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Abstract 

Wheat bran is high in dietary fiber. Resistant starch (RS) is considered a source of dietary 

fiber. Wheat bran and RS have different functional properties and may not have the same 

nutritional properties. This dissertation covers two areas of importance in cereal chemistry and 

human nutrition: wheat bran and RS.  

Wheat bran chemical and physical influence of nutritional components 

Wheat bran has become a hot topic due to positive nutritional correlations, and industrial 

/humanitarian needs for healthy ingredients. Evolving wheat bran into a demanded product 

would impact the industry in a positive way. The overall aim of this research was to understand 

chemical and structural composition, to provide avenues for wheat bran development as a 

healthy food ingredient. To achieve this goal, antioxidant properties in dry wheat milling 

fractions were examined, effects of wheat bran particle size on phytochemical extractability and 

properties were measured, and substrate fermentation was investigated. It was noted that mixed 

mill streams, such as mill feed, have antioxidant properties (0.78 mg FAE/g; 1.28 mg/g total 

antioxidant capacity; 75.21% DPPH inhibition; 278.97 µmol FeSO4/g) originating from the bran 

and germ fractions. Additionally, extraction of reduced particle size whole wheat bran increased 

measured values for several assays (185.96 µg catechin/g;
 
36.6 µg/g; 425 µM TE), but did not 

increase volatile fatty acid production during in vitro rumen fermentation over unmilled bran.  

RS digestion, glycemic response and human fermentation 

In vitro action of enzymes on digestion of maize starches differing in amylose contents 

were studied. The objectives of this study were to investigate the exact role of α-amylase and 

amyloglucosidase in determining the digestibility of starch and to understand the mechanism of 

enzymatic actions on starch granules. Starch digestibility differed (30-60%) without combination 

of enzymes during in vitro assay. Further investigations utilized human glycemic response and 

fermentation with consumption of a type 3 RS without dietary fiber (AOAC method 991.43). 

Blood glucose response provided lower postprandial curves (glycemic index value of 21) and 

breath hydrogen curves displayed low incidences fermentation (40%) with consumption of the 

type 3 RS, due to the structure of starch and digestion by enzymatic action.  
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measured values for several assays (185.96 µg catechin/g;
 
36.6 µg/g; 425 µM TE), but did not 

increase volatile fatty acid production during in vitro rumen fermentation over unmilled bran.  

RS digestion, glycemic response and human fermentation 

In vitro action of enzymes on digestion of maize starches differing in amylose contents were 

studied. The objectives of this study were to investigate the exact role of α-amylase and 

amyloglucosidase in determining the digestibility of starch and to understand the mechanism of 

enzymatic actions on starch granules. Starch digestibility differed (30-60%) without combination 

of enzymes during in vitro assay. Further investigations utilized human glycemic response and 

fermentation with consumption of a type 3 RS without dietary fiber (AOAC method 991.43). 

Blood glucose response provided lower postprandial curves (glycemic index value of 21) and 
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Preface 

All chapters were written for a specified journal. Therefore, the required journal format 

was followed for each manuscript, with references following the text and figures in the requisite 

format for the respective journal; the references follow conclusions in Chapters 1-4, and 6, and 

the references follow results and discussion in Chapter 5. 

For the dissertation, several appendices were included, that may not be available within 

the final peer-reviewed publication. While this USDA grant led to several studies and 

publications, six were chosen for this dissertation. The following statements better explain the 

link of cereal chemistry to nutrition in each chapter:  

 

Chapter 1 – The link of cereal chemistry to nutrition for this chapter was made in the detailed 

review of information on the various wheat bran layers: epidermis, hypodermis, cross cells, tube 

cells, testa, nucellar epidermis, and aleurone. 

Future studies include utilization of the positive nutritional constituents analyzed to further the 

use of wheat bran as a functional food ingredient. Current studies within the Carbohydrate 

Polymers Lab are ongoing of the metabolic possibilities for pentosans and arabinoxylan, as one 

example. 

 

Chapter 2 – The link of cereal chemistry to nutrition is made in this chapter by an investigation 

of antioxidants within the wheat kernel and within the dry milling system. This experiment was 

conducted with as little variability as possible (by limiting the analyzed material) in order to 

understand the antioxidant availability within various dry milling streams. Identification of high 

concentrations of antioxidants within low-value mill streams provides applicable use of by-

product streams for the wheat industry, and therefore, increased revenue opportunities. 

Future studies include examination of antioxidant contributions within multiple mill runs, and 

those milled from various facilities (to identify differences due to change in processing).  

 

Chapter 3 – The link of cereal chemistry to nutrition is seen in this chapter by determining 

whether additional grinding could increase nutritional benefit within wheat bran. This technique 



xix 

 

is simple, and cost effective, as the technique utilizes equipment already within the dry milling 

process. Additional grinding is applicable as the use of coarsely or finely milled bran products 

could alter the projected specifications in a food formulation, if utilizing wheat bran for food 

health claims. 

Future studies include examination of differences in additional mill runs and of products 

produced by another facility to confirm the current results. Separate analysis of the fractions 

within whole fractions is also a future aim. Additionally, determination of increased or decreased 

antioxidative response in vitro (cell culture) and in vivo utilizing whole wheat bran or wheat bran 

extract substrates; and determination of wheat bran particle size effect on bile acid binding. 

 

Chapter 4 – The link of cereal chemistry to nutrition is noted in this chapter by the study of 

rumen fermentation (the first step in ruminant digestion), utilizing live rumen culture in vitro. 

Raw wheat bran can be a food source for beef cattle. This study aids in knowledge of the fate of 

wheat bran (as the test substrate) for use in feed formulation. By understanding beneficial 

processing steps, non-advantageous processing can be removed from the system to reduce feed 

production costs. 

Future studies include additional models with rumen fermentation, as well as additional 

fermentative models with gastric fluids from various sources (pig, synthetic human, etc.). 

 

Chapter 5 – The link of cereal chemistry to nutrition is seen in understanding the mechanism and 

enzymatic actions during a common in vitro (monogastric) starch digestion. The application of 

this study is in the research area of understanding in vitro analyses and starch digestion. 

Future studies include applying knowledge of enzyme digestion and synergy to starch for 

functional food development, as well as additional studies of in vitro mechanism on different 

substrates (wheat, sorghum, etc.) and within additional assays. 

 

Chapter 6 – The link of cereal chemistry to nutrition is most evident in this chapter. The chapter 

focuses on development of a type 3 resistant starch that is then studied in vivo, as the Grain 

Science department’s first in vivo trial on human metabolism. 

Future studies include additional in vivo human response studies funded and conducted by the 

Grain Science department. 
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Chapter 1 - Current topics of wheat bran physical and chemical 

structure  

 Abstract 

In an effort to provide healthier ingredients, researchers are studying staple foods that 

could better provide satiety and nutritional benefit. Wheat bran is a by-product of conventional 

milling that contains multiple vitamins, phenolic compounds, and phytochemicals, within a 

strong fibrous structure. The compounds in wheat bran are well known, but how they come 

together remains a mystery. Current chemical and structural properties of the multiple layers 

within wheat bran are often disconnected in published research. This review focuses on wheat 

bran component structure and functionality throughout the seven layers of the bran, as well as 

advances in knowledge of potentially health beneficial nonstarch polysaccharides, proteins and 

various antioxidants. Several studies of wheat bran structural and chemical properties have been 

reviewed and elucidated to help better understand the ingredient’s complex structure and evolve 

wheat bran as a functional food ingredient. 

 Introduction 

Wheat bran is a by-product of conventional flour milling (Campbell, 2007; Greffeuille et 

al., 2006; Peyron et al., 2002; Simmons and Meredith, 1979). By-products are seen as secondary 

within the system and as having little value compared with the main product. In modern 

processing, by- and/or co-products are utilized when possible to achieve profit gains in tight 

manufacturing margins (Lee and Stenvert, 1973; Sugden, 2001).  

Wheat kernels have three basic sections: endosperm (85%), bran (13%), and germ (2%), 

in descending total percentage volume (Jacobs and Gallaher, 2004; Osborne and Mendel, 1919). 



2 

 

[Wheat kernel figure is noted in Appendix A.] The central endosperm is used as flour, whereas 

the germ of the kernel contains the highest concentration of lipids, which can be extracted for oil 

or used as a feed component. When wheat kernels are processed for flour, the lower value 

components are the bran and the germ (Campbell, 2007).  

Wheat bran is mass-produced by roller milling wheat (Campbell, 2007). Roller milling 

offers a relatively clean separation of the bran and germ from the endosperm (Delcour et al., 

1999; Evers and Millar, 2002; Peyron et al., 2002), and the bran is removed with almost all bran 

layers intact. Instead of a by-product, wheat bran could be considered a co-product, which offers 

higher value and a greater net gain on the total sale from processing. With a growing population 

and a high demand for natural foods, widely available co-products should be investigated for 

optimal utilization.  

This review will focus on physical and chemical structure of wheat bran, although wheat 

bran has more application potential than expressed in this review, such as storage capability 

(Galliard and Gallagher, 1988), correlation with disease hindrance (Keagy et al., 1988; Wang, 

Yuan, et al., 2009) and diet/metabolic balance (Slavin and Stewart, 2010; Zacherl et al., 2011; 

Zoran et al., 1997). The components found in wheat bran are well known, but how they interact 

and integrate during and after development remains a mystery. This review discusses recent 

advancements in analytical techniques and chemical analyses that provide answers to wheat bran 

layer structural unknowns (Anson et al., 2012; Engelsen and Hansen, 2009; Martelli et al., 2010; 

Parker et al., 2005; P. R. Shewry et al., 2010; Toole et al., 2009; Wang, et al., 2009). We must 

understand compositional information and identify areas that require additional research to 

generate attainable queries and understand wheat bran as a functional food. 
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 Wheat bran production 

Commercial wheat bran includes the pericarp, seed coats, and aleurone layer along with 

some remnants of endosperm. Wheat bran produced by conventional milling consists of the outer 

portions of the kernel with 10–20% of endosperm attached, due to the kernel fractionation 

method (Chick, 1958). A comprehensive explanation of modern flour milling is available 

(Campbell, 2007), as well as details about milling conditions, including information on cleaning 

and adjustments (Sugden, 2001). Briefly, water is added to clean, whole wheat kernels to temper 

the wheat by softening the crumbly endosperm and toughening the bran. After this process, 

milling the kernels divides endosperm from bran. Wheat bran yield averages as 21.1–36.5% of 

the kernel weight (Rakszegi et al., 2008). To optimize flour yield, millers aim to produce large 

(>2000 µm) bran pieces and minimize shorts (broken bran pieces) (Campbell, 2007). Bran 

thickness in milling is not the only variable in the determination of post-milling particle size 

(Abecassis, 1993; Peyron et al., 2002). Grinding behavior (speed, equipment, and wear) during 

milling greatly influences the geometry of the bran pieces (Simmons and Meredith, 1979). Bran 

particle size in conjunction with biological differences in thickness of the aleurone layer, which 

can determine the ability of clean endosperm to be removed from the bran, can affect milling 

efficiency (Crewe and Jones, 1951). 

 Wheat bran economics 

As a staple food in the Western diet, wheat has great importance to society (Von Braun, 

2007). Wheat originated in the Fertile Crescent and is cultivated worldwide due to its ease of 

growth, diverse uses, and long-term storage (Chick, 1958; Lev-Yadun et al., 2000). One bushel 

of wheat is approximately 60 lb (~27 kg), which provides for approximately 42 lb (~19 kg) of 

flour and approximately 19 lb (~9 kg) of clean bran. Approximately, two billion bushels of 



4 

 

wheat are produced in the U.S. annually, and account for approximately $5.5 billion (Von Braun, 

2007). In May 2012, the average market value for wheat was $7.48 a bushel (USDA Market 

News, 2012). Per capita, wheat is the most consumed product in the U.S. (Bonjean, 2001; Von 

Braun, 2007). Americans consume 36% of the domestic-grown wheat crop, export 50%, and use 

10% for livestock and 4% for seed (Western Organization of Resource Councils (WORC)., 

2002). Approximately 45% of wheat bran is used for animal feed (Gutierrez-Alamo et al., 2008). 

Using the current total global production of wheat (Shewry et al., 2012), 600–700 million 

tonnes of wheat bran are produce annually (~1.4x10
12

 lb/~2.4 x10
10

 bushels). Annual global 

growth in wheat consumption is approximately 5% (Von Braun, 2007). Worldwide, wheat 

consumption is highest in Eastern Europe and Russia, where 30% of calories consumed are from 

wheat or wheat products; 20% is the global average. Wheat bran can be found in breads (whole 

grain, stone ground, and specialty), cosmetics, animal feed, and biomass (Kumar et al., 2011). 

 Wheat bran structure 

 Wheat bran description by layers 

The bran layers/fractions of pericarp, testa, aleurone, and nucellus have been known and 

reported since one of the first published investigations of wheat bran in the late 1800s (Girard, 

1884). The layers that make up bran are generally regarded as the epidermis, hypodermis, cross 

cells, tube cells, testa, nucellar epidermis, and aleurone. Bran often is referred to in regions: 

outer, immediate (Jerkovic et al., 2010; T. Nurmi et al., 2012), or inner layers (Barron et al., 

2007). Regional composition of bran can be debated, as many layers are incomplete or 

unrecognizable at maturation. The pericarp often includes the epidermis as well as the 

longitudinal, cross, and tube cells (Bohm et al., 2002). Alternative terms are aliases for the bran 

layers, such as perisperm (Raghavan and Olmedilla, 1989) or hyaline layer (Amrein et al., 2003; 
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Barron et al., 2007; Beaugrand et al., 2004) when referring to the nucellar epidermis. A recent 

article referred to bran layers by labeling according to the milling method by which they were 

produced (Nurmi et al., 2012). Table 1.1 represents the current individual and group names of 

the wheat bran layers. 

Differences in the mechanical properties of bran versus endosperm allow for complete 

separation, as seen in flour milling (Peyron et al., 2002). Differences in endosperm, aleurone 

layer, and remaining bran layers make the processing for extracting aleurone cells from the 

kernel possible (Bohm et al., 2002). A patent is assigned to Bühler AG (Switzerland), wherein 

the aleurone components are separated from the nonaleurone components in the bran, after 

removal of bran from endosperm (Bohm et al., 2002). The ability to separate components of the 

kernel may rely solely on bran layer chemical differences (Anson et al., 2012; Evers and Millar, 

2002). In wheat bran, aleurone cells are high in proteins, ferulic acid, and lipids, and are 

composed of thick nonlignified cell walls (Fulcher and Duke, 2002), whereas the pericarp has 

thick, lignified cells (Cheng et al., 1987). The bran, as a whole, is generally considered to have 

large concentrations of branched heteroxylans (with dimers of ferulic acid cross-linking), 

cellulose and lignin (Fincher et al., 1974; Hemery et al., 2011), even though diversity throughout 

the layers is known to exist.  

Studying the individual layers of wheat bran is difficult because individual layer sections 

are difficult to obtain (Martelli et al., 2010; Parker et al., 2005). A dissection of mature wheat 

bran layers was performed after overnight hydration at 4°C (Parker et al., 2005). The kernel 

cheek regions were scraped from the aleurone layer, and all peripheral layers were removed with 

a hypodermic needle. This portion accounted for the total bran sample (Parker et al., 2005). The 

outer pericarp was removed from the soaked grain with forceps, and the aleurone layer was 
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dissected from the shell. The cross cells (brown in hue) were dissected from the outside of the 

remaining layers. After cross cells were removed, the testa and the nucellar epidermis remained. 

The researchers obtained five layers from mature bran. They achieved partial separation of 

mature layers, with the exception of separation of the testa from the nucellar epidermis layer 

(Martelli et al., 2010; Parker et al., 2005). A full separation of testa from the nucellar epidermis 

layer of mature wheat has not been reported with evidence of full separation. Few reviews and 

in-depth descriptions are provided on individual bran layers. The most recent detailed bran layer 

description for cereal grains was reviewed by Evers and Millar (2002). While, informative and 

novel, the 2002 review was on all cereal grains, not just wheat bran. Therefore, a separate 

thorough description on wheat bran is needed. A description of each wheat bran layer is available 

in Table 1.2. The table describes each layer by name, the origin of the layer prior to maturation, 

whether the layer can be distinguished in a mature kernel, macro and micro components, 

characteristics and important distinctive traits. The diversity of each layer is defined in the table, 

and table data are from multiple references, provided only if authors referred to the layer by 

name.  

 The cross section of wheat bran 

The reported cross-section descriptions of bran and bran components vary. In Figure 

1.1A, the cross-section (Toole et al., 2009) portrays a bran layer that is 125–155 µm thick, which 

was extrapolated from the original figure, based on the scale dimensions provided by the authors. 

With electron microscopy, mature bran layers appear only three cells thick (DuPont and 

Selvendran, 1987), but seven layers are present. A visual representation of the layers, Figure 

1.1B, adapted from Benamrouche (2002), provides an autofluorescence of hydrated wheat bran 

layers and portrays the width of this bran section as over 500 µm. Figure 1.1C, a UV 
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autofluorescence photograph, is modified from the original image and labels each layer (Parker 

et al., 2005). The scale bar on Figure 1.1C constitutes 10 µm, reporting a wheat bran layer of 40 

µm. Alternate cross-sections and widths are represented in other publications whose images are 

not shown in this manuscript (Dexter and Wood, 1996; Jerkovic et al., 2010; Martelli et al., 

2010). 

Variation in reported dimensions may derive mainly from sample preparation and 

dissection technique. Different descriptions and dimensions are probably due to types of wheat, 

age of wheat, and/or moisture content (Antoine et al., 2004; Gebruers et al., 2008; Greffeuille et 

al., 2006). Structural differences vary between varieties (Gebruers et al., 2008), and variability in 

bran size is greatly dependent on the genetic origins of the cultivar (Bonjean, 2001). Spelt wheat 

seems to have the thickest bran for its size, and had the highest bran content of all the samples in 

the HEALTHGRAIN diversity screening (Gebruers et al., 2008). Regardless of the amount 

found from variety to variety, the bran is always considered the outer most portions. 

 Recent structural understanding of wheat bran  

The structure of wheat bran corresponds with its natural function: to protect the kernel. 

Water does not easily penetrate the mature kernel (Evers and Reed, 1988; Evers and Millar, 

2002), so extended tempering of bulk grain stores is necessary prior to flour milling. Tempering 

is utilized to soften the endosperm and toughen the bran for conventional flour milling (Glenn 

and Johnston, 1992). Water absorption in the kernel is heterogeneous (Becker, 1960) and enters 

quickly at the micropyle, a hole at the junction of the testa (Evers and Millar, 2002). The 

structure of bran is strong, and small flaws are not easily made in the bran under stress (Peyron et 

al., 2002). In processing, the bran layer is usually removed as one component with some 

endosperm attached, but processes have been developed to remove certain bran layers from the 
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kernel and leave the inner bran portions attached to the kernel (Dexter and Wood, 1996; Tkac, 

1990). 

Studies on wheat’s outer layers have shown that breaking the bran layers into three 

sections: aleurone, intermediate, and pericarp, results in fractions with different properties. 

Confocally (Antoine et al., 2003) and spectroscopically (Wetzel, 2009), these three sections have 

different patterns and chemical vibrations, respectively, that distinguish them from one another. 

A mechanical study showed the physical strength of the intermediate layer; its resistance to 

rupture (longitudinally and radially) was higher than the pericarp and aleurone layer combined 

(Antoine et al., 2003).  

Investigations of aleurone cells are abundant due to their distinct differentiation from the 

remaining bran layers. Minerals are concentrated in the aleurone cells of mature wheat, but the 

kernel as an embryo has a more diverse distribution (Ozturk et al., 2006; Pomeranz, 1988). The 

aleurone layer contributes significantly to whole wheat’s dietary fiber content (Stewart and 

Slavin, 2009). Aleurone cells resist digestion, but are digested to a greater extent than the wheat 

bran outer layers (Amrein et al., 2003). Wheat bran also resists fermentation by human fecal 

bacteria (Slavin, 2000). When insoluble fiber is fermented by intestinal microflora, bound 

antioxidants can be released (Slavin, 2000; Slavin, 2003). After 8 hours of exposure to intestinal 

microflora, bran particles are approximately their original size, and the aleurone cells are still 

recognizable cubicle cells. Researchers have assumed that the aleurone cell walls (noted to 

contain less ferulic acid) were the first to be degraded by colonic bacteria and that the amount of 

ferulic acid is important to the fermentability of aleurone cells and wheat bran (Amrein et al., 

2003; Klepacka and Fornal, 2006). Digestion of different bran layers within the human 

gastrointestinal tract merits further investigation and has not been well documented 



9 

 

 Chemical components of wheat bran  

The compositional analysis of bran was well established in late 20
th

-century publications 

(Kyriazakis and Emmans, 1995; Soest, 1984; P. J. Van Soest et al., 1991). The bran layers are 

chemically comprised of approximately: arabinoxylan (AX) (38%) > protein (25%) > cellulose 

(16%) > lignin (6.6%) (Brillouet and Mercier, 1981; Brillouet et al., 1982; DuPont and 

Selvendran, 1987). Average bran composition from commercial milling is noted in Table 1.3. 

While lipids are available throughout the kernel, the majority of wheat lipids are located within 

the germ. In addition, bran contains multiple micronutrients and phytochemicals (Evers and 

Millar, 2002; Pomeranz, 1988) with phenolic compounds (3.3–3.9 gallic acid equivalents per 

gram), phytosterols [1790–2140 μg/g (Nurmi et al., 2008; Nurmi et al., 2012; Piironen et al., 

2002; Piironen et al., 2008)], and carotenoids [0.50−1.80 μg/g lutein (Zhou et al., 2004)] in high 

concentration. The essential vitamins found in wheat bran per 100 g bran include: biotin (0.048 

mg), thiamin (0.54 mg), riboflavin (0.39–0.75 mg), pantothenic acid (2.2–3.9 mg), vitamin E 

(1.4 mg), niacin (14–18 mg), vitamin B6 (1–1.3 mg), and folate (79–200 μg) (Anson et al., 2012; 

Ball, 2006). A recent review of the bioactive potential of wheat bran by processing provides 

details about the chemical components within the bran, their development in the kernel, and their 

purpose (Anson et al., 2012). 

 Advances in wheat protein investigations 

Wheat bran contains the majority of protein found in the kernel (Dong et al., 1987; 

Pedersen and Lindberg, 2010). Wheat bran protein content is now known to be lower than 

original reports (Girard, 1884; Osborne and Mendel, 1919), with protein concentrations of 10.2–

13.8% (Amrein et al., 2003; Van Soest, 1994; Van Soest et al., 1991). Protein levels in wheat are 

generally higher those that of other cereal grains (Jerkovic et al., 2010; Sauvant, 2004). During 



10 

 

wheat development, the overall protein content can change based on growing conditions 

(Jerkovic et al., 2010). Lysine and tryptophan are the most abundant wheat bran amino acids 

(Dong et al., 1987; Pedersen and Lindberg, 2010). A quantitative amino acid profile for wheat 

bran is available from Pedersen and Lindberg (2010). 

The location of all enzymes (proteins) present in the bran portion of mature wheat was 

determined using proteomics (Jerkovic et al., 2010). Proteomic studies are intensive chemical 

and/or molecular analyses focusing on protein and their constituents (Laubin et al., 2008; Oda et 

al., 2006). Using immunofluorescence microscopy, researchers determined that oxalate oxidase, 

peroxidase, and polyphenol oxidase reside in the outer layers, xylanase inhibitor protein I in the 

intermediate fraction, and pathogenesis-related protein 4 in the aleurone layer. All proteins found 

in the outer portion (epidermis and hypodermis layers) function to protect the kernel from 

degradation (Jerkovic et al., 2010). A diverse protein profile is present in the intermediate (cross 

cells, tube cells, testa, and nucellar epidermis layers) fraction (Jerkovic et al., 2010), and the 

inner layer (the aleurone cells) is rich in antioxidants and defense enzymes, as well as storage 

protein 7s globulin, which is specific to this layer (Jerkovic et al., 2010). Details of the enzymes 

in the outer layer, inner layer, and water-soluble bran portion are available in the original 

publication (Jerkovic et al., 2010). 

 Advances in knowledge of vitamins, minerals, and antioxidants matrices in wheat 

bran 

Engelsen (2009) determined the distribution of the eight variants of vitamin E within 

milling fractions. The majority of vitamin E is found in the germ portion of the kernel, with bran 

containing the second-highest amount. Tocopherols are highly concentrated in the germ portion 

but are more distributed within the grain, with a slightly greater content in the finer shattering 
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bran portions (Table 1.4) (Engelsen and Hansen, 2009). In vivo, the variants of vitamin E are 

absorbed by the same mechanism, until uptake at the liver (Traber and Atkinson, 2007). Only -

tocopherol contributes to serum levels of vitamin E due to a highly specific lipid-soluble vitamin 

receptor mechanism in the liver. -tocopherol is taken up by -tocopherol transfer protein 

(TTP), whereas the other forms are broken down by enzymatic action (Takada and Suzuki, 

2010; Traber and Atkinson, 2007). As certain variants possess enhanced nutritive value, 

Engelsen and Hansen (2009) also calculated -tocopherol equivalents, for a better representation 

of bioavailability. The study concluded that reduction of wheat bran particle size significantly 

increases the available -tocopherol portion (Engelsen and Hansen, 2009). This phenomenon 

could be true for other minerals or vitamins in bran (Engelsen and Hansen, 2009; Kahlon et al., 

1986), but it has not been investigated. 

With identification of the high portion of antioxidants comparatively (to other antioxidant 

containing foods) found in wheat (Okarter and Liu, 2010; Qu et al., 2005), wheat antioxidants 

have become a subject of intensive investigation. Phenolic compounds are the main antioxidant 

found in wheat (Alvarez-Jubete et al., 2010; Barron et al., 2007; Jonnala et al., 2010; Klepacka 

and Fornal, 2006; Mattila et al., 2005; Menga et al., 2009; Parker et al., 2005; Stalikas, 2007; 

Verma et al., 2009). From the same kernel, phenolic compounds in bran are 10–20 times higher 

than in endosperm (Klepacka and Fornal, 2006; Mattila et al., 2005). Ferulic acid is the dominant 

phenolic acid in the bran (Abdel-Aal, 2001; Klepacka and Fornal, 2006), and is in conjunction 

with AX, which is further discussed in the section of Progress in the knowledge of 

polysaccharides. Phenolic compounds are predominantly found in the outer layers of wheat bran 

as a structural component of the cell wall, providing UV radiative and pathogenic element 

protection (Parker et al., 2005; Stalikas, 2007). Phenolic content and availability are affected by 
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environment, farming, mutation, and processing (Gélinas and McKinnon, 2006; O˝zer et al., 2006; 

Yu et al., 2003). 

Multiple methods exist to measure the phenolic contents in wheat. Table 1.5 depicts the 

variety of phenolic extractions that have been published. After compound extraction from the 

solid sample, a total phenolic content (TPC) assay can be quantified on a spectrophotometer. 

