SYNTHESIS, BIOPHYSICAL ANALYSIS AND BIOLOGICAL EVALUATION OF TRICYCLIC PYRONES AND PYRIDINONES AS ANTI-ALZHEIMER AGENTS
by

SANDEEP RANA

B.Sc. (H), Maharishi Dayanand University, 2003
M.Sc., University of Delhi, 2003

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Chemistry
College of Arts And Sciences

KANSAS STATE UNIVERSITY

Manhattan, Kansas

Abstract

The objectives of this research project were to (i) synthesize different bicyclic and tricyclic pyrone and pyridinone compounds; (ii) study the mechanism of action of these compounds in solution as anti-A β (amyloid β) agents using different biophysical techniques; and (iii) study the biological activity of pyrone compounds for the counteraction of $A \beta$ toxicity using MC65 cells, a human neuroblastoma cell line and 5X- familial Alzheimer's disease (5X FAD, a transgenic mice with five different mutations) mice.

A series of tricyclic pyrone and pyridinone compounds were investigated. The tricyclic pyrones and pyridinones were synthesized utilizing a condensation reaction between cyclohexenecarboxaldehye (25) and 4-hydroxy-6-methyl-2-pyone (24) or 4-hydroxy-6-methyl-2pyridinone (51), respectively. A tricylic pyrone molecule CP2 (2, code name) was synthesized and has an adenine base unit attached to the pyrone core. For structure activity relationship (SAR) studies, the adenine group of CP2 was replaced with other DNA base units (thymine, cytosine and guanine) and various heterocyclic moieties. Since nitrogen containing compounds often exhibit increased bioactivity and brain-penetrating abilities, oxygen atom (O5') was displaced with a nitrogen atom in the middle ring of the tricyclic pyrone. A condensation reaction of pyrone 51 and $\mathbf{2 5}$ was carried out to give the linear pyranoquinoline (52) and the Lshaped pyranoisoquinoline (53).

The neurotoxicity of amyloid- β protein $(\mathrm{A} \beta)$ is widely regarded as one of the fundamental causes of neurodegeneration in Alzheimer's disease (AD). Recent studies suggest that soluble $\mathrm{A} \beta$ oligomers rather then protofibrils and fibrils may be the primary toxic species. Different biophysical techniques including atomic force microscopy (AFM), circular dichroism (CD), surface plasmon resonance (SPR) spectroscopy, and protein quantification assays were used to study the mechanism of aggregation of Alzheimer $A \beta$ peptide in solution.

In search of potentially bioactive compounds for AD therapies, MC65 cell line was used as a screening model. Different tricyclic pyrone and pyridinone compounds protect MC65 cells from death. We studied the efficacy of CP2 in vivo by treatment of 5X FAD mice, a robust A $\beta 42$-producing animal model of AD , with a 2-week course of CP 2 , which resulted in 40% and 50% decreases in non-fibrillar and fibrillar $\mathrm{A} \beta$ species respectively.

SYNTHESIS, BIOPHYSICAL ANALYSIS AND BIOLOGICAL EVALUATION OF TRICYCLIC PYRONES AND PYRIDINONES AS ANTI-ALZHEIMER AGENTS by

SANDEEP RANA

B.Sc. (H), Maharishi Dayanand University, 2003
M.Sc., University of Delhi, 2003

A DISSERTATION
submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Chemistry
College of Arts and Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2009
Approved by:
Major Professor
Duy H Hua

Abstract

The objectives of this research project were to (i) synthesize different bicyclic and tricyclic pyrone and pyridinone compounds; (ii) study the mechanism of action of these compounds in solution as anti-A β (amyloid β) agents using different biophysical techniques; and (iii) study the biological activity of pyrone compounds for the counteraction of A β toxicity using MC65 cells, a human neuroblastoma cell line and 5X- familial Alzheimer's disease (5X FAD, a transgenic mice with five different mutations) mice.

A series of tricyclic pyrone and pyridinone compounds were investigated. The tricyclic pyrones and pyridinones were synthesized utilizing a condensation reaction between cyclohexenecarboxaldehye (25) and 4-hydroxy-6-methyl-2-pyone (24) or 4-hydroxy-6-methyl-2pyridinone (51), respectively. A tricylic pyrone molecule CP2 (2, code name) was synthesized and has an adenine base unit attached to the pyrone core. For structure activity relationship (SAR) studies, the adenine group of CP2 was replaced with other DNA base units (thymine, cytosine and guanine) and various heterocyclic moieties. Since nitrogen containing compounds often exhibit increased bioactivity and brain-penetrating abilities, oxygen atom (O5') was displaced with a nitrogen atom in the middle ring of the tricyclic pyrone. A condensation reaction of pyrone 51 and $\mathbf{2 5}$ was carried out to give the linear pyranoquinoline (52) and the Lshaped pyranoisoquinoline (53).

The neurotoxicity of amyloid- β protein $(\mathrm{A} \beta)$ is widely regarded as one of the fundamental causes of neurodegeneration in Alzheimer's disease (AD). Recent studies suggest that soluble $\mathrm{A} \beta$ oligomers rather then protofibrils and fibrils may be the primary toxic species. Different biophysical techniques including atomic force microscopy (AFM), circular dichroism (CD), surface plasmon resonance (SPR) spectroscopy, and protein quantification assays were used to study the mechanism of aggregation of Alzheimer $A \beta$ peptide in solution.

In search of potentially bioactive compounds for AD therapies, MC65 cell line was used as a screening model. Different tricyclic pyrone and pyridinone compounds protect MC65 cells from death. We studied the efficacy of CP2 in vivo by treatment of 5X FAD mice, a robust A $\beta 42$-producing animal model of AD , with a 2-week course of CP 2 , which resulted in 40% and 50% decreases in non-fibrillar and fibrillar $\mathrm{A} \beta$ species respectively.

Table of Contents

List of Figures viii
List of Tables xii
Structure - Number Correlation List xiii
List of Schemes xX
List of Graphs xxi
List of Abbreviations xxii
List of Publications xxiii
Acknowledgements xxv
CHAPTER 1 - Synthesis of tricyclic pyrone and pyridinone compounds 1
1.1 Introduction 1
1.2 Background 1
1.2.1 Reported small compounds with potential Anti-A β activity 8
1.2.2 Natural bioactive compounds with lactone core 10
1.2.3 Previous studies in our laboratory 12
1.3 Results and Discussion 14
1.3.1 Modification at C-11 position of CP 2 15
1.3.2 Synthesis of CP2 analog with a double bond at C12 16
1.3.3. Synthesis of heterocyclic pyrone analogs 17
1.3.4 Synthesis of pyrone compounds having nitrogen in middle ring: pyranoquinolinone and pyranoisoquinonlinone compounds 22
1.3.5 Synthesis of novel pyranopyridinone analogs ($\mathrm{N} 2^{\prime}$ '-analogs) 24
1.3.6. Synthesis of bicyclic pyrone and pyridinones analogs 27
1.4 Conclusion and future work 28
1.5 Experimental Section 29
1.6 References 61
CHAPTER 2 - Insight into the inhibition of aggregation of Alzheimer's A β peptides and disaggregation of $\mathrm{A} \beta$ oligomers using various biophysical techniques 70
2.1 Introduction 70
2.2 Background 70
2.3 Biophysical experiments conducted to study the inhibition of aggregation of amyloid $\mathrm{A} \beta$ peptides and disaggregation of $\mathrm{A} \beta$ oligomers and protofibrils. 72
2.3.1 Use of atomic force microscopy to study the inhibition of aggregation and disaggregation of $A \beta$ peptide 72
2.3.1.1 Introduction and background 72
2.3.1.2 Preparation of A $\beta 40$ stock solution 74
2.3.1.3 Preparation of $A \beta 42$ stock solution 74
2.3.1.4 AFM instrumentation and sample preparation 74
2.3.1.5 Inhibition of aggregation of $A \beta 40$ with several compounds 75
2.3.1.6 Inhibition of aggregation of $A \beta 42$ with several compounds 78
2.3.1.7 Disaggregation of A $\beta 42$ oligomers with several compounds 81
2.3.1.8 Disaggregation of $\mathrm{A} \beta 42$ protofibrils with CP2. 83
2.3.1.9 Disaggregation of A $\beta 42$ oligomers with CP2 over the period of five days 84
2.3.1.10 Result and discussion 85
2.3.2 Use of surface plasmon resonance spectroscopy to study the interaction of tricyclic pyrone and $\mathrm{A} \beta$ peptide 92
2.3.2.1 Introduction and background 92
2.3.2.2 Binding of CP2 and TP17 to $\mathrm{A} \beta 40$ and $\mathrm{A} \beta 42$ monomers 93
2.3.2.3 Binding of CP 2 to $\mathrm{A} \beta 42$ oligomers using anti-oligomer antibody (AB9234). 96
2.6.2.4 Result and discussion 97
2.3.3 Use of protein quantification assay to study the inhibition of aggregation of $A \beta$ with and without tricyclic pyrone molecule CP2 99
2.3.3.1 Introduction and background 99
2.3.3.2 Inhibition of aggregation of $A \beta 40$ and $A \beta 42$ with $C P 2$ 99
2.6.3.3 Result and discussion 101
2.3.4 Use of circular dichroism (CD) spectroscopy to study the inhibition of aggregation of $\mathrm{A} \beta$ with and without tricyclic pyrone molecule CP2 102
2.3.4.1 Introduction and background 102
2.3.4.2 Study of inhibition of aggregation of $\mathrm{A} \beta 42$ with CP2 (1.25 equivalents) 104
2.3.4.3 Results and discussion 106
2.4 Conclusion 107
2.5 References 108
CHAPTER 3 - Biological evaluation of tricyclic pyrone and pyridinone compounds: in vitro andin vivo studies113
3.1 Introduction 113
3.2 Background 113
3.3 MC65 cell death is related to the intracellular generation and aggregation of A β 115
3.4 Tricyclic pyrone and pyridinone molecules inhibit the formation of $A \beta$ oligomers and protect MC65 cell death 118
3.5 Tricyclic pyrone molecule CP2 penetrates MC65 cell 122
3.6 In vivo studies of CP2 on 5X FAD mice 123
3.6.1 Introduction and background 123
3.6.2 Experimental for in vivo studies 124
3.6.3 A $\beta 42$ ELISA 124
3.6.4 Results and discussion 125
3.7 Conclusion 126
3.8 References 127
Appendix: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra, ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra, MS spectra, 2D-NOESY, 2D-COSY, 2D- HMBC, 2DHSQC 130

List of Figures

$$
\begin{aligned}
& \text { Figure 1.1. Proposed pathway of generation of A } \beta \text { peptide. (modified from reference } 18 \text { without } \\
& \text { the Author's permission)... } 4
\end{aligned}
$$

Figure 1.2. Proposed mechanism of $A \beta$ aggregation from monomers to fibrils. (Modified from reference 18 without the author's permission). 5
Figure 1.3. The hydrophobicity indexes of amyloid (1-42) sequence. (Modified from reference 22 without the author's permission) 5
Figure 1.4. Contributing factors promoting $\mathrm{A} \beta$ aggregation and neuronal damage 6
Figure 1.5. Structure of pyripyropene A and CP2. 8
Figure 1.6. Reported organic compounds with anti-AD activity 9
Figure 1.7. Bioactive microbial metabolites possessing pyran functionality 10
Figure 1.8. Structures of engineered type II polyketides. ${ }^{70}$ 11
Figure 1.9. Aldehyde used $(17-19)$ and the pyranopyrones prepared $(20-23)$ in this study. ${ }^{70} .12$
Figure 2.1 Structural model for A $\beta 42$ fibrils, (Taken from protein data bank, provided by Luhrs
et al.). ${ }^{6}$ 71
Figure 2.2. Structure of CP2, TP4, TP17, thioflavin T, Congo red and curcumin. 76
Figure 2.3. AFM images of inhibition of aggregation of $A \beta 40$ monomers (Scale bar $1 \mu \mathrm{~m}$). 78
Figure 2.4. AFM images of inhibition of aggregation of A $\beta 42$ monomers 80
Figure 2.5. AFM images of disaggregation of A $\beta 42$ oligomers. 83Figure 2.6. AFM images of disaggregation of $A \beta 42$ protofibrils; (a) $A \beta 42$ protofibrils formedform the incubation of $A \beta 42$ monomer $(37 \mu \mathrm{M})$ at $4^{\circ} \mathrm{C}$ for 4 days. (b) Incubation of $A \beta 42$protofibrils with CP2 (two equivalents) for 24 h at room temperature.84

Figure 2.7. Disaggregation of $\mathrm{A} \beta 42$ oligomers with different equivalents of CP 2 over the period of five days. Quantitative analysis of particle density in $25 \mu \mathrm{~m}^{2}$. A β oligomeric density from three independent AFM scans was calculated using Image J program................................. 85

Figure 2.8. Inhibition of aggregation of $\mathrm{A} \beta 40$ with two equivalents of $\mathrm{CP} 2, \mathrm{TP} 17$, thioflavin T, curcumin and congo red separately over 24 h and 48 h . Quantitative analysis of particle
density in $25 \mu \mathrm{~m}^{2}$ AFM scans. A β oligomeric density from three independent AFM scans was calculated using Image J program. Error bars represent standard deviation.
Figure 2.9. Inhibition of aggregation of $\mathrm{A} \beta 42$ with two equivalents of $\mathrm{CP} 2, \mathrm{TP} 17$, thioflavin T , curcumin and congo red separately over 24 h and 48 h . Quantitative analysis of particle density
Figure 2.10. Disaggregation of A $\beta 42$ oligomers with two equivalents of CP2, TP17, thioflavin T , curcumin and congo red separately over 24 h and 48 h . Quantitative analysis of particle density in $25 \mu \mathrm{~m}^{2}$ AFM scans. A β oligomeric density from three independent AFM scans was calculated using Image J program. Error bars represent standard deviation. n = $=3$, *p, ${ }^{* *} \mathrm{p},{ }^{* * *} \mathrm{p},{ }^{* * * *} \mathrm{p},{ }^{* * * * *} \mathrm{p}<0.01$ compared with their respective controls.
Figure 2.11. Schematic representation of SPR principle. ${ }^{28}$ (This picture is modified from the manufacturer's handbook)
Figure 2.12. Immobilization of $A \beta$ on to CM5 gold chip. (1) Activation and immobilization of $A \beta$ on gold CM5 sensor chip. (2) The surface activated by EDC/NHS was exposed to a fresh $A \beta 40 / A \beta 42$ solution to form a peptide bond between the amine group on the peptide and the carboxylic group on the CM5 surface. (3) The deactivation of unreacted sites was achieved by blocking NHS-activations with ethanolamine. ${ }^{31}$

Figure 2.13. Real-time detection of the binding of tricyclic pyrone to $A \beta 40$ (A and B) and A $\beta 42$ (C and D) by SPR. The results from a typical experiment are shown. Color code: Blue is cell surface without immobilized $A \beta$ and Red is cell surface with immobilized $A \beta$. 95

Figure 2.14. SPR sensogram of the in real-time binding of CP2 to A $\beta 42$ oligomers-AB9234 antibody complex. The first two injections showed the immobilization of anti-amyloid oligomer antibody, the following five injections were A $\beta 42$ oligomers, and the last injection was CP2. Lower concentrations of $A \beta 42$ were used in the first four injections and higher concentration of $A \beta$ was used in the fifth injection to ensure that the immobilized antibody was bound with the oligomer.

Figure 2.15. Quantification of soluble $\mathrm{A} \beta 40$ and $\mathrm{A} \beta 42$ peptide separately in PBS buffer (pH 7.4) at $25^{\circ} \mathrm{C}$ over 7 days using a micro $\mathrm{BCA}^{\mathrm{TM}}$ protein assay reagent kit in the absence (marked in square for $\mathrm{A} \beta 40$ and circle for $\mathrm{A} \beta 42$) and presence (marked in diamond for $\mathrm{A} \beta 40$ and triangle for $\mathrm{A} \beta 42$) of 2 equivalents of CP 2

Figure 2.16. CD spectrum of different conformations of $A \beta$ peptide. ${ }^{37}$.
Figure 2.17. CD spectrum showing the effect of TFE on Aß42 peptide. 104
Figure 2.18. CD spectra of $\mathrm{A} \beta 42(40 \mu \mathrm{M})$ in phosphate buffer (7.7 mM) containing $\mathrm{NaCl}(8.9$ $\mathrm{mM}), \mathrm{Na} 2 \mathrm{CO} 3(15.5 \mu \mathrm{M}), \mathrm{NaOH}(0.91 \mathrm{mM})$, and 5.1% acetonitrile solution with and without CP2 over 48 h . The control solutions that contained the above incubation buffer with and without CP2 were prepared and their contribution was subtracted in the CD spectra. Left panel: A $\beta 42$ alone; 0 h: black; 9 h: light blue; 19 h: green; 21 h: dark blue; 45 h: brown; and 48 h : red. Right panel: A $\beta 42+\mathrm{CP} 2$ (1.25 equivalents); 0 h : black; 9.5 h : light blue; 15.5 h: green; 20 h : dark blue; 23 h : brown; and 48 h : red. 105
Figure 2.19. Trend of β-sheet content over time: circle is $\mathrm{A} \beta 42$ alone and square is $\mathrm{A} \beta 42+\mathrm{CP} 2$.

Figure 3.1. Schematic representation of C99 expression.. 115
Figure 3.2. MC65 cell death is dependent upon $A \beta$ generation and closely related to $A \beta$ aggregation into $\mathrm{A} \beta$-Oligomeric complexes. 116
Figure 3.3. Treatment of MC65 cells with TP compounds and a γ-secretase inhibitor, L-685 458 (A) MC65 cells: -TC, without TC to induce C99 expression; +TC, with TC to suppress C99 expression. $\mathrm{n}=3,{ }^{* *} \mathrm{p}<0.001$ compared with the - TC group. (B) L-685 458 of indicated concentrations was added at the same time as TC removal. Cellular proteins from 24 h cultures were analyzed by western blot using 6E10.
Figure 3.4. Dose dependent study of CP2. CP2 inhibits the formation of A β-OCs. (A) MC65 cells were treated with the indicated compounds for $24 \mathrm{~h}(2 \mu \mathrm{M} \mathrm{N} 9$ '- analog and TP17 were used). Western blot of cellular proteins was analyzed with 6E10 (B) MC65 cells were treated with TC or without TC, but with the indicated concentrations of CP2 for 24 h . Cellular proteins were analyzed by western blots using 6E10. .. 118
Figure 3.5. Structures of various tricyclic pyrone molecules. .. 119
Figure 3.6. Synthesized tricylic pyrone and pyridinone compounds.. 120
Figure 3.7. MC65 protection assay for different TP compounds. L-685 458 of indicated concentrations was added at the same time as TC removal. At 72 h , viability was assessed by MTT assay. Data are expressed as mean percentage viability $(\mathrm{n}=7)$ with parallel + TC cultures set at 100% viability. Error bars represent standard error. ${ }^{* * *}$ p $<0.001,{ }^{* *}$ p <0.01, compared with untreated -TC controls. 121

Figure 3.8. CP2 rapidly accumulates inside cells. MC65 cells were incubated with [$\left.{ }^{14} \mathrm{C}\right] \mathrm{CP} 2$ for the indicated periods of time, washed, and the cell-associated counts that were trypsinizable from cell pellets (cell surface CP2, empty circles) and those remaining in cells after trypsinization (intracellular CP2, filled circles) were quantified. Expressed values are quantities of CP2 calculated from the radioactivity of 10^{5} cells.

Figure 3.9. CP2 treatment reduces the level of cerebral $A \beta$. Brains from mice treated with CP2 or mock solution were sequentially extracted with RIPA and FA. A $\beta 42$ levels in the RIPA and FA extracts (RIPA soluble and FA soluble, respectively) were measured by ELISA. A β levels were expressed in nanograms per milligram of brain protein. CP2 reduced the levels of both RIPA and FA soluble A $\beta 42$. Error bars represent standard error. $n=6$. The p values were obtained by comparing the two groups using t -test.

List of Tables

Table 1.1. Neurodegenerative diseases: protein and pathology. ${ }^{7}$
Table 2.1. Amount of $\mathrm{A} \beta 40$ peptide $(\mu \mathrm{M})$ over 7 days at $25^{\circ} \mathrm{C}$ in PBS buffer $(\mathrm{pH} 7.4)$ at $25^{\circ} \mathrm{C}$ with and without CP2 (two equivalents) determined by micro $\mathrm{BCA}^{\mathrm{TM}}$ protein assays...... 102
Table 2.2. Amount of $\mathrm{A} \beta 40$ peptide $(\mu \mathrm{M})$ over 7 days at $25^{\circ} \mathrm{C}$ in PBS buffer $(\mathrm{pH} 7.4)$ at $25^{\circ} \mathrm{C}$ with and without CP 2 (two equivalents) determined by micro $\mathrm{BCA}^{\mathrm{TM}}$ protein assays...... 102

Table 3.1. TP compounds and their IC50 inhibitory activities... 122

Structure - Number Correlation List

1

3

8

9

11

17

14

16

18
10

12

19

20
22
24

23

27

29

31

33

35

37

34
36
38
28
30
32
4

39

41

43

45

50
44

51

53

55

57

59

61

52

54

56

58

60

62

xviii

63

65

67

69

64

66

68

70

List of Schemes

Scheme 1.1 Syntheses of CP2 (code name; 2) and TP3 (code name; 29). 13
Scheme 1.2. Proposed mechanism for the synthesis of tricyclic pyrone molecule 33. 14
Scheme 1.3. Modification at C-11 methyl of CP2 16
Scheme 1.4. Synthesis of CP2 analog, compound 38 17
Scheme 1.5. Synthesis of TP analog 40 18
Scheme 1.6. Syntheses of TP analogs 41 and 42 18
Scheme 1.7. Syntheses of TP analogs 43, 44, 45 and 46 20
Scheme 1.8. Synthesis of TP analogs 47 21
Scheme 1.9.Synthesis of TP analog 48 22
Scheme 1.10. Synthesis of pyranoquinolinone 52 and pyranoisoquinonlinone 53. 23
Scheme 1.11. Proposed mechanism for synthesis of 53 24
Scheme 1.12. Synthesis of a novel protected N2' pyridinone compound. 25
Scheme 1.13. Proposed mechanism for the synthesis of tricyclic pyrone molecule 56. 26
Scheme 1.14. Synthesis of novel pyridinone compounds 27
Scheme 1.15. Synthesis of novel bicyclic pyridinone compounds using a Wittig reagent. 28

List of Graphs

Graph 2.1. Correlations of concentrations of monomeric A $\beta 40$ and $A \beta 42$ separately versus UV absorbance with and without CP2 using Micro $\mathrm{BCA}^{\mathrm{TM}}$ protein assay reagent kit. Left panel: $A \beta 40$, diamond is $A \beta 40$ with $C P 2$ and square is $A \beta 40$ without $C P 2$; Right panel: $A \beta 42$, triangle is $\mathrm{A} \beta 42$ with CP2 and circle is $\mathrm{A} \beta 42$ without CP2. .. 100

List of Abbreviations

$\mathrm{Ac}_{2} \mathrm{O}$	Acetic anhydride
BCA	Bicinchoninic acid
BnBr	Benzyl bromide
BnNH_{2}	Benzyl amine
CSA	Camphorsulfonic acid
DCC	Dicyclohexylcarbodiimide
DHP	Dihydropyrane
DIBALH	Diisobutyl aluminium hydride
DMAP	4-Dimethylaminopyridine
DMSO	Dimethyl sulfoxide
DMF	Dimethylformamide
FA	Formic acid
HFIP	Hexafluoroisopropanol
HMPA	Hexamethylphosphoramide
LDA	Lithium diisopropylamine
MCPBA	$m e t a$-Chloroperbenzoic acid
MsCl	Methanesulfonyl chloride
PBS	Phosphate-buffered saline
PTSA	p-Toluenesulfonic acid
RIPA	Radioimmune precipitation assay
TBDMSCl	t-Butyldimethylchlorosilane
TFA	Trifluoroacetic acid

List of Publications

1. Anil Kumar, Nidhi Jain, Sandeep Rana and SMS Chauhan. Ytterbium(III)Triflate Catalyzed Conversion of Carbonyl Compounds into 1,3-Oxathiolanes in Ionic Liquids. Synlett., 2004, 15, 2785-2787.
2. Izumi Maezawa, Hyun-Seok Hong, Hui-Chuan Wu, Srinivas K. Battina, Sandeep Rana, Takeo Iwamato, Gary A. Radke, Erik Petterson, George M. Martin, Duy H. Hua, and Lee-Way Jin. A Novel Tricyclic Pyrone Compound Ameliorates Cell Death Associated with Intracellular Amyloid- β Oligomeric Complexes. J. Neurochem., 2006, 98, 57-67.
3. Hyun-Seok Hong, Izumi Maezawa, Nianhuan Yao, Bailing Xu, Ruben Diaz-Avalos, Sandeep Rana, Duy H. Hua, R. Holland Cheng, Kit S. Lam, and Lee-Way Jin. Combining the Rapid MTT Formazan Exocytosis Assay and the MC65 Protection Assay led to the Discovery of Carbazole Analogs as Small Molecule Inhibitors of A β Oligomerinduced Cytotoxicity. Brain Research, 2007, 1130, 223-234.
4. Charan Ganta, Aibin Shi, Srinivas K. Battina, Marla Pyle, Sandeep Rana, Duy H. Hua, Masaaki Tamura, Deryl Troyer. Combination of Nanogel Polyethylene GlycolPolyethylenimine and 6(hydroxymethyl)-1,4-anthracenedione as an Anticancer Nanomedicine. J. of Nanoscience and Nanotechnology, 2008, 8, 2334-2340
5. Aibin Shi, Thu A. Nguyen, Srinivas K. Battina, Sandeep Rana, Dolores J. Takemoto, Peter K. Chiang, and Duy H. Hua. Synthesis and Anti-breast Activities of Substituted Quinolines. Bioorg. Med. Chem. Lett., 2008, 18, 3364-3368.
6. Hyun-Seok Hong, Izumi Maezawa, Madhu Budmagunta, Sandeep Rana, Aibin Shi, Chun-Yi Wu, Duy H. Hua, Robert Vasser, Mei-Ping Kung, Ruiwu Liu, Kit S. Lam, R. Holland Cheng, John C. Voss, and Lee-Way Jin. Candidate Anti-A β Fluorine

Compounds Selected from Analogs of Amyloid Imaging Agents. Neurobiology of Aging, 2008, doi:10:1016/j.neurobiolaging.2008.09.019.
7. Hyun-Seok Hong, Sandeep Rana, Lydia Barrigan, Aibin Shi, Yi Zhang, Feimeng Zhou, Lee-Way Jin, and Duy H. Hua. Inhibition of Alzheimer's Amyloid A $\beta 42$ Toxicity with a Tricyclic Pyrone Molecule in vitro and in vivo. J. Neurochem., 2009, 108, 1097-1108.
8. Sandeep Rana, Hyun-Seok Hong, Lydia Barrigan, Lee-Way Jin and Duy H. Hua. Syntheses of Tricyclic Pyrones and Pyridinones and Protection of A β-Peptide Induced MC65 Neuronal Cell Death. Bioorg. Med. Chem. Lett., 2009, 19, 670-674.
9. Eugenia Trushina, Sandeep Rana, Cynthia T. McMurray, and Duy H. Hua. Tricyclic Pyrone Compounds Reverse Cellular Phenotype Caused By Expression of Mutant Huntington Protein In Striatal Neurons. BMC Neuroscience, 2009, 10, E-ISSN: 14712202.
10. Yuan-Ping Pang, Fredrik Ekström, Gregory A. Polsinelli, Yang Gao, Sandeep Rana, Duy H. Hua, Björn Andersson, Per Ola Andersson, Lei Peng, Sanjay K. Singh, Rajesh K. Mishra,, Kun Yan Zhu, Ann M. Fallon, David W. Ragsdale, Stephen Brimijoin. Selective and Irreversible Inhibitors of Mosquito Acetylcholinesterases for Controlling Malaria and Other Mosquito-Borne Diseases. PLoS One, 2009, 4, 8, e6851

Acknowledgements

I would like to give my most sincere gratitude to my research advisor, Dr. Duy H. Hua, for his insightful guidance, constant encouragement, and full support during my Ph.D. period. I have learned a lot from him both in experimental skills and moral character, especially in his dedication and persistent effort towards a scientific goal. I would also like to thank Dr. Stefan Bossmann, Dr. Kenneth Klabunde and Dr. Om Prakash and Dr. Kyeong-ok Chang for their time and instructions in serving on my advisory committee. I am also grateful to all other faculty and staff members in the Department of Chemistry for their help and support.

I sincerely thank all former and current members in Dr. Hua's group for their help in research and daily life. Special thanks go to Dr. Srinivas Battina and Dr. Yi Chen for their previous work in the synthesis of tricyclic pyrone compounds for the Alzheimer's project and Arleen Wu for her help during the biophysical studies of pyrone compounds. I also thank Lydia Roberts and Liang Zhang for providing me the starting material for my project. I am also grateful to Srinivas Battina, Kaiyan Lou, Huiping Zhao, Angelo Aguilar, Bernard Wiredu, Ana Jimenez, Aibin Shi, Mahendra Thapa, Keshar Prasain, Laxman Pokhrel, Thi Nyugen, Weier Bao, Allan Prior, and Angela for their help and friendship.

Special thanks are due to Dr. John Tomich and Sushanth Gudlur at Department of Biochemistry for their constant help and resources for the biophysical studies and to Dr. Om Prakash for his help in NMR studies of Alzheimer peptide.

Finally, I would like to thank my parents for their love and support through this period of my life and to my loving wife Rashmi Dhankhar for her immense support.

CHAPTER 1 - Synthesis of tricyclic pyrone and pyridinone compounds

1.1 Introduction

Abstract

Neurodegenerative diseases ${ }^{1}$ including Alzheimer's disease (AD), ${ }^{2}$ Huntington's disease (HD), ${ }^{3}$ Parkinson's disease, ${ }^{4}$ amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease) ${ }^{5}$ and prion diseases ${ }^{6}$ involve protein misfolding which produce aggregates in different regions of the brain. It has been observed that different neurodegenerative diseases have different protein aggregates and pathologies as described in Table 1.1. ${ }^{7}$ Alzheimer's disease (AD) is a neurological protein misfolding disease and is the fourth leading cause of death. It is characterized by progressive dementia that leads to incapacitation and death. It includes synaptic loss and neuronal death, which over course of time is responsible for the loss of memory, personality and eventual death. ${ }^{8}$ AD affects 15 million people worldwide, and its incidence increases from 3.5% per year at age 65 to 19% at age 85 and to 47% over 85 years old. ${ }^{8}$ To date, there is no successful treatment for AD patients. In this chapter I will discuss the synthesis of different tricyclic pyrone and pyridinone compounds and evaluate their bioactivities for counteracting AD protein misfolding.

1.2 Background

Alzheimer's disease involves protein misfolding and is a progressive and irreversible brain disorder with no cure. There are two characteristic neuropathological lesions that define AD namely, (i) extracellular plaques, also called amyloid plaques which are mainly composed of amyloid beta $(A \beta)$ peptides consisting of 39-43 amino acids, proteolytic cleavage products from amyloid precursor protein (APP) ${ }^{9}$; and (ii) intracellular tangles, also called neurofibrillary tangles (NFT), which are aggregates of $\mathrm{A} \beta$ and microtubule associated tau protein. ${ }^{10}$

The A β peptide segment is generated by the endoproteolysis of APP transmembrane protein by beta (β) and gamma (γ) secretase enzymes. ${ }^{11}$ APPs are synthesized as N - and O glycosylated integral transmembrane protein. They have a large amino $\left(\mathrm{NH}_{2}\right)$ terminal extracellular domain and a short 47 amino acids long cytoplasmic domain. ${ }^{12}$ The biological function of APP is unknown and it hinders the understanding of pathophysiology of AD. Suspected functions of APP include inhibition of extracellular serine proteases, ${ }^{13}$ involvement in cell adhesion ${ }^{14}$, and synaptic plasticity. ${ }^{15}$ APP may function as a cell receptor. ${ }^{16}$

Firstly, APP is first cleaved by α - or β - secretase. α - Secretase cuts close to transmembrane domain, in the middle of the $A \beta$ region of APP (Figure 1.1) and a a-APP ectodomain and a 83 -residue carboxy terminal (C83) fragment is formed. On the other hand, β secretase enzyme cleaves the APP forming β-APP ectodomain and a 99-residue carboxy terminal (C99) fragment. Proteolysis of C99 peptide residue fragment by gamma- (γ) secretase enzyme produces the heterogeneous $\mathrm{A} \beta$ (39-43 amino acids) peptide as shown in Figure 1.1. ${ }^{17}$

Disease	Etiology	Regions affected	Characteristic pathology	Disease protein deposited
Alzheimer's disease	1.Amyloid precursor protein 2. PS1 and PS2 3.Sporadic (ApoE risk factor)	Cortex, hippocampus, basal forebrain, brain stem	Neuritic plaque and neurofibrillary tangles.	$\mathrm{A} \beta$ peptide and hyperphosphorolated tau protein.
Huntington's disease	Huntingtin (dominant) Protein	Striatum, other basal ganglia	Intracellular inclusions	Huntingtin with polyglutamine expansion
Parkinson's disease	Sporadic α-Synuclein	Cortex, substantia nigra, locus ceruleus	Lewy bodies and lewy neurites	α-Synuclein
Amyotropic lateral sclerosis (ALS)	Sporadic Superoxide dismutase-1	Same as sporadic	Bomina bodies and axonal spheroids	Unknown
Prion disease	Sporadic, genetic and infectious	Cortex, thalamus, brain stem, cerebellum, other areas	Spongiform degeneration amyloid, other aggregates	Prion protein

Table 1.1. Neurodegenerative diseases: protein and pathology. ${ }^{7}$

Figure 1.1. Proposed pathway of generation of $A \beta$ peptide. (modified from reference $\mathbf{1 8}$ without the Author's permission)

Although the detailed mechanism of aggregation and its causes in brain remain unknown, extensive research has been conducted and it is widely accepted that $A \beta$ monomer is non-toxic, soluble and possess random coil/ alpha helix secondary structure. These A β monomeric species can undergo physiological changes/ conformation changes and aggregation to form soluble oligomers ($5-10 \mathrm{~nm}$ diameter and 6 nm height) and protofibrils ($\sim 180 \mathrm{~nm}$ length). The soluble oligomers undergo nucleation polymerization to form protofibrils and insoluble fibrils (Figure 1.2). ${ }^{18}$ Recent studies have shown that soluble $A \beta$ oligomers, rather than insoluble $A \beta$ fibrils are the primary toxic species in $\mathrm{AD} .{ }^{19}$ Hence, the conversion of $\mathrm{A} \beta$ from a soluble, monomeric form to a soluble, aggregated forms appears to be the initial process of amyloid neurotoxicity. It is also
hypothesized that the intraneuronal accumulation of $A \beta$ is the first step of the amyloid cascade. ${ }^{20}$ Also it has been proved that intracellular $\mathrm{A} \beta$ induces a higher toxicity, being at least 10,000 times more toxic than extracellular $A \beta{ }^{21}$

Figure 1.2. Proposed mechanism of $A \beta$ aggregation from monomers to fibrils. (Modified from reference 18 without the author's permission)
$\mathrm{A} \beta$ oligomers and protofibrils are highly neurotoxic, even in nanomolar concentrations, in vitro. ${ }^{21} \mathrm{~A} \beta 42$ is more toxic and tends to aggregate faster than $\mathrm{A} \beta 40$ due to its hydrophobicity. The following diagram shows the hydrophobicity indexes of the $A \beta(1-42)$ peptide segment. The more positive units refer to the more hydrophobic β-sheet forming fragments. The more negative units refers to the more hydrophilic fragments (Figure 1.3). ${ }^{22}$

Figure 1.3. The hydrophobicity indexes of amyloid (1-42) sequence. (Modified from reference 22 without the author's permission)

Although the elucidation of the genetic, biochemical and biophysical origin of AD is very complex, a number of factors have been determined to be involved in neuronal damage.

