2a) 

(2.2b) 

If we require the total mass to be conserved, i.e. M 
1 

to remain 

constant, then the integral in expression (2.2b) must diverge as tw 

as t -403. This happens for T < 2.6 By a change of variables, Eq. 

(2.2b) can be written as 

10 



co 

-w (2-T)z f 
x 
1-T 

MI t t f(x)dx 

t 
-z 

where x = k/tz. Because of the restriction placed on T this 

integral has no divergences, therefore 

-w (2-T)z 
M 
1 

t t 

(2.3) 

(2.4) 

From the assumption that cluster mass is conserved. 

w = (2 - T)z . (2.5) 

The zeroth moment for any distribution is defined by 

co 

N0(t) = k.1.1 nk(t) 

and represents the total number of clusters at a time t. 

Substitution of Eq. (1.4) into the expression for Mo(t) leaves 

CO 

Mo(t) t-w 2 kT f(k/tz) . 

k=1 

Rewriting the sum as an integral 

co 

t 
-wt( 1-T)z 

x Tf(x)dx , 

- 

11 

t-z 

(2.7) 

(2.8) 



where x = k/tz. This integral is finite and constant in the limit 

as t co for T < 1 and Molt) is calculated to equal 

Molt) t-z , (2.9) 

where the exponent identity w = (2 - T)z was used. Therefore, for 

T < 1 the total number of clusters behaves as a power law with time 

where the exponent z characterizes the rate of change. Since the 

aggregation is irreversible, we restrict z > 0 so that the total 

number of clusters decreases with time. 

For the case where T > 1, the integral in Eq. (2.8) diverges at 

the lower limit so the first term in the sum, Eq. (2.7), is 

sufficient for determining the asymptotic behavior of Mo(t).6 

Hence, 

M 
o 
(t).- t-w (2.10) 

where T > 1 and w > O. One can see from this discussion that the 

asymptotic behavior of the zeroth moment, i.e. the cluster 

population, is dependent on the value of T.6 

In general, the Nth moment of Eq. (1.4) is given by 

CO 

MN t -w t (N-T-1) x N-T f(x) dx . 

t 
-z 

This integral has no divergences provided N > 1 and T < 2. 

12 
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Therefore, the Nth moment of the scaling Ansatz behaves in a general 

t 
(N -1)z 

MN (2.12) 

where N > 1. Thus we see asymptotic moments of first or higher 

order obey a dynamic scaling relation characterized by the exponent 

z. 

Mathematically, the shape of a distribution is fixed if the 

relative normalized moments are constants. The relative normalized 

Nth moment is defined by 

/M 
o mN -1 

MN 
1 

N o " 
.11 

= 
(MMN 11%) 

(2.13) 

For simplicity, we will assume r S 1. Under these conditions MN is 

given by the scaling relation 

(N -1)z 
MN t 

for all N. Substituting this into Eq. (2.13) leaves 

MN 
- t-z(N-1)t(N-1)z 

(2.12) 

(2.14) 

Thus we see that the relative normalized moments are not functions 

of time. This is expected since scaling distributions imply an 

unchanging shape. 

13 



Before concluding the disussion on the behavior of the moments 

from the scaling Ansatz, I will re-emphasize that cluster 

distributions scale when their shapes are fixed, i.e. their relative 

normalized moments are constants, and their moments scale with a 

power law in time characterized by the exponent z. 

B. The Kinetics of Aggregation 

Irreversible aggregation can be accurately described by 

Smoluchowski's equation in the mean field limit where thermodynamic 

fluctuations are unimportant. The rate of change in the number of 

clusters consisting of k monomers is given by 

k-1 co 

nk(t) = 1/2 2 Kk_4 nk_J(t) nJ(t) - n,(t) 2 K, . n (t) . (2.15) 
j=1 

K K.J 

The first sum on the right-hand side represents a gain in the number 

of clusters of mass k, resulting from a j-mer colliding with a 

(k-j)-mer to form a k-mer. The second sum represents a loss in the 

number of clusters of mass k, resulting from a j-mer colliding with 

a k-mer. K 
i.j 

is a collision kernel and is proportional to the 

probability of an i-mer and j-mer reacting. 

The three most commonly used collision kernels for describing 

aggregation processes are of the general functional forms: 
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Kii = A(ij)W Product kernel 

K ij = B(i+j)w Sum kernel 

1/d, 1/d, -1/d, -1/d 
f) 

K 
i,j 

= C(i + j ")(i + j Brownian kernel. 

Cluster distributions satisfying Smoluchowski's equation depend 

on the functional forms of the collision kernels. As it turns out. 

exact solutions to this equation exist only for the bilinear kernel' 

K ij = Aij + B(i+j) + C . (2.16) 

Our interests lie in the scaling form of cluster distributions, 

therefore asymptotic solutions to Smoluchowski's equation are more 

relevant here. Asymptotic solutions have been found and their forms 

resemble the scaling Ansatz proposed by Vicsek and Family. 
7 

One 

asymptotic solution in particular will be discussed in the next 

section. 

TlleasrnptoticformaamcollisionlcernelK1.. 
,J 

has three 

defining exponents, v, 4, and X. The exponent is used to define 

three distinct aggregation classes. It will be discussed below. 