TPC is determined by a Folin Ciocolteau reagent assay on extracted compounds in solution and 

spectrometrically read at 760–765 nm. Folin-Ciocalteu reagent is a mixture of 

phosphomolybdate and phosphotungstate and reacts with any reducing substance to measure the 

total reducing capacity of a sample. The intensity of the color, determined by the mixture of 

reagent and sample, represents the amount of the sample required to inhibit the oxidation of the 

reagent. The TPC assay by colorimetric analysis is relatively uniform in many lab groups (Adom 

and Liu, 2002; Singleton et al., 1999; Verma et al., 2008). Methods to extract phenolic acids 

(whether free, bound, or total) vary between research groups, and can inhibit sound comparisons 

between groups. Some groups begin by extracting lipids from the sample with a hexane (Kim et 

al., 2006; Kim et al., 2011; Zhu et al., 2010) or petroleum ether (Onyeneho and Hettiarachchy, 

1992). To some extent, lipid-soluble vitamins could be removed by this treatment, depending on 

the method, force, and particle size (Engelsen and Hansen, 2009). Some researchers begin a 

phytochemical and/or phenolic acid extraction (bound or total) with alkali (Adom and Liu, 2002; 

Adom et al., 2005; Butsat et al., 2009; Okarter et al., 2010; Siebenhandl et al., 2007), and others 

begin with alcohol (Abdel-Aal and Hucl, 2003; Butsat and Siriamornpun, 2010; Verma et al., 

2009; Zhou and Yu, 2004). Free phenolic compounds in plant tissue can be extracted with 

organic solvents (Adom and Liu, 2002; Butsat et al., 2009; Okarter et al., 2010; Zielinski and 

Kozlowska, 2000), but the bound portion remains intact. Some research groups adjust moisture 
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prior to extraction (Verma et al., 2008), and others employ ultrasonic baths (Wang et al., 2008), 

because recovery with most extraction methods is relatively low (Liyana-Pathirana and Shahidi, 

2006). Results vary when multiple extraction methods are tested simultaneously (Zhou and Yu, 

2004), and a consensus on the proper technique to quantify these compounds for referencing and 

comparison across publications is needed. Selective extraction is recommended, because 

subsequent selective analysis or extraction of desired compounds does not minimize interference 

of other compounds that coexist or reduce contamination (Jones and Kingkorn, 2006). 

Many studies have evaluated the variability of different nutrients in wheat varieties 

(Gutierrez-Alamo et al., 2008). For more details, an extensive study of the phenolic acid 

composition and antioxidant capacity of hydrolyzed wheat bran fractions was completed by 

Verma et al. (2009) and chemical/compositional wheat cultivar comparisons were conducted as 

part of the HEALTHGRAIN project (Andersson et al., 2008; Nurmi et al., 2008; Piironen et al., 

2008; Poutanen et al., 2008; Rakszegi et al., 2008; Ward et al., 2008). In 2005, a project entitled 

the HEALTHGRAIN project began in the European Union under the sixth Framework Program, 

project code FOOD-CT-2005-514008 (Poutanen et al., 2008). One hundred and fifty wheat lines 

were screened for bran yield, fiber composition, gluten contents, phytochemicals, protein 

contents, and various technical aspects; comparing between varieties, from different origins, all 

grown in the same location (Rakszegi et al., 2008). 

Phenolic compounds, vitamins, and remaining antioxidants are thought to reside in the 

same matrix. In free and bound form, many wheat bran antioxidants cannot be digested in the 

human gastrointestinal tract in their complex form (Anson et al., 2009; Anson et al., 2011; Menga et 

al., 2009; O˝zer et al., 2006). Some bound components in bran can be released through different 

processing techniques and digestions (Stalikas, 2007; Thanh and Nout, 2002). The majority of 
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antioxidant compounds are bound in ester linkages to the abundant polysaccaharides in the cell 

wall and present as lignin, therefore rendering them unavailable (Stalikas, 2007). Lignin is an 

organic polymer that fills spaces in the cell wall between cellulose and hemicellulose, accounting 

for 3–7% of the bran. Lignan, a bound antioxidant in wheat bran, is a dietary phytoestrogen that 

is bound until released and is reported as 2.6–3% of total bran (National Research Council (US). 

Subcommittee on Feed Composition, 1982; Robertson and Eastwood, 1981). Secoisolariciresinol 

diglucoside is the major lignan compound found in wheat bran, it can be extracted with 

methanol, and the metabolic components derived from wheat bran secoisolariciresinol 

diglucosides are involved in antitumor activities in colon cancer SW480 cells when unbound (Qu 

et al., 2005). Bound components in bran can be released by different processing techniques 

(Stalikas, 2007; Thanh and Nout, 2002) and reactions (Slavin, 2000; Slavin, 2003). 

Of all wheat bran layers, the aleurone layer has the highest concentration of phenolic 

acids and antioxidant activity (Zhou and Yu, 2004; Zhou et al., 2004), but increased efforts are 

needed to decipher which layer contains the most bioavailable antioxidants. The antioxidants 

present in a sample and antioxidant activity are not the same value. To be biologically available 

in the human digestive system, an antioxidant must first arrive to a point of absorption, be 

unbound for absorption, and not be inhibited by molecules around the site of absorption. When 

unavailable antioxidants are present, the nutritional value depends on the amount released during 

any part of the digestive process that is absorbed and utilized  

Multiple compounds within wheat bran exude antioxidant properties (Lachman et al., 

2012) and the chemical diversity of antioxidants makes it difficult to separate and quantify 

individual antioxidants (Ou et al., 2002). No single measure of antioxidant concentration can 

express the ability, activity and capacity of antioxidants present. In addition, diverse antioxidant 
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compounds have the ability to act in vivo via multiple mechanisms (Pellegrini et al., 2003), thus 

multiple in vitro antioxidant models are available to investigate ‘total antioxidant’ properties.  

Chemically distinct antioxidant quantification methods between an oxidant and a free 

radical are mechanistically based on either electron or hydrogen atom transfer, and it is necessary 

to evaluate whether different methods can provide comparable antioxidant values for the same 

sample (Ou et al., 2002). Antioxidants can be measured in vitro by 2,2-azinobis (3-

ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS+), ferric ion reducing antioxidant 

power (FRAP) assay, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity, oxygen 

radical absorbance capacity (ORAC), Trolox equivalent antioxidant capacity (TEAC) or TPC 

assay (Herald et al., 2012; Roy et al., 2010; Thaipong et al., 2006). ABTS+, DPPH and TEAC 

utilize single electron transfer measurement to determine antioxidant reducing capacity (Roy et 

al., 2010; Thaipong et al., 2006). FRAP measures antioxidant power by reducing power of the 

electron donating antioxidants present in the extract (Benzie and Strain, 1999; Ou et al., 2002; 

Thaipong et al., 2006). ORAC measures antioxidant properties by hydrogen atom transfer, 

assessing antioxidant donating capacity (Huang et al., 2005; Roy et al., 2010). ORAC is noted 

for its representation of measuring antioxidant capacities as they would appear in vivo, but the 

mechanism is unconfirmed. ORAC is also thought to be related to FRAP and DPPH, although it 

is not linear (Thaipong et al., 2006). Multiple methods are often employed to investigate ‘total 

antioxidant’ response, as there is difficulty in separating and quantifying individual antioxidants 

due to the chemical diversity of antioxidants (Ou et al., 2002). Antioxidant properties can be 

measured by high-performance liquid chromatography or spectrophotometry (Alvarez-Jubete et 

al., 2010; Alvarez-Jubete et al., 2010; Herald et al., 2012; Kubola and Siriamornpun, 2008). 
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 Progress in the knowledge of non-starch polysaccharides 

Major non-starch polysaccharides in wheat bran include AX (70%), cellulose (24%), and 

beta 1–4 glucan (6%) (Brillouet and Mercier, 1981; Selvendran, 1987). Small amounts of 

glucomannan (Gruppen et al., 1989), arabinogalactan (Fincher et al., 1974), xyloglucan (DuPont 

and Selvendran, 1987) have also been reported. A significant number of investigations are on 

examining AX in breadmaking functional properties (Courtin et al., 1999; van Craeyveld et al., 

2009), AX as a food additive (Izydorczyk and Biliaderis, 1995), and promotion of AX with 

several health claims (Cao et al., 2011; Courtin et al., 2008; Swennen et al., 2006). Current 

research investigations are on AX and its constituents include defining its origin, uses, and 

quantification within grains (Cao et al., 2011; Courtin et al., 2008; Kiszonas et al., 2012; 

Mandalari et al., 2005; Pollet et al., 2012; Swennen et al., 2006; Toole et al., 2009), as well as 

best methods for extraction (Delcour et al., 1999; Mandalari et al., 2005; Marinkovic and Estrine, 

2010; Swennen et al., 2006; van Craeyveld et al., 2009). Therefore, current explorations of AX 

will be discussed. In wheat, the main hemicellulose portion is AX. AX is a feruloylated 

oligosaccharide, where the xylan and phenolic acid matrices coalesce, but a percentage can be 

isolated by mild acid hydrolysis (Wang, et al., 2009). Secondary plant cell wall digestion by 

enzymes is limited, and 35% of cell wall xylan is able to be released after enzymatic digestion of 

wheat bran (Lequart et al., 1999). AX is fully developed 20 days post-anthesis and shows no 

significant change afterward (Beaugrand et al., 2004). The exact arrangement of AX is unknown, 

but AX is theorized to coat or cross cellulose microfibrils (Carpita, 1996; Mitchell et al., 2007), 

in which case primary cell walls, cellulose, and hemicellulose may act as a network embedded in 

the protein matrix and make AX and cellulose part of the matrix themselves (Mitchell et al., 

2007). Xylan concentrations are ~5% of the primary cell wall in dicots as opposed to 20% in the 

seeds of grasses (McNeil et al., 1984). The constituents of the pericarp average 660 g AX/kg and 
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320 g cellulose/kg. In the aleurone cells, small contents of beta glucan (310 g/kg) and AX (650 

g/kg) are present (Bacic and Stone, 1981; Selvendran, 1984; Selvendran, 1987). Genes that are 

responsible for encoding AX are under investigation (Mitchell et al., 2007). 

Great variation is possible for phytochemicals in wheat. AX is affected by temperature 

variation and environmental conditions (Finnie et al., 2006; Toole et al., 2010). The arabinose to 

xylan ratio (A/X) is slightly lowered in cooler/wetter growth environments, and esterification of 

the endosperm cell walls with ferulic acid is lowered under hot/dry conditions (Toole et al., 

2010). With respects to the milling yields, soluble AX in white flour can vary by 4.7-fold from 

genetic and environmental differences (Shewry et al., 2010). 

Advanced analytical techniques now elucidate once unknown biological factors. Using 

Fourier transform infrared (FT-IR) spectroscopic analysis on feruloylated oligosaccharides, 

researchers noted that a band at 1731 cm
-1

 is due to the ferulic acid ester group on the 

oligosaccharides, whereas conjugated double bonds are at 1253 cm
-1

, and vibration of the phenyl 

ring is found at 1596 cm
-1

. The band representing xylooligosaccharides is at 1042 cm
-1

, with 897 

cm
-1

 representing beta glycosidic linkages between glucose units. The band at 811 cm
-1

 was 

proposed to be from the furanose derivatives of the beta glycosidic linkages (Wang, et al., 2009). 

Using a Perkin-Elmer (Shelton, CT) Spectrum Spotlight IR microscope optically interfaced to a 

SpectrumOne spectrometer in the Kansas State University Microbeam Molecular Spectroscopy 

Laboratory (Manhattan, KS), wheat bran spectra were collected in an attempt to view the bands 

coordinating with feruloylated oligosaccharides. Using the spectrum software supplied with the 

imaging system (Spotlight 7.0) and OMNIC (both from Thermo-Fisher, Madison, WI), an 

average spectrum was processed in absorbance to label the previously identified bands (Wang, et 

al., 2009) within the fingerprint region (Wetzel and Brewer, 2010). In Figure 1.2, FT-IR 
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spectroscopic wheat bran mapping to obtain multiple spectra noted the band at 1730 cm
-1

 due to 

the ferulic acid ester group on the oligosaccharides, with conjugated double bonds at 1252 cm
-1

 

and vibration of the phenyl ring around 1596 cm
-1

. In the previous study, bands for 

xylooligosaccharides were noted at 1042 cm
-1

 and 897 cm
-1

; however, the proposed band at 811 

cm
-1

 from furanose derivatives of the beta glycosidic linkages was not detected in Figure 1.2. 

Absence of this band may be due to the range of instrument detection, the concentration of 

furanose derivatives of the beta glycosidic linkages within the sample, or diminished vibration 

from the calculation of an average spectrum. The identification of bands in molecular 

spectroscopy aids in the use of FT-IR in grain research (Wetzel and Brewer, 2010). 

Analysis of FT-IR spectra determined that the shoulder height in the spectrum at 1,075 

cm
-1

 reflected the extent of branching of the AX structure (Toole et al., 2009). For analytical 

comparison, the ratio of the 1,075 cm
-1

 shoulder to the major peak at 1,041 cm
-1

 was calculated. 

Martelli et al. (2010) collected attenuated total reflectance FT-IR spectra from specific layers 

within the bran layer (the aleurone layer and the nucellar epidermis) and noted that a band at 

1740 cm
-1

 was present only in the aleurone spectra, and not in the nucellar epidermis spectra. A 

band at 1740 cm
-1

 represents a carbonyl vibration and is associated with lipid content in 

molecular spectroscopy (Brewer et al., 2012; Wetzel and Brewer, 2010). 

AX doublets (1,024–1,151 cm
-1

) were calculated using Raman spectroscopy from the 

second derivative spectra (and multiplied by -1) (Toole et al., 2009). The A/X ratio was 

calculated from the intensities of the peaks at 494 and 570 cm
-1

. Raman provides the best spatial 

resolution for this experiment because FT-IR microspectroscopy provides limited information on 

AX structure, making it difficult to determine changes with weak absorbance and overlap of cell 

wall compounds. Even with Raman, distinguishing monomeric and dimeric forms of bound 
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ferulic acid is not possible (Toole et al., 2009). Monomeric and dimeric forms of bound ferulic 

acids are in need of further research and understanding.  

More traditional analytical methods can be used to quantify xylan constituents. 

Quantification of AX content and A/X can be determined by gas chromatography of alditol 

acetates (Courtin et al., 2000) and ferulic compounds (Abdel-Aal, 2001). Further investigation of 

the chemical components and their arrangement in space is needed. The chemical components in 

a mature kernel cell wall can be assorted at a supramolecular level, making analytical separation 

with high-tech instrumentation difficult (Autio, 2001). 

 Conclusions 

Many advances in basic wheat bran knowledge have been elucidated in the past 20 years. 

Wheat bran has become a hot topic due to its positive nutritional correlations, industrial and 

humanitarian needs for healthy ingredients, and availability within the industry. The knowledge 

reviewed in this article was collected to enhance the understanding of and to stimulate readers to 

pursue additional experiments with the diverse chemistry and structure of wheat bran. 

Developing wheat bran as an ingredient and higher demand product would positively affect the 

wheat industry. 
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Figure 1.1 Cross sections of wheat 

 

A: Photomicrograph of a wheat kernel cross-section (Toole et al., 2009). B: an autofluorescence 

image of hydrated wheat bran layers. AL: aleurone layer, NL: nucellus, T: testa, CC: cross cells, 

EPI: epidermis, HYP: hypodermis. C: UV autofluorescence photograph showing: 1) outer layer, 

2) cross cells, 3) testa and nucellar epidermis, and 4) aleurone layer; modified (Parker et al., 

2005). Sizing bar is included in each image. 
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Figure 1.2. Average spectrum of wheat bran via FT-IR microscopic analysis of wheat bran.  

Band numbers represent molecule bands identified in on feruloylated oligosaccharides by 

(Wang, et al., 2009). In the wheat bran spectrum, the following partially contributed to the band 

intensity at each point: 1730 cm
-1

 - ferulic acid ester groups, 1599 cm
-1

 - phenyl rings, 1252 cm
-1

 

- conjugated double bonds, 1042 cm
-1

 - xylooligosaccharides, and 897 cm
-1

 - beta glycosidic 

linkages. 
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Table 1.1. Layers of wheat bran and their function. 

Region Layers often included Function to the wheat kernel 

Aleurone Aleurone, aleurone cells with 

subaleurone (peripheral cells) 

Major AX and phytochemical storage layer. Transfers 

nutrients to endosperm before maturation (T. Evers 

and Millar, 2002). 

Inner layer Nucellar epidermis, aleurone Contains the largest portion of AX and nutrients (T. 

Evers and Millar, 2002). 

Intermediate Cross cells, tube cells, testa, nucellar 

epidermis  

Diverse protein composition (Jerkovic et al., 2010). 

Nucellar 

epidermis 

Nucellar, hyaline layer, perisperm, 

seed coat 

During maturation, this layer is the perisperm, a 

storage tissue (Raghavan and Olmedilla, 1989). 

Outer layer Epidermis, hypodermis Protective layer, approximately 15-30 µm thick 

(Barron et al., 2007); does not prevent water from 

penetrating (T. Evers and Millar, 2002). 

Pericarp Outer: Epidermis, hypodermis; Inter: 

longitudinal cells, cross and tube cells 

Protective layer, approximately 30-50 µm in length 

(Moss, 1977); composed of empty cells due to 

cytoplasmic degeneration of cross and tube cells 

(Morrison, 1976). 

Testa Seed coat, carpel wall, spermoderm Protective, water proof layer (T. Evers and Millar, 

2002), approximately 6 µm thick (Moss, 1977). 
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Table 1.2. Compiled description of each layer of wheat bran.  

Layer* Origin 

Notable in 

the mature 

kernel 

Macro 

components 

(Protein, starch, 

lipid, cellulose, 

hemicellulose) 

Micro components 

(chemicals, 

vitamins) 

Notably 

physical 

characteristics 

Research 

highlights 

Aleurone Present in the embryo 

(T. Evers and Millar, 

2002). 

 

Yes High levels of 

protein: 13.4-

16.2% (Amrein et 

al., 2003; Lee and 

Stenvert, 1973), as 

mostly lysine and 

arginine (Moore et 

al., 2005). 

Once believed to 

contain the largest 

lipid content in 

bran (Amrein et 

al., 2003; Lee and 

Stenvert, 1973), 

but recently 

reported to contain 

only small levels 

of lipids (Moore et 

al., 2005). 

5–8% cellulose 

(Amrein et al., 

2003). 

Contains 25% of 

AX in the bran 

(Benamrouche et 

al., 2002). 

Contains traces of 

glucomannan and 

arabinogalactan 

(Fincher et al., 

1974; Gruppen et 

al., 1989). 

High concentration 

of inhomogeneous 

distributed ferulic 

acid (Saadi et al., 

1998). 

Location of 

delphinidin 3-

glucoside, the 

anthocyaninic 

compound in blue 

wheat (Abdel-Aal et 

al., 2006). 

Contains 60% of all 

minerals found in 

the kernel (Amrein 

et al., 2003). 

5.1–5.4% phytate 

and 47.9–53.4% 

fiber (Amrein et al., 

2003; Bacic and 

Stone, 1981). 

Thiamin is confined 

to this layer (Ball, 

2006). 

Lowest 

concentration of 

uronic acid (Parker 

et al., 2005). 

80% of niacin, 60% 

of pyridoxine, and 

60% of the total 

minerals found in 

the kernel (Bacic 

and Stone, 1981; 

Stewart and Slavin, 

2009). 

Each cell is 40–

50 µm diameter 

(Martelli et al., 

2010), and up to 

55 X 100 µm 

(Barron et al., 

2007; Martelli et 

al., 2010). 

Cubic cells with 

6–8 µm thick cell 

walls (T. Evers 

and Millar, 2002; 

Stevens et al., 

1988). 

50% of the bran 

(Anson et al., 

2012; Bacic and 

Stone, 1981) 

6.7% (volume) of 

the wheat kernel 

(T. Evers and 

Millar, 2002). 

One of the two 

remaining cells 

from grain 

development, 

present within 8 

days post-

anthesis 

(Morrison, 

1975).  

Contains high 

levels of fiber 

(Moore et al., 

2005). 

AX matrix greatly 

affects the rate of 

water adsorption 

in the aleurone 

(Lee and Stenvert, 

1973) (not 

reported in 

reference to the 

kernel). 

The composition 

(protein, etc.) 

causes this layer to 

restrict water 

absorption into the 

endosperm (Hook 

et al., 1982). 

Weakest portion is 

at the junction of 

two cells (Amrein 

et al., 2003).  

Phenolic acids and 

beta glucans are 

higher in the 

aleurone layer 

(Antoine et al., 

2003; Antoine et 

al., 2004). 

Contains no 

peroxidase, 

polyphenol 

oxidase, or oxalate 

oxidase (Jerkovic 

et al., 2010). 

Cross cells From the carpel wall 

(Parker et al., 2005) 

Yes Starch is present 

only in the early 

High concentration 

of dehydro-

Considered a 

fruit coat. 

Thought to not 

autolyse in 
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days post-anthesis, 

where 

heterodistributed 

amyloplasts have 

starch deposits 

(Morrison, 1976). 

diferulates (Antoine 

et al., 2003; Parker 

et al., 2005). 

Highest 

concentration of 

uronic acid (Parker 

et al., 2005). 

Contains significant 

quantities (in 

comparison to the 

other layers) of 

vanillin, vanillic 

acid, p-hydro-

xybenzoic acid, and 

p-coumaric acid 

(Parker et al., 

2005). 

Supported to the 

cuticle of the 

testa (T. Evers 

and Millar, 

2002). 

A complete cell 

layer around the 

kernel, unlike the 

tube cells 

(Morrison, 

1975). 

maruation (Parker 

et al., 2005). 

21 days post-

anthesis, there is 

no starch within 

(Morrison, 1976). 

Contains 

chloroplasts, with 

active amylopast 

post-anthesis 

(Morrison, 1976). 

Epidermis From the carpel wall 

(Parker et al., 2005). 

Yes Mostly cellulose 

(Lee and Stenvert, 

1973). 

High concentration 

of 

dehydrodiferulates 

(Antoine et al., 

2003; Parker et al., 

2005). 

Considered a 

fruit coat. 

Cells are 

elongated in the 

direction of the 

embryonic axis 

(T. Evers and 

Millar, 2002). 

Resistant to 

endoxylanase 

treatment 

(Benamrouche et 

al., 2002). 

Hypodermis From the carpel wall 

(Parker et al., 2005). 

No  High concentration 

of 

dehydrodiferulates 

(Antoine et al., 

2003; Parker et al., 

2005). 

Considered a 

fruit coat. 

Cells are 

elongated in the 

direction of the 

embryonic axis 

(T. Evers and 

Millar, 2002). 

Resistant to 

endoxylanase 

treatment 

(Benamrouche et 

al., 2002). 

Nucellar 

epidermis 

Present in the embryo. 

Derived from or near 

the chalaza (T. Evers 

and Millar, 2002). 

No Contains a high 

portion of the 

protein found in 

bran (Lee and 

Stenvert, 1973). 

May contain 

largest lipid 

content in bran 

(Lee and Stenvert, 

1973). 

Rich in cellulose 

(Autio, 2001). 

Contains 25% of 

 Has pigment. 

Mass of this 

tissue is present 

in the crease (T. 

Evers and Millar, 

2002).  

Cuticular on the 

outer surface (A. 

D. Evers and 

Reed, 1988; 

Morrison, 1975). 

The outer cuticle 

is 1–1.5 µm thick 

Possibly the least 

permeable to 

water (Morrison, 

1976). 

Source tissue 

degenerates by 

programmed cell 

death and 

compacts the 

tissue area in 

maturation 

(Domínguez et al., 

2001). 
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AX in the bran 

(Benamrouche et 

al., 2002) with 

high amounts of 

monomer ferulic 

acid and low 

amount of dimers 

(few crosslinks) 

(Barron et al., 

2007). 

and visible 7 

days post-

anthesis and-

compressed 

within 3–4 weeks 

(Morrison, 1976; 

Ugalde and 

Jenner, 1990). 

Thinner than the 

testa (T. Evers 

and Millar, 

2002). 

Could not be 

studied by 

synchrontron FT-

IR analysis due to 

insufficient spatial 

resolution (Jamme 

et al., 2008). 

Testa From the rough 

protective layer of the 

carpel and the chalaza 

(T. Evers and Millar, 

2002). 

No Contains 2% of 

AX in the bran 

(Benamrouche et 

al., 2002). 

Rich in lignin 

(Landberg et al., 

2008) 

Alkylresorcinols are 

specific to this layer 

(Landberg et al., 

2008). 

Has pigment; 

structure 

discontinues in 

the crease (T. 

Evers and Millar, 

2002). 

Hypothesized to 

be the thinnest 

mature layer: 5–8 

µm (Barron et 

al., 2007; Moss, 

1977); however, 

has been reported 

as thicker than 

the nucellar 

epidermis (T. 

Evers and Millar, 

2002). 

Two layers: a 

pigment layer 

and a waxy 

cuticular layer. 

They are 

flattened together 

from the 

expanding 

endosperm in 

maturation (A. 

D. Evers and 

Reed, 1988) 

The inner most 

pericarp tissue 

(A. D. Evers and 

Reed, 1988) 

Hydrophobic 

tissue (Landberg 

et al., 2008); 

possibly the least 

permeable to 

water (T. Evers 

and Millar, 2002; 

Hinton, 1955). 

Strong correlation 

is found between 

the degree of red 

pigment found in 

this portion and a 

resistance to 

preharvest 

sprouting (T. 

Evers and Millar, 

2002). 

Takes 1 hour for 

water to penetrate 

this layer (Hook et 

al., 1982). 
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Cuticular on the 

outer surface (A. 

D. Evers and 

Reed, 1988; 

Morrison, 1975) 

Tube cells From the carpel wall 

(Parker et al., 2005). 

Yes Free of starch 

prior to 

maturation, just 

before the cross 

cells are free of 

starch deposits 

(Morrison, 1976). 

 

 Considered a 

fruit coat; with 

180 µm cells at 

the longest 

diameter 

(Morrison, 

1976). 

Fragmentary 

nature; 

discontinuously 

lying on the testa 

(T. Evers and 

Millar, 2002; 

Morrison, 1975). 

Contains 

chloroplasts, with 

active amylopast 

post-anthesis 

(Morrison, 1976). 

 

 

*The bran layers include: the epidermis, hypodermis, cross cells, tube cells, testa, nucellar 

epidermis, and aleurone. Data include durum, spring, and winter wheats. 
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Table 1.3. Major constituents of wheat bran produced by commercial flour milling by 

percentage. 

Constituent Percentage Reference 

Nonstarch polysaccharides (26% AX)  41–60 (Amrein et al., 2003) 

Starch 10–20 (Maes and Delcour, 2001) 

Protein 15–20  (Maes and Delcour, 2001) 
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Table 1.4. Roller milled sample derivations of tocopherols, adapted from Engelsen and 

Hansen (2009).  

All numerical values are reported as µg/g. 