Alzheimer's disease occur in two forms: (1) the rare, early onset familial AD (FAD), an autosomal disorder caused by mutations in APP, presenilin1 (PS1) and presenilin 2 (PS2) membrane proteins. (2) A common sporadic non-familial AD , which results in the generation of $\mathrm{A} \beta 42$. 23 Presenilins (PS1 and PS2) are integral membrane proteins with six to eight transmembrane domains. PS are mainly localized in the Endoplasmic reticulum (ER) and Golgi system. ${ }^{24}$ Presenilin 1 (PS1) is believed to be an important component of the γ-secretase complex. Mutations in PS1 result in over production of the A $\beta 42 .{ }^{25}$ The toxicity of A β peptide also includes individual or combinations of apoptosis ${ }^{26}$ and the disruption of calcium ion homeostatis, ${ }^{27}$ toxic radicals, ${ }^{28}$ metal ions, ${ }^{29} \mathrm{pH}^{30}$ etc as depicted in Figure 1.4.

Figure 1.4. Contributing factors promoting $\mathrm{A} \beta$ aggregation and neuronal damage.

Recent studies have linked the $A \beta$ aggregation with apolipoprotein E (ApoE). ${ }^{31-32}$ ApoE is a 34 KDa (~ 299 amino acids) lipid transport protein, which is synthesized in liver and brain. It
exists in three isoforms in the human population, ApoE2, ApoE3 and ApoE4. In central nervous system ApoE is a common apolipoprotein in cerebrospinal fluid (CSF) and is secreted by glia cells in a high-density lipoprotein (HDL) like particle. ${ }^{33}$ Strittmatter et al. showed that E4 allele of ApoE is a genetic risk factor of late onset Alzheimer's disease (LOAD). ${ }^{34}$ The interaction of ApoE and $A \beta$ was suggested when ApoE immunoreactivity was detected in extracellular amyloid deposits in AD brain. Recently, binding of the C-terminus residue of ApoE was observed with $A \beta$ plaques and ApoE help to aid in the progression of small deposits to large deposits. ${ }^{35}$ In vitro and in vivo data suggest that ApoE interaction with $A \beta$ can affect mechanisms of both clearance and deposition of $A \beta{ }^{36-38}$

It has been shown that several tricyclic pyrone (TP) compounds protect MC65 cells from cell death. ${ }^{39}$ The structures of TP compounds are similar to that of pyripyropene A (1), ${ }^{40}$ an acylcoenzyme A cholesterol O-acyl-transferase (ACAT) inhibitor (Figure 1.5). Pyripyropenes were isolated from Aspergillus fumigatus FO-12189 as microbial metabolites that strongly inhibit ACAT. ACAT is an enzyme that catalyzes intracellular esterification of cholesterol. ACAT plays a critical role in the events that are contributing to atherosclerosis. Inhibitors of ACAT hold a promise as antiatherosclerotic agents. Recently, there is a growing body of evidence that links cholesterol to the development of Alzheimer's disease. ${ }^{41,42}$ It has been showed that animals fed with cholesterol rich diets exhibit increased levels of $\mathrm{A} \beta$ over the normal or low cholesterol diet. ${ }^{43}$ In vivo studies also support the above theory as increased cellular cholesterol levels result in the increase of $A \beta$ production in rabbits and mouse models. ${ }^{44}$ It was found that hypercholesterolemia induced by high cholesterol diet accelerated the A β deposition in APPtransgenic mice model of AD. ${ }^{44}$ Refolo. et.al. reported that a cholesterol lowering drugs that inhibits 7-dehydrocholesterol-reductase enzyme (this enzyme increases the cholesterol biosynthesis), reduces the A β deposition in APP transgenic mice model. ${ }^{44}$ Studies have been carried out on the interaction of A β with the plasma membranes, lipids including cholesterol and fatty acids. ${ }^{45,46}$ Binding of $A \beta$ to the lipids is dependent on the aggregation state of $A \beta$ i.e. monomeric $A \beta$ does not bind to the lipids, and aggregated form of $A \beta$ was found to bind to lipids. ${ }^{46}$ On the other hand, different groups have investigated the modulation effect of cholesterol on the interaction of A β and neuronal cell surface. ${ }^{47-49}$ Probst et al. suggested that the initial deposition of $\mathrm{A} \beta$ occurs on the neuronal plasma membrane. ${ }^{50}$ Later, Mori et al. found the
abnormal accumulation of cholesterol in $A \beta$ plaques and suggested that cholesterol plays an important role in the formation of senile plaques. ${ }^{51}$ Based on these findings, we synthesized and screened a number of tricyclic pyrone analogs, and discovered that a small molecule named CP2 (2) can protects MC65 cells from cell death. Synthesis of these tricyclic pyrone derivatives originated from our initial plan of synthesis of pyripyropenes. CP2 was found to be lipophilic and cell permeable with the ability to block $A \beta$ aggregation and disaggregates toxic $A \beta$ oligomers and protofibrils to non-toxic monomers in solution. ${ }^{39,} 52-54$

Figure 1.5. Structure of pyripyropene A and CP2.

1.2.1 Reported small compounds with potential Anti-A β activity

In the past decade, different organic compounds have been studied for the inhibition of aggregation of amyloid $A \beta$ peptide as a therapeutic strategy for the treatment of AD. It includes apomorphine (3), ${ }^{55}$ curcumin (4), ${ }^{56}$ porphyrins (5), ${ }^{57}$ congo red (6) ${ }^{58}$, and $\mathrm{Cu} / \mathrm{Zn}$ chelators such as Clioquinol, a 5-chloro-7-iodo-8-hydroxyquinoline (7) ${ }^{59}$. Congo red was the first reported small molecule to bind to the amyloid plaque. These compounds and their various analogs have shown to inhibit $A \beta$ aggregation. Although the mechanism of inhibition of aggregation is still unknown, many reported small molecules inhibitors share a structural similarity i.e. planarity and aromaticity that allows the alignment with the β-sheet structure (Figure 1.6). Current research is also looking at metal mediated oxidative stress. ${ }^{60,61}$ Abnormal levels of Cu, Zn and Fe have been reported in different parts of brain in neutrophil and plaque of a brain with AD. Concentration of
metal is 3-5 folds in AD patients when compared to a normal brain. ${ }^{62}$ Iron, copper and zinc have shown to enhance toxicity in in vitro $A \beta$ cultures. ${ }^{63,64}$ It has been observed that $A \beta$ peptides exert toxicity due to generation of cellular hydrogen peroxide, which facilitates apoptosis in neuron cell cultures. ${ }^{65}$ Toxicity due to generation of $\mathrm{H}_{2} \mathrm{O}_{2}$ was confirmed by addition of catalase enzyme, which converts $\mathrm{H}_{2} \mathrm{O}_{2}$ to water. ${ }^{66}$ It has been found that addition of $\mathrm{Cu} / \mathrm{Zn}$ or Fe in 0.15 mM initiate seeding of $A \beta$ which induces aggregation. Resolubilzation of $A \beta$ plaque from the postmortem AD brain has also been reported using metal chelators. ${ }^{67}$ Since metals interact with $\mathrm{A} \beta$ peptide and induce aggregation, ligands with intermediate affinity can be utilized to bind to the metal atom and thus disrupt the metal protein interactions responsible for $\mathrm{A} \beta$ aggregation. Clioquinol, a 5-chloro-7-iodo-8-hydroxyquinoline (CQ) has shown to have strong complexation with Cu and Zn thus has shown promising results (Phase II clinical trails) towards AD therapy. ${ }^{59}$

Figure 1.6. Reported organic compounds with anti-AD activity.

1.2.2 Natural bioactive compounds with lactone core

Tricyclic pyrone molecule CP2 has pyran functionality, and it exists in a range of biologically active compounds. Arisugacins A (8) and B (9) metabolites, structurally similar to pyripyropenes, are extracted from the culture broth of Penicillium $s p$. and possess potent and selective acethlcholinesterage (ACHE) inhibitory activities. The IC_{50} of arisugacins A and arisugacins B is 1 nM and 26 nM respectively. ${ }^{68-69}$

Figure 1.7. Bioactive microbial metabolites possessing pyran functionality.

Over the past 15 years, a number of engineered aromatic polyketides (figure 1.8) have been synthesized by using enzyme subunits (polyketides synthase enzymes; PKSs). These natural polyketide compounds have different structural backbones, but all contain 4-hydroxy-6-methyl-2-pyrone functionality. ${ }^{70}$ These engineered polyketides can be viewed as a library of aromatic pyrones, which can be used for the synthesis of different bioactive compounds of medicinal interest. ${ }^{70}$ Ridley et al. synthesized a series of polyketides from the compounds shown in Figure 1.9 by exploiting their pyrone core moiety, which was condensed with different α, β unsaturated aldehyde (17, 18 and 19). Rearrangement proceeds via a Knoevenegal 6π electrocyclic ring closing reaction mechanism, whereby the amine-activated aldehyde undergoes a nucleophilic attack by the pyrone. Novel engineered pyranopyrones (Figure 1.9) were evaluated as tumor inhibitors in three different cell lines. ${ }^{70}$ Hua et al. also reported the synthesis of a library of tricyclic pyranopyrones and found that only tricyclic pyrone with pyridine ring at position C 11 are toxic to cells (structurally similar to arisugasin) and thus studied for
acetylcholinesterase (AChE) inhibitory activity whereas methyl group at C11 position are completely non-toxic to cells. ${ }^{71}$

Figure 1.8. Structures of engineered type II polyketides. ${ }^{70}$

Figure 1.9. Aldehyde used (17-19) and the pyranopyrones prepared (20-23) in this study. ${ }^{70}$

1.2.3 Previous studies in our laboratory

Previous studies in our laboratory have found that a tricyclic pyrone compound namely CP2 showed protection against MC65 cells, a human neuroblastoma cell line with $\mathrm{IC}_{50}=$ $0.18 \mathrm{mM} .^{52}$ In our laboratory, Dr. Yi Chen ${ }^{72}$ synthesized CP2 in four steps (Scheme 1.1). 4-hydroxy-6-methyl-2-pyrone (24) and perillaldehyde were condensed in the presence of L-proline and ethyl acetate to afford a tricyclic pyrone. In order to induce chirality, (S)-(-)- perillaldehyde (25) was employed, and when refluxed with pyrone molecule (24) and L-proline, a single diastereoisomer (26) of tricyclic pyrone was obtained in a 78% yield ${ }^{71}$ The compound obtained was purified by crystallization from hot ethyl acetate to afford yellow needle shape crystals and the structure and stereochemistry at C-5 was unambiguously determine through X-ray
crystallography analysis. ${ }^{71}$ The mechanism for this condensation reaction has been proposed to take place via a 1,2 addition followed by dehydration and subsequent 6π - electrocyclic ring closing reaction (Scheme 1.2). ${ }^{71}$ The reason for the asymmetric induction might be from the isopropylene group since it needs to adopt the equatorial conformation to keep low transition energy, thus inducing an axial stereochemistry at C5 carbon. Selective hydroxylation of the terminal double bond in $\mathbf{2 6}$ was carried out by hydroboration followed by oxidation to yield two diastereomers (1:1) of alcohol (27) in a 69% yield. Mesylation of the alcohol (27) was achieved by treating alcohol with triethylamine and methanesulfonyl chloride to afford 28 in 94% yield. The mesylate 28 and adenine were taken together and heated in freshly distilled dimethylacetamide (DMA dried by CaH_{2}) at $150^{\circ} \mathrm{C}$ for 8 h . Column chromatographic separation provided two diastereomeric products (2, more polar, $\mathrm{N}-3$) and (29, less polar, $\mathrm{N}-9$ analog) in 10:1 ratio respectively. ${ }^{52}$

Scheme 1.1 Syntheses of CP2 (code name; 2) and TP3 (code name; 29).

Scheme 1.2. Proposed mechanism for the synthesis of tricyclic pyrone molecule 33.

A successful condensation reaction between a 4-hydroxy pyrone cyclohexen-1carbonaldehyde was accomplished in good yield and has substantial applicability in forming fused ring structures. Although there were multiple double bonds in TP structure, but selective hydroxylation was achieved by using 0.33 equivalents of borane and the reaction was carried out at low temperature. If the hydroboration was performed at room temperature both the isopropylene double bond and internal C9a and C10 would have been hydroxylated. Regiochemistry at N3 and N9 in compound 2 and 29 was unequivocally assigned with the help of ${ }^{2} \mathrm{D}$ - HMBC spectroscopy, where the correlation between carbon of $\mathrm{CH}_{2} \mathrm{~N}$ and adenine proton was observed.

1.3 Results and Discussion

My research project involved the synthesis and modification of tricyclic pyrones and pyridinones and the study of their anti-alzheimer activities. First project involved the modification of CP2 molecule. Our purpose is to make these tricyclic compounds more watersoluble and to improve their biological activity. Introducing a polar group such as alcohol at C11 position, might improve the hydrophilicity and thus form better hydrogen bonding with the
$\mathrm{A} \beta$ peptide. Since CP2 has a stereocenter at position C-12, another modification of CP2 is to have a double bond at C-12 and avoid diastereomeric mixture and study its biological activity. Since nitrogen containing compounds often increase bioactivities and brain-penetrating ability, a prudent modification is the displacement of oxygen atom at position 2 and position 5 with a nitrogen atom. CP2 molecule has adenine unit attached to it, we want to examine the effect of other purine- and pyrimidine- units to the TP and their M65 cell protective activities.

1.3.1 Modification at C-11 position of CP2

The first modification involved the addition of a hydroxyl group on the C-11 methyl group. Dr. Chen first introduced an acid group at C-11 position by treating pyrone (26) with 1.5 equivalent of freshly prepared LDA at $-78^{\circ} \mathrm{C}$ for 3 h . Anion formation was visible by the appearance of a blue color in the reaction mixture. Anion formed was stabilized by the addition of HMPA. The reaction mixture was stirred for 3 h and the reaction was quenched by carbon dioxide. The product was obtained in excellent yield. Similarly, when anon was quenched by the addition of excess para-formaldehyde, compound (30) was obtained in 28% yield. Several attempts have been made to improve the yield but went in vain. The compound $\mathbf{3 0}$ was not stable at room temperature and was used quickly in the next reaction. Alcohol $\mathbf{3 0}$ was treated with acetic anhydride in pyridine at $0^{\circ} \mathrm{C}$ overnight to afford 31 in a 62% yield. Selective hydroxylation of $\mathbf{3 1}$ was obtained by hydroboration followed by oxidation. This afforded two diastereomers at C-12 of alcohol 32 in 1:1 ratio with a 56% yield. Alcohol 32 was mesylated using methanesulfonyl chloride and triethylamine at $0^{\circ} \mathrm{C}$ in 90% yield. Mesylate $\mathbf{3 3}$ was displaced with adenine by heating the reaction mixture in dry DMA in $150^{\circ} \mathrm{C}$ to afford 34 in 8% yield after purification by column chromatography (Scheme 1.3). Low yields were due to the
decomposition of reaction at high temperature, and no reaction was observed at a low temperature. ${ }^{72}$ The final step involved the removal of acetate group, but compound 34 was decomposed in basic conditions.

Scheme 1.3. Modification at C-11 methyl of CP2.

1.3.2 Synthesis of CP2 analog with a double bond at C12

Since CP2 compound contains two diastereomers, they were difficult to separate. We want to remove the stereocenter at C12 by introducing a double bond. Pyrone 26 was treated with SeO_{2} and t-butylhydrogen peroxide in methylene chloride solvent, which produced $\mathbf{3 6}$ with a 22% yield. An alternative method was employed. This method involved the treatment of pyrone 26 with 0.1 equivalents of palladium (II) acetate, 3 equivalents of hydroquinone, and 0.2 equivalents of diethyl malonate, together in acetic acid solvent, which afforded compound $\mathbf{3 5}$ in a 60% yield after purification by column chromatography. ${ }^{74}$ Hydrolysis of the acetate function of 35 was carried out using potassium carbonate in methanol at $0^{\circ} \mathrm{C}$ for 1 h , which furnished 36 in a 82% yield. Alcohol 36 was treated with triethylamine followed by the addition of methanesulfonyl chloride to obtain compound 37 in 41% yield. Displacement of the mesylate
moiety with adenine was obtained by heating the reaction mixture in DMA at $150^{\circ} \mathrm{C}$ for 8 h to give compound $\mathbf{3 8}$ in a 26% yield. ${ }^{75}$ The regiochemistry at N3 position of $\mathbf{3 8}$ was unequivocally assigned by 2D-HMBC NMR spectroscopy where a cross peak between $\mathrm{CH}_{2} \mathrm{~N}$ and C 2 ' H (δ 8.02) was observed (Scheme 1.4).

Scheme 1.4. Synthesis of CP2 analog, compound 38.

1.3.3. Synthesis of heterocyclic pyrone analogs

The CP2 molecule has adenine unit attached to it. We want to examine the effect of other purine, pyrimidine, units and heterocyclic compounds to the TP and their M65 cell protective activities. Similar to CP2 synthesis, other heterocyclic TP analogs can be synthesized by treating mesylate (28) with other heterocyclic compounds. Yields obtained using same condition were moderate and required high temperatures. An alternate route was designed where alcohol 27 was converted to bromide (39) using PPh_{3} and CBr_{4} in 91% yield (Scheme 1.5). Adenine has a C 6
amino electron donating effect, which leads to the nucleophilic attack at the $\mathrm{N}-3$ position. 6chloropurine has no such electron donating effect thus no nucleophilic displacement reaction with bromide was observed. On the other hand, use of NaH with bromide and 6 -chloropurine at $80^{\circ} \mathrm{C}$ for 12 h yielded N 9 analog 40 in 82% yield (Scheme 1.5). ${ }^{75}$

Scheme 1.5. Synthesis of TP analog 40.

Treatment of bromide and cytosine was studied and two compounds, 41 and 42, were obtained. Compound 41 was the obtained in 28% yield, and the regiochemistry at N1 was unequivocally assigned by 2D-NOESY NMR spectroscopy where NOE correlation between $\mathrm{CH}_{2} \mathrm{~N}(\delta 3.93$ and 3.37 ppm) and C6-H of cytosine ($\delta 7.21 \mathrm{ppm}$) was observed. Also, the C 13 carbon peak of $\mathrm{CH}_{2} \mathrm{~N}$ in 41 is 53.9 ppm whereas the C 13 carbon peak of $\mathrm{CH}_{2} \mathrm{O}$ in $\mathbf{4 2}$ is 69.7 ppm (Scheme 1.6). ${ }^{76,77}$ Other bases such as $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ were also used but no improvement in the yield was observed.

Scheme 1.6. Syntheses of TP analogs 41 and 42

Using similar conditions, other heterocyclic analogs were synthesized from 3-amino-pyrazole-4-carbonitrile, 2-mercaptopyrimidine, thymine, and guanine respectively. The separate displacement reaction of bromide 39 with 3-amino-pyrazole-4-carbonitrile, 2mercaptopyrimidine, thymine and acetylated guanine with sodium hydride afforded displacement products $43,44,45$ and 46 respectively. The N1 regiochemistry of 43 was unequivocally assigned by NOE spectroscopy. ${ }^{78}$ Treatment of bromide and 2-mercaptopyrimidine with NaH was carried out and compound 44 was obtained, which is consistent to the reported literature. ${ }^{79}$ (Scheme 1.7)

Scheme 1.7. Syntheses of TP analogs 43, 44, 45 and 46.

Similarly, the N1 regiochemistry of 45 was unequivocally assigned by NOE spectroscopy. NOE correlation was observed between the $\mathrm{CH}_{2} \mathrm{~N}(\delta 3.82$ and 3.40 ppm$)$ and the C6-H of thymine ($\delta 6.94 \mathrm{ppm}$). ${ }^{80}$ Treatment of bromide (39) and guanine with 1 equivalent was studied, and to our surprise, no product was obtained. When heated at high temperature, the starting material was decomposed and bases other than NaH were used but no product was isolated. The literature has shown some evidence that in order to obtain N9 alkylation, we have
to protect the C 2 amino group of guanine. ${ }^{81-82} \mathrm{~N} 9$-alkylated product 46 was isolated with a 15% yield when N 2 -acetylated guanine and NaH when treated with bromide. NOE correlation was observed between the $\mathrm{CH}_{2} \mathrm{~N}$ ($\delta 4.46$ and 4.03 ppm) and $\mathrm{C} 8-\mathrm{H}(\delta 7.73 \mathrm{ppm}$) proton (Scheme 1.7).

Compound 47 has a structure similar to CP2 but is fluorescent in nature thus can be used for staining of plaques with fluorescence microscopy. No displacement reaction of 2 aminopurine and bromide was observed, when no base was used. Different bases were used and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ yielded the compound 47 in 48% yield. The N9 regiochemistry was assigned by NOE correlation between the $\mathrm{CH}_{2} \mathrm{~N}$ ($(\delta 4.10$ and 3.89 ppm$)$ and the $\mathrm{C} 8-\mathrm{H}$ proton ($(\delta 7.71 \mathrm{ppm})$ and no correlation was observed between $\mathrm{CH}_{2} \mathrm{~N}$ and $\mathrm{C} 6-\mathrm{H}$ proton (Scheme 1.8). ${ }^{83}$

Scheme 1.8. Synthesis of TP analogs 47.

The amine group is a polar group and is known to be important in lots of compounds. Therefore, efforts were made to attach an amino group directly to the tricyclic pyrone core. Dr. Yi Chen did it by selective hydroxylation of tricyclic pyrone 26 followed by oxidation to produce 27. Mesylation, nucleophilic substitution and reduction of azide were carried out and the desired amine 48 was obtained. We are interested in this amine moiety because various polar heterocyclic aldehydes can be coupled to the tricyclic pyrone core. An alternative route to the amine synthesis was followed. The desired amine was obtained, which is being used to synthesize different analogs, by treating the tricyclic pyrone with $\mathrm{BH}_{3} \bullet$ THF and in situ refluxing with hydroxylamine- O-sulfonic acid (Scheme 1.9).

Scheme 1.9.Synthesis of TP analog 48.

1.3.4 Synthesis of pyrone compounds having nitrogen in middle ring: pyranoquinolinone and pyranoisoquinonlinone compounds

Since nitrogen containing compounds often exhibit increased bioactivity and brainpenetrating abilities, only O^{\prime} '-analogs have been synthesized in our laboratory. Another prudent modification with a potentially interesting anti-Alzheimer activity would involve the displacement of the oxygen atom (O5') with a nitrogen atom in the middle ring of tricyclic pyrone. Dr. Chen synthesized 4-amino-6-methyl-2-pyrone (51) from 4-hydroxy-6-methyl-2pyrone (24) in three steps (Scheme 1.10)..$^{84} \mathrm{He}$ was interested in expanding the application of new condensation reaction (Scheme 1.2) towards the synthesis of biologically potent compounds. Compound 24 was stirred in DMF. Then PBr_{3} in diethyl ether was added dropwise with constant stirring at $0^{\circ} \mathrm{C}$ followed by heating the reaction mixture at $60^{\circ} \mathrm{C}$ overnight. This
yielded compound 49 , which was purified by column chromatography (81% yield). ${ }^{84}$ The bromide was converted to azide by its treatment with sodium azide in DMF at $0^{\circ} \mathrm{C}$ followed by column chromatography which afforded compound $\mathbf{5 0}$ in a 80% yield. Reduction of azide $\mathbf{5 0}$ to amine 51 was achieved by treating the azide with Pd / C in ethanol at room temperature to form the product in a quantitative yield. ${ }^{84}$ To their surprise, when amine 51 and cyclohexene-2carbonaldehyde was refluxed in ethyl acetate, no reaction was observed. Several other attempts have been made but in vain. Eventually, a successful condensation reaction between amine (51) and aldehyde was observed in 0.1 equivalents of (S)-(+)-10-camphorsulfonic acid to give a mixture of linear tricyclic pyranoquinoline (19\%) and L-shaped pyranoisoquinoline (48\%). We extended the application of the reaction by using amine 51 and (S)-(-)-perillaldehyde (25) and (d)-camphor sulfonic acid, using toluene as a solvent and heated to $85^{\circ} \mathrm{C}$ for 3 days. This resulted in the formation of two compounds ($\mathbf{5 2}$ and $\mathbf{5 3}$) in 1:1 ratio, which were separated by column chromatography in 36% yield (Scheme 1.10). ${ }^{75}$

Scheme 1.10. Synthesis of pyranoquinolinone 52 and pyranoisoquinonlinone 53.

The reaction proceeds in two different pathways for the formation of $\mathbf{5 2}$ and $\mathbf{5 3}$. The proposed mechanism for the formation of $\mathbf{5 2}$ is same as that of tricyclic pyrone. The condensation reaction has been proposed to take place via a 1,2 addition followed by dehydration and subsequent 6π - electrocyclic ring closing reaction. Compound 53 involved the imine formation followed by 6π - electrocyclic ring closing reaction (Scheme 1.11).

Scheme 1.11. Proposed mechanism for synthesis of 53.

1.3.5 Synthesis of novel pyranopyridinone analogs (N2'-analogs)

Water solubility is an important factor for any compound to be used in a biological system. With this aim in mind, an attempt has been made to increase the solubility of these tricyclic compounds. It can be achieved by replacing the oxygen atom at position 2 of pyrone with a nitrogen atom. This was achieved by heating 4-hydroxy-6-methyl-2-pyrone (24) and p methoxy benzyl amine MPM (54) in water for 24 h followed by filtration of desired compound 55 in 60% yield. ${ }^{80}$ We suspect the attack of amine group to MPM to the pyrone and leads to ring opening followed by dehydration to form a MPM-protected pyridinone. Compound $\mathbf{5 5}$ was treated with perialdehyde (25) in the presence of piperidine and glacial acetic acid and refluxed overnight in chloroform to give 56 in a 90% yield as a single diastereomer. ${ }^{85}$ The proposed mechanism is shown in Scheme 1.12. Selective hydroxylation of $\mathbf{5 6}$ was achieved by hydroboration followed by oxidation to furnish compound 57 in a 69% yield. The mesylated product 58 was obtained by treating the alcohol with triethylamine and methanesulfonyl chloride. Displacement of methanesulfonyl functional group with adenine was achieved by
heating the reaction mixture in DMA at $150^{\circ} \mathrm{C}$. Compound 59 was purified by column chromatography. The N3'-regiochemistry is similar to that of CP2 (2) and is unequivocally assigned by 2D NOESY NMR spectroscopy (Scheme 1.12). The final step involved the removal of the MPM group but was unsuccessful with DDQ, CAN, and TFA as either no reaction or decomposition of the starting material was observed. An alternate approach was therefore employed (Scheme 1.12). ${ }^{75}$

Scheme 1.12. Synthesis of a novel protected N2' pyridinone compound.

Scheme 1.13. Proposed mechanism for the synthesis of tricyclic pyrone molecule 56.

4-hydroxy-6-methyl-2-pyrone (24) was heated in the presence of a $28 \% \mathrm{NH}_{4} \mathrm{OH}$ solution for 6 h , resulting in the formation of yellow precipitate, which was filtered and crystallized from ethanol to afford 61 in an 80% yield as a yellow solid. ${ }^{86}$ A mixture of pyridinone (61), perialdehyde (25), piperidine and glacial acetic acid was refluxed overnight in chloroform to yield $\mathbf{6 2}$ in a 91% yield. ${ }^{85}$ Protection of the pyridinone nitrogen was achieved by its treatment with triethylamine base followed by addition of di-tert-butyldicarbonate $(\mathrm{Boc})_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ overnight to afford $\mathbf{6 3}$ in 97% yield. Selective hydroxylation of the terminal double bond was obtained by treating 63 with $\mathrm{BH}_{3} \bullet$ THF in THF at $-20^{\circ} \mathrm{C}$ followed by oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$ and NaOH , which resulted in the formation of compound $\mathbf{6 4}$ in 65% yield as two diasteromers in 1:1 ratio. Mesylated product 65 was obtained by treating the alcohol with triethylamine and methanesulfonyl chloride in a 79% yield. Displacement of the mesyl functional group with adenine was achieved by heating the reaction mixture in distilled DMA at $150^{\circ} \mathrm{C}$ for 8 h . Compounds 66 and 67 were purified by column chromatography. Because of high reaction temperature, the Boc protecting group was removed during the course of the reaction (Scheme 1.14). The N3 and N9 regiochemistry of 66 and 67 was unequivocally assigned using 2D NOESY spectroscopy and was in agreement with compound $\mathbf{2}$ and 29.

Scheme 1.14. Synthesis of novel pyridinone compounds.

The nitrogen atom at position 2 was successfully installed using ammonium hydroxide. The condensation reaction was used for the synthesis of tricyclic pyridinone core structure and a single diasteromer was obtained. The stereochemistry at C5a carbon was unambiguously determined through the X-ray crystallography analysis.

1.3.6. Synthesis of bicyclic pyrone and pyridinones analogs

More recently, we focused our attention on the synthesis of an array of bicyclic compounds with different substituents attached to them and in the screening of their anti-AD
activity. Pyridinone 61 was treated with triethylorthoformate and aniline in DMF:Acetic acid (3:1) mixture and refluxed for two hours. After the aqueous work up, 68 was obtained in 72% yield. ${ }^{87}$ Aldehyde $\mathbf{6 9}$ was obtained from $\mathbf{6 8}$ by refluxing it in 5% aqueous potassium carbonate solution for one hour in an open reaction vessel. ${ }^{88}$ Ethanol was used as a crystallization solvent to obtain aldehyde product in 95% yield as yellow solid. Treatment of $\mathbf{6 9}$ with [(methoxycarbonyl)methylene]triphenyl phosphorane in refluxing toluene for 2 hours led to the formation of 3,4-unsubstituted pyranopyridine 70 in 60\% yield (Scheme 1.15). ${ }^{89}$

Scheme 1.15. Synthesis of novel bicyclic pyridinone compounds using a Wittig reagent.

1.4 Conclusion and future work

Neurodegenerative diseases mainly occur because of protein misfolding. There is no cure for AD. In our laboratory, we are currently synthesizing different tricyclic pyrones and pyridinones, modifying L-shape fused pyranoisoquinolinone, and synthesized tricyclic pyridinones containing a nitrogen atom at 2 position as well as analogs having a nitrogen atom at position 5. CP2 has a structural scaffold that is accessible for optimization and for further synthesization for more CP2 analogs by modification at positions C11 and C13. These potentially position modifications remains a part of our future work.

1.5 Experimental Section

(5aS,7S)-7-Isopropenyl-3-methyl-1H,7H-5a,6,8,9-tetrahydro-1-oxopyrano[4,3-b][1] benzopyran (24)

To a solution of $5 \mathrm{~g}(0.04 \mathrm{~mol})$ of 24 in 200 ml of ethyl acetate under argon at room temperature was added $6.55 \mathrm{~g}(0.04 \mathrm{~mol})$ of aldehyde 25 and $2.28 \mathrm{~g}(0.02 \mathrm{~mol})$ of L-proline. The reaction mixture was heated to reflux for 5 h . The progress of the reaction was monitored using TLC using hexane and ethyl acetate as a developing solvent. The reaction mixture was washed with water and brine. The organic layer was extracted with ethyl acetate. The organic layer was dried with anhydrous sodium sulfate, filtered and concentrated. Column chromatographic on silica gel using gradient mixture of hexane and ethyl acetate afforded to give a yellow solid of 26 in 78% yield. Purification can also be performed by recrystallization using ethyl acetate as a solvent. $[\alpha]^{22}{ }_{\mathrm{D}}=+31.9^{0}\left(c 0.75, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.1(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 10 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}$, C4H), 5.1 (dd, $J=11 \mathrm{~Hz}, 5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{a} \mathrm{H}), 4.75(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 4.73(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 2.48$ (ddd, $J=14 \mathrm{~Hz}, 4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.22-2.02 (m, 3H), 2.19 (s, 3H, C4-Me), 1.88-1.72 (m, 2H), 1.74(s, $3 \mathrm{H}, \mathrm{MeC}=$), 1.31 (ddd, $J=25 \mathrm{~Hz}, 12.8 \mathrm{~Hz}, 4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 163.4,162.6,161.7,147.9$, $132.3,109.8,109.6,99.9,97.5,79.4,43.6,40.0,32.5,32.1,20.9,20.3 . ;$ MS FAB, m/z $259(\mathrm{M}+$ $1)$.

