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Abstract

The science of sequential decision making, formalized through reinforcement learning

(RL), has driven various recent technological breakthroughs, from mastering complex games

that require strategic thinking to driving advancements in natural language processing. Cen-

tral to an RL agent’s learning is how it treats rewards (the learning signal) and adjusts its

policy to maximize cumulative rewards. Future rewards are weighed less than immediate

rewards, and traditional RL methods employ exponential discounting to balance immediate

and future rewards. However, studies from neuroscience and psychology have shown that

exponential discounting does not accurately reflect human and animal behavior, who instead

exhibit hyperbolic discounting of future rewards.

This dissertation explores non-exponential discounting, such as hyperbolic, in different

facets of deep RL such that it can mirror the intricate decision-making processes found in

humans, and evaluate its impact on agent performance in a variety of settings. First, I revisit

the idea of hyperbolic discounting and the auxiliary task of learning over multiple horizons

in RL agents while using off-policy value-based methods, studying its impact on sample effi-

ciency and generalization to new tasks while incorporating architectural and implementation

improvements. Second, I introduce a two-parameter discounting model based on generalized

hyperbolic discounting in the deep RL setting. With its sensitivity-to-delay parameter, this

model enriches temporal decision-making in RL, as evaluated through empirical evidence.

Third, I apply hyperbolic discounting to multi-agent systems, examining its influence on col-

lective decision-making and performance, revealing the potential for improved cooperation

among agents. These contributions highlight the impact of non-exponential discounting on

agent performance, linking theory with AI practice, facilitating human-like decision-making,

and paving the way for new research directions.
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Chapter 1

Introduction

Human decision-making is complex, influenced by factors like immediate circumstances, fu-

ture prospects, personal preferences, and the inherent value of outcomes. Understanding and

modeling human decision-making processes have long been subjects of interest across vari-

ous disciplines, including psychology, neuroscience, economics, and, more recently, artificial

intelligence (AI).

One of the fundamental aspects of human decision-making is how individuals value re-

wards over time, a concept known as reward discounting. Traditional economic models use

exponential discounting, where the value of a reward decreases at a constant rate over time.

However, empirical studies have consistently shown that hyperbolic discounting better de-

scribes human preferences, where the value of future rewards decreases more steeply for

earlier delays than for later delays. In other words, hyperbolic discounting suggests a prefer-

ence for smaller, immediate rewards over larger, delayed ones, and offers a realistic framework

for capturing human preferences. This discrepancy may have significant implications for de-

signing AI and reinforcement learning (RL) agents that can mimic human decision-making

or optimize long-term outcomes in environments where human interaction is critical.

Understanding how individuals make choices, particularly when faced with intertempo-

ral trade-offs, has significant implications for developing effective decision support systems,

designing incentive structures, and creating AI agents that can interact with humans more

1



naturally and intuitively. One of the key challenges in modeling human preferences lies

in the observation that individuals often exhibit time-inconsistent behavior, deviating from

the standard exponential discounting model assumed in classical economic theory. This

phenomenon, known as hyperbolic discounting, suggests that people tend to place dispro-

portionately higher value on immediate rewards than delayed ones, leading to impulsive and

seemingly irrational choices. However, humans can also plan for multiple timescales (or time

horizons) simultaneously and can exhibit preference reversals. Both of these characteristics

are lacking when exponential discounting is used.

1.1 Problem Statement

The reinforcement learning (RL) paradigm has shown promise as a path towards important

aspects of rational utility in autonomous agents. Reward, specifically reward maximization,

has been hypothesized as being enough to learn intelligent behavior (Silver et al., 2021). For

a learning agent to acquire multiple abilities simultaneously (e.g., planning, motor control,

language, etc.), the singular goal of reward maximization may be enough to generate complex

behavior, rather than learning and reasoning over specialized problem formulations for each

ability. How we treat this reward signal is thus central to our quest for intelligent agents.

In the RL problem setting, the objective is to maximize cumulative rewards over time,

known as return. Different approaches to calculating this return include aggregating undis-

counted rewards over a finite number of steps, calculating a discounted sum (infinite rewards

sum to a finite number), or calculating the average reward per time step. The discounted

reward formulation remains the most common in contemporary research, in which a discount

factor 0 ≤ γ < 1 exponentially reduces or discounts the present value of future rewards, rt at

step t, as γtrt. Reward discounting prioritizes sooner rewards over later rewards and enables

a convergence proof for the infinite horizon case.

The functional form of the discounting function directly influences the solutions learned.

Evidence from psychology and economics shows that human and animal preferences for

future rewards can be modeled more accurately using hyperbolic discounting (Γk(t) =
1

1+kt
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for k > 0). Preference reversals can also occur with time, which can be modeled by hyperbolic

discounting but not exponential discounting. Fedus et al. (2019) show that a deep RL agent

that acts via hyperbolic discounting is indeed feasible while approximating hyperbolic and

other non-exponential discounting functions using familiar temporal difference (TD) learning

methods like Q-learning. This approximation is made possible by learning many Q-values

simultaneously, each for a different discount factor, and in doing so, the agent also learns over

multiple horizons, which is shown to be an effective auxiliary task. Exponential discounting

is consistent with a prior belief that a known constant risk exists to the agent Sozou (1998).

However, hyperbolic and non-exponential discounting is more appropriate when an agent

holds uncertainty over the environment’s hazard rate (defined as the per-time-step risk the

agent incurs as it acts in the environment). Hyperbolic discounting is theorized to be most

beneficial when the hazard rate characterizing the environment is unknown.

This dissertation focuses on the use of non-exponential discounting functions and explores

them under environment conditions that are inherently hazardous (dynamic hazard), where

the severity of the hazard is unknown, and where the agent is unsure about its survival. I

investigate this approach in single and multi-agent systems across a wide variety of agent

performance dimensions, such as cumulative return (performance), sample efficiency, and

generalization tasks.

Integrating hyperbolic discounting into reinforcement learning frameworks poses several

challenges. First, the non-stationarity introduced by the time-inconsistent nature of hyper-

bolic discounting can lead to instability and convergence issues in traditional RL algorithms.

Second, the additional parameter representing sensitivity to delay in hyperbolic discount-

ing models adds complexity to the optimization problem and may require novel algorithmic

approaches. Despite these challenges, incorporating hyperbolic discounting into RL agents

promises to enable more human-like decision-making, improved generalization to real-world

scenarios, and better alignment with human preferences. By capturing the tendency to

overvalue immediate rewards, hyperbolic discounting could lead to more realistic and inter-

pretable behavior in RL agents, potentially enhancing their ability to interact with humans

and make decisions in domains where intertemporal trade-offs are prevalent.
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1.2 Contributions

This dissertation aims to examine whether incorporating hyperbolic discounting within RL

agents can enhance their decision-making processes, aligning them more closely with human-

like decision-making behaviors. Ultimately, this approach seeks to bridge the gap between

traditional AI models and the nuanced, often irrational, patterns of human behavior, paving

the way for more intelligent, adaptable, and human-centric AI systems. The specific contri-

butions of this dissertation are outlined as follows:

1. Revisiting Hyperbolic Discounting: I conduct a comprehensive analysis to in-

vestigate the influence of hyperbolic discounting and multi-horizon learning on agent

performance. This includes examining aspects such as sample complexity and general-

ization using contemporary benchmarks, neural network architectures, and simulation

environments.

2. Generalized Hyperbolic Discounting: I introduce a novel discounting model that

merges Rachlin’s hyperbolic framework with deep reinforcement learning. The Rach-

lin model, also known as Generalized Hyperbolic discounting, incorporates a second

term called sensitivity-to-delay, which measures how agents perceive the same delay

differently in accumulating rewards.

3. Non-Exponential Discounting in Multi-Agent RL: I explore the application of

hyperbolic discounting in multi-agent reinforcement learning (MARL). This involves

assessing its impact on individual agent decisions and collaborative performance. I

introduce and analyze six MARL methods across various classes to investigate the

effects of hyperbolic discounting on agent behavior and overall performance.

Some of the contributions of this work have already been published in peer-reviewed

conferences and workshops:

• Raja Farrukh Ali. Non-exponential reward discounting in reinforcement learning.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages

16111–16112, 2023 (Ali, 2023).

4



• Raja Farrukh Ali, Kevin Duong, Nasik Muhammad Nafi, and William H. Hsu. Multi-

horizon learning in procedurally-generated environments for off-policy reinforcement

learning (student abstract). In Proceedings of the AAAI Conference on Artificial In-

telligence, volume 37, pages 16150–16151, 2023 (Ali et al., 2023a).

• Raja Farrukh Ali, Nasik Muhammad Nafi, Kevin Duong, and William Hsu. Efficient

multi-horizon learning for off-policy reinforcement learning. In NeurIPS Deep Rein-

forcement Learning Workshop, 2022 (Ali et al., 2022).

In addition to the above, proposed works mentioned in Chapters 4 and 5 are in the process

of being submitted to peer-reviewed conferences. The following publications are additional

contributions that I have made during my PhD studies but are not part of this dissertation.

• Nasik Muhammad Nafi, Raja Farrukh Ali, andWilliam Hsu. Hyperbolically discounted

advantage estimation for generalization in reinforcement learning. In ICML Workshop

on Decision Awareness in Reinforcement Learning, 2022 (Nafi et al., 2022b). Full

paper accepted to AAMAS 2024.

• Nasik Muhammad Nafi, Raja Farrukh Ali, and William Hsu. Analyzing the Sensitivity

to Policy-Value Decoupling in Deep Reinforcement Learning Generalization. Proceed-

ings of the International Conference on Autonomous Agents and Multiagent Systems

(AAMAS), 2023 (Nafi et al., 2023). Previous version appeared in NeurIPS Deep Rein-

forcement Learning Workshop, 2022 (Nafi et al., 2022a). Full paper accepted to IJCNN

2024.

• Raja Farrukh Ali, Ayesha Farooq, Emmanuel Adeniji, John Woods, Vinny Sun, and

William Hsu. Explainable reinforcement learning for alzheimer’s disease progression

prediction. In NeurIPS XAI in Action Workshop, 2023 (Ali et al., 2023b).

1.3 Dissertation Outline

This dissertation is organized as follows:
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• Chapter 2 provides a comprehensive literature review covering the theoretical founda-

tions of reinforcement learning, reward discounting, contemporary deep RL methods,

and simulation environments used to study these problems.

• Chapter 3 presents a detailed analysis of the performance of RL agents that use

hyperbolic discounting and learn over multiple horizons, revisiting the idea in new

problem settings as well as focusing on new dimensions of learning such as sample

complexity and generalization.

• Chapter 4 introduces the generalized hyperbolic discounting framework in deep RL,

which uses the two-parameter Rachlin hyperbolic discounting model. This chapter

discusses the proposed model’s theoretical foundations, implementation details, and

empirical evaluation.

• Chapter 5 explores the integration of hyperbolic discounting into multi-agent re-

inforcement learning (MARL) methods, investigating its impact on agent decision-

making and performance in cooperative and competitive scenarios.

• Chapter 6 concludes the dissertation by summarizing the key findings, discussing

limitations, and outlining potential future research directions.

All chapters that contain published research results have supplementary material and

code available. Source code will typically be available on GitHub1 or linked from the author’s

webpage2 against the respective published article.

1https://github.com/rfali
2https://rfali.github.io
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Chapter 2

Background

In this chapter, we lay down the essential groundwork and theoretical frameworks that serve

as prerequisites for the subsequent sections of this dissertation. Specifically, We discuss the

following topics: introduction to reinforcement learning (RL) (Section 2.1), its formalism

(Section 2.2), fundamental concepts (Section 2.3) and classifications (Section 2.4), reward

discounting (Section 2.5), algorithms for single-agent (Section 2.7) and multi-agent RL (Sec-

tion 2.8), and finally the RL simulation environments used in this dissertation (Section

2.9). This chapter is loosely based on prior surveys (Jaeger and Geiger, 2023; Jaques, 2019;

Kwiatkowski et al., 2022), and concepts pertinent only to specific chapters are introduced

as additional background within those respective chapters.

2.1 Introduction to Reinforcement Learning

Modern approaches to machine learning are typically categorized into three main types:

supervised learning, unsupervised learning, and reinforcement learning. Supervised Learning

involves training models on labeled data, where each data point is associated with a known

output or label. Abstractly, supervised learning involves finding a function f : X → Y

that takes as input x ∈ X and gives as output y ∈ Y such that y = f(x). On the other

hand, Unsupervised Learning, which encompasses Self-Supervised Learning, operates on raw
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data without explicit labels, aiming to uncover patterns or structures within the data itself.

Reinforcement Learning, inspired by behaviorist psychology and distinct from the previous

two paradigms, involves an agent interacting with its environment and making decisions to

maximize the total rewards obtained over time. In RL, there is no explicit use of labeled data;

instead, the agent learns through trial and error, exploring various actions and observing the

resulting rewards. The learning process in RL involves the agent iteratively updating its

strategy or policy to achieve higher rewards over time.

To differentiate these concepts further, the aim of supervised learning is to fine-tune

a model for accurately mapping inputs x to outputs y. In reinforcement learning, these

inputs and outputs are referred to as states s and actions a, respectively, with the model

being a policy π that links states to actions (π(s) → a). Supervised learning focuses on

minimizing a loss function L(h(s), a) → r, where h(s) → a⋆ assigns states to their ideal

actions (a⋆=ground truth), and r ∈ R is a loss value. This loss function usually denoted

as L(a⋆, a), is optimized through gradient-based methods using data from a fixed dataset,

with a⋆ typically determined by human experts. In contrast, reinforcement learning aims

to maximize a reward function R(s, a) → r, where r is the reward. Reward functions R

broaden the concept of loss functions L as the optimal actions a⋆ = h(s) do not need to be

known.

2.1.1 Deep Reinforcement Learning

In Deep Reinforcement Learning (DRL), the agent’s decision-making process is represented

by a deep neural network. At its core, a deep neural network is a series of layers, each

performing a nonlinear transformation, allowing the model to capture increasingly abstract

representations of the data. Deep learning operates through a function f : X → Y , pa-

rameterized by θ ∈ Rnθ , where nθ ∈ N represents the number of parameters, such that

y = f(x; θ).

Consider a basic example of a feedforward neural network with a single hidden layer. The

network takes input x, a column vector of length nx (nx ∈ N), and processes it through the
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layers. The computation in the hidden layer is described by h = A(W1 · x+ b1) where W1 is

a matrix of dimensions nh× nx (nh ∈ N), b1 is a bias vector of length nh, and A denotes the

activation function. This activation function introduces non-linearity, enabling the network

to model complex relationships. All these layers undergo training with the aim of minimizing

the empirical error, denoted by IS[f ]. The prevailing approach for optimizing neural network

parameters is gradient descent utilizing the backpropagation algorithm (Rumelhart et al.,

1986). In its simplest iteration, the algorithm updates its internal parameters θ to better fit

the desired function:

θ ← θ − α∇θIS[f ], (2.1)

where α denotes the learning rate.

In contemporary applications, various neural network layers have emerged, extending

beyond the conventional feedforward networks just introduced (also called a multi-layer

perceptron (MLP) where there could be one or more hidden layers). Each variant offers

distinct advantages tailored to specific applications, such as achieving a favorable balance

between bias and overfitting in supervised learning scenarios. Here, we briefly discuss the

layer types relevant to the work in this dissertation.

Convolutional layers (LeCun and Bengio, 1995) are well-suited for processing images and

sequential data due to their translation invariance property. These layers employ learnable

filters with small receptive fields, applying convolution operations to inputs and passing

results to subsequent layers. Consequently, the network learns to detect specific features,

such as edges, textures, and patterns, in initial layers, progressing to identify object parts

and whole objects in subsequent layers (Erhan et al., 2009). Recurrent layers, on the other

hand, excel in processing sequential data as they use the output from the previous timestep

as input to the current timestep, mimicking a type of memory and enabling them to capture

temporal dependencies within the data. Variants like Recurrent Neural Networks (RNNs)

and Long Short-Term Memory networks (LSTMs) (Hochreiter and Schmidhuber, 1997) are

widely used for processing time series or natural language, due to their ability to capture
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temporal dependencies through recurrent connections.

The trend in recent years has been towards increasingly deep networks, with some su-

pervised learning tasks employing over 100 layers (Szegedy et al., 2017). The motivation for

employing deep neural networks lies in the Universal Approximation Theorem (Cybenko,

1989), which states that a single hidden layer network can approximate any continuous func-

tion with sufficient size. However, due to computational impracticality and optimization

difficulties, a single, massive hidden layer is not preferred. Stacking layers enables deep

networks to learn a hierarchical structure, where subsequent layers capitalize on features ex-

tracted by preceding layers. This hierarchical structure facilitates the reuse and composition

of features from earlier layers to generate new, higher-level features, thereby enhancing the

network’s representation and learning capabilities.

Deep reinforcement learning (deep RL) methods arise when deep neural networks are

utilized to represent the state or to approximate a value function v̂(s; θ) or q̂(s, a; θ) or a

policy π(a|s; θ) where the parameters θ correspond to the weights in deep neural networks.

Usually, stochastic gradient descent is used to update weight parameters in deep RL. The

neural network learns to map environmental states to actions that maximize cumulative

rewards. Once trained, the DRL model can adapt to new environments or tasks, making it

versatile for various applications where dynamic decision-making is required.

2.1.2 Single vs. Multi-Agent RL

While traditional reinforcement learning (RL) has primarily focused on single-agent settings,

where an agent interacts with its environment to maximize its cumulative reward, multi-

agent reinforcement learning (MARL) has emerged as a critical area of research due to its

applicability in scenarios involving multiple interacting agents. In MARL, each agent must

learn an optimal policy while accounting for the presence of other agents, whose actions can

influence the environment’s dynamics, the rewards received by each agent, and the transition

dynamics to subsequent states. This added complexity introduces new challenges, such as the

need for coordinated decision-making, handling non-stationarity arising from the evolving
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policies of other agents, and the potential for emergent behaviors and equilibria that may be

difficult to predict or interpret. Consequently, MARL algorithms must be designed to address

issues such as credit assignment, exploration-exploitation trade-offs in multi-agent settings,

and the curse of dimensionality that arises from the exponential growth of the joint action

space as the number of agents increases. Despite these challenges, MARL holds significant

promise for applications in domains such as multi-robot coordination, decentralized control

systems, autonomous vehicles, and multi-player games, where the ability to learn and adapt

in the presence of multiple interacting agents is crucial.

2.2 Formalism

We now introduce the formal background used to study RL. Fundamentally, an RL problem

consists of two parts: an environment and an agent operating within the environment to

achieve some goal(s). The agent observes the environment, which translates to receiving the

state or observation from the environment, and executes an action according to its policy. On

receiving the agent’s action, the environment state changes, and the agent receives a reward

signal indicative of the action’s efficacy. The agent’s objective is to maximize the total reward

accumulated during an episode, which commences from the initial state and concludes upon

reaching the terminal state. Figure 2.1 visually captures this cyclic interaction.

Figure 2.1: The agent interacts with the environment by taking actions given a state. The
environment produces the next state and emits a reward (Sutton and Barto, 1998).
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2.2.1 MDP

The theoretical foundation of RL is based on the Markov Decision Process (Bellman, 1957b),

which is a mathematical framework for modeling sequential decision-making problems. An

MDP is defined by the tuple (S,A, T,R, γ), where:

• S is the set of possible states (discrete or continuous).

• A is the set of possible actions (discrete or continuous).