Roller milled - T* - T* - T3* - T3* - TE** Total tocols 

Coarse bran 5.01.1 3.30.4 6.50.1 25.31.3 0.010 40.1 

Fine bran 29.51.8 12.80.1 9.50.7 31.00.4 0.440 82.8 

Germ 195.22.4 71.30.6 2.80.7 17.20.9 0.232 286.5 

Wheat flour 7.80.1 4.60.1 3.50.1 21.90.2 0.012 37.8 

*values determined for α-T, β-T, α-T3, and β-T3 are α-tocopherol, β-tocopherol, α-tocotrienol, 

and β-tocotrienol, respectively. 

** where α-TE = [(α-T × 1.0) + (β-T × 0.5) + (α-T3 × 0.3) + (β-T3 × 0.05)] 
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Table 1.5. Phenolic acid extractions in publications. 

Group* 

Multi 

extraction 

Sample 

size 

Minimum 

time to 

complete 

method Extraction solvents 

Approx. 

centrifuge 

speed Stir speed Filter Nitrogen gas 

Dissolve 

solvent 

Special 

requirements 

Alvarez-

Jubete 

(Alvarez-

Jubete et al., 

2010) 

 

No 1.25 g 1 hour Methanol 2,000 rpm 12000 rpm Yes No None Homogenize 

sample before 

extraction. 

Beta (Beta et 

al., 1999; 

Hirawan et al., 

2010; Li, 

Pickard, and 

Beta, 2007a; 

Li, Pickard, 

and Beta, 

2007b) 

No Raw 

material – 

200 mg 

or 1 g 

Food 

product – 

4 g 

2-4 hours 100% methanol 

36.5–38% 

methanol:hydrochloric 

acid (99:1, v/v) 

10,000 rpm 

at 5°C 

7,800 g 

(Hirawan et 

al., 2010; Li, 

Pickard, and 

Beta, 2007a) 

3,000 rpm 

(Beta et al., 

2005; Menga 

et al., 2009) 

300 rpm 

 

 

No No None Use rotary 

shaker during 

extraction. 

Chibbar 

(Verma et al., 

2008; Verma 

et al., 2009) 

 

 

Yes 1 g 5 hours Chilled ethanol/ water 

(80:20) 

Water 

2N sodium hydroxide 

2N hydrochloric acid 

Ethyl acetate 

Hexane 

Ethanol/water 

2500 g 

1000 g 

 

2000 rpm No  Continuous 

(for bound) 

Water 

Methanol 

Temper starting 

material to 15% 

moisture. 

Method from 

previous 

publication 

(Adom et al., 

2003), with use 

of chilled 

solvent and 

room 

temperature 

extractions. 
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Fulcher 

(Gélinas and 

McKinnon, 

2006; 

McKeehen et 

al., 1999; Sen 

et al., 1991) 

Yes 200 mg 

(dw)  

 

4 hours Water 

Ice-cold 6N 

hydrochloric acid 

4N sodium hydroxide 

Ethyl acetate 

3000 g  

 

Wrist-

action 

shaker, 

speed not 

specified 

No Yes None Use of a 

separatory 

funnel. 

Pellet is diluted 

with distilled 

H2O, vortexed, 

centrifuged, 

and all 

supernatants 

pooled. 

Hartley 

(Hartley and 

Morrison III, 

1991; Parker 

et al., 2005) 

No 20 mg  

 

Over 24 

hours 

0.1molL−1 sodium 

hydroxide (oxygen-

free) 

50% methanol 

12 molL−1 hydrochloric 

acid 

Ethyl acetate 

None None Yes Yes None  Repeated 

extraction with 

pooled 

supernatants. 

Krygier 

(Krygier et al., 

1982) 

Yes 1 g 6 hours Hexane 

Sodium hydroxide  

Ether-ethyl acetate 

70% methanol-70% 

acetone (1:1) 

6N Hydrochloric acid 

Diethyl ether-ethyl 

acetate (1:1) 

Not specified Yes No No None Some extracts 

are defatted 

again with 

hexane 

 

Liu method A 

(Adom et al., 

2005) 

No 1 g 2 hours Hexane 

2M hydrochloric acid 

2M sodium hydroxide 

Ethyl acetate 

None None No Continuous Methanol Room 

temperature 

extraction, in 

which samples 

are extracted 

five times. 

Liu method B 

(Adom and 

Liu, 2002; 

Adom et al., 

2003; Adom 

et al., 2005; 

Butsat et al., 

2009; Okarter 

et al., 2010) 

Yes 1 g 3 hours Hexane 

Ethanol/water 

2M hydrochloric acid 

2M sodium hydroxide 

Ethyl acetate 

None None No Continuous Methanol Room 

temperature 

extraction, in 

which samples 

are extracted 

five times. 
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Onyeneho 

(Onyeneho 

and 

Hettiarachchy, 

1992) 

No 100 g 2 hours Petroleum ether 

95% ethyl alcohol  

None None Yes No None Air dry, 

vacuum distill, 

defat with 

petroleum 

ether, 

autoclave, and 

freeze dry 

 

Matilla 

(Anson et al., 

2009; Mattila 

and 

Kumpulainen, 

2002; Mattila 

et al., 2005)  

no 0.1–0.5 g 20 hours Cold diethyl ether and 

ethyl acetate (1:1) 

Methanol containing 2 

g/L butylated 

hydroxyanisole (BHA) 

Concentrated and 10% 

acetic acid (85:15) 

hydrochloric acid 

None Not 

specified 

Yes Not 

specified – 

air drying 

Water  Ultrasonication 

using cold 

solvent. 

Tsao (Kim et 

al., 2006) 

Yes  200 g 9 hours Hexane/water (4:1) 

Methanol/water (80:20) 

Acidified water (pH 2 

with hydrochloric acid) 

Ethyl ether 

2M sodium hydroxide 

6M hydrochloric acid  

None  None Whatman 

no. 1  

No Methanol Defat sample. 

Use of rotary 

evaporation. 

Yu (Yu et al., 

2002; Yu et 

al., 2003; 

Zhou and Yu, 

2004; Zhou et 

al., 2004) 

 

No 2–4 g 2–3 hours 

– with 

Soxhlet 

15 hours 

– not 

under 

pressure 

Absolute ethanol 

50% acetone (v/v) 

70% ethanol (v/v) 

70% methanol (v/v) 

None None No Under 

nitrogen 

Dimethyl 

sulfoxide 

(or) 

benzene 

Soxhlet 

extraction. 

Use of rotary 

evaporation. 

Extract sample 

in darkness. 

Vacuum 

removal of 

excess solvent. 

Zhu (Kim et 

al., 2011; Zhu 

et al., 2010) 

No 5 g 6 hours Hexane 

Water 

30% ethanol/water 

(v/v) 

50% ethanol/water 

(v/v) 

70% ethanol/water 

(v/v) 

100% ethanol 

10,000 rpm 

at 4°C  

Gentile No No None Defat sample. 

Concentrate 

under vacuum 

at 50°C and 

freeze-dry. 

*If the principal investigator could not be determined, the first author’s name was used to title 

the method. 
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Chapter 2 - Antioxidant contribution within fractions and mill 

streams produced from the same wheat kernels 

 Abstract  

Mature wheat kernels contain three main parts: endosperm, bran, and germ. Flour milling results 

in multiple streams that are chemically different; however, distribution of antioxidants and 

phenolic compounds in each stream has not been well documented. In this study, antioxidant 

activities of each mill stream were evaluated employing diphenylpicrylhydrazyl (DPPH) radical-

scavenging activity, ferric reducing/antioxidant power (FRAP), and total antioxidant capacity 

assays and determined phenolic compounds (total, flavonoid, and anthocyanin contents) in each 

fraction. Samples included the different parts of wheat (bran, flour, and germ) and wheat milling 

streams (mill feed, red dog, shorts, and whole ground wheat). Significant differences were 

observed in phenolic concentrations between fractions of bran, flour, and germ milled from the 

same kernels. Post analysis of multiple antioxidant techniques, germ accounted for the majority 

of antioxidant properties, whereas bran contained a substantial portion of phenolic compounds 

and anthocyanins. Mill feed was comparatively high in phenolic acids (0.78 mg FAE/g), total 

antioxidant capacity (1.28 mg/g), and antioxidant activity (75.21% DPPH inhibition and 278.97 

µmol FeSO4/g). The investigated mill streams could provide avenues for future human 

consumption of traditional by-products from flour milling. 

 Introduction 

Wheat (Triticum aestivum L.) is a staple of the Western diet. Wheat originated in the 

Fertile Crescent and is cultivated worldwide due to its ease of growth, diverse uses, and long-

term storage stability (Chick, 1958). A wheat kernel is composed of approximately 85% 
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endosperm, 13% bran, and 2% germ (Sugden, 2001). Kernel endosperm is used as flour, whereas 

kernel germ contains high concentrations of lipids that are extracted for oil or processed as 

higher value feed components (Zhu et al., 2010). Americans consume 36% of the domestic 

wheat crop, 50% is exported, and 10% and 4% go to livestock and seeds, respectively (Western 

Organization of Resource Councils (WORC)., 2002). The annual total global production of 

wheat is 600–700 million tonnes (Shewry et al., 2012). 

Milling divides bran from endosperm. To optimize flour yield, millers aim to produce 

large bran pieces (bigger than 2000 µm) and a minimum amount of shorts (broken bran pieces) 

(Sugden, 2001). Red dog (high bran flour) (Martin et al., 2007) and mill feed (low quality, 

variable, highly contaminated bran mixture) (Sugden, 2001) are produced during milling and 

sold as feed products. Due to differing compositions and functions of bran, germ, and endosperm 

from the kernel, all fractions in milling are chemically different (Wetzel et al., 2010). 

Antioxidants are found in high concentration, comparative to several staples in the 

Western diet (Qu et al., 2005). [Appendix B list the chemical structures of all antioxidants 

measured within this dissertation.] Prior investigations have shown that bran and germ serve as 

possible sources for antioxidants with potential health benefits (Liyana-Pathirana and Shahidi, 

2006). Phenolic compounds are the main antioxidant components found in wheat (Mattila et al., 

2005; Parker et al., 2005; Verma et al., 2008; Jonnala et al., 2010), and ferulic acid is the 

dominant phenolic acid in hard red winter wheat (Manach et al., 2004; Klepacka and Fornal, 

2006; Verma et al., 2008). The ferulic acid content of wheat is 0.8–2 g/kg dry weight (Lempereur 

et al., 1997) and is always higher in bran than in flour from the same kernel by 10–20 times 

(Klepacka and Fornal, 2006). Phenolic compounds are predominantly found in the outer layers 

of wheat bran as a structural component of the cell wall and provide protection from natural 
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elements, pathogenic organisms, and ultraviolet rays (Mattila et al., 2005; Parker et al., 2005; 

Stalikas, 2007). Measurable phytochemical content is affected by environment, farming, 

mutation, and processing (Yu et al., 2003; Gélinas and McKinnon, 2006; Verma et al., 2008). 

Present in free and bound forms, many wheat bran antioxidants cannot be digested in the human 

gastrointestinal tract in their complex (bound) form (Anson et al., 2009; Menga et al., 2009; 

Anson et al., 2011). The majority of phenolic compounds are bound in ester linkages to abundant 

polysaccharides in the cell wall and are therefore unavailable for digestion (Stalikas, 2007). 

Bound components in bran can be released by different processing techniques (Thanh and Nout, 

2002; Stalikas, 2007; Anson et al., 2009). Wheat bran also contains lignin, a complex organic 

polymer that fills spaces in the cell wall between cellulose and hemicellulose, and lignan, a 

bound antioxidant in wheat bran that is 2.6–3% of total bran (Robertson and Eastwood, 1981; 

National Research Council (US). Subcommittee on Feed Composition, 1982). Lignan can be 

extracted with methanol, and when derived from wheat bran is involved in antitumor activities in 

colon cancer SW480 cells (Qu et al., 2005). 

Many studies have evaluated the variability of nutrients in wheat cultivars (Gutierrez-

Alamo et al., 2008; Rakszegi et al., 2008; Verma et al., 2008; Lv et al., 2012), but antioxidants 

and phenolic compounds distributed throughout the mill stream have not been well documented. 

Previous studies investigated antioxidative properties of bran and germ together as one sample 

(Adom et al., 2003; Adom et al., 2005), antioxidative properties of bran, flour, and grain (Vaher 

et al., 2010) or antioxidative properties of select output streams (Liyana-Pathirana and Shahidi, 

2006; Liyana-Pathirana and Shahidi, 2007). It was theorized that differences in antioxidant 

properties would be observed between mill fractions. In this study, components of the wheat 

kernel were separated into different fractions and mill streams produced by dry-milling, and 
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subsequently analyzed for concentration of phenolic compounds and antioxidant activity in each 

fraction to determine their variation.  

 Materials and methods 

 Wheat and milled wheat fractions 

Kansas hard red winter wheat (Likes et al., 2007) from the 2010 crop year, tempered to 

16% moisture, was milled (70% extraction) in the Kansas State University (KSU) Shellenberger 

Hall industrial-scale milling system (Manhattan, KS). The milling system has been previously 

described (Pussayanawin et al., 1988; Mahroof et al., 2003; Likes et al., 2007). Bran, flour, germ, 

mill feed, red dog, and shorts were collected from one mill run in the industrial milling system 

by adjusting mill settings for optimum percentage of the desired fraction. In addition, whole 

wheat kernels that were collected from the mill run after cleaning were ground on a Burr Mill 

(Falling Number grinder, Perten Instruments, Springfield, IL) to have less than 3% overs on a 

150 µm screen to represent a whole ground wheat sample. Photographs of each fraction were 

taken for reference, and each wheat sample is depicted in Figure 2.1. Prior to any chemical 

assay, all samples were ground to pass through a 150 µm screen. All chemicals, reagents, and 

standards were ACS grade. Ascorbic and phenolic acid standards were purchased from Sigma-

Aldrich, Inc. (St. Louis, MO). 

 Soluble and bound phenolic acids 

A two-part extraction for soluble and bound phenolic acids was performed for each 

sample as previously described (Adom et al., 2003). Each sample (1.000 g) was extracted for 10 

min with 10 ml 80% methanol (v/v) at 25 °C under constant stirring. After 10 min, the extract 

was removed and the extraction procedure was repeated twice on the residual pellet. Extracts 

were pooled and evaporated under continuous nitrogen gas. Each extracted sample was 
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lyophilized and weights recorded prior to dissolving in 5 ml methanol. Determination of bound 

phenolic acids was conducted as previously described (Adom et al., 2005). The above pellet was 

hydrolyzed with 2 M sodium hydroxide at 25 °C for 1 h under continuous nitrogen gas. The 

extraction was neutralized with 2 M hydrochloric acid and extracted with pure hexane. After 

hexane removal, the hydrolysis was extracted five times with ethyl acetate. Ethyl acetate extracts 

were pooled together and evaporated to dryness under continuous nitrogen gas. Dried extracts 

were dissolved in 10 ml methanol and stored at -20°C until use. Determination of total phenolic 

content (TPC) in each fraction was conducted as previously described (Dewanto et al., 2002). 

The reduction of Folin−Ciocalteu reagent in the presence of phenolates was measured 

spectrometrically on a Perkin-Elmer Lambda 800 UV–Vis spectrophotometer (Perkin-Elmer, 

Inc., Waltham, MA). Using ferulic acid as the standard, TPC was expressed as ferulic acid 

equivalents (FAE) per gram of mill fraction. A ferulic acid standard solution or extract sample 

(125 μl) was added to 0.5 ml deionized water and 125 μl Folin−Ciocalteu reagent in a test tube 

and vortex-mixed. Samples were allowed to stand for 6 min. Subsequently, 1.25 ml 7% sodium 

carbonate and deionized water were added to adjust final volume to 3 ml. After 90 min at 25 °C, 

absorbance was measured at 760 nm against the blank and compared with the known standards 

for quantification. 

 Phytochemical extraction 

Phytochemicals were extracted from each sample as previously described (Hentschel et 

al., 2002; Adom et al., 2005). Each sample (600 mg) was weighed with 60 mg magnesium 

carbonate in a loosely closed screw-capped test tube. Solids were blended prior to a rapid 

extraction with 2 ml 1:1 (v/v) methanol/tetrahydrofuran mixture in a water bath at 75 °C for 5 

min. Extracts were cooled and centrifuged at 2,500 g for 5 min, and the organic phase was 
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removed. The pellet was extracted two additional times with methanol/tetrahydrofuran (2 ml) in 

a water bath at 75 °C for 5 min then cooled and centrifuged at 2,500 g for 5 min. Pooled organic 

phases were dried with 1 g anhydrous sodium sulfate and evaporated under continuous nitrogen 

gas at 35 °C. Residues were dissolved in 1 ml methanol/tetrahydrofuran, stored at -20 °C, and 

analyzed within 2 weeks. 

 Total flavonoid content 

Determination of total flavonoid content in each fraction was conducted as previously 

described (Liu et al., 2002). Extracts from the phytochemical extraction (0.25 ml) were mixed 

with 1.25 ml distilled water in a test tube. After, 75 μl of 5% sodium nitrite solution was added, 

test tubes were held at 25 °C for 6 min., 150 μl 10% aluminum chloride was added in each test 

tube, and test tubes were held at 25 °C for 5 min. Subsequently, 0.5 ml 1 M sodium hydroxide 

was added and solutions were brought up to 2.5 ml with distilled water, then mixed. Samples 

were immediately measured against a blank at 510 nm on a spectrophotometer. Flavonoid 

content was calculated as microgram of catechin equivalent (CE) per gram of sample (µg/g CE) 

against a standard curve of catechin (Liu et al., 2002). 

 Total anthocyanin content 

Extraction and determination of anthocyanin content in each milling fraction were 

conducted as previously described (Abdel-Aal and Hucl, 1999; Abdel-Aal and Hucl, 2003). 

Samples (3.000 g each) were extracted twice by turbulent-mixing with 24 ml acidified methanol 

[1 N hydrochloric acid (85:15, v/v)] for 30 min. Apparent pH was adjusted to 1.0 before timing 

and rechecked after 15 and 30 min of extraction. Extracts were centrifuged at 21,000 g (4 °C) for 

20 min and refrigerated for 2 d to precipitate. Again, extracts were centrifuged 21,000 g (4 °C) 

for 20 min and concentrated to 2 ml under continuous nitrogen. For total anthocyanin content 
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determination, the concentrated supernatant was poured into a 50-ml volumetric flask and made 

up to volume with acidified methanol. Absorbance was measured on a spectrophotometer at 535 

nm, and anthocyanin content calculated as micrograms per gram of the sample according to the 

original method (Abdel-Aal and Hucl, 1999). 

 Total antioxidant capacity  

Determination of total antioxidant capacity in each fraction was conducted as previously 

reported (Adom and Liu, 2002). In one test tube, 0.3 ml from the soluble/bound phenolic 

extraction and 3 ml of reagent (0.6 M sulfuric acid, 28 mM sodium phosphate, and 4 mM 

ammonium molybdate) were incubated at 95 °C for 90 min. After the mixtures cooled to 25 °C, 

absorbance of the solutions were read at 695 nm against a blank on spectrophotometer and 

calculated against a reference of the total antioxidant capacity of ascorbic acid. Total antioxidant 

capacity is expressed as milligram equivalents to ascorbic acid per gram wheat fraction. 

 Diphenylpicrylhydrazyl (DPPH) assay 

Determination of DPPH radical absorbance in each fraction was conducted as previously 

reported (Yu et al., 2002). DPPH reagent (Liyana-Pathirana and Shahidi, 2006) was prepared the 

day of analysis. The reagent was composed of DPPH (0.004%) in methanol. In each test tube, 

1.9 ml DPPH reagent and 100 µl extract from the soluble/bound phenolic extraction were mixed, 

and tubes were kept in a dark room to react. After 30 min, absorbance was tested at 517 nm on a 

spectrophotometer. IC50 value was used to calculate DPPH value and was defined as the 

concentration of the sample necessary to have 50% inhibition as determined with interpolated 

linear regression (Qingming et al., 2010), where a lower IC50 value was associated with a higher 

radical scavenging activity. All DPPH values are reported as ‘% inhibition.’ 
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 Ferric ion reducing antioxidant power (FRAP) assay 

Determination of FRAP for each extract was conducted as previously reported (Yu et al., 

2003). FRAP reagent was prepared the day of analysis and kept in a water bath at 37 °C when 

not in use, up to 3 h. Detailed preparation of FRAP reagent has been previously reported (Benzie 

and Strain, 1999). In short, acetate buffer 300 mM pH 3.6, was added to 2, 4, 6-tripyridyl- s- 

triazine (10 mM in 40mM HCl) and FeCl3  6H2O (20 mM) in a ratio of 10:1:1 and called the 

FRAP reagent. To determine FRAP of each sample, 1.8 ml FRAP reagent, 300 µl extract from 

the soluble/bound phenolic extraction, and 180 µl distilled water were combined in one test tube 

and incubated at 37 °C for 4 min. Absorbance was measured at 593 nm on a spectrophotometer 

and reported in micromole ferrous sulfate (FeSO4) per gram defatted material. 

 Statistical analysis 

All tests were performed in triplicate, unless otherwise noted. Means and standard 

deviations were calculated for all analyses. Significance of differences between groups were 

compared using column analysis of one-way ANOVA with Tukey’s post hoc test at a 

significance level of α: 0.05 (GraphPad, GraphPad Software Inc, La Jolla, CA). P values (two-

tailed) of less than 0.05 were considered to be a sign of statistical significance. N is listed where 

n equals the number of replicate assays. Subreplicates ranged (2-3) per assay. 

 Results 

 TPC of wheat fractions 

Extraction yield of soluble phenolic acids refers to free and conjugated phenolic acids 

extracted with 80% methanol, whereas that of bound phenolic acids refers to alkaline-hydrolyzed 

extract; with all TPC results provided in Table 2.1. The highest soluble TPC concentration was 

observed in germ extract (2.91 mg FAE/g of defatted material), and the lowest was determined in 
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flour extract (0.13 mg FAE/g of defatted material). The order of TPC for soluble extracts was: 

germ > whole ground wheat > mill feed > bran > red dog> shorts> flour. Similarly, bound 

extract TPC of wheat fractions was highest in germ (0.92 mg FAE/g of defatted material), and 

the lowest TPC was found in flour (0.07 mg FAE/g of defatted material). The order of TPC for 

bound extracts was: germ > mill feed > whole ground wheat > bran > red dog > shorts > flour.  

 Flavonoid concentration in wheat fractions 

Total flavonoid content is reported in µg/g of extracted material for each wheat fraction 

in Table 2.2. Mill feed had a significantly higher concentration of flavonoid compounds (360.68 

µg/g CE), whereas flour was significantly lower (192.85 µg/g CE) than other samples. The 

measured flavonoid content for all wheat fractions was mill feed > shorts > red dog > whole 

ground wheat > bran > germ > flour. All samples were significantly different from all other 

samples. 

 Anthocyanin concentration in wheat fractions 

Anthocyanin content is reported in µg/g of extracted material for each wheat fraction in 

Table 2.2. Bran had the highest anthocyanin content (72.70 µg/g), followed by red dog (43.7 

µg/g). The measured anthocyanin content by wheat fraction was in the following order: bran > 

red dog > mill feed > shorts ~germ > whole ground wheat > flour. Germ and shorts anthocyanin 

contents did not differ significantly. 

 Total antioxidant capacity of wheat fractions 

Bound and soluble extracts followed the same order (Table 2.3). On average, total 

antioxidant capacity in soluble extracts were at least two times higher than in bound extracts 

from the same material. The order of total antioxidant capacity was: germ > mill feed > bran > 

whole ground wheat > red dog ~ shorts> flour. Germ extracts had a significantly higher total 
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antioxidant capacity, whereas flour was significantly lower in both cases, comparatively to other 

samples.  

 DPPH radical scavenging activity of wheat fractions 

All wheat fraction extracts showed DPPH scavenging activities in concentration 

measured by IC50 value (Table 2.3). As the standard, ascorbic acid was measured at 96% DPPH 

inhibition with this sample set. Soluble and bound germ extracts displayed significantly higher 

DPPH values than other fractions. The order of ability to scavenge DPPH radicals by wheat 

fractions was: germ > mill feed > red dog > bran > shorts > whole ground wheat > flour for 

soluble extracts; and, germ > mill feed > bran > shorts > whole ground wheat > red dog > flour 

for bound extracts. Germ, mill feed, and red dog demonstrated the highest abilities to scavenge 

DPPH radicals. 

 FRAP of wheat fractions 

Antioxidant activity by FRAP assay is reported in Table 2.3. Mill feed and red dog had 

similar soluble portions; however, the remaining samples had significantly different abilities to 

reduce iron. Germ-soluble extracts (1006.12 μmol of FeSO4/g defatted material) had 

significantly higher FRAP values than other fractions, whereas flour extracts had significantly 

lower FRAP values (3.36 μmol of FeSO4/g defatted material). For wheat fraction soluble 

extracts, ability to reduce Fe
3+

 to Fe
2+

 was in the order of germ > red dog ~ mill feed > bran > 

shorts > whole ground wheat > flour. For bound extracts from different fractions of wheat, germ 

extracts had significantly higher FRAP values (280.62 μmol of FeSO4/g defatted material) than 

other fractions, and extracts from flour were lowest (15.74 μmol of FeSO4/g defatted material). 

For all samples, ability of bound extracts to reduce Fe
3+

 to Fe
2+

 was in the order of germ > mill 

feed > bran > shorts > whole ground wheat > red dog > flour. 
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 Discussion 

On average, and using the current method, soluble TPC was 2–5 times higher than bound 

TPC in all fractions, as was consistent with a previous report of other cereals (Weidner et al., 

2001). Germ extract contained the largest concentration of phenolic compounds, with mill feed 

and whole ground wheat also containing relatively high concentrations. The germ of the kernel 

contains the highest portion of oils and antioxidants (Zhu et al., 2010). Mill feed and whole 

ground wheat both contain germ. Flour, which contains little germ, had minor detectable 

phenolic compounds and was found to have low levels of phenolic compounds in previous 

research (Adom and Liu, 2002; Adom et al., 2003). 

For all samples, bound and soluble results were similar in order, with TPC results being 

similar to previous reports (Liyana-Pathirana and Shahidi, 2006; Vaher et al., 2010) due to use of 

the same type of extraction procedure; however, the current study found whole ground wheat to 

contain relatively higher (Liyana-Pathirana and Shahidi, 2006), and bran relatively lower (Vaher 

et al., 2010) phenolic compounds. The difference in values between studies may be attributed to 

milling techniques used, source of wheat, and variations during extraction. A Folin-Ciocalteu 

reagent assay is not specific to phenolic acids and can also react with sugars and peptides, and 

many of these compounds are soluble in aqueous solutions (Singleton et al., 1999). It is 

suspected that these compounds partly account for the soluble extract quantities and would vary 

between materials. The bound extraction used in this experiment utilized a low temperature and a 

relatively short extraction time, which may be incomplete. Previous studies have also suspected 

that this method could leave additional bound phenolic compounds within the extracted material 

(Adom et al., 2003). Dominant phenolic compounds in hard wheat were individually identified in 
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previous research performed at KSU (Jonnala et al., 2010); therefore, clarification of total 

antioxidant distributions throughout milling fractions was the focus of the current experiments, 

and individual phenolic compounds were not calculated and reported in this experiment. 