(5aS,7S)-7-[(1R) and (1S)-2-Hydroxy-1-methylethyl]-3-methyl-1H,7H-5a,6,8,9-tetrahydro-1-oxopyrano[4,3-b][1]benzopyran (27)

To a cold solution $\left(-20^{\circ} \mathrm{C}\right)$ of $3 \mathrm{~g}(11.74 \mathrm{mmol})$ of $\mathbf{2 6}$ in 25 mL of THF under argon, was added $5.85 \mathrm{~mL}(5.85 \mathrm{mmol})$ of $\mathrm{BH}_{3} \cdot \mathrm{THF}$ complex (1.0 M in THF). After stirring the solution at $-20^{\circ} \mathrm{C}$ for 1 h , kept in the refrigerator for 48 h at $-20^{\circ} \mathrm{C}$. Warm to $0^{\circ} \mathrm{C}$ and added 15 mL of 0.5% aqueous NaOH and 8 mL of 30% hydrogen peroxide were added. The solution was stirred for 2 h, diluted with 200 mL of water, and extracted three times with dichloromethane. The combined organic layer was washed with 100 mL of brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and diethyl ether as eluents to give 1.72 g (63% yield; based on reacted 26) of 27 as a mixture of two diastereomers at C12 (1:1; based on 13C NMR spectrum) and $0.43 \mathrm{~g}(14 \%$ recovery $)$ of $27 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $6.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 10 \mathrm{H}), 5.07(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{aH}), 3.62-3.52(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}$), $2.46(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.13-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.19-1.12$ $(\mathrm{m}, 2 \mathrm{H}), 0.92(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR (two diastereomers) $\delta 163.5,162.8,161.6$, $133.0,109.0,100.0,97.4,79.7,79.6,65.6,39.9,39.8,39.4,37.2,37.1,36.9,32.4,32.3,31.1$, 30.4, 28.5, 20.1, 13.2 (Me for a diastereomer), 13.1 (Me for another diastereomer).
(5aS,7S)-3-Methyl-7-[(1R) and (1S)- 2-(methanesulfonyloxy)-1-methylethyl]-1H,7H-

5a,6,8,9-tetrahydro-1-oxopyrano[4,3-b][1]benzopyran (28)

To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $1.72 \mathrm{~g}(6.23 \mathrm{mmol})$ of 27 in 20 mL of methylene chloride under argon, were added $2.62 \mathrm{~mL}(18.69 \mathrm{mmol})$ of triethylamine and $0.72 \mathrm{~mL}(9.35 \mathrm{mmol})$ of dimethylacetamide chloride. The solution was stirred for 3 h , diluted with 50 mL of NaHCO_{3}, and extracted three times with methylene chloride. The combined dichloromethane layer was washed with washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ether as eluents to give $2.16 \mathrm{~g}(94 \%$ yield $)$ of 28 as a mixture of two diastereomers ($1: 1$; based on ${ }^{13} \mathrm{C}$ NMR spectrum). ${ }^{1} \mathrm{H}$ NMR $\delta 6.08$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 10 \mathrm{H}), 5.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 4.18-4.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.03(\mathrm{~s}, 3 \mathrm{H}$, MeS), 2.49 (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.19 (s, 3H, Me), 2.14 - 1.11 (m, 7H), 0.98 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\delta 163.2,162.4,161.7,132.1,109.6,105.2,99.8,79.2,79.1,72.3,38.9,37.5$, $37.4,37.3,37.2,36.9,32.2,32.1,30.8,28.6,20.2,13.3$ (Me for a diastereomer), 13.2 (Me for another diastereomer).
(5aS,7S)-7-[(1R) and (1S)-2-Bromo-1-methylethyl]- 3-methyl-1H,7H-5a,6,8,9-tetrahydro-1-oxopyrano[4,3-b][1]benzopyran (39)

To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $0.50 \mathrm{~g}(1.83 \mathrm{mmol})$ of $27(2$ diastereomers at C 12$)$ and 0.96 g $(3.65 \mathrm{mmol})$ of triphenyl phosphine in 10 mL of dichloromethane under argon was added 1.52 g
$(4.56 \mathrm{mmol})$ of carbon tetrabromide in small portions. The reaction was stirred at $0^{\circ} \mathrm{C}$ for one hour. The solvent was removed using a rotary evaporator and the residue was subjected to a silica gel column (the silica gel was pre-treated with 1% triethylamine before packing the column) using a gradient mixture of hexane and diethyl ether as eluents to give $0.56 \mathrm{~g}(91 \%$ yield) of 39. ${ }^{1} \mathrm{H}$ NMR $\delta 6.09(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{dt}, J=12,7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{aH}), 3.41(\mathrm{~d}, J$ $\left.=4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right), 2.47(\mathrm{dd}, J=14,4 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.18-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.03$ $(\mathrm{q}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.16(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=7$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\delta(2$ diasteromers) 163.4, 162.6, 161.8, 132.4, 109.5, 99.9, 97.5, 79.4, $79.3,39.6,39.5,39.2,39.1,38.8,38.7,37.0,32.2,32.1,31.0,28.7,20.3,15.9,15.8$. HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BrO}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right) 339.0596$, found 339.0597.
(5aS,7S)-7-[(1R) and (1S)- 2-(N3-adenyl)-1-methylethyl]-3-methyl-1H,7H-5a,6,8,9tetra hydro-1-oxopyrano[4,3-b][1]benzopyran (2)

(5aS,7S)-7-[(1R) and (1S)-2-(N9-Adenyl)-1-methylethyl]-3-methyl-1H,7H-5a,6,8,9-tetra hydro-1-oxopyrano[4,3-b][1]benzopyran (29)

In a round bottom flask fitted with reflux condenser, taken 1.0 g of mesylate 28 (2.7 mmol) and 0.36 g of adenine (2.7 mmol) together and vacuum dried, purge argon and added 8 mL of DMA (dried over CaH_{2}) and reflux at $140^{\circ} \mathrm{C}$ overnight. TLC showed no starting material.

Cool to RT, dilute sodium bicarbonate and extract twice with methylene chloride and with 5% methanol in methylene chloride. Combined organic layer washed with brine, dried over sodium sulfate and column chromatographed on silica using methylene chloride and methanol as eluent to afford CP2 (2) in 21\% yield and TP2 (29) in 6% yield. Compound 29 (less polar; two diastereomers at C12); ${ }^{1} \mathrm{H}$ NMR $\delta 8.36\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2{ }^{\prime} \mathrm{H}\right), 7.78\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}{ }^{\prime} \mathrm{H}\right), 6.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 4 \mathrm{H})$, 5.89 (bs, 2H, NH2, $5.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 10 \mathrm{H}), 5.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{aH}), 4.24(\mathrm{dd}, \mathrm{J}=14,7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN})$, 4.01 (dd, $\mathrm{J}=14,7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$), 2.5-1.2 (a serious of $\mathrm{m}, 8 \mathrm{H}$), 2.19 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), $0.90(\mathrm{~d}, J=7$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\delta 163.4,162.7,161.9,155.6$ (adenine moiety), 153.5 (adenine moiety), 150.6 (adenine moiety), 140.9 (adenine moiety), 132.1, 119.8 (adenine moiety), 109.9, 99.9, $97.5,79.4,79.2,47.9,39.3,38.4,38.3,38.1,38.0,36.2,32.3,32.1,31.1,27.8,20.3,13.8$. Compound 2 (more polar; 2 diastereomers at C 12); ${ }^{1} \mathrm{H}$ NMR $\delta 8.07$ (s, C8 H of adenine), 7.98 and $7.97(2 \mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2 \mathrm{H}$ of adenine; 2 diastereomers), $6.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 10 \mathrm{H}), 5.72$ and $5.71(2 \mathrm{~s}, 1 \mathrm{H}$, C 4 H), 5.02 (m, 1H, C5aH), $4.50(\mathrm{dd}, \mathrm{J}=14,7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$), 4.08 ($2 \mathrm{dd}, \mathrm{J}=14,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$; 2 diastereomers), $2.46(\mathrm{~m}, 2 \mathrm{H}), 2.20$ and $2.19(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{Me} ; 2$ diastereomers), 2.10-1.22 (a series of $\mathrm{m}, 6 \mathrm{H}$), 0.91 (d, J1/47.0 Hz, $3 \mathrm{H}, \mathrm{Me}$). ${ }^{13} \mathrm{C}$ NMR (2 diastereomers) $\delta 163.2$ and 163.1, 162.4, $161.7,154.4,154.0,150.7,142.3,131.7$ and $131.6,121.0,199.8,99.7,97.3,79.0,78.8,54.5$ and $54.4,38.9,38.1$ and $38.0,37.1$ and $36.9,36.1,32.0$ and $31.9,30.7,27.6,20.1,13.3$ and 13.2. HRMS calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H}) 394.1881$, found 394.1875.

((2-hydroxyethyl)-7-isopropenyl-1H,7H-5a,6,8,9-tetrahydro-1-oxopyrano[4,3b][1]benzo pyran (30)

To a solution of 0.4 mL of diisopropylamine in 28 mL of THF was cooled to $-20^{\circ} \mathrm{C}$. To this solution 1.8 mL of $1.6 \mathrm{M} n \mathrm{BuLi}$ was added and stirred for 30 minutes. Thus obtained solution is the freshly prepared LDA and the reaction vessel is maintained at $-20^{\circ} \mathrm{C}$ to reduce the decomposition. In another flask, to a solution of $250 \mathrm{mg}(0.969 \mathrm{mmol})$ of $\mathbf{2 6} \mathrm{in} 5 \mathrm{~mL}$ THF was
cooled to $-78^{\circ} \mathrm{C}$. To this solution $19.4 \mathrm{~mL}(1.9372 \mathrm{mmol})$ of freshly prepared LDA was added via syringe. After five minutes of stirring at $-78^{\circ} \mathrm{C}$ the solution turned deep blue in color indicating the formation of anion. This solution was stirred at $-78^{\circ} \mathrm{C}$ for 2 h . In another flask a suspended solution of $290 \mathrm{mg}(9.6899 \mathrm{mmol})$ of paraformaldehyde in 10 mL THF was taken and cooled to $0^{\circ} \mathrm{C}$. The anion formed in another flask is transferred to the paraformaldehyde-THF mixture via cannula and allowed to stir at $0^{\circ} \mathrm{C}$ and slowly warmed to room temperature. The color of the solution turned reddish brown after reaching to room temperature. The progress of the reaction was monitored using TLC using hexane and diethylether as a developing solvent. The reaction mixture was washed with water and extracted using methylene chloride. The organic layer was washed with aqueous sodium bicarbonate solution and brine, dried over anhydrous sodium sulfate, filtered and concentrated. Column chromatographic on silica gel using gradient mixture of hexane and diethyl ether afforded to give a moderate yield 28% of $\mathbf{3 0}$ and 15% of starting material 26. $[\alpha]_{\mathrm{D}}{ }^{23}=+23.7^{0}\left(\mathrm{C} \mathrm{3.5}, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\mathrm{CDCl}_{3} \delta 6.06(\mathrm{~s}, 1 \mathrm{H})$, $5.86(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=11,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{a}-\mathrm{H}), 4.75\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.73\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right)$, $3.90\left(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.69\left(\mathrm{t}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.48(\mathrm{~m}, 1 \mathrm{H}), 2.20 \sim 1.70(\mathrm{a}$ series of $\mathrm{m}, 5 \mathrm{H}$), 1.73 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), $1.34 \sim 1.25(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 163.3$, 162.1, 148.0, 132.8, 109.9, 109.1, 101.1, 98.2, 79.6, 59.6, 43.6, 40.0, 37.3, 32.6, 32.1, 30.5, 20.9. HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})$ 289.1440, found 289.1411.
(5aS,7S)-3-(2-Acetoxyethyl)-7-isopropenyl-1H,7H-5a,6,8,9-tetrahydro-1-oxopyrano[4,3b][1] benzopyran (31)

To a solution of $202 \mathrm{mg}(0.7014 \mathrm{mmol})$ of $\mathbf{3 0}$ in 3 mL of distilled pyridine was added 143 $\mathrm{mg}(1.402 \mathrm{mmol})$ of acetic anhydride at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 7 h . The progress of the reaction was monitored using TLC using hexane and diethylether as a developing
solvent. The reaction mixture was washed with water and extracted with ethyl acetate. The organic layer was washed with 1 M HCl , aqueous sodium bicarbonate and brine, dried over anhydrous sodium sulfate, filtered and concentrated. Column chromatographic on silica gel using gradient mixture of hexane and diethyl ether afforded to give 140 mg of $31 \mathrm{in} 62 \%$ yield. $[\alpha]_{\mathrm{D}}{ }^{23}$ $=+16.9^{\circ}\left(\mathrm{C} 0.15, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{CDCl} 3$ $\delta 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{dd}, \mathrm{J}=11.2,4.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{a}-\mathrm{H}), 4.75\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.73\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.33\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.76$ $\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.48(\mathrm{~m}, 1 \mathrm{H}), 2.20 \sim 1.70($ a series of $\mathrm{m}, 5 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.28(\mathrm{qd}, J$ $=12.8,4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 170.9,163.0,160.9,147.9,132.9,110.0,109.6,100.8,98.5$, $79.6,60.8,43.6,40.0,33.6,32.5,32.1,30.5,20.1,20.9$. HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})$ 331.1545 , found 331.1536 .

(5aS,7S)-3-(2-Acetoxyethyl)-7-(2-hydroxy-1-methylethyl)-1H,7H-5a,6,8,9-tetrahydro-1-oxopyrano[4,3-b][1]benzopyran (32)

To a solution of $143 \mathrm{mg}(0.433 \mathrm{mmol})$ of $\mathbf{3 1} \mathrm{in} 3 \mathrm{~mL}$ THF under argon was added 0.43 $\mathrm{mL}(0.433 \mathrm{mmol})$ of $1 \mathrm{M} \mathrm{BH}_{3} \cdot \mathrm{THF}$ and the solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 minutes and stirred at $-20^{\circ} \mathrm{C}$ for two days. To the solution at $0^{\circ} \mathrm{C}, 1 \mathrm{~mL}$ of water, 0.5 mL of $0.1 \% \mathrm{NaOH}$ aqueous solution, and 0.5 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ were added, and the resulting solution was stirred for 1 h . The solution was washed with water and extracted with methylene chloride. The organic layer was washed with aqueous solution of ammonium chloride and brine, dried over anhydrous sodium sulfate, filtered and concentrated. Column chromatographic on silica gel using gradient mixture of hexane and diethyl ether afforded to give 72 mg of $\mathbf{3 2}$ in 56% yield along with 14% recovery of starting material 31. ${ }^{1} \mathrm{H}$ NMR $\mathrm{CDCl}_{3} \delta 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~m}, 1 \mathrm{H}$, C5a-H), $4.32\left(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right) 2.76\left(\mathrm{t}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.47$ (m, 1 H), $2.17 \sim 1.10$ (a series of $\mathrm{m}, 7 \mathrm{H}), 0.91(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 170.9$, 163.0,
$160.9,133.4,118.1,109.3,100.8,98.5,79.9,66.0,60.8,40.2,39.5,37.6,37.5,37.3,33.6,31.2$, 21.0. HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H}) 349.1651$, found 349.1649.
(5aS,7S)-3-(2-Acetoxyethyl)-7-[(2-methanesulfonyloxy)-1-methylethyl]-1H,7H-5a,6,8,9-tetrahydro-1-oxopyrano[4,3-b][1]benzopyran (33)

To a solution of $85 \mathrm{mg}(0.2442 \mathrm{mmol})$ of $\mathbf{3 2} \mathrm{in} 3 \mathrm{~mL}$ of methylene chloride was added $0.11 \mathrm{~mL}(0.7326 \mathrm{mmol})$ of triethylamine at $0^{\circ} \mathrm{C}$. To the above solution $28 \mu \mathrm{~L}(0.3664 \mathrm{mmol})$ of methanesulfonyl chloride was added at $0^{\circ} \mathrm{C}$, the resulting mixture was stirred at room temperature for 3 h . The progress of the reaction was monitored using TLC using hexane and diethyl ether as a developing solvent. The reaction mixture was washed with water and extracted with methylene chloride. The organic layer was washed with aqueous solution of sodium bicarbonate and brine, dried over anhydrous sodium sulfate, filtered and concentrated. Column chromatographic on silica gel using gradient mixture of hexane and diethyl ether afforded to give 94 mg of $\mathbf{3 3}$ in 90% yield. ${ }^{1} \mathrm{H}$ NMR $\mathrm{CDCl}_{3} \delta 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{a}-\mathrm{H})$, $4.29\left(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OS}\right), 3.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~S}\right), 2.73(\mathrm{t}, J=6.3 \mathrm{~Hz}$, CH_{2}), $2.47(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 2.17 \sim 1.10$ (a series of m, 7 H), $2.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 0.96(\mathrm{~d}, J$ $=7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 170.9$, 162.9, 162.3, 161.1, 132.7, 109.7, 100.7, 98.4, 79.4, 72.3, 60.8, 39.1, 37.6, 37.5, 37.4, 33.6, 32.3, 30.9, 13.3. HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{8} \mathrm{~S}(\mathrm{M}+\mathrm{H}) 427.1426$, found 427.1434.
(5aS,7S)-3-(2-Acetoxyethyl)-7-[(1R) and (1S)- 2-(N3-adenyl)-1-methylethyl]-1H,7H-5a,6,8,9-tetrahydro-1-oxopyrano[4,3-b][1]benzopyran (34)

To a solution of $94 \mathrm{mg}(0.22 \mathrm{mmol})$ of $\mathbf{3 3} \mathrm{in} 1.5 \mathrm{ml}$ of DMA was added $33 \mathrm{mg}(0.2442$ mmol) of adenine and the resulting mixture was heated to $150^{\circ} \mathrm{C}$ for 7 h . The reaction mixture was cooled to room temperature and $50 \mathrm{mg}(0.59 \mathrm{mmol})$ of sodium bicarbonate was added and DMA was distilled out under reduced pressure to obtain a brown residue. This residue was made to dissolve in minimum amount of methanol and applied to column directly. Column chromatographic on silica gel using gradient mixture of chloroform and methanol afforded to give 5 mg of $\mathbf{3 4}$ in low yields. The product was further purified by HPLC using acetonitrile, water and 0.1% trifluoro acetic acid as solvents to give pure 34. ${ }^{1} \mathrm{H}$ NMR $\mathrm{CDCl}_{3} \delta 8.07$ (s, C8'H of adenine), $8.01 \& 8.00(2 \mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2 ’ \mathrm{H}$ of adenine; 2 diastereomers), $6.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 10 \mathrm{H}), 5.79$ \& $5.78(2 \mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}), 5.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{aH}), 4.54(2 \mathrm{dd}, J=13.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN} ; 2$ diastereomers), $4.34 \& 4.33\left(2 \mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O} ; 2\right.$ diastereomers), 4.07 (dd, $J=13.5,8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHN}), 2.78 \& 2.76\left(2 \mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} ; 2\right.$ diastereomers), $2.07 \& 2.06(2 \mathrm{~s}, 3 \mathrm{H}$, Me; 2 diastereomers), $2.60 \sim 1.22$ (a series of $\mathrm{m}, 8 \mathrm{H}$), 0.91 ($\mathrm{d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}$) ${ }^{13} \mathrm{C}$ NMR $182.0,181.6,164.8,163.3,161.1,155.8,152.9,148.0,141.6,131.1,129.6,129.1,121.3,100.7$, $79.1,78.9,63.8,59.2,50.5,33.6,29.9,21.1,15.1$. HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})$ 466.2090 , found 466.2081.
(5aS,7S)-7-[(3-acetoxy-1-propen-2-yl)]-3-methyl-1H,7H-5a,6,8,9-tetrahyro-1-oxopyranol [4,3-b][1]benzopyran (35)

A solution of $200 \mathrm{mg}(0.78 \mathrm{mmol})$ of $\mathbf{2 6}, 17 \mathrm{mg}(78 \mu \mathrm{~mol})$ of palladium acetate, 0.25 g $(2.3 \mathrm{mmol})$ of benzoquinone, and $25 \mathrm{mg}(0.16 \mathrm{mmol})$ of diethyl malonate in 5 mL of acetic acid under argon was stirred and heated to $75^{\circ} \mathrm{C}$ for 2 h and $47^{\circ} \mathrm{C}$ for 24 h . The reaction solution was cooled to $25^{\circ} \mathrm{C}$, filtered through celite, washed with aqueous NaHCO_{3}, water, and brine, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), concentrated and column chromatographed on silica gel using a mixture of hexane: ethyl acetate as eluent to give 0.15 g (60% yield) of 35 ($5 \mathrm{aS}, 7 S$)-7-[(3-acetoxy-1-propen-2-yl)]-3-methyl-1 $\mathrm{H}, 7 \mathrm{H}-5 \mathrm{a}, 6,8,9$-tetrahyro-1-oxopyranol[4,3-b][1]benzopyran. $\quad[\alpha]_{\mathrm{D}}^{22}=$ $+24.3^{\circ}\left(\mathrm{c} 0.07, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 6.12(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 5.12\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.10-5.09$ (m, $1 \mathrm{H}, \mathrm{CHO}), 5.02\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}\right), 2.51(\mathrm{dt}, J=14,4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-$ $2.24(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.11 \sim 2.05(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.89(\mathrm{~m}, 1$ H), 1.77 (dd, $J=12,11 \mathrm{~Hz}, 1 \mathrm{H}), 1.36-1.31(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 170.9,163.4,162.7,161.9$, $146.4,131.8,112.9,110.0,99.9,97.5,79.2,66.1,40.0,39.5,32.4,32.3,21.2,20.3$. HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{5}\left(\mathrm{M}+\mathrm{H}^{+}\right) 317.1389$, found 317.1396.

(5aS,7S)-7-[(3-Hydroxy-1-propen-2-yl)]-3-methyl-1H,7H-5a,6,8,9-tetrahyro-1-oxopyrano [4,3-b][1]benzopyran (36)

A solution of $0.59 \mathrm{~g}(1.9 \mathrm{mmol})$ of the above acetoxy tricyclic pyrone 35 and $0.51 \mathrm{~g}(3.7$ mmol) of potassium carbonate in 5 mL of methanol was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The solution was neutralized with 1 N HCl , and extracted with dichloromethane three times. The combined extract was washed with aqueous $\mathrm{NH}_{4} \mathrm{OH}$, water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ether as eluents to give $0.42 \mathrm{~g}(82 \%$ yield $)$ of compound 36. $[\alpha]^{22}{ }_{\mathrm{D}}=+20.0^{\circ}\left(\mathrm{c} 0.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 6.12(\mathrm{~s}, 1$ H), $5.73(\mathrm{~s}, 1 \mathrm{H}), 5.13-5.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 5.11\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.94\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.15(\mathrm{~d}, J$
$\left.=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.51(\mathrm{dt}, J=14,4 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.18 \sim$ $2.08(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{q}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 1.40-1.28(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $163.5,162.7,161.7,151.4,132.2,109.5,109.4,99.9,97.4,79.3,64.9,40.2,38.9,32.4$ (2 C), 20.2; HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right)$275.1283, found 275.1305.

(5aS,7S)-7-[(3-methanesulfonyloxy-1-propen-2-yl)]-3-methyl-1H,7H-5a,6,8,9-tetrahyro-1-oxopyranol[4,3-b][1]benzopyran (37)

A cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $0.15 \mathrm{~g}(0.54 \mathrm{mmol})$ of alcohol $36,92 \mathrm{mg}(0.80 \mathrm{mmol})$ of methanesulfonyl chloride, $0.20 \mathrm{~mL}(1.61 \mathrm{mmol})$ of triethylamine in 5 mL of methylene chloride was stirred under argon for 2 h . The reaction solution was diluted with dichloromethane (30 mL) and washed with aqueous NaHCO_{3}, water, and brine, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), concentrated, column chromatographed on silica gel using a gradient mixture of hexane, diethyl ether and ethyl acetate as eluents to give $77 \mathrm{mg}(41 \%$ yield $)$ of $\mathbf{3 7} \cdot[\alpha]^{22}{ }_{\mathrm{D}}=+21.1^{\circ}\left(\mathrm{c} 0.09, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR δ $6.10(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.26\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.14\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.11(\mathrm{dd}, J=12,5 \mathrm{~Hz}, 1 \mathrm{H}$, CHO), $4.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.51(\mathrm{dt}, J=14,3 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.20(\mathrm{~m}, 2$ H), 2.19 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), $2.15 \sim 2.03(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{dd}, J=12,11 \mathrm{~Hz}, 1 \mathrm{H}$), $1.32(\mathrm{qd}, J=13,4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 163.4,162.6,161.9,144.8,131.5,116.1,110.1,99.9$, $97.5,78.9,71.5,39.8,38.7,38.1,32.2,32.1,20.3$; HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{6} \mathrm{~S}\left(\mathrm{M}^{+} \mathrm{H}^{+}\right)$ 353.1059 , found 353.1044 .

(5aS,7S)-7-\{[3-(6-Amino-9H-purin-3-yl)-1-propen-2-yl]\}-3-methyl-1H,7H-5a,6,8,9-tetrahydro-1-oxopyrano[4,3-b][1]benzopyran (38)

A solution of $77 \mathrm{mg}(0.22 \mathrm{mmol})$ of mesylate 37 and $30 \mathrm{mg}(0.22 \mathrm{mmol})$ of adenine in 1.5 mL of DMA was heated at $150^{\circ} \mathrm{C}$ under argon for 10 h . DMA was removed via distillation under vacuum $(0.1 \mathrm{~mm} \mathrm{Hg})$, and the residue was subjected to silica gel column chromatography using a gradient mixture of hexane, ethyl acetate, and methanol as eluents to give $19 \mathrm{mg}(26 \%$ yield) of compound 38. $[\alpha]^{22}{ }_{\mathrm{D}}=-24.7^{\circ}\left(\mathrm{c} 0.09, \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H}$ NMR $\delta 8.07\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2{ }^{\prime} \mathrm{H}\right), 8.02(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{C}{ }^{\prime} \mathrm{H}\right), 6.11(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 5.14\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 5.05\left(\mathrm{~s}, 2 \mathrm{H},=\mathrm{CH}_{2}\right), 5.03-5.00(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHO}), 4.92\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.50-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.12(\mathrm{~m}, 1 \mathrm{H})$, $2.20(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.08 \sim 1.93(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{q}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{qd}, J=12,4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 163.4,162.6,162.0,154.5,154.2,151.1,145.9,142.6,131.3,120.8,114.2,110.2$, $99.9,97.5,78.8,53.1,39.9,39.5,32.3,32.2,20.3$; HRMS calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 392.1723, found 392.1715.

(5aS,7S)-7-[(1R) and (1S)-2-(6-chloropurin-9-yl)-1-methylethyl]-3-methyl-1H,7H-5a,6,8,9-tetrahydro-1-oxopyrano[4,3-b][1]benzopyran (40)

To a solution of $3.0 \mathrm{mg}(0.15 \mathrm{mmol})$ of NaH in 1.5 mL of DMF under argon was added $23 \mathrm{mg}(0.15 \mathrm{mmol})$ of 6 -chloropurine at $25^{\circ} \mathrm{C}$, and the solution was stirred for 1 h . This solution was then added to a solution of $50 \mathrm{mg}(0.15 \mathrm{mmol})$ of bromide 39 in 1.5 mL of DMF via
cannula. The reaction solution was stirred at $25^{\circ} \mathrm{C}$ for 24 h and $80^{\circ} \mathrm{C}$ for 20 h , diluted with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted twice with diethyl ether. The combined organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated and column chromatographed on silica gel using a gradient mixture of dichloromethane and methanol as eluents to give 50 mg (82% yield) of compound 40 (as two diastereomers at C12). ${ }^{1} \mathrm{H}$ NMR $\delta 8.69 \& 8.68\left(2 \mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2{ }^{\prime} \mathrm{H}\right.$), $8.04 \&$ $8.03\left(2 \mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 8^{\prime} \mathrm{H}\right), 6.03(\mathrm{~s}, 1 \mathrm{H}), 5.66 \& 5.64(2 \mathrm{~s}, 1 \mathrm{H}), 5.00-4.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{aH}), 4.28$ (ddd, $J=14,7,2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 4.04 (ddd, $J=14,9,3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $2.48-2.38(\mathrm{~m}, 1 \mathrm{H})$, $2.13 \& 2.12(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.20-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.50-$ $1.40(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.18(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\delta 163.4$ \& 163.3, $162.7 \& 162.6,161.9,152.2,151.4,145.5,131.8,110.0,99.8,97.5,79.2 \& 79.0,48.4 \& 48.3$, $39.1,38.4 \& 38.3,38.26 \& 38.2,36.6,36.4,32.2 \& 32.0,31.6,30.9,28.0,20.3,13.94 \& 13.91$. HRMS calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{ClN}_{4} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right) 413.1380$, found 413.1372. 2D NOESY spectrum shows correlation of $\delta \mathrm{C} 8^{\prime}-\mathrm{H}(\delta 7.21 \mathrm{ppm})$ signal with $\mathrm{CH}_{2} \mathrm{~N}(\delta 3.93$ and 3.39 ppm$)$ peaks.
(5aS, 7S)-7-[(1R) and (1S)-2-(N1-cytosinyl)-1-methylethyl]-3-methyl-1H,7H-5a,6,8,9 tetrahyro-1-oxopyrano[4,3-b][1]benzopyran (41)

(5aS,7S)-7-((R)-1-(4-amino-1,2-dihydropyrimidin-2-yloxy)propan-2-yl)-6,7,8,9-tetrahydro-3-methylpyrano[4,3-b]chromen-1(5aH)-one (42)

To a solution of $24 \mathrm{mg}(0.59 \mathrm{mmol})$ of NaH in 3 mL of DMF under argon was added 66 $\mathrm{mg}(0.59 \mathrm{mmol})$ of cytosine at $25^{\circ} \mathrm{C}$, and the solution was stirred for 1 h . This solution was then added to a solution of $0.20 \mathrm{~g}(0.59 \mathrm{mmol})$ of bromide 39 in 2 mL of DMF via cannula, and the resulting solution was stirred at $25^{\circ} \mathrm{C}$ for 24 h and $85^{\circ} \mathrm{C}$ for 24 h . The reaction solution was diluted with dichloromethane and washed with water, and brine, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), concentrated, and column chromatographed on silica gel using a gradient mixture of dichloromethane and methanol as eluents to give 21 mg (10% yield) of compound 42 (less polar; 2 diastereomers (-O compound) and 62 mg (28% yield) of compound 41 (more polar; 2 diastereomers) along with 25 mg of tricyclic pyrone 26 (from dehydrobromination reaction). Compound 41: (more polar) ${ }^{1} \mathrm{H}$ NMR $\delta 7.21(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6$ 'H), $6.04(\mathrm{~s}, 1 \mathrm{H}), 5.87$ (d, $J=$ $\left.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5{ }^{\prime} \mathrm{H}\right), 5.72(\mathrm{~s}, 1 \mathrm{H}), 5.06-5.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{aH}), 3.98-3.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.42-$ $3.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.48-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.08-1.92(\mathrm{~m}, 2$ H), $1.78-1.52\left(\mathrm{~m}, 3 \mathrm{H} 0,1.30-1.12(\mathrm{~m}, 1 \mathrm{H}), 0.84(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}\right.$ NMR δ 165.5, 163.6, 162.7, 161.9, 156.9, 146.0, 132.5, 109.4, 100.0, $97.4,95.2,79.46 \& 79.40,53.9,38.3,37.1 \&$ $36.5,32.3,31.8 \& 31.0,29.9 \& 28.0,20.3,13.5$. 2D NOESY spectrum shows correlation of δ 7.21 ppm signal with $\delta 3.93$ and 3.39 ppm . Compound 42 (less polar): ${ }^{1} \mathrm{H}$ NMR $\delta 8.02$ (d, $J=7$ Hz, $1 \mathrm{H}, \mathrm{C} 6^{\prime} \mathrm{H}$), $6.10\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5^{\prime} \mathrm{H}\right), 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{aH})$, $4.97\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.22-4.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.46(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.15$ $-1.54(\mathrm{~m}, 5 \mathrm{H}), 1.34-1.10(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\delta 165.4,164.9$, $163.5,162.8,161.7,157.6,133.0,109.3,100.0,99.7,97.5,79.8 \& 79.6,69.7,39.4,37.4 \& 37.3$, $37.2 \& 37.1,36.9,32.5 \& 32.4,31.2 \& 28.5,20.3,13.5 \& 13.4$. HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 370.1767$, found 370.1760. 2D NOESY spectrum shows no correlation between $\delta 8.02$ and $4.22-4.13 \mathrm{ppm}$.

(5aS,7S)-7-[(1R) and (1S)-2-Amino-1-methylethyl)- 3-methyl-1H,7H-5a,6,8,9-tetrahydro-1-oxopyrano[4,3-b][1]benzopyran (48)

To a cold $\left(-20^{\circ} \mathrm{C}\right)$ solution of $500 \mathrm{mg}(1.94 \mathrm{mmol})$ of $\mathbf{2 6}$ in 2 mL THF was added 0.64 mL $(0.64 \mathrm{mmol})$ of $\mathrm{BH}_{3} \cdot \mathrm{THF}$ complex $\left(1.0 \mathrm{M}\right.$ in THF). After stirring the solution from $-20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ over a period of 30 minutes was added the hydroxylamine- O-sulfonic acid and refluxed the reaction mixture for 3 h . Cool down to the room temperature and diluted with 1 N HCl and extracted with ethyl acetate twice. Combined organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to recover $310 \mathrm{mg}(62 \%)$ the starting material 26. The aqueous layer was basified using 3 M NaOH and extracted with ethyl acetate twice. Organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated to give $125 \mathrm{mg}(62 \%$; based on reacted 26) of 48 as a mixture of two diastereomers at C 12 (1:1; based on 13C NMR spectrum). ${ }^{1} \mathrm{H}$ NMR $\delta 6.07$ (s, $1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 10 \mathrm{H}), 5.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{aH}), 2.73(\mathrm{~m}, 1 \mathrm{H}, 2$ isomer, CHN$), 2.58(\mathrm{~m}, 1 \mathrm{H}$, 2 isomers, CHN), $2.46(\mathrm{~d}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.15-1.10(\mathrm{~m}, 7 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me})$; ${ }^{13} \mathrm{C}$ NMR $\delta 163.4,162.7,161.7,132.9,109.3,100.0,97.5,79.8$ and 79.7 (2 isomers), 66.0, 46.0 and 45.9 (2 isomers), 40.9, 39.1, 38.5 and 38.4 (2 isomers), 37.1, 32.6 and 32.4 (2 isomers), 31.3, 31.2, 28.6, 20.3, 15.5, 14.3. HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{3}(\mathrm{M}+1)$ 276.1601, found 276.1610.

(5aS,7S)-7-[(1R) and (1S)-2-(3-amino-4-cyanopyrazol-1-yl)-1-methylethyl]-3-methyl-1H,7H-5a,6,8,9-tetrahyro-1-oxopyrano[4,3-b][1]benzopyran (43)

To a mixture of $16 \mathrm{mg}(0.15 \mathrm{mmol})$ of 3-aminopyrazole-4-carbonitrile and $6 \mathrm{mg}(0.15$ $\mathrm{mmol} ; 40 \%$ oil) of sodium hydride under argon was added 0.5 mL of DMF, and the solution was stirred at $25^{\circ} \mathrm{C}$ for 1 h . To it was added a solution of $50 \mathrm{mg}(0.15 \mathrm{mmol})$ of bromide 39 in 1 mL of DMF via cannula, and the solution was stirred at $25^{\circ} \mathrm{C}$ for 24 h and $85^{\circ} \mathrm{C}$ for 24 h . The reaction solution was cooled to $25^{\circ} \mathrm{C}$, diluted with dichloromethane, washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give $23 \mathrm{mg}\left(43 \%\right.$ yield) 43. ${ }^{1} \mathrm{H}$ NMR $\delta 7.51$ and $7.48(2 \mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 5$ 'H), $6.10(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 5.10-5.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{aH}), 4.26(\mathrm{bs}, 1 \mathrm{H}$, NH), 4.11 (bs, $1 \mathrm{H}, \mathrm{NH}$), 3.95 (dd, $J=14,6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 3.69 (dd, $J=14,8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}$), 2.56-2.42(m, 1 H), $2.20(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.16-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.34-$ $1.12(\mathrm{~m}, 1 \mathrm{H}), 0.89 \& 0.84\left(2 \mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me} ; 2\right.$ diastereomers); ${ }^{13} \mathrm{C}$ NMR $\delta 163.5 \& 163.4$, $162.8 \& 162.7,161.9,157.0,140.3,134.7,132.3 \& 132.1,114.5 \& 113.8,109.8 \& 109.7,99.9 \&$ $97.5,79.4 \& 79.3,56.5 \& 51.6,39.1 \& 39.06,38.1 \& 37.9,37.5 \& 37.4,36.7 \& 36.4,32.3 \&$ 32.1, $28.1 \& 27.9,20.3,13.7 \& 13.6$. HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 389.1590$, found 389.1593. 2D NOESY spectrum shows correlation betweenC5'-H of pyrazole ($\delta 7.51$ and 7.48 ppm , two diastereomers) with 3.95 and 3.69 ppm signals.