• T (s′|s, a) is the transition probability function, representing the probability of transi-

tioning from state s to state s′ after taking action a.

• R(s, a, s′) is the reward function, specifying the immediate reward received after tran-

sitioning from state s to state s′ by taking action a.

• γ ∈ [0, 1) is the discount factor, determining the importance of future rewards.

An initial state s0 ∈ S is randomly sampled from the distribution ∆S during each episode.

The agent then iteratively selects actions at from the action space A, observes a new state

s′ ∼ T (s, a), and receives a reward r = R(s, a, s′). This process can repeat indefinitely or

until a termination condition is met, defined either by a terminal state in S or a time limit.

The agent’s objective is to maximize the total discounted reward
∑

t γ
trt, also known as

the return G(t). The solution to a Markov Decision Process (MDP) is characterized by an

optimal policy π∗(a|s), which maps states to actions and, when followed, yields the highest

expected discounted cumulative reward.

2.2.2 POMDP

MDPs are characterized by full observability, where agents possess complete knowledge of the

current environment state. However, real-world applications often lack this property, lead-

ing to the adoption of Partially Observable Markov Decision Processes (POMDPs) (Kael-

bling et al., 1998). A POMDP is represented by a tuple M = (S,A,O, T,R,Ω, γ), where
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S,A, T,R, γ are defined similarly to MDPs. O denotes a set of possible observations, and

Ω : S → ∆O represents the observation function mapping states to observations. Unlike in

MDPs, the agent in a POMDP does not directly perceive the true state st of the environ-

ment but instead observes ot ∼ O(st), which may lack complete information due to partial

observability.

2.2.3 Markov Games

The two formalisms introduced above, namely MDP and POMDP, address problems involv-

ing a single agent, but extending them to accommodate multiple agents varies depending on

the required flexibility for a specific application. Markov games (Littman, 1994), sometimes

called a stochastic game (Owen, 1982), extend the concept of MDPs to multi-agent settings,

where multiple agents interact with each other and the environment. A Markov Game is

defined by the tuple (N,S, {Ai}, T, {Ri}, γ), where:

• N is the number of agents

• S is the set of possible states

• Ai is the set of possible actions for agent i

• T (s′|s, a1, a2, . . . , aN) is the transition probability function, representing the probability

of transitioning from state s to state s′ when agents take actions a1, a2, . . . , aN

• Ri(s, a1, a2, . . . , aN , s
′) is the reward function for agent i, specifying the immediate

reward received by agent i after transitioning from state s to state s′ when agents take

actions a1, a2, . . . , aN

• γ ∈ [0, 1) is the discount factor, determining the importance of future rewards

In a Markov Game, each agent i aims to learn a policy πi(ai|s) that maximizes its own

expected cumulative discounted reward
∑

t γ
tri, given the policies of the other agents.
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2.2.4 POSG

Partially Observable Stochastic Games (POSGs) extend Markov Games to scenarios where

agents have partial observability of the environment’s state (Hansen et al., 2004). In a

POSG, each agent receives an observation oi that is correlated with the true state s, but

may not fully reveal it. A POSG is defined by the tuple (N,S, {Ai}, {Oi}, T, {Ri}, {Ωi}, γ),

where S, {Ai}, T, {Ri}, γ are defined similarly to Markov Games. Oi is the set of possible

observations for agent i and Ωi : S → ∆Oi represents the function mapping states to

observations for an agent i. In a POSG, each agent i aims to learn a policy πi(ai|oi) that

maximizes its expected cumulative discounted reward, given the policies of the other agents

and the partial observability of the environment’s state.

A specialized and popular instance of a POSG for fully cooperative tasks is a Decentral-

ized Partially Observable Markov Decision Process (Dec-POMDP) (Bernstein et al., 2002),

where all agents collaborate to optimize a shared reward function.

2.3 Fundamentals

We now discuss the fundamental theorems that form the core of most RL algorithms. We

explore the Policy Gradient Theorem, which enables direct optimization of a policy. We also

discuss Value Functions, which allow for the estimation of expected utilities associated with

the states and/or actions available to the agent in a given state. These two principles serve

as the foundation for numerous modern RL algorithms, often combining elements from both

approaches. In this section, we mostly use notation of Markov Decision Processes (MDPs)

as they offer broad generality, but later extend the discussion to scenarios involving partial

observability, where observations replace states, and multi-agent settings, where relevant

algorithms are adapted to handle multiple interacting agents.
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2.3.1 Value Functions

To maximize rewards, the agent learns a policy π that maps observations to actions. To

determine the best action at any timestep, an agent must estimate the expected long-term

future reward, a central challenge in RL. Typically, the environment is stochastic, making

exact predictions of future rewards impossible. Moreover, rewards acquired later are deemed

less important than those acquired earlier. Hence, a discount factor γ ∈ [0, 1) is applied to

rewards obtained from later time steps. We can then learn to estimate the value, or value

function Vπ(s), which represents the total expected future discounted reward an agent can

anticipate when starting in state st and acting according to its policy π. It is given by:

V π(s) = Eπ(st;θ)[rt + γrt+1 + γ2rt+2 + γ3rt+3 + . . . |st = s]

= Eπ(st;θ)

[
∞∑
k=0

γkrt+k|st = s

]
(2.2)

Instead of solely learning a value estimate, we can also aim to learn action-value func-

tion Qπ(a, s), representing the anticipated future reward of initiating action a from state

s.

Qπ(a, s) = Eπ(st;θ)

[
∞∑
k=0

γkrt+k|st = s, at = a

]
(2.3)

The Q-value provides insight into which actions are expected to yield the highest payoff

from a given state. With access to these Q-values, an agent can devise a policy by selecting

the action with the highest Q-value, Q(a, s) i.e., π(s) = argmaxa Q(a, s). However, deter-

mining these Q-values poses a challenge. As the policy improves, the value estimates should

change accordingly to reflect the updated policy. To solve this problem, we use the Bellman

equation (Bellman, 1957a), which decomposes value estimation into a recursive definition:

Qπ(at, st) = rt + γEπ(st+1|st,at)

[
max
at+1

Qπ(at+1, st+1)

]
(2.4)

The Bellman equation reveals that value estimate can be described in terms of the re-
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ceived reward at time step t (rt) and the expected future reward starting from the next

state, st+1, estimated using the current best Q-value estimates for st+1. This enables Q-

value estimation through iterative refinement using observed tuples (st, at, rt, st+1) obtained

from interactions with the environment, extending recursively until reaching a terminal state.

Generally, the Bellman equation provides a recursive relationship between the value of a state

(or state-action pair) and the expected value of the successor state (or successor state-action

pair).

This method of updating value estimates by bootstrapping from successor states has

given rise to a class of learning algorithms known as Temporal Difference (TD) learning. In

particular, we can calculate the TD error, expressed as:

δt = [rt + γmax
at+1

Qπ(at+1, st+1)]−Qπ(at, st) (2.5)

The left side of the equation represents the observed Q-value (from Eq. 2.4), whereas

the right side denotes our current best estimate of the Q-value. Therefore, the TD error

indicates the deviation of our current Q estimate from the received reward. Given the

stochastic nature of the environment, the same action taken in the same state can yield

different rewards. Thus, we avoid overwriting our previous Q estimate using only rt and Eq.

2.4. Instead, we define a loss function by squaring the TD error:

L(st, at, rt, st+1; θ) =

(
rt + γmax

at+1

Qπ(at+1, st+1)−Qπ(at, st)

)2

(2.6)

Through iterative optimization of this loss function using gradient-based learning tech-

niques, we continually refine our Q-value estimates until they converge to their true expected

values.

Another kind of value function known as the advantage function Aπ(s, a) serves as

an intermediary in estimating the value of actions within an environment. It represents the

relative benefit of taking a particular action compared to the average action value, encapsu-

lating the difference between the action-value (Q) function and the state-value (V ) function.
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Specifically, the advantage function quantifies the additional value gained by selecting a

specific action in a given state, beyond what is expected from the state’s overall value.

Mathematically, it is defined as the difference between the action-value and the state-value

functions: Advantage is defined as:

A(st, at) = Q(st, at)− V (st)

= rt + γV (st+1)− V (st)

(2.7)

Specifically, the advantage function quantifies the additional value gained by selecting a

specific action in a given state, beyond what is expected from the state’s overall value. By

explicitly capturing the advantage of each action, the advantage function facilitates more

informed decision-making in RL tasks, enabling agents to prioritize actions that offer the

greatest potential for reward accumulation. Some algorithms employ Advantage to reduce

gradient estimation variance, leading to more stable and efficient training.

These value functions can be estimated using various algorithms, such as temporal dif-

ference learning and Monte Carlo methods.

Temporal Difference Learning Temporal difference (TD) learning is a popular class of

algorithms in reinforcement learning that updates value estimates based on the difference

between successive estimates. In TD learning, agents iteratively update their value functions

by bootstrapping from successor states, blending together immediate rewards with estimates

of future rewards. One of the most well-known TD algorithms is the Q-learning algorithm,

which learns action-values directly from experience without requiring a model of the environ-

ment. Through iterative updates, Q-learning converges to the optimal action-value function,

enabling agents to make informed decisions in complex environments. TD learning algo-

rithms offer advantages such as online learning, computational efficiency, and the ability to

handle non-episodic tasks where trajectories are not explicitly defined.

Monte Carlo Methods Monte Carlo methods offer an alternative approach to estimat-

ing value functions by directly sampling episodes of experience. Unlike TD methods, Monte
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Carlo methods do not require bootstrapping and rely solely on observed returns from com-

plete episodes. By averaging the returns obtained from multiple episodes, Monte Carlo

methods provide unbiased estimates of value functions. One of the key advantages of Monte

Carlo methods is their ability to handle episodic tasks where trajectories are well-defined,

making them particularly suitable for environments with variable episode lengths or termi-

nation conditions. However, Monte Carlo methods may suffer from high variance, especially

in environments with long episode lengths or sparse rewards. Appropriate variance reduc-

tion techniques such as control variates or importance sampling can be applied to offset this

limitation.

2.3.2 Policy Gradient

Policy gradient methods are a class of RL algorithms that directly optimize the policy func-

tion πθ(a|s), parameterized by θ, to maximize the expected cumulative discounted reward.

The policy gradient theorem (Williams, 1992) provides a way to estimate the gradient of the

expected return with respect to the policy parameters. The policy π : S → ∆A is typically

represented as a neural network, with its free parameters, such as the weights θ, optimized

through gradient ascent on the total expected reward. The policy network πθ takes the

state as input and produces an output for each potential action. The output layer learns a

probability distribution over the next action, πθ(at|st), and for action selection, the network

directly samples an action at ∼ πθ(at|st).

Mathematically, it can be expressed as follows. If πθ denotes a parameterized policy with

parameters θ, the objective function J(θ), representing the expected return under policy πθ,

is given by:

J(θ) = Eτ∼πθ
[R(τ)] (2.8)

where τ denotes a trajectory, and R(τ) represents the return of trajectory τ . The policy

gradient ∇θJ(θ) with respect to the parameters θ is given by:
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∇θJ(θ) = Eτ∼πθ

[
T∑
t=0

∇θ log πθ(at|st) ·R(τ)

]
(2.9)

where st and at denote the state and action at time step t, respectively, and T is the time

horizon of the trajectory. While it may seem complex initially, we can actually derive the

above using the Policy Gradient Theorem. A trajectory in the environment, denoted by τ ,

consists of a sequence of consecutive states and actions taken by the agent, accompanied by

corresponding rewards, expressed as τ = (s0, a0, r0, s1, . . .). Given the parameterized policy

πθ, the probability of a trajectory is expressed as

P (τ) = µ(s0)
∏
t

P (st+1|st, at)πθ(at|st) (2.10)

logP (τ) = log ρ0(s0) +
∑
t

(logP (st+1|st, at) + log πθ(at|st)) (2.11)

The total reward obtained in the trajectory is denoted as R(τ) =
∑

t γ
trt. Now, consid-

ering the expectation across all trajectories τ , with the optimization target defined as:

J(θ) = Eτ∼πθ
[R(τ)] (2.12)

The policy gradient can be derived as follows:

∇θJ(θ) = ∇θEτ∼πθ
[R(τ)] (2.13)

= ∇θ

∫
τ

P (τ |θ)R(τ) since Ex[f(x)] =

∫
x

f(x)p(x) (2.14)

=

∫
τ

∇θP (τ |θ)R(τ) bring gradient under integral (2.15)

=

∫
τ

P (τ |θ)∇θ logP (τ |θ)R(τ) since ∇θP (τ |θ) = P (τ |θ)∇θ logP (τ |θ) (2.16)

= E[∇θ logP (τ |θ)R(τ)] expectation form (2.17)

= Eτ∼πθ

[∑
t

∇θ log πθ(at|st)R(τ)

]
From 2.11, non-dependent terms go to 0 (2.18)
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The policy gradient algorithm is conceptually simple, and its essence lies in increasing

the likelihood of actions that yield positive rewards while decreasing the likelihood of those

associated with negative rewards. The overarching goal is to maximize the total expected

future reward garnered during the learning process. It’s important to recognize that the

above represents the fundamental policy gradient theorem, and there are several potential

adjustments, notably through methods like importance sampling (Kahn and Harris, 1951),

or incorporating a baseline into the reward R(τ) such as subtracting the value of a state

V (s).

2.3.3 Actor Critic

Actor-Critic methods combine the strengths of value function estimation and policy gradient

methods. The actor is responsible for maintaining the policy function πθ(a|s), while the critic

estimates the value function V π(s) or Qπ(s, a). The critic’s value function estimates are used

to compute an advantage function, which guides the actor’s policy updates. From Eq. 2.9,

we can substitute the advantage function into the policy gradient as follows:

∇θJ(θ) = Eτ∼πθ

[
T∑
t=0

∇θ log πθ(at|st) · A(st)

]
(2.19)

= Eτ∼πθ

[
T∑
t=0

∇θ log πθ(at|st) ·Q(st, at)− V (st)

]
(2.20)

= Eτ∼πθ

[
T∑
t=0

∇θ log πθ(at|st) · (rt + γVst+1 − V (st))

]
(2.21)

2.4 Classifications in RL

Reinforcement learning encompasses a broad spectrum of methodologies, each with its dis-

tinct approach to learning and decision-making. These methods can be classified based

on various criteria, such as the type of strategies they use (value-based vs. policy-based),

the nature of the learning process (on-policy vs. off-policy), the reliance on environmental

models (model-free vs. model-based), and the number of agents involved (single-agent vs.
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multi-agent). Understanding these classifications provides a structured way to navigate the

RL landscape, highlighting the diversity and applicability of RL techniques across different

domains.

2.4.1 Value-based vs. Policy-based Methods

RL algorithms can be broadly categorized into value-based methods and policy-based meth-

ods. Value-based methods, such as Q-Learning (Watkins and Dayan, 1992) and SARSA

(Rummery and Niranjan, 1994; Sutton and Barto, 1998), focus on estimating the optimal

value functionQ∗(s, a), which represents the expected cumulative discounted reward an agent

can obtain by taking action a in state s and following the optimal policy thereafter. Once

the optimal value function is learned, the optimal policy can be derived by selecting the

action with the highest value in each state. Value-based methods are often sample-efficient

and can converge to the optimal policy in the tabular case, but they can struggle with high-

dimensional state and action spaces, as well as continuous domains. Policy-based methods,

such as policy gradient methods, directly optimize the policy function πθ(a|s), parameterized

by θ, to maximize the expected cumulative discounted reward. These methods can handle

high-dimensional and continuous action spaces more effectively than value-based methods,

but they can be less sample-efficient and may converge to local optima. Policy-based meth-

ods are particularly useful in scenarios where the value function is difficult to estimate or

when the goal is to learn a stochastic policy.

2.4.2 On-policy vs. Off-policy

RL algorithms can also be classified based on whether they learn from the same policy

that is used to make decisions (on-policy) or from a different policy (off-policy). On-policy

methods, such as SARSA (Rummery and Niranjan, 1994) and actor-critic algorithms, learn

the value function or policy based on the same policy that is used to make decisions. These

methods update their estimates based on the actual experiences generated by the current

policy, ensuring that the learned policy is consistent with the behavior policy. On-policy
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methods can be more stable and converge to the optimal policy in the tabular case, but they

can be less sample-efficient and may struggle with exploration in complex environments.

Off-policy methods, such as Q-Learning and Deep Q-Networks (DQN) (Mnih et al., 2015),

learn the value function or policy from experiences generated by a different behavior policy.

These methods can reuse past experiences, often stored in a replay buffer, to improve sample

efficiency and stability. Off-policy methods can be more sample-efficient and facilitate better

exploration, but they may introduce additional biases and divergence issues, especially in

non-tabular cases.

2.4.3 Model-free vs. Model-based

RL algorithms can be classified based on whether they learn directly from interactions with

the environment (model-free) or leverage a learned model of the environment dynamics

(model-based). Model-free methods, such as Q-Learning, SARSA, and policy gradient meth-

ods, learn directly from interactions with the environment, without explicitly modeling the

transition dynamics or reward function. These methods can be more sample-efficient and

robust to model inaccuracies, but they may require more interactions with the environment

to learn an optimal policy, especially in complex domains. Model-based methods, such as

Dyna (Sutton, 1991) and AlphaZero (Silver et al., 2018), learn a model of the environment

dynamics, typically represented as a transition function P (s′|s, a) and a reward function

R(s, a, s′). These methods can leverage the learned model to plan ahead and simulate future

trajectories, potentially improving sample efficiency and enabling more efficient exploration.

However, model-based methods can be sensitive to model inaccuracies and may struggle in

environments with complex or stochastic dynamics.

2.4.4 Single-agent vs. Multi-agent

RL algorithms can be designed for single-agent settings, where an agent learns to interact

with an environment, or multi-agent settings, where multiple agents interact with each other

and the environment. Single-agent methods, such as Q-Learning, DQN, and policy gradient
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methods, focus on learning an optimal policy for a single agent interacting with an envi-

ronment. These methods have been extensively studied and applied in various domains,

including game playing, robotics, and control systems. Multi-agent reinforcement learn-

ing (MARL) methods, such as Independent Q-Learning, Counterfactual Multi-Agent Policy

Gradients (COMA) (Foerster et al., 2018), and Multi-Agent Deep Deterministic Policy Gra-

dient (MADDPG) (Lowe et al., 2017), address scenarios where multiple agents interact with

each other and the environment. MARL algorithms must account for the presence of other

agents, whose actions can influence the environment’s dynamics and the rewards received by

each agent. These methods introduce additional challenges, such as the need for coordinated

decision-making, handling non-stationarity arising from the evolving policies of other agents,

and the curse of dimensionality due to the exponential growth of the joint action space.

These classifications provide a framework for understanding the strengths, limitations,

and applicability of different RL algorithms. In practice, many modern RL algorithms com-

bine elements from multiple categories, leveraging the advantages of different approaches to

tackle complex real-world problems.

2.5 Reward Discounting

It is valuable to examine the foundational assumption underpinning all Reinforcement Learn-

ing research, often referred to as the Reward Hypothesis. As formulated by Richard Sutton,

it posits that “All goals and purposes can be effectively regarded as the maximization of

the expected value of the cumulative sum of a received scalar signal (reward)” (Sutton and

Barto, 2018). This principle is ingrained in the formalisms and equations of RL, manifest-

ing through the inclusion of a reward function R, where agents aim to maximize the total

reward accumulated throughout their lifetime. While some contend that a single reward

signal adequately represents the goals of intelligent agents (Silver et al., 2021), others argue

that certain objectives cannot be captured solely by a scalar reward (Vamplew et al., 2022).