Phenolic compounds may contribute directly to antioxidant action (Awika et al., 2003); 

consequently, it is necessary to investigate TPC when measuring antioxidant properties. 

Total flavonoid content reflects the available polyphenol population in the sample and 

measures several C6-C3-C6 compounds. Extract concentrations were measured with respect to 

catechin, a major plant secondary metabolite, and the current results were similar to previous 

research on the wheat kernel (Feng and McDonald, 1989). Mixed mill stream samples (whole 

ground wheat, shorts, mill feed, red dog) were high in flavonoid concentrations compared with 

separated fractions (bran, flour, germ). Flavonoids are a type of phenolic compound that provide 

pigment, germ flavonoids are highly concentrated, and flour flavonoids are low in concentration 

and dispersed in red hard winter wheat, most likely as phlobaphene or proanthocyanidin, which 

are derivatives of catechin-tannin (Miyamoto and Everson, 1958). Only flavones and flavonols 

are well resolved in assays using aluminum chloride (Martos et al., 1997), and including TPC in 

this study (which utilizes a different extraction) accounted for all flavonoid compounds 

(including flavanones and flavanonols) that many not have been measured in the total flavonoid 

content assay. Flavonoid differentiation is made by number and nature of substituent groups 

attached to the rings, which are accurately measured, individually with mass spectrometry 

(Cavaliere et al., 2005).  

Some components (germ and mill feed) were high in flavonoid content, but not in 

chemical compounds determined by the total anthocyanin assay, which means that the 3-phenyl-

1,4-benzopyrone structures in these milling fraction extracts were present to represent phenol 
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groups, but were distinct by degree of unsaturation and oxidation. Anthocyanin concentrations 

differed from flavonoid concentrations in whole ground wheat and mill feed for the same reason. 

Anthocyanins are flavonoids that are concentrated in the outside layers of the kernel (Abdel-Aal 

and Hucl, 1999; Abdel-Aal and Hucl, 2003; Abdel-Aal et al., 2006) and synthesized through a 

flavonoid biosynthetic pathway (Warner et al., 2000). As anthocyanidin derivatives, these 

flavonoids are differentiated by R- groups on the isoflavan structure; therefore, total anthocyanin 

concentration reflects the polyphenol population in a sample as the portion of anthocyanidins 

with glucosidic compounds (Cavaliere et al., 2005). When measuring anthocyanins, their color is 

dependent on pH flavylium to hemiketal transformations within the chemical structure; therefore, 

pH assays are reliable in measuring anthocyanins (Giusti and Wrolstad, 2001; Al Farsi et al., 

2005). As observed in the current analysis, anthocyanins were more concentrated in bran 

containing fractions with high distributions of fine particles. 

Antioxidants are distinguished as multiple compounds (Lachman et al., 2012). No single 

antioxidant measurement can express ability, activity, and capacity of antioxidants present in 

solution. Antioxidants have the ability to act in vivo via multiple mechanisms (Pellegrini et al., 

2003); consequently, multiple methods were chosen to investigate antioxidant distribution within 

milling fractions. Mill feed and whole ground wheat had approximately the same TPC, but 

different soluble extract contributions to total antioxidant capacity. Total antioxidant capacity 

quantifies by cumulative capacity to scavenge free radicals (Pellegrini et al., 2003). In flour 

milling, bran and germ usually are collected and flattened in the same fraction; however when 

separated, significant differences were observed in the antioxidant capacity of bran and germ 

extracts. The concentration or ratio of each fraction could affect the antioxidant quantities in mill 

streams operated under differing processing conditions.  
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The ability to act as donors of hydrogen atoms in DPPH radical transformation to a 

reduced form proved to be distinctive when measuring antioxidants within mill streams. DPPH 

assay measures single electron transfer to determine antioxidant reducing capacity (Huang et al., 

2005). Although the seven samples analyzed in the current study are composed of different ratios 

of the three components of the kernel, each mill stream had significantly different values. When 

using percent inhibition, higher inhibition demonstrations stronger antioxidant activity (Butsat et 

al., 2009; Butsat and Siriamornpun, 2010), as measured in all germ fractions. Bran, shorts, and 

red dog had no significant difference in total antioxidant capacity, but differed when measuring 

DPPH inhibition. Differences may be due to the DPPH assay reaction depending on the 

structural conformation of the antioxidants being examined (Mensor et al., 2001; Mielnik et al., 

2003). It is assumed that structural changes may have occurred with grinding/processing to time 

of analysis. Additionally, the chemical composition of bran, endosperm and germ are known to 

differ (Wetzel, 2009), which includes micronutrients. 

A previous study investigated DPPH of milling fractions (Liyana-Pathirana and Shahidi, 

2006). Common fractions used in this study and the previous publication showed some 

differences. Shorts were lower than bran in the current study, and the two samples were always 

statistically different in the soluble fraction (Table 2.3). Differences in DPPH results from 

results in previous studies may be due to type of wheat and milling methods. Wheat bran yield 

can average 21.1–36.5% of the kernel weight (Rakszegi et al., 2008), and chemical composition 

can vary between cultivar (Andersson et al., 2008; Shewry et al., 2010). The DPPH radical 

method could reflect actual capacity of the extract in transferring electrons or hydrogen atoms 

(Pérez-Jiménez et al., 2008), and the current results showed distinctive DPPH inhibition for 

different milling streams. 
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Fractions containing increased fines (<150 µm) before grinding, due to endosperm 

concentration (flour, whole ground wheat, red dog) had significantly lower bound extract 

antioxidant power, as determined by FRAP assay. Increased surface area to mass may have 

enabled easier extraction with soluble solvents (Zhou and Yu, 2004) with reduction of all sample 

particle sizes to <150 µm. Red dog, shorts, and bran are all samples high in fractured bran pieces. 

If extractability could be swayed by particle composition and size due to exposed surface during 

hydrolysis, it is possible that any geometric difference between bran and bran-containing 

samples could enhance from particle size differences. Grinding behavior (speed, equipment, and 

wear) during milling greatly influences the geometry of bran pieces (Simmons and Meredith, 

1979). With particle size reduction, all samples would mill differently according to composition 

of the sample and friction produced during grinding; therefore causing a source of variability.  

Micronization of food has shown that particle size affects various aspects of structure, 

surface area, and functional properties of the particles (Chen et al., 2006; Chau et al., 2007; Wu 

et al., 2007; Hemery et al., 2011). Whole ground wheat represented the whole kernel in correct 

proportion and had large variation between samples in this assay. This result could be due to the 

heterogeneous particle size of this sample caused by processing the kernels on reduction rolls. 

Whole grain, in which all portions of the kernel are ground separately and recombined, compared 

with whole wheat, where all portions are ground together with no waste or by-product stream, 

can be finer in texture due to processing. Whole wheat is more heterogeneous than the milled 

endosperm portion of the kernel (Manthey and Schorno, 2002). Previous researchers have noted 

that FRAP activity correlated with TPC of brewers’ spent grain extracts (McCarthy et al., 2012), 

but only germ, bran, and flour always displayed TPC and FRAP in the same order. All mixed 

milling streams varied for TPC and FRAP assays. Overall, FRAP was greatly influenced by the 
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physical composition of the samples. FRAP assay is a measurement of antioxidant power, and 

the ability to reduce Fe
3+

 to Fe
2+

 could provide positive effects in vivo. 

 Conclusions 

Antioxidant activity and phenolic content varied between bran, germ, flour, and various mill 

streams. In addition, antioxidants did not have the same distribution pattern throughout the flour 

milling fractions. Germ extract was high in antioxidant ability and phenolic acids, which had the 

highest value in all antioxidant measurements and TPC. Bran-containing fractions were high in 

anthocyanins, and flour extracts had the lowest concentrations in all phenolic compounds and 

antioxidant responses, which concur with previous research. The use of the same wheat kernels 

was implemented for optimum fraction comparison and may not be representative of all hard 

wheat cultivar. Although mill feed showed high concentrations of antioxidant activities in the 

current experiment, note that milling products vary in composition when produced from different 

mills, kernels, and operational conditions; therefore, analysis from multiple mills and wheat 

cultivars should be compared in future studies. Prospective research includes utilization of by-

product streams for higher profit uses and investigation of antioxidant activity deterioration post-

processing in products for human consumption. 
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Figure 2.1. Sample description and image for wheat fractions derived from the same wheat 

kernels and milling operation. 

Description of samples: 

Bran: Clean bran from milling 

Flour: Patent flour from milling 

Germ: Cleaned, flatted germ pieces 

Mill feed: Milling by product, collected from various steams; sent to animal feed lots 

Red dog: Low grade/high ash flour from milling 

Shorts: Broken bran pieces 

Whole-ground wheat: Whole kernels ground on a burr mill 
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Table 2.1. Total phenolic acid content of wheat fractions milled from the same wheat 

kernels and milling operation.  

Wheat fraction 

Total phenolic compounds
a,b

 

(mg FAE/g of defatted material) 

Soluble Bound  

Bran 0.64±0.04c 0.19±0.02a 

Flour 0.13±0.01d 0.07±0.01a 

Germ 2.91±0.42a 0.92±0.02a 

Mill feed 0.78±0.11bc 0.31±0.08a 

Red dog 0.62±0.03c 0.16±0.01a 

Shorts 0.61±0.01c 0.18±0.01a 

Whole ground wheat 0.90±0.07b 0.20±0.88a 
a
 Column data with like letters are not significantly different (P>0.05); n=3. 

b
 The total phenolic contents are expressed as ferulic acid equivalents (FAE). 
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Table 2.2. Flavonoid and anthocyanin concentrations in wheat fractions milled from the 

same wheat kernels and milling operation. 

 

 

a
 Column data with like letters are not significantly different (P>0.05); n=3. 

b
 Total flavonoid contents are expressed as catechin equivalent (CE). 

 

 

 Total contents 

Wheat fraction Flavonoid (µg/g CE)
a,b

 Anthocyanin (µg/g)
a
 

Bran 293.80±4.19d 72.7±0.8a 

Flour 192.85±0.58f 1.3±0.1e 

Germ 283.47±0.64e 22.4±1.0c 

Mill feed 368.68±4.66a 24.1±0.5c 

Red dog   321.71±2.92bc 43.7±0.8b 

Shorts 327.80±1.19b 22.6±0.4c 

Whole ground wheat   314.46±2.21c 4.5±0.3d 
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Table 2.3. Antioxidant activities of wheat fractions milled from the same wheat kernels and 

milling operation. 

Wheat fraction 

                Antioxidant activities
a
 

Total antioxidant capacity (equivalent 

to ascorbic acid [mg/g]) 
DPPH (%Inhibition)  

FRAP (µmol FeSO4/g of 

defatted material) 

Soluble Bound  Soluble Bound  Soluble     Bound  

Bran 0.87±0.10c 0.29±0.04bc  52.39±0.16d 19.94±0.54c  245.79±0.25c   87.48±0.09c  

Flour 0.15±0.01d 0.06±0.00d  12.85±0.32g   6.03±2.29d     3.36±0.01f 15.74±0.02g  

Germ 4.66±0.12a 0.74±0.09a  88.00±0.21a 51.66±2.74a  1006.12±1.01a 280.62±0.03a  

Mill feed 1.28±0.09b 0.37±0.01b  75.21±0.27b 38.39±0.67b   278.97±0.28b 231.03±0.23b  

Red dog  0.80±0.01c 0.23±0.01c  64.07±0.71c   8.39±0.63d   279.18±0.28b 42.92±0.04f  

Shorts  0.79±0.10c 0.28±0.06c  44.48±0.21e 18.60±0.47c   166.65±0.17d   70.86±0.07d  

Whole ground wheat  0.80±0.06c 0.41±0.01b  40.39±0.39f 16.29±0.56c   125.60±2.64e   50.24±0.05e  

a
 Column data with like letters are not significantly different (P>0.05); n=3. 
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Chapter 3 - Wheat bran particle size influence on phytochemical 

extractability and antioxidant properties 

 Abstract 

Wheat bran contains many phytochemicals that are easily extractable. It is unknown if 

particle size plays a role in extracting health promoting compounds in wheat bran. The 

distribution of antioxidant and phenolic compounds with particle size reduction has not been 

well documented. In this study, unmilled whole bran (coarse treatment) was compared to whole 

bran milled to medium and fine treatments from the same wheat bran. Antioxidant properties 

(capacity, ability, power), phenolic compounds (phenolic acids, flavonoids, anthocyanins) and 

carotenoids were measured and compared. The ability of whole bran fractions of differing 

particle size distributions to scavenge free radicals was assessed using four in vitro models, 

namely, diphenylpicrylhydrazyl (DPPH) radical-scavenging activity, ferric reducing/antioxidant 

power assay, oxygen radical absorbance capacity (ORAC), and total antioxidant capacity. 

Significant differences phytochemical concentrations and antioxidant properties were observed 

between whole bran fractions of reduced particle size distribution for some assays. The coarse 

treatment exhibited significantly higher antioxidant properties compared to the fine treatment; 

except for the ORAC value, in which coarse was significantly lower. The coarse treatment was 

comparatively higher in phenolic acids (0.67 mg FAE/g), antioxidant capacity (0.79 mg/g), and 

antioxidant activities (55.29% DPPH inhibition and 165.32 µmol FeSO4/g) than bran milled to 

the finer treatment. The fine treatment was significantly higher in flavonoid (206.74 µg 

catechin/g), anthocyanin (63.0 µg/g), and carotenoid contents (beta carotene, 14.25 µg/100g; 

zeaxanthin, 35.21 µg/100g; lutein 174.59 µg/100g) as compared to the coarse treatment. An 
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increase of surface area to mass increased the ORAC value by over 80%. With reduction in 

particle size distribution, there was a significant increase in extracted anthocyanins, bound total 

antioxidant capacity, carotenoids and ORAC value. Particle size does effect the extraction of 

phytochemicals.  

 Introduction 

Wheat flour milling separates the endosperm from bran to produce flour (Sugden, 2001). 

Wheat bran is a by-product of conventional milling that contains hemicellulose, protein, 

cellulose, and micronutrients at relatively high concentrations (Pomeranz, 1988, Evers & Millar, 

2002). The multiple layers of wheat bran are chemically composed of arabinoxylan (38%) > 

protein (25%) > cellulose (16%) > lignin (6.6%) (Brillouet & Mercier, 1981, Brillouet et al., 

1982, DuPont & Selvendran, 1987). Bran composition from commercial flour milling contains 

41-60% nonstarch polysaccharides (26% are arabinoxylans) (Amrein et al., 2003), 15-20% 

protein and 10-20% residual starch (Maes & Delcour, 2001). 

Phytochemicals are bioactive plant compounds produced in edible plants (Okarter et al., 

2010). Whole grain foods offer a wide variety of phytochemicals that are proposed to be 

responsible for the health benefits of whole grain consumption. Wheat bran has many health 

benefits and health promoting compounds such as phenolic acids, flavonoids and carotenoids 

(Anderson, Smith & Gustafson, 1994, Muir et al., 2004). Several subclasses exist within the 

numerous chemical compounds that represent the phytochemicals found in wheat 

(alkylresorcinols, phenolic acids, etc.). For example, anthocyanins are a type of flavonoid, while 

flavonoids are a type of water soluble phenol found in plants. Phytochemicals are important 

sources of exogenous antioxidants in the diet (Ou et al., 2002). [Several basic chemical structures 

of antioxidant phytochemicals found within wheat are drawn in Appendix 2.] 
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Wheat bran contains several phytochemicals that could be absorbed during digestion, yet, 

due to structure and transit time in the human gastrointestinal tract, are unavailable (Anson et al., 

2010). After mastication, wheat bran particle size is scarcely altered, nor greatly digested prior to 

the large intestine. Mostly intact, wheat bran travels to the distal colon, where it is fermented 

(Brownlee, 2011); therefore, initial particle size is important. Based on this research, a reduction 

in particle size may increase the proportion of available phytochemicals in wheat bran. 

The concentration and extractability phytochemicals in relation to exposed surface area is 

not well documented. Previous studies on bran particle size have examined bran not as whole, 

but fractionated to two or more parts from the same stock material (Zhang & Moore, 1997, 

Hassan, Alkareem & Mustafa, 2008) or in combination with germ, due to their common 

combination in commercial milling (Adom, Sorrells & Liu, 2005). Multiple studies have 

investigated bran particle size effects on digestion, noting that reduced particle size usually 

coincides with a decrease in total stool water (Brownlee, 2011), where only course to medium 

bran particle sizes are recommended for increased fecal production or rate (Brodribb & Groves, 

1978). However, few studies on the bioavailability of biochemical components and effects of 

particle size distribution have been reported. Investigations of wheat bran antioxidant properties 

with reduction by ball milling has been reported using one reduced particle size dietary fiber 

derived from wheat bran (Zhu et al., 2010), while variation in tocopherols and tocotrienols with 

reduction in particle size has also been observed (Engelsen & Hansen, 2009). In addition, it is 

thought that processing may release bound phytochemicals from grains (Fulcher & Duke, 2002). 

Such research leads to questioning whether additional phytochemicals, such as antioxidants, are 

more extractable with a reduction in particle size. The objective of this research was to determine 

if particle size distribution of whole wheat bran affects phytochemical extractability and 
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antioxidant properties as determined by in vitro testing. No single measure of antioxidant 

concentration can express the ability, activity and capacity of antioxidants present, as the 

chemical diversity of antioxidants makes it difficult to separate and quantify individual 

antioxidants (Ou et al., 2002). Several commonly used ‘total antioxidant’ methods [DPPH, Ferric 

reducing antioxidant power (FRAP) assay, oxygen radical absorbance capacity (ORAC), and 

total antioxidant capacity] (Roy et al., 2010) were utilized to determine wheat bran ability to 

scavenge free radicals and reactive oxygen species using in vitro antioxidant models. A reduction 

in particle size may increase the proportion of available phytochemicals in wheat bran. 

 Materials and methods 

 Wheat bran samples 

Kansas hard red winter wheat (Likes et al., 2007) from the 2010 crop year was 

conditioned to 16% moisture and milled using the Hal Ross Mill (Kansas State University, 

Manhattan, KS) at a 72% extraction rate (5.2% ash). The milling system used has been 

previously described (Likes et al., 2007); and 72% is a normal extraction for straight grade flour 

(Lamsal et al., 2008). All wheat bran was collected from one outlet after the purifier, during one 

mill run. Unmilled, whole wheat bran acted as the control and is referred to throughout as ‘the 

coarse treatment’. The coarse treatment was collected, kept in tinted, air-tight containers and 

stored at 4°C for no more than six months prior to analysis. A portion of the coarse treatment 

was used for particle size profiling to provide a reference for processing two additional 

treatments and other analyses. The remainder of the coarse treatment was divided in half to 

make-up the two treatments. For preparation of the two treatments, a corrugated (20/22 

corrugation per square inch; 2.5:1 differential) Ross experimental roller mill (serial # 915, size 

9x6; Oklahoma City, OK) was employed (Experimental Milling Lab, Manhattan, KS) with an 
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experimental gap size, described as follows. The first treatment, defined and referred to 

throughout as the “fine treatment”, was milled to the finest whole wheat bran particle size 

distribution achievable. The gap is defined as when the rolls were adjusted to just above zero 

gap, where the corrugated rollers were touching (as noted by sound), but not stopping the 

rotation of the rolls. Once the rolls were adjusted, the treatment was milled via three passes. 

Three passes was noted to be efficient with the set gap; and three passes were incorporated to 

reduce the wheat bran to the desired size, without damaging the product or equipment, and 

without applying too much energy/heat to the bran. Based on the particle profile, the second 

treatment was milled so the bran particle size was in between the particle size distribution of the 

coarse and fine treatments. This treatment was designated as ‘the medium treatment’, and later 

analyzed and defined by sieving (Table 3.1). The medium treatment was prepared by increasing 

the gap between the rolls slightly so that the medium treatment visually differed from the coarse 

and fine treatments. The medium treatment was also milled via three passes through the same 

Ross experimental mill. The resulting bran samples are described in Figure 3.1. [Appendix C 

provides the particle size reduction milling schematic.] 

 Chemicals 

All chemicals, reagents, and standards were ACS or HPLC grade. Ascorbic and phenolic 

acid standards were purchased from Sigma-Aldrich, Inc. (St. Louis, MO). Carotenoid standards 

were obtained from DSM (DSM Nutritional Products, Boulder, CO). 

 Particle size determination  

All whole wheat bran samples were sieved on a standard Tyler Rotap sieve shaker (W. S. 

Tyler, Mentor, Ohio). To determine whole wheat bran size distribution from milling, coarse 

treatments were sieved through 900, 750, 500, and 355 µm mesh screens. To determine whole 
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wheat bran size distribution from grinding, the fine treatments were sieved through 355, 200, 

150, and 100 µm mesh screens. Medium treatments were sieved through 1041, 500, 355, and 240 

µm mesh screens. The pan is noted as any material that passed through all sieve mesh 

dimensions utilized. 

 Soluble and bound phenolic acids 

A two-part extraction for soluble and bound phenolic acids was performed for each 

sample as previously described (Adom, Sorrells & Liu, 2003). Each sample (1.000 g) was 

extracted for 10 min with 10 ml 80% methanol (v/v) at 25 °C under constant stirring. After 10 

min, the extract was removed and the extraction procedure was repeated twice on the residual 

pellet. Extracts were pooled and evaporated under continuous nitrogen gas. Each extracted 

sample was lyophilized and weights recorded prior to dissolving in 5 ml methanol. 

Determination of bound phenolic acids was conducted as previously described (Adom, Sorrells 

& Liu, 2005). The above pellet was hydrolyzed with 2 M sodium hydroxide at 25 °C for 1 h 

under continuous nitrogen gas. The extraction was neutralized with 2 M hydrochloric acid and 

extracted with pure hexane. After hexane removal, the hydrolysis was extracted five times with 

ethyl acetate. Ethyl acetate extracts were pooled together and evaporated to dryness under 

continuous nitrogen gas. Dried extracts were dissolved in 10 ml methanol and stored at -20°C 

until use. Determination of total phenolic content (TPC) in each fraction was conducted as 

previously described (Dewanto et al., 2002). The reduction of Folin−Ciocalteu reagent in the 

presence of phenolates was measured spectrometrically on a Perkin-Elmer Lambda 800 UV–Vis 

spectrophotometer (Perkin-Elmer, Inc., Waltham, MA). Using ferulic acid as the standard, TPC 

was expressed as ferulic acid equivalents (FAE) per gram of mill fraction. A ferulic acid standard 

solution or extract sample (125 μl) was added to 0.5 ml deionized water and 125 μl 
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Folin−Ciocalteu reagent in a test tube and vortex-mixed. Samples were allowed to stand for 6 

min. Subsequently, 1.25 ml 7% sodium carbonate and deionized water were added to adjust final 

volume to 3 ml. After 90 min at 25 °C, absorbance was measured at 760 nm against the blank 

and compared with the known standards for quantification. [Appendix D lists instructions to 

perform all antioxidant property assays utilized, as written in the author’s lab notebook, as well 

as the theorized mechanism of each test.] 

 Phytochemical extraction 

Phytochemicals were extracted from each sample as previously described (Hentschel et 

al., 2002, Adom, Sorrells & Liu, 2005). Each sample (600 mg) was weighed with 60 mg 

magnesium carbonate in a loosely closed screw-capped test tube. Solids were blended prior to a 

rapid extraction with 2 ml 1:1 (v/v) methanol/tetrahydrofuran mixture in a water bath at 75 °C 

for 5 min. Extracts were cooled and centrifuged at 2,500  g for 5 min, and the organic phase was 

removed. The pellet was extracted two additional times with methanol/tetrahydrofuran (2 ml) in 

a water bath at 75 °C for 5 min then cooled and centrifuged at 2,500 g for 5 min. Pooled organic 

phases were dried with 1 g anhydrous sodium sulfate and evaporated under continuous nitrogen 

gas at 35 °C. Residues were dissolved in 1 ml methanol/tetrahydrofuran, stored at -20 °C, and 

analyzed within 2 weeks. 

 Total flavonoid content 

Determination of total flavonoid content in each fraction was conducted as previously 

described (Liu et al., 2002). Extracts from the phytochemical extraction (0.25 ml) were mixed 

with 1.25 ml distilled water in a test tube. After, 75 μl of 5% sodium nitrite solution was added, 

test tubes were held at 25 °C for 6 min., 150 μl 10% aluminum chloride was added in each test 

tube, and test tubes were held at 25 °C for 5 min. Subsequently, 0.5 ml 1 M sodium hydroxide 
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was added and solutions were brought up to 2.5 ml with distilled water, then mixed. Samples 

were immediately measured against a blank at 510 nm on a spectrophotometer. Flavonoid 

content was calculated as microgram of catechin equivalent (CE) per gram of sample (µg/g CE) 

against a standard curve of catechin (Liu et al., 2002). 

 Total anthocyanin content 

Extraction and determination of anthocyanin content in each milling fraction were 

conducted as previously described (Abdel-Aal & Hucl, 1999, Abdel-Aal & Hucl, 2003). Samples 

(3.000 g each) were extracted twice by turbulent-mixing with 24 ml acidified methanol [1 N 

hydrochloric acid (85:15, v/v)] for 30 min. Apparent pH was adjusted to 1.0 before timing and 

rechecked after 15 and 30 min of extraction. Extracts were centrifuged at 21,000 g (4 °C) for 20 

min and refrigerated for 2 d to precipitate. Again, extracts were centrifuged 21,000 g (4 °C) for 

20 min and concentrated to 2 ml under continuous nitrogen. For total anthocyanin content 

determination, the concentrated supernatant was poured into a 50-ml volumetric flask and made 

up to volume with acidified methanol. Absorbance was measured on a spectrophotometer at 535 

nm, and anthocyanin content calculated as micrograms per gram of the sample according to the 

original method (Abdel-Aal & Hucl, 1999). 

 Diphenylpicrylhydrazyl (DPPH) assay 

Determination of DPPH radical absorbance in each fraction was conducted as previously 

reported (Yu et al., 2002). DPPH reagent (Liyana-Pathirana & Shahidi, 2006) was prepared the 

day of analysis. The reagent was composed of DPPH (0.004%) in methanol. In each test tube, 

1.9 ml DPPH reagent and 100 µl extract from the soluble/bound phenolic extraction were mixed, 

and tubes were kept in a dark room to react. After 30 min, absorbance was tested at 517 nm on a 

spectrophotometer. IC50 value was used to calculate DPPH value and was defined as the 
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concentration of the sample necessary to have 50% inhibition as determined with interpolated 

linear regression (Qingming et al., 2010), where a lower IC50 value was associated with a higher 

radical scavenging activity. All DPPH values are reported as ‘% inhibition.’ 