(5aS,7S)-7-[(1R) and (1S)-2-(pyrimidino-2-thio)-1-methylethyl]-3-methyl-1H,7H-5a,6,8,9-tetrahyro-1-oxopyrano[4,3-b][1]benzopyran (44)

To a mixture of $17 \mathrm{mg}(0.15 \mathrm{mmol})$ of 2-mercaptopyrimidine and $6 \mathrm{mg}(0.15 \mathrm{mmol})$ of NaH (in 40% oil) under argon was added 0.5 mL of DMF, and the solution was stirred at $25^{\circ} \mathrm{C}$
for 1 h . To it was added a solution of $50 \mathrm{mg}(0.15 \mathrm{mmol})$ of bromide 39 in 1.5 mL of DMF via cannula, and the solution was stirred at $25^{\circ} \mathrm{C}$ for 48 h , diluted dichloromethane, washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 49 mg (90% yield) of compound 44. ${ }^{1} \mathrm{H}$ NMR $\delta 8.51(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4 ’ \mathrm{H}), 6.97\left(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5{ }^{\prime} \mathrm{H}\right), 6.09(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{~s}$, 1 H), $5.11-5.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{aH}), 3.31\left(\mathrm{dd}, J=13,7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right), 3.02(\mathrm{dd}, J=13,6 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right), 2.52-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.08-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.56(\mathrm{~m}, 4 \mathrm{H})$, $1.34-1.10(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\delta 172.7,163.4 \& 163.3,162.6$, 161.7, 157.3 (2 C), 132.7, 116.6, 109.4, 100.0, $97.5,79.7 \& 79.5,39.9 \& 39.8,39.2,37.5 \& 37.4$, $35.6 \& 35.5,32.4 \& 32.3,31.0 \& 28.5,20.2,16.0 \& 15.9$. HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 371.1429$, found 371.1443 .
(5aS,7S)-7-[(1R) and (1S)-2-(N2-Acetyl-N9-guaninyl)-1-methylethyl]-3-methyl-1H,7H-

5a,6,8,9-tetrahyro-1-oxopyrano[4,3-b][1]benzopyran (46)

To a solution of $57 \mathrm{mg}(0.29 \mathrm{mmol})$ of N^{2}-acetylguanine in 1 mL of DMF under argon was added $13 \mathrm{mg}(40 \%$ oil; 0.32 mmol$)$ of sodium hydride, and the solution was stirred at $25^{\circ} \mathrm{C}$ for 30 min . To it, a solution of $0.10 \mathrm{~g}(0.29 \mathrm{mmol})$ of bromide 39 in 2 mL of DMF was added via cannula under argon, and the solution was stirred at $25^{\circ} \mathrm{C}$ for 24 h and $60^{\circ} \mathrm{C}$ for 48 h . The solution was diluted with dichloromethane and washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of chloroform and methanol to give 20 mg (15% yield) of compound 46 along with 30 mg of compound 26 (tricyclic pyrone). Compound 53: ${ }^{1} \mathrm{H}$ NMR $\delta 12.23$ (bs, $1 \mathrm{H}, \mathrm{NH}$), 10.49 (bs, $1 \mathrm{H}, \mathrm{NH}$), 7.73 (s, $\left.1 \mathrm{H}, \mathrm{C} 8^{\prime} \mathrm{H}\right), 6.11(\mathrm{~s}, 1 \mathrm{H}), 5.73 \& 5.71(2 \mathrm{~s}, 1 \mathrm{H}, 2$ diastereomers at C12), $5.08-5.02(\mathrm{~m}, 1 \mathrm{H}$,

C5aH), $4.45\left(\mathrm{dd}, J=13,6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.03\left(\mathrm{dd}, J=13,9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.50(\mathrm{t}, J=14$ Hz, 1 H), 2.39 (s, $3 \mathrm{H}, \mathrm{COMe}$), 2.20 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 2.06 - 1.94 (m, 2 H), 1.86 - 1.56 (m, 3 H), $1.36-1.22(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\delta 173.4,163.45 \& 163.41,162.7$, $161.9,157.0,153.4,148.2,143.6,132.1,112.5,109.9,99.9,97.5,79.4 \& 79.2,51.4 \& 51.3,39.2$ $\& 39.17,38.5 \& 38.4,36.7,32.3 \& 32.2,30.8 \& 28.3,24.8,20.3,13.6 \& 13.5$. HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{5}\left(\mathrm{M}+\mathrm{H}^{+}\right)$452.1934, found 452.1917. 2D NOESY spectrum shows correlation between $\delta 7.73$ with 4.45 and 4.03 ppm signals.
(5aS, 7S)-7-[(1R) and (1S)-2-[(N1-thyminyl)-1-methylethyl]-3-methyl-1H,7H-5a,6,8,9-tetrahyro-1-oxopyrano[4,3-b][1]benzopyran (45)

To a solution of $14 \mathrm{mg}(0.35 \mathrm{mmol})$ of NaH in 2 mL of DMF under argon was added 45 $\mathrm{mg}(0.35 \mathrm{mmol})$ of thymine at $25^{\circ} \mathrm{C}$, and the solution was stirred for 1 h . To it was added a solution of $0.10 \mathrm{~g}(0.29 \mathrm{mmol})$ of bromide 39 in 1 mL of DMF via cannula. The reaction solution was stirred at $25^{\circ} \mathrm{C}$ for 24 h and $80^{\circ} \mathrm{C}$ for 24 h , cooled to $25^{\circ} \mathrm{C}$, and added $9 \mu \mathrm{~L}$ of acetic acid. DMF was removed under vacuum at $50^{\circ} \mathrm{C}$, and the resulting solid was column chromatographed on silica gel using a gradient mixture of dichloromethane and methanol as eluent to give 45 mg (42 \% yield) of compound 45. ${ }^{1} \mathrm{H}$ NMR $\delta 9.17$ (bs, $1 \mathrm{H}, \mathrm{NH}$), 6.94 (s, 1 H , C6'H), $6.07(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 5.10-5.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{aH}), 3.82(\mathrm{dd}, J=13,6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}$), $3.40\left(\mathrm{dt}, J=13,9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$), $2.50-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.10-1.50$ (m, 5 H), $1.91(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.34-1.12(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR δ 164.2, $163.4,162.7,161.8,151.1,140.7 \& 140.6,132.1,110.9 \& 110.8,109.84 \& 109.80,99.9,97.5$, $79.4 \& 79.2,52.3 \& 52.1,39.1,38.4 \& 38.2,37.5 \& 37.4,36.7 \& 36.4,32.3 \& 32.2,30.9 \& 28.1$, 20.3, $13.5 \& 12.5$. HRMS calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}\left(\mathrm{M}+\mathrm{H}^{+}\right) 385.1763$, found 385.1760. 2D NOESY spectrum shows correlation between C 6 '- H of thymine ($\delta 6.94$) with $\mathrm{CH}_{2} \mathrm{~N}$ (3.82 and 3.40) signals.

(5aS, $7 S$)-7-[(1R) and (1S)-2-(2-Amino-9H-purin-9-yl)-1-methylethyl]-3-methyl

 1H,7H-5a,6,8,9-tetrahydro-1-oxopyrano[4,3-b][1]benzopyran (47)

To a solution of $96 \mathrm{mg}(0.29 \mathrm{mmol})$ of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in 1 mL of DMF under argon at $25^{\circ} \mathrm{C}$ was added $40 \mathrm{mg}(0.29 \mathrm{mmol})$ of 2-aminopurine, and the solution was stirred for 1 h . This solution was then added to a solution of $0.10 \mathrm{~g}(0.29 \mathrm{mmol})$ of bromide 39 in 2 mL of DMF via cannula. The reaction solution was stirred at $25^{\circ} \mathrm{C}$ for 24 h , and DMF was removed under vacuum distillation at $50^{\circ} \mathrm{C} / 0.1 \mathrm{~mm} \mathrm{Hg}$. The resulting residue was subjected to a silica gel column and eluted with a gradient mixture of methylene chloride and methanol to give 56 mg (48% yield) of compound 47 (as two diastereomers at C12). Compound 47: ${ }^{1} \mathrm{H}$ NMR $\delta 8.66(\mathrm{~s}, \mathrm{C} 6 ’ \mathrm{H}), 7.72$ \& $7.71\left(2 \mathrm{~s}, \mathrm{C} 8\right.$ 'H, 2 diastereomers), $6.07(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 5.29\left(2,2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.00(\mathrm{dt}, J=11$, $5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{aH}), 4.09\left(\mathrm{dd}, J=8,6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.46(\mathrm{t}, J=14 \mathrm{~Hz}, 1$ H), $2.18 \& 2.17(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.13-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.42(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.16(\mathrm{~m}, 2 \mathrm{H})$, $0.87(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\delta 163.3 \& 163.2,162.5,161.8,160.0,153.64 \& 153.61$, 149.7, 142.9, 132.0, 128.1, $109.7 \& 109.6,99.8,97.4,79.3 \& 79.1,47.1,39.1,38.1 \& 38.0,37.9$ \& 37.88, 36.2, $32.2 \& 32.0,31.0,29.8,27.8,21.5,20.2,13.8 \& 13.7$. HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right) 394.1879$, found 394.1879. 2D NOESY spectrum shows correlation between $\delta 7.72$ with 4.09 and 3.90 ppm signals.

4-bromo-6-methyl-2H-pyran-2-one (49)

To 10 mL of dry DMF under argon atmosphere was dropwise added the solution of PBr_{3} in ether ($8.734 \mathrm{~g}, 32 \mathrm{mmol}$ in 18 mL ether) at $0^{\circ} \mathrm{C}$. Then, a solution of $1.0 \mathrm{~g}(8.0 \mathrm{mmol})$ of 4-hydroxy-6-methyl-2-pyrone 24 in 8 mL DMF was transferred to the above PBr_{3} solution. The resultant solution was heated to $60^{\circ} \mathrm{C}$ for 12 h . The resultant solution was cooled to $0^{\circ} \mathrm{C}$ and quenched with water, extracted with diethyl ether three times. Combined organic layer was washed with brine and dried over MgSO_{4} and concentrated. Column chromatography on silica gel using the gradient mixture of hexane and diethyl ether gave 1.251 g of $49\left(83 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 6.33$ (bs, 1 H), 6.13 (bs, 1 H), 2.16 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR $\delta 162.1,160.4,141.1$, $114.5,108.3,19.6$.

4-azido-6-methyl-2H-pyran-2-one (50)

To the vacuum dried mixture of $0.32 \mathrm{~g}(11.561 \mathrm{mmol})$ of bromide 49 and $0.152 \mathrm{~g}((2.34$ mmol) of NaN_{3} was added 5 mL of DMF and stirred at room temperature for 3 h under argon atmosphere. Water was added to the reaction and extracted with diethyl ether three times. Combined organic layer was washed with brine and dried over MgSO_{4} and concentrated. Column chromatography on silica gel using the gradient mixture of hexane and diethyl ether gave 0.204 g of $50\left(87 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.76(\mathrm{~s}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR δ 163.9, 162.6, 156.4, 99.1, 96.9, 19.9 .

4-amino-6-methyl-2H-pyran-2-one (51)

In a round bottom flask, taken 0.204 g of azide $\mathbf{5 0}(1.35 \mathrm{mmol})$ and vacuum flame dried thoroughly, purge argon and added 6 mL of dry ethanol via syringe. If not completely soluble, warm a little. Open under stream of argon and added 0.021 g of $10 \% \mathrm{Pd} / \mathrm{C}$. Hydrogen balloon was fitted on top and stir the reaction mixture for 2 h . Reaction was monitored was TLC. The
reaction was filtered through celite and further washed with ethanol. Organic solvent was removed through rotary evaporator to give 0.168 g of amine (51) $(100 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $5.58(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 4.25-4.4(\mathrm{bs}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO) $\delta 163.69$, 161.47, 159.84, 98.68, 80.47, 19.54.
(5aS,7S)- 3-Methyl-7-(prop-1-en-2-yl)-6,7,8,9-tetrahydro-1H-pyrano[4,3-b]quinolin-1-one

(5aS,7S)- 3-methyl-9-(prop-1-en-2-yl)-7,8,9,10-tetrahydro-1H-pyrano[4,3- c]isoquinolin-1one (53)

A solution of $0.17 \mathrm{~g}(1.34 \mathrm{mmol})$ of 4-amino-6-methyl-2-pyrone (51), $0.34 \mathrm{~g}(2.28 \mathrm{mmol})$ of (S)-perillaldehyde (25), and $35 \mathrm{mg}(0.15 \mathrm{mmol})$ of 10 -camphorsulfonic acid in 12 mL of toluene was stirred at $85^{\circ} \mathrm{C}$ under argon for 3 days. The reaction solution was cooled to $25^{\circ} \mathrm{C}$, diluted with ethyl acetate, washed with aqueous $\mathrm{NH}_{4} \mathrm{OH}$, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and diethyl ether as eluents to give 63 mg (18% yield) of compound 52 and 62 mg (18% yield) of compound 53, along with 0.11 g of (S)-perillaldehyde. Compound 52: $[\alpha]^{22}{ }_{\mathrm{D}}=-59.0^{\circ}$ (c 0.10, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\delta 8.17$ (s, $\left.1 \mathrm{H}, \mathrm{C} 10 \mathrm{H}\right), 6.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}), 4.82\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.77(\mathrm{~s}, 1 \mathrm{H}$, $\left.=\mathrm{CH}_{2}\right), 3.18(\mathrm{dd}, J=18,5 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.82(\mathrm{~m}, 3 \mathrm{H}), 2.60-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$,
$2.15 \sim 2.02(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.78-1.62(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 165.6,163.2,158.0$, $152.6,147.9,137.3,131.8,114.3,110.2,105.7,41.0,38.8,28.3,27.3,21.1,20.2$. HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$256.1338, found 256.1351. Compound 53: $[\alpha]^{22}{ }_{\mathrm{D}}=-76.5^{\circ}(\mathrm{c}$ $0.09, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $\delta 8.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 10 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}), 4.89\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.77(\mathrm{~s}, 1$ $\left.\mathrm{H},=\mathrm{CH}_{2}\right), 3.82(\mathrm{dd}, J=21,5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=21,5 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.58-$ 2.37 (m, 1 H), 2.40 (s, $3 \mathrm{H}, \mathrm{Me}$), 2.20 ~ 2.03 (m, 2 H), 1.86 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 1.80 - 1.65 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR $\delta 162.3,157.5,156.2,154.5,151.0,148.3,132.1,114.5,110.3,106.5,41.1,33.8,27.3$, 26.3, 20.9, 19.8. HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$256.1338, found 256.1337.

4-hydroxy-1-(4-methoxybenzyl)-6-methylpyridin-2(1H)-one (55)

A solution of $2.0 \mathrm{~g}(16 \mathrm{mmol})$ of pyrone 24 and $2.2 \mathrm{~g}(16 \mathrm{mmol})$ of 4 methoxybenzylamine (54) in 30 mL of ethanol was reflux for 24 h , cooled to $25^{\circ} \mathrm{C}$, and ethanol was removed under vacuum. Crystallization the resulting solid in ethyl acetate gave 1.65 g of 4-hydroxy-1-(4-methoxybenzyl)-6-methylpyridin-2(1H)-one (55). The mixture was dissolved in ethyl acetate (70 mL) and washed with $2 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL})$, water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated to give 1.01 g (26% yield) of pure $\mathbf{5 5}$. This material was used in the following step without further purification. Compound 55: ${ }^{1} \mathrm{H}$ NMR $\delta 7.08(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 5.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.77(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.24(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$; ${ }^{13} \mathrm{C}$ NMR (DMSO-d d_{6}) $\delta 165.9,164.1,158.2,147.7,129.6,127.7$ (2 C), 114.0 (2 C), 100.5, 96.0, 55.0, 44.8, 19.9. HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right) 246.1125$, found 246.1133.
(5aS,7S)-2-(4-methoxybenzyl)-3-methyl-7-(prop-1-en-2-yl)-6,7,8,9-tetrahydro-2Hchromeno[3,2-c]pyridin-1(5aH)-one (56)

A solution of $1.0 \mathrm{~g}(4.1 \mathrm{mmol})$ of compound $55,0.61 \mathrm{~g}(4.1 \mathrm{mmol})$ of (S)-perillaldehyde (25), $0.35 \mathrm{~g}(4.1 \mathrm{mmol})$ of piperidine, and $0.24 \mathrm{~g}(4.1 \mathrm{mmol})$ of acetic acid in 30 mL of chloroform was reflux for 12 h , cooled to $25^{\circ} \mathrm{C}$, diluted with ethyl acetate, washed with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 1.38 g (90% yield) of compound 56. $[\alpha]^{22}{ }_{\mathrm{D}}=+5.7^{\circ}\left(\mathrm{c} 0.18, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.10(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.38(\mathrm{~s}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 5.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 5.10-5.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{aH}), 4.74(\mathrm{~s}, 2 \mathrm{H}$, $=\mathrm{CH}_{2}$), $3.77(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.58-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.20-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.90-$ $1.61(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.44-1.22(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 161.5,159.8,158.8,148.2$, $145.3,131.7,129.1,127.9$ (2 C), 114.1 (2 C), 111.3, 109.5, 103.7, 100.3, 78.2, 55.3, 46.3, 43.4, 39.9, 32.4, 31.9, 20.8, 20.7. HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right) 378.2069$, found 378.2050 .
(5aS,7S)-2-(4-methoxybenzyl)-3-methyl-7-[(1R) and (1S)-1-hydroxypropan-2-yl]-6,7,8,9-tetrahydro-2H-chromeno[3,2-c]pyridin-1(5aH)-one (57)

To a cold $\left(-20^{\circ} \mathrm{C}\right)$ solution of $1.15 \mathrm{~g}(3.06 \mathrm{mmol})$ of compound 56 in 20 mL of THF under argon was added $1.53 \mathrm{~mL}(1.53 \mathrm{mmol})$ of $\mathrm{BH}_{3} \bullet \mathrm{THF}(1.0 \mathrm{M}$ in THF). After standing at $20^{\circ} \mathrm{C}$ for 4 days, the reaction solution was stirred at $0^{\circ} \mathrm{C}$, and 10 mL of 0.5% aqueous NaOH and 5 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ were added. The solution was stirred at $0^{\circ} \mathrm{C}$ for 2 h , diluted with ethyl acetate, washed with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give $0.79 \mathrm{~g}\left(69 \%\right.$ yield; based on reacted 56) of 57. Compound 57: ${ }^{1} \mathrm{H}$ NMR $\delta 7.08(\mathrm{~d}, J=8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 5.19\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 5.15-4.96$ (m, 1 H, C5aH), $3.75(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.58-3.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.47(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ - 2.18 (m, 1 H), 2.19 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), $2.11-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.02(\mathrm{~m}, 1$ H), 0.88 ($\mathrm{d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\delta 161.7,160.0,158.9,145.3,132.5$, 129.2, 128.0 (2 C), 114.3 (2 C), $111.1,103.9,100.5,78.7 \& 78.6$ (2 diastereomers), $66.0 \& 65.9,55.5,46.5$, $40.25 \& 40.21,39.5 \& 37.1,37.5 \& 37.3,32.6 \& 32.5,31.3 \& 28.7,20.9,13.4 \& 13.3$. The signal intensities indicate the ratio of two diastereomers is 1:1. HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{4}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 396.2175$, found 396.2192 .
(5aS,7S)-2-(4-methoxybenzyl)-3-methyl-7-[(1R) and (1S)-(2-methanesulfonyloxy)-1-methylethyl]-6,7,8,9-tetrahydro-2H-chromeno[3,2-c]pyridin-1(5aH)-one (58)

To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $0.13 \mathrm{~g}(0.33 \mathrm{mmol})$ of alcohol 57 and $0.14 \mathrm{~mL}(0.97 \mathrm{mmol})$ of triethylamine in 4 mL of dichloromethane was added $38 \mu \mathrm{~L}(0.49 \mathrm{mmol})$ of methanesulfonyl chloride under argon. The reaction solution was stirred at $0^{\circ} \mathrm{C}$ for 2 h , diluted with dichloromethane, washed with aqueous NaHCO_{3}, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give $0.12 \mathrm{~g}\left(79 \%\right.$ yield) of mesylate 58. ${ }^{1} \mathrm{H}$ NMR $\delta 7.10(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J$ $=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 5.21\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 5.06-4.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{aH}), 4.21$ $-4.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.78(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.03(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeS}), 2.52(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{Me}), 2.20-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.32-1.12(\mathrm{~m}, 1 \mathrm{H})$, $1.00(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\delta 161.6,159.8,158.8,145.5,131.6,129.1,128.0$ (2 C), 114.2 (2 C), 111.5, 103.6, 100.2, $78.1 \& 78.0$ (2 diastereomers), $72.4,55.4,46.4,38.9,37.5 \&$ $37.4,37.35,37.2 \& 37.1,37.0,32.2 \& 32.1,30.8 \& 28.6,20.8,13.3 \& 13.2$. The signal intensities indicate the ratio of two diastereomers is 1:1. HRMS calculated for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NO}_{6} \mathrm{~S}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 474.1950$, found 474.1945 .
(5aS, 7S)-2-(4-Methoxybenzyl)-7-((2R) and (2S)-1-(6-amino-3H-purin-3-yl)propan-2-yl)-3-methyl-6,7,8,9-tetrahydro-2H-chromeno[3,2-c]pyridin-1(5aH)-one (59)

A solution of $0.12 \mathrm{~g}(0.25 \mathrm{mmol})$ of mesylate 58 and $34 \mathrm{mg}(0.25 \mathrm{mmol})$ of adenine in 2 mL of DMA was heated at $150^{\circ} \mathrm{C}$ under argon for 10 h , cooled to $25^{\circ} \mathrm{C}$, diluted with dichloromethane and washed with water, and brine, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), concentrated, and column chromatographed on silica gel using a gradient mixture of hexane, ethyl acetate, dichloromethane, and methanol as eluents to give 23 mg (18% yield) of 59. ${ }^{1} \mathrm{H}$ NMR $\delta 8.06$ ($\mathrm{s}, 1$ H, C2’H), 7.99 (s, $\left.1 \mathrm{H}, \mathrm{C} 8^{\prime} \mathrm{H}\right), 7.10(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 5.66$ ($\mathrm{s}, 1 \mathrm{H}$), 5.21 (bs, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $5.06-4.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{aH}), 4.51\left(\mathrm{dd}, J=13,6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$, $4.08\left(\mathrm{dd}, J=13,9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$, 3.77 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $2.60-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$, $2.20-2.18$ (m, 2 H), $1.98-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.20(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\delta 161.7,159.9,158.9,154.6,152.8,150.4,145.6,143.2,131.5,129.1,128.0$ (2 C), 119.7, 114.3 (2 C), 111.7, 103.7, 100.4, 78.2, $55.5 \& 54.7,46.6,39.1 \& 36.2,38.3,37.2,32.1 \& 31.0$, $29.9 \& 27.8,22.7 \& 21.8,21.0 \& 20.8,13.4$. The signal intensities indicate the ratio of two diastereomers is 1:1. HRMS calculated for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right) 513.2614$, found 513.2627. 2D NOESY spectrum shows NOE correlation between C2'-H ($\delta 8.08 \mathrm{ppm}$) and $\mathrm{CH}_{2} \mathrm{~N}$ (4.51 and $4.08 \mathrm{ppm})$ signals.

4-hydroxy-6-methyl-2-pyridone (61)

In a 10 ml round bottom flask, taken $250 \mathrm{mg}(1.98 \mathrm{mmol})$ of pyrone 24 dissolved in 1 mL of $28 \% \mathrm{NH}_{4} \mathrm{OH}$ and mixture was refluxed at $100^{\circ} \mathrm{C}$ for 6 h . Reaction was allowed to cool to
room temperature. Solid was separated by filtration and recrystallized from ethanol in 81% yield as a yellow solid 61. M.P. $322{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) $\delta \mathrm{ppm} 10.87(\mathrm{bs}, 1 \mathrm{H}), 5.7(\mathrm{~s}$, 1H), $5.3(\mathrm{~s}, 1 \mathrm{H}), 2.1(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 167.6,164.8,146,98.2,95.8,18.5$.

(7S)-6,7,8,9-tetrahydro-3-methyl-7-(prop-1-en-2-yl)-2H-chromeno[3,2-c]pyridin-1(5a H)one (62)

A solution of 250 mg (2.0 mmol) of compound $\mathbf{6 1}, 300 \mathrm{mg}(2.0 \mathrm{mmol})$ of (S) perillaldehyde $\mathbf{2 5}, 170 \mathrm{mg}(2.0 \mathrm{mmol})$ of piperidine, and $120 \mathrm{mg}(2 \mathrm{mmol})$ of acetic acid in 15 mL of chloroform was reflux for 12 h , cooled to $25^{\circ} \mathrm{C}$, diluted with methylene chloride, washed with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give $500 \mathrm{mg}(97 \%$ yield) of compound 62. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3},{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 12.66(\mathrm{bs}, 1 \mathrm{H}), 6.3(\mathrm{~s}, 1 \mathrm{H}), 5.64\right.$ $(\mathrm{s}, 1 \mathrm{H}), 5.1(\mathrm{dd}, J=11 \mathrm{~Hz}, 5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 4.73(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 2.48(\mathrm{ddd}, J$ $=14 \mathrm{~Hz}, 4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.02(\mathrm{~m}, 3 \mathrm{H}), 1.88-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeC}=)$, 1.31 (ddd, $J=25 \mathrm{~Hz}, 12.8 \mathrm{~Hz}, 4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 163.2,162.4,148.4,144.8,131.7,110.4$, 109.6, 103.4, 99.1, 78.5, 43.6, 40.0, 32.5, 32.1, 20.9, 19.3.
(7S)-tert-butyl-6,7,8,9-tetrahydro-3-methyl-1-oxo-7-(prop-1-en-2-yl)-1H-chromeno[3,2-clpyridine-2(5aH)-carboxylate (63)

Taken 200 mg of pyridinone $62(0.78 \mathrm{mmol})$ and 19 mg of DMAP $(0.15 \mathrm{mmol})$ together in a round bottom flask and vacuum flame dried, purge argon and added 3 mL of acetonitrile. Added $273 \mu \mathrm{l}$ of dry triethylamine (1.94 mmol) via syringe and cool to $0^{\circ} \mathrm{C}$ and stir for 30 minutes. Open quickly and added 340 mg of $(\mathrm{Boc})_{2} \mathrm{O}(1.55 \mathrm{mmol})$ and warm to room temperature by stirring for 24 h . Dilute with water and extract ethyl acetate twice. Combine ethyl acetate washed with brine, dried over sodium sulfate, column chromatographed to give 268 mg of 63 (97\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.3(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 5.1$ (dd, $\left.J=11 \mathrm{~Hz}, 5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.75(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 4.73(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 2.48(\mathrm{ddd}, J=14 \mathrm{~Hz}, 4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) 2.22-$ $2.02(\mathrm{~m}, 3 \mathrm{H}), 1.88-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeC}=), 1.5(\mathrm{~s}, 9 \mathrm{H}), 1.31$ (ddd, $J=25 \mathrm{~Hz}, 12.8 \mathrm{~Hz}$, $4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 161.9,156.6,152.13,151.1,147.7,137.3,109.7,109.0,109,106.2,83.6$, 78.0, 43.1, 39.9, 32.7, 31.7, 27.6, 24.1, 20.1.

(7S)-tert-butyl-6,7,8,9-tetrahydro-7-((R)-1-hydroxypropan-2-yl)-3-methyl-1-oxo-1H-chro meno[3,2-c]pyridine-2(5aH)-carboxylate (64)

To a cold $\left(-20^{\circ} \mathrm{C}\right)$ solution of $265 \mathrm{mg}(0.74 \mathrm{mmol})$ of compound $\mathbf{6 3}$ in 6 mL of THF under argon was added $0.37 \mathrm{~mL}(0.37 \mathrm{mmol})$ of $\mathrm{BH}_{3} \cdot \mathrm{THF}(1.0 \mathrm{M}$ in THF). After standing at $20^{\circ} \mathrm{C}$ for 2 days, the reaction solution was stirred at $0^{\circ} \mathrm{C}$, and 2 mL of 0.5% aqueous NaOH and 1 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ were added. The solution was stirred at $0^{\circ} \mathrm{C}$ for 2 h , diluted with ethyl acetate, washed with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give $62 \mathrm{mg}(65 \%$ yield; based on reacted 63) of $\mathbf{6 4}$ as a mixture of two diastereomers at C12 (1:1; based on 13C NMR spectrum). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.38(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 5.05-5.00(\mathrm{t}$, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.46(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.13-1.99(\mathrm{~m}, 2 \mathrm{H})$, $1.73-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.19-1.12(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR (two diastereomers) $\delta 162.1,156.7,152.2,151.2,138.1,109.2,108.8,106.5,83.9,78.4$, $65.7,40.0,39.5,37.2,32.8,31.01,27.8,24.2,13.5$ and13.2 (Me of two diastereomers).

(R)-2-((7S)-2-(tert-butoxycarbonyl)-2,5a,6,7,8,9-hexahydro-3-methyl-1-oxo-1H-chromeno[3,2-c]pyridin-7-yl)propyl methanesulfonate (65)

To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $400 \mathrm{mg}(1.11 \mathrm{mmol})$ of alcohol $\mathbf{6 4}$ and $0.47 \mathrm{~mL}(3.34 \mathrm{mmol})$ of triethylamine in 8 mL of dichloromethane was added $129 \mu \mathrm{~L}(1.67 \mathrm{mmol})$ of methanesulfonyl chloride under argon. The reaction solution was stirred at $0^{\circ} \mathrm{C}$ for 2 h , diluted with dichloromethane, washed with aqueous NaHCO_{3}, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 382 mg (79% yield) of mesylate $\mathbf{6 5}$ as a mixture of two diastereomers at C12
(1:1; based on 13C NMR spectrum). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 5.05-5.00$ $(\mathrm{m}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.01(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$, $2.13-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.19-1.12(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~d}, J=7 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{Me}$) ${ }^{13} \mathrm{C}$ NMR (two diastereomers) $\delta 161.9,156.5,151.9,150.9,137.2,108.9,108.7,106.0$, 83.7, 77.7 and 77.77 .61 (two diastereomers), 72.2, 38.71, 37.02 and 37.8 (two diastereomers), 36.7 and 36.6 (two diastereomers) 32.25 and 32.15 (two diastereomers), 31.48, 30.25, 28.1, 27.51, 23.9, 12.98.
(7S)-7-((R)-1-(6-amino-5,6-dihydropurin-3-yl)propan-2-yl)-6,7,8,9-tetrahydro-3-methyl-2H-chromeno[3,2-c]pyridin-1(5aH)-one (66)

(7S)-7-((R)-1-(6-amino-4H-purin-9(8H)-yl)propan-2-yl)-6,7,8,9-tetrahydro-3-methyl2 H -chromeno[3,2-c]pyridin-1(5aH)-one (67)

A solution of $0.12 \mathrm{~g}(0.25 \mathrm{mmol})$ of mesylate $\mathbf{6 5}$ and $34 \mathrm{mg}(0.25 \mathrm{mmol})$ of adenine in 2 mL of DMA was heated at $150^{\circ} \mathrm{C}$ under argon for 10 h , cooled to $25^{\circ} \mathrm{C}$, diluted with
dichloromethane and washed with water, and brine, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), concentrated, and column chromatographed on silica gel using a gradient mixture of hexane, ethyl acetate, dichloromethane, and methanol as eluents to give 23 mg (18% yield) of $\mathbf{6 6}$ and 8 mg (6% yield) of 67. Compound 66 (more polar; 2 diastereomers at C 12) ${ }^{1} \mathrm{H}$ NMR $\delta 8.08$ (s, H of adenine), 7.98 and $7.97(2 \mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ of adenine; 2 diastereomers), $6.30(\mathrm{~s}, 1 \mathrm{H}), 5.63$ and $5.62(2 \mathrm{~s}, 1 \mathrm{H}), 5.02$ (m, 1H, C5aH), $4.50(\mathrm{dd}, J=13,6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}), 4.08$ ($2 \mathrm{dd}, J=13,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN} ; 2$ diastereomers), $2.46(\mathrm{~m}, 2 \mathrm{H}), 2.25$ and $2.24(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{Me} ; 2$ diastereomers), 2.10-1.22 (a series of $\mathrm{m}, 6 \mathrm{H}), 0.91(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR (2 diastereomers) $\delta 163.2$ and 163.1, 162.4, 161.7, $154.4,154.0,150.7,142.3,131.7$ and $131.6,121.0,199.8,99.7,97.3,79.0,78.8,54.5$ and 54.4 , 38.9, 38.1 and 38.0, 37.1 and 36.9, 36.1, 32.0 and 31.9, 30.7, 27.6, 20.1, 13.3 and 13.2. HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H}) 394.1881$, found 394.1875.

4-hydroxy-6-methyl-3-((E)-(phenylimino)methyl)pyridin-2(1H)-one (68)

Taken 3.6 g of pyridinone $\mathbf{6 1}$ (23.98 mmol), 2.23 g of aniline (23.98 mmol), 15 mL of triethyl orthoformate together in a round bottom flask followed by addition of 20 mL of $3: 1 \mathrm{DMF}$: AcOH and reflux at $130^{\circ} \mathrm{C}$ for 2 h . Color changes from yellow to brown. Cool to room temperature. Dilute brine and extract methylene chloride twice followed by extraction with 10% methanol in methylene chloride. Organic layer dried over sodium sulfate and crystallize from methylene chloride to obtain 3.81 g of $\mathbf{6 8}$ as yellow solid. ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta \mathrm{ppm} 9.89$ (bs, $1 \mathrm{H}), 8.91(\mathrm{~d}, 1 \mathrm{H}, E / Z$ isomer $), 7.2-7.6(\mathrm{~m}, 5 \mathrm{H}), 5.7(\mathrm{~s}, 1 \mathrm{H}), 2.2(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ 185.1, $166.9,153.1,150.3,138.6,130.2,126.9,118.6,107.0,20.2$.