The latter formulation of vector reward can be thought of as a general case, with the scalar

reward being a special case. However, there is a consensus that reward is central to learning,
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regardless of its representation.

Since reward is central, reward discounting is also a fundamental concept in RL, reflecting

the idea that future rewards are valued less than immediate rewards. The discount factor

γ determines the extent to which future rewards are discounted, with a higher value of γ

placing more emphasis on long-term rewards. We now discuss how reward is treated in terms

of its use in learning algorithms.

2.5.1 Exponential Discounting

2.6 Reward Discounting in Reinforcement Learning

Reinforcement learning agents must strike a delicate balance between pursuing immediate

rewards and considering long-term benefits. Discounting is a fundamental technique that

enables this trade-off, facilitating the evaluation and comparison of action sequences by

accounting for both short-term gains and potential future rewards.

2.6.1 Conventional Exponential Discounting

Traditional economic models and early RL algorithms assumed exponential discounting,

where the value of a reward decreases at a constant rate over time. This approach introduces

a discount factor, γ, ranging from 0 to 1. Values closer to 1 place greater emphasis on

distant rewards, while lower values prioritize immediate rewards Sutton and Barto (1998).

The exponential discount function is given by:

V (r, t) = r · γt (2.22)

where r is the reward, t is the delay, and γ ∈ [0, 1) is the discount factor. The present

value of future rewards is computed by multiplying each successive reward by γ raised to

the power of the time step:
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Gt =
∞∑
t=0

γtRt (2.23)

This method has become the standard due to its theoretical convergence guarantees as

well as ease of computation. However, it assumes that a single constant discount factor can

accurately model the uncertainty or hazard rate across all future states, an assumption that

may not hold true in many real-world scenarios.

2.6.2 Hyperbolic Discounting

Empirical studies in psychology and behavioral economics have consistently shown that

hyperbolic discounting better describes human preferences, where the value of future rewards

decreases more steeply for earlier delays than for later delays. The hyperbolic discount

function proposed by Mazur (1987) is given by:

V (r, t) =
r

1 + kt
(2.24)

where r is the reward, t is the delay, and k is a free parameter representing the discount

rate. Researchers from psychology ((Myerson and Green, 1995; Rachlin, 1989)) have pro-

posed alternative formulations of the hyperbolic discounting model, capturing the tendency

for individuals to discount future rewards at a higher rate when the delay is shorter, and at

a lower rate when the delay is longer.

The conventional approach assumes that a fixed discount factor can reliably represent

the uncertainty or hazard rate associated with an agent’s survival across all future states.

However, recent research has called this assumption into question, as it may not hold true in

many real-world scenarios. Fedus et al. (2019) argue that the actual uncertainty or hazard

rate can vary over time or depend on the specific context, rendering a fixed discount rate

unrealistic. Additionally, Hu et al. (2022) empirically demonstrated that optimal discount

rates can correlate with the quality and size of datasets in offline learning settings, further

highlighting the limitations of a static discount factor.
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2.6.3 Exponential vs. Hyperbolic Discounting

The traditional approach to discounting in RL and economics is exponential discounting,

where the value of future rewards decreases geometrically over time. This method assumes

a consistent rate of discount over time, leading to a time-consistent valuation of rewards.

However, empirical studies in psychology and behavioral economics (e.g.,(Ainslie, 1975)) have

demonstrated that human and animal decision-making does not always follow this model.

Instead, hyperbolic discounting, where the discount rate decreases over time, provides a

better fit for observed behaviors. This model accounts for preference reversals over time, a

phenomenon not explained by exponential discounting.

The application of hyperbolic discounting within the context of Deep RL poses unique

challenges and opportunities. Recent works have begun exploring these avenues, aiming

to incorporate more psychologically realistic models of temporal decision-making into AI.

These efforts include adapting network architectures, loss functions, and training procedures

to accommodate non-exponential discounting. Such advancements are crucial for develop-

ing AI systems that can better model and predict human-like decision-making behaviors,

with significant implications for areas ranging from autonomous systems to personalized AI

assistants.

2.7 Single Agent RL Algorithms

We now discuss the single-agent RL algorithms that have been used in this dissertation.

2.7.1 Off-Policy, Value-Based Methods

As described in prior sections, RL algorithms can be classified along multiple axes. In this

dissertation, for single agent scenarios, we focus on the Off-Policy, Value-Based Methods,

which is one of the two most commonly used methods. This focus is primarily due to the

fact that reward discounting is applicable to all methods, and hence, restricting ourselves to

one class of methods allowed us to do a much deeper investigative analysis of the relative
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merits of different discounting functions. For the single agent setting in this dissertation, we

specifically focus on one of the two most widely used value-based methods called Rainbow

(Hessel et al., 2018), the other being PPO (Schulman et al., 2017), which belongs to the

on-policy policy-based methods. These two methods combined feature in a majority of RL

algorithmic research in the past five years (e.g., (Cobbe et al., 2020; Hafner, 2021)), and

as such, using one was thought to be sufficient for the purposes of this research. We have

also made contributions to a parallel stream of research involving reward discounting in

policy-based methods, which can be accessed in Nafi et al. (2022b).

DQN

Q-learning is a widely used model-free RL algorithm that learns the optimal action-value

function Q∗(s, a), which represents the maximum expected cumulative discounted reward an

agent can obtain from a given state-action pair following the optimal policy. The Q-Learning

update rule is given by:

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a′
Q(st+1, a

′)−Q(st, at)
]

(2.25)

where α is the learning rate, and γ is the discount factor.

The Deep Q-Network (DQN) algorithm (Mnih et al., 2015), revolutionized the field of

RL by demonstrating the ability of deep neural networks to learn successful policies directly

from high-dimensional visual inputs. DQN uses a deep convolutional neural network to

approximate the action-value function Q(s, a; θ), where θ represents the network parameters.

Rainbow

Rainbow (Hessel et al., 2018) is an extension of the DQN algorithm that combines several

improvements and extensions, including double Q-learning, prioritized experience replay, du-

eling networks, and distributional reinforcement learning. By integrating these techniques,

Rainbow achieves state-of-the-art performance on the Atari 2600 benchmark and demon-

strates the potential for combining multiple enhancements to improve the performance of
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value-based RL algorithms.

2.8 RL Algorithms (Multi-Agent)

2.8.1 Independent Learning

Independent learning is a simple approach to multi-agent reinforcement learning (MARL)

where each agent learns its policy independently, treating the other agents as part of the

environment. While this approach is computationally efficient and easy to implement, it

often fails to achieve optimal performance in scenarios where coordination among agents is

required, as each agent is unaware of the policies and objectives of the other agents.

2.8.2 Centralized Training Decentralized Execution

Centralized Training Decentralized Execution (CTDE) is a learning paradigm that has re-

cently gained significant attention in multi-agent reinforcement learning (MARL). It ad-

dresses the challenge of coordinating and optimizing the behaviors of multiple agents in a

shared environment. In CTDE, the learning process occurs in a centralized fashion, where

a global perspective, including the states and actions of all agents, is utilized to train the

agents. This centralized approach allows for the exploitation of additional information during

training to enhance learning efficiency and policy effectiveness. However, during execution,

each agent operates independently, making decisions based solely on its local perception of

the environment. This setup mirrors real-world applications where agents must act based

on limited information but can benefit from centralized, coordinated training procedures.

Value Factorization

In value factorization, the joint value function for all agents in a team is learned, and this

joint value function is decomposed into individual value functions for each agent. The central

critic learns a factored Q-value function that estimates the expected return for each agent

based on the joint action and state. This allows for efficient training and scalability to larger
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multi-agent systems. During execution, each agent can independently select actions based

on its own value function, enabling decentralized decision-making.

Some of the earliest value factorization methods, such as Value Decomposition Networks

(VDN) (Sunehag et al., 2017) and QMIX (Rashid et al., 2018, 2020), have shown promising

results in cooperative multi-agent tasks. VDN assumes additivity of the individual value

functions, while QMIX allows for a more flexible factorization by using a mixing network to

combine the individual Q-values. These approaches strike a balance between the expressive-

ness of the joint value function and the efficiency of decentralized execution

Centralized Policy Gradient

Centralized Policy gradient methods are another class of algorithms used in CTDE for multi-

agent reinforcement learning. In contrast to value-based methods, policy gradient methods

directly optimize the agents’ policies through gradient ascent on the expected return. The

central critic estimates the gradient of the joint policy with respect to the parameters, which

is then used to update the individual agent policies.

Multi-agent policy gradient algorithms, such as Multi-Agent Deep Deterministic Policy

Gradient (MADDPG) (Lowe et al., 2017) and Multi-Agent Proximal Policy Optimization

(MAPPO) (Yu et al., 2022), have been successfully applied to various multi-agent tasks.

MADDPG extends the single-agent DDPG algorithm (Silver et al., 2014) to the multi-agent

setting by using a centralized critic and decentralized actors. MAPPO, on the other hand,

is based on the single-agent PPO algorithm and employs a centralized value function for

training while allowing decentralized execution.

Policy gradient methods offer several advantages in multi-agent settings. They can handle

continuous action spaces and stochastic policies, making them suitable for a wide range of

tasks. Additionally, they can be combined with value-based methods to form actor-critic

architectures, leveraging the benefits of both approaches.
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2.9 Simulation Environments

Simulation environments play a crucial role in RL research. These environments provide con-

trolled and reproducible settings for training and evaluating RL agents, enabling researchers

to study various problems and challenges in a systematic and rigorous manner. The use of

simulation environments offers several advantages, such as:

1. Controlled settings: Simulation environments allow researchers to precisely control

the dynamics, complexity, and difficulty of the tasks, enabling them to isolate and

study specific aspects of RL algorithms or agent behaviors.

2. Safety and cost-effectiveness: Many real-world applications of RL involve high-

risk or costly scenarios, such as robotics, autonomous vehicles, or financial trading.

Simulation environments provide a safe and cost-effective alternative for training and

testing RL agents before deploying them in real-world settings.

3. Diverse challenges: Simulation environments can be designed to present a wide

range of challenges, from simple gridworld environments to complex 3D environments

with high-dimensional observations and continuous action spaces, allowing researchers

to evaluate the robustness and generalization capabilities of their algorithms.

4. Benchmarking and comparison: Well-established simulation environments, such

as the Arcade Learning Environment (ALE) or the StarCraft Multi-Agent Challenge

(SMAC), serve as benchmarks for comparing the performance of different RL algo-

rithms and approaches, fostering collaboration and driving progress in the field.

By leveraging simulation environments, researchers can study various RL problems, such

as exploration-exploitation trade-offs, credit assignment in multi-agent settings, transfer

learning, and the integration of different techniques like hierarchical reinforcement learn-

ing or meta-learning. These controlled settings enable researchers to gain insights into the

strengths and limitations of their algorithms, leading to the development of more robust and

generalizable solutions that can ultimately be applied to real-world applications.
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2.9.1 Single Agent

The following single-agent RL environments were studied in this work.

Arcade Learning Environment

The Arcade Learning Environment (ALE) is a popular benchmark for evaluating RL algo-

rithms on Atari 2600 games (Bellemare et al., 2013). ALE provides a standardized interface

for interacting with Atari games, allowing researchers to test their algorithms on a diverse

set of challenging tasks with high-dimensional visual inputs.

Procgen

Procgen (Cobbe et al., 2020) is a suite of procedurally generated environments designed to

test the generalization capabilities of RL agents. These environments feature diverse and

challenging tasks, with procedural generation ensuring that each episode presents a unique

set of challenges, forcing agents to learn robust and generalizable policies.

Crafter

Crafter is a 3D environment that simulates a crafting task, where an agent must learn

to collect resources, craft tools, and build structures (Hafner, 2021). Crafter provides a

challenging testbed for RL algorithms, requiring agents to develop long-term planning and

hierarchical decision-making skills.

2.9.2 Multi-Agent

The following multi-agent RL environments were studied in this work.

LBF

Level-Based Foraging (LBF) is a multi-agent environment where agents must cooperate

to collect resources scattered across a gridworld (Papoudakis et al., 2021). LBF features
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different levels of increasing complexity, allowing researchers to evaluate the scalability and

generalization capabilities of MARL algorithms.

RWARE

Multi-Robot Warehouse (RWARE) is a multi-agent environment that simulates a warehouse

setting, where robots must coordinate to efficiently transport and sort packages (Papoudakis

et al., 2021). RWARE provides a challenging testbed for MARL algorithms, requiring agents

to develop sophisticated coordination strategies and handle partial observability.

MPE

Multi-Agent Particle Environments (MPE) is a suite of multi-agent environments featuring

various tasks, such as cooperative navigation, predator-prey scenarios, and physical deception

games (Lowe et al., 2017; Mordatch and Abbeel, 2017). MPE provides a diverse set of

challenges for evaluating MARL algorithms, ranging from simple coordination tasks to more

complex scenarios involving adversarial interactions.

SMAC

The StarCraft Multi-Agent Challenge (SMAC) is a multi-agent reinforcement learning en-

vironment (Samvelyan et al., 2019) based on the popular real-time strategy game StarCraft

II. SMAC presents a challenging testbed for MARL algorithms, requiring agents to develop

sophisticated strategies, handle partial observability, and coordinate their actions in complex

and dynamic scenarios.
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Chapter 3

Revisiting Hyperbolic Discounting

and Learning Over Multiple Horizons

Learning over multiple horizons has been proposed as an effective auxiliary task for rein-

forcement learning agents (Fedus et al., 2019). Value estimates at multiple timescales can

help create advanced discounting functions and allow agents to form more effective predic-

tive models of their environment. In this work, we revisit the idea of learning over multiple

horizons in off-policy RL through the lens of generalization as well as sample efficiency. We

empirically analyze this question while incorporating recent architectural, methodological,

and implementation improvements in training RL agents. We compare and contrast single-

horizon vs multi-horizon learning on Rainbow, a popular value-based, off-policy algorithm,

as the agent learns over multiple horizons simultaneously while using either an exponential

or hyperbolic discounting function to estimate the value to guide its policy. We report results

on ALE, Procgen, and Crafter benchmarks, analyze the effectiveness of different approaches,

and present new insights on how such learning affects the agent’s generalization performance.
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3.1 Introduction

A reinforcement learning agent learns to maximize the rewards it receives over its expected

lifetime. But what if its estimate of the expected lifetime is biased? While RL algorithms

usually plan for a single, fixed, distant horizon by setting the discount factor γ to a value

closer to 1, the agent may not live long enough as it had previously expected. Thus, it

might have fared better by basing its policy on estimates over multiple time horizons; short,

intermediate, and long. For example, humans make plans for the immediate future (work

day), short-term (professional goals), and long-term (retirement savings), but a person’s

policy (based on their valuation of distant rewards) may change drastically because of a

terminal diagnosis (curtailment of their expected lifetime). Since the goal of an RL agent is

to optimize its return (cumulative reward) through a combination of prediction and control,

the prediction method used to estimate the value function (estimated return) plays a central

role in the agent’s performance.

The discount factor γ determines the timescale of the return. When γ is closer to 0, the

agent becomes short-sighted and only maximizes near-term reward, whereas when γ reaches

closer to 1, the agent values rewards far into the future. It has been shown that a lower

discount value early in learning can help policies to converge, although too low a discount

can lead to suboptimal policies (Bertsekas and Tsitsiklis, 1995). Thus, learning a value

representation that considers multiple discount factors is important. In deep RL, previous

works have attempted to learn a value function at multi-timescale either by concurrently

learning value estimate for a fixed set of γs or conditioning the value estimate over γ. All

of these methods require multiple fully connected layers at the end of the network to enable

γ-specific value prediction and introduce computational overhead compared to the single-

valued approach. Off-policy reinforcement learning is generally considered data-efficient

in the sense that it can reuse transitions collected from old policies. However, the added

computational complexity for multi-horizon learning entails a necessity for an efficient neural

network architecture that can enhance the learning process.

In this work, we explore multi-horizon learning from the perspective of enabling per-
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formance improvement in off-policy algorithms through deep feature learning and better

exploration in diverse settings. We present results on procedurally generated environments,

which are designed to test an agent’s ability to learn a robust and generalizable policy, while

also confirming earlier published results on the Arcade Learning Environment benchmark

(Bellemare et al., 2013). We revisit and extend the ideas proposed in Fedus et al. (2019) by

using previously unused Rainbow Hessel et al. (2018) extensions (dueling DQN architecture

(Wang et al., 2016) and Noisy Nets (Fortunato et al., 2018), coupled with parametric noise

injection in weights. We additionally use implementation improvements proposed for Rain-

bow by Schmidt and Schmied (2021) such as spectral normalization (Miyato et al., 2018) in

the residual blocks, mixed precision training, and faster, batched training by using parallel

environments. We evaluate both exponential and hyperbolic discounting functions in the

multi-horizon setting and empirically analyze these with learning over a fixed, single-horizon

setting, across the Procgen (Cobbe et al., 2020) and Crafter (Hafner, 2021) benchmarks.

Our novel contributions can be summarized as follows:

• We evaluate the generalization capability of an agent while learning a policy over mul-

tiple timescales on previously untested benchmarks. We employ recent architectural

and methodological improvements to shed light on whether multi-horizon learning can

boost performance

• We analyze the effect of varying the number of simultaneous horizons, which in turn

affects the underlying discounting rates. We further analyze this impact by evaluating

different (hyperbolic discounting exponent k and exponential discount factor γ val-

ues). We investigate the effect of learning over multiple horizons while taking actions

according to the shortest, longest, and intermediate horizons. We do ablations using

no-noisy and no-dueling, both of which were not part of prior work, as well as adding

results using alternate priorities.

• Our analysis reveals that fewer simultaneous horizons fare better empirically. Better

performance in different environments corresponds to different values of hyperbolic

exponent k and thus should be considered a critical hyper-parameter to tune.
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3.2 Related Work

The need for abstract planning (such as modeling over multiple timescales) is a fundamental

problem in AI. Sutton (1995) extend temporal-difference methods to make predictions that

are not specific to a single time scale. Studies from psychology and neuroscience show that

both humans and animals estimate rewards at numerous timescales (Tanaka et al., 2016)

and do not discount future rewards exponentially using a single discount factor γ (Mazur,

1997), instead discounting them hyperbolically (Green et al., 1994). Kurth-Nelson and

Redish (2009) proposed the modeling of hyperbolic discounting via distributed exponential

discounting, and Fedus et al. (2019) extended this formulation to deep reinforcement learning

by approximating hyperbolic discounting from exponential discounting while using multi-

horizon (multi-timescale) learning as an auxiliary task. Xu et al. (2018) present a meta-

learning approach and propose to use γ as a learn-able parameter of their network. Sherstan

et al. (2020) propose Γ-nets to predict value-function for any discount factor γ by using

timescale as an input to the value estimator.

3.3 Methodology

We aim to evaluate multi-horizon learning for value-based algorithm by incorporating sev-

eral existing extensions to the DQN algorithm (Mnih et al., 2015), some of which have not

been used in similar prior works Fedus et al. (2019) such as the use of a deeper network for

the function approximation and addition of the dueling networks (Wang et al., 2016) to the

architecture. The network predicts Q-values for each discount factor γ, and these Q-values

are used for the agent’s learning (loss calculation). We use the Q-values values from the du-

eling heads for action selection. We experiment with four methods: 1) single-horizon agent

that learns over a fixed horizon with a single γ value and discounts rewards exponentially;

multi-horizon agent that simultaneously learns Q-values for nγ values, but has the choice

between acting either using 2) a hyperbolically discounted Q-value, or exponentially dis-

counted Q-value corresponding to either the 3) smallest gamma value (γ0) or the 4) largest
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Figure 3.1: Multi-Horizon network architecture. Output layers predict Q-values for different
discount factors using an individual output block for each γ. Q-Values from the output head
for each γ value are used for action selection.

gamma value (γN).