The exponent X is the kernel homogeneity and it relates the 

aggregation kinetics to the exponents w, 7, and z from the scaling 

Ansatz. The relation between X and z is general and it will be 

given shortly. I wish to emphasize that the relation between X and 

z is important here because the moments from the Ansatz scale with 
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the exponent z and moments characterize distributions [see Eq. 

(2.12)]. Therefore. the aggregation kinetics may be used to 

characterize distributions. 

Von Dongen and Ernst used 'self-consistency' arguments to 

arrive at asymptotic forms for the collision kernels.' They argue 

that because the number of active sites on a cluster cannot grow 

faster than its size, the reaction rates are bounded, as j co. by 

where C(i) is a constant dependent on i and 

K 
i.j 

c' 

J 
2 

(2.17) 

(2.18) 

where i -> j and c' is some constant. Further, the asymptotic forms 

of the collision kernels are restricted to homogeneous functions for 

large i and/or .j with the properties 

K 
ai,aj 

= aX 
1K. ,. 

= aX 
j,1 

K . , 

j 

where X is the kernel homogeneity and 

.p1) 

,j 
j 

for j >> i. From Eq. (2.19) it follows that 

16 

(2.19) 

(2.20) 



(2.21) 

These restrictions can be justified in the following ways. First, 

the assumption that asymptotic kernels be homogeneous functions is 

sound since all physically relevant situations can be described with 

them.a Second, the asymptotic form of the kernel given in Eq. 

(2.20) is the most general for j >> i. 

By substituting Eq. (2.20) into Eq. (2.18) we find 

j 
v-1 

C'(i) J (2.23) 

where C'(i) = C(01-4. This expression implies that u S 1. By 

substituting Eq. (2.23) into Eq. (2.21) we find 

ju+.L. 

.2 
< c' j (2.26) 

as i -0j. Thus we see that X S 2. 

The exponent A has no restrictions placed on it so three 

aggregation classes have been defined:7 

A > 0 class I kernel 

g = 0 class II kernel 

A < 0 class III kernel . 

The asymptotic form for the collision kernel [see Eq. (2.20)] shows 

that for p > 0 the aggregation rate is dominated by large cluster - 

large cluster interactions and for u < 0 the aggregation rate is 

17 



dominated by small cluster - large cluster interactions. There is 

no dominant interaction characterizing class II aggregation rates. 

The general relationship between the homogeneity X and the 

dynamic exponent z is given by9 

z = 1/(1-X) . (2.24) 

Recall, in the introduction we found that because the cluster 

population decreases for irreversible aggregation processes, z > 0. 

This condition further restricts the homogeneity to X 1. 

C. A Possible Solution 

By arguing the most probable distribution for a cluster-cluster 

aggregation process, Botet and Jullieni° arrived at the asymptotic 

distribution 

where 

nk (Mc2/M1)g(x) 

(1-X) 
1-X 

x 
-X 

e 
-(1-X)x 

g(x) r(1 -x) 

(2.25) 

(2.26) 

F(x) is the gamma function, X is the kernel homogeneity and x = 

Mok/Mi. If the B-J distribution is a scaling distribution for 

irreversible aggregation, then it should have the same scaling form 

as the Vicsek and Family scaling Ansatz. 

18 



Recall the scaling Ansatz given in Eq. (1.4) as 

nk ti t-wkTf(k/tz) . (1.4) 

This scaling distribution may be expressed in the equivalent form 

nk s 
-A 

0(k/s) (2.27) 

where s is the mass weighted mean cluster size of a distribution 

defined by 

co 

2 k 
2 
nk 

1 = 
s - 

kco 
- M2/M1 

2 k nk 
k=1 

and 0(x) is the cutoff function with the asymptotic 

limits 

and 

(2.28) 

$(x) << 1 for x >> 1 (2.29a) 

0(x) - 3e3 for x << 1 . (2.29b) 

where x = k/s. 

To see the equivalence between the scaling expression in Eq. 

(1.4) and the one given by Eq. (2.27). assume x << 1 and substitute 

Eq. (2.29b) into Eq. (2.27). This will result in 

19 



nk t -(8.°) kA (2.30) 

where s tz for x << 1. This expression is equivalent to the 

original Ansatz in Eq. (1.4) provided A = -T and 9 = 2. Therefore, 

nk s 
-2 

0(k/s) (2.31) 

is an alternative expression for the scaling form in Eq. (1.4). 

The mean cluster size for a distribution is defined by 

co 

2 k nk 

s = 
k=1 

- M1/M0 . 

2 nk 
k=1 

(2.32) 

Using the definition for the mean cluster size, the B-J distribution 

can be written as 

nk 
2g(x) 

. (2.33) 

Here we make the assumption that the mean cluster and mass weighted 

cluster sizes are equivalent, i.e. assume s tz for x << 1. With 

this, the B-J distribution has the same scaling form as Eq. (2.27) 

provided the cutoff function g(x) has the same asymptotic limits as 

0(x) given in Eqs. (2.29a) and (2.29b). 

Recall the cutoff function from the B-J distribution 

, (1-N) 
1-X 

x 
-X 

e 
-(1-N)x 

g(x) F(1-X) 

20 
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For x >> 1 we have g(x) << 1 which agrees with Eq. (2.29a). For 

x << 1 we have g(x) x-X which disagrees with Eq. (2.29b) unless 

X = T. The homogeniety X is not always equal to the exponent r for 

x << 1. We use this reason along with the ambiguity in the scaling 

nature of the zeroth moment, s, to conclude that the B-J 

distribution does not scale in accordance with the Vicsek and Family 

Ansatz for x << 1. For x >> 1, however, it does. 