 Ferric ion reducing antioxidant power (FRAP) assay 

Determination of FRAP for each extract was conducted as previously reported (Yu et al., 

2003). FRAP reagent was prepared the day of analysis and kept in a water bath at 37 °C when 

not in use, up to 3 h. Detailed preparation of FRAP reagent has been previously reported (Benzie 

& Strain, 1999). In short, acetate buffer 300 mM pH 3.6, was added to 2, 4, 6-tripyridyl- s- 

triazine (10 mM in 40mM HCl) and FeCl3  6H2O (20 mM) in a ratio of 10:1:1 and called the 

FRAP reagent. To determine FRAP of each sample, 1.8 ml FRAP reagent, 300 µl extract from 

the soluble/bound phenolic extraction, and 180 µl distilled water were combined in one test tube 

and incubated at 37 °C for 4 min. Absorbance was measured at 593 nm on a spectrophotometer 

and reported in micromole ferrous sulfate (FeSO4) per gram defatted material. 

 Oxygen radical absorbance capacity (ORAC) 

Determination of ORAC value for each extract was conducted as previously reported (Ou 

et al., 2002), with modification to the extraction time (increased to 1 h) and stirring equipment. 

Each whole bran sample (500 mg) was added to 20 ml hexane:dichloromethane (1:1) to extract 

lipophilic antioxidant constituents. Mixtures were stirred with magnetic stirring bars to 

turbulence at 25 °C for 1 h, under nitrogen gas flush. Extracts were removed and evaporated at 

25 °C under nitrogen gas flush to dryness, and stored at -20°C until analysis. Lipophilic extracts 

were solubilized with 1 ml methanol prior to analysis. To extract hydrophilic antioxidant 

constituents, bran previously extracted for lipophilic compounds was mixed to turbulence at 25 

°C for 1 h with acetone:water (70:30), under nitrogen gas flush. Hydrophilic antioxidant samples 
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were centrifuged at 12,100 g for 15 min, and stored at -20°C until analysis. Both extracts 

(hydrophilic and lipophilic) were analyzed according to a previously reported method utilizing a 

Synergy 2 microplate reader equipped with Gen5TM data analysis software (Biotek Instruments 

Inc., Winooski, VT, USA), and reported as Trolox equivalients (TE) micromole per gram of 

extract (Ou et al., 2002, Awika et al., 2003b). 

 Total antioxidant capacity  

Determination of total antioxidant capacity in each fraction was conducted as previously 

reported (Adom & Liu, 2002). In one test tube, 0.3 ml from the soluble/bound phenolic 

extraction and 3 ml of reagent (0.6 M sulfuric acid, 28 mM sodium phosphate, and 4 mM 

ammonium molybdate) were incubated at 95 °C for 90 min. After the mixtures cooled to 25 °C, 

absorbance of the solutions were read at 695 nm against a blank on spectrophotometer and 

calculated against a reference of the total antioxidant capacity of ascorbic acid. 

 Carotenoid Analysis 

Determination of carotenoid content in each fraction was conducted as previously 

described (Adom, Sorrells & Liu, 2003), with modifications to the system used and interdiameter 

of the column. An Agilent 1200 HPLC system was used with a C-30 column (250 × 4.6 mm, 5 

μm column, Waters Corp., Milford, MA). The mobile phase was composed of solvent A: 

methanol/water (95:5, v/v), and solvent B: pure methyl tert-butyl ether; as 75% solvent A and 

25% solvent B. The mobile phase had a constant flow rate of 1.0 ml/min, and a measured pH of 

6. Analyte detection, from a 10 µl injection volume, was measured at 450 nm, under constant 

temperature (30°C). Beta carotene, lutein and zeaxanthin were measured from fine, medium, and 

coarse treatment phytochemical extracts against commercial standards of the respective 

carotenoid (reported as µg/100g). 
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 Statistical analysis 

All tests were performed in triplicate, unless otherwise noted. Means and standard 

deviations were calculated for all analyses. Significance of differences between groups were 

compared using column analysis of one-way ANOVA with Tukey’s post hoc test at a 

significance level of α: 0.05 (GraphPad, GraphPad Software Inc, La Jolla, CA). P values (two-

tailed) of less than 0.05 were considered to be a sign of statistical significance. N is listed where 

n equals the number of replicate assays. Subreplicates ranged (2-3) per assay. 

 Results 

 Particle size distributions 

All samples were sieved to determine particle size distribution, and volume fractions 

from sieving are noted in Table 3.1. Sieving represented the milled ratio of desired bran fraction 

to overs after milling with an experimental gap. The particle size distribution by sieving the 

coarse, medium and fine treatments were rounded to the nearest percent, therefore, some total 

values are above 100%, but accurately display the fractions within the sample. Sieving 

determined over 90% of particles in the coarse treatment were greater than 900 µm.  

 TPC extraction 

The results of TPC extraction are found in Table 3.2, expressed as milligrams FAE per 

gram of bran. The order of soluble TPC for each treatment was follows: coarse > fine > medium. 

The extraction yield of soluble phenolic acids refers to free and conjugated phenolic acids 

extracted with 80% methanol, whereas that of bound phenolic acids refers to alkaline-hydrolyzed 

extract expressed as dry weight of crude solid material extracted per gram of bran. The extraction 

yields of soluble extracts showed significant differences among fractions. The highest 
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concentration of soluble TPC was observed in the coarse treatment (0.56 mg FAE/g of defatted 

bran). Bound TPC was lowest in the fine treatment (0.08 mg FAE/g of defatted bran), however, 

coarse, medium and fine treatment bound extracts did not significantly differ. An increase in 

TPC was observed with some reduction in particle size, however fine to medium treatments 

roller milled from the coarse treatment had no significant difference in vitro by TPC. On 

average, soluble TPC was 3-7 times higher than bound TPC in all fractions. 

 Flavonoid concentrations 

Total flavonoid content reflects the available polyphenol population in the sample. 

Values are reported as µg/g of extracted material, measured from the phytochemical extracts of 

each sample, and calculated against catechin for each bran size distribution in Table 3.2. The 

order of flavonoid content was determined as fine > coarse ≈ medium, for all samples. The 

highest flavonoid concentration was observed in the fine treatment (206.74 µg/g). The medium 

treatment did not significantly differ from the coarse treatment. 

 Anthocyanin concentrations 

The total anthocyanin concentration reflects the available polyphenol population in the 

sample extracted with 85:15, v/v ethanol:hydrochloric acid (1N) based on a previously published 

method (Abdel-Aal & Hucl, 2003). Anthocyanin contents (Table 3.2) are reported in µg/g of 

extracted bran, for each treatment. Anthocyanin concentration by whole bran composition was in 

the order as follows: fine > medium > coarse, for all samples. 

 DPPH radical- scavenging activity 

All bran extracts showed DPPH scavenging activities in concentration. DPPH scavenging 

activities of the treatments are reported in Table 3.3. The ability to scavenge DPPH radicals by 

bran composition for soluble and bound extracts was in the order of: medium > coarse > fine. As 
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the standard, ascorbic acid (Hatano, Takagi, Ito, & Yoshida, 1997) was measured at 96% DPPH 

inhibition with this sample set.  

 FRAP assay 

The antioxidant power of bran extracts was evaluated by FRAP assay, as shown in Table 

3.3. The ability to reduce Fe
3+

 to Fe
2+

 for all treatments was in the order of: coarse > fine > 

medium, for all soluble extracts. Coarse treatment soluble extracts had significantly higher FRAP 

values than other samples and extract from the fine treatment had the lowest FRAP value (32.06 

μmol of FeSO4/g defatted bran). FRAP values for bound extracts were as follows: medium > fine 

> coarse. The antioxidant power of the bound fraction from the medium treatment (85.64 μmol 

of FeSO4/g defatted bran) was three times greater than the fine and coarse treatments. Fine and 

coarse treatment bound extracts but did not significantly differ.  

 ORAC assay 

ORAC assay was reported for all treatments as TE within the extract in Table 3.3. For all 

hydrophilic and lipophilic extracts, ORAC values were on the order of fine ≈ medium > coarse. 

The fine and medium treatment extracts were not significantly different. TE of reduced particle 

size whole bran samples were significantly higher than the coarse treatment. 

 Total antioxidant capacities 

Total antioxidant capacity values, expressed as equivalents to ascorbic acid (mg/g) per 

gram of bran, are shown in Table 3.3. The order of total antioxidant capacity for the soluble 

extraction was in the order of coarse > fine ≈ medium, with the fine and medium treatments 

determined as not significantly different. The highest total antioxidant capacity was observed in 

the coarse treatment (0.56 mg/g of defatted bran). The order of total antioxidant capacity for the 
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bound extraction was in the order of fine > medium ≈ coarse, with the medium and coarse 

treatments determined as not significantly different. Bound total antioxidant capacity was highest 

in the fine treatment (0.30 mg/g of defatted bran). 

 Carotenoid concentration 

Carotenoid concentrations are reported as micrograms of the respective carotenoid per 

hundred grams of extracted bran for each sample in Table 3.4. All bran samples had detectable 

levels of all three carotenoid standards used during this experiment. Measureable carotenoids, by 

treatment, were in the order as follows for beta carotene: medium > fine > coarse, for all 

samples. For zeaxanthin, results were in the order as follows: fine > medium > coarse. The 

highest concentrated carotenoid was lutein. Whole bran samples all contained lutein in the order 

as follows: fine > coarse > medium 

 Discussion 

After multiple analyses of the three samples, only some constituents were further 

extracted with reduction in particle size, as some assays are more sensitive to certain compounds 

(Huang, Ou & Prior, 2005). Additional grinding of wheat bran has increased extractability of 

water-extractable arabinoxylan (van Craeyveld et al., 2009), produced greater concentrations of 

short-chain fatty acids when fermented (Stewart & Slavin, 2009), and increased bioavailability 

niacin, pantothenic acid and thiamin (Shewry et al., 2012), to improve nutritional potential. In 

some cases, biochemical composition of sterols, folates and alkylresorcinols were not altered 

with changes in milling conditions; while, compounds such as phytic acid and ferulic 

constituents had some statistical differences (Hemery et al., 2011).  



91 

 

As some differences were seen in the current study, wheat bran fraction and composition 

should be considered in product formulations, as previously noted (Stewart & Slavin, 2009). 

Particle size effects have been observed specifically in grains (Kahlon et al., 1986, Yu & Kies, 

1993, Hemery et al., 2007, Engelsen & Hansen, 2009). Researchers have noted that differences 

in lower particle size compositions compared to non-ground material from the same stock are 

most likely due the increased accessible surface area as particle size decreases (Stewart & Slavin, 

2009). The researchers have determined that multiple dry milling processes reduce wheat bran 

particle size (Hemery et al., 2007). For the use of wheat bran as a functional food, Hemery e al. 

(2011) optimized the equipment and conditions by which to produce finely textured wheat bran. 

Change in particle distribution was made by additional milling, as additional processing has been 

noted to increase the bioavailability of some phenolic compounds and phytochemicals (Anson et 

al., 2011, Anson et al., 2012). Heat and/or aggregation enhanced some micronutrients and 

components of wheat bran, and inversely can destroy others (Yang, Tsou & Lee, 2002, Opara & 

Rockway, 2006, Hotz & Gibson, 2007).  

Comparative results on grain antioxidant properties are available relating samples based 

on TPC, FRAP, and/or DPPH scavenging capacity (Thaipong et al., 2006, Roy et al., 2010, 

Herald, Gadgil & Tilley, 2012). Wheat bran has been investigated as a source of dietary fiber 

before and after micronization, with an increase in chelating activity, reducing power and TPC 

was reported after size reduction (Zhu et al., 2010). However, DPPH decreased with increased 

surface area to mass and their material was lower in TPC than that of unaltered wheat bran 

before and after ultrafine grinding. The difference could arise from sample preparation, i.e. 

actually particle size achieved by the chosen method (or the method of the assays themselves, 

which will be further discussed). In Zhu et al., (2010a), the distribution of particle size within the 
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bran material was reported in ranges for the average composition produced; not in particle size 

distribution. Small angle X-ray scattering determined the bran material ranged from 10–620 nm 

(averaging 300–620 nm) and transition electron microscopy determined a range from 30–450 nm 

(Zhu et al., 2010). However, such ranges could have various distributions within. In this study, 

DPPH inhibition did not increase with particle size reduction, total (soluble plus bound) and 

soluble TPC the highest for coarse treatment. This is not in agreement with the work of Zhu et al. 

(2010). Therefore the methods and difference in particle size composition can provide alternate 

trends in antioxidant properties measured with similar methods.  

Based on the coarse treatment particle size distribution as approximately 91% particles 

more than 900 µm, for development of the two milled treatments, the majority of the particle 

sizes (approximately 50%) were chosen to fall in either 500 and 200 µm whole bran 

distributions, as no previous research of this nature has been conducted at the 100 µm scale. 

Names were provided for each fraction, as no standard of identity is available for milling whole 

bran. Coarse and fine bran have been previously defined as unmilled bran and bran milled, on 

equipment not specified, to 0.35 - 0.59 mm particles (de Silveira & Badiale-Furlong, 2009), 

additionally, it is reported that only coarse to medium bran particle sizes should be used to 

increase fecal production or rate (Brodribb & Groves, 1978); although no definition of particle 

size exists. However, in the current study, all whole bran samples were sieved utilizing several 

compositional appropriate mesh sizes to more accurately display the particle sizes of the various 

whole bran samples, as composition and size distribution were found to be important when 

conducting assays with heterogeneous materials such as with wheat bran (Noort et al., 2010).  

The coarse treatment extract TPC (soluble and bound) was similar to previously 

published results using similar extraction methods (Liyana-Pathirana & Shahidi, 2006). In 
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cereals, phenolic acids are the most common form of phenolic compound, and it is known that 

these compounds are present in free and bound form, and the bound fraction represents 80–95% 

total phenolic acids in the kernel (Moore et al., 2005, Irakli et al., 2012). For this study, an in 

vitro extraction was chosen to best represent the fraction that could be available from digestion, 

not the total amount present. With the utilized method, extraction yield was approximately 10-

15%, and similar to previously reported work on grains (Liyana-Pathirana & Shahidi, 2006). 

Phenolic compounds may contribute directly to antioxidant action (Awika et al., 2003a); 

therefore, TPC was measured in conjunction with antioxidant properties. This data was in 

agreement with previous reports that extracts with the highest TPC showed the greatest 

antioxidant properties. McCarthy et al., (2012) noted that extracts with high TPC could have the 

greatest protection against oxidant induced DNA damage. 

The TPC method, used measured TPC without distinguishing between phenolic 

structures (Adom, Sorrells & Liu, 2003), therefore, the current study specifically measured 

phenolic compounds of importance to the bran layers by determining flavonoid and anthocyanin 

concentrations. Medium treatment flavonoid contents were determined to be significantly 

different from that of the coarse treatment, against a standard curve of catechin, a major plant 

secondary metabolite. The determined flavonoid concentrations for the coarse treatment were 

similar to that of previous determinations of unmilled wheat bran reported by (Feng & 

McDonald, 1989), though the current study is the first investigation monitoring multiple whole 

wheat bran particle size distributions and flavonoid content. In this study, the coarse and medium 

treatments were not significantly different in flavonoid content, yet their anthocyanin 

concentrations were significantly different. Differences in these subclasses of phenolic 

compounds may be due to their extractions (Stalikas, 2007) or the chemistry that differentiates 
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flavonoids from anthocyanins (Wolfe & Liu, 2008). Anthocyanin concentration in whole red 

wheat samples (not measured separately to obtain the bran fraction) has been previously reported 

as low, in comparison to that of whole ground blue wheat (211.9 µg/g) and to blue bran (495.5 

µg/g) (Abdel-Aal, Young & Rabalski, 2006). 

Antioxidant properties of wheat bran are derived from multiple compounds (Lachman et 

al., 2012). Chemically distinct antioxidant quantification methods are based on different reaction 

mechanisms, it is necessary to evaluate whether different methods can provide comparable 

antioxidant values for the same sample (Ou et al., 2002). Antioxidant quantifications are 

mechanistically based on either electron or hydrogen atom transfer between an oxidant and a free 

radical. DPPH assay measures single electron transfer to determine antioxidant reducing 

capacity. The DPPH method has been widely used to quantitatively test the free radical 

scavenging ability of various samples, due to ease and method reliability (Hatano et al., 1997, 

Huang, Ou & Prior, 2005, Kubola & Siriamornpun, 2008). The medium treatment had the lowest 

IC50 value, and therefore, the largest DPPH radical scavenging activity; thus suggesting that the 

medium treatment provided the best single electron transfer in solution; whereas, the soluble and 

bound extract DPPH value for fine treatment was less than medium and coarse treatments, with 

the only difference between these samples being surface area to mass. The current results 

coincide with the theory that antioxidant compounds on the surface of wheat bran may alter with 

particle size reduction and exposure of once protected chemical compounds (due to processing); 

perhaps with oxidization occurring prior to extraction. Mensor et al. (2001) and Mielnik et al. 

(2003) suggested that the structural conformation of the antioxidants present in solution affects 

the results of the DPPH assay. The conformation of soluble antioxidants may be more 

susceptible to oxidation with an increase of surface area to mass. 
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FRAP measures antioxidant power by reducing power of the electron donating 

antioxidants present in the extract. During FRAP assay, a single electron is transferred from the 

antioxidant molecule to the oxidant. However, FRAP is nonspecific and compounds with lower 

redox potential than Fe
3+

 will initiate Fe
2+

 formation (Benzie & Strain, 1999). Soluble extract 

power was affected by particle size as determined by FRAP analysis. Both methods (FRAP and 

TPC) are measured by reducing capacity, and from the two methods, soluble extracts had similar 

trends. Previous researchers have noted that FRAP activity correlated with TPC of brewers’ 

spent grain extracts (McCarthy et al., 2012). With the correlation between the two assays, both 

can be used in conjunction to validate each other. Bound extract FRAP values provided a 

response unseen in the other antioxidant measurements utilized, where the coarse and fine 

treatment provided approximately the same value, with the medium treatment over three times 

larger. Further investigations are needed to understand the bound FRAP value, as produced by 

the medium treatment. 

ORAC measures antioxidant properties by hydrogen atom transfer, assessing antioxidant 

donating capacity (Huang, Ou & Prior, 2005). The soluble and bound TPC and the hydrophilic 

and lipophilic ORAC values were not similar in trend; ORAC and FRAP are based on different 

mechanism and were reported to not correlate well (Ou et al., 2002), however FRAP has been 

reported to correlate with TPC (McCarthy et al., 2012), therefore the results were expected. 

Extracts had significantly higher ‘% inhibition’ for coarse treatments, with higher ORAC values 

for the fine treatment. This may be due to the ORAC extractions utilizing hydrophilic and 

lipophilic properties and the present lipid-soluble compound surface properties. Roy et al. (2010) 

proposed that extracts exhibiting lower ORAC values compared that of their DPPH value are 

more powerful pro-oxidants than extracts with higher ORAC than DPPH, as the ORAC assay 
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uses extract to eliminate peroxyl radicals and protect the fluorescence probe utilized by a 

biologically sound reaction. 

Total antioxidant capacity measures cumulative capacity to scavenge free radicals 

(Pellegrini et al., 2003). Unlike, ORAC, total antioxidant soluble and bound extract capacity had 

opposing results. However, combining the soluble and bound total antioxidant extract quantities 

within a treatment, the treatment values were relatively the same, when compared to total 

antioxidant capacity of ascorbic acid. In this assay, the overall cumulative capacity to scavenge 

free radicals of wheat bran seems equal at various particle sizes. 

Carotenoids protect the kernel from oxidative damage and when consumed also serve as 

antioxidants (Adom, Sorrells & Liu, 2003). Carotenoids required a separate extraction from TPC 

and antioxidant constituent extractions, as carotenoids are lipid soluble and would be 

underdetermined in an extraction that utilizes hexane. The extraction methods chosen were 

appropriate for the material and wheat bran lutein and zeaxanthin concentrations were similar to 

that of previous research (Adom, Sorrells & Liu, 2005). Recent studies have utilized similar 

extractions on soft wheat flours to obtain the lutein and zeaxanthin concentrations in differ wheat 

varieties, noting a tight range of carotenoid variation in the cultivar analyze (Lv et al., 2012). 

However, the previous research did not analyze the bran fraction. 

Several carotenoids were examined due to the lipophilic nature and chemical similarities 

of these compounds to previously investigated tocopherols, however additional carotenoids (α-

carotene, β-crytpoxanthin) are present in wheat bran (Britton, 1995, Adom, Sorrells & Liu, 2003, 

Adom, Sorrells & Liu, 2005), and further investigation is required to understand carotenoid 

composition and distribution within bran layers. Lipid soluble tocopherols (chemically similar to 

carotenoids) been noted to differ with particle size (Engelsen & Hansen, 2009), however a 
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positive trend was not observed with lipid soluble extracts in this study. Previous researchers 

have noted that not all lipid-soluble vitamins in wheat bran are available at every particle size 

distribution, as changes in availability of vitamin E were seen with the reduction of particle size 

(Engelsen & Hansen, 2009). This property may not be a function of vitamin E absorption on the 

surface of the bran, as in the determination of the availability of vitamins A and E, a difference 

was found only in vitamin E (Kahlon et al., 1986). 

 Conclusions 

For whole wheat bran at different particle size distributions, anthocyanin extractability, 

bound total antioxidant capacity, carotenoids and ORAC value increased as particle size 

distribution decreased (greater for 200 µm than unmilled bran). Therefore, changes in particle 

size could affect functional food claims with notably quantities bran in the formulation. Further 

studies are needed to determine specified food products where health claims could be affected by 

changes in particle size of wheat bran.  
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Figure 3.1. Descriptions and photographs of whole bran treatments milled from the same 

wheat kernels.  

Descriptions and photographs of whole bran treatments (coarse, medium and fine) milled from 

the same wheat kernels. The description is reported as percent volume, determined by sieving. 

Coarse is described as control and stock material, with particle size varying 90-5000 µm. The 

medium treatment was milled from coarse bran to less than 3% over the 500 µm sieve. The fine 

treatment was milled from stock wheat bran material to less than 3% over the 200 µm sieve. 
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Table 3.1. Particle size distribution of coarse, medium and fine whole wheat bran 

treatments by sieving.  

 

Sieve µm 

Coarse  

whole bran % Sieve µm 

Medium  

whole bran % Sieve µm 

Fine 

 whole bran % 

900 91 1041 2 355 2 

750 7 500 43 200 48 

500 2 355 24 150 17 

355 0 240 24 100 12 

PAN* 1 PAN* 10 PAN* 24 

*The pan is noted as any material that passed through all sieve mesh dimensions utilized. 
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Table 3.2. Phenolic compound contents in whole wheat bran extracts as function of particle 

size distribution. 

 

  Phenolic compounds*  

Whole bran 

composition 

Total phenolic content** 

(mg FAE/g defatted bran) Total flavonoid content 

(µg catechin/g bran) 

Total anthocyanin 

content (µg/g bran) 

 

Soluble Bound   

Coarse 0.56±0.05a 0.11±0.03a  185.96±1.31b 36.6±0.10c  

Medium 0.38±0.01c 0.11±0.05a  177.05±6.74b 40.5±0.10b  

Fine 0.46±0.01b 0.08±0.01a  206.74±4.80a 63.0±0.20a  

*Column data with like letters are not significantly different (p>0.05); n=3 

** The total phenolic contents are expressed as ferulic acid equivalents (FAE) 
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Table 3.3. Antioxidant properties of soluble and bound coarse, medium, and fine whole 

wheat bran treatments. Diphenylpicrylhydrazyl (DPPH) (% inhibition) is reported in 

terms of an ascorbic acid standard that had 96% DPPH inhibition. 

 

Bran  

 Antioxidant properties*   

DPPH (% inhibition)** 
FRAP (µmol FeSO4/g of 

defatted bran) ǂ 

ORAC (µM TE of 

extract) † 

Total antioxidant capacity 

(equivalent to ascorbic acid 

[mg/g]) 

Soluble Bound Soluble Bound Hydrophillic Lipophilic Soluble Bound 

Coarse 40.71±0.16b 14.58±1.97b 140.70±0.14a 24.62±0.02c 304.48b 121.16b 0.56±0.08a 0.23±0.03a 

Medium 43.37±0.16a 21.55±0.27a 99.06±0.10c 85.64±0.09a 1824.70a 1255.60a 0.42±0.02b 0.25±0.04a 

Fine 32.06±0.32c 13.39±0.87b 107.41±0.11b 25.61±0.03b 1787.78a 1322.00a 0.42±0.01b 0.30±0.01a 

* Column data with like letters are not significantly different (p>0.05); n=3, n=3, n=2, n=3, respectively 

for each experiment 

**% inhibition was calculated using IC50 value calculate DPPH value. It is defined as the concentration 

of the sample necessary to cave 50% inhibition, interpolated by linear regression. 

ǂ FRAP -Ferric reducing/antioxidant power 

† ORAC – Oxygen scavenging antioxidant capacity, where TE is the Trolox equivalent per gram of 

extract 
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Table 3.4. Carotenoid concentrations in whole wheat bran extracts as function of particle 

size distribution. 

 

  

Bran 

 Carotenoid concentrations (µg/100g)* 

 Beta carotene Zeaxanthin Lutein 

Coarse  6.11±0.05c 16.68±0.23c 164.67±1.02b 

Medium   17.64±0.13a 17.92±0.24b 132.93±0.82c 

Fine   14.25±0.12b 35.21±0.47a 174.59±1.08a 

* Column data with like letters are not significantly different (p>0.05); n=3 
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Chapter 4 - Particle size effect on fermentation of wheat bran in 

rumen fluid 

 Abstract 

To study the effects of particle size on fermentation of wheat bran in rumen fluid, 

unmilled bran was fermented and compared to bran milled to volume distributions of 200 and 

500 µm from the same commercial stock. To portray the effect from bran only, by excluding 

residual starch, additional samples included destarched and destarched, cooked wheat bran. 

Compositional analyses were determined for all samples. The hypothesis was that an increase in 

substrate surface area to mass would increase gas production from microbes within rumen fluid 

and decrease remains that would be available to travel to the omasum. Using ANKOM models, 

in vitro rumen fermentations of five wheat bran treatments were executed to observe gas 

production from the substrate. The composition of the starting material was compared 

throughout the study to the in vitro remains after 24 h rumen fermentation to determine the 

utilization of cellulose, hemicellulose, lignin, protein, and starch during fermentation. After 24 

hour in vitro fermentation, unmilled, uncooked wheat bran produced significantly higher gas 

production (123 mL) and lower remains (0.64 g), by dry weigh, than all processed samples. 

Starch containing samples produced distinctly different gas production curves than destarched 

wheat bran and destarched, cooked wheat bran samples. Destarched wheat bran and destarched, 

cooked wheat bran samples produced gas (mL) at a slower rate from 0-8 h, than starch 

containing samples. Destarched wheat bran and destarched, cooked wheat bran samples also had 

significantly higher amounts of digesta remains (approximately 85% and 86% remaining, 

respectively) after 24 h. Fermentation of wheat bran in rumen fluid using ANKOM models 
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revealed differences in gas production with change in particle size that were unexpected. With 

reduction of wheat bran particle size products of fermentation and rate of fermentation was 

lowered. 

 Introduction 

Wheat contains approximately 71% of the metabolizable energy found in corn, therefore, 

wheat bran is not a major portion of the finishing cattle diet (National Research Council (US). 