3.3.1 Network Architecture and Rainbow Extensions

The proposed network architecture is presented in Figure 3.1. We employ the deeper

IMPALA-CNN architecture (Espeholt et al., 2018) with 15 convolutional layers instead of the

small 3-layer network (Nature-CNN) used in Fedus et al. (2019) for multi-horizon learning.

The residual blocks (He et al., 2016) in the IMPALA-CNN architecture keep the optimiza-

tion process light while enabling substantially deeper feature learning. We use the Rainbow

(Hessel et al., 2018) agent, which combines several independent improvements on top of

the Deep Q-Learning framework. Rainbow uses six extensions to DQN: double DQN (van

Hasselt et al., 2016), dueling DQN (Wang et al., 2016), noisy nets (Fortunato et al., 2018),

Distributional RL (C51) (Bellemare et al., 2017), prioritized experience replay buffer (Schaul

et al., 2016), and n-step returns (Sutton, 1988). We include five of the six; double DQN, du-
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eling DQN, noisy nets, prioritized experience replay buffer, and n-step returns; however, we

exclude the Distributional RL (C51) component as we trade off implementation complexity

with performance benefits, particularly by evaluating a lesser number of time steps (25M).

Hessel et al. (2018) show that optimizing the distribution of returns helps in the long run,

such as training beyond 40M time steps. Schmidt and Schmied (2021) also note marginal

performance improvement with the inclusion of Distributional RL when training for limited

(10M) time steps and suggest the exclusion of this component. In contrast to Fedus et al.

(2019), our approach includes the dueling network and exploration through noisy nets in the

multi-horizon learning setting.

3.3.2 The γ Interval

The number of concurrent horizons (nγ) is an important factor to consider, along with the

values of γ that enforce the minimum and maximum horizon for the agent, beyond which the

rewards are negligible. We follow the same scheme as suggested by Fedus et al. (2019) for

calculating the γ interval, which are the values of γ on which the integral is approximated

using a Riemann sum. These values are produced in a way that taking the exponent of

the largest value in this interval with respect to the hyperbolic exponent k approximately

equals the γmax, which is the maximum value of horizon we want the agent to use (γmax is

set to 0.99). If using a power-method for choosing the γ interval, the base b must satisfy the

relation:

γmax = (1− bnγ )k (3.1)

where the base b can be solved as b = exp(ln(1 − γ
1/k
max)/nγ) which bounds γmax to a

known stable value instead of it being arbitrarily close to 1. In our experiments, we set

nγ = 5, yielding the γ interval to be [γ = 0.374, 0.608, 0.755, 0.847, 0.904]. For multi-

horizon learning with hyperbolic discounting, if we wish to estimate discounting with the

form Γk(t) =
1

1+kt
where the hyperbolic exponent k ≤ 1.0, we need to consider the Q-values

for γk, as these are the actual γ values being learned via Bellman updates. Hence taking

an exponent of the last value from the γ interval (0.904) with respect to k (0.1) yields γmax
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(0.99).

3.4 Implementation

Using a fast and data-efficient implementation of Rainbow Schmidt and Schmied (2021), we

implement multi-horizon learning for both hyperbolic discounting and exponential discount-

ing (using Q-value corresponding to the largest gamma for action selection). Our multi-

horizon learning implementation is inspired by Fedus et al. (2019) but differs in a number

of ways; we use hyperbolically discounted Q-value estimates instead of hyperbolically dis-

counted Q-values for the action selection, an IMPALA large (2 channel) network instead of

a Nature CNN network architecture, an addition of dueling networks (Wang et al., 2016)

to the architecture, and faster training through hardware improvements (mixed precision

training and batched training). The Rainbow implementation in Fedus et al. (2019) used

three of the six improvements proposed in Hessel et al. (2018), namely Distributional RL,

prioritized replay buffer, and n-step returns, whereas our implementation uses five of the six

improvements of Rainbow (with the exception of distributional DQN). We build upon the

Rainbow implementation of Schmidt and Schmied (2021) to evaluate multi-horizon learning

in off-policy reinforcement learning. However, there are some key differences; our evaluation

methodology follows pausing training every 250k environment steps to evaluate the agent’s

current policy for 10 episodes, as opposed to using reloading saved model checkpoints for

evaluation. Moreover, we used hyperparameters in line with standard implementations such

as Dopamine (Castro et al., 2018) and used environment steps as the standard formulation

instead of frames. We use Procgen (Cobbe et al., 2020) to evaluate our approach. The

Procgen benchmark is designed to study sample efficiency and generalization in reinforce-

ment learning. The agent is generally trained on a smaller number of levels and expected

to perform well in diverse unseen levels. We model the environment as a Partially Observ-

able Markov Decision Process (POMDP), and each level of the environment is a sampled

POMDP instance.
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3.5 Results

In our experiments, the single-horizon agent uses vanilla Rainbow and learns over a fixed

horizon with a single γ = 0.99 and discounts rewards exponentially. For multi-horizon, the

agent simultaneously learns Q-values for N many γ (denoted as Nγ), but has the choice

between acting either using a hyperbolically discounted Q-value, QΓ
π(s, a), or exponentially

discounted Q-value, Qγn
π (s, a). This exponentially discounted Q-value can correspond either

to the smallest gamma value (γ0), making the agent’s actions myopic, or the largest gamma

value (γN), resulting in a far-sighted agent.

3.5.1 Statistically reliable results

In order to reliably evaluate results and reduce statistical uncertainty in the comparisons, we

analyze the performance of our approach as proposed in rliable (Agarwal et al., 2021). This

was all the more important since our experiments used only 5 seeds. In order to perform a

robust evaluation of the results, we compute performance statistics across all environments

within the Procgen benchmark using the proposed metrics. This also provides a holistic

view of each method’s performance across the benchmark, as each individual environment’s

characteristics and dynamics vary, and hence the resulting performance for each method also

varies. We briefly review the rliable metrics as follows.

• Interquartile Mean (IQM) takes the second and third quartiles (the middle 50%)

of the runs combined across seeds and environments, and calculates the mean score.

IQM is not affected by outliers and reduces the statistical uncertainty even with a few

runs.

• Optimality gap (OG) measures the proportion of performance that fails to meet a

minimum threshold score of α = 1.0, such that scores beyond α are not considered

very important. For both IQM and OG, instead of taking point estimates, interval

estimates using stratified bootstrap confidence intervals are computed instead.
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• Performance profile of an algorithm depicts its score distribution as the fraction

of runs above a certain normalized score. These profiles visualize the empirical tail

distribution function of a random score, but with stratified bootstrap sampling to

produce point-wise confidence bands. The higher the curve of a method, the better it

is. The scores are normalized either using PPO mean (taken from results published as

part of the rliable library (Agarwal, 2021)), or through the achievable min-max scores

given for each environment (Appendix C, Normalization Constants of Cobbe et al.

(2020))

The results shown in Figures 3.2(a) confirm that Multi-Horizon (hyperbolic) variant per-

forms better than Multi-Horizon (largest gamma), alluding to the fact that for procedurally

generated environments (and as such any environment where we want an agent to learn a

robust policy - unlike memorizing trajectories), learning over multiple horizons can not only

be thought of as an auxiliary task. Discounting rewards hyperbolically and utilizing value

estimates from all time horizons to make decisions (acting policy) are important considera-

tions for learning intelligent behavior. We also provide results for the Crafter (Hafner, 2021)

in Figure 3.2(c), which show that multi-horizon learning is able to generalize well using both

hyperbolic discounting and exponential discounting (largest gamma).

3.5.2 Performance on a subset of 5 ALE environments

We first recreate and reproduce results on we conduct experiments on a subset of 5 environ-

ments from the Arcade Learning Environment (ALE) (Bellemare et al., 2013) as presented

by Aitchison et al. (2023). The results, shown in Figure 3.3, confirm that multi-horizon

learning performs better than single-horizon learning in most of the environments, which is

in line with earlier findings presented by (Fedus et al., 2019). While using an improved and

faster variant of Rainbow, we report significantly better results in fewer timesteps.
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(a) Procgen - Aggregate Metrics (min-max normalized)

(b) Procgen - Performance Profiles
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Figure 3.2: Aggregate metrics (IQM, Mean, Median, and Optimality Gap) for all 16 Procgen
games (a), Performance profile of the single horizon and multi-horizon Rainbow variants on
Procgen (b), and Reward in the Crafter environment for the three methods (c)

3.5.3 Test performance on all Procgen environments

Figure 3.4 shows the test performance of Single-Horizon, Multi-Horizon (largest gamma), and

Multi-Horizon (hyperbolic discounting) Rainbow variants on all Procgen environments for

25M timesteps. Results indicate that learning over multiple horizons yields benefits when an

agent is trained on a smaller subset of levels and tested on the full distribution of unseen levels

in procedurally generated environments. Multi-horizon methods (either the exponential

discounting variant, which acts according to the farthest horizon [largest gamma], or the

hyperbolically discounted variant) perform better or at par with the single horizon method

(with the exception of Heist, whose test scores are much lower than training scores, and

Starpilot). When comparing the discounting methods within the multi-horizon setting, we

observe no particular method (between exponential and hyperbolic) performing better than

the other in all of the environments, although we do observe hyperbolic discounting to be

marginally better in a majority of the environments. This finding is similar to Fedus et al.
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Figure 3.3: Test performance of Single-Horizon, Multi-Horizon (hyperbolic discounting),
Multi-Horizon (largest gamma) and Multi-Horizon (smallest gamma) on 5 ALE represen-
tative environments from the Atari-5 benchmark (Aitchison et al., 2023). The mean (dark
line) and 95% bootstrapped confidence interval (shaded region) are shown, calculated over
5 seeds for each experiment.

(2019), who found multi-horizon learning to be an effective auxiliary task for the agent,

irrespective of which discounting function is employed. However, as shown in the next

section, hyperbolic discounting does show improved results when compared to exponential

discounting with the largest γ across the entire Procgen benchmark.

3.5.4 Varying the number of simultaneous horizons

Historically, RL has primarily been conducted by maximizing the exponentially discounted

returns via a single discount factor. For multi-horizon learning, how many horizons should an

agent consider? From the theoretical results presented in Fedus et al. (2019), non-exponential

discounting functions can be approximated by learning many exponential discounted Q-

values, each for a different discount factor γ, which enforces an effective horizon on the

agent’s learning. In order to perfectly calculate this, an agent must learn over an infinite

number of horizons simultaneously, which is not practical. In order to analyze how this
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Figure 3.4: Test performance for Single-Horizon, Multi-Horizon (hyperbolic discounting),
Multi-Horizon (largest gamma), and Multi-Horizon (smallest gamma) variants of Rainbow
across the entire Procgen benchmark. Mean and 95% confidence intervals are shown.

hyperparameter can affect an agent’s learning, we present our findings on Procgen in Figure

3.5, showing the effect of varying the number of simultaneous horizons. Having an agent learn

over multiple discount factors allows for a more broad scope of learning and decision-making.

We explore results on Procgen games using 5, 10, and 20 discount factors (gammas). We find

that 5 gammas generally performed the best in these Procgen environments, except notably

in the ’miner’ environment, which performed best at 10 gammas. With that exception,

across these environments, 5 gammas performed either the best or with no disadvantage

(either equivalent performance or no statistical difference) compared to the other options.

Results show that while learning over multiple horizons is effective (number of horizons >

1), having too many horizons inhibits an agent’s learning.
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Figure 3.5: Varying the number of simultaneous horizons Nγ for 5, 10 and 20 for the 16
environments in Procgen.

3.5.5 Varying the hyperbolic coefficient

Different environments have different performances across varied hyperbolic exponents. We

show this by running each of the Procgen environments with coefficients k = 0.1, 0.01, and

0.001. The plots in Figure 3.6 show that certain k values are suited better for different

environments. Certain environments do not seem to have significant performance variations

across different k values, such as ’caveflyer’ or ’jumper’ environments - both of which have

little change in return when varying the value of k. On the other hand, some environments

show much bigger changes in return when varying k. Two examples of this are the ’miner’

and ’plunder’ environments - both of which show significantly higher returns with the largest

k value (0.1) as opposed to the other lower values (0.01 or 0.001). It is notable that different

environments have different hazard rates (and therefore different survival rates) - which can

explain the differences in performance using different k-values. If the model is able to more
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accurately estimate the hazard (meaning the k-value is optimized for the environment), it

would be able to more accurately discount rewards accordingly and would be expected to

have higher rewards. On the other hand, less optimized k-values would result in disparities in

the estimated hazard versus the actual hazard - meaning less accurate reward estimation and

worse expected performance. Figure 3.6 shows the effect of varying the hyperbolic coefficient

k. The value of k affects an agent’s horizon, as lower values of k tend to elongate the horizon.

Results show that lower values of k = 0.1 are the most effective for an agent’s learning.
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Figure 3.6: Varying the hyperbolic exponent k for three different values (k=0.1, 0.01, 0.001)
for the 16 environments in Procgen.

3.6 Conclusion

We report results on the use of multi-horizon learning along multiple dimensions of interest,

such as sample efficiency on a wide array of tasks. Our results indicate agents that model

value estimates over multiple timescales generally perform better than their single-horizon
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counterparts. Moreover, alternative or advanced (non-exponential) discounting functions

(e.g., hyperbolic) that are leveraged through the use of multiple timescales perform bet-

ter than, or at par with, exponentially-discounted, multi-horizon (largest gamma) variants.

Agents that learn over multiple horizons but act myopically (smallest gamma) sometimes

fare better than single-horizon baselines, which may be explained by their ability to learn

from farther horizons. The reason why no particular method performs well across all environ-

ments may be attributed to the fact that an agent’s prior belief of the risk in the environment

influences the specific discounting function they use (Fedus et al., 2019). However, for tri-

als across the full suite of 16 environments over 25M timesteps, the performance profile of

multi-horizon (hyperbolic) is higher (and better) than the single-horizon and multi-horizon

(largest gamma) variants. Our contribution can be seen as validating the impact of multi-

horizon learning on an agent’s policy through learning accurate value estimates, achieving

higher sample efficiency, and better generalization.

47



Chapter 4

Generalized Hyperbolic Discounting

for Delay-Sensitive Agents

Valuing future rewards impacts an agent’s learning. While exponential discounting d(t) = γt

has been widely used because of its time-consistent preferences and ease of use, hyperbolic

discounting d(t) = 1
1+kt

has been shown to better capture human and animal preference

behavior. While it has been established that valuing present-term rewards higher than

future rewards and hence devaluing later rewards, is an acceptable and rational preference

for an agent, how can we differentiate between two agents that have the same discount factor,

i.e., quantification of preference for later rewards, but different valuation of the time it takes

to receive a reward? Just like there are individual variations in the rate at which humans

discount the delay, not everyone exhibits the same level of sensitivity to the delay. Both the

exponential and hyperbolic reward discounting functions are single-parameter models used to

capture human preference behavior. However, more sophisticated, two-parameter hyperbolic

discounting functions have been proposed in the literature and evaluated to provide an even

better fit for the studied human behavior. In this chapter, we study one of these two-

parameter models and introduce a novel discounting methodology that integrates Rachlin’s

generalized hyperbolic framework with deep reinforcement learning, incorporating both the

discount factor and sensitivity-to-delay parameter. We show empirical results and discuss
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the strengths and limitations of this approach.

4.1 Introduction

In RL, rewards are typically discounted exponentially, meaning that a reward obtained t

timesteps in the future is discounted by a factor of γt (Bellman, 1957b; Sutton and Barto,

1998). This approach establishes a fixed learning horizon for the agent: a smaller γ value

prioritizes short-term rewards, while a larger γ value emphasizes long-term rewards. How-

ever, human and animal behavior often follows hyperbolic discounting patterns (Mazur,

1987), characterized by a discounting factor of 1
1+kt

, where k > 0 represents the hyperbolic

discounting rate. Unlike exponential models, hyperbolic discounting allows for preference

reversal over time (Smith et al., 2023) and offers better alignment with decision-making

scenarios involving multiple reward variables (such as delay, magnitude, and probability)

(Green and Myerson, 2004).

Individual differences in the perception of reward delays also play a crucial role. While

one agent may exhibit impatience for immediate rewards, another may display patience and

willingness to wait. Human studies have shown that the base hyperbolic model tends to

overestimate the perceived value of shorter delays and underestimate the value of longer

delays (McKerchar et al., 2009). To address such individual variations, a sensitivity to delay

parameter, denoted as s or σ where 0 < s < 1, can be incorporated into the hyperbolic

function. Two methods have been proposed for this purpose: one suggested by Myerson

and Green (1995), applying s to the entire denominator resulting in 1
(1+kt)s

, and another

proposed by Rachlin (1989), where s is solely applied to the delay term yielding 1
1+kts

(Eq.

4.1).

In this work, We study the Rachlin model as there are three significant practical aspects

of the Rachlin model (Franck et al., 2023). Firstly, the Rachlin model offers flexibility and

aligns closely with empirical discounting data. Secondly, compared to other available two-

parameter discounting models, the Rachlin model provides the advantage of easily obtaining

unique, best estimates for parameters across a wide range of potential discounting patterns.
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Figure 4.1: Rachlin Hyperbolic vs Base Hyperbolic Discounting. The Rachlin hyperbolic
discounting allows variation not only in the rate of discounting but also in sensitivity to
delay (denoted here by s). A lower value of s indicates a lesser sensitivity to delay, meaning
that the subjective value of a reward decreases less rapidly as the delay increases. Conversely,
a value closer to 1 indicates a higher sensitivity to delay, with the subjective value decreasing
more rapidly.

Third, the Temporal Difference learning method for deep reinforcement learning introduced

by Fedus et al. (2019) can be easily modified to implement the Rachlin model, than the

Myserson-Green model. Figure 4.1 depicts the one-parameter hyperbolic discounting and

two-parameter Rachlin model of hyperbolic discounting, with three different values of the

sensitivity-to-delay parameter s shown.

Mathematically, V (t), which is the discounted value as a function of delay t, for the

Rachlin two-parameter hyperboloid models, can be expressed as follows.

V (rt) =
rt

1 + kts
(4.1)

When fixed at s = 1, the Rachlin model simplifies to Mazur’s one-parameter hyperbolic

discounting model (Mazur, 1987). Compared to the one-parameter Mazur model, the two-

parameter Rachlin model has the advantage of flexibility to move closer to the observed
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data

The purpose of this investigation of integrating two-parameter Rachlin hyperbolic dis-

counting into deep RL is to evaluate whether RL agents are also susceptible to this sensitivity

to the delay in the reward and whether there are any benefits and drawbacks of using such

a technique in artificial agents. We implement Rachlin discounting in the off-policy value-

based RL algorithm Rainbow (Hessel et al., 2018) and evaluate the performance of the

Rachlin model for three different values of the sensitivity-to-delay parameter s on multiple

RL benchmarks such as Atari-5 (Aitchison et al., 2023), Procgen (Cobbe et al., 2020) and

Crafter (Hafner, 2021).