The B-J distribution was used for calculating intensity- 

weighted moments. Although the B-J distribution has ambiguous 

scaling properties for latz<<1, hence an inexact scaled cluster 

distribution, we justify its exactness for calculating 

intensity-weighted, scaled moments with the following argument." 

For simplicity the argument is restricted to the Rayleigh limit 

where the scattered intensity from a cluster goes as its mass 

squared. In the Rayleigh limit, the second moment of a cluster 

distribution represents the total scattered intensity, i.e. 

r 
M2 = jk 

2 
nkdk , (2.35) 

where k 
2 
a I 

le 
I 
k 

is the scattered intensity from a cluster of mass 

k. The dominant contributions to this integral come from those 

clusters with a large mass, k. Because the B-J distribution was 

used to calculate intensity-weighted moments, the small mass end of 

this scaling distribution where latz<<1 was dominated by its large 

mass end where latz>>1. Therefore, the scaling inconsistencies at 

the 
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small mass end of the distribution did not affect the accuracy in 

the intensity-weighted, scaled moments calculated from this 

distribution. Whether or not the B-J distribution is a good 

approximate solution for the Smoluchowski equation remains to be 

tested experimentally. 

We find the N-th moment of the B-J distribution by multiplying 

Eq. (2.25) by kN and summing over all k. The result is 

M1 
N 

r(N + 1-N) rl 1.11-N 

MN - r(1-x) 1-x °k(-, 
(2.36) 

Notice that the time dependence of the N-th moment enters in only 

through Mo. 

D. Dynamic Light- Scattering and Its Moments 

Consider a system made up of two k-mers fixed in space with a 

laser beam focussed onto them. Assume k-mer one and two are 

isotropic scatterers. Therefore, the scattered light is of equal 

intensity in all directions. Somewhere off at infinity relative to 

the volume occupied by the two k-mers, will be a stationary, 

superimposed Fraunhofer intensity pattern. This interference 

pattern is characterized by the relative separation between the two 

k-mers. Set the k-mers into motion. The superimposed Fraunhofer 

pattern will now fluctuate as a result of the changing relative 

separations between k-mers one and two. 
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The dynamic light scattering technique, photon correlation 

spectroscopy, is used to correlate the scattered intensity 

fluctuations resulting from diffusing Brownian k-mers." The net 

result is a measured intensity autocorrelation function given by 

<I(t) I(t +-r)> . (2.37) 

The brackets represent a time average or equivalently an ensemble 

average. -r is defined as a sample time and it represents a distance 

between intensity fluctuations. The autocorrelation function is 

independent of any initial time, therefore 

<I(t) I(t+T)> = <40) I(T)> . (2.38) 

For a monodisperse system of scatterers the intensity 

autocorrelation function has a purely exponential form that is given 

by 

C(t) E <40) 47) = Ae -2Ft + B . (2.39) 

This equation is illustrated in Figure 2.1. B represents an 

experimentally determined background and A is the amplitude of the 

autocorrelation function determined with the signal-to-noise ratio, 

S/N by 

A = (S/N) B . (2.40) 

The linewidth I is related to the correlation time T. 

c 
by 
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(CW-B) 
A 

.75 

.50 

.25 

15 3 _ 5 

CHANNEL NUMBER 

Fig. 2.1 The autocorrelation function for a monodisperse sol is a 
pure exponential. Here, the time is measured in channel 
numbers so the correlation function has the form 

(C(t) - B)/A .-2/nr 

where n is a channel number and r is a sample time. 

r 2soo sec"' and r 10 usec. 
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F = 1/(2 Tn) . (2.41) 

The correlation time indicates how fast the correlation function 

decays. The rate of decay is directly proportional to the rate at 

which the scatterers are diffusing, i.e., 

T 
c 

= (2Dq 
2)-1 

(2.42) 

Here, D is the appropriate diffusion constant and q is the scattered 

wavevector given by 

q = (4r/X) sin 0/2 . (2.43) 

In the expression for q, X represents the wavelength of light in the 

scattering volume and 0 is the scattering angle. 

Real systems are polydisperse and the intensity autocorrelation 

function deviates from any purely exponential form. Using the 

method of cumulants," the autocorrelation function is commonly fit 

to a function of the form, 

co 

g(t) = Aexp 2 2 

[ 

(-1)nA 
n 
tn/n! 

n=1 

(2.44) 

where the An's are the cumulants and g(t) = C(t) - B. Only the 

first two cumulants will be considered here. 

The first cumulant AI is an average linewidth given by 

where 

p, = <F> , (2.45) 
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<F> = j rc(r)dr . (2.46) 

This expression tells us that <F> is the first moment of the 

linewidth distribution G(F). Clusters with different radii have 

different decay rates, hence a polydisperse system of clusters must 

have a distribution of linewidths. It is well known that the 

linewidth distribution is related to the cluster distribution by 

G(r) dF = Iknkdk , (2.47) 

where I 
k 

is the total scattered intensity from a cluster of mass k. 