Subcommittee on Dairy Cattle Nutrition, 2001). Consumption of wheat bran increases ammonia, 

propionate and acetate in ruminal fluid of supplemented steers, in comparison to that of cracked 

corn supplemented steers. Wheat bran has been shown to increase energy intake, but does not 

reverse decreased forage intake that is seen with corn supplementation. However, if 

economically justified, wheat bran is supplemented to steers (Hess et al., 1996). 

Ruminant digestion utilizes microbes to digest polymers and produce volatile fatty acids 

(VFA), which are absorbed and transported to circulation (Beever, 1993, Stewart, 1997). 

[Appendix E provides a drawing of the ruminant digestive system, while Appendix F provides 

chemical structures of all VFA studied within this dissertation.] The microbial population is 

housed in the rumen. Within the rumen there are 10-50 billion bacteria, one million protozoa, 

and variable amounts of fungi and yeasts (Hungate, 1966). There are greater than 10
10

 bacteria 

per ml of rumen fluid, and with liquid turnover every 12 h, foodstuffs are normally passed in less 

than 48 h. Products of various strains may change depending on substrate availability, culture 

conditions and dominances (Russell and Hino, 1985). 

The purpose of the rumen is to provide means for substrates to undergo extensive 

alteration and degradation by the microbial population residing within the organ (McCarthy, 

1962). The location of the rumen as the first organ in the digestive tract enables ruminants to 
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utilize materials with chemical bonds indigestible to vertebrates (Morrison, 1979). Conditions 

within the rumen vary, and there are limits to digestion in the rumen (Titgemeyer, 1997). 

Multiple methods are available for in vitro rumen digestion, and development of these methods 

has been described and reviewed (Cheng et al., 1955, Getachew et al., 1998). It has been 

previously reported (in vivo) that processing corn and sorghum by particle size reduction 

(Theurer, 1986) or altering the protein matrix, increases the extent of starch digestion in the 

rumen and in the small intestine (Owens et al., 1986), as noted by performance data from 

growing cattle fed processed corn and sorghum. However, while substrate effect on animals is 

monitored in the majority of feed studies, the fate of the substrate is not well understood. In this 

study, an in vitro rumen model, utilizing active rumen fluid, was used to observe the digestive 

pattern of whole wheat bran at various particle sizes and with processing to determine if rumen 

bacteria have a preference to degrade certain types of particles that enter the alimentary canal. 

 Materials and methods 

 Materials 

Unmilled, food grade wheat bran was obtained from a flour mill in Commerce City, CO 

operated by Conagra Mills (Omaha, NE), and all chemicals, reagents, and standards were ACS 

or HPLC grade. A control sample (unmilled bran) was kept in tinted, air tight containers and 

stored less than six month prior to compositional analysis.  

 Milling and preparation of cooked and destarched wheat bran 

The commercial wheat bran was used to produce all samples. Whole wheat bran samples 

of approximately 50% by volume, 200 and 500 µm distributions were milled via three passes 

through a corrugated (20/22 corr. per square inch; 2.5:1 differential) Ross experimental roller 

mill (serial # 915, size 9x6; Oklahoma City, OK) in the Experimental Milling Lab (Manhattan, 
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KS) with an experimental gap, to grind less than 3% over the designated sieve size. Destarched 

bran was prepared from the stock material by digestion with 0.5% Stargen 001 (Genencor, Palo 

Alto, CA) for 24 h at 37°C. The destarched bran was washed five times with distilled water, 

centrifuged at 2,000 g. The sample was recovered, frozen overnight, and lyophilized for 16 h. A 

portion of destarched bran was used to produce unmilled whole, destarched and cooked bran 

(referred to throughout as ‘destarched, cooked’). After incubating the bran for 24 h at 37°C with 

0.5% Stargen 001, washing (five times), recovering the sample, freezing and lyophilizing, the 

lyophilized bran was subsequently cooked for 1 h in a pressure bottle at 100°C (1/10 bran:water), 

after settling, cooking water was decant, sample frozen overnight, and lyophilized (16 h).  

 General methods 

All samples were analyzed for ash (AOAC Method 923.03), moisture (AACC 

International Method 44-19.01), protein (AOAC Method 984.13), total dietary fiber (TDF) 

(AOAC Method 991.43), total starch (AOAC Method 996.11), cellulose, hemicellulose (Van 

Soest et al., 1991), and lignin (AOAC Method 973.18). Cellulose, hemicellulose, and lignin 

content were analyzed using a fiber evaluation method common in animal nutrition (Horwitz, 

2000, Van Soest et al., 1991). Neutral detergent fiber (NDF) was determined; where 

hemicellulose was the difference between NDF and acid detergent fiber (ADF). Cellulose was 

the difference between ADF and acid detergent lignin (ADL). In addition, oil (Caprez et al., 

1986) and water absorption (AACC Method 56-30.01), modified to determine water holding 

capacity (WHC) (Caprez et al., 1986, Chen et al., 1984), were determined for each sample prior 

to fermentation. The method for oil absorption was modified as follows, for the nature of the 

material (Caprez et al., 1986). All vials were pre-weighed prior to the addition of 1.5 g bran and 

10.5 g corn oil (C8267, Sigma-Aldrich, Inc., St. Louis, MO). A magnetic stirring bar was added 
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and samples were mixed for 30 min at 25°C. Subsequently, the samples were centrifuged at 

1,500 × g for 30 min. The excess oil was decanted from the surface and oil absorption expressed 

as the amount of oil in grams bound by one gram of wheat bran (dry matter basis). 

 Particle size determination 

Laser diffraction sizing (LDS) was used to measure and confirm particle size 

distributions of wheat bran target sizes after grinding. Particle size distributions were measured 

using a LS 13 320 SW, Dry Powder System (Beckman/Coulter Particle Characterization, Miami, 

FL) (Wilson et al., 2006). 

 In vitro rumen fermentation 

Five whole, wheat bran samples were analyzed by in vitro rumen fermentation: unmilled, 

500 µm, 200 µm, destarched, and destarched, cooked bran. The samples were randomized and 

bottle set-up time recorded, to reduce bias and equalize conditions, respectively. In vitro rumen 

fermentations were carried out as previously described (Leibovich et al., 2009, Quinn et al., 

2010, Quinn et al., 2011). McDougal's buffer (McDougall, 1948, McDougall et al., 1996) was 

prepared within 2 h of the experiment, and held at 39°C. Ruminal fluid was collected through 

roughage fed (adult fistulated steer, KSU Dept. of Animal Science, Manhattan, KS) ruminal 

fistula, transported in pre-heated (39°C), sealed thermoses, and strained through eight layers of 

cheesecloth. The strained fluid was placed in a sealed, separatory funnel, and held at 39°C for 30 

min to obtain a clarified portion. Although the microbial population in the rumen includes both 

bacteria and protozoa, clarified rumen fluid is typically used and contains only bacteria 

(Titgemeyer, 1997). Use of this clarification method has been justified in knowledge that 

protozoa are not digested by the ruminant in the same manner as the bacterial population and are 

a small portion of the total microbial mass (Weller and Pilgram, 1974). The pH (model 230, 



117 

 

Thermo Orion, Waltham, MA) of the McDougal's buffer and clarified rumen fluid was measured 

prior to use. Whole bran samples were weighed (1.000 g DM) into 250-mL bottles (ANKOM 

Technology Corp., Macedon, NY) with 50 ml of clarified ruminal fluid and 100 ml of 

McDougall’s buffer. The bottles were flushed with nitrogen and placed on a rotational shaker at 

40 rpm for 24 h at 39°C. Gas production was monitored using ANKOM gas production modules, 

and calculation of gas production was determined as previously described (López et al., 2007). 

Total gas production is reported with the blank removed. 

 VFA 

Preparation of VFA samples for gas chromatography (GC) was carried out as previously 

described (May et al., 2009). Fluid (4 ml) after 24 h was collected from each ANKOM bottle and 

combined with 1 ml 25% (weight/volume) metaphosphoric acid, vortex mixed and stored at 

−20°C until analysis. The day of analysis, acidified samples were thawed and centrifuged 

(accuSpin Micro 17R, Thermo Fisher Scientific, Waltham MA) at 13,300 g for 10 min at 20°C. 

The supernatant was analyzed for VFA by GC (Hewlett-Packard 5890A, Hewlett-Packard, Palo 

Alto, CA; 2 m × 2 mm column, Supelco B-DA 80/120 4% Carbowax 20-m column packing, 

Supelco, Bellefonte, PA), with nitrogen as the carrier gas, a flow rate of 24 mL/min, and column 

temperature of 175°C. The carboxylic acid derivatives measured via GC were: acetate, 

propionate, isobutyrate, butyrate, isovalerate, and valerate (as drawn in Appendix 6). 

 Digesta analysis 

Digesta remaining in the bottles after 24 h were tested for pH and emptied into pre-

weighed aluminum pans, to dry in an oven (105°C), overnight, for dry matter determination. Dry 

matter is reported with the blank removed. After dry matter was recorded, the remains were 

hydrated and removed from the pans. All collected material was washed and centrifuged for 
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analysis of protein (AOAC Method 984.13), cellulose, hemicellulose (Van Soest et al., 1991), 

lignin (AOAC Method 973.18) and total starch (AOAC Method 996.11). 

 Statistical analysis 

All tests were performed in triplicate, unless otherwise noted. Means and standard 

deviations were calculated for all analyses. Significance of differences between groups were 

compared using column analysis of one-way ANOVA with Tukey’s post hoc test at a 

significance level of α: 0.05 (GraphPad, GraphPad Software Inc, La Jolla, CA). P values (two-

tailed) of less than 0.05 were considered to be a sign of statistical significance. N is listed where 

n equals the number of replicate assays. 

 Results  

 Composition of wheat bran 

Prior to fermentation, sample compositional data was recorded. Table 1 contains 

analyses of ash, cellulose, hemicellulose, lignin, moisture, oil absorption, protein, TDF, and 

WHC for all samples. Ash content increased with a reduction of starch in the sample. While, 

total starch seemed to largely impact gas production. Cooking wheat bran increased the amount 

of oil absorption and WHC. Cellulose, hemicellulose, and lignin of unmilled, 500 µm, and 200 

µm brans were not significantly different. While, lignin was present as the smallest constituent 

measured, it showed the most alteration from sample to sample and after fermentation (Table 4.1 

& 4.2). TDF, oil and water absorption were higher for unmilled bran, than milled brans (200 and 

500). There was no linear trend observed for TDF to fermentation or gas production. However, 

oil and water absorption decreased with an increase in surface area to mass. 
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 ANKOM fermentation and gas production 

At 0 h, pH of clarified rumen fluid was 6.30 and McDougal's buffer 6.98 (39°C). 

Quantitative measures of rumen digesta after in vitro fermentation are shown in Table 4.2. The 

pH values of the fermentations, within the ANKOM bottles at 24 h, were close, with the 

exception of destarched bran, which was significantly higher. There was no significant difference 

in the pH of the wheat brans at various particle size distributions (unmilled, 500 µm, 200 µm). 

After 24 h, digesta remains from each bottle were dried and weighed. Weighed amounts within 

Table 4.2 are reported with the blank removed. Dry remains for processed bran samples 

(destarched, 0.85 g, and destarched, cooked, 0.86 g) were significantly higher than unprocessed 

samples. Table 4.2 displays cellulose, hemicellulose, lignin, and protein content as percent 

change, from that of the value determined for the material before 24 h fermentation. Blanks from 

the ANKOM fermentations were also tested for cellulose, hemicellulose, and lignin. For the 

blanks, a difference of 2.02 was found between NDF and ADF; therefore, that value was 

assigned as ‘hemicellulose’. The concentration of lignin was calculated from the dry material 

after fermentation with the use of an equation by Hale (1947), to compensate for the material 

present. The p-values for raw material to digested material for cellulose, hemicellulose, and 

lignin were calculated at 0.036, 0.001, and 0.027, respectively. Total gas production of this 

experiment is reported in Figure 4.1. The order of gas production (mL) at 24 h for all whole 

wheat brans was as follows: unmilled > 500 µm > 200 µm > destarched > destarched, cooked. 

Destarched and destarched, cooked whole bran samples were significantly different from 

unprocessed samples (unmilled, 500 µm and 200 µm) in total gas production in vitro. 
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 VFA 

VFA produced from in vitro fermentations were measured from all bottles at 24 h. The 

carboxylic acid derivatives generated from the blank (total of 44.07 mM) were individually 

subtracted from the bran values represented in the graph (Figure 4.2). The order for total VFA 

produced was as follows: unmilled > 500 µm > 200 µm > destarched, cooked > destarched, for 

all bran fermentations. Unmilled bran had the highest concentration of VFA produced (102.91 

mM), while the particle size reduced whole brans contained significantly less (500 µm: 77.09 

mM > 200 µm: 70.06 mM). The unmilled bran is highest in all VFA, except butyrate. Total 

values of destarched and destarched, cooked bran were close, not significantly different from one 

another (66.50 mM and 66.81 mM, respectively), yet significantly different from unmilled, 500 

µm and 200 µm whole bran compositions. Starch removal significantly lowered VFA 

production. 

 Discussion 

 In vitro fermentations 

Previous use of ANKOM models has observed ruminant feed relationships between 

chemical composition, digesta remains and in vitro gas production (Getachew et al., 2004). 

Similarities between this study and a study on wheat middlings (Getachew et al., 2004) were 

found in protein and fiber content not increasing with the trend of gas production and digesta 

remains decreasing with increase of gas production. However, it was noted that only valerate 

production followed the trend previous researchers observed in in vitro gas production at 24 h, 

not isovalerate and valerate, as previously reported (Getachew et al., 2004). Differences between 

the studies can be attributed to difference in the rumen fluid utilized and the different substrates, 

as wheat middlings vary considerably (Cromwell et al., 2000). In vitro gas production curves and 
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total VFA showed that wheat middling produced less gas production than that of corn silage and 

hominy. This result may be related to the metabolizable energy of wheat compared to that of 

maize (National Research Council (US). Subcommittee on Dairy Cattle Nutrition, 2001). This 

study was the first on substrate effects with particle size distribution using ANKOM models; 

however several in vitro wheat bran particle size studies have been reported (Kahlon et al., 1986, 

Noort et al., 2010, Stewart and Slavin, 2009, Zhang and Moore, 1999). 

Previous reports have also noted that observations of only late fermentation imply a 

constant relationship between substrate disappearance and fermentation products over time 

(Doane et al., 1997). Researchers noted that gas and VFA production varied in less than 8 h with 

forage feeds, and remained stable thereafter. However, in this experiment particle size reduction 

of wheat bran did not produce differences between samples (unmilled, 500 µm, 200 µm) until 

approximately 8 h. As there are fermentative differences between foodstuffs (Owens et al., 

1986), the period of said differences can vary within the digestion process as well. pH within 

ANKOM models may have inhibited or slowed fermentation rate, since rumen pH ranges from 

5.5 to 6.5 (Stewart, 1997). The pH of destarched, cooked bran was higher than the pH used in the 

testing procedure (McDougall, 1948), which may have slowed the fermentation process for this 

sample, lowering gas production and degradation activity of bacteria. 

 Effect of WHC 

Coarse bran holds more water than fine bran (Zhang and Moore, 1997), as noted (Table 

4.1). Due to surface area, and intact structure, unmilled bran can hold more water and oil, 

therefore, oil absorption and WHC of this material was highest among all samples. It is possible 

that unmilled bran held more rumen fluid then 200 µm and therefore underwent increased 

fermentation, as with less processing and under the same conditions, rumen bacteria initiated 
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more fermentation on large fractions. Although, cooking wheat bran increased the amount of oil 

absorption and WHC, and did not increase the amount fermented in vitro. Therefore, it is also 

plausible that commensal bacteria could monitor for the hydration levels prior to passing the 

foodstuffs to the omasum, and into the abomasum for water removal, however, further 

investigation is needed. Within sheep, researchers observed particles with higher density passing 

from the rumen into the omasum compared to less dense particles (Kaskea et al., 1992). 

However, the study also noted that defining particles by length supported the adverse theory that 

smaller particles digest faster. Overall this study concluded that rumen action was independent of 

particle density and size, but the probability of a particle exiting the rumen first was higher for 

particles with added density, as particle size was not assigned as a defining parameter (Kaskea et 

al., 1992). 

 Effect of protein content 

Protein content differed slightly with increased surface to mass, as availability of 

macromolecules has been noted to alter with processing (Camire, 1998, Kahlon et al., 2006). 

While crude protein differed statistically, all wheat bran was in range for the material, as is 

(Beaugrand et al., 2004) and on dry matter basis (Lamsal et al., 2008), and was assumed to 

contribute greatly to a biological difference. Available protein that enters the rumen is converted 

into organic acids and ammonia for use of the bacteria (McCarthy, 1962), and the deamination of 

valine and leucine by the ruminal bacteria leads to the formation of isobutyric and isovaleric 

carboxylic acids (Annison and Lewis, 1959). The protein content after fermentation was 

measured after washing the digesta carefully. The microbial population of rumen fluid is ~40% 

of the solids content and is composed of amino acids and peptides (Stewart, 1997). Although, 

some soluble peptides may have been lost during washing, the high concentration of microbes 
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from in the fluid could have altered substrate compositional analysis by adding protein content or 

skewing the proteinaceous dry weight. With increased processing (more cooking, further 

reduction of size) the change in protein content before to after fermentation showed a significant 

and linear change and the availability of protein may be a contributing factor to reduced gas 

production in the processed samples.  

 Effect of fiber components  

The TDF value of the control (unmilled) was within range of previous studies (Bourquin 

et al., 1992, Fahey Jr et al., 1990, Idouraine et al., 1996, Monro, 2004, Vitaglione et al., 2008). 

Bacteria do not contain cellulose, hemicellulose, or lignin, however, the dried remnants from the 

in vitro rumen fermentation blanks were analyzed to determine if incomplete cleaning of the 

digesta, prior cellulose, hemicellulose, and lignin, measurement, could affect determination. 

Rumen fluid microbes may raise NDF slightly, as the blank was measured to have a small 

amount of NDF in high concentration. Since the digesta were washed, and NDF for the blank 

was low, it is assumed that the variation from the microbes would be low in analyses with bulk 

removal of dried rumen fluid. This assumption is made because ADF of the blank at high 

concentrations was zero, and ADF is the portion which contains some ash and nitrogen 

compounds (Colburn and Evans, 1967). ADF and NDF of unmilled bran were within range of 

previous studies (Fahey Jr et al., 1990). Lignin represents a diverse composition of phenolic 

compounds (Hartley and Morrison III, 1991). Commensal bacteria may have cleaved ester 

linkages rendering lignin as available (Stalikas, 2007). After fermentation, all values increased 

due to the decrease in percent of other constituents, except the hemicellulose portion of 

destarched bran. Increase in constituents (ash, protein, etc.) for destarched and destarched, 

cooked brans (compared to the other samples) were partly due to the absence of residual starch in 
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the material, which increased the percent remaining material. Although, minor in some cases, 

there is lignin, cellulose, and hemicellulose loss in the rumen (Bailey, 1967), there was a linear 

decrease in the cellulose and lignin from raw material to after fermentation with an increase in 

surface area to mass. 

The utilization of cellulose is noted as a primary factor in ruminant nutrition (Louw et al., 

1949). The rate of cellulose digestion in the rumen increases around 6 h (Hale et al., 1947), and 

cellulose content after milling was only significantly different between starch containing and 

nonstarch containing fermentations. Disrupting the cellulose matrix can account for an increase 

in protein digestion (Saunders et al., 1972). Change in particle size rendered changes in protein 

content after digestion, however, differences were present prior to digestion. In vitro digestion of 

unprocessed wheat bran achieved over 69% degradation, and after reduction of particle size, and 

disruption of the protein matrix, the digestion increased to 72% with cellulosic enzymes. The 

percent cellulose digested was in range of a previous in vitro study (Cheng et al., 1955).  

 Effect of total starch content 

In vivo studies have noted that during the first 6 h there is a rapid disappearance of 

soluble nutrients, proteins and carbohydrates in the rumen (Hale et al., 1947). Wheat bran 

contains residual endosperm from the dry milling process (Sugden, 2001). While, using the same 

stock material throughout reduces variability due to sample, cooking portrays the effects of 

processing, and also gelatinizes any starch that could have escaped amylase digestion after 24 h. 

It has been reported that the type of processing, i.e., finely grinding, steam-flaking, or cracked 

grain, can alter the level of rumen digestion (Owens et al., 1986). Food processing can also affect 

other digestive processes (Anson et al., 2012, Kahlon et al., 2006). 
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Investigations of starch digestion within the rumen have long been discussed (Waldo, 

1973). For destarched and destarched, cooked brans, versus samples containing starch, the 

difference between these gas production curves from 0 to 8 h, and the relative loss of starch after 

24h note the digestion of starch fermentation within the rumen. Previous studies have noted 

increased fermentation of starch from initial to 8 h (Hale et al., 1947). Some starch escapes the 

rumen (Owens et al., 1986), however digests that contained starch after 24 h fermentation had 

highly variable assays. This varialbility is known with the use of Glucose Oxidase/Peroxidase 

Reagent and small sample sizes (McCleary et al., 1997).  

 Effects of total gas production and contributing VFA  

In vitro gas production does not consider multiple in vivo effects, and therefore is only an 

estimate of rumen activity (Blümmel and Ørskov, 1993). The contents within the rumen (food 

particles, microorganisms) travel out in frequent intervals, to the reticulum and omasum 

(McCarthy, 1962), and extensive fermentation of larger particles seen in this in vitro experiment, 

may be due to the function of the bacterial population within the rumen and not in the end results 

from the material within the animal. Digestive speed and differences from the substrate may 

cover one or the other (Owens et al., 1986). However, total digestion, from all organs, is 

generally increased by processing, conditions, and particle size reduction (Adeeb et al., 1971). 

Previous studies have suggested that microbial action and retention in the rumen for digestion 

diverges with grain type (McNeil et al., 1971) and that digestive responses to treatment of 

foodstuffs may differ (Owens et al., 1986).  

Wheat bran fraction influences short chain fatty acid development as well as bran particle 

size during in vitro fermentation (Stewart and Slavin, 2009). The carboxylic acid derivatives 

produced by rumen fluid fermentation of whole bran samples followed the same trend as total 
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gas production, until processing (destarching) of unmilled bran, however, with all samples 

propionate production followed the trend of VFA production (Beuvink and Spoelstra, 1992). 

Wheat bran fermentation produces mostly acetate (Bourquin et al., 1992). Unmilled wheat bran 

producing the highest concentrations of acetate would increase lipogenesis over that of the 

processed samples (Illius and Jessop, 1996). Previous reports of high production levels of acetate 

in vitro (Durand et al., 1988) were significantly higher than the current reported value, but 

approximately the same as the values obtained before subtraction of the blank. 

 Conclusions 

The rate of fermentation and the rate of products produced by the ruminal microbes were 

not equal for wheat bran with different particle size distributions. Unmilled bran produced more 

total gas, higher carboxylic acids, and fewer remains after 24 h fermentation. Starch containing 

samples had a faster rate of fermentation from 0 to 7 h compared to the destarched samples. 

Commensal microbes further fermented larger, more unprocessed particles within a 24 h period, 

which may be due to adsorption of bacteria or rumen fluid by wheat with different particle sizes 

or the purpose of the rumen as an organ and the role of these commensal bacteria. These results 

suggest that minimum processing of wheat bran increases fermentation in the rumen, and 

possibly rumen health after consumption. 
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Figure 4.1 Gas production curves (mL per h) of unmilled, 500 µm, 200 µm, destarched, and 

destarched, cooked whole wheat bran, after in vitro fermentation with rumen fluid. Within 

each curve, standard deviation is reported every 20 min. 
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Figure 4.2. Volatile fatty acid derivatives produced from in vitro rumen fermentation of 

unmilled, 500 µm, 200 µm, destarched, and destarched, cooked whole wheat bran. 
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Table 4.1. Composition and oil and water absorption of wheat bran. 

 wheat bran sample* 

 unmilled 500 µm 200 µm destarched 
destarched, 

cooked 

ash % 5.0±0.3c 4.7±0.2c 5.0±0.1c 6.5±0.3a 5.8±0.1b 

moisture % 13.0±0.3a 8.3±0.1c 8.2±0.0c 8.0±0.1c 8.9±0.1b 

cellulose % 8.5±0.1c 8.3±0.4c 8.7±0.2c 16.9±0.1a 12.5±0.0b 

hemicellulose % 29.4±0.9c 27.8±0.5c 28.6±1.2c 49.3±0.6a 45.3±2.1b 

lignin % 2.7±0.0c 2.7±0.1c 2.8±0.0c 5.6±0.1a 4.3±0.1b 

protein % 16.9±0.0a 16.3±0.0c 16.5±0.0b 16.9±0.1a 16.9±0.1a 

total starch % 16.6±0.5a 15.9±0.6a 16.0±1.4a 4.1±0.3b 3.7±0.1b 

total dietary fiber % 49.8±0.2c 41.2±2.6d 44.5±0.6d 73.1±1.0a 66.3±0.3b 

oil absorption, ml/g 3.2±0.3b 2.0±0.2c 1.6±0.1c 6.6±0.0a 6.2±0.2a 

water absorption WHC, ml/g 4.7±0.0c 3.3±0.0d 2.5±0.0e 6.2±0.1b 6.7±0.1a 

*Row data with like letters are not significantly different (p>0.05); n=3, with 2-3 subreplicates 
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Table 4.2. Quantitative measures of whole wheat bran rumen digesta after in vitro 

fermentation. 

    % change after fermentation  

whole wheat bran  digest pH* 

dry remains 

at 24 h (g)* 

total starch% 
cellulose hemicellulose lignin protein 

unmilled 6.7a 0.64±0.01b 0.0±0.0a 4.5 3.6 2.7 0.5 

500 µm 6.8a 0.64±0.05b 0.1±0.0a 3.6 3.5 2.2 1.5 

200 µm 6.8a 0.65±0.04b 0.3±0.5a 2.9 4.2 1.8 4.2 

destarched 6.9a 0.85±0.03a 0.2±0.0a 3.1 -3.8 2.1 -7.3 

destarched, cooked 6.9a 0.86±0.04a 0.1±0.0a 7.5 0.6 3.3 -8.0 

*Column data with like letters are not significantly different (p>0.05); n=3 
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Chapter 5 - Mechanism and enzymatic contribution to in vitro test 

method of digestion for maize starches differing in amylose content 

Brewer LR, Cai L, Shi YC. Mechanism and Enzymatic Contribution to In Vitro Test Method of Digestion for Maize 

Starches Differing in Amylose Content. J Agric Food Chem 2012;60:4379-87http://dx.doi.org/10.1021/jf300393m. 