4.2 Related Work

4.2.1 Economics and Behavioral Sciences

The concept of discounted utility has been a fundamental principle in economics and deci-

sion theory, reflecting the idea that individuals tend to value immediate rewards more than

delayed rewards. Traditional economic models have relied on the exponential discounting

model, where the value of a reward decreases at a constant rate over time (Samuelson, 1937).

However, empirical studies in psychology and behavioral economics have consistently demon-

strated that human preferences are better described by hyperbolic discounting models, which

capture the tendency for individuals to discount future rewards more steeply for shorter de-

lays than for longer delays (Ainslie, 1975; Mazur, 1987). Investigations into alternative

discounting methods have primarily been conducted within the domains of psychology and

behavioral sciences. Human studies have sought to discern individuals’ valuation of smaller,

immediate rewards compared to larger, delayed rewards, aiming to identify the point at

which individuals switch their preferences (McKerchar et al., 2009; Young, 2017).

While attempts were made to fit the data with an exponential model, the hyperbolic

model was found to more accurately capture human preferences and preference reversals

(McKerchar et al., 2009; Smith et al., 2023; Young, 2017). Sensitivity-to-delay models were
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introduced to accommodate individuals’ tendency to overvalue immediate rewards and un-

dervalue delayed rewards (Rachlin, 1989) by adding a second parameter to the base hyper-

bolic discounting model. These 2-parameter models have been observed to provide a better

fit than 1-parameter models (McKerchar et al., 2009).

Rachlin (1989) proposed a two-parameter hyperbolic discounting model, which incor-

porates both a discount factor and a sensitivity-to-delay parameter. This model has been

adopted in the study of intertemporal choice and has been shown to provide a better fit to

human decision-making data compared to the exponential discounting model (Green et al.,

1994; Kirby, 1997). The Rachlin hyperboloid model introduces a delay sensitivity param-

eter (s) to the hyperbolic equation, adjusting the effect of delay on subjective value and

capturing the nonlinear perception of time as a power function. Alternatively, Myerson and

Green (1995) incorporate an s parameter that influences both delay and amount sensitivities

in the hyperbolic equation, allowing for a broader range of non-linear effects on subjective

value, though it offers less specificity in parameter interpretation compared to the Rachlin.

In terms of variance accounted for, the two-parameter Rachlin model provided even better

fits to median discounting data compared to the one-parameter hyperbolic and exponential

models (McKerchar et al., 2009).

4.2.2 Deep Reinforcement Learning

Traditional RL algorithms, such as Q-Learning and policy gradient methods, have primarily

relied on the exponential discounting model to handle delayed rewards (Sutton and Barto,

1998). Only a handful of prior works have studied hyperbolic discounting in deep RL (Fedus

et al., 2019; Kwiatkowski et al., 2023; Nafi et al., 2022b). However, as RL agents become

more sophisticated and are expected to interact with humans in complex environments, there

is a growing need to incorporate more realistic models of human preferences, such as hyper-

bolic discounting. To the best of our knowledge, there is no study that uses two-parameter

hyperbolic discounting models, like Rachlin or Myerson-Green (Myerson and Green, 1995),

in deep RL.
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4.3 Methodology

In order to use Rachlin hyperbolic discounting in deep RL, we need to incorporate this reward

discounting function in a learning algorithm. Following Fedus et al. (2019), we demonstrate a

method to use exponentially discounted Q-values to compute Rachlin hyperbolic discounted

Q-values. The Bellman equation (Bellman, 1957a) is given by

Qγt

π (s, a) = Eπ,P [R(s, a) + γQπ(s
′, a′)] (4.2)

where the expectation Eπ,P involves sampling an action from a policy a ∼ π(·|s), next

state from transition function s′ ∼ P (·|s, a), and next action from policy given the next state

a′ ∼ π(·|s′). Let’s consider estimating the value function under hyperbolic discounting. We

denote Rachlin hyperbolic Q-values as QΓkσ
π , as shown in Equation 4.4:

QΓkσ
π (s, a) =Eπ

[
Γkσ(1)R(s1, a1) + Γkσ(2)R(s2, a2) + · · ·

∣∣∣∣s, a] (4.3)

=Eπ

[∑
t

Γkσ(t)R(st, at)

∣∣∣∣s, a
]

(4.4)

Remember that the Rachlin hyperbolic discount for a reward rt at timestep t with hy-

perbolic exponent k and sensitivity-to-delay σ is give by:

V (rt) =
rt

1 + kts
(4.5)

We establish a relationship between the hyperbolic QΓkσ
π -value and the values obtained

through conventional Q-learning. The hyperbolic discount Γkσ can be expressed as the

integral of a specific function f(γ, t) for γ = [0, 1) and σ = [0, 1]:

∫ 1

0

γktσdγ =
1

1 + ktσ
= Γkσ(t) (4.6)

The integral of the function f(γ, t) = γktσ yields the hyperbolic discount factor Γk(t).
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This process involves an infinite set of exponential discount factors over the domain γ ∈

[0, 1), suggesting that γkt is the standard exponential discount factor and indicating a link

to conventional Q-learning. By integrating over this infinite set, we generate hyperbolic

discounts for each time step t. Using Equation 4.6, we compute the QΓ
π-value associated

with the hyperbolic discount factor by aggregating an infinite set of Qγk

π -values derived

through standard Q-learning, as shown in Equation 4.10.

QΓσ
π (s, a) =Eπ

[∑
t

Γkσ(t)R(st, at)

∣∣∣∣s, a
]

(4.7)

=Eπ

[∑
t

(∫ 1

γ=0

γktσdγ

)
R(st, at)

∣∣∣∣s, a
]

(4.8)

=

∫ 1

γ=0

Eπ

[∑
t

R(st, at)(γ
kt)σ

∣∣∣∣s, a
]
dγ (4.9)

=

∫ 1

γ=0

Q(γkt)σ

π (s, a)dγ (4.10)

This approach demonstrates how to compute hyperbolic Q-values by considering an in-

finite set of exponential Q-values, each corresponding to a different discount factor γ. The

number of concurrent horizons (nγ) is an important factor to consider, along with the values

of γ that enforce the minimum and maximum horizon for the agent, beyond which the re-

wards are negligible. In practice, we start by calculating the γ interval, which are the values

of γ on which the integral is approximated using a Riemann sum, and are specified by γk.

The γk value thus obtained is raised to the power of tσ, and the factor γktσ can be considered

as the Bellman gamma, the value of gamma that is used for learning in Q-Learning (Eq. 4.2).

Note that Rachlin hyperbolic discounting necessitates the use of n-step temporal difference

learning, as traditional 1-step learning with t = 1, renders the sensitivity to delay parameter

σ ineffective, i.e., tσ = 1.
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4.4 Results

We evaluate our proposed approach on a suite of tasks designed to test the agent’s ability

to make decisions involving intertemporal trade-offs. These tasks include delayed gratifi-

cation scenarios, where the agent must choose between an immediate smaller reward or

a larger delayed reward, and more complex environments that require long-term planning

and decision-making. We conducted experiments to assess the effectiveness of Rachlin hy-

perbolic discounting across three benchmark environments: ALE (Bellemare et al., 2013),

Procgen (Cobbe et al., 2020), Crafter (Hafner, 2021). For all experiments, the hyperbolic

discount factor k = 0.1 remained constant. We varied the n-step values between 3 and 20

and compared the performance of Rachlin discounting across three arbitrary selections of

σ ∈ {0.1, 0.5, 0.9}. Additionally, We included exponential discounting and hyperbolic dis-

counting as baseline comparisons. We analyze the agent’s behavior and overall performance

in terms of cumulative discounted rewards.

4.4.1 Atari-5

We first conduct experiments on a subset of 5 environments from the Arcade Learning

Environment (ALE) (Bellemare et al., 2013) as presented by Aitchison et al. (2023). The

results, shown in Figure 4.2, confirm that the sensitivity-to-delay parameter has an effect

on learning, with the base hyperbolic performing best on only 1 of the 5 environments.

It must be noted that Atari-5 is a representative benchmark for the full 57-environment

Arcade Learning Environment Benchmark (ALE), and as such, the results are expected to

reflect on the full suite of environments as well. We also note that different environments

behave differently to the sensitivity-to-delay parameter, meaning that this hyperparameter

may need to be carefully tuned before it can be applied. In our work, we did not do any

hyperparameter tuning and selected 3 representative values from the range [0, 1].
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Figure 4.2: Performance of Rachlin hyperbolic discounting for 3 different values of sensitivity-
to-delay (σ) on the Atari-5 benchmark (Aitchison et al., 2023). The mean (dark line) and
95% bootstrapped confidence interval (shaded region) are shown, calculated over 5 seeds for
each experiment.

4.4.2 Procgen

Figure 4.3 shows the performance of Rachlin hyperbolic discounting for 3 different values of

sensitivity-to-delay (σ) against the one-parameter Hyperbolic discounting (baseline) on all

Procgen environments for 25M timesteps. The performance of the baseline one-parameter

hyperbolic is fairly close to the 3 Rachlin models studied here, except in bigfish, coinrun and

starpilot environments.

4.5 Conclusion

The conventional exponential reward discounting model in reinforcement learning inade-

quately captures the intricacies of human decision-making processes. The subjective value

of a reward varies between individuals and is influenced by their perception of the time

required to obtain the reward. By integrating sensitivity-to-delay models borrowed from

psychological sciences literature into reinforcement learning agents, We have demonstrated
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Figure 4.3: Performance of Rachlin hyperbolic discounting for 3 different values of sensitivity-
to-delay (σ) against the one-parameter Hyperbolic discounting (baseline) on the Procgen
benchmark. Mean and 95% confidence intervals are shown.

a method to incorporate subjective value and accommodate preference reversals. This ap-

proach holds promise for the development of AWe agents that emulate human behavior more

accurately, enhancing their social acceptability and facilitating smoother collaboration with

humans.

In this work, we have introduced a novel approach to integrating the Rachlin hyperbolic

discounting model into the deep reinforcement learning framework. By modifying the reward

function and the value estimation process to incorporate both the discount factor and the

sensitivity-to-delay parameter, our approach enables RL agents to learn policies that better

align with human preferences and decision-making patterns in tasks involving intertemporal

trade-offs.

Our results demonstrate the potential of this approach to improve decision-making and

performance in delayed gratification scenarios and other tasks that require long-term plan-
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ning and decision-making. Additionally, we have explored the impact of the sensitivity-to-

delay parameter on the agent’s behavior, highlighting the importance of carefully tuning this

parameter to achieve the desired decision-making patterns. The optimal value of σ appears

to exhibit variability across different environments, indicating that environmental dynamics

significantly influence the selection of this parameter. Fine-tuning σ during hyperparameter

optimization may enhance the performance of Rachlin discounting.

Future work could explore the integration of our approach into more complex RL al-

gorithms, such as multi-agent reinforcement learning or hierarchical reinforcement learning

frameworks. Additionally, further investigation into the theoretical properties and conver-

gence guarantees of our approach would be valuable, as well as exploring alternative formu-

lations of the two-parameter delay discounting function.
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Chapter 5

Beyond Exponential Discounting in

Multi-Agent Reinforcement Learning

Aligning AI systems with human preferences, goals, and values is an important research ob-

jective. Research from psychology and neuroscience shows that humans discount future re-

wards non-exponentially, which also captures preference reversals. Motivated by this theme,

we study non-exponential discounting, specifically hyperbolic discounting, in the multi-agent

setting, where each agent discounts its future rewards according to the hyperboloid function

( 1
1+kt

). This approach allows us to study the role of discounting on agent interactions be-

yond individual learning, especially where AI agents may be paired with humans. To this

effect, we lay the theoretical and practical foundations of using hyperbolic discounting in six

contemporary multi-agent deep reinforcement learning (MARL) methods, covering differ-

ent classes such as independent learning, centralized multi-agent policy gradient, and value

decomposition. We evaluate two different weighting schemes within hyperbolic discounting

and compare them with exponential discounting (γt) on a set of four diverse cooperative

multi-agent tasks. Our results show that hyperbolic discounting consistently achieves higher

returns across all tasks, especially in sparse reward and coordination-specific settings. Our

work can be seen as extending human-preference modeling in multi-agent systems.
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5.1 Introduction

Behavioral tendencies in humans and animals often exhibit a preference for immediate re-

wards over delayed ones. This inclination, observed in various scenarios from foraging be-

havior to economic decisions, is rooted in the concept of discounting, where the perceived

value of rewards diminishes over time. Traditional economic models favor an exponential dis-

count function with a fixed interest rate, aligning with the rationality of consistent decisions

over time. However, empirical studies suggest that human behavior more closely follows a

hyperbolic discounting curve, characterized by preference reversals and inconsistent choices

over time. This discrepancy challenges the conventional rationality of exponential discount-

ing, proposing that hyperbolic discounting might be optimal under certain conditions like

uncertain risks.

Silver et al. (2021) propose that maximizing rewards is sufficient for learning intelligent

behavior. By prioritizing the singular goal of reward maximization, complex behavior can be

generated without requiring specialized problem formulations for individual skills. Thus, the

treatment of the reward signal plays a central role in our quest for intelligent agents. In the

reinforcement learning (RL) problem setting, the objective is to maximize cumulative rewards

over time and discounting plays a crucial role, particularly in infinite horizon objectives, to

ensure well-defined long-term reward objectives. It not only influences the time-preference

for rewards, impacting shortest path strategies for autonomous agents, but also represents

the termination probability in various scenarios. However, the standard RL approach with

exponential discounting fails to align with observed human and animal value preferences,

which tend to discount future returns hyperbolically. While this behavior was previously

deemed irrational, it aligns mathematically with an agent’s uncertainty over environmental

risks (Mazur, 1997), suggesting a need to rethink discounting models in RL to better mirror

human decision-making under uncertainty, especially since the functional form of discounting

directly shapes the solutions obtained.

AI alignment seeks to harmonize AI systems with human preferences, goals, and val-

ues. Insights from psychology and neuroscience reveal that humans naturally apply non-
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exponential discounting to future rewards, a phenomenon that accounts for preference rever-

sals and underscores the complexity of human decision-making. Inspired by these findings,

our research delves into the application of non-exponential discounting, specifically focusing

on hyperbolic discounting, within a multi-agent context. Here, each agent employs the hy-

perboloid discounting function ( 1
1+kt

), a departure from traditional exponential models, to

evaluate its future rewards. This novel approach enables an in-depth exploration of reward

discounting’s impact on agent interactions, particularly in scenarios that involve human-AI

collaboration, thereby extending the modeling of human preferences in AI systems.

In this study, we establish both theoretical and empirical frameworks for integrating hy-

perbolic discounting into six multi-agent deep reinforcement learning (MARL) strategies,

spanning independent learning, centralized multi-agent policy gradient, and value decompo-

sition classes of methods. Our investigation includes a comparative analysis of two hyperbolic

discounting weighting schemes against the conventional exponential discounting model (γt)

across four cooperative multi-agent tasks. The findings reveal that hyperbolic discounting

consistently outperforms exponential discounting, yielding higher returns, especially in en-

vironments characterized by sparse rewards and the need for intricate coordination. These

enhancements were evident across various learning modalities and were particularly pro-

nounced in the Centralized Training Decentralized Execution (CTDE) framework.

5.2 Related Work

5.2.1 Psychology and Cognitive Sciences

In controlled studies, discounting future rewards has been mostly studied as a personal pref-

erence parameter, where each individual is given a questionnaire to evaluate their valuation of

future rewards. These studies show how decisions involving immediate versus long-term ben-

efits are influenced by temporal discounting—where individuals place less value on delayed

rewards. Recent studies have expanded this concept to decisions made in group settings,

like dyads or small groups, revealing that direct interactions can lead to aligned preferences
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among participants, making them more similar in patience level over time. Bixter and Luh-

mann (2021) study whether such social influences could also be indirect, such as through

mutual acquaintances within a group. Focusing on hypothetical monetary rewards, the re-

search involved groups of three where one member’s decision preferences before collaboration

were linked to another’s preferences after collaborating with an intermediary. Findings high-

lighted that decision-making tendencies regarding time can spread through a social network’s

connections, showing the presence of indirect social influence in a controlled setting.

5.2.2 Deep Multi-Agent RL

Several studies have explored the use of discount factors and discounting functions in single

agent RL to improve the quality of learned policies and value functions. François-Lavet

et al. (2015) proposed a dynamic discount rate that increases as the learning steps increase,

leading to improved Q-function estimates. Xu et al. (2018) treated the discount factor as

a learnable parameter and used meta-learning to optimize the discount rate. Fedus et al.

(2019) proposed the first deep RL method to integrate hyperbolic and other non-exponential

discounting functions using a value-based method called Rainbow. Schultheis et al. (2022)

employed inverse reinforcement learning to recover properties of the discount function given

decision data.

While these studies have focused on non-exponential discounting methods in the single-

agent domain, there exist no known works that explore hyperbolic discounting in multi-agent

RL. Based on existing literature and previous findings in single-agent RL, we feel there is a

potential for such approaches to theoretically and empirically improve learning in the multi-

agent domain as well. Drawing inspiration from these previous works, this work implements

and evaluates two forms of hyperbolic discounting in various multi-agent algorithms.
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5.3 Preliminaries

5.3.1 Markov Games

We consider cooperative Markov games for N agents (Littman, 1994) with partial observ-

ability defined by the tuple (N,S, {Oi}i∈N , {Ai}i∈N ,Ω, P, {Ri}i∈N), with agents i ∈ N =

{1, . . . , N}, state space S, joint observation space O = O1× . . .×ON , and joint action space

A = A1 × . . . × AN . Each agent i only perceives local observations oi ∈ Oi, which depend

on the state and applied joint action via the observation function Ω : S × A → ∆(O). The

function P : S × A → ∆(S) returns a distribution over successor states given a state and

a joint action. Ri : S × A × S → R is the reward function for agent i, which gives its

individual reward ri. The objective is to find policies π = (π1, . . . , πN) for all agents such

that the discounted return of each agent i, Gi =
∑T

t=0 γ
tri,t, is maximized with respect to

other policies in π, formally ∀i : πi ∈ argmaxπi
E[Gi|πi, π−i] where π−i = π\{πi}, γ is the

discount factor, and T is the total timesteps of an episode.