With this relation one can show that F is an intensity weighted 

moment of the cluster distribution. 

We restrict ourselves to the Rayleigh limit where the scattered 

intensity goes as the mass squared, i.e. 

I 
k 

k 
2 

. (2.48) 

Recall from Eq. (2.42) that F is proportional to the diffusion 

constant D. In the hydrodynamic limit 

D ti 1/RH , (2.49) 

where RH is the hydrodynamic radius of a cluster. For a 

self-similar cluster, the cluster volume is related to its radius of 

gyration by 

d 

k -Rf , 

g 

26 
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implying 

1/d 
f 

R k (2.50) 

In recent work discussing the hydrodynamic behavior of self-similar 

clusters, Wiltzius" showed the ratio RH/RG to remain constant for 

the cluster size range of 500A S RH S 7000A. With this we can write 

Eq. (2.50) as 

l/df 

and r as 

RH - (1/k) (2.51) 

- (1 /k ) 
l/d 

f (2.52) 

Substituting Eqs. 

we arrive at 

(2.47), (2.48), and (2.52) into Eq. (2.46) 

1/d 
<F> (1/k) 

f 
k2 Nk dk (2.53) 

Or 

<r> (2.54) 

<F> is an intensity weighted moment of the cluster distribution and 

greater than one since the lower bound on a fractal dimension is 

one. Therefore, we expect <r> to scale with time as a power law 

characterized by the exponent z once the cluster distribution has 

scaled [see Eq. (2.13)]. 
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The second cumulant 42 is a measure of the correlation 

function's deviation from a purely exponential form [see Fig. 2.2]. 

42 is given by 

42 = <12> - <r>2 . (2.55) 

Quite often a polydispersity index Q is defined and used as a 

relative measure for determining the width of a cluster 

distribution. It is defined by 

<1.2) 

Q E W2/4? = 1 . (2.56) 
<r>2 

Notice that Q is an intensity weighted relative normalized moment. 

Using Eqs. (2.53) and (2.54), Q can be expressed in terms of the 

cluster distribution's moments as 

m 
2-2/d 

f 
M2 

Q - 
2 

(M2 -1/d 
f 

) 

(2.57) 

Sorensen and Taylor" have suggested using the moments from the 

asymptotic B-J distribution, Eq. (2.25), to evaluate the moments in 

this expression for Q. Using the general expression for the B-J 

moments in Eq. (2.36), one arives at 

F(3-X-2/df) r(3 -X) 

Qco 
[F(3-X-1/df)] 

2 

28 

(2.58) 
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Fig. 2.2 Actual data from a well aggregated sol. The experimental 

data was fit with the first two cumulants so the auto- 
correlation function was assumed to have the form 

g(nr) a Ae 24°T 42(n1)2 . 

To measure the effect of the second cumulant A. we take 

the natural logarithm of each side of the above equation. 
yielding 

tn[g(nr)] a -2po1' + u2(n1')2 + fnA . 

From this equation one sees chat linearity Is lost, on a 

semi-log plot, when g2 is significant. A contributing A. 
implies a polydisperse sol and the aucocorrelacion 
function is no longer purely exponential. For the well 

aggregated sol. u2 is significant. 
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This asymptotic expression for Q is independent of time, expected 

since Q is a relative normalized moment, and a function of the 

kernel homogeneity and fractal dimension of the clusters [see Fig. 

2.3)]. Since Q. is independent of time, we expect it to evolve from 

some arbitrary initial value to a final constant one. Recall that 

constant relative normalized moments imply scaling distributions. 

Therefore, the evolution of Q into some final asymptotic value 

implies the cluster distribution has evolved into a final scaling 

form. 

E. Two Distinct Aggregation Regimes 

Weitz et al.16'" have shown that two distinct regions of 

growth exist for aggregating gold colloids. They are the reaction- 

limited and diffusion-limited aggregation regimes, RLA and DLA 

respectively. In the reaction-limited regime, the reaction rate is 

controlled by the reaction time between the bonding clusters. In 

other words, the reaction time is the rate determining step in the 

aggregation process. For RLA, the cluster radii have been found to 

grow exponentially in time." Since the first cumulant is 

proportional to the inverse average cluster radius, we express this 

growth law as 

u(o)>Ar(t)> ect 
(2.59) 

Exponential growth implies reaction-limited aggregation, but 

reaction limited aggregation does not have to imply exponential 
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Fig. 2.3 A plot of the asymptotic values of Q vs. the fractal 
dimension of the aggregated clusters. Each curve 
represents a different kernel homogeneity. X. The values 
Q. are predicted by the B-J scaling distribution. 
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growth. In the diffusion-limited aggregation regime, the diffusing 

rate of the cluster is the rate determining step in the aggregation 

process. For the DLA process the cluster radii exhibit power law 

growth,I6 

lid: 
u(o)> /mtp t (2.60) 

Recall the expression for the first cumulant in terms of a 

moment, 

<F> ti 

z-l/d 
f 

' 

This moment scales according to Eq. (2.12); therefore, 

-z/d 
f 

<F> t 

(2.54) 

(2.61) 

where F was normalized with respect to the total scattered intensity 

M2. Comparing this expression with the one for growth in the 

diffusion-limited regime, Eq. (2.60), one finds z = 1. From Eq. 