1,2-dihydro-4-hydroxy-6-methyl-2-oxopyridine-3-carbaldehyde (69)

Taken 3.41 g of pyridinone $\mathbf{6 8}$ and added 50 mL of $5 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ in water and reflux in open for 1 h. Cool to room temperature. Acidify to $\mathrm{pH} \sim 1$ by adding conc. HCl at $0^{\circ} \mathrm{C}$. Filter the solid and crystallize from ethanol to yield 2.08 g of $\mathbf{6 9}(85 \%)$ as yellow solid. ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta \mathrm{ppm}$ $13.52(\mathrm{bs}, 1 \mathrm{H}), 11.73(\mathrm{bs}, 1 \mathrm{H}), 9.83(\mathrm{bs}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 2.2(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) 193.3, 174.7, 163.3, 157.1, 105.3, 97.7, 19.6

7-methyl-6H-pyrano[3,2-c]pyridine-2,5-dione (70)

A mixture of $60 \mathrm{mg}(.36 \mathrm{mmol})$ of aldehyde 69 and $146 \mathrm{mg}(.43 \mathrm{mmol})$ of [(Methoxycarbonyl)methylene]triphenyl phosphorane (Wittig reagent) together in a round bottom flask and added freshly distilled toluene and reflux for 2 h . Color changes from yellow to purple. Cool to RT, precipitate formed, filter it, vacuum dried and crystallized from methanol to yield compound 70. Yield 55% as yellow solid. ${ }^{1}$ H NMR (400 MHz , DMSO-d6) d ppm $2.08-$ $2.39(\mathrm{~m}, 1 \mathrm{H}) 2.39-2.63(\mathrm{~m}, 1 \mathrm{H}) 3.10-3.48(\mathrm{~m}, 2 \mathrm{H}) 5.84-6.47(\mathrm{~m}, 1 \mathrm{H}) 7.35-7.73(\mathrm{~m}, 1 \mathrm{H})$ 7.92 (d, $J=9.37 \mathrm{~Hz}, 1 \mathrm{H}) 12.01$ (br. s, 1 H)

1.6 References

1. http://en.wikipedia.org/wiki/Neurodegenerative disease.
2. Berchtold, N. C.; Cotman, C. W., Evolution in the conceptualization of dementia and Alzheimer's disease: Greco-Roman period to the 1960s. Neurobiol. Aging, 1998, 19, 173-189.
3. Imarisio, S.; Carmichael, J.; Korolchuk, V.; Chen, C -W; Saiki, S; Rose, C; Krishna, G; Davies, J. E.; Ttofi, E.; Underwood, B. R.; Rubinsztein, D. C., Huntington's disease: from pathology and genetics to potential therapies. Biochem. J., 2008, 412, 191-209.
4. Jankovic. J., Parkinson's disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatr., 2008, 79, 368-76
5. http://en.wikipedia.org/wiki/Amyotrophic_lateral_sclerosis
6. Geula, C; Wu, C. K.; Saroff, D.; Lorenzo, A.; Yuan, M.; Yankner, B. A., Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity. Nature medicine, 1998, 4, 827-31.
7. Ross, C. A.; Poirier, M. A., Protein aggregation and neurodegenerative disease. Nature Medicine., 2004, S10- S17
8. http://www.alz.org/alzheimers_disease_what_is_alzheimers.asp
9. Glenner, G. G.; Wong, C. W., Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Coттип., 1984, 120, 885-890.
10. Lee, V. M.; Balin, B. J.; Otvos, L.; Trojanowski, J. Q., A β : a major subunit of paired helical filaments and derivatized forms of normal Tau. Science, 1991, 251, 675-678.
11. Selkoe, D. J., Alzheimer's Disease-Genotypes, Phenotype, and Treatments. Science, 1997, 275, 630-631.
12. Weidemann, A.; Konig, O.; Bunke, D.; Fischer, P.; Salbaurn J. M.; Masters C. L.; Beyreutber K., Identification, biogenesis, and localization of precursors of Alzheimer's disease $A \beta$ amyloid protein. Cell, 1998, 57, 115-126.
13. Oltersdorf, T.; Fritz, L.; Scheak, D. B.; Lieberburg, L.; Johnson-Wood K. L.; Beattie, E. C.; Ward, P. J.; Blacker, R. W.; Dovey, H. F.; Sinha, S., The secreted forms of the Alzheimer's amyloid precursor protein with the Kunitz domain is protease nexin-II. Nature, 1989, 341, 144-147.
14. Jin, L. -W.; Ninomia, H.; Roch, J. M.; Schubert, D.; Masliah, E.; Otem, D. A. C.; Saito, T., Peptides containing the RERMS sequence of amyloid beta/A4 protein precursor bind cell surface and promote neurite extension. J. Neurosci., 1994, 14, $5461-5470$.
15. Mattson, M. P.; Cheng, B.; Culwell, A. R.; Esch, F. S.; Lieberburg, L.; Rydel, R., Evidence for excitoprotective and interneuronal calcium-regulating roles for secreted forms of the β-amyloid precursor protein. Neuron, 1993, 10, 243-254.
16. Chow, N.; Korenberg, I. R.; Chen, X. N.; Neve, R. L., APP-BPI, a novel protein that binds to the carboxy-terminal region of the amyloid precursor protein. J. Biol. Chem., 1996, 271, 11339-11346.
17. Selkoe, D. J. Alzheimer's disease: genes, proteins, and therapy. Physiological Reviews 2001, 81, 741-766.
18. Bitan, G.; Kirkitadze, M. D.; Lomakin, A.; Vollers, S.S.; Benedek, G. B.; Teplow, D. B., Amyloid beta -protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc. Natl. Acad. Sci. U.S.A., 2003, 100, 330.
19. Walsh, D. M.; Klyubin, I.; Fadeeva, J. V.; Cullen, W. K.; Aanwyl, R.; Wolfe, M. S.; Rowan, M. J.; Selkoe, D. J., Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 2002, 416, 535-539.
20. Wirths, O.; Multhaup, G.; Bayer, T. A. A modified β-amyloid hypothesis: intraneuronal accumulation of the β-amyloid peptide - the first step of a fatal cascade Journal of Neurochemistry 2004, 91, 513-520.
21. Zhang, Y.; McLaughlin, R.; Goodyer, C.; LeBlanc, A. Selective cytotoxicity of intracellular amyloid β peptide $_{1-42}$ through p53 and Bax in cultured primary human neurons. Journal of Cell Biology, 2002, 156, 519-529.
22. Vieira, E. P.; Hermel, H.; Mohwald, H., Change and stabilization of the amyloid- $\beta(1-40)$ secondary structure by fluorocompounds. Biochimica et Biophysica Acta, Proteins and Proteomics, 2003, 1645, 6-14.
23. Dewji, N. N.; Singer, S. J., The seven-transmembrane-spinning topography of the Alzheimer disease-related presenilin proteins in the plasma membranes of cultured cells. Proc Nat. Acad. Sci., 1997, 94: 14025-14030.
24. Sisodia S. S.; Kim S. H.; Thinakaran, G., Function and dysfunction of the presenilins. Am. J. Hum.Genet., 1999, 65, 7-12.
25. Borchelt, D. R.; Thinakaran, G.; Eckman, C. B.; Lee, M. K.; Davenport, F.; Ratovitsky, T.; Prada, C. M.; Kim, G.; Seekins, S.; Yager, D.; Slunt, H. H.; Wang, R.; Seeger, M.; Levey, A. I.; Gandy, S. E.; Copeland, N. G.; Jenkins, N. A.; Price, D. L.; Younkin, S. G.; Sisodia, S. S., Familial Alzheimer's disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron, 1996, 17,1005-1013.
26. Lorenzo, A.; Yuan, M. L.; Zhang, Z. H.; Paganetti, P. A.; Sturchler-Pierrat, C.; Staufenbiel, M.; Mautino, J.; Sol Vigo, F.; Sommer, B.; Yankner, B. A., Amyloid beta interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer's disease. Nat. Neurosci. 2000, 3, 460-464.
27. Matsuoka, Y.; Gray, A. J.; Hirata-Fukae, C.; Minami, S. S.; Waterhouse, E. G.; Mattson, M. P.; LaFerla, F. M.; Gozes, I.; Aisen, P. S., Intranasal NAP administration reduces accumulation of amyloid peptide and tau hyperphosphorylation in a transgenic mouse model of Alzheimer's disease at early pathological stage. J. Mol Neurosci., 2007, 31, 165-170.
28. Miranda, S.; Opazo, C.; Larrondo, L.F.; Muñoz, F. J.; Ruiz, F.; Leighton, F.; Inestrosa, N. C., The role of oxidative stress in the toxicity induced by amyloid β-peptide in Alzheimer's disease. Prog. Neurobiol., 2000, 62, 633-648.
29. Schubert, D.; Chevion, M., The role of iron in Abeta amyloid toxicity. Biochem. Biophys. Res. Commun., 1995, 216, 702.707
30. Taniguchi, A.; Sohma, Y.; Hirayama, Y.; Mukai, H.; Kimura, T.; Hayashi, Y.; Matsuzaki, K.; Kiso, Y., "Click peptide": pH-triggered in situ production and aggregation of monomer $\mathrm{A} \beta$ 1-42. ChemBioChem, 2009, 10, 710-715.
31. Castano, E. M.; Prelli, F.; Wisiniewski, T.; Golabek, A.; Kumar, R. A.; Soto, C.; Frangione, B., Fibrillogenesis in Alzheimer's disease of amyloid beta peptides and apolipoprotein E. Bichem. J., 1992, 306, 599-604.
32. Ma, J.; Yee, A.; Brewer, H. B.; Das, S.; Potter, H., Amyloid-associated proteins alpha 1antichymotrypsin and apolipoprotein E promote assembly of alzheimer beta-protein into filaments. Nature, 1994, 372, 92-94.
33. LaDu, M. J.; Stine, W. B. Jr., Narita, M.; Getz, G. S.; Reardon, C. A.; Bu. G., SelfAssembly of HEK Cell-Secreted ApoE Particles Resemble ApoE-Enrichment of Lipoproteins as a Ligand for the LDL Receptor-Related Protein. Biochemistry, 2006, 45, 381-390.
34. Strittmatter, W. J.; Saunders, A. M.; Schmechel, D.; Pericak-vance., M.; Enghild, J.; Salvesen, G. S.; Roses, A. D., Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease . Proc. Natl. Acad. Sci. U.S.A., 1993, 90, 1977-1981.
35. Gearing, M.; Mori, H.; Mirra, S. S.; A β-peptide length and apolipoprotein E genotype in Alzheimer's disease. Ann. Neurol., 1996, 39, 395-399.
36. Cho, H. S., Hyman, B. T.; Greenberg, S.M.; Rebeck, G.W., Quantitation of ApoE domains in Alzheimer disease brain suggests a role for ApoE in Abeta aggregation. J. Neuropathol. Exp. Neurol., 2001, 60, 342-349.
37. Mann, D. M.; Iwatsubu, T.; Pickering Brown, S. M.; Owen, F.; Saido, T. C.; Perry, R. H., Preferential deposition of amyloid beta protein (Abeta) in the form Abeta40 in Alzheimer's disease is associated with a gene dosage effect of the apolipoprotein E E4 allele. Neurosci. Lett., 1997, 221, 81-84
38. Ishii, K.; Tamaoka, A.; Mizusawa, H.; Shoji, S.; Ohtake, T.; Fraser, P. E.; Takahashi, H.; Tsuji, S.; Gearing, M.; Mizutani, T.; Yamada, S.; Kato, M.; St. George-Hyslop. P. H.; Mirra, S. S., Mori, H., Abeta1-40 but not Abeta1-42 levels in cortex correlate with apolipoprotein E epsilon4 allele dosage in sporadic Alzheimer's disease. Brain Res. 1997, 748, 250-252.
39. Jin, L.-W.; Hua, D. H.; Shie, F, -S.; Maezawa, I.; Sopher, B.; Martin, G. M., Novel Tricyclic Pyrone Compounds Prevent Intracellular APP C99-Induced Cell Death. J. Mol. Neurosci., 2002, 19, 57-61
40. Omura, S.; Tomoda, H.; Kim, Y. K.; Nishida, H. Pyripyropenes, highly potent inhibitors of acyl-CoA:cholesterol acyltransferase produced by Aspergillus fumigatus. Journal of Antibiotics 1993, 46, 1168-9.
41. Simons, M.; Keller, P.; Dichgrans, J.; Schulz J. B., Cholesterol and Alzhimer: Is there a link? Neurology, 2001, 57, 1089-1093.
42. Wolozin B., cholesterol and the biology of alzheimer disease. Neuron, 2004, 41, 7-10.
43. Sparks, D.L., Intraneuronal beta amyloid immunoreactivity in the CNS. Neurobiol. Aging. 1999, 17, 291-299.
44. Refolo, L. M.; Malester, M. B.; LaFrancois, J.; Bryant-Thomas, T.; Wang, R.; Tint, G. S.; Sambamurti, K.; Duff, K.; Pappolla, M. A., Hypercholesterolaemia accelerates the alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol. Dis., 2000, 7, 321-331.
45. Wood, W. G.; Schroeder, F.; Avdulov, N. A.; Chochina, S. V.; Igbavboa, U., Recent advances in brain cholesterol dynamics: transport, domains, and Alzheimer's disease. Lipids, 1999, 34, 225-234.
46. Avdulov, N. A., Chochina, S. V.; Igbavboa, U.; Warden, C. S.; Vassiliev, A. V.; Wood, W. G., Lipid binding to the amyloid β-peptide aggregates: preferential binding of cholesterol as compared with phosphatidylcholine and fatty acids. J Neurochem., 1997, 69, 1746-1752.
47. McLaurin, J.; Darabie, A. A.; Morrison, M. R., Cholesterol, a modulator of membraneassociated Aß-fibrillogenesis. Ann. N. Y. Acad. Sci., 2002, 977, 376-383.
48. Yip, C. M.; Elton, E. A.; Darabie, A. A.; Morrison, M. R.; McLaurin, J., Cholesterol, a modulator of membrane-associated $\mathrm{A} \beta$-fibrillogenesis and neurotoxicity. J. Mol. Biol., 2001, 311, 723-734.
49. Kirsch, C.; Eckert, G. P.; Mueller, W. E., Cholesterol attenuates the membrane perturbing properties of β-amyloid peptides. Amyloid, 2002, 9, 149-159.
50. Probst, A.; Langui, D.; Ipsen, S.; Robakis, N.; Ulrich, J., Deposition of $\beta /$ A4 protein along neuronal plasma membrane in diffuse senile plaques. Acta. Neuropathol. (Berl), 1991, 83, 21-29.
51. Mori, T.; Paris, D.; Town, T.; Rojaini, A. M.; Sparks, D. L.; Delledonne, A.; Crawford, F.; Abdullah, A. I.; Humphrey, J. A.; Dickson, D. W.; Mullan, M. J., Cholesterol accumulates in senile plaques of Alzheimer disease patients and in transgenic $\operatorname{APP}(\mathrm{SW})$ mice. J. Neuropathol. Exp. Neurol., 2001, 60, 778-785.
52. Hua, D. H.; Huang, X.; Tamura, M.; Chen, Y.; Woltkamp, M.; Jin, L.-W.; Perchellet, E. M.; Perchellet, J.-P.; Chiang, P. K.; Namatame, I.; Tomoda, H., Synthesis and bioactivities of tricyclic pyrones. Tetrahedron, 2003, 59, 4795-4803.
53. Maezawa, I.; Hong, H. -S.; Wu, H. -C.; Battina, S. K.; Rana, S.; Iwamoto, T.; Radke, G. A.; Pettersson, E.; Martin, G. M.; Hua, D. H.; Jin, L.-W., A novel tricyclic pyrone compound ameliorates cell death associated with intracellular amyloid- β oligomeric complexes. J. Neurochem., 2006, 98, 57-67.
54. Hong, H. -S.; Rana, S.; Barrigan, L.; Shi, A.; Zhang, Y.; Zhou, F.; Jin, L.-W.; Hua, D. H., Inhibition of Alzheimer's amyloid toxicity with the tricyclic pyrone molecule in vitro and in vivo., J. Neurochem., 2009, 108, 1097-1108.
55. Lashuel, H. A.; Hartley, D. M.; Balakhaneh, D.; Aggarwal, A.; Teichberg, S.; Callaway, D. J. E., New Class of Inhibitors of Amyloid-beta Fibril Formation. Implications for the mechanism of pathogenesis in Alzheimer's disease. J. Biol. Chem., 2002, 277, 4288142890
56. Yang, F.; Lim, G. P; Begum, A. N; Ubeda O. J.; Simmons M. R.; Ambegaokar, S. S; Chen, P. P.; Kayed, R.; Glabe C. G.; Frautschy S. A.; Cole, G. M., Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Boil. Chem., 2005, 280, 5892-901.
57. Taniguchi, S.; Suzuki, N.; Masuda, M.; Hisanaga, S.; Iwatsubo, T.; Geodert, M.; Hasegawa, M., J. Biol. Chem., 2004, 280, 7614-7623.
58. Pollack, S. J.; Sadler, I. I. J.; Hawtin, S. R.; Tailor, V. J.; Shearman, M. S., Sulfonated dyes attenuate the toxic effects of β-amyloid in a structure-specific fashion. Neurosci. Lett., 1995, 197, 211-14.
59. Bush, A. I., Metal complexing agents as therapies for Alzheimer's disease. Neurobiol. Aging, 2002, 23, 1031-8.
60. Yang, F.; Lim, G. P.; Begum, A. N.; Ubeda, O. J.; Simmons, M. R.; Ambegaokar, S. s.; Chen, P.; Kayed, R.; Glabe, C. G.; Frautschy, S. A.; Cole, G. M., Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 2005, 280, 5892-5901.
61. Cheng, Y.; Feng, Z.; Zhang, Q. -Z.; Zhang, J. -T., Beneficial effects of melatonin in experimental models of Alzheimer disease. Acta Pharmacologica Sinica, 2006, 27, 129139.
62. Lovell, M. A.; Robertson, J. D.; Teesdale, W. J., Copper iron and Zinc in Alzheimer disease senile plaque. J. Neurol. Sci., 1998, 158, 47-52
63. Schubert ,D.; Chevion, M., The role of iron in Abeta amyloid toxicity, Biochem. Biophys. Res. Commun., 1995, 216, 702-707
64. Bush, A. I.; Pettinghel, W. H.; Multhaup, G., Rapid induction of alzheimer A β amyloid formation by zinc. Science, 1994, 265, 1464-67
65. Multhaup, G.; Schlicksupp, A.; Hesse, L., The amyloid precursor protein of alzheimer disease in the reduction of copper II to copper I., Science, 1996, 271, 1406-1407
66. Beh1, C.; Davis, J.B.; Lesley, R.; Schubert, D., Hydrogen peroxide mediates amyloid β protein toxicity. Cell, 1994, 77, 817-827
67. Cherny R. A.; Legg, J. T.; McLean, C. A., Aqueous dissolution of Alzheimer disease A β amyloid deposits by biometal depletion. J. Biol. Chem., 1999, 274, 23223-28
68. Omura, S.; Kuno, F.; Otoguro, K.; Sunazuka, T.; Shiomi, K.; Mamuma, R.; Iwai, Y., Arisugacin, a Novel Selective Inhibitor of Acetylcholinesterase from Penicillium sp. FO4259. J. Antibiot., 1995, 48, 745-746.
69. Gu, X.; Li, C.; Wei, W.; Lo, V.; Gong, S.; Li, S. -H.; Iwasato, T.; Itohara, S.; Li, X -J.; Mody, I.; Heintz, N.; Yang, W., Pathological Cell-Cell Interactions Elicited by a Neuropathogenic Form of Mutant Huntingtin Contribute to Cortical Pathogenesis in HD Mice. Neuron, 2005, 46, 433-444.
70. Ridley, C. P.; Khosla, C., Synthesis and biological activity of novel pyranopyrones derived from engineered aromatic polyketides. ACS Chemical Biology, 2007, 2, 104-108.
71. Hua, D. H., Chen, Y., Sin, H.-S., Maroto, M. J., Robinson, P. D., Newell, S. W., Perchellet, E. M., Ladesich, J. B., Freeman, J. A., Perchellet, J.-P., and Chiang, P. K., A one-pot condensation of pyrones and enals. Synthesis of $1 \mathrm{H}, 7 \mathrm{H}-5 \mathrm{a}, 6,8,9$-tetrahydro-1-oxopyrano[4,3-b][1] benzopyrans. J. Org. Chem., 1997, 62, 6888-6896.
72. Chen, Y., Synthetic studies toward the synthesis of tricyclic pyrone derivatives and chloropuuphenone. 1999, 264 pp. CAN 134:178386
73. Trushina, E.; Rana, S.; McMurray, C.T.; Hua, D.H., Tricyclic pyrone compounds prevent aggregation and reverse cellular phenotypes caused by expression of mutant Huntington protein in striatal neurons. BMC Neuroscience, 2009, 10, E-ISSN:1471-2202.
74. McMurray, J. E.; Kocovsky, P., A method for the palladium-catalyzed allylic oxidation of olefins. Tetrahedron, 1984, 25, 4187.
75. Rana, S.; Hong, H. -S.; Barrigan, L.; Jin, L. -W, Hua, D.H., Synthesis of tricyclic pyrones and pyridinones and protection of A β-peptide induced MC65 neural cell death. Bio. Org. Med. Chem., 2009. 19, 670-674.
76. Lim, M. -I.; Moyer, J. D.; Crysyk, R. L.; Marquez, V. E., Cyclopentenyluridine and cyclopentenylcytidine analogues as inhibitors of uridine-cytidine kinase. J. Med. Chem., 1984, 27, 1536.
77. Wang, F.; Yang, Z. -J,; Jin, H. -W.; Zhang, L. -R.; Zhang, L. -H., A concise synthesis of 4,6-dideoxy-4-base-6-amino-2,5-anhydro-1-mannitols. Tetrahedron: Asymmetry, 2007, 18, 2139-2146.
78. Da Settimo, F.; Primofiore, G.; La Motta, C.; Taliani, S.; Simorini, F.; Marini, A. M.; Mugnaini, L.; Lovecchia, A.; Novellino, E.; Tuscano, D.; Martini, C.J., Novel, highly potent adenosine deaminase inhibitors containing the pyrazolo[3,4-d]pyrimidine ring system. Synthesis, structure-activity relationships, and molecular modeling studies. J Med. Chem., 2005, 48, 5162-5174
79. Brown, D. J.; Grigg, G. W.; Iwai, Y.; McAndrew, K. N.; Nagamatsu, T.; Van Heeswyck, R., Aust. J. Chem., 1979, 32, 2713
80. Wang, B.; Wang, M.; Zhang, H.; Sobal, N. S.; Tong. W. Gao, C.; Wang. Y.; Geirsig. M.; Wang. D.; Mohwald. H., Stepwise interfacial self-assembly of nanoparticales via specific DNA pairing. Phys. Chem. Chem. Phys., 2007, 9, 6313
81. Papoulis, A.; Al-Abed, Y.; Bucala, R., Identification of N2-(1-carboxyethyl)guanine (CEG) as a guanine advanced glycosylation end product. Biochemistry, 1995, 34, 648
82. Li, Nan-Sheng; Piccirilli, Joseph A., Efficient Synthesis of 2'-C- β-Methylguanosine. J. Org. Chem., 2006, 71, 4018-4020.
83. Busca, P.; McCort, I.; Prange, T.; Merrer, Y. L., Synthesis of C-Nucleosidic ATP Mimics as Potential FGFR3 Inhibitors. Eur. J. Org. Chem., 2006, 10, 2403.
84. Hua, D. H., Chen, Y., Sin, H. -S., Robinson, P. D., Mayers, C.Y.; Maroto, M. J., Newell, S. W.; Perchellet, E. M.; Ladesich, J. B.; Freeman, J. A.; Perchellet, E. M.; Perchellet, J.P.; Chiang, P. K.; Bielmann, J. -F., 6,7,8,9-tetrahydro-3-methyl-1H-pyrano-[4,3b]quinolin -1-one. Acta Cryst., 1999, C55, 1698-1701.
85. Wang, J.; Swidorski, J. J.; Sydorenko, N.; Hsung, R. P.; Coverdale, H. A.; Kuyava, J. M.; Liu, J., Aza-[3+3] annulations. Part 6. total synthesis of putative (-)-cylindrincine C., Heterocycles, 2006, 70, 423-459.
86. Wang, C. -S., Structure and chemistry of 4-hydroxy-6-methyl-2-pyrone. Heterocycles, 1970, 389-392.
87. Castillo, S.; Ouadahi, H.; Herault, V., Reaction of 4-hydroxy-6-methyl-2-pyrone with primary amines: synthesis of N -substituted 2-pyridinones and hexanamide intermediates. Bulletin de la Societe Chimique de France, 1982, 7-8, 257-61.
88. Ollinger, P.; Wolfbeis, O. S.; Junek, H., Darstellung, E/Z- Isomeric und gehinderte rotation an N -substituierten Aminomethylen-chromandionen, -pyrandionen und pyridionene. Monotshefte fur chemie, 1975, 106, 963-971.
89. Stoyanov, E. V.; Ivanov, I. C., Synthesis of some substituted 2H-pyrano[3,2-c]pyridine-2,5(6H)-Diones. Reaction of their 3-acetyl derivatives with methyl 3-amino-2-butenoate. Syn. Coттии., 1998, 28, 1755-1767.

CHAPTER 2 - Insight into the inhibition of aggregation of Alzheimer's $\mathbf{A} \beta$ peptides and disaggregation of $\mathbf{A} \beta$ oligomers using various biophysical techniques

2.1 Introduction

Neurodegenerative disease such as Alzheimer's disease and Huntington's disease involve the neuronal damage caused by the deposition of protein aggregates both extracellularly and intracellularly, which leads to abnormal brain function. The neurotoxicity of amyloid beta- (A β) peptide has been widely accepted as one of the fundamental causes of Alzheimer's disease. Our goal is to study the inhibition of aggregation and disaggregation of oligomers and protofibrils using different tricyclic pyrone molecules such as CP2, in solution. In this chapter, I will discuss different biophysical techniques such as atomic force microscopy (AFM), surface plasmon resonance (SPR) spectroscopy, circular dichroism (CD) spectroscopy and protein quantification assay and use them to study the kinetics of aggregation of amyloid $A \beta$ peptide and disaggregation of A $\beta 42$ oligomers and protofibrils. Also, our objective is to search for the role of TP molecules in the counteraction of $A \beta$ toxicity.

2.2 Background

Alzheimer's disease (AD) is a cerebral degenerative disorder characterized by gradual loss of memory, impaired judgment etc. and is affecting 1% of the world population. AD involves two kinds to protein aggregates; (I) Extracellular aggregates, also known as neuritic plaques are composed of $A \beta$ peptide aggregates, which are derived from the proteolytic processing of a transmembrane amyloid precursor protein (APP), by β - and γ - secretase enzymes. These $A \beta$ aggregates tend to adopt β-sheet conformation. ${ }^{1}$ Amyloid plaque is deposited in cerebral blood vessels and cortex. (II) Intercellular aggregates, also known as
neurofibrillary tangles (NFT) is composed of phophorylated microtubule-associated tau protein and $A \beta{ }^{2}{ }^{2}$ In addition to that, the pathogenesis of $A D$ is also related to genetic mutations responsible for familial forms of AD. The mutations could be in APP itself or in presenilin 1 (PS1) and presenilin II (PS II). ${ }^{3}$ Although the detailed mechanism of A β aggregation is not fully resolved, a general hypothesis of $A \beta$ aggregation is widely accepted and is as shown in Figure 1.2. ${ }^{4}$ A $\beta 42$ monomers rapidly oligomerize into paranuclei. Paranuclei themselves then can oligomerize to form larger, beaded protofibrils and fibrils. Monomers, paranuclei, and large oligomers are predominately unstructured but do contain β-sheet/ β-turn and helical (α) elements. ${ }^{4}$

Amyloid fibrils are insoluble filamentous structures with width $\sim 10 \mathrm{~nm}$ and length of 0.1$10 \mu \mathrm{~m}$. Using Solid State Nuclear Magnetic Resonance Spectroscopy, the β-sheet structure of $A \beta(10-35)$ was revealed to have anti-parallel a β-sheet organization. ${ }^{5}$ Subsequently, it was found that full length $A \beta(1-42)$ forms β-sheet structure with the same registry and orientation as shown in Figure 2.1. ${ }^{6}$

Figure 2.1 Structural model for A $\beta 42$ fibrils, (Taken from protein data bank, provided by Luhrs et al.). ${ }^{6}$

Recent studies have suggested that intracellular $A \beta$ oligomers rather than protofibrils or fibrils are the primary toxic species leading to the $A D .^{7-8}$ It has been found that intracellular $A \beta$
aggregates are more toxic then the extracellular $A \beta$ aggregates. ${ }^{9}$ Utilization of compounds that reduce the level of $A \beta$, prevent $A \beta$ aggregation, and disaggregate existing $A \beta$ aggregates has been proposed as a therapeutic strategy for AD. Different biophysical techniques including atomic force microscopy (AFM), circular dichroism (CD) spectroscopy, surface plasmon resonance (SPR) spectroscopy, and a protein quantification assays were used to study to study the mechanism of aggregation of Alzheimer $A \beta$ peptide in solution phase as described in detail in the following sections.

2.3 Biophysical experiments conducted to study the inhibition of aggregation of amyloid $A \beta$ peptides and disaggregation of $A \beta$ oligomers and protofibrils

2.3.1 Use of atomic force microscopy to study the inhibition of aggregation and disaggregation of $A \beta$ peptide

Atomic force microscopy (AFM) is a powerful tool to study the growth/kinetics and morphology of amyloid beta peptide, both in air/solid phase and in solution phase. AFM is used for the screening of small organic molecules as amyloid inhibitors along with other analytical techniques.

2.3.1.1 Introduction and background

AD involves the transformation of non-toxic soluble α-helical monomers into insoluble β-sheet fibrils. These insoluble fibrils are deposited in the extracellular part of the brain and along the walls of cerebral blood vessels as amyloid plaque. ${ }^{9}$ A significant amount of evidence suggests that these amyloid plaques play a central role in AD pathogenesis. ${ }^{9}$ Although electron microscopy and X-ray diffraction studies revealed the structure and morphology of beta sheet fibrils, they were unsuccessful in providing any insight on the structure and mechanism of aggregation. ${ }^{11,12}$ On the other hand, AFM studies have shown the presence of different
intermediates such as small soluble oligomers, large oligomers and protofibrils. In 1990s, AFM was used by Oda et al. to study the inhibition of $\mathrm{A} \beta$ fibrils formation by clusterin. ${ }^{13}$ Lansbery et $a l$. used the AFM and showed the formation and structure of $\mathrm{A} \beta$ protofibrils. ${ }^{14-15}$ Recently, McLaurin et al. published an extensive data on the structure of soluble A $\beta 40$ oligomers. ${ }^{16}$ Using AFM, Liu et al. reported that amino acid residues $17-20$ and $30-35$ play a critical role in the formation of oligomers and protofibrils. ${ }^{17}$ Our primary focus is to make use of AFM spectroscopy and study the effect of TP compounds on $A \beta$ inhibition of aggregation and disaggregation of soluble oligomers and protofibrils.

2.3.1.2 Preparation of A $\beta 40$ stock solution

A stock solution was prepared by dissolving 0.2 mg of $\mathrm{A} \beta 40(0.046 \mu \mathrm{~mol})$ in $50 \mu \mathrm{~L}$ of DMSO (purchased from BACHEM, Bachem California Inc. Torrance, CA). $10 \mu \mathrm{~L}$ of A $\beta 40$ was taken and diluted it with $90 \mu \mathrm{~L}$ of phosphate buffer $\left(50 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}\right.$ and $100 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH}$ 7.4, filtered through "Fischer brand PTFE $0.2 \mu \mathrm{~m}$) and $100 \mu \mathrm{~L}$ of deionized distilled water (filtered through "Fischer brand PTFE $0.2 \mu \mathrm{~m}$) to make the total volume to $200 \mu \mathrm{~L}$. Solution was ultra centrifuged and filtered through a 10,000 molecular weight cutoff ("microcon centrifugal filter devices" purchased from Millipore Corporation, Bedford, MA) at 13,000 r.p.m and $4^{\circ} \mathrm{C}$ for 30 minutes and was used for different experiments. ${ }^{18}$

2.3.1.3 Preparation of $A \beta 42$ stock solution

A stock solution was prepared by dissolving 0.25 mg of $\mathrm{A} \beta 42$ in $150 \mu \mathrm{~L}(0.055 \mu \mathrm{~mol})$ of DMSO (purchased from CALBIOCHEM, CAT\# PP69)). A small aliquot, $20 \mu \mathrm{~L}$ of A $\beta 42$ ($0.0073 \mu \mathrm{~mol}$) was taken and diluted it with $80 \mu \mathrm{~L}$ of phosphate buffer $\left(50 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}\right.$ and $100 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.4$, filtered through "Fischer brand PTFE $0.2 \mu \mathrm{~m}$ pore size) and $100 \mu \mathrm{~L}$ of deionized distilled water (filtered through "Fischer brand PTFE $0.2 \mu \mathrm{~m}$ pore size) to make the total volume up to $200 \mu \mathrm{~L}$. Solution was ultra centrifuged and was filtered through a 10,000 molecular weight cutoff ("microcon centrifugal filter devices" purchased from Millipore Corporation, Bedford, MA) at 13,000 r.p.m and $4^{\circ} \mathrm{C}$ for 30 minutes and was used as is for different experiments. ${ }^{18}$

2.3.1.4 AFM instrumentation and sample preparation

A Nanoscope IIIa SPM AFM (Digital Instruments Inc., Santa Barbara, CA, USA) workstation equipped with a multimode head using E-series or J-series piezoceramic scanner (Digital Instruments, Santa Barbara, CA). AFM probes were silicon nitride microcentilevers with 300 kHz resonance frequency and $40 \mathrm{~N} / \mathrm{m}$ spring constant model images were acquired at scan rate of $0.5-1 \mathrm{~Hz}$. Prior to sample preparation, all the stock solutions were vortexed for 30-45 seconds. From the aliquot, $10 \mu \mathrm{~L}$ sample was removed and immediately spotted on freshly
cleaved micas. After waiting for $60-90$ seconds, unbound $A \beta$ peptide was washed with water twice ($80 \mu \mathrm{~L}$ each), and dried with argon. AFM images were collected using a tapping mode with a high-aspect ration tip (Veeco Nanoprobe TM tips, Model TESP-HAR; Nanoscience Instruments, Inc., Phoenix, AZ, USA). Image J software at an 8 -bit resolution was used to carry out grain analysis to collect quantitative data. The image was adjusted by setting a threshold so that no noise on the image was present. The same threshold was used for all other images in the same independent experiment. The drive amplitude and force constant were adjusted, to minimize the force of interaction between the tip and the mica surface, thus limiting the sample deformation. For each experiment, $25 \mu \mathrm{~m}^{2}$ images from three independent AFM scans were used to determine the density (particles/field) of monomers/ oligomers and protofibrils. ${ }^{18}$

2.3.1.5 Inhibition of aggregation of $A \beta 40$ with several compounds

In vitro MC65 cell assay demonstrated the efficacy of CP2 as an amyloid inhibitor. ${ }^{19,20}$ We studied the inhibition effect of two equivalents of CP2 and compared it with thioflavin T , curcumin and Congo red. A stock solution of $200 \mu \mathrm{~L}$ as explained in 2.3.1.2 was prepared and divided into five different vials ($30 \mu \mathrm{~L}, 37 \mu \mathrm{M}$) and two equivalents of different compounds such as CP2, TP17, curcumin, congo red and TP17 (Figure 2.2) were added. After 24 h and 48 h , a small aliquot was taken and AFM images were captured. Different areas of the mica were scanned and representative images are shown in Figure 2.3. ${ }^{18}$

Figure 2.2. Structure of CP2, TP4, TP17, thioflavin T, Congo red and curcumin.