5.3.2 Hyperbolic Discounting for Value-Based Methods

In line with Fedus et al. (2019), we revisit the technique that utilizes exponentially discounted

Q-values to derive hyperbolic discounted Q-values. The Bellman equation (Bellman, 1957a)

is written as:

Qγt

π (s, a) = Eπ,P [R(s, a) + γQπ(s
′, a′)] (5.1)

We establish a connection between hyperbolic QΓk
π -values and values obtained through

standard Q-learning. The hyperbolic discount Γk can be represented as the integral of a

specific function f(γ, t) for γ = [0, 1):

∫ 1

0

γktdγ =
1

1 + kt
= Γk(t) (5.2)

The integration of the function f(γ, t) = γkt across the domain γ ∈ [0, 1) results in the
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hyperbolic discount factor Γk(t). This integration, incorporating an infinite set of exponential

discount factors γ, reveals that γkt functions as the standard exponential discount factor,

linking the concept to traditional Q-learning. This approach suggests that by aggregating an

infinite collection of γ values, hyperbolic discounts can be derived for each respective time

step t. For a hyperbolic discount function Γk(t), the hyperbolic Q-values can be written as:

QΓπ(s,a) =Eπ

[∑
t

Γk(t)R(st, at)

∣∣∣∣s, a
]

(5.3)

=Eπ

[∑
t

(∫ 1

γ=0

γktdγ

)
R(st, at)

∣∣∣∣s, a
]

(5.4)

=

∫ 1

γ=0

Eπ

[∑
t

R(st, at)(γ
kt)

∣∣∣∣s, a
]
dγ (5.5)

=

∫ 1

γ=0

Q(γkt)
π (s, a)dγ (5.6)

5.3.3 Hyperbolic Discounting for Policy Gradient Methods

In policy gradient methods, particularly Actor-Critic variants utilizing the Advantage func-

tion for value estimation, we build upon previous work that introduced hyperbolically dis-

counted advantage (Nafi et al., 2022b) in single-agent settings. Advantage is defined as

A(st, at) = Q(st, at) − V (st). It follows from Eq. 5.6 that the hyperbolic advantage can be

written as:

AΓ
π(st, at) =

∫ 1

0

A(γk)
t

π (st, at)dγ (5.7)

=

∫ 1

0

[
Q(γk)

t

π (st, at)− V (γk)
t

π (st)
]
dγ (5.8)

=

∫ 1

0

[
Q(γk)

t

π (st, at)
]
dγ −

∫ 1

0

[
V (γk)

t

π (st)
]
dγ (5.9)

=

∫ 1

0

[
rt + γkV (γk)

t

π (st+1)
]
dγ −

∫ 1

0

[
V (γk)

t

π (st)
]
dγ (5.10)
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where we compute V (γkt) in a similar manner as Q(γkt) from Eq. 5.6 for each of the nγ

heads by using a multi-head architecture where each head corresponds to the value function

for each γk. By computing the value function over all γk where 0 ≤ γ < 1, we estimate

hyperbolically discounted advantage. Following Fedus et al. (2019), we consider a finite set

of γk to approximate the advantage through a Riemann sum:

AΓ
π(s, a) ≈

∑
γi

(γi+1 − γi)w(γ)A
(γk)i
π (s, a) (5.11)

This is done in the Critic part of the Actor-Critic network, which then supplies the Ad-

vantage to the Actor for optimizing the objective function. For the Critic’s value estimation

learning, we minimize the average of the losses calculated for these multiple γk such that the

loss function corresponding to each γk is defined as:

Lγk

v (θ) = Êt

[(
V γk

θ (st)− V̂ γk

targ

)2]
(5.12)

5.4 Hyperbolic Discounting in MARL

5.4.1 Weighting Schemes

Discounting is a fundamental concept in reinforcement learning that allows agents to pri-

oritize between immediate and future rewards during the decision-making process. While

exponential discounting has been the standard approach, it falls short in capturing preference

reversals, and accurately representing the agent’s changing uncertainty regarding its survival

in subsequent states. Although various non-exponential discounting techniques have been

suggested for single-agent scenarios, such discounting functions in multi-agent environments

remain largely unexplored. To address this gap, we introduce two novel discounting methods

specifically designed for multi-agent reinforcement learning algorithms: hyperbolic discount-

ing and averaged horizon discounting. The average horizon discounting is a special case of
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hyperbolic discounting where the agent learns over multiple discount factors γ and averages

the resulting value-estimates for action selection as well as learning (loss calculation and

back-propagation). These approaches aim to better capture the complexities and dynamics

of multi-agent interactions while optimizing long-term performance.

Hyperbolic Discounting

Hyperbolic discounting was introduced theoretically as a way to model human-time prefer-

ences into reinforcement learning agents ((Ainslie, 1975), see Maia (2009) for an overview of

RL and the brain). Hyperbolic discounting was implemented for temporal difference learning

(Alexander and Brown, 2010). As discussed in Section 5.3.2, Fedus et al. (2019) introduced

a practical method for implementing a hyperbolic discounting function. Their approach in-

volved using a multi-headed value output structure where each value estimate was linked

to a distinct discount factor. Subsequently, they computed all the outputs and performed

an integral approximation using a Riemann sum across the multiple values to estimate a

hyperbolic function.

QΓ(s, a) ≈
∑

(γi+1)⊆G

(γi+1 − γi)w(γi) ·Qγi(s, a) (5.13)

where G is a set of discount factors given by:

G = [γ0, γ1, · · · , γnγ ] (5.14)

In Equation 5.13, hyperbolic value estimates are represented by Q on the left side. The

equation also features individually discounted outputs from the networks, symbolized as

Q(γi), where γi represents varying discount rates within the set G given by Equation 5.14.

This work introduces a novel approach to discounting, along with an algorithmic framework

designed to facilitate the creation of new discounting functions by employing a multi-headed

output strategy. Our previous work ((Ali et al., 2023a; Nafi et al., 2022b)) explored the

advantages of a multi-horizon framework. By utilizing the same multi-headed output ap-
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proach, we can extend the application of hyperbolic discounting to multi-agent algorithms

that depend on a value function for their operation.

Averaged Horizon Discounting

Model averaging is a widely adopted ensemble technique in the field of machine learning.

It entails combining the predictions of multiple machine learning models by computing the

average of their respective outputs. This approach has been shown to yield more accurate

and robust predictions Arpit et al. (2022). Furthermore, a study conducted by Churchill

et al. (2023) demonstrated that the error variance in an ensemble model composed of K

individual models was found to be inversely proportional to K. This finding indicates that

the ensemble model effectively reduces the error by a factor of K when compared to the

individual models constituting the ensemble.

Since our model architecture is learning over multiple heads, it already constitutes a

partial ensemble model. Moreover, as shown in Equation 5.13, the output Q-values from each

head can be combined using a Riemann Sum to approximate a hyperbolic Q-value, where the

weights are the difference between successive γ values in the set G. Inspired by the average

ensemble method, we devise a new technique that involves computing the average across

multiple value predictions, each incorporating a distinct discount factor, thereby integrating

diverse discounting horizons into the overall value estimation process. Mathematically, it

can be expressed as:

QΓ(s, a) ≈ 1

|G|
∑
γi⊆G

Qγi(s, a) (5.15)

The final value estimate is represented by QΓ on the left-hand side of the equation.

On the right-hand side, a summation is performed over all values of Qγi , which is then

divided by the number of discount rates denoted by |G|. By leveraging the multi-headed

output framework introduced by Fedus et al. (2019), we can partially ensemble our model

by utilizing the same feature extraction layers and then branching out to separate output

layers for each discount rate. This approach allows us to train multiple output layers for
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different discount rates using the same set of feature layers, thereby leveraging the strengths

of an ensemble method similar to those proposed by Arpit et al. (2022) and Churchill et al.

(2023). During inference, the value estimates for each discount rate are computed using

their respective output layers and subsequently averaged using the aforementioned equation

to obtain the final value estimate. This technique strikes a balance between the benefits

of ensemble methods and the computational cost associated with training and deploying a

fully-fledged ensemble model.

5.4.2 Network Architectures

Integrating non-exponential discounting methods into multi-agent reinforcement learning

algorithms requires careful consideration of the neural network design, as these networks

are trained using values of future rewards that have been discounted to their present value.

This work explores the three main types of neural network architectures found in MARL

algorithms:

1. Value-based Q-networks: These networks predict the value of taking certain actions

in given situations, and usually there is a separate network for each agent, or in case

there is a joint value network for all agents, some type of agent indication is used an

input to the network to distinguish the network for each agent.

2. Value decomposition networks: This network learns to optimize a joint value

estimate and helps in understanding how individual agents contribute to the collective

goal, facilitating better coordination among them.

3. Centralized policy gradient: This network incorporates two key components – an

actor that proposes actions and a centralized critic that evaluates these actions. This

setup helps in refining the learning process by continuously adjusting based on the

critic’s feedback.
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Figure 5.1: Network architecture for hyperbolic discounting in IQL.

Value-Based Q-Networks

Value-based networks approximate the value function of a state or action-value function of a

state action pair. The value function represents the expected cumulative reward an agent can

obtain by following a certain policy from a given state and forms the basis of most temporal

difference learning methods, such as Q-learning. Such networks usually learn the optimal Q-

values by iteratively updating the Q-value estimates based on the Bellman equation (Watkins

and Dayan, 1992). In deep MARL, Q-networks were the first to be employed to study the

interaction and learning of multiple agents simultaneously. We explain the construction of

the basic Q-Network and how it can be modified to incorporate non-exponential discounting.

We use a Multi-Layer Perceptron (MLP) network for this work instead of using a CNN

since the observation space is non-image based. The network’s architecture consists of fully

connected (FC) layers, segmented into the input layer for agent observations, hidden layers

for representation learning, and the output layer for Q-value generation from the learned

features. ReLU activation function to used to introduce non-linearity. The hidden layers
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can either be an FC layer or Gated Recurrent Units (GRU) layer, which is a type of recurrent

neural network architecture that effectively captures temporal dependencies in sequence data.

The use of multiple agents necessitates a change in how each agent’s behavior and learning

are modeled through the network, leading to two distinct configurations, with and without

parameter sharing. In setups without parameter sharing, each agent operates with its unique

set of network parameters. Conversely, with parameter sharing, all agents utilize a common

set of network parameters, with the network receiving additional inputs identifying each

agent through a one-hot vector (Gupta et al., 2017). This approach enables agents to develop

distinct behaviors despite shared parameters. The collective loss from all agents is used to

optimize these shared parameters.

While standard Q-networks output a singular set of Q-values, our design introduces

modifications to the output layer to accommodate non-exponential discounting based on

the works of Fedus et al. (2019). As shown in Figure 5.1, the input state/observation of

individual agents is represented as snt , where n indicates a unique agent. The output layer

produces a set of Q-values for each agent n instead of a single Q-value, represented as Qγi
π .

The modified network’s output layer features N fully connected (FC) layers, corresponding

to the number of discount factors. For each discount factor, a distinct set of Q-values, Qγi
π ,

is produced by its respective layer, where γi is a unique discount factor.

It is important to note here that these value-based Q-networks incorporate learning for

multiple agents, where each agent is learning its own set of multi-headed Q-values. However,

there is no joint Q-value that is being learned, something which we discuss next in a category

of methods that learn a joint Q-value and then decompose it into individual agent Q-values.

Joint-Value Based Networks

Value decomposition techniques extend value-based methods for multi-agent cooperation

and coordination. The core idea is to facilitate cooperation among agents by decomposing

the collective value function into individual components corresponding to each agent. This

decomposition allows for the optimization of joint actions while maintaining the autonomy
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Figure 5.2: Network architecture for hyperbolic discounting in QMIX.

of individual agent decision-making processes. This idea is based on factored value functions

(Koller and Parr, 1999), which approximates a joint value function as a linear combination

of local value functions.

One of the first methods to introduce this technique in Deep MARL was the Value

Decomposition Network (VDN), where each agent learns its own value function, which is

then combined to form a global joint-value (Sunehag et al., 2017). During training, the joint

Q-value is learned in a centralized manner by summing up the individual Q-values. However,

during execution, each agent can act independently using just its individual Qi, allowing for

decentralized execution. This decomposition simplifies the learning problem in several ways.

It avoids the exponential blow-up in the joint action space by conditioning each Qi only on

the local action. It is able to address the multi-agent credit assignment problem, as each Qi

is explicitly learned for the contribution of agent i. Finally, it handles partial observability

better since each Qi depends only on the global state s, which can be estimated from local

observations.

Another method called the QMIX (Rashid et al., 2018) was proposed as an extension of

VDN to represent more complex decomposition. QMIX employs a non-linear mixing network
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to combine the individual agent value functions. The mixing network incorporates hypernet-

works (a ”hypernetwork” is a network to generate the weights for another larger network)

that allow for the nonlinear combination of individual Q-values. The mixing network takes

the individual agent Q-values as input and produces a global value, called Q-total Qtotal.

This Q-total value is then used to guide the action selection process for each agent. By

incorporating a non-linear mixing network, QMIX enables more sophisticated modeling of

agent interactions, leading to improved coordination in multi-agent tasks.

In this work, we employ QMIX as a model for incorporating non-exponential discounting

within the framework of value decomposition methods, also known as value factorization

approaches. Within QMIX, individual agents generate Q-values utilizing the foundational

Deep Q-Network architecture (Mnih et al., 2013). These Q-values, produced by each agent’s

Q-network, are forwarded to a mixing network tasked with producing a combined action

value. This mixing network is constructed from hypernetworks that create weight matrices

and biases, enabling the nonlinear integration of individual Q-values. Illustrated in Figure

5.2, the individual Q-values, represented as Qn
π, are inputs for the mixing network. This

network utilizes the created weights and biases to merge these Q-values into a collective

value, termed Qtotal. This collective value, Qtotal, subsequently informs the action choices of

each agent, fostering collaboration while preserving the autonomy of each agent.

To implement variable discounting within QMIX, we adopted the methodology intro-

duced by Fedus et al. (2019), establishing several output layers for distinct discount rates,

γ. Illustrated in Figure 5.2, the Q-values generated by each agent’s Q-network, denoted as

Qn
π, are fed into the mixing network. This network leverages devised weights and biases to

aggregate these Q-values into a unified value, Qtotal. Given the necessity to channel Q-values

through a mixing network, we preserved the foundational network design by Mnih et al.

(2013) while integrating a distinct mixing network for every different discount rate. Conse-

quently, once agents determine their individual Q-values, marked as Qn
π in Figure 5.2, these

values are input into their respective mixing networks, producing individual Qtotal values.

These are indicated as Qγi
tot in Figure 5.2, with γi indicating a specific discount factor.
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Figure 5.3: Network architecture for hyperbolic discounting variants for Actor-Critic meth-
ods used in IA2C, IPPO, MAA2C, MAPPO.

Policy Gradient Actor-Critic Networks

Unlike value-based approaches, policy-based strategies optimize an action’s probability dis-

tribution rather than a value function, facing challenges like high variance and slow progress

in convergence. Actor-critic methods emerge as a solution, merging value-based and policy-

based methods’ benefits. They incorporate a critic network for value function estimation

and an actor network for action selection based on the evaluated policy, as influenced by the

critic’s assessments. Among the notable actor-critic frameworks are Proximal Policy Opti-

mization (PPO) (Schulman et al., 2017) and Advantage Actor-Critic (A2C) (Mnih et al.,

2016). PPO employs a surrogate objective to facilitate minor policy adjustments, enhanc-

ing sample efficiency. Conversely, A2C leverages the estimated value function to calculate

the relative advantage of actions, enabling more effective updates for both actor and critic

networks. Both PPO and A2C advance beyond traditional policy gradient techniques by

utilizing actor and critic networks for improved performance.

In this framework, the actor network is tasked with learning a policy that maps the

current state to a probability distribution over actions. This begins with an input layer
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that interprets the agent’s observations, followed by several hidden layers aimed at learning

the underlying representations of the input state. The final output layer is responsible for

producing a probability distribution over actions, typically employing a Softmax activation

function for discrete action scenarios or a Gaussian distribution for continuous action envi-

ronments. The critic network’s role is to approximate the value function, thereby evaluating

the quality of a given state. This network also starts with an input layer, builds through

several hidden layers, and concludes with an output layer that issues a singular scalar value

indicative of the current state’s estimated value. Throughout the training process, the ac-

tor network’s adjustments are informed by the policy gradient, which is calculated using

the critic’s value estimates, while the critic network is refined through temporal-difference

learning for value function approximation.

Given that the actor network outputs a probability distribution across actions rather than

discrete values, we introduce a multi-headed critic network designed to output a separate

value function for each discount factor. The critic network architecture processes an agent’s

observed state, snt , and generates individual value functions, represented as V γN
π , as shown

in Figure 5.3. These value functions are then used to compute the advantage function of

state, action pairs. The advantage function is then used in the optimization objective of the

actor network. This technique of using the hyperbolic advantage function first proposed in

(Nafi et al., 2022b) for use in PPO is equally applicable to A2C and can be extended to

any actor-critic method given the common architectural foundation in use with actor-critic

algorithms.

5.4.3 Multi-Agent Algorithms

To assess a fair evaluation of non-exponential discounting, a wide range of algorithms was

selected to cover multiple approaches in multi-agent reinforcement learning. Using the net-

work modifications and mathematical formulations presented in the previous sections, our

algorithms are now suited for non-exponential discounting strategies. In order to evaluate

the effects of non-exponential discounting in multi-agent reinforcement learning, a diverse
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range of algorithms was selected for this work. These algorithms can be grouped into two pri-

mary categories: Independent Learning and Centralized Learning Decentralized Execution

(CTDE). The IL category contains IQL, IA2C, and IPPO, while the CTDE category con-

tains QMIX, MAA2C, and MAPPO, in which QMIX is a value factorization/decomposition

method, and MAA2C and MAAPO are centralized policy gradient methods. By modify-

ing the network structures and using the proposed mathematical formulations mentioned in

the previous discussion, these algorithms have been adapted to incorporate non-exponential

discounting functions. In this discussion, we emphasize the key differences and similarities

between the algorithms and demonstrate how non-exponential discounting strategies are

integrated into their learning and optimization processes.

Independent Learning (IL)

In independent learning, single-agent reinforcement learning algorithms are applied to in-

dividual agents without the consideration of a multi-agent structure. Each agent perceives

other agents as part of the environment, treating them as dynamic and unpredictable ele-

ments rather than explicitly acknowledging their presence as separate learning entities (Pa-

poudakis et al., 2021). This leads to a lack of communication and coordination among agents

during both the training and execution phases (Zhang et al., 2021). While independent

learning allows for simpler and more efficient training processes, this approach may result

in suboptimal and less coordinated behaviors, especially in tasks where agent collaboration

is crucial for success. Moreover, the agents may not adapt well to changes in the strategies

of their counterparts or be able to handle emergent behaviors that arise from interactions

within the multi-agent system. Despite these limitations, independent learning serves as a

baseline for evaluating more advanced multi-agent reinforcement learning methods. For this

work, We have selected and documented implementation details for these three independent

learning algorithms:

Independent Q-Learning (IQL). IQL utilizes a decentralized value-based Q-network to

approximate Q-values for the individual observations of each agent (Tan, 1993). Each agent
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then updates the Q-network by minimizing the Q-learning loss through the calculation of a

temporal difference (TD) error. In traditional methods of discounting, a single discount rate

γ is used during the TD calculation. With our modification, the Q-network outputs a set

of Q-values for each unique discount rate. These sets of values are then used to calculate

separate TD targets, each using its corresponding discount rate Ali et al. (2022); Fedus et al.

(2019). During action selection, we use the discounting functions, as presented earlier, to

combine a set of Q-values values for different discount factors into a single set of Q-values,

using either hyperbolic or averaged horizon discounting. The final set of Q-values is then

used for action selection through an argmax.

Independent Advantage Actor-Critic (IA2C) This method uses a decentralized actor-

critic network to optimize its policy and estimate state values based on individual observa-

tions. The actor network in IA2C maps the agent’s state to a probability distribution over

actions, while the critic network estimates the state-value function. To update both net-

works, IA2C calculates the advantage function using the values of a critic network. This

advantage function helps in determining how much better a specific action is compared to

the average actions taken in the current state. Each agent independently updates its actor

and critic networks by minimizing the policy gradient loss and the TD error. Similar to

the modifications made to IQL, IA2C utilizes multiple discount rates for value estimations.

However, due to the action selection relying on a probability distribution instead of values,

the advantage function is used in the optimization objective, as opposed to a state-action

function.

Independent Proximal Policy Optimization (IPPO) This method follows a similar

decentralized approach as IA2C, with each agent using its own actor-critic network for policy

optimization and state value estimation (De Witt et al., 2020). The key difference between

IPPO and IA2C lies in the optimization process. IPPO employs a trust region optimization

approach, which uses a ratio of new and old policies in the surrogate objective function to en-

sure small, stable updates to the policy and improve sample efficiency (Schulman et al., 2017).
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Similar to the modifications made in IA2C, adapting IPPO to utilize a non-exponential dis-

counting function requires the calculations of independently discounted advantages. These

advantages are then passed through a non-exponential discounting function and then used

for optimization.