(2.24) where z = 1/(1-X) we see that for DLA the homogeneity X is 

found to be zero. Diffusion-limited aggregation does not have to 

imply a kernel homogeneity equal to zero. 
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CHAPTER III 

Experiment 

A gold solution was made using the procedure of Turkevich.18 

The steps in the procedure are the following: 

1) Boil 212.5cc of H2O 

2) Add 25cc of 0.1% HAuC14e3H20 (by wt) 

3) Wait for the solution to boil again 

4) Add 12.5cc of 1.0% Nat C6H507 2H20 [sodium citrate] 

(by wt) 

5) Let the solution boil for an additional 30 min. 

6) Remove the solution from the heat and let it cool to room 

temperature. 

For the entire duration of the heating, the solution is continuously 

stirred. The cloroauric acid (HAu Ce4.3H20) was from Aldrich 

Chemicals. 

Two comments concerning the preparation are necessary. First, 

all glassware being used must be scrupulously cleaned. All 

glassware that came into contact with the reduced gold solution was 

rinsed with a dilute aqua regia solution, boiled in a dilute nitric 

acid solution, rinsed with a 0.7M hydrofluoric acid solution and 

thoroughly flushed with purified water. All other glassware was 

rinsed with a 0.7M solution of HF before being flushed with purified 

water. Second, all the water being used for making up the 

chloroauric acid solution (HAuC14), the sodium citrate solution 

(Na2C6H507), and the gold sol was purified. Purified water was 
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distilled, deionized through an ion exchange resin, then pushed 

through a 0.22 pore filter. The filters were MF-Millipore 

filters, type GS. These type filters have a cellulose acetate and 

nitrate membrane which is hydrophilic and will not suffer damages 

from dilute acid solutions. This will become important later. 

Before doing any serious filtering, at least one liter of water was 

pushed through a new filter to leach away any surfactant. I cannot 

overemphasize the important role of cleanliness for producing a 

monodisperse system of gold monomers. 

The chemistry involved during the reduction of the gold is 

interesting and a model describing the reduction will be proposed 

here.19 The chloroauric acid solution consists of hydrogen ions, 

W., and chloroaurate ions, AuC14-. When the sodium citrate solution 

is introduced, the chloroaurate ions dissociate and the auric ions, 

Au+3, are reduced by the carboxylate groups located on the citrate 

ions (see Fig. 3.1a). The remaining citrate ions behave as weak 

ligands and attach themselves to the reduced gold particles. A most 

general definition for a ligand is a molecule with the ability to 

donate electron pairs when bonding. The citrate ions have a net 

negative charge on them, thereby accounting for the stability of the 

colloid. TEM micrographs show these particles are spherical with an 

average radius of 15 nm (see Fig. 3.2). 

Once the reaction was completed and the colloidal gold 

suspension had cooled to room temperature, a portion was filtered 

off through a 0.291 pore filter into a scattering cell. The filter 
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Fig. 3.1a The citrate ion. 

Fig. 3.1b The neutral pyridine molecule. Note the lone pair of 
e lectrons dangling off the nitrogen atom. This pair of 
e lectrons accounts for the molecules absorption onto the 
gold particle surface. 
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21nm 

Fig. 3.2 A TEM micrograph of a typical gold sol before pyridine 
was introduced. Dynamic light scattering determined an 
average monomer radius of 15.4 nm. 
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used was also a type GS and here the membrane type was important. 

Since the reduced gold solution was slightly acidic, the membrane 

had to be inert to a lower pH. The scattering cell was a quartz 

spectrometer cell 45 mm high and 12.5 mm square with a ground glass 

cap. Before a coagulating agent was introduced into the cell, a few 

PCS spectra were taken to determine the starting conditions for the 

colloid. The starting conditions consisted of an average monomer 

radius and an initial value for Q. For five different experimental 

runs, the PCS spectrums taken at t = 0 revealed initial average 

particle diameters ranging from 18nm to 28nm and initial Q values 

between .04 and 0.1. 

The coagulant used was pyridine (C5H5N). It was diluted from 

an original 'ultrapure' 99+% stock solution from Alpha Products. 

The diluting was done with purified water and any pyridine that went 

into gold suspensions was first filtered through a 0 22u pore filter 

of type GS. It was later found out that pyridine and cellulose 

acetate and nitrate membrane, are not compatible. Pyridine will 

dissolve membranes of this nature. Fortunately, the filtered 

pyridine solutions were dilute, the maximum concentration was on the 

order of 10-4M, and no visual damage to the filters was observed. 

The final pyridine concentrations'in the gold suspensions were 

between 5.9 x 10 
-5 M and 8.6 x 10 -4 M. The neutral pyridine molecule 

(see Fig. 3.1b) is a more effective ligand than the citrate ion, 

i.e. it bonds more favorably with the gold. For this reason, the 
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pyridine molecules are absorbed onto the surface of the gold 

displacing the stabilizing citrate ions, thereby initiating 

aggregation. 

The rates of growth in our gold sols were altered by differing 

the amounts of pyridine concentrations needed to induce the 

aggregation. Physically, a varying pyridine concentration causes a 

varying reaction probability between the clusters. In other words, 

the collision kernel changes its form or homogeneity. Therefore, 

the collision kernels needed to represent the aggregation kinetics 

in our sols will depend on the final pyridine concentrations. 