Continued....

Figure 2.3. AFM images of inhibition of aggregation of $A \beta 40$ monomers (Scale bar $1 \mu \mathrm{~m}$).
2.3.1.6 Inhibition of aggregation of $A \beta 42$ with several compounds

Since the hydrophobicity of $A \beta 42$ is more than $A \beta 40$, it aggregates fast in buffer solution and is thus more toxic. Similar to A $\beta 40$ inhibition of aggregation studies, we studied A $\beta 42$ inhibition of aggregation. A stock solution of $200 \mu \mathrm{~L}$ as explained in 2.3.1.3 was prepared and divided into five different vials ($30 \mu \mathrm{~L}, 37 \mu \mathrm{M}$) and two equivalents of different compounds such as CP2, TP17, curcumin, Congo red etc. were added. After 24 h and 48 h , a small aliquot was taken and AFM images were captured. Different areas were scanned and representative images are shown in Figure 2.4. CP2, Congo red and curcumin have similar inhibitory activities, while TP17 and thioflavin T are inactive. ${ }^{18}$

Continued....

Figure 2.4. AFM images of inhibition of aggregation of A $\beta 42$ monomers.

2.3.1.7 Disaggregation of AB42 oligomers with several compounds

A stock solution of $200 \mu \mathrm{~L}$ as explained in 2.3.1.3 was prepared. Stock solution was kept at $4^{\circ} \mathrm{C}$ for 24 h and small aliquot was taken. AFM confirms the formation of small oligomers. Once oligomers formed, stock solution was divided into five different vials ($30 \mu \mathrm{~L}, 37 \mu \mathrm{M}$) and two equivalents of different compounds such as CP2, TP17, curcumin, congo red etc. were added. Samples were stored at $4^{\circ} \mathrm{C}$ to slow down the speed of aggregation. After 24 h and $48 \mathrm{~h}, \mathrm{a}$ small aliquot was taken and AFM images were captured. Different areas were scanned and representative images are shown in Figure 2.5) CP2, congo red and curcumin have similar inhibitory activities, while TP17 and Thioflavin T are inactive. ${ }^{18}$

Figure 2.5. AFM images of disaggregation of $A \beta 42$ oligomers.

2.3.1.8 Disaggregation of AB42 protofibrils with CP2

According to the proposed aggregation hypothesis, A $\beta 42$ monomers tend to aggregate to form the soluble oligomers. If untreated, soluble oligomers aggregate further to form long protofibrils and fibrils. We studied the efficacy of CP2 on A $\beta 42$ protofibril disaggregation. A stock solution of $200 \mu \mathrm{~L}$ was prepared as explained in 2.3.1.3. The stock solution was stored at
$4^{\circ} \mathrm{C}$ for 4 days and AFM image was taken to confirm the formation of $\mathrm{A} \beta$ protofibrils. Once the protofibrils had formed, $30 \mu \mathrm{~L}$ of $\mathrm{A} \beta 42(37 \mu \mathrm{M})$ was taken and to it was added two equivalents of CP2. After the addition of CP2, the sample was stored at $25^{\circ} \mathrm{C}$ for 24 h . After 24 h , a small aliquot was taken and AFM was recorded. Different areas were scanned and a representative image is shown in Figure 2.6. ${ }^{18}$

Figure 2.6. AFM images of disaggregation of $A \beta 42$ protofibrils; (a) A $\beta 42$ protofibrils formed form the incubation of $A \beta 42$ monomer $(37 \mu \mathrm{M})$ at $4^{\circ} \mathrm{C}$ for 4 days. (b) Incubation of $A \beta 42$ protofibrils with CP2 (two equivalents) for 24 h at room temperature.

2.3.1.9 Disaggregation of AB42 oligomers with CP2 over the period of five days

While performing the disaggregation of $A \beta 42$ oligomers experiment, we found that the disaggregated $A \beta 42$ monomers tend to re-aggregate to oligomers over time. We studied how much CP2 is needed to maintain the $\mathrm{A} \beta 42$ in monomeric form. $\mathrm{A} \beta 42(37 \mu \mathrm{M})$ oligomers were treated with 2, 5, and 10 equivalents of CP2 over a period of five days. Each day, a small aliquot $(10 \mu \mathrm{~L})$ was removed from the stock and AFM images were taken. Three representative images are used to calculate the particle density using Image J software and the results are summarized in Figure 2.7. ${ }^{18}$

Figure 2.7. Disaggregation of $A \beta 42$ oligomers with different equivalents of CP 2 over the period of five days. Quantitative analysis of particle density in $25 \mu \mathrm{~m}^{2}$. A β oligomeric density from three independent AFM scans was calculated using Image J program.

2.3.1.10 Result and discussion

Using AFM spectroscopy, we studied the efficacy of some compounds such as CP2 and TP4 synthesized in our laboratory and compared it with different commercially available amyloid beta inhibitors such as thioflavin T^{21}, congo red ${ }^{22}$ and curcumin. ${ }^{23}$ Tricyclic pyrone molecule TP17 was used as a negative control. ${ }^{20}$ Different areas of the mica surface were scanned and a few representative pictures of the result of inhibition of aggregation of A $\beta 40$ (Figure 2.3) and $A \beta 42$ (Figure 2.4), disaggregation of $A \beta 42$ oligomers (Figure 2.5), disaggregation of $\mathrm{A} \beta 42$ protofibrils (Figure 2.6) with CP2, Thioflavin T, congo red, curcumin, TP17 were captured. Based on our previous results ${ }^{20}$, we predicted low affinities of thioflavin T
and TP17 to the $A \beta$ oligomers and consistent results were obtained (Figure 2.5). Since $A \beta 40$ is less hydrophobic than $A \beta 42$, lower amounts of aggregates were formed (Figure 2.3). Bioactive compounds CP2, congo red and curcumin inhibits the extent of aggregation by about 50% over a period of 48 h , whereas no such inhibitory effect was observed for TP17 and thioflavin T (Figure 2.8). Also, when compared to the control, two equivalents of CP2, Congo red and curcumin are sufficient enough to slow down the speed of aggregation (Figure 2.9). ${ }^{18}$

Figure 2.8. Inhibition of aggregation of $A \beta 40$ with two equivalents of $\mathrm{CP} 2, \mathrm{TP} 17$, thioflavin T, curcumin and congo red separately over 24 h and 48 h . Quantitative analysis of particle density in $25 \mu \mathrm{~m}^{2}$ AFM scans. A β oligomeric density from three independent AFM scans was calculated using Image J program. Error bars represent standard deviation.

Figure 2.9. Inhibition of aggregation of $A \beta 42$ with two equivalents of $\mathrm{CP} 2, \mathrm{TP} 17$, thioflavin T, curcumin and congo red separately over 24 h and 48 h . Quantitative analysis of particle density
in $25 \mu \mathrm{~m}^{2}$ AFM scans. A β oligomeric density from three independent AFM scans was calculated using Image \mathbf{J} program. Error bars represent standard deviation.

It is widely accepted that $A \beta$ oligomers are toxic to neurons and play a critical role in $A D$ progression. ${ }^{7}$ Also, compared to $A \beta 42, A \beta 40$ is less toxic and thus we focused our studies on toxic $\mathrm{A} \beta 42$ oligomers and protofibrils. ${ }^{19}$ We investigated whether CP2, curcumin and congo red have similar effects on A $\beta 42$ disaggregation of the toxic oligomers to non-toxic monomers. A $\beta 42$ oligomers were grown based on a published protocol. ${ }^{24}$ A $\beta 42$ oligomers were treated with two equivalents of different compounds such as CP2, thioflavin T, congo red, curcumin and TP17 and AFM images were recorded after 24 h and 48 h (Figure 2.5). Due to the size limitation of AFM, A $\beta 42$ monomers and dimers ($<2 \mathrm{~nm}$ diameter) were too small to be observed. Different areas were scanned and image J software was used to calculate the peptide density (average three images) and the results are summarized in Figure 2.10. After 24 h and 48 h of incubation of different compounds in A $\beta 42$ oligomers at $4^{\circ} \mathrm{C}$, a 50% decrease in aggregates was observed for CP2, Congo red and curcumin. After $48 \mathrm{~h}, \mathrm{CP} 2$ showed the greatest disaggregating ability. Curcumin had a greater disaggregation activity than congo red. Thioflavin T and TP17 did not show disaggregation activities. ${ }^{18}$

Figure 2.10. Disaggregation of $A \beta 42$ oligomers with two equivalents of CP2, TP17, thioflavin T, curcumin and congo red separately over 24 h and 48 h . Quantitative analysis of particle density in $25 \mu \mathrm{~m}^{2}$ AFM scans. A β oligomeric density from three independent AFM scans was calculated using Image J program. Error bars represent standard deviation. $\mathrm{n}=3,{ }^{*} \mathrm{p},{ }^{* *} \mathrm{p},{ }^{* * *} \mathrm{p}$, $* * * * \mathrm{p},{ }^{* * * * *} \mathrm{p}<0.01$ compared with their respective controls.

Surprisingly, after 24 h , disaggregated A $\beta 42$ tends to re-aggregate over time and more aggregates were observed for CP2, curcumin and congo red over time (Figure 2.10). We studied the amount to CP2 required to maintain A $\beta 42$ peptide in monomeric form (derived from the disaggregation of oligomers) without aggregation over 5 days. Hence, A $\beta 42$ oligomers ($37 \mu \mathrm{M}$) in pH 7.4 PBS solution were prepared (confirmed by AFM) and treated with various amounts of

CP2 and incubated at $4^{\circ} \mathrm{C}$ over 5 days (days 2-6). Each day, an aliquot was removed and AFM images were taken (in various locations of the mica), and three representative images were used to calculate the peptide particle density. The results are summarized in Figure 2.7. On day 4, protofibrils were observed in the $\mathrm{A} \beta 42$ solution without CP 2 , and on day 6 , protofibrils predominated. It was observed that $\mathrm{A} \beta 42$ solutions incubated with 2 and 5 equivalents of CP2 showed lesser amounts of oligomers after 24 h and 48 h but the oligomers size increased after 5 days. On the other hand, in the presence of 10 equivalent of CP 2 , only $\sim 8 \%$ of oligomers were observed compared with zero equivalent of CP2 after 5 days. The results suggest that disaggregated A $\beta 42$ monomer and smaller oligomers tend to aggregate and can recombine to form larger oligomers over time It is suggestive that CP2 binds to $\mathrm{A} \beta$ oligomers and breaks apart the oligomers into small monomer and dimer. The binding of CP 2 with monomeric $\mathrm{A} \beta$ and $\mathrm{A} \beta$ oligomers is reversible and $\mathrm{A} \beta 42$ monomer re-aggregates to form oligomers over time in a closed compartment. ${ }^{18}$

Also, based on $A \beta$ aggregation pathway (Figure 1.2) $A \beta$ oligomers undergo nucleation polymerization and aggregate to form protofibrils, which have been revealed to be toxic to neuronal cells and to affect learning in mice. ${ }^{25,26}$ We studied the disaggregation of A $\beta 42$ protofibrils with CP2. A $\beta 42$ protofibrils were produced by incubation of $\mathrm{A} \beta 42$ monomer in PBS for 4 days (confirmed by AFM). To preformed A $\beta 42$ protofibrils, two equivalents of CP2 was added and incubated at $25^{\circ} \mathrm{C}$ for 24 h . After 24 h , a small aliquot was taken and AFM images revealed the disappearance of protofibrils and presence of small amounts of oligomers (figure 2.6).

Detailed AFM studies were conducted in our laboratory and the results have shown that CP2 inhibits the $A \beta$ aggregation formation, disaggregates soluble oligomers to non-toxic monomers and protofibrils to small oligomers. ${ }^{18}$

2.3.2 Use of surface plasmon resonance spectroscopy to study the interaction of tricyclic pyrone and $A \beta$ peptide

2.3.2.1 Introduction and background

Surface plasmon resonance (SPR) is one of the most sensitive tools to detect the mass change above the gold-coated metal surface. ${ }^{27}$ SPR used to study the direct binding of proteinprotein, protein-compound, ligand-receptor, host-guest, and protein-antibody etc. interactions. In SPR spectroscopy, a change in the mass above the metal surface can be quantified in situ by monitoring a shift in SPR angle (Figure 2.11). A SPR spectrometer can sense the change in $\mathrm{pg} / \mathrm{mm}^{2}{ }^{28}$
$A \beta$ monomers polymerize to form insoluble fibrils, which are toxic to neurons. Previous studies indicate that $A \beta$ polymerization involves interactions between the $A \beta$ peptides. ${ }^{29} A$ pharmacological approach to prevent the amyloid formation is to use drugs that specifically disrupts the $\mathrm{A} \beta-\mathrm{A} \beta$ interactions. Tjernberg et al. reported a small peptide ligands that can bind to the full length $A \beta$, and hinder $A \beta-A \beta$ interaction thus inhibits aggregation. Their aim was to find a region of $A \beta$ peptide, which is crucial for $A \beta$ aggregation. Using SPR spectroscopy, they arrest the $\mathrm{A} \beta$ fibril formation by a pentapeptide ligand (beta sheet breakers) and confirmed it by AFM spectroscopy. ${ }^{30}$ Our goal is to study the binding affinity of TP compound CP2 to A $\beta 40$ and $\mathrm{A} \beta 42$ monomers and small soluble oligomers (confirmed by AFM).

Figure 2.11. Schematic representation of SPR principle. ${ }^{28}$ (This picture is modified from the manufacturer's handbook)

2.3.2.2 Binding of CP2 and TP17 to Aß40 and Aß42 monomers

A Biacore 3000 (Biacore Inc., Piscataway, NJ, USA), equipped with four flow cells in one sensor chip (CM5), was used for real-time binding studies. The $A \beta 40$ and $A \beta 42$ peptides were separately immobilized on gold sensor CM5 chips as described. ${ }^{31}$ First, carboxymethylated dextran of CM5 was activated with N-hydroxysuccinimide in pH 7.4 buffer, followed by the coupling with $\mathrm{A} \beta$ peptides. Free activated unreacted chip surface was blocked by ethanolamine. The resulting $A \beta$-bound sensor chip was used in the SPR studies, and the amounts of bound $A \beta$ were measured from the SPR graph. The reference cells were prepared following the same procedure but without addition of $\mathrm{A} \beta$ peptides (Figure 2.12).

Figure 2.12. Immobilization of $A \beta$ on to CM5 gold chip. (1) Activation and immobilization of $\mathrm{A} \beta$ on gold CM5 sensor chip. (2) The surface activated by EDC/NHS was exposed to a fresh $A \beta 40 / A \beta 42$ solution to form a peptide bond between the amine group on the peptide and the carboxylic group on the CM5 surface. (3) The deactivation of unreacted sites was achieved by blocking NHS-activations with ethanolamine. ${ }^{31}$

CP2 and TP17 were dissolved in 50 mM Tris buffer to a concentration of $800 \mu \mathrm{M}$ and injected into flow cells. The chip surface was exposed to compounds for 60 s , then to running buffer (10 mM HEPES, $150 \mathrm{mM} \mathrm{NaCl}, 3.4 \mathrm{mM}$ EDTA, 0.05% surfactant P20, pH 7.4) for 180 s . The response unit (RU) was recorded, converted to pmol bound compound, and analyzed ($1 \mathrm{RU}=$ 1 pmol). The flow cells were then regenerated with regenerating buffer containing urea, while leaving the immobilized $A \beta$ peptides intact. The same chips with the same amounts of bound $A \beta$ peptides were used for consecutive analysis of different compounds and comparisons were made only between the bindings to the same chips. The amounts of bound compounds were calculated by the $\Delta R U$ value, obtained by subtracting the $R U$ at the time before compound injection from
the $R U$ at the time just after the injection of running buffer. The $\Delta R U$ obtained from the reference cell was considered the background binding and was subtracted before the analysis (Figure 2.13). ${ }^{20}$

Figure 2.13. Real-time detection of the binding of tricyclic pyrone to $A \beta 40$ (A and B) and $A \beta 42$ (C and D) by SPR. The results from a typical experiment are shown. Color code: Blue is cell surface without immobilized $A \beta$ and Red is cell surface with immobilized $A \beta$.

2.3.2.3 Binding of CP2 to AB42 oligomers using anti-oligomer antibody (AB9234)

We have shown that in real time binding studies, CP2 binds to $A \beta$ peptide. Also, AFM studies have shown that CP2 disaggregates A $\beta 42$ oligomers to monomers but the mechanism of disaggregation is still unknown. In order to shed some light, we are interested in knowing if CP2 binds to A $\beta 42$ oligomers. For real time binding studies using SPR, injecting A $\beta 42$ oligomers to the flow cell does not confirm the binding of the oligomers as it could be only the monomers that bound to the surface. We therefore modified our experiment and used AB9234 antibody as a host that binds to the activated gold surface of CM5 sensor chip. ${ }^{32}$ AB9234 is an anti amyloid oligomer antibody that specifically binds to all types of $\mathrm{A} \beta$ oligomers. ${ }^{33}$ A Biacore 3000 (Biacore Inc., Piscataway, NJ, USA), equipped with four flow cells in one sensor chip (CM5), was used for real-time binding studies. Carboxymethylated dextran (CM5) of sensor chip is activated by injecting $200 \mu \mathrm{~L}$ of $1: 1$ mixture of N-ethyl- N-[(dimethylamino)propyl]carbodiimide (EDC) and N-hydroxysuccinimide (NHS) in pH 7.4 buffer solution for 30 min, followed by the injection of antibody AB9234 (10 $\mu \mathrm{L}$ of AB9234 was diluted with $600 \mu \mathrm{~L}$ of pH 5.0 sodium acetate buffer, injected at the rate of $10 \mu \mathrm{~L}$ per minute). Anti-amyloid oligomer antibody AB9234 was immobilized on the first gold sensor CM5 chip flow cell, and the second flow cell is used as a reference (without immobilization of AB9234). Antibody cdk5, a negative control, was immobilized on the third flow cell, and the fourth flow cell had no immobilization (used as a reference). The resulting AB9234 bound sensor chip (and the cdk5 bound chip) was used in the SPR studies. The reference cells were prepared similarly but without the addition of AB9234 or cdk5 for correction of background bindings. A running buffer solution consisting of 10 mM HEPES, $150 \mathrm{mM} \mathrm{NaCl}, 3.4 \mathrm{mM}$ EDTA, 0.05% surfactant P20, pH 7.4, was used as a washing solvent between injections of reagents, antibody, A $\beta 42$ oligomers, and CP2. After immobilization of the antibody, a solution of $A \beta 42$ oligomers (prepared by incubation of a 10 $\mu \mathrm{M}$ solution of $\mathrm{A} \beta 42$ monomer in pH 7.4 PBS buffer for 24 h at $4^{\circ} \mathrm{C}$; formation of small $\mathrm{A} \beta 42$ oligomers were confirmed by AFM) was injected to the cell, and binding was observed. To the bound AB9234-A $\beta 42$ oligomer, a solution of CP2 ($40 \mu \mathrm{M}$ in the aforementioned running buffer) was injected followed by washing with the running buffer solution. The amounts of immobilized antibody, bound A $\beta 42$ oligomers and CP2 were determined based on the amounts of response
units obtained from the sensograms. The amounts of immobilization and bindings were calculated by the $\Delta \mathrm{RU}$ value, obtained by subtracting the RU at the time before compound injection from the RU at the time just after injection of running buffer (Figure 2.14). RUs are equivalent to picograms and can be converted into picomol. One RU is defined to be $1 \mathrm{pg} / \mathrm{mm}^{2}$ of bound protein molecules and can be converted into $\mathrm{pmol} / \mathrm{mm}^{2}$. ${ }^{34}$

Figure 2.14. SPR sensogram of the in real-time binding of CP2 to A $\beta 42$ oligomers-AB9234 antibody complex. The first two injections showed the immobilization of anti-amyloid oligomer antibody, the following five injections were A $\beta 42$ oligomers, and the last injection was CP2. Lower concentrations of $A \beta 42$ were used in the first four injections and higher concentration of $\mathrm{A} \beta$ was used in the fifth injection to ensure that the immobilized antibody was bound with the oligomer.

2.6.2.4 Result and discussion

SPR has been used extensively to study the interaction of peptides and proteins with other peptides and small organic molecules. In search of potential amyloid beta inhibitors, Tjernberg et al. studied the binding of small peptides (called beta sheet breakers) to full length A $\beta 40$
peptide. ${ }^{30}$ In general, $A \beta$ peptide was immobilized from a solution of very low concentration (\sim $\mathrm{pmol} / \mathrm{L}$) on a sensor chip and maintained in a pH 7.4 buffer solution. When a drug molecule/peptide flows through the chip and a binding occurs between the drug/peptide and $A \beta-$ peptide, the refractive index of the medium next to the chip will change. This is represented by a response unit (RU) that is equivalent to the mass of bound drug in picograms. ${ }^{34} \mathrm{We}$ observed less binding of $A \beta 42$ over $A \beta 40$ (Figure 2.13) because of faster aggregation of $A \beta 42$ during the course of the experiment. CP2 was injected and binding of TP compounds onto the gold chip having $\mathrm{A} \beta$ was observed ($\Delta \mathrm{RU}$). TP17 was used as a negative control. Using Biaevaluation software, version 3.0, analysis of sensograms was performed. The kinetic result fits the binding curves to a 1:1 Langmuir binding model. Whereas, 1.5 equivalents of CP2 bind to 1 equivalent of $A \beta 40$ monomers and 1 equivalent of CP2 binds to $A \beta 42$ monomers. No interaction was observed for inactive TP17-A β peptide. The dissociation constant $\mathrm{K}_{\mathrm{D}}(\mathrm{M})$ is derived from the equation, $K_{D}=\mathrm{kd} / \mathrm{ka}$, where kd and ka are dissociation- and association-rate constants, respectively. CP2 binds to $A \beta 40$ with a high affinity $\left(K_{D}=5.05 \mathrm{nM}\right)$ as compared to $A \beta 42\left(\mathrm{~K}_{\mathrm{D}}=\right.$ $269 \mathrm{nM}) .{ }^{20}$

On the other hand, for CP2 to A $\beta 42$ oligomer binding studies, anti-amyloid oligomer antibody (AB9234, ~ 150 KDa MW) was immobilized onto the CM5 gold chip. Based on the sensogram (Figure 2.14), after two injections of the antibody, there were 0.052 pmol of antiamyloid oligomer antibody immobilized. After eluting the flow cells with running buffer for 20 min to remove all unbound antibody, preformed $10 \mu \mathrm{MA} \beta 42$ oligomers were injected (four injections over 100 min) into the flow cells and 0.426 pmol of $\mathrm{A} \beta 42$ oligomers were found to bind to the antibody. After washing the flow cell with running buffer for 100 min to remove any unbound $\mathrm{A} \beta$ oligomer, a solution of $\mathrm{CP} 2(40 \mu \mathrm{M})$ was injected and then washed with running buffer, 0.21 pmol of CP2 was found to bind to the antibody- $\mathrm{A} \beta$ oligomer complex. The data suggests that for each antibody, there are eight molecules of $A \beta 42$ (based on MW of the monomer; ~ 4530) bound to the antibody, and 4 molecules of CP2 (MW ~ 510) bind to each A $\beta 42$ oligomer-antibody. Similar binding studies were also carried out by immobilizing anti-Cdk5 antibody in one of the flow channels as a negative control, and no bindings of A $\beta 42$ oligomers were found. We also found that CP2 did not bind to anti-amyloid oligomer antibody alone when CP2 was injected to a separate flow cell immobilized with the antibody alone. The real-time
binding study using SPR shows A $\beta 42$ oligomers bind to anti-amyloid oligomer antibody and CP 2 binds to the $\mathrm{A} \beta$ oligomer-antibody complex. ${ }^{18}$

2.3.3 Use of protein quantification assay to study the inhibition of aggregation of $A \beta$ with and without tricyclic pyrone molecule CP2

2.3.3.1 Introduction and background

Conversion of soluble, non-toxic $A \beta$ monomers aggregate to insoluble toxic, beta sheet fibrils play a crucial role in pathology of AD. Any compound that either inhibits or slows down the kinetics of aggregation can be screened as a potential therapeutic agent for AD. Studies have shown that in terms of toxicity, concentration plays a very crucial role and $A \beta$ is toxic even in nanomolar range. ${ }^{20}$ The Pierce Micro $\mathrm{BCA}^{\mathrm{TM}}$ protein assay reagent kit has been used for quantitation of amyloid beta protein. ${ }^{35}$ The micro BCA reagent kit can quantify protein up to 0.5 $20 \mu \mathrm{~g} / \mathrm{mL}$ of the sample. ${ }^{36}$ This quantification experiment utilized bicinchoninic acid (BCA) as a detection reagent for Cu^{+1} which is formed, when Cu^{+2} is reduced by the protein in alkaline environment. A purple colored solution is formed when two molecules of BCA chelates with one molecule of Cu^{+1} and this complex exhibits a strong absorbance at $530-590 \mathrm{~nm}$ wavelength.

2.3.3.2 Inhibition of aggregation of AB40 and AB42 with CP2

A Micromax RF refrigerated microcentrifuge (Thermo Electron Co., Fisher Scientific, Pittsburgh, PA) and a UV-Vis spectrometer (Shimadzu UV-120-02; Columbia, MD) were used for the experiment. Prior to the experiment, synthetic $A \beta 40$ and $A \beta 42(0.2 \mathrm{mg}$ in $200 \mu \mathrm{~L})$ were dissolved in hexafluoroisopropanol (HFIP), a low polar solvent that stabilizes the α-helix structure and disrupts inter-strand hydrogen bonding between the beta sheets. Sample was kept at $25^{\circ} \mathrm{C}$ for 48 h , and after which HFIP was allowed to evaporate at $25^{\circ} \mathrm{C}$. Four different concentrations of $A \beta$ peptides, $30,40,50,60 \mu \mathrm{M}$ for $A \beta 40$, and $10,20,30,40 \mu \mathrm{M}$ for $A \beta 42$ were freshly dissolved in pH 7.4 PBS buffer $(500 \mu \mathrm{~L})$ and treated each with $500 \mu \mathrm{~L}$ of freshly prepared Micro $\mathrm{BCA}^{\mathrm{TM}}$ reagent. The solutions were incubated at $60^{\circ} \mathrm{C}$ for 30 minutes, cooled to
$25^{\circ} \mathrm{C}$, and absorbance was measured using a UV spectrometer at 569 nm wavelength (a BCA reagent was used as a reference) within 10 minutes. Linear correlations ($\mathrm{A} \beta 40 \& 42$ with and without CP2; 2 equivalents) between the absorbance and concentration were obtained (Graph 2.1). ${ }^{18}$ Once the linear correlation was observed, Monomeric $A \beta 40$ and $A \beta 42$ peptides were treated with 2 equivalents of CP2 separately for 1 week at $25^{\circ} \mathrm{C}$, and each day the concentrations of $A \beta 40$ and $A \beta 42$ peptides were quantified using a micro $B C A^{T M}$ protein assay reagent kit and results are summarized in Figure 2.15. ${ }^{18}$

Graph 2.1. Correlations of concentrations of monomeric A $\beta 40$ and $A \beta 42$ separately versus UV absorbance with and without CP 2 using Micro $\mathrm{BCA}^{\mathrm{TM}}$ protein assay reagent kit. Left panel: $A \beta 40$, diamond is $\mathrm{A} \beta 40$ with CP 2 and square is $\mathrm{A} \beta 40$ without CP 2 ; Right panel: $\mathrm{A} \beta 42$, triangle is $\mathrm{A} \beta 42$ with CP 2 and circle is $\mathrm{A} \beta 42$ without CP 2 .

Figure 2.15. Quantification of soluble $A \beta 40$ and $A \beta 42$ peptide separately in PBS buffer (pH 7.4) at $25^{\circ} \mathrm{C}$ over 7 days using a micro $\mathrm{BCA}^{\mathrm{TM}}$ protein assay reagent kit in the absence (marked in square for $A \beta 40$ and circle for $A \beta 42$) and presence (marked in diamond for $A \beta 40$ and triangle for $\mathrm{A} \beta 42$) of 2 equivalents of CP 2 .

2.6.3.3 Result and discussion

We have already observed, by AFM and SPR spectroscopy, that CP2 binds to $A \beta$ monomers and inhibit its aggregation. Also, CP2 binds to toxic A β oligomers and protofibrils and disaggregates them to non-toxic monomers (by AFM). Using Micro BCA ${ }^{\mathrm{TM}}$ protein assay kit, we investigated whether CP2 inhibits $\mathrm{A} \beta$ fibril formation in PBS buffer solution (pH 7.4) over time at $25^{\circ} \mathrm{C}$. In the absence of CP2, we found $\sim 73 \%$ of $A \beta 40$ and $\sim 43 \%$ of $A \beta 42$ in the solution after 1 week. On the other hand, in the presence of two equivalents of CP2, there was $\sim 88 \%$ and $\sim 81 \%$ of A $\beta 40$ (Table 2.1) and A $\beta 42$ (Table 2.2), respectively that remained in the solution after 1 week of incubation. The data shows that CP2 inhibits the fibril formation, which is in agreement with the results of the inhibitions of aggregation of $A \beta$ peptides (vide supra), as further aggregation of oligomers leads to protofibrils and fibrils. ${ }^{18}$

Days	Day 1	Day 2	Day 4	Day 6	Day 7
$\mathbf{A \beta 4 0}(\boldsymbol{\mu M})$	49	45	42.5	40	36
$\mathbf{A \beta 4 0}+\mathbf{C P 2}(\boldsymbol{\mu M})$	49	46.7	44.9	45.2	43

Table 2.1. Amount of A $\beta 40$ peptide $(\mu \mathrm{M})$ over 7 days at $25^{\circ} \mathrm{C}$ in PBS buffer (pH 7.4) at $25^{\circ} \mathrm{C}$ with and without CP 2 (two equivalents) determined by micro $\mathrm{BCA}^{\mathrm{TM}}$ protein assays.

Days	Day 1	Day 2	Day 3	Day 4	Day 6	Day 7
$\mathbf{A \beta 4 2 ~ (~} \boldsymbol{\mu} \mathbf{M})$	35	35	32.5	25	15	15
$\mathbf{A} \boldsymbol{\beta 4 2}+\mathbf{C P 2}(\boldsymbol{\mu M})$	40	40	37.5	35	32.5	32.5

Table 2.2. Amount of $\mathrm{A} \beta 40$ peptide $(\mu \mathrm{M})$ over 7 days at $25^{\circ} \mathrm{C}$ in PBS buffer (pH 7.4) at $25^{\circ} \mathrm{C}$ with and without CP2 (two equivalents) determined by micro $\mathrm{BCA}^{\mathrm{TM}}$ protein assays.

2.3.4 Use of circular dichroism (CD) spectroscopy to study the inhibition of aggregation of $A \beta$ with and without tricyclic pyrone molecule CP2

2.3.4.1 Introduction and background

Circular dichroism helps in studying the real time secondary structure of the protein (Figure 2.16). ${ }^{37}$ It is known that $A \beta$ aggregation involves the transformation of soluble unordered α-helix/ random coil to β-sheet rich conformation. Numerous reports have shown the use of CD spectroscopy to study the kinetics of $\mathrm{A} \beta$ aggregation pathway. ${ }^{38-40}$ In general, most CD studies performed so far have used fluorinated solvents such as trifluoroethanol (TFE) and hexafluoroisopropanol (HFIP). Since fluorinated solvents promote intramolecular hydrogen bonding, which indicates that stable α-helix conformation is intramolecular and β-sheet structure are intermolecular. TFE and HFIP are weaker proton donors than water and thus promote structure formation by intramolecular hydrogen bonding rather than intermolecular hydrogen bonding with the solvent. Barrow et al. performed detailed studies into the structure and kinetics of $A \beta(39-43)$ aggregation in solution phase and concluded that the $A \beta$ peptide adopts a mixture of random coil, α-helix and β-sheet with the relative ratio depending on the solvent composition, concentration of peptides, temperature, pH etc. ${ }^{41}$ It was observed that increasing the percentage
of TFE favors the formation of α-helix and random coil and a maxima was observed in 90% trifluoroethanol (TFE). Similar results were obtained in hexafluoroisopropanol (HFIP). We also obtained the similar results for $\mathrm{A} \beta 42$ as shown in Figure 2.17.

However, for real time in vitro inhibitors studies, use of fluorinated solvent (HFIP) is not a suitable solvent due to its low volatility. It was also found that the morphology and stability of soluble oligomers are different in HFIP when compared with aqueous buffer. ${ }^{42}$ Recently, Andrisano et al. developed a highly reproducible in vitro assay and validated it by studying different synthesized and commercially available amyloid inhibitors. ${ }^{43}$ We used their published protocol to study the kinetics of $A \beta 42$ aggregation and effect of CP2 on the inhibition/stabilization of α-helix/ random coil secondary conformation of $A \beta 42$.

Figure 2.16. CD spectrum of different conformations of $A \beta$ peptide. ${ }^{37}$

Figure 2.17. CD spectrum showing the effect of TFE on A $\beta 42$ peptide.