Centralized Learning Decentralized Execution (CTDE)

In contrast to independent learning, centralized training decentralized execution (CTDE)

methods address the challenges in multi-agent reinforcement learning by allowing agents

to share information during the training phase while maintaining decentralized executions

(Papoudakis et al., 2021). This approach enables agents to learn coordinated policies by

utilizing a global perspective and accounting for the actions and observations of other agents

during training. However, during the execution phase, each agent makes decisions inde-

pendently based on its own observations and learning policy, without relying on any direct

communication or information sharing with other agents. This balance between centralized

learning and decentralized execution enables CTDE methods to improve coordination and

performance in multi-agent tasks while retaining the scalability and robustness associated

with decentralized systems. We have selected and documented implementation details for

these three CTDE algorithms:

Q-Value Mixing Network (QMIX) is a cooperative multi-agent reinforcement learning

algorithm that combines the advantages of centralized learning with decentralized execution

to tackle coordination challenges in multi-agent settings (Rashid et al., 2018, 2020)). In

QMIX, the agents employ decentralized Q-networks to approximate individual action-value

functions, while a centralized mixing network is utilized to aggregate the agents’ Q-values into

a joint action-value function. The mixing network is designed to be a monotonic function,

ensuring that the optimal joint-action can be derived from the optimal individual actions.

Since individual Q-values of each agent are combined to compute the joint-action values, the

discounted estimations are based on the mixing network outputs instead of the individual

Q-values. In order to implement a non-exponential discounting function, additional mixing
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networks are introduced to compute separate Q-totals corresponding to individual discount

factors. These separate Q-totals are then aggregated through the discounting functions

proposed to compute a total loss that is then backpropagated to the individual agents.

Multi-Agent Advantage Actor-Critic (MAA2C) is a cooperative multi-agent rein-

forcement learning algorithm that builds upon the actor-critic framework by incorporating

centralized learning to enhance coordination between agents. Similar to IA2C, MAA2C

employs decentralized actor networks for each agent, mapping individual observations to

probability distributions over actions. However, unlike IA2C, MAA2C utilizes a centralized

critic network, which considers the joint observations of all agents to estimate the state-value

function (Lyu et al., 2021). This centralized learning aspect enables MAA2C to capture the

interactions between agents, which improves coordination among agents. For incorporating

non-exponential discounting, we follow a similar setup to IA2C and utilize multiple discount

rates for value estimations. Since MAA2C relies on a probability distribution for action

selection, similar to IA2C, the discounting function is applied to the advantage estimations.

The difference between MAA2C and IA2C is the inputs to the critic networks. MAA2C

aggregates the observations of all agents to combine a joint-observation input, whereas IA2C

keeps these observations separated. The actual learning algorithm implementation of non-

exponential discounting itself remains the same as IA2C.

Multi-Agent Proximal Policy Optimization (MAPPO) MAPPO (Yu et al., 2022) is

a cooperative multi-agent reinforcement learning algorithm that extends the Proximal Policy

Optimization (PPO) method (Schulman et al., 2017) to accommodate multiple agents, focus-

ing on enhanced coordination and stable policy updates in complex environments. Similar

to MAA2C, MAPPO utilizes a centralized critic network and a decentralized actor network.

The key difference between MAPPO and MAA2C lies in the optimization process, similar

to the differences between IA2C and IPPO. MAPPO employs a trust region optimization

approach, which uses a ratio of new and old policies in the surrogate objective function to

ensure small, stable updates to the policy and improve sample efficiency. However, similar to
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the modifications made in MAA2C, adapting MAPPO to utilize a non-exponential discount-

ing function requires the calculations of independently discounted advantages corresponding

to unique discount rates. These advantages are then used in the optimization objective J(θ).

5.5 Experimental Setup

This study investigates the effectiveness of two non-exponential discounting methods, namely

hyperbolic-weighted and hyperbolic-average discounting, across six MARL methods. These

methods are categorized into two groups: three from independent learning (IQL, IPPO,

IA2C) and three from centralized training with decentralized execution (CTDE) frame-

works (QMIX, MAPPO, MAA2C). We evaluate these approaches in four distinct MARL

environments, each offering unique challenges and opportunities to assess the scalability,

generalization, and coordination capabilities of the algorithms.

5.5.1 MARL Environments

The following multi-agent environments were used in this work, an overview of which is given

in Table 5.1.

Level-Based Foraging (LBF) (Albrecht and Ramamoorthy, 2013) is a grid-world sce-

nario where agents must collect food items scattered randomly. Agents and items are assigned

levels, and a group of one or more agents can collect an item if the sum of their levels is

greater than or equal to the item’s level. Agents can move in four directions and have an

action to attempt loading an adjacent item, which succeeds based on the agents’ levels. LBF

allows for configuring various tasks, including partial observability or highly cooperative sce-

narios where all agents must participate simultaneously to collect items. Seven distinct tasks

with varying world sizes, agent numbers, observability, and cooperation settings are defined

to test the multi-agent reinforcement learning (MARL) algorithms’ ability to cooperate in

collecting resources within the grid world. We use 3 of the available 7 tasks in this work.

Multi-Robot Warehouse (RWARE) (Papoudakis et al., 2021) simulates a dynamic
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warehouse scenario where robotic agents must collaborate to transport and sort packages

efficiently. It is a cooperative, partially observable scenario with sparse rewards. In this

grid-world warehouse simulation, agents (robots) must locate and deliver requested shelves

to workstations and return them after delivery. Agents receive rewards only upon completely

delivering the requested shelves. The environment features sparse and high-dimensional

observations, consisting of a 3 × 3 grid containing information about surrounding agents

and shelves. Agents can move forward, rotate, and load/unload shelves. Three tasks are

defined with varying world sizes, agent numbers, and shelf requests. The sparsity of rewards

and partial observability make RWARE challenging, as agents must coordinate their actions

effectively to complete a series of steps before receiving any reward signal. RWARE serves

as a benchmark for evaluating algorithm performance in cooperative, partially observable

scenarios with sparse rewards, where effective coordination is crucial. We use all the 3

available tasks in this study.

Multi-Agent Particle Environments (MPE) (Lowe et al., 2017; Mordatch and

Abbeel, 2017) consist of several two-dimensional navigation tasks designed to evaluate agent

coordination and the ability to handle non-stationarity. In this study, we investigate four

tasks from MPE that emphasize coordination: Speaker-Listener, Spread, Adversary, and

Predator-Prey. In these tasks, agents receive high-level feature vectors as observations, in-

cluding relative agent and landmark locations, and agents are required to navigate to fulfill

environment-defined tasks. While the Speaker-Listener task requires binary communica-

tion and is partially observable, the remaining tasks are fully observable. The MPE tasks

serve as a benchmark for assessing agent coordination and their capability to deal with non-

stationarity. The rewards in these tasks are highly dependent on the joint actions of the

agents, and a lack of effective coordination among individual agents can severely reduce the

received rewards (Papoudakis et al., 2019). As mentioned above, we use 4 of the available 6

tasks in MPE.

The StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019) simulates

battle scenarios in the real-time strategy game StarCraft, where a team of controlled agents

must destroy an enemy team using fixed policies. Agents have limited observation radii and
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can move and attack enemies. SMAC offers many tasks, known commonly as maps, varying

in the number and types of controlled units. The key challenges include accurately estimating

state values under partial observability, coordinating an increasing number of diverse agent

types across tasks, and handling large action spaces as agents can select targets for healing

or attacking based on their unit type. This environment serves as a complex benchmark for

multi-agent reinforcement learning algorithms, demanding effective coordination, decision-

making under partial observability, strategic planning, adaptability, and teamwork in realistic

scenarios with large action spaces and diverse agents. We study three maps for SMAC in

our work. Due to limited computing, we restrict our analysis of SMAC to QMIX, the most

widely used and benchmarked method on SMAC.

Table 5.1: Overview of MARL environments (from Papoudakis et al. (2021)).

Environment Observability Reward Sparsity Agents Main Difficulty
LBF Partial / Full Sparse 2-4 Coordination
RWARE Partial Sparse 2-4 Sparse reward
MPE Partial / Full Dense 2-3 Non-stationarity
SMAC Partial Dense 2-10 Large action space

5.5.2 Evaluation Criteria

The performance of each algorithm is assessed based on several criteria, including the effi-

ciency of learning (speed of convergence), the robustness of the learned policies, scalability

to larger and more complex scenarios, and the ability to generalize to unseen environments.

Additional metrics, specific to each environment, such as resource collection efficiency in

LBF and RWARE, task completion time in MPE, and win rate in SMAC, are also consid-

ered. To ensure fair comparison and compensate for the higher sample efficiency of off-policy

algorithms relative to on-policy ones, we follow the procedure recommended by Papoudakis

et al. (2021) and adjust training steps accordingly. For MPE and LBF, on-policy algo-

rithms (IA2C, IPPO, MAA2C, MAPPO) are trained for 20 million timesteps, and off-policy

algorithms (IQL, QMIX) are trained for 2 million timesteps. In SMAC and RWARE en-

vironments, the on-policy and off-policy training is set to 40 and four million timesteps,
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respectively. Despite on-policy algorithms not reusing samples via experience replay and

hence resulting in lower sample efficiency, they are not considered slower. Evaluations are

carried out at every 10k steps for 2M train steps, every 100k steps for 20M train steps, every

20k steps for 4M train steps, and every 200k steps for 40M train steps, maintaining the

total number of evaluations to be constant (41 evaluations), are done at regular intervals

throughout the training and are done for 100 episodes per evaluation.

5.5.3 Performance Metrics

To evaluate the performance of the algorithms, we consider two metrics, following the rec-

ommendations of Papoudakis et al. (2021): maximum returns and average returns. By using

both, we can assess the algorithms’ performance in terms of their peak capabilities and their

overall learning efficiency throughout the training process.

Maximum Returns For each algorithm, we identify the evaluation timestep during train-

ing where the algorithm achieves the highest average evaluation returns across five random

seeds. We report the average returns and the 95% confidence interval across these five seeds

from this evaluation timestep. This metric represents the peak performance achieved by the

algorithm.

Average Returns We also report the average returns achieved throughout all evaluations

during training. This metric is computed over all evaluations executed during the training

process, considering not only the final achieved returns but also the algorithm’s learning

speed.

5.5.4 Implementation Details

For each environment, experiments were done for both hyperbolic-weighted and hyperbolic-

average discounting methods applied to the six selected MARL algorithms. Agents are

trained for steps specified for each method and environment combination described previ-
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ously, with results averaged over 5 seeds to account for variability. Parameter sharing is

employed which allows for each agent to have a different behavior while sharing the same

base network, and environment-specific adaptations, such as action selection probability ad-

justments for invalid actions, are implemented to ensure fairness and comparability across

tests.

5.6 Tabular Results

In this section, we first present the tabular results for hyperbolic-weighted and hyperbolic-

average methods, along with the baseline of exponential discounting. We then present Max

Returns and Average Returns separately for Independent Learning and CTDE methods.
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Table 5.2: Average returns and 95% confidence interval over five seeds for the three dis-
counting policies across all tasks for IL methods.

Algs Envs. /Disc. Policy Exponential Average Hyperbolic

IA
2
C

Foraging-15x15-3p-5f-v2 0.32 ± 0.06* 0.33 ± 0.03* 0.35 ± 0.05
Foraging-15x15-4p-3f-v2 0.72 ± 0.04* 0.73 ± 0.04 0.72 ± 0.03*
Foraging-15x15-4p-5f-v2 0.36 ± 0.04 0.40 ± 0.06* 0.45 ± 0.04
Simpleadversary-v0 13.68 ± 0.30* 13.86 ± 0.29 13.78 ± 0.28*
Simplespeakerlistener-v0 -34.88 ± 6.71* -32.27 ± 4.25* -30.87 ± 1.92
Simpletag-v0 405.60 ± 22.42 429.43 ± 24.97 485.93 ± 21.78
Rware-small-4ag-v1 1.91 ± 0.40 1.76 ± 0.28 2.45 ± 0.15
Rware-tiny-2ag-v1 1.92 ± 0.69* 1.75 ± 0.27* 2.85 ± 1.02
Rware-tiny-4ag-v1 5.11 ± 3.50* 5.68 ± 2.90* 6.97 ± 0.71

IP
P
O

Foraging-15x15-3p-5f-v2 0.13 ± 0.07* 0.20 ± 0.06 0.17 ± 0.05*
Foraging-15x15-4p-3f-v2 0.58 ± 0.03 0.60 ± 0.03* 0.65 ± 0.04
Foraging-15x15-4p-5f-v2 0.30 ± 0.09* 0.35 ± 0.04 0.25 ± 0.04
Simpleadversary-v0 14.16 ± 0.28* 14.33 ± 0.28 14.21 ± 0.28*
Simplespeakerlistener-v0 -37.05 ± 7.86* -33.78 ± 6.66* -29.78 ± 1.98
Simpletag-v0 446.13 ± 19.62 510.58 ± 37.86* 516.53 ± 24.54
Rware-small-4ag-v1 6.77 ± 3.86 4.43 ± 1.76* 5.17 ± 1.91*
Rware-tiny-2ag-v1 11.23 ± 4.75* 10.44 ± 4.43* 12.08 ± 4.66
Rware-tiny-4ag-v1 20.96 ± 14.08* 23.71 ± 6.22* 25.46 ± 6.52

IQ
L

Foraging-15x15-3p-5f-v2 0.04 ± 0.01* 0.06 ± 0.01 0.05 ± 0.01*
Foraging-15x15-4p-3f-v2 0.12 ± 0.03* 0.17 ± 0.02* 0.17 ± 0.06
Foraging-15x15-4p-5f-v2 0.08 ± 0.01 0.11 ± 0.01 0.10 ± 0.01*
Simpleadversary-v0 4.14 ± 1.27* 5.11 ± 1.02* 5.75 ± 1.24
Simplespeakerlistener-v0 -50.38 ± 8.32* -50.23 ± 8.13* -49.67 ± 7.58
Simpletag-v0 318.72 ± 17.06 296.17 ± 24.84 362.06 ± 15.69
Rware-small-4ag-v1 0.11 ± 0.11 0.01 ± 0.01* 0.04 ± 0.04*
Rware-tiny-2ag-v1 0.03 ± 0.05 0.01 ± 0.01* 0.01 ± 0.01*
Rware-tiny-4ag-v1 0.29 ± 0.17* 0.09 ± 0.04 0.29 ± 0.10
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Table 5.3: Average returns and 95% confidence interval over five seeds for the three dis-
counting policies across all tasks for CTDE methods.

Algs Envs. /Disc. Policy Exponential Average Hyperbolic

M
A
A
2
C

Foraging-15x15-3p-5f-v2 0.27 ± 0.05 0.38 ± 0.03* 0.38 ± 0.03
Foraging-15x15-4p-3f-v2 0.65 ± 0.03 0.72 ± 0.04 0.70 ± 0.02*
Foraging-15x15-4p-5f-v2 0.36 ± 0.05 0.49 ± 0.04 0.49 ± 0.04*
Simpleadversary-v0 14.44 ± 0.27* 14.67 ± 0.28 14.50 ± 0.28*
Simplespeakerlistener-v0 -29.02 ± 1.71* -28.61 ± 1.17 -28.82 ± 1.27*
Simpletag-v0 452.36 ± 15.49 385.21 ± 197.41* 434.42 ± 42.02*
Rware-small-4ag-v1 1.23 ± 0.89 1.95 ± 0.41 2.71 ± 0.19
Rware-tiny-2ag-v1 1.62 ± 0.47 1.56 ± 0.32 2.89 ± 0.47
Rware-tiny-4ag-v1 5.82 ± 3.53* 5.65 ± 3.60* 7.55 ± 3.74

M
A
P
P
O

Foraging-15x15-3p-5f-v2 0.15 ± 0.06* 0.19 ± 0.04 0.11 ± 0.05
Foraging-15x15-4p-3f-v2 0.48 ± 0.04 0.57 ± 0.04* 0.61 ± 0.04
Foraging-15x15-4p-5f-v2 0.26 ± 0.06* 0.31 ± 0.04 0.23 ± 0.06
Simpleadversary-v0 13.36 ± 0.27* 13.61 ± 0.26 13.53 ± 0.27*
Simplespeakerlistener-v0 -29.43 ± 2.97* -28.39 ± 1.71* -28.24 ± 1.30
Simpletag-v0 426.19 ± 24.48 472.18 ± 15.47* 481.18 ± 20.32
Rware-small-4ag-v1 17.82 ± 1.04 16.97 ± 1.00* 15.30 ± 0.85
Rware-tiny-2ag-v1 13.96 ± 3.50* 16.99 ± 1.18* 17.03 ± 1.17
Rware-tiny-4ag-v1 40.41 ± 2.82* 24.94 ± 19.71* 41.25 ± 2.11

Q
M
IX

Foraging-15x15-3p-5f-v2 0.05 ± 0.02 0.08 ± 0.01 0.07 ± 0.02*
Foraging-15x15-4p-3f-v2 0.06 ± 0.01 0.17 ± 0.07 0.13 ± 0.06*
Foraging-15x15-4p-5f-v2 0.08 ± 0.04* 0.11 ± 0.02* 0.11 ± 0.03
Simpleadversary-v0 10.52 ± 1.09* 10.63 ± 1.46 10.45 ± 1.27*
Simplespeakerlistener-v0 -37.60 ± 5.48* -42.29 ± 7.68* -37.12 ± 5.12
Simpletag-v0 368.15 ± 10.75* 346.31 ± 18.55 383.42 ± 10.88
Rware-small-4ag-v1 0.02 ± 0.01 0.00 ± 0.00* 0.00 ± 0.01*
Rware-tiny-2ag-v1 0.02 ± 0.01 0.01 ± 0.01* 0.01 ± 0.02*
Rware-tiny-4ag-v1 0.20 ± 0.13 0.06 ± 0.03* 0.16 ± 0.18*
Smac-2s-vs-1sc 14.51 ± 1.58 10.04 ± 2.36 14.39 ± 1.35*
Smac-3s5z 13.41 ± 0.94 13.81 ± 1.06 15.66 ± 0.74
Smac-mmm2 9.96 ± 0.69* 7.30 ± 0.86 10.32 ± 0.83
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Table 5.4: Maximum returns and 95% confidence interval over five seeds for the three dis-
counting policies across all tasks for IL Methods.