Aggregation times ranged from 3 to 11 hours. The resulting clusters 

from our gold sols were open and diffuse displaying a fractal nature 

[see Fig. 3.3]. 

The experimental set-up is illustrated in Fig. 3.4. An argon 

ion laser was used and operated at 488 nm. The beam was focused 

into the quartz scattering cell with a double convex, 170 mm focal 

length lens. The scattering volume was focussed onto the iris of a 

photomultiplier tube with a double convex, 100 mm focal length lens 

so that the image magnification was approximately one. In front of 

the iris on the photomultiplier tube was a slit with a width of 

approximately 1 mm. The effect of the lens and slit combination in 

the front of the photomultiplier tube was to increase the coherence 

area on the tube's photocathode resulting in an optimum 
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21nm 

Fig. 3.3 A TEM micrograph of a typical gold sol somewhere near the 
end of its allowed aggregation. Dynamic light scattering 
determined an average cluster radius of 64 nm. 
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Fig. 3.4 Experimental Set-up 
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signal-to-noise ratio. The photomultiplier tube was a Thorn EMI 

model 9863A/100. It had an S20 spectral response and was designed 

for wide bandwidth, high gain photon counting applications. The 

photomultiplier tube received the scattered intensity at 90° 

relative to the incident beam direction. The signals from the 

photomultiplier went into a pulse amplifier-discriminator. There 

the signal was amplified and sent into a digital Langley-Ford 

correlator, model 1096. The correlator was allowed to calculate a 

correlation function until the total number of counts received 

reached approximately 3 x 108 counts. We have found that total 

counts on this order of mangitude insure good statistics, which in 

turn installs confidence in the calculated cumulants. The 

correlator then dumps the calculated correlation function onto a 

computer where it is stored on disk. 

The intensity autocorrelation function was fit using a first 

and second order least squares fitting method. The autocorrelation 

function expressed in terms of the first two cumulants is 

g(t) = Ae-21 
t + p2t2 

[see Eq. (2.59)]. Taking the natural logarithm of each side 

results in 

(3.3) 

In g(nt) = -241(nr) + 42(nr)2 + In A (3.4) 

where n represents a channel number and T a sample time. 
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The first cumulant was found by first order least squares 

fitting the data with 

In g(nt) -241(nT) + In A . (3.5) 

The fit was done for the first 18 channels, then the first 17 

channels, 16 channels, etc. down to the first 4 channels. Here, the 

first n channels refer to channels 2 through n. The number one 

channel was not considered because of afterpulsing from the 

photomultiplier tube. The fifteen values for pi, found from least 

squares fitting with Eq. (3.5), were then linearly extrapolated back 

to the origin at t = 0. The extrapolated value at the origin was 

taken for 41. 

The second cumulant 42 was found by second order least squares 

fitting the data with Eq. (3.4). The number of channels used to fit 

Eq. (3.4) was varied until 4i agreed with the first cumulant found 

from the extrapolation technique. At this point, the corresponding 

value for 42 was taken as the second cumulant. 

To guarantee a known background, the total number of counts 

accumulated by the correlator, while calculating an autocorrelation 

function, was on the order of 108 photon counts. This total number 

of counts required a real time interval of approixmately 7 minutes 

during which the clusters were growing. The growth of the clusters 

during this time interval introduced a nonstatic second cumulant 

p 
ns 

, which contributed to the polydispersity index Q. We show that 

this contribution to Q can be neglected." 
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For approximating the contribution of u 
ns 

to Q. a log-normal 

cluster distribution is assumed. The average asymptotic Q value 

found from experiment was 0.18. The polydispersity index Q is 

related to the distribution width by2° 

Q = exp (en2a) - 1 . (3.6) 

The initial geometric width a corresponding to an asymptotic Q of 

0.18 is calculated to equal 1.5. 

Cluster growth during a finite correlation time broadens a 

distribution [see Fig. 3.5]. By how much does the width of a 

log-normal cluster distribution broaden during a 7 minute 

correlation time inteval? The answer to this question is bounded by 

our fastest and slowest sol aggregation rates. Since <F> a 1/<RH>, 

d<F>/dt 
d<RH>/dt 

<F> - <RH> 
(3.7) 

The sol which aggregated quickest had d<F>/dt = 0.82 [see Fig. 3.6]. 

The slowest aggregated sol had d<F>/dt = 0.19. 

The initial radius corresponding to the 1.65/e value of the 

log-normal distribution is 

aR =R +A . 

0 0 
(3.8) 

A is the displacement from R 
o 

to this radius and the peak 

distribution radius is related to the intensity-weighted radius by2° 
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Ro a-R0 

cri(Ro+ dR/2) 

(Rot dR/2) 

Fig. 3.5 An exaggerated schema of a propagated, scaled log-normal 
distribution with an initial geometric width of a = 1.5. 
A finite correlation time results in an effective width 
a' broader than the static one. 
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3 
TIME (hrs) 

Fig. 3.6 A plot of (F) vs. aggregation time for the gold sol with 
the fastest cluster growth rate. 
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Ro = <RH> exp (-6.5 En 2u) 

Using Eq. (3.8) to solve for the displacement we find 

A = (a - 1) <RH> exp (-6.5 en2o) (3.10) 

To calculate the spread in the log-normal distribution we 

calcuate the radius corresponding to the 1.65/e point after the 

7 minute correlation interval, i.e. 