2.3.4.2 Study of inhibition of aggregation of AB42 with CP2 (1.25 equivalents)

A Jasco J-815 Spectropolarimeter CD instrument (JASCO; Easton, MD) and a quartz cell (0.1 cm length; $200 \mu \mathrm{~L}$ internal volume) were used to record CD spectra in a spectral range of $190-260 \mathrm{~nm}, 1 \mathrm{~nm}$ data pitch, 1 nm bandwidth, and at $50 \mathrm{~nm} / \mathrm{min}$ scan speed. A solution of A $\beta 42(40 \mu \mathrm{M})$ in phosphate buffer solution containing $\mathrm{NaCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{NaOH}$, and acetonitrile was prepared according to the reported method ${ }^{43}$ to monitor $A \beta 42$ solution structure in the absence and presence of 1.25 equivalents of CP 2 over 48 h at $25^{\circ} \mathrm{C}$ in a time course manner. In order to remove already preformed aggregates, $A \beta 42(0.12 \mathrm{mg})$ was dissolved in hexafluoroisopropanol (HFIP; $200 \mu \mathrm{~L}$), a low polar solvent that stabilizes the a-helix structure and disrupts inter-strand hydrogen bonds between of the beta sheet, by brief sonication and vortexing, kept at $25^{\circ} \mathrm{C}$ for 48 h , and HFIP was evaporated at $25^{\circ} \mathrm{C}$. The resulting A $\beta 42$ was redissolved in a freshly prepared mixture ($70 \mu \mathrm{~L}$) of $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{Na}_{2} \mathrm{CO}_{3}(0.3 \mathrm{mM}) / \mathrm{NaOH}(0.25 \mathrm{M})$ (48.3:48.3:3.4, $\mathrm{v} / \mathrm{v} / \mathrm{v}$) by brief sonication and vortexing providing an alkaline solution of A $\beta 42$ (0.38 mM). An aliquot $(30 \mu \mathrm{~L})$ of the $\mathrm{A} \beta 42$ solution was diluted with phosphate buffer saline (PBS; 0.25 mL) solution to give a $40 \mu \mathrm{M}$ solution of $\mathrm{A} \beta 42$ in phosphate buffer $(7.7 \mathrm{mM})$ that
contained $\mathrm{NaCl}(8.9 \mathrm{mM}), \mathrm{Na} 2 \mathrm{CO} 3(15.5 \mathrm{mM}), \mathrm{NaOH}(0.91 \mathrm{mM})$, and 5.1% acetonitrile. CP2 (1.25 equivalents; $10 \mu \mathrm{~L}$ of 1.5 mM in PBS-ethanol, 9:1) was added to $280 \mu \mathrm{~L}$ of the above A $\beta 42(40 \mu \mathrm{M})$ solution, and CD spectra were recorded at regular interval over 48 h . The control solutions that contained the above incubation buffer with and without CP2 were prepared and their contributions were subtracted in the CD spectra of $A \beta 42$ with and without $C P 2$, respectively (Figure 2.18). Although CP2 can interfere with the experiments, 1.25 equivalents of CP2 alone showed only a small absorption and did not change the overall shape of A $\beta 42$. To follow A $\beta 42$ conformational changes and inhibition studies with CP2, the CD wavelength at 215 nm (beta sheet structure) was plotted verses the time of incubation (Figure 2.19). ${ }^{18}$

Figure 2.18. CD spectra of $\mathrm{A} \beta 42(40 \mu \mathrm{M})$ in phosphate buffer (7.7 mM) containing $\mathrm{NaCl}(8.9$ $\mathrm{mM}), \mathrm{Na}_{2} \mathrm{CO}_{3}(15.5 \mu \mathrm{M}), \mathrm{NaOH}(0.91 \mathrm{mM})$, and 5.1% acetonitrile solution with and without CP2 over 48 h . The control solutions that contained the above incubation buffer with and without CP2 were prepared and their contribution was subtracted in the CD spectra. Left panel: A $\beta 42$ alone; 0 h: black; 9 h: light blue; 19 h: green; 21 h : dark blue; 45 h : brown; and 48 h : red. Right panel: A $\beta 42+\mathrm{CP} 2$ (1.25 equivalents); 0 h : black; 9.5 h : light blue; 15.5 h : green; 20 h : dark blue; 23 h: brown; and 48 h : red.

Figure 2.19. Trend of β-sheet content over time: circle is $A \beta 42$ alone and square is $A \beta 42+\mathrm{CP} 2$.

2.3.4.3 Results and discussion

It is accepted that $A \beta$ undergoes conformational changes or misfolding from random coil/ α-helix to β-sheet structure, resulting in oligomerization and insoluble fibrils formation. ${ }^{43,44}$ CD spectroscopy offers a real-time monitoring of protein conformations in aqueous solution. ${ }^{44} \mathrm{~A}$ PBS buffer solution containing $\mathrm{Na}_{2} \mathrm{CO}_{3}-\mathrm{NaOH}$-acetonitrile was established ${ }^{43}$ recently to study $A \beta$ conformational changes in the presence of $A \beta 42$ inhibitors and marketed drugs for $A D$ treatment using CD. Hence, the same buffer solution was used to examine whether CP2 maintains A $\beta 42$ random coil/ α-helix structures and blocks β-sheet formation over times using CD spectroscopy. Figure 2.18, left panel, shows A $\beta 42$ conformational changes in the absence of CP2 over 48 h , in which CD value at 198 nm (random coil structure) gradually decreased over time and 215 nm (β-sheet) value increased. On the other hand, in the presence of 1.25 equivalents of CP2 (Figure 2.18, right panel), although band at 198 nm decreased slightly due to some unknown reason, CD value at 215 nm remains unchanged. In term of the kinetics of selfaggregation, a plot of $C D$ values at 215 nm versus time is shown in Figure 2.19. Kinetics proceeds in three phases: a lag phase with significant conformation change (until 0-9 hours), an exponential phase where there is rapid increase in aggregation (10-32 hours) followed by a
plateau phase (after 32 h), where majority of the conformation is beta sheet. No such aggregation pattern was observed in the presence of CP 2 . The results imply that CP 2 stabilizes $\mathrm{A} \beta 42$ random coil/ α-helix structures and blocks β-sheet formation. The intensity at 198 nm of A $\beta 42$ peptide plus CP2 is weaker than that of $A \beta 42$ alone because the solution of $A \beta-C P 2$ is slightly diluted compared with that of $\mathrm{A} \beta$ alone (from the addition of a solution of CP2 in PBS) and the contribution of the CD graph of CP 2 (control) was subtracted from the observed $\mathrm{A} \beta-\mathrm{CP} 2$ graph. ${ }^{18}$

2.4 Conclusion

Amyloid $\mathrm{A} \beta$ aggregation is the main culprit in AD . Reducing the levels of intracellular $A \beta$, preventing $A \beta$ aggregation, and eliminating the existing $A \beta$ aggregates have been proposed for treatment of AD. AFM studies demonstrated that tricyclic pyrone compound CP2 inhibits A β aggregation and disaggregates $\mathrm{A} \beta 40$ and $\mathrm{A} \beta 42$ oligomers and protofibrils as well. SPR spectroscopy and protein quantification assay studies showed that CP2 binds to A $\beta 42$ monomer and oligomers. CD studies revealed that CP2 stabilizes the random coil/ α-helix structures of monomeric A $\beta 42$ peptide in PBS buffer, which leads to the inhibition of aggregate formation. Protein quantification assay results suggested that CP2 not only disaggregates A β oligomers but also inhibit fibril formation.

2.5 References

1. Glenner, G. G.; Wong, C.W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun, 1984, 120, 885-890.
2. Lee, V. M. -Y.; Balin, B. J.; Otvos Jr., L.; Hollosi, M.; Trojanowski, J. Q. A68: A major subunit of paired helical filaments and derivatized forms of normal Tau. Science, 1991, 251, 675-678.
3. Esler, W. P.; Wolfe, M. S., A portrait of Alzheimer secreatses-new features and new faces. Science, 2001, 293, 1449-1454.
4. Bitan, G.; Kirkitadze, M. D.; Lomakin, A.; Vollers, S. S.; Benedek, G. B.; Teplow, D., Amyloid beta-protein (Abeta) assembly: Abeta40 and Abeta42 oligomerize through distinct pathways. Proc. Natl. Acad. Sci. USA, 2003, 100, 330-335.
5. Benzinger, T. L. S.; Gregory, D. M.; Burkoth, T. S.; Miller-Auer, H.; Lynn, D. G.; Botto, R. E.; Meredith, S. C., Propagating structure of Alzheimer's β-peptide (10-35) is parallel β-sheet with residues in exact register. Proc. Natl. Acad. Sci. USA, 1998, 95, 1340713412.
6. Luhrs, T.; Ritter, C.; Adrian, M.; Riek-Loher, D.; Bohrmann, B.; Dobeli, H.; Schubert, D.; Riek, R., 3D structure of Alzheimer's amyloid $\beta(1-42)$ fibrils. Proc. Natl. Acad. Sci. U.S.A., 2005, 102, 17342-17347.
7. Wirth, O.; Multhaup, G.; Bayer, T. A., A modified β-amyloid hypothesis: intraneuronal accumulation of the β-amyloid peptide-the first step of a fatal cascade. J. Neurochem., 2004, 91, 513-520.
8. Lambert, M. P.; Barlow, A. K.; Chromy, B. A.; Edwards, C.; Freed, R.; Liosatos, M.; Morgan, T. E.; Rozovsky, I.; Trommer, B.; Viola, K. L.; Wals, P.; Zhang, C.; Finch, C. E.; Krafft, G. A.; Klein, W. L., Diffusible, nonfibrillar ligands derived from A $\beta 1-42$ are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA., 1998, 95, 64486453.
9. Lansbury, P. T., A reductionist view of Alzheimer disease. Acc. Chem. Res., 1996, 29, 317-321.
10. Maggio, J. E.; Mantyh, P. W., Brain amyloid - a physicochemical perspective. Brain pathol., 1996, 6, 147-162.
11. Inouye, H.; Fraser, P. E.; Kirschner, D. A., Structure of β-crystallite assemblies formed by Alzheimer's β-amyloid protein analogues: analysis by x-ray diffraction. Biophys. J., 1993, 64, 502-519.
12. Sunde, M.; Serpell, L. C. Bartlam, M.; Fraser, P. E.; Pepys, M. B.; Blake, C. C., Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol., 1997, 273, 729-739
13. Oda, T.; Wals, P.; Osterburg, H. H.; Johnson, S. A.; Pasinetti, G. M.; Morgan, T. E.; Rozovsky, I.; Stine, W. B.; Snyder, S. W.; Holzman, T. F.; Krafft, G. A.; Finch, C. E., Clusterin (apoj) alters the aggregation of amyloid β-peptide (A $\beta 1-42$) and forms slowly sedimenting $\mathrm{A} \beta$ complexes that cause oxidative stress. Exp. Neurol., 1995, 136, 22-31.
14. Harper, J. D.; Wong, S. S.; Lieber, C. M; Lansbery, P. T., Observation of metastable A beta amyloid protofibrils by atomic force microscopy. Chem. Biol., 1997, 4, 119-125.
15. Harper, J. D.; Wong, S. S.; Lieber, C. M; Lansbery, P. T., Assembly of A β amyloid protofibrils: An vitro model for a possibly early event in Alzheimer's disease. Biochemistry, 1999, 38, 8972-8980.
16. Huang, T. J. H.; Yang, D. -S.; Plaskos, N. P.; Go., S.; Yip, C. M.; Fraser, P. E.; Chakrabartty, A., Structure studies of soluble oligomers of the Alzheimer b-amyloid peptide. J. Mol. Biol., 2000, 297, 73-87.
17. Liu, R.; McAllister, C.; Lyubchencko, Y.; Sierks, M. R., Residues 17-20 and 30-35 of beta-amyloid play a critical role in aggregation. J. Neurosci. Res., 2004, 75, 162-171.
18. Hong, H. -S.; Rana, S.; Barrigan, L.; Shi, A.; Zhang, Y.; Zhou, F.; Jin, L. -W.; Hua, D. H., Inhibition of Alzheimer's amyloid toxicity with a tricyclic pyrone molecule in vitro and in vivo. J. Neurochem. 2009, 108, 1097-1108.
19. Jin, L. -W.; Hua, D. H.; Shie, F. -S.; Maezawa, I.; Sopher, B.; Martin, G. M., Novel tricyclic pyrone compounds prevent intracellular APP C99-induced cell death. J. Mol. Neurosci., 2002, 19, 57-61.
20. Maezawa, I.; Hong, H. -S.; Wu, H. -C.; Battina, S. K.; Rana, S.; Iwamoto, T.; Radke, G. A.; Pettersson, E.; Martin, G. M.; Hua, D. H.; Jin, L.-W., A novel tricyclic pyrone compound ameliorates cell death associated with intracellular amyloid- β oligomeric complexes. J. Neurochem. 2006, 98, 57-67.
21. LeVine H. III., Stopped-flow kinetics reveal multiple phases of thioflavin T binding to Alzheimer beta (1-40) amyloid fibrils. Arch. Biochem. Biophys., 1997, 342, 306-316.
22. Lorenzo, A.; Yankner, B. A., β-Amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc. Natl Acad. Sci. USA. 1994, 91, 12243-12247.
23. Begum, A. N.; Jones, M. R.; Lim, G. P.; Morihara, T.; Kim, P.; Heath, D. D.; Rock, C. L.; Pruitt, M. A.; Yang, F.; Hudspeth, B.; Hu, S.; Faull, K. F.; Teter, B.; Cole, G. M.; Frautschy, S. A., Curcumin structure function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer's disease. J. Pharm. Exp. Ther., 2008, 326, 196-208.
24. Maezawa, I.; Hong, H. -S.; Liu, R.; Wu, C. -Y.; Cheng, R. H.; Kung, M. -P.; Kung, H. F.; Lam, K. S.; Oddo, S.; LaFerla, F. M.; Jin, L. -W., Congo red and thioflavin-T analogs detect A β oligomers. J. Neurochem., 2008, 104, 457-468.
25. Hartley, D. M.; Walsh, D. M.; Ye, C. P.; Diehl, T.; Vasquez, S.; Vassilev, P. M.; Teplow D. B.; Selkoe, D. J., Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci., 1999, 19, 8876-8884.
26. Nilsberth, C.; Westlind-Danielsson, A.; Eckman, C. B.; Condron, M. M.; Axelman, K.; Forsell, C.; Stenh, C.; Luthman, J.; Teplow, D. B.; Younkin, S. G.; Näslund, J.; Lannfelt, L., The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced A β protofibril formation. Nat. Neurosci., 2001, 4, 887-893 (2001).
27. Kasemo, B., Biological surface science. Surface Science, 2002, 500, 656-677.
28. http://www.fz-juelich.de/isb/isb-1/protein-protein interaction
29. Jarrett, J. T.; Berger, E. P.; Lansbery, P. T.Jr., Biochemistry, 1993, 32, 4693-4697. Naslund, J.; Schierhorn, A.; Hellman, U. Lannfelt, L.; Roses, A. D.; Tjernberg, L. O.; Silberring, J.; Gandy, S. E.; Winblad, B.; Greengard, P.; Nordstedt, C.; Terenius, L., Relative abundance of Alzheimer A beta amyloid peptide variants in Alzheimer disease and normal aging. Proc. Natl. acad. Sci. U.S.A., 1994, 91, 8378-8382.
30. Tjernberg, L. O.; Naslund, J.; Lindqvist, F.; Johansson, J.; Karlström, A. R.; Thyberg, J.; Terenius, L.; Nordstedt, C., Arrest of β-amyloid fibril formation by a pentapeptide ligand. J. Biol. Chem., 1996, 271, 8545-8548.
31. Ryu, J.; Joung, H. -A.; Kim, M. -G.; Park, C. B., Surface plasmon resonance analysis of Alzheimer's β-peptide aggregation on a solid surface: From monomers to fully grown fibrils. Anal. Chem., 2008, 80, 2400-2407.
32. Kayed, R.; Head, E.; Thompson, J. L.; McIntire, T. M.; Milton, S. C.; Cotman, C. W.; Glabe, C. G., Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis. Science, 2003, 300, 486-489.
33. http://www.millipore.com/catalogue/item/ab9234
34. Van Wiggeren, G. D.; Bynum, M. A.; Ertel, J. P.; Jefferson, S.; Robotti, K. M.; Thrush, E. P.; Baney, D. M.; Killeen, K. P. A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis. Sens. Actuators B, 2007, 127, 341-349.
35. Konno, T., Amyloid-Induced Aggregation and Precipitation of Soluble Proteins: An Electrostatic Contribution of the Alzheimer's $\beta(25-35)$ Amyloid Fibril. Biochemistry, 2001, 40, 2148-2154.
36. www.piercenet.com
37. http://www.mscwu.wur.nl/NR/rdonlyres/256B4909-D151-45EF-BA90 47A81D1F17A0/28328/cdprinc_1.jpg
38. Barrow, C. J.; Zagorski, M. G., Solution structures of beta peptide and its constituent fragments: relation to amyloid deposition. Science, 1991, 253, 179-182.
39. Barrow, C. J.; Yasuda, A.; Kenny, P. T.; Zagorski, M. G., Solution Conformations and Aggregational Properties of Synthetic Amyloid β-Peptides of Alzheimer's Disease: Analysis of Circular Dichroism Spectra. J. Mol. Biol., 1992, 225, 1075-1093
40. Orvos, L.; Szendrei, G. I.; Lee, V. M.; Mantsch, H. H., Human and rodent Alzheimer β amyloid peptides acquire distinct conformations in membrane-mimicking solvents. Eur. J. Biochem., 1993, 211, 249-257.
41. Barrow, C. J.; Yasuda, A.; Kenny, P. T.; Zagorski, M. G., Solution Conformations and Aggregational Properties of Synthetic Amyloid β-Peptides of Alzheimer's Disease: Analysis of Circular Dichroism Spectra. J. Mol. Biol., 1992, 225, 1075-1093.
42. Nichols, M. R.; Moss, M. A.; Reed, D. K.; Cratic- McDaniel, S.; Hoh, J. H.; Rosenberry, T. L., Amyloid- β Protofibrils Differ from Amyloid- β Aggregates Induced in Dilute Hexafluoroisopropanol in Stability and Morphology. J. Biol. Chem., 2005, 280, 24712480.
43. Bartolini, M.; Bertucci, C.; Bolognesi, M.L.; Cavalli, A.; Melchiorre, C.; Andrisano, V., Insight into the kinetic of Amyloid $\beta(1-42)$ peptide self-aggreagtion: Elucidation of inhibitors' mechanism of action. ChemBioChem., 2007, 8, 2152-2161.
44. Fezoui, Y.; Teplow, D. B., Kinetic studies of amyloid β-protein fibril assembly. J Biol. Chem., 2002, 277, 36948-36954.

CHAPTER 3 - Biological evaluation of tricyclic pyrone and pyridinone compounds: in vitro and in vivo studies

3.1 Introduction

Alzheimer disease (AD) is most common cause of dementia and is considered one of the leading causes of death worldwide. AD is a progressive neurodegenerative disorder characterized by memory loss and other cognitive disabilities. In AD patients, the cognitive decline is accompanied by impaired performances of daily activities, behavior, speech etc. AD affects patient's life at home and at work. The main pathophysiological hallmarks of AD are extracellular deposits of amyloid plaques formed by aggregated beta-amyloid (A β) peptide and intracellular neurofibrillary tangles (NFTs) composed of filamentous aggregates of hyperphosphorylated tau protein in the brain. This $A \beta$ peptide is derived from the processing of large amyloid precursor protein (APP), a transmembrane protein by different enzymes. Although the etiology of AD is very complex and not yet fully resolved, numerous studies have shown that amyloid plays a central role in the neurodegeneration in AD. This hypothesis is supported by results indicating that amyloid aggregates are toxic to neuronal cell in culture and toxicity is directly linked to the extent of $A \beta$ aggregation. Recently, it is reported that soluble small oligomeric intermediates rather then insoluble fibrils are primary toxic species in $\mathrm{AD} .{ }^{1}$ In this chapter, I will discuss in vitro biological activity of different tricyclic pyrone molecules using MC6 cell assay and effectiveness of tricyclic pyrone molecule CP2 in vivo activity on 5X FAD (familial alzheimer disease) transgenic mice.

3.2 Background

A β aggregation is widely accepted as the first pathological process in AD. Several findings support this theory. A number of genes found to be mutated in AD patients are related
to the biology of $A \beta$ such as the gene for APP on chromosome 21 , the gene for apoE4 on chromosome 19, and genes for PS1 and PS2 on chromosomes 14 and 1, respectively. ${ }^{2}$ Also, A β is proved to be toxic to neuronal cell even in nanomolar concentration and causes death via membrane lipid peroxidation, which impairs the function of membrane ion-motive ATPases, glucose and glutamate transporters, leading to membrane depolarization, excessive Ca^{2+} influx, and mitochondrial dysfunction. ${ }^{3}$ It is believed that any molecule that either inhibits aggregation or disaggregate preformed oligomers can serve as an attractive therapeutic target for AD. For successful screening of organic compounds, an efficient and reproducible screening model is a must. So far, limited cell culture models have shown a convincing and reproducible linkage between the intracellular $A \beta$ aggregation and the cell death. This hinders the screening for various potentially therapeutic organic molecules. Recently, a screening model using primary neurons from Tg2576 APP transgenic mice has shown $A \beta$ oligomer accumulations but preparation of this model is very time-consuming. Due to toxicity issues detection of aggregations is observed by electron microscopy. ${ }^{4}$ On the other hand, MC65 cell line can be conveniently used to screen potential bioactive compounds. ${ }^{5-7}$ MC65 is a human neuroblastoma cell line that conditionally expresses C99, a 99 amino acid residue carboxy terminal fragment derived from amyloid precursor protein after cleavage by the beta secretase enzyme. C99 is cleaved by γ-secretase enzyme leading to the generation of $\mathrm{A} \beta$ (Figure 3.1). Following the transgene induction, significant loss of cell viability was observed after 72 h . Compared with the method described by Takahashi et al. MC65 cells are easily propagated and cell toxicity is measured quantitatively by simple 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. ${ }^{6}$

Figure 3.1. Schematic representation of C99 expression.

3.3 MC65 cell death is related to the intracellular generation and aggregation of $\mathbf{A} \boldsymbol{\beta}$

In neuronal cells, generation and aggregation of $A \beta$ is believed to have the toxic effect. Intracellular aggregation of proteins is being linked to neurodegenerative processes. The mechanism by which intracellular A β protein misfolds, aggregates and become toxic is complex and is poorly understood. The MC65 cell model linked the neuronal cell death to the toxicity of intracellular $A \beta$ generation. Western blot analysis demonstrated the predominant formation of dimer, tetramer and pentamer aggregates after 24 h as shown in Figure 3.2. No monomeric $A \beta$ was observed by Tricine gel analysis. The C99 was induced by removal of Tetracycline (TC). At indicated times, the cells were homogenized. Cellular proteins ($5 \mu \mathrm{~g}$ protein each) were subjected to Tris/tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot analysis with antibody 6 E 10 (for $A \beta 1-17$). $A \beta$ Standard, synthetic $A \beta 40$ and $A \beta 42$, served as standard $A \beta$ monomer peptides. ${ }^{8}$

Figure 3.2. MC65 cell death is dependent upon $A \beta$ generation and closely related to $A \beta$ aggregation into $A \beta$-Oligomeric complexes.

In order to confirm the generation and toxicity of $A \beta$ intracellularly, MC65 cells were treated with L-685 458, a highly specific γ-secretase inhibitor. No A β generation was observed (figure 3.3A). L-658 458 also inhibits the aggregate formation in a dose dependent manner (Figure 3.3B). Since the $\mathrm{p} 8(8 \mathrm{Kda})$ band is partially reduced by a γ-secretase inhibitor, it indicates that it is not entirely composed of $A \beta$ peptide. ${ }^{8}$ The γ-secretase results indicated that MC65 cell death is dependent on the production of $A \beta$. The ELISA quantification suggested that both L-685 458 and CP2 reduced $A \beta$ oligomeric formation.

Figure 3.3. Treatment of MC65 cells with TP compounds and a γ-secretase inhibitor, L-685 458 (A) MC65 cells: -TC , without TC to induce C99 expression; +TC , with TC to suppress C99 expression. $\mathrm{n}=3,{ }^{* *} \mathrm{p}<0.001$ compared with the -TC group. (B) L-685 458 of indicated concentrations was added at the same time as TC removal. Cellular proteins from 24 h cultures were analyzed by western blot using 6E10.

CP2 molecule target $A \beta$ peptide and the dose independent effect of CP2 on $A \beta$ was studied and was compared with TP17 (a negative control) (Figure 3.5). Without CP2, A β aggregates were observed. Whereas, the addition of CP2 lowered the formation of higher molecular weight cellular $\mathrm{A} \beta$ oligomer aggregates. A lower effect was observed for N 9 ' analog and no effect was observed for TP17 (Figure 3.4A). In addition, a dose dependent study of CP2 was carried out by removal of TC and different concentrations of CP2 were added (Figure 3.4B). ${ }^{8}$

Figure 3.4. Dose dependent study of CP2. CP2 inhibits the formation of A β-OCs. (A) MC65 cells were treated with the indicated compounds for $24 \mathrm{~h}(2 \mu \mathrm{M} \mathrm{N9}$ '- analog and TP17 were used). Western blot of cellular proteins was analyzed with 6E10 (B) MC65 cells were treated with TC or without TC, but with the indicated concentrations of CP2 for 24 h . Cellular proteins were analyzed by western blots using 6E10.

We observed that tricyclic pyrone molecule CP2 ameliorates A β toxicity and reduces the levels of intracellular A β oligomers. Compound CP2 can be easily modified to produce a series of new compounds. Possible modifications include functionalization of methyl group, C10 double bond, substitute adenine with other heterocycles, replacement of oxygen at position 2 with nitrogen, pyranoquinoline and pyranoisoquinoline etc. (Chapter 1). This structure activity relationship (SAR) can help us elucidate the mechanism of inhibition of aggregation.

3.4 Tricyclic pyrone and pyridinone molecules inhibit the formation of $\mathbf{A} \beta$ oligomers and protect MC65 cell death

Compounds that protect cell death induced by the intracellular toxic $\mathrm{A} \beta$ oligomers can be further used for the drug development in Alzheimer's disease. We have screened several TP
compounds (Figure 3.5 and Figure 3.6) using the MC65 cell assay (Figure 3.7 and Table 3.1). MC65 cells were grown in the presence of $1 \mu \mathrm{~g} / \mathrm{ml}$ tetracycline (TC). ${ }^{5}$ The cell toxicity was induced by the removal of TC to induce C99 expression. To do so, the cells were washed extensively with phosphate buffer (PBS), and plated on a 96 -well plate at a density of 2×10^{5} cells $/ \mathrm{cm}^{2}$ in Opti-MEM (without phenol-red) from Gibco/BRL (Carlsbad, CA). For testing the protective effect of various TP analogs, various doses of TP compound were added to culture media without TC. After incubation for 72 h , the cell viability was determined using a colorimetric MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, the results of which were comparable to data obtained using counts of viable cells based on trypan blue exclusion and the LIVE/DEAD assay. ${ }^{8-9}$ Different batches of MC65 cells produce small variations in the activities. Three batches were used to study these compounds and the average of the EC_{50} of different TP analogs is summarized in Table 3.1. ${ }^{10}$

Figure 3.5. Structures of various tricyclic pyrone molecules.

Figure 3.6. Synthesized tricylic pyrone and pyridinone compounds.

Tricyclic pyrone compound CP2 bearing a strong MC65 neuroprotective activity $\left(\mathrm{EC}_{50}=0.15 \mu \mathrm{M}\right)$ and a low toxicity (Figure 3.7). ${ }^{8}$ Both CP2 (R and S configuration, N3' analog)
have similar MC65 neuroprotective effect, whereas the N9' analog is less active with EC_{50} around $3.0 \mu \mathrm{M}$. N10' analog and TP17 are inactive thus can be used as a control for future experiments.

Drug concentrations ($\mu \mathrm{M}$)

Figure 3.7. MC65 protection assay for different TP compounds. L-685 458 of indicated concentrations was added at the same time as TC removal. At 72 h , viability was assessed by MTT assay. Data are expressed as mean percentage viability $(\mathrm{n}=7)$ with parallel + TC cultures set at 100% viability. Error bars represent standard error. ${ }^{* * *}$ p $<0.001, * *$ p <0.01, compared with untreated -TC controls.

Compound	$\mathbf{E C}_{\mathbf{5 0}}(\boldsymbol{\mu M})$	Compound	$\mathbf{E C}_{\mathbf{5 0}}(\boldsymbol{\mu M})$
2	0.31 ± 0.03	45	6.92 ± 0.69
29	3.0 ± 0.30	43	8.30 ± 0.83
38	1.95 ± 0.20	44	1.38 ± 0.14
40	0.93 ± 0.09	59	0.35 ± 0.03
47	0.86 ± 0.09	52	Inactive
41	Inactive	53	2.49 ± 0.25

46	Inactive	56	1.25 ± 0.13	
34	0.31 ± 0.04			

Table 3.1. TP compounds and their IC50 inhibitory activities.

Compound $\mathbf{3 8}$ has a structure similar to $2(\mathrm{CP} 2)$ containing a double at C 12 is 6 folds less active. Substituting the adenine of CP2 with other heterocycles lowers the activity. Compounds 41 and 46 are surprisingly inactive. Simple tricyclic pyridinone 56, which have a nitrogen atom at position 2, possesses an EC_{50} of $1.25 \mu \mathrm{M}$, and its adenine derivative 59 has similar EC_{50} activity as that of CP2. The Linear fused pyranoquinoline (52) is inactive however, the L-shape fused pyranoisoquinoline (53), lacking an adenine unit, is 8 fold less active then CP2. Further investigation is required on the synthesis of N 2 and N 5 containing tricyclic pyrones.

3.5 Tricyclic pyrone molecule CP2 penetrates MC65 cell

Previous experiments have shown that compound CP2 interacts with the intracellular and the extracellular A β. Rapid accumulation of CP2 was observed inside the cells as well as on the cell surface when we incubated the radiotracer $\left[{ }^{14} \mathrm{C}\right] \mathrm{CP} 2$ molecule to the MC65 cells (figure 3.8). Radiotracer [$\left.{ }^{14} \mathrm{C}\right] \mathrm{CP} 2(0.04 \mu \mathrm{Ci})$ was added to the cell culture wells of 2.5×10^{6} cells and was incubated for the indicated period of time. The cells were scraped and spun down. Cell pellets were washed with ice-cold phosphate buffer and trypsinized. The supernatant was kept as 'trypsinizable cell surface', and pallets were called 'non-trypsinizable intracellular fraction'. Fractions were subjected to scintillation counting. Results showed that compound CP2 easily penetrated the cells, interacted/binded to the $A \beta$ monomers and $A \beta$ oligomers, and disrupted aggregation by either binding to the $\mathrm{A} \beta$ peptide or by changing the conformation of the peptide or by some unknown complex mechanism (figure 3.8). ${ }^{8}$

Figure 3.8. CP2 rapidly accumulates inside cells. MC65 cells were incubated with $\left[{ }^{14} \mathrm{C}\right] \mathrm{CP} 2$ for the indicated periods of time, washed, and the cell-associated counts that were trypsinizable from cell pellets (cell surface CP2, empty circles) and those remaining in cells after trypsinization (intracellular CP2, filled circles) were quantified. Expressed values are quantities of CP2 calculated from the radioactivity of 10^{5} cells.

3.6 In vivo studies of CP2 on 5X FAD mice

3.6.1 Introduction and background

Amyloid plaque in the brain is mainly composed of $A \beta$ peptide. Also, a strong genetic association between early-onset familial alzheimer disease (FAD) and A β peptides is well established. ${ }^{11-13}$ Association of A $\beta 42$ and FAD favors the causative role for $A \beta 42$ in the etiology of $\mathrm{AD} .{ }^{14}$ Dr. Vasser et al. developed a rapid AD amyloid model of transgenic mice where five different FAD mutations were expressed [APP K670N, M67IL (Swedish) + I716V (Florida) + V717I (London) and human PS1 M146 1 + L286V]. These "5X FAD" transgenic mice develop cerebral amyloid plaque and gliosis at 2 months of age. A $\beta 42$ aggregates and reduced synaptic
markers are the characteristics of 5X FAD transgenic mice. ${ }^{14}$ Interestingly, accumulation of intraneuronal A $\beta 42$ was observed before the amyloid plaque formation. ${ }^{14}$ Accumulation of intraneuronal $\mathrm{A} \beta$ was observed in the brain of AD mice. ${ }^{15-16}$ We are interested in studying the efficacy of CP2 in 5X FAD transgenic model. Our collaborator Dr. Lee-Way Jin in UC Davis Health System, Sacramento, CA, has conducted all the in vivo experiments.

3.6.2 Experimental for in vivo studies

The UC Davis Animal Care and Use Committee approved all animal procedures followed on animals. 5X FAD mice were obtained from Dr. Robert Vassar, Department of Cell and Molecular Biology, Northwestern University. ${ }^{12}$ Bioactive compound CP2 or an equivalent amount of DMSO (solvent; mock) was dissolved in $100 \mu \mathrm{~L}$ of artificial cerebrospinal fluid to make a working solution of $100 \mu \mathrm{M}$ concentration. The solution was transferred into osmotic mini-pumps (Alzet, Cupertino, CA). A reported procedure to implant the pump was followed. ${ }^{17}$ Three-month-old 5x FAD transgenic mice were anesthetized with an intraperitoneal (i.p.) injection of Ketamin ($100 \mathrm{mg} / \mathrm{Kg}$ body weight) with Xylazine ($10 \mathrm{mg} / \mathrm{Kg}$ body weight). A braininfusion cannula (brain infusion kit \#3, Alzet) was stereotaxically positioned (antero-posterior, 0.7 mm ; mediolateral, 1.5 mm ; dorsoventral; 3 mm to Bregma) by cementing with Loctite 454 (Alzet, Cupertino, CA). This cannula was then connected to the subcutaneously implanted osmotic mini-pump (Alzet model 1002). Mice were infused ($n=6$ for each group) at a flow rate of $0.25 \mu \mathrm{~L} / \mathrm{h}$ for 2 weeks of CP2 or vehicle (DMSO). After 2 weeks, the mice were sacrificed and their brains were removed and snap frozen for A $\beta 42$ ELISA. ${ }^{18}$

3.6.3 A $\beta 42$ ELISA

The corresponding 1 mm-thick fresh frozen mouse brain sections containing hippocampus and subiculum were homogenized in $300 \mu \mathrm{~L}$ of radioimmune precipitation assay (RIPA) buffer containing protease inhibitors mixture solution. The homogenates were sonicated briefly then incubated for 20 min at $4^{\circ} \mathrm{C}$. The RIPA insoluble fraction from brain homogenate
was obtained after centrifugation at $100,000 \times g$. The pellet was resuspended in $300 \mu \mathrm{~L}$ of 70% formic acid (FA) and then incubated for 30 min at $4^{\circ} \mathrm{C}$. FA soluble fraction was obtained by $100,000 \mathrm{x} g$ centrifugation. The FA extracts were neutralized by diluting 1:20 in $1 \mathrm{~mole} / \mathrm{L}$ Tris buffer (pH 11). The $\mathrm{A} \beta 42$ concentration in each sample was determined by $A \beta 42$ specific sandwich ELISA following the protocol of the manufacturer (IBL, Minneapolis, MN). All readings were in the linear range of the assay. The average of the duplicates was determined, and then the mean and standard error for each group of mice was calculated. The values were expressed in nanograms of $A \beta$ per milligram of protein. The statistical significance of differences between groups was examined by t-test, using the SigmaStat 3.1 program (Systat Inc. Point Richmond, CA). ${ }^{18}$

3.6.4 Results and discussion

Neurons in these transgenic mice were engineered to generate a large amount of A $\beta 42$, which results in robust $\mathrm{A} \beta$ accumulation and aggregation in brain. ${ }^{14}$ Histologically detectable amyloid depositions begin by 2 months, especially in hippocampus and subiculum, and increase sharply between 2-4 months. We infused $100 \mu \mathrm{M} \mathrm{CP2}$ or mock solution (DMSO alone) into cerebral ventricles of 3-month-old 5x FAD mice for two weeks at a speed of $0.25 \mu \mathrm{~L} / \mathrm{h}$ (equivalent to approximately 370 ng per day). At the completion of this treatment, the mice were sacrificed and brains removed for quantification of $A \beta$ levels by sandwich ELISA. The brains slices were extracted sequentially by RIPA and FA respectively. Previously, we found that the majority of A β in 5X FAD brain resides in the RIPA-soluble and FA-soluble fractions, which are roughly equivalent to the non-fibrillar and fibrillar $A \beta$ species respectively. ${ }^{19} \mathrm{CP} 2$ treatment resulted in a 40% reduction of RIPA-soluble $\mathrm{A} \beta$ and a 50% reduction of FA-soluble $A \beta$ (Figure 3.9). Thus, in a mouse model with perhaps the most robust $A \beta 42$ production among all AD models, a short 2-week treatment of CP 2 showed a promising anti- $\mathrm{A} \beta$ effect. ${ }^{18}$

RIPA sol.
Figure 3.9. CP 2 treatment reduces the level of cerebral $A \beta$. Brains from mice treated with $C P 2$ or mock solution were sequentially extracted with RIPA and FA. A $\beta 42$ levels in the RIPA and FA extracts (RIPA soluble and FA soluble, respectively) were measured by ELISA. A β levels were expressed in nanograms per milligram of brain protein. CP2 reduced the levels of both RIPA and FA soluble $\mathrm{A} \beta 42$. Error bars represent standard error. $n=6$. The p values were obtained by comparing the two groups using t-test.