Algs Envs. /Disc. Policy Exponential Average Hyperbolic

IA
2
C

Foraging-15x15-3p-5f-v2 0.44 ± 0.03* 0.43 ± 0.05* 0.48 ± 0.01
Foraging-15x15-4p-3f-v2 0.85 ± 0.03 0.84 ± 0.02* 0.84 ± 0.01*
Foraging-15x15-4p-5f-v2 0.55 ± 0.04* 0.55 ± 0.03* 0.60 ± 0.05
Simpleadversary-v0 15.23 ± 0.16* 15.36 ± 0.22 15.25 ± 0.24*
Simplespeakerlistener-v0 -27.04 ± 6.01* -23.51 ± 1.41 -23.80 ± 1.38*
Simpletag-v0 443.64 ± 17.92 502.55 ± 18.65 567.29 ± 34.67
Rware-small-4ag-v1 3.98 ± 0.44 4.06 ± 0.42* 4.58 ± 0.24
Rware-tiny-2ag-v1 5.53 ± 3.14* 4.70 ± 1.16* 6.64 ± 2.99
Rware-tiny-4ag-v1 10.33 ± 7.40* 11.56 ± 6.46* 13.02 ± 1.67

IP
P
O

Foraging-15x15-3p-5f-v2 0.23 ± 0.17* 0.41 ± 0.05* 0.41 ± 0.03
Foraging-15x15-4p-3f-v2 0.68 ± 0.02 0.74 ± 0.03 0.83 ± 0.01
Foraging-15x15-4p-5f-v2 0.45 ± 0.13* 0.54 ± 0.04* 0.56 ± 0.03
Simpleadversary-v0 15.41 ± 0.25* 15.50 ± 0.19 15.47 ± 0.26*
Simplespeakerlistener-v0 -30.80 ± 7.73* -26.51 ± 3.10* -23.90 ± 1.46
Simpletag-v0 495.76 ± 34.47 624.45 ± 25.76 611.43 ± 24.86*
Rware-small-4ag-v1 16.04 ± 4.52 8.90 ± 3.73 10.60 ± 4.55*
Rware-tiny-2ag-v1 18.36 ± 5.88 15.53 ± 6.18* 18.31 ± 6.89*
Rware-tiny-4ag-v1 28.98 ± 18.92* 33.22 ± 8.71 32.90 ± 7.67*

IQ
L

Foraging-15x15-3p-5f-v2 0.05 ± 0.02 0.08 ± 0.01 0.06 ± 0.02*
Foraging-15x15-4p-3f-v2 0.20 ± 0.09* 0.28 ± 0.05* 0.32 ± 0.12
Foraging-15x15-4p-5f-v2 0.11 ± 0.01 0.14 ± 0.01 0.13 ± 0.02*
Simpleadversary-v0 7.74 ± 0.48 9.20 ± 0.22 9.15 ± 0.49*
Simplespeakerlistener-v0 -37.07 ± 7.67* -35.48 ± 6.67* -35.45 ± 6.48
Simpletag-v0 375.73 ± 14.91 355.77 ± 39.68 413.09 ± 13.24
Rware-small-4ag-v1 0.42 ± 0.47 0.03 ± 0.02* 0.15 ± 0.18*
Rware-tiny-2ag-v1 0.12 ± 0.22 0.02 ± 0.01* 0.03 ± 0.02*
Rware-tiny-4ag-v1 0.75 ± 0.64* 0.25 ± 0.17 1.20 ± 0.60

86



Table 5.5: Maximum returns and 95% confidence interval over five seeds for the three dis-
counting policies across all tasks for CTDE Methods.

Algs Envs. /Disc. Policy Exponential Average Hyperbolic

M
A
A
2
C

Foraging-15x15-3p-5f-v2 0.44 ± 0.04 0.47 ± 0.02* 0.50 ± 0.02
Foraging-15x15-4p-3f-v2 0.74 ± 0.04 0.84 ± 0.02 0.82 ± 0.01*
Foraging-15x15-4p-5f-v2 0.52 ± 0.02 0.59 ± 0.05* 0.61 ± 0.04
Simpleadversary-v0 15.75 ± 0.24* 16.09 ± 0.22 15.91 ± 0.24*
Simplespeakerlistener-v0 -23.13 ± 1.30 -23.21 ± 1.35* -23.43 ± 1.31*
Simpletag-v0 502.37 ± 32.86* 453.35 ± 271.68* 523.43 ± 40.35
Rware-small-4ag-v1 3.56 ± 0.17 5.73 ± 0.86* 6.65 ± 0.50
Rware-tiny-2ag-v1 3.78 ± 1.44 3.57 ± 0.48 8.07 ± 3.03
Rware-tiny-4ag-v1 13.46 ± 5.23* 11.17 ± 7.67* 18.27 ± 9.78

M
A
P
P
O

Foraging-15x15-3p-5f-v2 0.37 ± 0.05* 0.40 ± 0.02 0.30 ± 0.12*
Foraging-15x15-4p-3f-v2 0.64 ± 0.05 0.70 ± 0.03 0.81 ± 0.01
Foraging-15x15-4p-5f-v2 0.50 ± 0.02* 0.52 ± 0.03 0.51 ± 0.04*
Simpleadversary-v0 14.52 ± 0.28* 14.75 ± 0.23 14.66 ± 0.22*
Simplespeakerlistener-v0 -23.14 ± 1.36 -23.23 ± 1.31* -23.35 ± 1.35*
Simpletag-v0 470.61 ± 24.88 552.06 ± 19.96 541.54 ± 14.49*
Rware-small-4ag-v1 26.20 ± 0.76* 26.86 ± 0.71 25.05 ± 0.52
Rware-tiny-2ag-v1 18.77 ± 4.26* 22.06 ± 1.20* 22.13 ± 1.37
Rware-tiny-4ag-v1 50.71 ± 1.97* 31.28 ± 24.69* 51.50 ± 2.50

Q
M
IX

Foraging-15x15-3p-5f-v2 0.08 ± 0.04 0.14 ± 0.02 0.11 ± 0.02*
Foraging-15x15-4p-3f-v2 0.08 ± 0.03 0.51 ± 0.22 0.37 ± 0.20*
Foraging-15x15-4p-5f-v2 0.15 ± 0.06* 0.20 ± 0.01* 0.21 ± 0.10
Simpleadversary-v0 14.42 ± 0.15 14.27 ± 0.72* 14.17 ± 0.65*
Simplespeakerlistener-v0 -24.15 ± 1.47* -25.51 ± 1.95* -24.00 ± 1.59
Simpletag-v0 511.80 ± 13.05 435.48 ± 6.02 509.49 ± 12.30*
Rware-small-4ag-v1 0.05 ± 0.04 0.00 ± 0.01* 0.01 ± 0.02*
Rware-tiny-2ag-v1 0.04 ± 0.02* 0.01 ± 0.02* 0.05 ± 0.05
Rware-tiny-4ag-v1 0.62 ± 0.52* 0.12 ± 0.07* 0.65 ± 0.86
Smac-2s-vs-1sc 17.81 ± 0.31* 13.21 ± 1.69 17.97 ± 0.28
Smac-3s5z 15.30 ± 0.86 15.21 ± 1.83 18.10 ± 0.30
Smac-mmm2 11.19 ± 0.34* 8.35 ± 0.32 11.86 ± 1.29
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5.7 Method-Wise Results

We now present results for the two proposed discounting methods along with the baseline for

each of the 6 methods, comparing the performance of each method across benchmarks. As a

general trend, the performance difference is visible in LBF and RWARE (and for QMIX in

SMAC), with one of the two proposed variants performing better. However, the performance

difference is minimal in MPE.

5.7.1 IQL

Figure 5.4 shows the performance of the proposed hyperbolic-weighted and hyperbolic-

average discounting methods for IQL.
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Figure 5.4: Aggregate performance of the three discounting methods implemented in IQL
on the cooperative MARL benchmarks studied.

5.7.2 IA2C

Figure 5.5 shows the performance of the proposed hyperbolic-weighted and hyperbolic-

average discounting methods for IA2C.

5.7.3 IPPO

Figure 5.6 shows the performance of the proposed hyperbolic-weighted and hyperbolic-

average discounting methods for IPPO.
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Figure 5.5: Aggregate performance of the three discounting methods implemented in IA2C
on the cooperative MARL benchmarks studied.
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Figure 5.6: Aggregate performance of the three discounting methods implemented in IPPO
on the cooperative MARL benchmarks studied.

5.7.4 QMIX

Figure 5.7 shows the performance of the proposed hyperbolic-weighted and hyperbolic-

average discounting methods for QMIX.
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Figure 5.7: Aggregate performance of the three discounting methods implemented in QMIX
on the cooperative MARL benchmarks studied.
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5.7.5 MAA2C

Figure 5.8 shows the performance of the proposed hyperbolic-weighted and hyperbolic-

average discounting methods for MAA2C.
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Figure 5.8: Aggregate performance of the three discounting methods implemented in MAA2C
on the cooperative MARL benchmarks studied.

5.7.6 MAPPO

Figure 5.9 shows the performance of the proposed hyperbolic-weighted and hyperbolic-

average discounting methods for MAPPO.
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Figure 5.9: Aggregate performance of the three discounting methods implemented in
MAPPO on the cooperative MARL benchmarks studied.
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5.8 Environment-Wise Results

5.8.1 LBF

Figure 5.10 presents a comparison of the proposed hyperbolic discounting and average dis-

counting formulations against the baseline of exponential discounting for the 6 methods on

the set of three environments from the LBF (Papoudakis et al., 2021) benchmark.

5.8.2 RWARE

Figure 5.11 presents a comparison of the proposed hyperbolic discounting and average dis-

counting formulations against the baseline of exponential discounting for the 6 methods on

the set of three environments from the Robot Warehouse (RWARE) (Papoudakis et al., 2021)

benchmark.
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Figure 5.10: Individual results of each of the 3 discounting policies on all 6 methods in 3 LBF
environments. The hyperbolic variants (blue and orange) perform better than exponential
discounting (green) in most of the environments.
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Figure 5.11: Individual results of each of the 3 discounting policies on all 6 methods in 3
RWARE environments.
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5.8.3 MPE

Figure 5.12 presents a comparison of the proposed hyperbolic discounting and average dis-

counting formulations against the baseline of exponential discounting for the 6 methods on

the set of three environments from the Multi Particle Environment (MPE) (Lowe et al.,

2017) benchmark.
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Figure 5.12: Individual results of each of the 3 discounting policies on all 6 methods in 3 MPE
environments. There is no notable performance difference between discounting methods
except in the SimpleTag environment.
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Figure 5.13: Individual results of each of the 3 discounting policies on only QMIX for 3
SMAC maps.

5.8.4 SMAC

Figure 5.13 presents a comparison of the proposed hyperbolic discounting and average dis-

counting formulations against the baseline of exponential discounting for the QMIX method

on a set of three maps from the StarCraft MultiAgent Challenge (Samvelyan et al., 2019)

benchmark. Due to the increased runtimes of SMAC, we only present results here for QMIX,

which is the most widely studied MARL algorithm, especially in the SMAC environment.

5.9 Conclusion

These experiments revealed significant improvements in performance, stability, and sam-

ple efficiency. While the impact varied across the algorithms and environments tested,

non-exponential discounting methods consistently outperformed the traditional exponen-

tial discounting method. The averaged horizon discounting method emerged as the most

reliable choice in terms of stability and real-world applications, as it consistently demon-

strated smaller standard deviations and improved performance in several algorithms. The

study also suggests that structural differences in algorithms may affect the impact of non-

exponential discounting methods, with some algorithms benefiting more than others. Future

studies can explore the use of ensemble methods to further enhance the incorporation of

multi-horizon discounting functions. Overall, the findings highlight the potential benefits

of non-exponential discounting methods in reinforcement learning, which can lead to more

efficient and effective decision-making processes in real-world scenarios.
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Our results not only advocate for the adoption of hyperbolic discounting in MARL set-

tings but also pave the way for future research into preference-based reinforcement learning.

By aligning AI discounting behaviors more closely with human cognitive processes, this work

promises to enhance human-AI cooperation, foster greater societal trust in AI technologies,

and contribute to the ethical development of AI systems. Through our approach, we invite

further exploration into how preference-based modeling can inform the design and imple-

mentation of multi-agent systems, with the potential to revolutionize our interaction with

AI in complex decision-making scenarios.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This dissertation explored the integration of non-exponential discounting functions, par-

ticularly hyperbolic discounting, into deep reinforcement learning (RL) frameworks. The

overarching goal was to develop RL agents that can better model and mimic human-like

decision-making processes, which often exhibit preference reversals and inconsistent choices

over time. By incorporating hyperbolic discounting, the aim was to enhance the agents’

ability to make decisions involving intertemporal trade-offs, aligning their behavior more

closely with empirical observations from psychology and behavioral economics.

The first contribution of this dissertation revisited the idea of hyperbolic discounting and

multi-horizon learning in the context of off-policy, value-based RL methods. Through exten-

sive experiments on procedurally generated environments, such as Procgen and Crafter, the

impact of hyperbolic discounting and learning over multiple horizons was evaluated across

various performance dimensions, including sample complexity, generalization, and architec-

tural improvements. The results demonstrated that agents employing hyperbolic discounting

and multi-horizon learning generally outperformed their single-horizon counterparts, exhibit-

ing improved generalization capabilities and robustness in diverse and challenging environ-

ments.

98



The second contribution introduced a novel two-parameter hyperboloid model, which

extended the Rachlin hyperbolic discounting framework by incorporating a sensitivity-to-

delay parameter alongside the base hyperbolic discount factor. This model aimed to capture

individual variations in the perception of reward delays, a crucial aspect of human decision-

making that is often overlooked in traditional RL approaches. The empirical evaluation of

the proposed model revealed its potential for enhancing temporal decision-making in RL

agents, paving the way for more nuanced and human-like behavior.

This dissertation’s third and most significant contribution was exploring non-exponential

discounting in multi-agent reinforcement learning (MARL) settings. By introducing hyper-

bolic discounting and averaged horizon discounting techniques, this work investigated the

impact of these discounting methods on agent decision-making and collective performance in

cooperative and competitive scenarios. A comprehensive analysis was conducted across var-

ious MARL algorithms, spanning different classes and architectures, including Independent

Learning (IL), Centralized Training with Decentralized Execution (CTDE), Value Factoriza-

tion, and Centralized Policy Gradient methods. The results demonstrated that the benefits

of non-exponential discounting were evident across multiple learning modalities, with par-

ticularly pronounced enhancements observed in the CTDE framework. The findings also

highlighted the potential of hyperbolic discounting to improve cooperation among agents

and facilitate more effective coordination in multi-agent tasks.

Overall, this dissertation contributes to the growing body of research aimed at bridging

the gap between traditional exponential discounting methods and non-exponential forms of

discounting. This work paves the way for more intelligent, adaptable, and human-centric AI

systems by incorporating hyperbolic discounting and related discount functions into deep RL

frameworks. The findings highlight the potential of non-exponential discounting to enhance

agent performance, facilitate human-like decision-making, and foster improved cooperation

and coordination in multi-agent scenarios.
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6.2 Future Work

While this dissertation has made significant strides in integrating non-exponential discount-

ing into deep RL frameworks, several avenues for future research remain unexplored. Here

are some potential directions for further investigation:

6.2.1 Other Non-Exponential Discounting Functions

Although this dissertation focused primarily on hyperbolic discounting, other non-exponential

discounting functions, such as quasi-hyperbolic discounting or generalized hyperbolic dis-

counting, could be explored. These alternative functions may capture different aspects of

human decision-making behavior and could potentially lead to further improvements in agent

performance and human likeness.

6.2.2 Adaptive and Dynamic Discounting

The current work employed fixed discounting parameters (e.g., the hyperbolic discount factor

k and the sensitivity-to-delay parameter σ) across all environments and tasks. However, hu-

man decision-making is known to be context-dependent, with individuals exhibiting varying

degrees of patience and risk aversion based on the specific situation. Future research could

investigate adaptive or dynamic discounting mechanisms that can adjust the discounting

parameters based on the agent’s experiences, environmental cues, or task characteristics.

6.2.3 Survival Analysis

One promising avenue for future research involves leveraging survival analysis to bridge the

gap between reward discounting and the underlying hazard rate of the environment. By de-

veloping a learning representation that incorporates the empirical hazard rate over time, we

can enable agents to adapt their discounting strategies accordingly. Human decision-making

is profoundly influenced by the perceived level of hazard in a given situation, be it a wartime

scenario or a terminal medical diagnosis. Consequently, our plans and preferences can shift
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drastically based on our perceived life expectancy. Prior work (Fedus et al., 2019) has shown

that a known, constant hazard rate implies the suitability of exponential discounting, while

an unknown or variable hazard rate necessitates the adoption of non-exponential discount-

ing functions, such as hyperbolic discounting. Hyperbolic discounting, with its robustness

in scenarios of uncertain hazard, can facilitate learning over multiple horizons. However,

if the agent can accurately approximate the environment’s underlying hazard rate, it can

equivalently select a single, hazard-appropriate exponential discount factor. The overar-

ching goal of this research direction is to harness survival analysis techniques, including

statistical methods like Kaplan-Meier and Cox regression and machine learning approaches,

to estimate the hazard rate. Future work in this domain may explore the integration of

other non-exponential discounting functions, with a particular emphasis on studying priors

for the gamma distribution of the hazard rate, such as Erlang distributions. Additionally,

elucidating practical applications where certain discounting functions may be undesirable

could further refine our understanding of this intricate relationship between discounting and

hazard rates.

6.2.4 Multi-Agent Coordination

While this dissertation explored the impact of non-exponential discounting on agent decision-

making and performance in multi-agent settings, the focus was primarily on cooperative

and competitive scenarios. Future work could delve deeper into the implications of non-

exponential discounting for multi-agent coordination, particularly in scenarios involving com-

plex communication protocols, dynamic team formations, or hierarchical decision-making

structures. Another avenue of future work could be to study the effects of discounting in

competitive, zero-sum, and general-sum games.

6.2.5 Theoretical Foundations and Convergence Analysis

There exists a body of work that disagrees with hyperbolic discounting accurately captur-

ing the discounting model in humans (Sopher and Sheth, 2006). However, a predominant
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part of research in psychology suggests that observed empirical data does not fit exponential

function, and is more hyperbolic in nature. To circumvent the issue of whether humans

discount hyperbolically or not, one can study non-exponential discounting on its own mer-

its. Although the empirical results presented in this dissertation demonstrate the potential

benefits of non-exponential discounting, a more rigorous theoretical analysis of the proposed

methods’ convergence properties and optimality guarantees is warranted. Such theoretical

foundations could provide valuable insights into the conditions under which non-exponential

discounting is advantageous and could guide the development of more principled algorithms.

6.2.6 Integration with Other RL Advancements

This dissertation focused on the integration of non-exponential discounting into existing

deep RL frameworks. However, the field of reinforcement learning is rapidly evolving, with

new advancements in areas such as meta-learning, hierarchical reinforcement learning, and

multi-task learning. Future research could explore the synergies between non-exponential

discounting and these emerging techniques, potentially leading to more powerful and versatile

RL agents.

6.2.7 Real-World Applications and Deployment

While this dissertation primarily focused on evaluating the proposed methods in simulated

environments, the ultimate goal is to develop AI systems that can be deployed in real-world

scenarios. Future work could involve the application of non-exponential discounting tech-

niques to real-world problems, such as robotics, autonomous systems, or decision support

systems in domains where human-like decision-making is crucial. The application of dis-

counting in Large Language Models would be an interesting experiment.

6.2.8 Interpretability and Explainability

As AI systems become more complex and integrated into decision-making processes, there is a

growing need for interpretability and explainability. Future research could explore techniques
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for interpreting and explaining the decision-making processes of RL agents that employ non-

exponential discounting, potentially enhancing trust and transparency in these systems.

6.2.9 Ethical Considerations and Societal Impact

The development of AI systems that can mimic human-like decision-making raises important

ethical considerations and potential societal impacts. Future work should carefully examine

the ethical implications of non-exponential discounting in RL agents, particularly in domains

where decisions can have significant consequences, such as healthcare, finance, or public

policy.

By addressing these future research directions, the field of reinforcement learning can

continue to advance toward the development of more intelligent, adaptable, and human-

centric AI systems capable of making decisions that align with human preferences and values.
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