 

 Abstract 

To determine the rapidly digestible starch (RDS), slowly digestible starch (SDS), and 

resistant starch (RS) content in a starch sample, the addition of amyloglucosidase is often used to 

convert hydrolyzates from -amylase digestion to glucose. The objectives of this study were to 

investigate the exact role of amyloglucosidase in determining the digestibility of starch and to 

understand the mechanism of enzymatic actions on starch granules. Four maize starches differing 

in amylose content were examined: waxy maize (0.5% amylose), normal maize (≈27% amylose), 

and two high-amylose starches (≈57% and ≈71% amylose). Notably, without amyloglucosidase 

addition, RS content increased from 4.3 to 74.3% for waxy maize starch, 29.7 to 76.5% for 

normal maize starch, 65.8 to 88.0% for starch with 55% amylose, and 68.2 to 90.4% for the 

starch with 71% amylose. In the method without -amylase addition, less RS was produced than 

without added amyloglucosidase, except in maize at 71% amylose content. Scanning electron 

microscopy (SEM) revealed the digestive patterns of pinholes with -amylase and burrowing 

with amyloglucosidase as well as the degree of digestion between samples. To understand the 

roles of amyloglucosidase and -amylase in the in vitro test, multiple analytical techniques 

including gel permeation chromatography, SEM, synchrotron wide-angle X-ray diffraction, and 

small-angle X-ray scattering were used to determine the molecular and crystalline structure 
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before and after digestion. Amyloglucosidase has a significant impact on SDS and RS content of 

granular maize starches. 

 Introduction 

Starch is a major component in cereal grain foods and the most important source of food 

energy. Understanding starch digestibility is of great interest to the food industry and of 

importance for diet-related disorders such as obesity, diabetes and cardiovascular disease. Not all 

starch can be digested in the small intestine, where the portion of starch that is not digested is 

termed resistant starch (RS) 
1
.  

Granular starch is considered a form of type 2 RS 
2-7

. The mechanism of resistance to 

enzymatic digestion of starch granules is complex and factors such as dense packing and 

restricted mobility of starch molecules, long amylopectin branches, helix form, crystallinity, 

lamellar organization as well as structural features of granules are considered 
8
. Physiological 

benefits have been correlated to RS consumption 
2, 3, 5, 7

 which notably alters fecal bulk and 

short-chain fatty acid metabolism, thus promoting colonic health 
7
. In vitro measurement of 

rapidly digestible starch (RDS), slowly digestible starch (SDS), and RS in granular starches often 

employs both -amylase (pancreatin) and amyloglucosidase 
9-17

; however, the roles of each 

enzyme in the in vitro tests are not well documented. Amyloglucosidase converts oligomers 

produced from -amylase digestion to glucose and is not believed to affect SDS or RS content in 

normal maize starch 
2, 4

. In many cases, the level of glucose produced in the digest is measured 

and used to calculate the RDS, SDS, and RS content 
4, 14, 15, 18

; whether the addition of 

amyloglucosidase affects the SDS and RS content is not clear. Moreover, improved in vitro 

methods are needed to truly reflect starch digestibility in vivo systems 
19

. 
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In this study, we selected four native maize starches ranging from 0 to about 70% 

amylose content and examined the roles of -amylase and amyloglucosidase on digestibility of 

the starches. RS and SDS results have been published for normal maize and waxy maize starches 

2, 4, 11, 14, 20, 21
 and the two high-amylose starches 

13, 14, 20, 22
. The high-amylose starches are 

generally more resistant to enzyme digestion. The maize starches with different amylose contents 

are known to have different morphology 
23-25

, molecular structure 
4, 13, 26, 27

, molecular order and 

crystallinity 
12, 28

,
 
and gelatinization properties

26, 29-33
. The goals of this study were to determine if 

the addition of amyloglucosidase affects the RDS, SDS, and RS content and if amyloglucosidase 

affects the digestibility of starches with different amylose contents. Multiple analytical 

techniques including gel permeation chromatography (GPC), scanning electron microscopy 

(SEM), synchrotron wide-angle X-ray diffraction (WAXD), and small-angle X-ray scattering 

(SAXS) were used to probe the short and long range orders of the structural changes of the 

starches after enzyme digestion and understand the mechanism of enzymatic actions on starch 

granules. 

 Materials and Methods 

 Samples 

Waxy, normal, and two high-amylose (HYLON V and HYLON VII) maize starches were 

obtained from National Starch LLC (Bridgewater, NJ) and their amylose content was 0.5, 27.0, 

56.8, and 71.0%, respectively, as determined by the potentiometric iodine method 
26

. Moisture 

content for all samples was determined by AACC standard method 44-16.01. Porcine pancreatin 

(catalogue no. P7545) and amyloglucosidase (catalogue no. A7255) were obtained from Sigma-

Aldrich, Inc. (St. Louis, MO). Enzyme activity was calculated spectrometrically by measuring 

substrate decrease over time at 520 nm, using a procedure described previously 
34, 35

. -amylase 
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(EC 3.2.1.1; 1,4--D-glucan glucanohydrolase) had an activity of 300 U, with 0.9 mg glucose 

released from soluble starch in 3 min at 37 °C and pH 5.8. One U is defined as the amount of the 

enzyme that hydrolyzed the conversion of one micromole of starch per minute to glucose. 

Amyloglucosidase (EC 3.2.1.3; 1,4- -D-glucosidase) had an activity of 234 U, with 0.7 mg 

glucose released from soluble starch in 3 min at 37 °C and pH 5.8. Amyloglucosidase (catalogue 

no. A7255) has been recently discontinued from Sigma-Aldrich, Inc. The replacement is 

amyloglucosidase catalogue no. A9228 which is reported as 40000 units/g solid where 1 mg 

glucose is released from soluble starch in 3 min at pH 4.5 at 55°C 
35

. Other chemicals were 

reagent grade. 

 Methods 

 Digestion method and modifications 

The control samples were analyzed via the Englyst method 
10

. Modified digestion 

methods were as follows: digestion samples were prepared with only one enzyme, referred to 

throughout as “digestion with -amylase,” and “digestion with amyloglucosidase”. Vials 

designated as digestion with amyloglucosidase were prepared at the same volume as the control 

and were run according to the Englyst method of resistant starch determination, only without -

amylase added. At 20- and 120-min intervals, 250 µl of supernatant was added to 10.0 ml 66.6% 

ethanol solution. [Appendix G provides visual representation of this step as supplemental 

clarification.] All 10.0 ml 66.6% ethanol vials were centrifuged at 1,580 g for 5 min and 

analyzed by the same colorimetric method as the control digestion method samples. For the 

digestion with -amylase samples, the vials were also prepared at the same volume and run 

under the same method as the control 
10

, only without amyloglucosidase initially added. At 20 

and 120 min, 18 mg of amyloglucosidase was added to all 10.0 ml 66.6% ethanol vials 
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containing a 250 µl sample from the digestion with -amylase experiment and held at 37 °C for 

30 min. We found that the added amyloglucosidase was able to completely convert oligomers to 

glucose under the test conditions. All colorimetric determinations of glucose were performed by 

AACC Method 76-13.01, using a glucose assay kit (Megazyme, International Ireland Ltd. 

Wicklow, Ireland). 

RDS and RS were collected and calculated at 20 and 120 min, respectively, for all 

samples. The values for SDS and RS were produced from equations. Equations for the two 

calculated values are SDS = DS-RDS and RS = 100-DS, which are explained in detail in the 

original publication 
10

. 

 High-performance anion-exchange chromatography (HPAEC) 

The results of the in vitro digestion methods were verified by HPAEC with pulsed 

amperometric detection (Dionex ICS-3000, Dionex Corp., Sunnyvate, CA). To ensure all 

digested material was converted to glucose, at 20 and 120 min, 0.5 ml of supernatant from all 

digestion experiments was introduced to 100 µl of amyloglucosidase (aqueous; 10 µg/10 µl H2O) 

and the vials held for 30 min at 70 C. Amyloglucosidase is active on carbohydrates at 70 C 
36

. 

The digest was diluted to 1:10000 with deionized water and analyzed by HPAEC-PAD. The 

eluent was prepared as previously reported 
37

. The eluent was 150mM NaOH and the separations 

were carried out at 25 °C with a flow rate of 1 ml/min. Glucose (catalogue no. P3761, Sigma-

Aldrich, Inc., St. Louis, MO) was used as a standard.  

 SEM 

At the conclusion of the in vitro digestions, the 120 min vials were collected from the 

water bath and centrifuged at 1,480 g for 10 min. The supernatant was discarded, and the 

remaining starch in the vials was washed three times with deionized water and centrifuged at 
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1,480 g for 10 min. After the starch was cleaned and supernatant was removed, vials were stored 

at 4 C for 24 h and freeze-dried for 16 h. The freeze-dried samples were mounted on carbon 

paper and gold-palladium sputter-coated with a Desk II Sputter/Etch Unit (Denton Vacuum 

LCC, Moorestown, NJ). Images were collected at 1000× and 5000× resolution by an S-3500N 

SEM with an absorbed electron detector (S-6542) (Hitachi Science Systems, Chiyoda, Tokyo, 

Japan) operating at an accelerating voltage of 20 kV. 

 Molecular size distribution by GPC 

All native and freeze-dried digested samples from SEM preparation were used for GPC 

as previously described 
37

. 

 WAXD and SAXS 

WAXD and SAXS experiments were carried out at the Advanced Polymers Beamline 

(X27C) in the National Synchrotron Light Source, Brookhaven National Laboratory, in Upton, 

NY. Details of the experimental setup of the X27C beamline were previously reported 
38-41

 The 

wavelength used was 0.1371 nm, and the sample-to-detector distances were 129.37 mm and 

2392.70 mm for WAXD and SAXS, respectively. A 2D MAR- X-ray detector CCD (Rayonix, 

LLC, formerly Mar USA, Inc., Evanston, IL) was used for data collection. To prepare the 

samples for WAXD and SAXS, the native maize starches (ca. 11% moisture) and the digested, 

freeze-dried maize starches (ca. 4% moisture) were mixed with water to form starch pastes (45% 

moisture) prior to X-ray detection. The relative crystallinity was calculated by the ratio of the 

peak areas to the total diffractogram area 
42

. 

 Statistics 

Means and standard deviations were calculated for all collected digestive data. All values 

are expressed as means ± the standard deviations. The significances of differences between 
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groups were compared using two-sample t tests (Excel 2003). P values (two-tailed) of less than 

0.05 were considered to be a sign of statistical significance. 

 Results and discussion 

 RDS, SDS, and RS content of maize starches 

Because the molecular structure of maize starch is determined by the amylose and 

amylopectin fine structure 
4
, starches with a full range of amylose content percentages were 

studied. All digestions with -amylase and amyloglucosidase (Table 5.1) were within the 

acceptable range of previously reported data 
2, 4, 10, 11, 20

 Results from the modified digestion 

methods with amyloglucosidase only or with -amylase only are also presented in Table 5.1. 

The RS content increased, whereas the SDS content decreased, with the increasing percentage of 

amylose present in the maize starch samples. RS content of the waxy maize and normal maize 

starches increased from 4.3 to 74.3%, and 29.7 to 76.5%, respectively, when amyloglucosidase 

was not used. In contrast, when -amylase was not used, RS content of the waxy maize and 

normal starches was 41.5 and 66.0%, respectively, suggesting that amyloglucosidase plays a 

more important role in digestion of starches with low amylose content. 

Amyloglucosidase was thought not to affect the digestion results. In the determination of 

resistant starch content, -amylase is believed to be the most important enzyme to measure 

digestion of the starch fractions, whereas amyloglucosidase is employed to combat any 

potentially inhibitory factors on -amylase 
2, 4

;
 
however, when amyloglucosidase or -amylase 

was not used during the digestion, results were dramatically different (Table 5.1). When 

comparing digestion with -amylase and amyloglucosidase, the digestion without 

amyloglucosidase yielded an RS content increase in all starches, but the increase in RS content 
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was not equal among the starches: A greater increase in RS was observed in waxy maize and 

normal maize starches. Our results are in agreement with the work by Kimura and Robyt (1995), 

who reported that waxy and normal maize starches were more susceptible to amyloglucosidase 

hydrolysis than high amylose maize starch 
43

. Previously, in studying wheat starch, Shetty et al. 

showed that pure amyloglucosidase can attack native starch 
44

. 

Studying the effects of amyloglucosidase in conjunction with the effects of -amylase 

was essential to determine the synergy of the enzymes as they work together. Amyloglucosidase 

and -amylase worked together in digestion of native starch granules. The impact of 

amyloglucosidase was greater on waxy maize and normal maize starches compared with high-

amylose starches. No stepwise, linear correlation was seen in the rapidly digestible or slowly 

digestible starch content in methods of digestion with -amylase added.  

HPAEC was used as a secondary method to confirm the results of the colorimetric in 

vitro test. Of the HPAEC RS determinations (Table 5.2), only normal and waxy maize are 

reported for comparison. HPAEC data were within range of both our results reported from the 

colorimetric determination and previously reported data 
4, 20

.
 

To samples without 

amyloglucosidase initially added, amyloglucosidase was later added, remote to any remaining 

starch granules, to convert the -amylase digested material in solution to glucose for analysis via 

the colorimetric method and HPAEC. Without full conversion to glucose, digested material 

would be present, but would remain unrecognized by the colorimetric or identification of glucose 

by HPAEC.  

Significant differences were found between enzyme addition methods. Notably, 

amyloglucosidase could change the outcome 30-60% of the expected slowly digestible starch 

fraction. No official AOAC method exists for SDS measurement. Of the available methods, the 
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Englyst method of digestion 
2
 is often used to measure SDS because it was designed to calculate 

this nutritional concept. Only from in vivo studies has SDS been found to alter gastrointestinal 

response 
41

. 

 Starch granular morphology before and after enzyme digestion 

SEM photomicrographs provide an overall picture of digestion for multiple granules and 

are grouped together for comparison (Figure 5.1-2). Maize starches containing amylose are 

naturally irregularly shaped 
45

. Classically, SEM starch digestion analysis focuses on comparing 

the uniformity of sample, pore, and digestive residue geometry 
25, 41, 45

.
,
The digestion of native 

starches by amylases seems to be inversely related to the amylose content 
15, 45

. For high-amylose 

starches, granules with pinholes were observed after 2 h in vitro digestion, but the majority of 

digestive residues still resembled the native starch granules (Figures 5.1D and 5.2D), suggesting 

that digestion on high-amylose maize starches were heterogeneous. Using transmission electron 

microscopy (TEM), Evans and Thompson 
20

 reported that after digestion, most of the residual 

granules from high-amylose maize starches showed little evidence of digestion 
7, 15

, and partially 

digested granules had a radial digestion pattern 
15, 45, 46

 in the interior. 

Figures 5.1 and 5.2, A1-D1 show the native starches and provide objective views of the 

basic morphology in undigested starches. In Figure 5.2, magnification is at 5000× to examine 

the details of digestion within the same sample and across the sample set. Degradation and 

digestive progression decreased as amylose content increased. In consistent with the level of RS 

content (Table 5.1), waxy maize starch granules were extensively digested by α-amylase and 

amyloglucosidase (Figure 5.1A2 and 5.2A2). Amyloglucosidase alone generated more and large 

pinholes on waxy and normal maize starches (Figure 5.1A4 and 5.5A4) compared with the 

granules digested by α-amylase only (Figure 5.1A3 and 5.2A3). It has been suggested that 
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during digestion, enzymes migrate inside the granule 
4, 45, 47

. The digestion of the starch material 

has been theorized to occur from the inside, and enzymes return to the surface after all material is 

consumed 
48

. A side-by-side mechanism has been proposed to explain the digestion of amylose 

and amylopectin as well as crystalline and amorphous regions in normal maize starch granules 
4
. 

The digestion via pores route 
4
 is applicable only in A-type starches 

45
. Amyloglucosidase 

degrades maize starch surfaces in a surface pattern resembling the native starch pore distribution 

4, 46, 47
. 

 Molecular size distribution 

The GPC chromatograms visually portray the molecular size distribution for each starch 

and enzyme combination before and after digestion (Figure 5.3A-D). Dextrans with different 

molecular weights (MW) were used to calibrate the columns in this study. An equivalent 

molecular size to dextran standards was used. However, the absolute MW was not obtained 
49

. 

For native starches, the peak around the retention time (RT) of 18 min represented amylopectin, 

whereas the peak around the RT of 23 min (about 1.6x10
5
 g/mole) was amylose. Although SEM 

microphotographs provide a visual of the degradation, GPC analysis displays the relative MW 

distribution of products digested by the enzymes 
4, 14, 37

.
 
The molecular size distribution of waxy 

maize with amyloglucosidase appeared to follow the same trend as the native starch, reflecting 

the localized attack of the granules by amyloglucosidase. The waxy maize digested by -

amylase had more low MW fraction and was detected around the same retention time (RT) as the 

samples digested with amyloglucosidase and -amylase (Figure 5.3A). Chromatograms for 

normal maize with amyloglucosidase and with -amylase had a large peak at 23 min RT (about 

1.6x10
5
 g/mole), whereas the normal maize starch digested by both α-amylase and 

amyloglucosidase had more low MW molecules appearing at 31 min RT (about 1.5x10
3
 g/mole) 
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(Figure 5.3B), suggesting a synergistic attack by the two enzymes. For the moderately high-

amylose (57%) maize starch, the area under the peak starting at 18 min RT for the combined 

digestion with amyloglucosidase and -amylase was notably smaller than that of the native and 

two modified digestions (Figure 5.3C). For the starch with 71% amylose, a shoulder was noted 

at 29 min RT for the residues digested by α-amylase and amyloglucosidase and a smaller 

shoulder was observed for the residues digested by α-amylase only (Figure 5.3D). The relative 

small changes in molecular size distribution between native high amylose starches and digestive 

residues suggest that digestion on high-amylose starches was heterogeneous and limited. 

 Starch structure by SAXS and WAXD 

Figure 5.4 shows the synchrotron SAXS curves of four native starches and their 

digestion residues. For native waxy maize and normal maize starches, the 9 nm lamellar peak 

was clearly observed at q 0.65 1/nm (Figure 5.4A, B). This peak was thought to be attributable 

to the alternative repeating stacks of amorphous and crystalline lamella in starch granules 
50-52

. 

Due to lower amylopectin content, fewer crystalline lamella were formed for high-amylose 

starch granules, resulting in a broader and less clear lamellar peak (Figure 5.4C, D).  

For waxy maize starch (Figure 5.4A), the 9 nm lamellar peak remained intact when 

digested by amyloglucosidase only, decreased by α-amylase only, and disappeared with the 

combination of α-amylase and amyloglucosidase. These results indicated that α-amylase had 

more profound effects on the lamellae structure of waxy maize starch than amyloglucosidase. 

For normal maize starch (Figure 5.4B), the 9 nm lamellar peak remained the same as that of 

native starch when treated by amyloglucosidase only, α-amylase only, and a combination of α-

amylase and amyloglucosidase, signifying that these two enzymes had similar digestion effects 

on normal maize starch. After digestion by amyloglucosidase only, α-amylase only, and 



147 

 

combined α-amylase and amyloglucosidase, the 9 nm lamellar peak of the high-amylose maize 

starches was still evident but decreased (Figure 5.4C,D), suggesting that bulk amorphous starch 

within the amorphous growth rings was hydrolyzed 
53

. However, this hydrolysis was relatively 

small because little change in molecular size was observed (Figure 5.3) and the degree of 

crystallinity of the starch was not increased (Figure 5.5D). 

Synchrotron WAXD curves of four native starches and their digestion residues are shown in 

Figure 5.5. Native waxy maize starch and normal maize starch showed a typical A-type X-ray 

diffraction pattern (Figure 5A,B), whereas two native high-amylose maize starches displayed a 

B-type starch structure (Figure 5C,D). Compared with native starch, the relative crystallinity of 

waxy maize starch decreased from 37.8% to 29.2% and 26.9%, respectively, after digestion by 

both α-amylase and amyloglucosidase and α-amylase only, but increased to 56% when digested 

by amyloglucosidase only (Table 5.3; Figure 5A). The degree of crystallinity of normal maize 

starch undigested, digested by both α-amylase and amyloglucosidase, α-amylase only, and 

amyloglucosidase only was 34.7%, 26.4%, 23.5%, and 32.6%, respectively (Table 5.3; Figure 

5.5B). Similar trends were observed for high-amylose maize starches (Table 5.3; Figure 5.5C, 

D). Our results suggested that α-amylase was able to hydrolyze both crystalline and amorphous 

regions for all maize starches and were consistent with the side-by-side mechanism 
4
. Previous 

studies also show that α-amylase hydrolyzes both amorphous and crystalline domains of wheat 

starch and maize mutant starches 
54

. In addition, a new α-amylase from Anoxybacillus 

flavothermus 
55

 and a fungal α-amylase from Rhizomucor sp. 
56

 were reported to be very efficient 

in hydrolyzing the crystalline fraction of maize starch.  

Our experiments noted significant differences between enzyme addition methods. 

Amyloglucosidase had a significant impact on SDS and RS content of granular maize starches. 
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Amyloglucosidase digestion was greater for waxy maize and normal maize starches than for 

high-amylose maize starches. The extent of enzyme digestion is largely controlled by the granule 

architecture and diffusion of the enzymes within densely-packed starch granules. Future project 

aspirations involve applying knowledge of enzyme digestion and synergy to starch 

morphological impacts on digestion to diagram the influence of resistant starches in the human 

digestive system as functional foods. 
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Figure 5.1. Scanning electron micrographs of maize starch at 1000X magnification with 10 

µm scale bars: A) waxy, B) normal, C) HYLON V, and D) HYLON VII maize starch are all 

represented with 1) native maize starch, 2) maize starch after digestion with α-amylase and 

amyloglucosidase (control method), 3) maize starch digestion with α-amylase only, and 4) 

maize starch after digestion using only amyloglucosidase in the method. 
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Figure 5.2. Scanning electron micrographs of maize starch at 5000X magnification with 3 

µm scale bars: A) waxy, B) normal, C) HYLON V, and D) HYLON VII maize starch are all 

represented with 1) native maize starch, 2) maize starch after digestion with α-amylase and 

amyloglucosidase (control method), 3) maize starch digestion with α-amylase only, 4) maize 

starch after digestion using only amyloglucosidase in the method. 
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Figure 5.3. Gel permeation chromatography plots of retention time versus response: A) 

waxy, B) normal, C) HYLON V, and D) HYLON VII maize starch. For all 

chromatographs, the patterns are as follows: native (dot), maize starch after digestion with 

alpha amylase and amyloglucosidase (dashed), maize starch digestion with only α-amylase 

(gray) and maize starch after digestion using only amyloglucosidase (black). 
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Figure 5.4. Synchrotron small -angle X-ray scattering curves of native starch (1) and native 

starch digested by α-amylase and amyloglucosidase (2), by α-amylase only (3), and  by 

amyloglucosidase only (4) in descending order for A) waxy, B) normal, C) HYLON V, and 

D) HYLON VII maize starch.
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Figure 5.5. Synchrotron wide-angle X-ray diffraction curves of native starch (1), native 

starch digested by α-amylase and amyloglucosidase (2), by α-amylase only (3), and by 

amyloglucosidase only (4) in descending order for A) waxy, B) normal, C) HYLON V, and 

D) HYLON VII maize starch. 
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Table 5.1. Rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant 

starch (RS) in vitro. Rapidly digestible starch (RDS), slowly digestible starch (SDS), and 

resistant starch (RS) in vitro results as determined by α-amylase and amyloglucosidase 

digestion and modified digestive methods. 

maize starch 

α-amylase and amyloglucosidase 

digestion (control method) digestion with α-amylase digestion with amyloglucosidase 

 RDS% SDS% RS% RDS% SDS% RS% RDS% SDS% RS% 

waxy  29.0±0.4aA 67.2±0.4 4.3±0.8x 10.2±1.8xx 15.5±2.2XC 74.3±1.0F 31.8±2.2aA 26.6±4.1x 41.5±3.8x 

normal 15.1±1.3Bx 50.2±2.8 29.7±2.0c 5.4±0.7bC 18.1±2.8DX 76.5±0.4F 5.2±0.7bC 28.8±1.5c 66.0±2.4x 

HYLON V 5.9±0.3Cx 28.3±0.8 65.8±0.7x 2.2±0.2dx 9.8±0.8DE 88.0±0.7F 1.6±0.7dx 19.3±0.8D 79.1±0.3F 

HYLON VII 7.7±0.1Cx 24.0±1.8 68.2±0.7x 4.3±1.0eC 5.3±1.5eE 90.4±2.1G 0.8±0.5xx 4.7±1.2eE 94.4±1.8G 

Data with lowercase letters indicate no significant difference at (P>0.05) for the sample. Capital letters denote no 

significant difference among category groups (P>0.05); n=4 

* Values shown are mean ± standard deviation 

** Starch portions are reported in percentage of sample 
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Table 5.2. Resistant starch (RS) as determined by high-performance anion-exchange 

chromatography (HPAEC). Resistant starch (RS) as determined by the α-amylase and 

amyloglucosidase digestion method and modified methods in vitro results analyzed via 

high-performance anion-exchange chromatography (HPAEC). 

maize starch enzymes used in starch digestion     RS % 

waxy Amyloglucosidase and alpha amylase 2.7±1.1   x    

 Alpha amylase 71.2±4.8ab  

 Amyloglucosidase 56.7±4.3ax 

normal  Amyloglucosidase and alpha amylase 32.1±4.7xx 

 Alpha amylase 78.4±0.5bx 

 Amyloglucosidase 69.5±2.5bx  

Data with like letters are not significantly different (p>0.05); n=3 

* Values shown are mean ± standard deviation 

** Starch portions are reported in percentage of sample 
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Table 5.3 Crystallinity of native starch and native starch digested starches. Crystallinity of 

native starch and native starch digested by α-amylase and amyloglucosidase, by α-amylase 

only, and by amyloglucosidase only in descending order for A) waxy, B) normal, C) 

HYLON V, and D) HYLON VII maize starch. 

maize starch 

crystallinity (%) 

undigested 

α-amylase and 

amyloglucosidase 

digestion  

digestion with α-

amylase 

digestion with 

amyloglucosidase 

waxy 37.8±0.3 29.2±0.4 26.9±0.1 56.0±0.6 

normal 34.7±0.3 26.4±0.1 23.5±0.4 32.6±0.1 

HYLON V 28.3±0.4 21.3±0.3 17.7±0.4 17.4±0.1 

HYLON VII 23.7±0.3 17.5±0.1 17.6±0.3 17.2±0.4 
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Chapter 6 - Glycemic response and breath hydrogen testing by 

human consumption of crystalline short-chain amylose 

 Abstract 

Background 

Starch is a major component in cereal foods and an important source of food energy. 

Understanding starch digestibility is of great interest to the food industry and of importance for 

diet-related disorders such as obesity, diabetes and cardiovascular disease. Glycemic response is 

a nutritional parameter used to classify foods high in carbohydrate. The glycemic index (GI) of a 

food is used to classify foods based on their potential to raise postprandial blood glucose levels 

in comparison to an equal available carbohydrate amount of glucose. Not all starch and non-

digestible oligosaccharides (NDO) can be digested in the small intestine, and the undigested 

portions are termed resistant starch (RS). A high portion of slowly digestible starch and/or RS + 

NDO indicates a low GI. However, RS and NDO have modified dietary fiber assays, and so 

available carbohydrate may not be reflected in vivo results. Recent methods used to calculate 

available carbohydrate include RS and NDO in total dietary fiber, which affect GI value. 