cr.(R0 + dR/2) = Ro + A + dR (3.11) 

Using Eqs. (3.7), (3.9) and (3.10) a' is found. Substituion of a' 

into Eq. (3.6) yields a new value for Q which we denote by Qns 

Built into 0 is the polydispersity which resulted from the cluster 

growth during the finite correlation time interaval. Note that Qns 

is the experimentally measured value for Q and 

Qns = Qs AQ 
(3.13) 

where Q 
s 

is a static polydispersity index. The AQ's were calculated 

for 3 gold sols with different cluster growth rates. The results 

are given in Table 3.1. 
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Table 3.1 

Sol No. AQ Growth Rate 

5 .020 fastest 

2 .004 intermediate 

3 .001 slowest 

From these results we assume the change in Q resulting from a finite 

correaltion time is within the experimental error of the aymptotic Q 

values and can therefore be neglected. 

The accuracy of the cumulants was determined from the initial 

conditions. Three PCS spectra were taken before the coagulant 

pyridine was introduced in each of the five sols. The initial 

cumulants were analyzed from each spectrum and an experimental error 

was determined. We have found that <r> could be determined to an 

accuracy of 1.4% and Q could be determined to within ± .02 of its 

calculated value. These findings are quite reproducible. 
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CHAFFER IV 

Results 

A table summarizing initial, final, and relevant conditions for 

the five different aggregated gold sols is given below. 

Table 4.1 

Sol <R> 
o 

<R> 
f 

Qo Q. RoG T. <R(T.)>/<R(0)> z/df 

No. (nm) (nm) (nm/sec) (hrs) from T. 

1 9.4 38.2 .10 i.02 .17 i.02 1.3x10-3 2.25+.25 2.2 ± .1 0.60+.02 

2 9.5 68.6 .08 ±.02 .19 ±.02 2.7x10-3 2.0 ±.50 3.2 ± .3 0.69+.02 

3 14.7 37.8 .05 ±.02 .18 ±.02 6.1x10-4 3.75+.50 1.4 ± .1 0.50+.01 

4 14.8 64.0 .04 ±.02 .19 ±.02 1.6x10-3 2.5 ±.50 1.7 ± .3 0.74+.01 

5 14.2 67.0 .06 ±.02 .19 ±.02 4.2x10-3 2.0 ±.25 2.6 ± .2 1.00+.07 

The five different aggregated sols were assigned numbers 1 through 

5. <R> 
o 
and <R> 

f 
are the initial and final average cluster radii 

from the five aggregated sols. Initial conditions pertained to 

measurements made before the addition of pyridine. Qo is the 

initial value for the polydispersity index as given in Eq. (2.71) 

and Q. is the experimentally determined asymptotic value for Q. RoG 

represents the rate of growth for each suspension and is defined by 

<R> 
f 

- <R> 
o RoG = (4.1) 

(allowed aggregation time) ' 

T. is the real time interval from the onset of aggregation until Q 
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first appeared asymptotic. <R(T.)>I<R(0)> is the ratio of the 

average cluster radii where Q first appeared asymptotic divided by 

the initial radii. z/d 
f 

is the slope from the full-log plots of 

<11(t)>/<12(0)> against aggregation time. From the scaling Ansatz, 

the first cumulant should scale according to 

Or 

-z/d 
f 

<r> t 

z/d 
f 

<R(t)> t 

(2.76) 

(4.2) 

The slopes begin at the times where Q first appears asymptotic. 

These plots are illustrated in Figs. 4.1a, 4.1 b, 4.1c, 4.1d and 

4.1e. Notice that they clearly indicate a power law growth after 

their respective asymptotic times T., although the data extend for 

less than a decade. 

Figures 4.2a, 4.2b, 4.2c, 4.2d and 4.2e are semi-log plots of 

the same average cluster growth against aggregation time. If the 

average cluster growth is exponential it will appear linear on these 

plots. These plots indicate possible exponential cluster growths at 

early times but their linearities are clearly lost at intermediate 

aggregation times. At these intermediate aggregation times, the 

cluster growths should appear power law if they are no longer 

exponential. This crossover from possible exponential growth to 

definite power law growth is confirmed by the corresponding full-log 
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Fig. 4.1b 
Average rate of growth vs. aggregation 
time for sol number 2. Ten 2 hrs and 
d ) a .7 

4.2b 
Average rate of growth vs. aggregation 
time for sol number 2. 
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Fig. 4.1e 
Average rate of growth vs. aggregation 
time for sot number 3. Tea 4 hrs and 
(z/dr)T. a .5 

Fig. 4.2c 
Average race of growth vs. aggregation 
time for eel number 3. 
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Fig. 4.1d 
Awerege race of growth vs. aggregacion 
ctme for sel number 4. T. a 2.5 tars and 
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Fig. 4.2d 
Average rate of growth vs. aggregation 
time for sol number 4. 
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Fig. 4.1. 
Average rate of growth vs. aggregation 
tiros for sol number 5. T. a 2 hrs and 

(z/df)T a 1.0 

Fig. 4.20 
Averse, rate of growth vs. aggregation 
timm for s01 number 5. 
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plots [see Figs. 4.1a. 4.1b, 4.1c, 4.1d and 4.1e]. These results 

confirm recent findings from Weitz et al.16"7 

The general expression for the dynamic exponent z was 

z = 1/(1-X) . (2.41) 

It is well known that the fractal dimension for a gold aggregate is 

bounded by 1.75 S df S 2.05.16'17 Using Eq. (2.41) and an average 

fractal dimension of 1.9 we take the known values for z/d 
f 

and 

calculate the kernel homogeneities for the five sols. These results 

are summarized in Table 4.2. 