3.7 Conclusion

The neurotoxicity of amyloid β-protein is widely considered as one of the fundamental causes of neurodegeneration. In our laboratory, we synthesized a series of tricyclic pyrones and pyridinones and screened these compounds against Alzheimer's disease, which leads to the discovery of compound CP2, a small molecule that easily penetrates into the cells. Our data suggests that CP2 not only inhibits the $A \beta$ aggregation but also disaggregates the preformed toxic small oligomers and protofibrils. Other than cell permeability character, CP2 also favors blood brain barrier passage. Our results strongly demonstrate that $A \beta$ oligomeric complexes (A $\beta-O C$'s, tetramers and pentamers) are the major culprit causing MC65 cell death. We believe that CP2 is a novel small compound, which has the ability to inhibit intracellular A β aggregation. Treatment of 5X familial Alzheimer's disease mice with CP2 over the period of two weeks resulted in 40% decrease in non-fibrillar aggregates and a 50% in decrease in fibrillar $\mathrm{A} \beta$ species.

3.8 References

1. Walsh, D. M.; Hartley, D.; Kusumoto, Y.; Fezoui, Y.; Condrom, M. M.; Lomakin, A.; Benedek, G. B.; Selkoe, D. J.; Teplow, D. B., Amyloid beta-protein fibrillosis. Structure and biological activity of protofibrillar intermediates. J. Biol. Chem. 1999, 274, 2594525952
2. Selkoe, D. J., Alzheimer's disease: genes, proteins, and therapy. Physiol Rev, 2001, 81, 741-766.
3. Pereira, C., Ferreiro, E., Cardoso, S. M., de Oliveira, C. R., Cell degeneration induced by amyloid-beta peptides: implications for Alzheimer's disease. J Mol Neurosci, 2004, 23, 97-104.
4. Takahashi, R.H.; Almeida, C. G.; Kearney, P. F.; Yu, F.; Lin, M. T.; Milner, T. A.; Gouras, G. K., Oligomerization of alzheimer's β-amyloid within processes and synapses of cultured neurons and brain. J. Neurochem., 2004, 24, 3592-3599.
5. Sopher, R. L.; Fukuchi, K.; Smith, A. C.; Leppig, K. A.; Furlog, C. E.; Martin, G. M., Cytotoxicity mediated by conditional expression of a carboxy-terminal derivative of the β -amyloid precursor protein. Brain Res. Mol. Brain Res., 1994, 26, 207-215.
6. Jin, L.-W.; Hua, D. H.; Shie, F, -S.; Maezawa, I.; Sopher, B.; Martin, G. M., Novel Tricyclic Pyrone Compounds Prevent Intracellular APP C99-Induced Cell Death. J. Mol. Neurosci., 2002, 19, 57-61.
7. Maezawa, I.; Jin, L. -W.; Woltjer, R. L.; Maeda, N.; Martin, G. M.; Montine, T. J.; Montine, K. S., Apolipoprotein E isoforms and apolipoprotein AI protect from amyloid precursor protein carboxy terminal fragment-mediated cytotoxicity through different mechanisms. J. Neurochem., 2004, 91, 1312-1321.
8. Maezawa, I.; Hong, H. -S.; Wu, H. -C.; Battina, S. K.; Rana, S.; Iwamoto, T.; Radke, G. A.; Pettersson, E.; Martin, G. M.; Hua, D. H.; Jin, L.-W., A novel tricyclic pyrone compound ameliorates cell death associated with intracellular amyloid- β oligomeric complexes. J. Neurochem. 2006, 98, 57-67.
9. Woltjer, R. L.; Nghiem, W.; Maezawa, I.; Milatovic, D.; Vaisar, T.; Montine, K. S.; Montine, T. J., Role of glutathione in intracellular amyloid-alpha precursor protein/carboxy-terminal fragment aggregation and associated cytotoxicity. J Neurochem. 2005, 93, 1047-1056.
10. Rana, S.; Hong, H. -S.; Barrigan, L.; Jin, L. -W, Hua, D. H., Synthesis of tricyclic pyrones and pyridinones and protection of A β-peptide induced MC65 neural cell death. Bio. Org. Med. Chem., 2009. 19, 670-674.
11. Hutton, M.; Perez-Tur, J.; Hardy, J., Genetics of Alzheimer's disease. Essays Biochem., 1998, 33, 117-131.
12. Sisodia, S. S.; Kim, S. H.; Thinakaran, G., Function and dysfunction of the presenils. Am. J. Hum. Genet., 1999, 65, 7-12.
13. Younkin, S. G., The role of Abeta 42 in Alzheimer's disease. J. Physiol. (Paris), 1998, 92, 289-292.
14. Oakley, H.; Cole, S. L.; Logan, S.; Maus, E.; Shao, P.; Craft, J.; Guillozet-Bongaarts, A.; Ohno, M.; Disterhoft, J.; Eldik, L. V.; Berry, R.; Vasser, R., Intraneuronal β-Amyloid aggregates, neurodegernation, and neuron loss in transgenic mice with familial alzheimer's disease mutations: potential factors in amyloid plaque formation. J. Neurosci., 2006, 26, 10129-10140.
15. Cataldo, A. M.; Petanceska, S.; Terio, N. B.; Peterhoff, C. M.; Durham, R.; Mercken, M.; Mehta, P. D.; Buxbaum, J.; Haroutunian, V.; Nixon, R. A., Abeta localization in abnormal endosomes: association with earliest Abeta elevations in AD and Down syndrome. Neuobiol. Aging., 2004, 25, 1263-1272.
16. Gouras, G. K.; Almeida, C. G.; Takahashi, R. H., Intraneuronal Abeta accumulation and origin of plaque in Alzheimer's disease. Neurobiol. Aging, 2005, 26, 1235-1244.
17. Dolev, I.; Michaelson, D. M., A nontrangenic mouse model shows inducible amyloid- β $(A \beta)$ peptide deposition and elucidates the role apolipoprotein E in amyloid cascade. Proc. Natl. Acad. Sci. USA, 2004, 101, 13909-13914.
18. Hong, H. -S.; Rana, S.; Barrigan, L.; Shi, A.; Zhang, Y.; Zhou, F.; Jin, L. -W.; Hua, D. H., Inhibition of Alzheimer's amyloid toxicity with a tricyclic pyrone molecule in vitro and in vivo. J. Neurochem. 2009, 108, 1097-1108.
19. Hong, H. -S.; Maezawa, I.; Budamagunta, M.; Rana, S.; Shi, A.; Vassar, R.; Liu, R.; Lam, K.S.; Cheng, R.H.; Hua, D.H.; Voss, J.C.; Jin, L.-W., Candidate anti-A β fluorine compounds selected from analogs of amyloid imaging agents. Neurobiol. Aging., 2008, In Press.

Appendix: ${ }^{1} \mathrm{H}$-NMR spectra, ${ }^{13}$ C-NMR spectra, MS spectra, 2D-NOESY, 2DCOSY, 2D-HMBC, 2DHSQC

Formula $\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{NO}_{3}$	FW 381.4602			
Acquisition Time (sec)	1.3005	Comment	Std proton	Date Dec 172008
Date Stamp	Dec 172008	File Name	C.INMR EACKUPIO1060GNMR EACKUP\A00ISRANAISRANAISR-CP2-13C	
Frequency (MHz)	100.53	Nucleus	13 C	Number of Transients 2000
Oriqinal Points Count	31375	Points Count	32768	Pulse Sequence S2pul
Receiver Gain	30.00	Solvent	CHLOROFORM-d	
Spectrum Offset (Hz)	10543.4932	Sweep Width (Hz)	24125.45	Temperature (degree C) 25.000

Formula $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}$,	FW 278.3435			
Acquisition Time (spe)	c) 1.9945	Comment	STANDARD	OBSERVE
Date	Oct 312007	Date Stamp	Oct 312007	
Fille Name	C:IMMR BACKUP010000NMR EACKUP(2001HUA.NEWISANDEEPIBOOK51SR-5-116-DP			
Frequency (MHz)	190.98	Nucleus	1H	Number of Transients 32
Original Points Count	$t 5084$	Points Count	8102	Pulse Sequence 52 pul
Receiver Gain	4.00	Solvent	CHLOROFORM-d	
Spectrum Offset (Hz)	1004.2203	Sweep Widch (Hz)	3000.30	Temperature (degree C) 29.000

Formula $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}$,	FW 278.3435				
Acquisition Time (sec)	c) 1.3005	Comment	sta proton	Dave	Oct 312007
Dare Sump	Oct 312007				
FIle Name C:INMR BACKUPV(010609NMR BACKUPMACOISRANAISRANAISR-5-116-FR10-15-13C	C:INMR BACKUPIO10609NMR BACKUPYADOISRANAISRANAISR-5-116-FR10-15-13C				
Frequency (MHz)	100.53	Nucleus	13 C	Number of Translents	2000
Oriqinal Points Count	t 31375	Points Count	32768	Pulse Sequence	s2pul
Recalver Gain	30.00	Solvenr CHLOROFORM-	CHLOROFORM-		
Specurum Offser (Hz)	10529.1475	Sweep Wiath (Hz)	24125.45	Temperature (degree C	25.000

| Formula $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}$? | FW $261.3361+$? |
| :--- | :--- | :--- | :--- | :--- | :--- |

Formula $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}$? ?	FW 261.3361+?						
Aoquisition Time (sec)	1.3005	Comment	Std proton	Date	Nov 12007		
Date Stamp	Nov 12007		$001 S R A N A 1 S R A N A 1 S R-7-011-F R 8-13 C$				
File Name	CINMR BACKUPIO108OPNMR B.ACKUPI400ISRANAISRANALSR-7-011-FR8-13C						
Frequency (MHz)	10053	Nuoleus			$13 C$	Number of Transionts	3000
Original Points Count	31375	Points Count	32768	Pulse Sequence	22pul		
Receiver Gain	30.00	Solvent	CHLOROFORM-d				
Specrum Offser (Hz)	10532.0928	Sweep Width (Hz)	24125.45	Temperature (deoree	25.000		

Formula $\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}$	FW	328.4022

Acquisition Time (sec)	2.0486	Comment	Std proton	Date Apr 82008
Date Stamp	Apr 82008	File Name	C:WMR 0310081400ISRANAISR-TP4-ACETATE	
Freguency (MHz)	399.77	Nucleus	1 H	Number of Transients 32
Oriqinal Points Count	13104	Points Count	16394	Pulse Sequence sipul
Reoeiver Gain	2200	Solvent	CHLOROFORM-d	
Spectrum Offset (Hz)	2409.1055	Sweep Width (Hz)	6396.42	Temperature (degree C) 25.000

Formula $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}$	FW	348.3903

Formula $\mathrm{C}_{6} \mathrm{H}_{*} \mathrm{NO}^{\text {a }}$?	FW 332.4140+?			
Aoquisition Time (seo)	1.9045	Comment	STANDARD 1H OBSERVE	
Date	Jun 52008	Date Stamp	Jun 52008	
File Name	C.WMR BACKUPVD10009NMR BACKUPL200 HUA-NEWSANDEEPIBOOKBISR-8-54-DP			
Frequency (MHz)	189.98	Nucleus	1 H	Number of Transients 32
Original Points Count	5094	Points Count	8192	Pulse Sequence 52pul
Receiver Gain	39.00	Solvent	CHLOROFORM-d	
Spectrum Offset (Hz)	1003.1215	Sweep Width (Hz)	3000.30	Temperature (degree C) 29.000

Formula $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}$,	FW 318.3643				
Aoquisition Time (sec)	c) 2.0486	Comment	Std proton	Date	Sep 302008
Date Stamp	Sep 302008	File Name	C:WMR 03100914001SRANAISR-9-21-RECOLUMN-FR23		
Frequency (MHz)	389.76	Nucleus	1 H	Number of Transients	32
Orizinal Points Count	t 8927	Points Count	18394	Pulse Sequence	s2pul
Receiver Gain	38.00	Solvent	CHLOROFORM-d		
Spectrum Offset (Hz)	2015.1158	Sweep Width (Hz)	4797.03	Temperature (degree C) 25.000	

Formula $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{3}$	$F W$

Acquisition Time (sec)	1.3005	Comment	Std proton	Date Jul 32008
Date Stamp	Jul 32008	File Name	C:ISANDEEP NMR1SR-8-73-FR22-13C	
Frequency (MHz)	100.53	Nucleus	13 C	Number of Transients 15000
Oriqinal Points Count	31375	Points Count	32788	Pulse Sequence \quad s2pul
Receiver Gain	30.00	Solvent	CHLOROFORM-d	
Spectrum Offset (Hz)	10545.8541	Sweep Width (Hz)	24125.45	Temperature (deqree C) 25.000

Formula $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{2}$?	FW $255.3316+$?

Formula $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{4} \mathrm{O}_{5}$	FW 389.4503				
Acquisition Time (sec)	1.3005	Comment	SR-8-82-414-13C		
Date	Jul 182008	Date Stamp	Juil 192008	File Name	C:ISANDEEP NMRISR-8-82-FR 14-13C
Frequency (MHz)	100.53	Nucleus	13C	Number of Transients	20000
Oriqinal Points Count	31375	Points Count	32708	Pulse Sequence	s2pul
Receiver Gain	30.00	Solvent	CHLOROFORM-d		
Spectrum Offset (Hz)	10550.2827	Sweep Width (Hz)	24125.45	Temperature (deqree C) 25.000	

Formula $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{BrO}$	FW 337.2514				
Acquisition Time (sec)	2.0436	Comment	Std proton	Date	Jan 122008
Date Stamp	Jan 122008			File Name	C:ISANDEEP NMRII SR-TPGROMIDE
Frequency (MHz)	399.77	Nucleus	1H	Number of Transients	8
Original Points Count	13104	Points Count	18384	Pulse Sequence	s20ul
Receiver Gain	42.00	Solvent	CH, OROFORM-d		
Spectrum Offset (Hz)	2408.6327	Sweep Width (Hz)	6398.42	Temperature (degree C)	25.000

Formula $\mathrm{C}_{47} \mathrm{H}_{2} \mathrm{BrO}$,	337.2514				
Acquismion Time (sec)	1.3005	Comment	sto proton	Date	Jan 122008
Date Sramp.	Jan 122008	File Name	CISANDEEP NMRISR-TPBROMIDE-13C		
Frequency (MHz)	100.53	Nucleus	13 C	Number of Translents	10000
Oriqinal Points Count	31375	Points Coumt	32768	Pulse Sequence	52pul
Recelver Gain	30.00	Solvenr	CHLOROFORM-d		
specrrum offser (Hz)	10552.7070	Sweep wioth (Hz)	24125.45	Temperature (degrea C	25.000

Formula $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{CNNO}_{2}$	FW	410.8968		
Acquisition Time (sec) 2.0488	Comment	Sidproton	Date	Oet 22007
Date Stamp Oct 22007	Oct 22007		File Name	C:ISANDEEP NMRISR-5-104-FR11
Frequency (MHz) 399.77	Nucleus	1H	Number of Transients	32
Oriqinal Points Count Q828	Points Count	16384	Pulse Sequence	32pul
Reoeiver Gain $\quad 30.00$	Solvent	CHLOROFORM-d		
Spectrum Offset (Hz) 2008.9603	Sweep Width (Hz)	4797.31	Temperature /deqree C	25.000

Formula $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{CiN}_{4} \mathrm{O}_{2}$		FW	412.8125	
Acquisition Time (sec)	1.3005	Comment	Stad proton	Date Oct 42007
Date Stamp	Oet 42007	File Name	C.WMR 03	D14001SRANAISR-5-104-FR11-TP7-13C
Frequency (MHz)	100.53	Nucleus	13 C	Number of Transients 10000
Original Points Count	31375	Points Count	32768	Pulse Sequence s2pul
Receiver Gain	30.00	Solvent	CHLOROF	M-d
Specrum Offser (Hz)	10551.8717	Sweep Width (Hz)	24125.45	Temperature (dearee C) 25.000

Formula $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}$	FW 308			
Acquisition Time (sec)	1.4976	Comment	13C OBSERVE	Date Nov 52008
Date Stamp	Nov 52008			
File Name	C:INMR BACKUP101060日NMR BACKUP12001HUA-NEWISANDEEPIBOOK 81SR-9-47-FR28-13C			
Frequency (MHz)	50.29	Nucleus	13C	Number of Transients 100000000
Original Points Count	18720	Points Count	32788	Pulse Sequence 5 2oul
Receiver Gain	40.00	Solvent	CHLOROFORM-d	
Spectrum Offet (Hz)	4878.8351	Sweep Width (Hz)	12500.00	Temperature (degree C) 29.000

Formula $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NO}_{3} \mathrm{O}_{2}$	FW	367.4415

Acquisition Time (sec) 2.0487		Comment	Stod proton	Dare	Nov 52008
Date Stamp	Nov 52008				
Fille Name	C:IDOCUMENTS AND SETTINGSIDUY HUAIDESKTOPISANDEEPITHESISNMRINEW FOLDERITPBAANDBISR-9-47-FR11-17				
Frequency (MHz)	390.76	Nucleus	1H	Numb	32
Oriqinal Points Count	13103	Points Count	10384	Pulse	S2pul
Receiver Gain	44.00	Solvent	CHLOROF	Spec	2416.5151
Sweep Width (Hz)	6395.91	Temperature	25.000		

Formula $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NO}$,	273.3700				
Acquisition Time (see)	1.3005	Comment	Stoj proton	Dase	Nov 252007
Dave Stamp	Nov 252007			File Name	CISANDEEP NMRISR-7-22-EASE-13C
Frequency (MHz)	100.53	Nucleus	13C	Number of Transiencs	5000
Original Points Count	31375	Points Count	32788	Pulse Sequence	s2pul
Rectiver Gain	32.00	Solvent	CHIOROFORM. ${ }^{\text {d }}$		
Spectrum Offset (Hz)	105452900	Sweep Width (Hz)	24125.45	Temperature (deqree C	25.000

Formula $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2}$	FW	366.4137

Formula $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{4} \mathrm{O}$,	FW 448.5142			
Acquisition Time (sec)	20488	Comment	Sto proton	Date $\quad \tan 302008$
Date Stamp	Jan 302008	File Name	C:ISANDEEP NMR SR-5-115-FR10-15-13C.FIOISR-7-88-FR12-DP	
Freguency ($\mathrm{MHz}^{\text {) }}$	399.77	Nucleus	1 H	Number of Transients 32
Original Points Count	13104	Points Count	16394	Pulse Sequence \quad S2pul
Receiver Gain	52.00	Solvent	CHLOROFORM-d	
Spectrum Offset (Hz)	2409.1055	Sweep Width (Hz)	6396.42	Temperature (deqree C) 25.000

Formula $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{4} \mathrm{O}_{4}$	$\mathrm{FW} \quad 440.5023$

Acquisition Time (sec)	1.3005	Comment	Std proton	Date Feb 22008
Date Stamp	Feb 22008	File Name	C:ISANDEEP NMRISR-7-68-FR11-12-13C-DP	
Frequency (MHz)	100.53	Nucleus	13 C	Number of Transients 64000000
Oriqinal Points Count	31375	Points Count	32788	Pulse Sequence 52 pul
Receiver Gain	30.00	Solvent	CHLOROFORM-d	
Specrrum Offset (Hz)	10554.7441	Sweep Width (Hz)	24125.45	Temperature (deqree C) 25.000

Formula $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}$,	FW 382.4528				
Acquisizion Time (sec)	1.3005	Comment	sta proton	Dare	Oct 92007
Dare Sramp.	Oct 92007	Filo Name	CISANDEEP NVRISR-5-109-FR8-13C		
Frequency (MHz)	100.53	Nucleus	13 C	Number of Transients	20000
Original Points Count	31375	Points Count	32768	Pulse Sequence	62pul
Receiver Gain	30.00	Solvent	CHLOROFORM-d		
specurum Offser (Hz)	10548.2900	Sweep whth (Hz)	24125.45	Temperawie (degree C	20.000

Formula $\mathrm{C}_{-} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$		381.4862			
Acquisition Time (sec)	2.0436	Comment	Std proton	Date	Jan 172008
Date Stamp	J an 172008			File Name	C:ISANDEEP NMRTSR-7-58-FR12
Frequency (MHz)	39977	Hucleus	1 H	Number of Transients	18
Oriqinal Points Count	13104	Points Count	16394	Pulse Sequence	s2pul
Receiver Gain	30.00	Solvent	CHLOROFORM-d		
Spectrum Offset (Hz)	2400.105		6398.42	Temperature (degree	25.000

Formula $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$	FW 391.4882			
Acquisition Time (sec)	1.3005	Comment	Sto proton	Date Jan 272008
Date Stamp	Jan 272008	File Name	C:ISANDE	NMRISR-7-58-FR12-13C
Frequency (MHz)	100.53	Nucleus	13 C	Number of Transients 10000
Oriqinal Points Count	31375	Points Count	32788	Pulse Sequence sirul
Receiver Gain	3000	Solvent	CHLOROF	RM-d
Spectrum Offset (Hz)	10546.0811	Sweep Width (Hz)	24125.45	Temperature (degree C) 25.000

\section*{| Formula $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{NO}_{2}$ | FW | 151.1228 |
| :--- | :--- | :--- |}

Acquisition Time (sec)	1.9945	Comment	STANDARD 1H OBSERVE		
Date	Aug 292008	Date Stamp	Aug 292008	File Name	$\begin{aligned} & \text { C:INMR } 03100912001 \mathrm{BOOK} \\ & \text { 9ISR-9-12-DP } \end{aligned}$
Frequency (MHz)	199.98	Nucleus	1H	Number of Transients	32
Oriqinal Points Count	5094	Points Count	8182	Pulse Sequence	s2pul
Receiver Gain	40.00	Solvent	CHLOROFORM-d		
Spectrum Offset (Hz)	1002.0226	Sweep Width (Hz)	3000.30	Temperature (degree C) 29.000	

Formula $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{NO}_{2}$	FW 125.1253			
Acquisition Time (sec)	c) 1.9845	Comment	STANDARD 1	OBSERVE
Date	Aug 212008	Date Stamp	Aug 212008	
File Name	C:INMR BACKUP1010809NMR BACKUP(2001HUA-NEWSANDEEPIBOOK81SR-8-110-DP			
Frequency (MHz)	189.88	Nucleus	1 H	Number of Transients 64
Original Points Count	$t 5984$	Points Count	8182	Pulse Sequence s2pul
Receiver Gain	40.00	Solvent	CHLOROFORM-d	
Spectrum Offset (Hz)	1002.0226	Sweep Width (Hz)	3000.30	Temperature (deqree C) 29.000

Formula C. ${ }^{\text {H. }}$, NO ,	FW 255.3117			
Acquisition Time (sec)) 1.9845	Comment	STANDARD 1H OBSERVE	
Date	Aug 192008	Date Stamp	Aug 192008	
File Name	C:INMR BACKUP1010800NMR BACKUP12001HUA-NEW WANDEEPIBOOK8ISR-L-SHAPE-PYRONE-TFA			
Frequency (MHz)	190.88	Nucleus	1 H	Number of Transients 64
Oriqinal Points Count	5934	Points Count	8182	Pulse Sequence s2pul
Receiver Gain	40.00	Solvent	CHLOROFORM-d	
Spectrum Offset (Hz)	1002.0226	Sweep Width (Hz)	3000.30	Temperature (dearee C) 29.000

Formula $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{NO}$	FW 243.3010				
Acquisition Time (sec)) 2.0487	Comment	Std proton	Date	Nov 32008
Date Stamp	Nov 32008			File Name	C:ISANDEEP NMRISR-9-44-DMSO
Frequency (MHz)	399.78	Nucleus	1H	Number of Transients	16
Oriqinal Points Count	13103	Points Count	16384	Pulse Sequence	s2pul
Receiver Gain	20.00	Solvent	DMSO-d6	Spectrum Offset (Hz)	2418.7058
Sweep Width (Hz)	6395.91	Temperature (deqree C) 25.000		Spert	

Formula C, $\mathrm{H}_{4} \mathrm{NO}$	FW 243.3010				
Acquisition Time (sec)	1.3005	Comment	Std proton	Date	Nov 22008
Date Stamp	Nov 22008	File Name	C:ISANDEEP NMRISR-9-44-13C-DMSO		
Frequency (MHz)	100.53	Nucleus	13 C	Number of Transients	20000
Oriqinal Points Count	31375	Points Count	32768	Pulse Sequence	S2pul
Receiver Gain	30.00	Solvent	DMSO-d6	Spectrum Offset (Hz)	10483.5039
Sweep Width (Hz)	24125.45	Temperature (degree C) 25.000			

Formula $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{NO}_{2}$	FW 377.4761				
Acquisition Time (sec)	1.9945	Comment	STANDARD 1H OBSERVE		
Date	Jun 182008	Date Stamp	Jun 182008	File Name	C:ISANDEEP NMRISR-8-60-FR11
Frequency (MHz)	199.98	Nucleus	1 H	Number of Transients	32
Oriqinal Points Count	5994	Points Count	8182	Pulse Sequence	s2pul
Receiver Gain	28.00	Solvent	CHLOROFORM-d		
Spectrum Offset (Hz)	1001.6563	Sweep Width (Hz)	3000.30	Temperature (deqree C	29.000

Formula $\mathrm{C}_{3} \mathrm{H}_{30} \mathrm{NO}_{3}$	FW	377.4761

Acquis/ion Time (5 C ${ }^{\text {c }}$	1.4976	Comment	13C OBSERVE		
Dase	Jun 202008	Daxe Stame	Jun 20.2008	Fille Name	CISANDEEP NMRISR-8-51-FR6-10-13C
Frequency (MHz)	50.29	Nucleus	13 C	Number of Transjents	20000
Oriqunal Points Count	18720	Pounts Count	32768	Pulse Sequence	52pul
Recerver Gain	40.00	Solvent	CHLOROFORM-d		
specrrum offser (Hz)	4872.8311	Sweap wich (Hz)	12500.00	Temparaxure (olegrae C	29.000

Formula $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{NO}$,	FW 395.4914				
Acquisition Time (sec)) 1.3005	Comment	SR-8-71-f20		
Date	Jul 22008	Date Stamp	Jul 22008	File Name	C:ISANDEEP NMRISR-8-71-FR20-13C
Frequency (MHz)	100.53	Nucleus	13 C	Number of Transients	2000
Oriqinal Points Count	31375	Points Count	32768	Pulse Sequence	s2oul
Receiver Gain	30.00	Solvent	CHLOROFORM-d		
Spectrum Offset (Hz)	10554.7900	Sweep Width (Hz)	24125.45	Temperature (deqree C	25.000

SR-9-19, S. Rana
L102916 $18(1.856) \mathrm{Cm}(14: 19)$
100

SR-8-78, S. Rana
L091940 $15(1.582) \mathrm{Cm}(10: 16)$
100

Formula $\mathrm{C}_{2} \mathrm{H}_{0} \mathrm{NO}$	FW 123.1525		
Acquisition Time (sec) 1.4976 Date Stamp Nov 202008		Comment 13C OBSERVE	Date Nov 202008
File Name C:INMR BACKU		P1010009NMR BACKUP(2001HUA-NEWSAN	NDEEPIBOOK 9ISR-9-58-13C
Frequency (MHz)	50.29	Nucleus 13C	Number of Transients 20000
Oriqinal Points Count	it 18720	Points Count 32768	Pulse Sequence s poul
Receiver Gain	40.00	Solvent DMSO-d6	Spectrum Offset (Hz) $\quad 4816.1436$
Sweep Width (Hz)	12500.00	Temperature (deqree C) 29.000	

Formula $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{NO}_{2}$	FW 250.3434				
Acquisition Time (sec)	13005	Comment	Sto proton	Date	Noy 172008
Date Stamp	Nov 172008	File Name	C-WMR 0310094001SRANAISR-9-61-13C		
Frequency (MHz)	100.53	Nucleus	13 C	Number of Transients	500
Original Points Count	31375	Points Count	32768	Puise Sequence	22pul
Receiver Gain	30.00	Soivent	CHLOROFORM-d		
Spectrum Offser (Hz)	10554.7910	Sweep Width (Hz)	24125.45	Temperature (degree C)	25.000

Formula $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NO}_{4}$	FW 359.4593				
Acquisition Time (sec)	20487	Comment	Sto proton	Dare	Nov 172008
Date Stamp	Nov 172008			File Name	C:INMR 03100914001SRANAISR-9-60-DP
Frequency ($\mathrm{MHz}^{\text {) }}$	39976	Nucleus	1 H	Number of Transients	32
Original Points Count	13103	Points Count	16384	Pulse Sequence	s2pul
Receiver Gain	12.00	Solvent	CHLOROFORM-d		
Spectrum Offeet (Hz)	2415.3440	Sweep Width (Hz)	0395.91	Temperature (deqree C	25.000

Formula C3 $\mathrm{H}_{3} \mathrm{NO}_{4}$. $\mathrm{FW} \quad 375$.	FW 375.4587		
Acquisition Time (sec) 20487	Comment	Std proton	Date Dec 22008
Date Stamp Dec 22008	File Name	C:WMR 03100914001SRANAISR-q-87-DP	
Frequency (MHz) 300.75	Nucleus	1 H	Number of Transients 32
Original Points Count 13103	Points Count	16384	Pulse Sequence ${ }^{\text {apoll }}$
Receiver Gain $\quad 54.00$	Solvent	CHLOROFORM-d	
Spectrum Offset (Hz) 2403.5376	Sweep Width (Hz)	0305.81	Temperature (deqree C) 25.000

Formula $\mathrm{C}_{4} \mathrm{H}_{-} \mathrm{NO}$?	FW 358.4513+?				
Acquisition Time (sec)	1.0945	Comment	STANDARD 1HOBSERVE		
Date	Dec 32008	Dase Samp	Dec 32008	File Name	$\begin{aligned} & \text { C:WMR 031009L200:B0OK } \\ & \text { QSR-9-73-DP } \end{aligned}$
Frequency (MHz)	199.98	Nucleus	1H	Number of Transients	32
Original Points Count	59.84	Points Count	8192	Pulse Sequence	8230,
Receiver Gain	4.00	Solvent	CHLLOROFORM-d		
Spectrum Offlset (Hz)	1008.6158	Sweep Width (Hz)	3000.30	Temperature (deqree C) 29.000	

Formula $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}_{3}$?	FW 358.4944+?			
Acquisition Time (sec)	1.4976	Comment	13 C OBSERVE	Date Dec 32008
Date Stamp	Dec 32008			
File Name	C:INMR BACKUP1010009NMR BACKUPPLOOLHUA-NEWSANDEEPIBOOK QISR-8-73-13C			
Frequency (MHz)	5029	Nucleus	13 C	Number of Transients 400
Original Points Count	18720	Points Count	32768	Pulse Sequence 52 pul
Receiver Gain	40.00	Solvent	CHLOROFORM	
Spectrum Offset (Hz)	4887.1088	Sweep Width (Hz)	12500.00	Temperature (deqree C) 29.000

Formula $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}$	FW 392.4543			
Acquisition Time (sec)	2.0486	Comment	Std proton	Date Jan 122009
Date Stamp	Jan 122009	File Name	C:INMR 03100914001SRANAISR-AP-1-11-FR24-25	
Frequency (MHz)	399.75	Nucleus	1 H	Number of Transients 32
Oriqinal Points Count	9827	Points Count	16384	Pulse Sequence s2pul
Receiver Gain	60.00	Solvent	CHLOROFORM-d	
Spectrum Offset (Hz)	2003.8943	Sweep Width (Hz)	4797.03	Temperature (deqree C) 25.000

Formula $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{5} \mathrm{O}$	FW 302.4543			
Acquisition Time (sec)	1.3005	Comment	Std proton	Date Feb 262009
Date Stamp	Feb 262009	File Name	C:INMR 0310091400ISRANAISR-AP-1-42-13C	
Frequency (MHz)	100.53	Nucleus	13 C	Number of Transients 2000
Oriqinal Points Count	31375	Points Count	32788	Pulse Sequence 52 pul
Receiver Gain	30.00	Solvent	CHLOROFORM-d	
Spectrum Offset (Hz)	10553.0635	Sweep Width (Hz)	24125.45	Temperature (deqree C) 25.000

Formula $\mathrm{C}_{0} \mathrm{H}_{4}$	$\mathrm{~N}, \mathrm{O}$

Acquisition Time (sec)	2.0485	Comment	Std proton	Date	Feb 262009
Date Stamp	Feb 262009			File Name	C:INMR 03100914001SRANAISR-AP-1-42
Frequency (M Hz)	399.75	Nucleus	1H	Number of Transients	16
Oriqinal Points Count	13102	Points Count	16384	Pulse Sequence	s2pul
Receiver Gain	40.00	Solvent	CHLOROFORM-d		
Spectrum Offset (Hz)	2402.3203	Sweep Width (Hz)	6395.91	Temperature / degree	25.000

Formula C. H. NO	FW 226.2738			
Acquisition Time (sec)) 1.3005	Comment	Std proton	Date Feb 262009
Date Stamp	Feb 262009	File Name	C:INMR 03100914001SRANAISR-AP-1-42-13C	
Frequency (MHz)	100.53	Nucleus	13 C	Number of Transients 2000
Oriqinal Points Count	31375	Points Count	32788	Pulse Sequence s2pul
Receiver Gain	30.00	Solvent	CHLOROFORM-d	
Spectrum Offset (Hz)	10553.0635	Sweep Width (Hz)	24125.45	Temperature (deqree C) 25.000

Formula $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NO}$	FW	153.1354						

Formula C, $\mathrm{H}_{2} \mathrm{NO}$,	FW 153.1354				
Acquismon Time (50 C	c) 1.3005	Comment	Sto proton	Dare	Mar 22009
Dare Sramp	Mar 22009	File Name	C.INMR 0310094400.SRANAISR-9-114-SM-DMSC-130		
Frequency (MHz)	100.53	Nucious	13 C	Number of Transients	2000
Oriqunal Points Coumt	I 31375	Pomis Count	32768	Pulse Sequence	520u
Recerver Gain	30.00	Solvent	DMSO-d6	Spectrum Oftser (Hz)	10486.0117
Sweep Whath (Hz)	24125.45	Temperawure (ilagree c) 25.000			