Table 4.2 

Sol 
No. 

1 .12+.07 
2 .24+.05 
3 .09+.08 
4 .29+.06 
5 .47+.04 

Figures 4.4a, 4.4b, 4.4c. 4.4d, and 4.4e are linear plots of 

the polydispersity index Q against aggregation time. All the plots 

seem to indicate that Q has approached an asymptotic value 

independent of time. These findings are summarized in Table 4.3. 
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Fig. 4.4a Polydispersity index Q vs. aggregation time for 
sol number 1. Q. m .17 
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Fig. 4.4b Polydispersity index Q vs. aggregation time for 
sol number 2. Q. m .19. 
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Fig. 4.4c Polydispersity index Q vs. aggregation time for 
sol number 3. Q. = .18 
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Fig. 4.4d Polydispersity index Q vs. aggregation time for 
sol number 4. Q. = .19 
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Fig. 4.4e Polydispersity index Q vs. aggregation time for 
sol number 5. Qo = .19 
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Table 4.3 

Sol 

No. 

Q0(Exp) Q.(Theory) X 

1 .17 .16 .1 

2 .19 .17 .2 

3 .17 .16 .1 

4 .19 .19 .3 

5 .19 .21 .5 

In Table 4.3, Qw(Exp) represents experimentally determined 

asymptotic values for Q. and Q.(Theory) represents the calculated 

asymptotic values for Q as predicted by the B-J distribution [see 

Eq. (2.73) and Fig. 2.3]. Again. an average fractal dimension of 

1.9 was used. Table 4.3 indicates good agreement between the 

asymptotic Q values from experiment and those calculated from the 

B-J distribution. 
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CHAPTER 5 

Conclusion 

The time evolution of the intensity-weighted relative 

normalized moment of Q is an effective measure of the evolution of a 

cluster size distribution's shape. A constant value for the moment 

Q implies a constant shape for the cluster distribution. 

Physically, the constant shape means a scaling distribution. During 

aggregation, Q was found to evolve from an arbitrary initial value 

into a final constant one. This behavior for Q was present in all 

five aggregated colloidal gold suspensions implying that all five 

cluster distributions had scaled. Within experimental error, the 

same asymptotic Q values resulted. 

The validity of the experimentally found constant values for Q 

become apparent when compared with those calculated from the 

asymptotic B-J distribution. The constant, scaling values for Q 

predicted by the B-J distribution were within 10% of those found 

experimentally for an average fractal dimension of 1.9 and kernel 

homogeneities ranging from 0.1 to 0.5. From the excellent agreement 

between experiment and theory, we conclude that the B-J distribution 

accurately represents the large mass ends of the scaling 

distributions in our gold sols. 

The intensity-weighted moment 41 was found to obey a dynamic 

power law scaling relation characterized by the exponent z and 

-z/d 
fractal dimension d 

f' 
i.e. 41 t 

f 
. The power law scaling of pi 
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occurred at the approximate aggregation time that Q went asymptotic 

for all five gold sols. Hence, the static scalings of the five 

distributions as indicated by the unchanging values for Q implied 

dynamic scaling of the moments as well. This power law behavior for 

4i is predicted by the Vicsek and Family scaling Ansatz. 

Dynamic light-scattering is an effective probe for measuring 

the time evolution of intensity-weighted moments from cluster size 

distributions. Hence, this technique has proven useful for 

monitoring the time evolution of a cluster size distribution into 

its scaling form. 
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ABSTRACT 

Cluster size distributions in aggregating colloidal suspensions 

are believed to evolve out of arbitrary initial shapes into a final 

self-preserving or scaling form. This final scaling form is 

dependent upon the collision kernel responsible for the aggregation. 

The scaling of a cluster distribution is characterized by its 

relative normalized moments. The relative normalized moments of a 

scaling distribution are independent of time. In this thesis 

dynamic light-scattering, which is a probe of these relative 

normalized moments, was used to measure the time evolution of 

cluster distributions in aggregating gold colloids. 

Quasi-monodisperse gold sols were prepared and then aggregated. 

During the aggregation, photon correlation spectroscopy was used to 

measure the time evolution of the intensity-weighted moments pi and 

p2 of the cluster size distributions. The dynamic behavior of pi 

and p2 was used to identify the cluster distribution's approach to a 

scaling form. In particular, the effective width for a cluster 

distribution can be parameterized with a ratio of these moments Q E 

W2/4?. The index Q is an intensity-weighted relative normalized 

moment. Q was found to evolve from arbitrary initial values to 

nearly the same final value for each of the sols. This indicated 

. the cluster size distributions in these sols had taken on scaling 

shapes. 

The experimental asymptotic values for Q agreed well with 

theoretical predictions, using a scaling distribution derived by 

Botet and Jullien, for a cluster fractal dimension of 1.9 and range 

of kernel homogeneities from .1 to .5. 