Methods 

Crystalline short-chain amylose (CSCA) was produced by a one-pot procedure wherein waxy 

maize starch was enzymatically debranched with continued stirring at 50°C for 24 h to produce 

CSCA. CSCA gave 100% carbohydrate when assayed by AOAC Method 996.11, and 0% dietary 

fiber by AOAC Method 991.43, which translate erroneously to 100% “available carbohydrate”. 

RS content was determined by the Englyst assay (1992). CSCA was used as a substrate to 

produce glycemic curves within ten young adults. Using standard methods of the GI, this 
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controlled trial compares blood glucose response of 50 g available carbohydrate: waxy maize 

starch (TDF: 0%, RS: 0.6%; the pre-modified starch material), to CSCA, (total dietary fiber 0% 

and 75% RS). CSCA was consumed either alone or with glucose, to observe its effect in a mixed 

formulation. Breath hydrogen tests were also provided every 30 min, over a period of 6 h. Breath 

samples were analyzed on a Quintron BreathTracker SC, using carbon dioxide as an internal 

reference to normalize hydrogen (H2) and methane (CH4) production (ppm). 

Results 

All volunteers had lower postprandial glucose curves with consumption of CSCA. The rise in 

glucose (mmol/L) for 25 g CSCA with 25 g glucose was similar to the rise observed with 50 g 

glucose solution, however, 25 g CSCA with 25 g glucose had a slightly (yet, significant p<0.05) 

reduced peak height and extension. After 50 g available carbohydrate consumption, the 

following percentage of volunteers passed below baseline at 2 h: waxy maize starch (80%), 

glucose (50 %), CSCA (20%), and 25 g CSCA to 25 g glucose (0%). CSCA was correlated with 

subjects’ return to basal blood glucose levels at 2 h. After breath hydrogen testing, the minimum 

production levels for the population with 50 g CSCA samples were 2.50 ppm H2 and 2.00 ppm 

CH4; peak values were 22.38 ppm H2 and 7.00 ppm CH4. One volunteer provided elevated H2 

production after 150 min with all samples. Ninety percent of the population produced CH4, and 

70% produced CH4 with every sample. It was noted that after subtraction of the baseline, the 

majority of volunteers had lower postprandial fermentation curves with consumption of CSCA 

over that of waxy maize starch.  

Conclusions 

Our study concluded that 50 g available carbohydrate of CSCA, determined by the Total Starch 

AOAC Method 996.11, was not entirely available in vivo. In mixed formulation, 25 g CSCA 
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with 25 g glucose gave a significant effect on extension of plasma glucose elevation within 

curves, as well as on the initial raise. Four volunteers elevated H2 production with CSCA and 

four elevated H2 production with waxy maize starch. For the population, CSCA did not produce 

elevated H2 production more than other samples within the trial. This study shows that the RS 

content of a food affects glycemic response and GI values, as well as addresses the functions of 

RS in the colon with noninvasive measures for carbohydrate metabolism. 

 Introduction 

Type 3 resistant starch (RS) is defined as any starch or portion that is resistant to 

digestion by retrogradation or recrystallization, thereby escaping digestion within the small 

intestine (1, 2). Retrogradation occurs when heated carbohydrates are cooled (3), usually in the 

presence of moisture. RS notably alters fecal bulk and short-chain fatty acid metabolism, 

promoting colonic health (4), and impacts putative markers of colonic health in humans (5-7). 

However, in vivo research on RS digestive mechanism and fermentation are sparse. The role and 

mechanism of RS in diet-linked diseases such as diabetes, cardiovascular diseases, obesity, or 

gastrointestinal cancers, is still not well understood. Since RS is not degraded to glucose for 

passage from the intestinal lumen, across the epithelium to blood, there is a change in glycemia 

and insulinemia when compared the same quantity of digestible starch. As RS functions in 

shifting energy value, RS could be beneficial in diabetes management as well as weight 

management, based on recently developed concepts of energy regulation and macronutrient 

intake (8).  

Due to interest in starch digestibility in relation to carbohydrate nutrition, many 

researchers have applied debranching techniques to prepare RS (9-13). Detailed structural 

changes after debranching have been explored recently (14, 15), however, more unknowns 
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remain. The study of non-digestible oligosaccharides (NDO) has accelerated since their recent 

association within health and nutrition (16). NDO are a diverse group of monosaccharides 

configured in multiple arrangements, by multiple methods, with many only slightly differing in 

chain length (17), that are classified by molecular size or degree of polymerization (18). A 

detailed review is available on the role of NDO in promoting health by fiber-like and prebiotic 

actions (19). Several commercial type 3 RS such as NOVELOSE 330 (National Starch, LLC, 

Bridgewater, NJ), CrystaLean (SunOpta Ingredients Group, Chelmsford, MA), C*Actistar 

(Cargill, Minnetonka, MI), and Neo-amylose (Aventis Research & Technologies GmbH, 

Frankfurt, Germany) have interesting digestive properties due to their reduced chain length by 

modification. The in vitro ability to provide protective effects to prevent carcinogenesis have 

been investigated with retrograded tapioca starch, produced by the methods of U.S. Patent 6 043 

229 (obtained from Cerestar-Cargill (Vilvoorde, Belgium) (20). While, in vivo, researchers noted 

the most important colonic effect observed was the high fermentation rate of type 3 RS to high 

proportions of butyrate (12, 21). When C*Actistar-RS3® was fermented in vitro, there was 

significantly faster substrate disappearance, higher total short-chain fatty acids (SCFA) and 

butyrate production after 8 h of incubation (22). 

The Glycemic Index (GI) ranks foods on how rapidly and extensively blood glucose level 

is elevated within a set of established parameters (23, 24), but controversies with the GI exist and 

have been reviewed (25). The nutrition community is divided over the usefulness and reliability 

of the GI in diabetic management and in the prevention of dietary related chronic diseases, such 

as obesity, insulin resistance, cardiovascular diseases or certain cancers (25-27). The use of the 

GI is controversial for many reasons (25, 28), such as: variability in blood sampling (23, 24), 

carbohydrate determination, sample size and preparation (25), variability between wheat cultivar 
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(if using a white bread standard) (29), calculation of response (27, 30-33), impressionable human 

variation, and variation between laboratories (34). Controversy and variability between foods 

may be due to factors that affect carbohydrate structure, preparation (hydration/temperature), 

starch retrogradation, level of starch resistance, or starch modifications. For example, modified 

starches with phosphate esters are less digestible than native of the same type (35), and all 

structural modifications should be considered as separate ingredients. A recent review describes 

the controversies with the GI in detail (25). 

The GI uses a 50 g available carbohydrate sample, not including total dietary fiber (TDF), 

as the standard for determination (36). TDF is an in vitro measure of soluble and insoluble fiber 

content (37). The FAO/WHO has defined the method to calculate available carbohydrate for the 

GI, as the “total carbohydrate minus dietary fibre, as determined by the AOAC method”. The 

organization also notes, the AOAC method does not include RS when they are present (38). 

Chemical, chromatographic, colorimetric, electrophoretic, enzymatic, gravimetric, and titration 

methods can be used to measure carbohydrates (37). While the majority of early GI publications 

rarely report the method for measuring available carbohydrates, the use of total glycemic 

carbohydrates [total starch plus free glucose (2)] (39), AOAC Method 996.11 (40, 41), or values 

from food tables/ manufacturers’ information (42, 43) have been cited as the determining method 

for calculating available carbohydrate. Some researchers recognize the measurement of available 

carbohydrate content leads to overestimations in the presence of RS fractions that are not 

recorded as dietary fiber (27, 44). Only a few researchers using the GI explain carbohydrate in 

adequate detail (45), or provide the method of carbohydrate determination (46, 47). The latest 

AOAC International definition of dietary fiber was approved by the Codex Alimentarius 

Commission’s Committee on Nutrition and Foods for Special Dietary Uses to incorporate the 
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development of AOAC Method 2009.01 and 2011.25 and advances in fiber research, and 

describes dietary fiber as carbohydrate polymers of 10 or more monomeric units, which are not 

hydrolyzed by endogenous enzymes within the small intestine of humans. The use of TDF in the 

GI calculation of available carbohydrate is to account for material that is present, but 

indigestible. However, since the development of the GI method, additional dietary fiber 

determinations have been established (48). While the available carbohydrate test sample and 

reference food should not include RS, practitioners believe RS is difficult to appropriately 

measure in clinical settings (28). Determination of available carbohydrate for the GI method with 

the use of commonly utilized AOAC methods to determine dietary fiber (985.29 or 991.43), in 

addition to a specified method (resistant starch – 2002.02, resistant maltodextrins – 2001.03, 

polydextrose – 2000.11, transgalactoligosaccharides – 2001.02; to name a few) can doubly 

account for portions of constituents. A new integrated total dietary fiber method (AOAC Method 

2011.25) attempts to incorporate RS, TDF and resistant maltodextrins in one method (48). This 

procedure also includes measure of available carbohydrate. Currently, the GI methods do not 

specify the use a particular dietary fiber method. Developers of the GI method are aware that 

certain measurements of dietary fiber do not measure carbohydrates appropriately (24) and 

underestimation of ‘available carbohydrate’ are present in some published reports (28). 

Within healthy humans, carbohydrate digestion begins with mastication and salivary α-

amylase, with a majority of fermentation being initiated in the large intestine. During 

fermentation of polymers comprised of glucose molecules, anaerobic bacteria produce acids, 

water and gases (49). SCFA production varies with diet and demographic (50), yet the major 

SCFA derivatives produced from starch digestion are: acetate, butyrate and propionate (51, 52). 

Acetate is highly produced from starches and is used as an energy source (51), while butyrate is a 
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preferred energy source of healthy colonic epithelial cells (53) and increases with RS 

consumption (51, 54-56). Propionate is utilized for energy and gluconeogenesis. Production 

levels of SCFA have been associated with healthy colonic function (51) by lowering colonic pH, 

inhibiting growth of pathogenic bacteria, reducing secondary bile acids and increasing mineral 

absorption (57-60). The major gases produced by anaerobic bacteria in the human colon are: 

carbon dioxide (CO2), hydrogen (H2), methane (CH4). During metabolism, CO2 is produced by all 

cells, but only bacteria can produce H2 and CH4 as metabolic by-products (61). A portion of H2 

produced is absorbed into the lungs and excreted with expelled air. Analysis of air expelled 

through the mouth provides ‘semi-quantitative’ and qualitative estimations of H2 production rate 

by colonic bacteria (61), depending on calculation used and substrate (62). Contamination of the 

sample with room air and dead space gases is associated with reduced H2 concentrations (63). An 

optimum sample is collected at the end of the breath, after clearing the dead space air from the 

digestive system. 

Breath hydrogen testing is usually executed as a functional analysis of the intestine to 

investigate carbohydrate malabsorption in humans (64, 65). Malabsorption of carbohydrate 

results in increased H2 production from fermentation, which can be measured, postpradinal, at as 

low as 2 g carbohydrate (66). The amount of H2 produced is proportional to the amount of 

malabsorbed carbohydrate (67). However, further experimentation is needed to determine the 

strength of manipulation for various attributes (time, hydration, environment, substrate, etc).  

Methane may be monitored during the breath hydrogen test. Studies have shown there is 

difficulty in interpreting CH4 production, as variability in overall CH4 response differs between 

volunteers (68, 69). For CH4 production, adults are broken into two categories: producing and 

nonproducing. Two-thirds of the population is nonproducing, having zero readings or producing 
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less than 1 ppm above atmospheric CH4 (atmospheric CH4 is approximately 0.8 ppm). Methane 

producers (approximately 
1
/3 of the population) have mean CH4 concentrations of about 23 ppm. 

Breath hydrogen testing is based on the assumption that colonic flora are constant and/or 

consistent (67), and measurement methods have been reviewed and validity discussed (63, 65, 

70). Although human subject to subject variation is present and quantification of carbohydrate is 

equivocal, the test is highly sensitive, and has promise for studying malabsorbed carbohydrate 

(63). 

Studies utilizing breath hydrogen testing with RS consumption have been reported (7, 71, 

72). When breath hydrogen testing was used as a measurement for RS, acute consumption of RS 

showed increased fermentation through elevated breath hydrogen excretion (7, 72); however, 

less than satisfactory results have been discussed (62).  

The crystalline short-chain amylose (CSCA) used in this study gave 100% carbohydrate 

when assayed by AOAC Method 996.11, and 0% dietary fiber by AOAC Method 991.43. CSCA 

is considered available, based on the current GI concept. It is hypothesized that RS is “probably 

not the cause for differences” in GI, although RS “content may still be of importance in relation 

to glucose metabolism” (73), however, confirmation is needed. This study uses starch type, 

preparation, and processing (27) to affect GI value and fermentation. In vivo investigations of 

CSCA have not been previously reported, and the glycemic response and fermentation of CSCA 

in human subjects is investigated in this study. 

 Materials and Methods 

 Production of CSCA 

Waxy maize starch (Amioca starch, Batch #: MD-8230) and HYLON VII were obtained 

from National Starch LLC (Bridgewater, NJ). Pullulanase (EC 232-983-9) was obtained from 
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Genencor International, Inc. (Rochester, NY). Type 3 RS was produced by debranching waxy 

maize starch, as previously reported (15), with modification to the enzyme source. Waxy maize 

starch was mixed with distilled water to produce a 25% solids (by wt.) slurry. The slurry was 

adjusted to pH 4.0 by adding 0.5N hydrochloric acid and monitored with a calibrated pH meter. 

The slurry was cooked at 115–120 °C in a Parr reactor (Parr Instrument, Moline, IL) for 10 min, 

and cooled to 50 °C. Pullulanase (dwb; 1.4×10
6
 IAU, 1.0% based on dry starch) was added, and 

kept 24 h, at 50 °C, with constant stirring. After 24 h, the precipitates of crystallized solids were 

filtered, washed with deionized water, and dried in an oven at 40 °C for 12 h. Yield of CSCA, by 

this method, was reported as 60.7% (14). [Appendix H provides visual representation of CSCA 

as a finished product and in preparation as supplemental clarification on the material.] 

 General methods 

For all samples, moisture content was analyzed by a standard method (AOAC Method 

925.10). Total carbohydrate was determined for waxy maize starch and CSCA by AOAC 

Method 996.11, not including TDF, as determined by AOAC Method 991.43. Starch samples 

were analyzed for %RS, as previously reported (2, 35). [Appendix I provides visual 

representation of RS and TDF determination for sample comparison with these in vitro analyses.] 

Measurement of D-Glucose was performed on the 50 g commercial glucose solution 

(Sigma Aldrich, Inc., St. Louis, MO) provided to all volunteers alone and in mixed formulation. 

D-Glucose was measured using a D-Glucose Kit from Megazyme glucose assay kit (Megazyme 

International Ireland Ltd., Wicklow, Ireland).  

 Ethics 

All procedures and methods described herein involving the use of human subjects were 

approved by the Institutional Review Board for Protection of Human Subjects Committee (IRB) 



170 

 

at Kansas State University (KSU). Informed consent for sampling and the use of this data was 

obtained from each subject. All investigators completed IRB human test subject training. In 

addition, all investigators collecting human samples have conducted an occupational health and 

safety program, and blood borne pathogen training/certification with the KSU Research 

Compliance office, Manhattan, KS, and the American Red Cross, Kansas City, KS, respectively. 

Hazardous material methods, of handling and disposal, were followed. 

 Subjects 

Volunteers were openly solicited and completed an interest screener prior to inclusion. 

The random pool contained ten free-living subjects (4 women; 6 men) between the ages of 20-

30, whose fasting glucose levels were measured prior to sampling. The use of ten volunteers is 

implemented when assigning a GI value for a food product (24). Subjects with history of chronic 

disease, who were pregnant/lactating, or who had gluten/glucose intolerance, were excluded 

from this study. Proceeding each study day, participants were required to consume a standard 

evening meal, fast overnight, and avoid strenuous exercise, alcohol, or change in normal diet. 

During the study, each volunteer visited the laboratory after overnight fasting for 10 h on four 

separate occasions over a three-week period; up to two visits/week, with at least one washout day 

between visits. Gas excretion is affected by diet and fasting (74), so all volunteers were asked to 

fast overnight, to begin at basal levels. Additionally, 60-70 g carbohydrate per day has been 

estimated to be required for maintenance of the bacterial population within the colon (75, 76), 

therefore volunteers were only allowed to visit twice per week to maintain a homeostatic state. 

Non-fermentable snacks (≤ 20 g available carbohydrate) were provided to the volunteers, upon 

request, after completion of the blood glucose measurement (2 h). Non-fermentable snacks 



171 

 

included eggs, meats, crackers and candies containing no fermentable ingredients; as determined 

from the listed ingredients on the manufacturer label. 

 Glycemia 

The trial was designed as a controlled, cross-over trial. The investigators, research staff 

and volunteers had access to sample identity during the clinical portion of the study and the order 

of the samples was randomized (Excel 2003). Methods were designed from a previously reported 

study (77), with modification to the use of the 75 g glucose tolerance beverage. Prior to testing 

the trial samples, volunteers completed a glucose tolerance test, as described previously (77), 

using standard 50 g oral commercial glucose solution (298 mL). On study days, after the fasting 

blood glucose sample was collected, the designated prandial sample was consumed (within 10 

min), time recorded, and blood samples collected, periodically for 2 h, at 0, 30, 45, 60, 90, and 

120 min intervals, by finger stick, and immediately analyzed on a 2300 Stat Plus (YSI Life 

Sciences, Yellow Springs, OH), in duplicate, for glucose (77). [Appendix J provides a 

photograph of the YSI instrument, with explanation of blood sample analysis.] The samples of 

50 g available carbohydrate included: CSCA, 25 g CSCA with 25 g glucose, and raw. Raw waxy 

maize starch was used throughout, as gelatinized waxy maize starch would provide different 

digestive results (78). All samples were provided in a disposable plastic cup, with disposable 

plasticware for mixing, and brought up to 298 ml with purified water to match the fluid 

consumed during the glucose tolerance test.  

Glucose incremental areas under the curve (iAUC) were determined using the trapezoid 

method (GraphPad Prism v 5.02, La Jolla, CA), as published (77). The highest value within 120 

min was designated as the peak value, and the baseline was the fasting value. 
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 Fermentation 

A noninvasive measure of fermentation was utilized to observe products of CSCA exiting 

the small intestine. The ability to observe RS exiting the small intestine and of RS to produce 

products of fermentation was previously confirmed (72). There is no standard of identity for 

breath hydrogen examination of absorbed carbohydrate; therefore, the experiments were 

designed as follows.  

Initial gas production was recorded (0 h) from each volunteer, using a Quintron 

BreathTracker SC (Quintron USA, Milwaukee, WI) to measure CO2, CH4 and H2. Subsequently, 

the randomized trial sample was consumed within 10 min. Sample collection occurred in 30 min 

increments, over a period of 6 h (occasionally a supplemental reading was recorded for 6.5-7 h). 

With the exception of glucose, which was monitored for 4 h, as responses from glucose are acute 

and have been reported to occur within 120 min (63). Previous studies have shown that 6 h 

should be a minimum for samples of unknown nature and 14 h provides the return of basal value 

(79). Volunteers collecting their own breath sample worked best in this study and maintained 

CO2 at 4.4%±0.4% ppm. For analysis, CO2 was the internal standard (80, 81) to normalize the 

samples between readings and from contamination of room air. The presumed alveolar CO2 

concentration was 5.5%, and the degree of dilution corrected for (80). [Appendix K provides a 

photograph of the Quintron instrument, with explanation of breath sample analysis.] 

Quality of breath sample can cause variation of the reading (64). To avoid dilution of 

breath samples with dead space gases in humans, the volunteers were trained to exhale into a 

quantified volume to obtain end-expiratory samples for analysis (65) and to use Alveosampler 

kits (QT0087-P, Quintron USA) to collect 20-30 cc/mL in Air-Tite disposable syringes (Products 

Co., Inc. Virginia Beach, VA). After collection, all samples were analyzed within 2 h. All 

volunteers refrained from exercise, extended rest, alcohol and tobacco productions during the 
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testing period. Gas production curves were produced using GraphPad Prism v 5.02 (La Jolla, 

CA). The highest value within 6 h was designated as the peak value, and the baseline was 

established at fasting values. Response curves were drawn, however, iAUC was not calculated as 

sometimes suggested (7, 65, 79), due to duration of monitoring and response incurred. iAUC 

values for breath hydrogen are better calculated with quickly fermenting samples or samples 

analyzed between 0 and 840 min (79).  

 Statistical analysis 

Data was analyzed using AVOVA, Tukey’s and column statistics within GraphPad Prism 

5. Differences between iAUC values and significance among treatments was declared at P≤0.05.  

 Results and discussion 

 CSCA 

Waxy maize starch is high in amylopectin, with branched molecules that are almost fully 

digested by in vitro enzymatic action within 2 h (82). Debranching of the amylopectin chains to 

produce CSCA, increased the starch resistance to digestion (14, 15). It was discovered in long 

periods of debranching, aggregation and crystallization, the crystallized portion increased, 

becoming dense and thick in texture. As enzymes have limited access to double helices in 

CSCA, type 3 RS was formed (15). The RS content of the CSCA produced in this work was 

75.0% (Table 1). This trial was designed to test the in vivo response to CSCA, as the molecular 

and crystal structures of this type 3 RS have been investigated and published (15).  

The use of waxy maize starch to produce CSCA is just one of many modifications to 

produce resistant carbohydrates. Unlike raw waxy maize starch, raw banana (12), raw high 

amylose maize (71, 82), or raw potato (9, 71) starches naturally exhibit resistance to digestion 

(83). Also resistant to activity of amylases are starch pastes containing sago starch and 
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monoglycerides (84), as well as commercially available C*Actistar, produced from partial 

enzymatic hydrolysis and retrogradation of tapioca starch (85). While increased resistance by 

modification has been noted with most starches (12, 14, 85), the hydrolysis of native starches is 

greatly attributed to botanical origin (86), with smaller granules being more susceptible to 

enzymatic action regardless origin (87).  

 RS and TDF content 

RS and TDF contents of CSCA, waxy maize starch and HYLON VII are reported in 

Table 1. Waxy maize starch had the lowest RS content (0.6%), while CSCA contained the 

highest RS content (75%). The TDF content for CSCA and waxy maize starch were statistically 

the same (0.0%). Waxy maize starch and CSCA had no TDF, but remarkably different RS 

contents. This in vivo trial used waxy maize starch (~100% amylopectin) as a sample for 

consumption, as waxy maize starch was used to produce CSCA. Starch digestibility and 

physiological response are greatly attributed to the amylose:amylopectin ratio (45). In most 

cases, starches with high ratios of amylose are sources of RS, while gelatinized waxy starches 

are rapidly digestible (78). In addition, starches with high portions of RS differ from starches 

with large amounts of amylopectin in plasma glucose (postprandial) and insulin response (46, 

47). CSCA had higher RS content than type 3 RS products CrystaLean (19.2%–41%) and 

C*Actistar (53%), but less than Neo-amylose (87 or 95%) (73). Preliminary studies strongly 

indicate that RS of specified digestive patterns and degrees of resistance are producible with 

increased sample preparation time (15). A current review offers details of starch structure and 

digestibility (86), and additional methods are available to determine RS content (88-90). 

All samples were tested for RS and TDF contents to confirm the quantification of these in 

vitro analyses prior to human consumption. And the RS and TDF contents for waxy maize starch 
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and HYLON VII starch were in accordance with previously publications (82, 91). HYLON VII 

has 71% amylose (92) and was used as a control to confirm the results of the in vitro tests. 

HYLON VII starch was not fed as an in vivo response sample, but may have positive 

fermentation attributes (6, 71, 93). In vivo fermentation and glycemic response of HYLON VII 

has been previously reported (93, 94) Vonk et al (2000) showed fermentation cites of HYLON 

VII within the colon, in comparison to Novelose 330 (Unilever Research Laboratory, 

Vlaardingen, Netherlands), with the use of C
13

. The use of C
13

 confirmed partial 

digestion/fermentation of HYLON VII in vivo.  

 D-glucose analysis 

By spectrometric analysis, the glucose concentration of the commercial 50 g glucose 

solution was 50±0.14 g of glucose per bottle. The concentration of the control glucose tolerance 

solution was confirmed by spectrophotometric D-glucose analysis, to confirm the nutritional 

claim, as well as to confirm accurate available carbohydrate calculations for these experiments. 

 Glycemia 

Glucose response 

Figure 1 contains population averages for the glucose responses and iAUC for the trial 

samples. Glucose responses were reported as population averages for an overall observation of a 

population, as variability from within volunteers did occur (34). In Fig. 61.A, responses of 50 g 

available carbohydrate treatments: glucose, CSCA, 25g CSCA with 25 g glucose, and waxy 

maize starch, are depicted as glucose (mmol/L) over time. Diminished peak heights of CSCA 

and waxy maize starch curve averages show that glucose absorption was lower than that of 

samples containing the glucose solution (50 g glucose and 25 g CSCA with 25 g glucose). Foods 

with RS give low glycemic response due to RS transport through the small intestine, undigested 
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(95). It has been previously reported that RS is likely to be negatively correlated with glycemic 

response (96), yet there was a similar rise in curves produced from 50 g glucose, compared to 

that of 25 g CSCA with 25 g glucose. Total glucose concentration of the ‘25 g glucose to 25 g 

CSCA’ sample may have saturated glucose absorption in some volunteers. The use of high-

carbohydrate concentrations, when utilizing the GI methodology, is recommended to optimize 

responses for comparison (24); some researchers have used <50g available carbohydrate (12, 97) 

due to ornate food volumes without this modification. It is noted that type 3 RS starches can be 

dissolved in 0.5-1.0 M potassium hydroxide (98) and is entirely resistant to digestion in near 

neutral pH by pancreatic amylases. Presumably, the blood glucose response from 25 g CSCA 

with 25 g glucose is entirely from the glucose present in the sample, as the portion of CSCA that 

is nonresistant.  

Previous studies have noted that uncooked high amylose starches can demonstrate a 

reduced glucose response (99). Raw waxy maize starch is slowly digestible starch in vivo as 

compared to maltodextrin (100), with similar reports of uncooked normal maize starch compared 

to glucose (101). The digestibility and therefore, blood glucose level, of a starch will differ 

depending on whether the starch is consumed raw or cooked. Raw maize starches (normal and 

waxy) are slowly digesting starches, while high-amylose maize starch is usually characterized as 

resistant, all partly due to their lamellar semicrystalline and amorphous layers that must be 

broken down for digestion, systematically resulting in gradual glucose release by enzymatic 

action (102).  

CSCA had low glucose response within the population, as did raw waxy maize starch 

(Figure 6.1). Low blood glucose response may be due to the concentration of the sample in 

solution, transit time in the digestive system and the need for brush border enzymes to cleave 
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glucose for absorption (44). A review of slowly digestible starch reported personal 

communications on the effect of maltodextrin, normal maize and waxy maize starch intake on 

blood glucose levels of 22 healthy volunteers (12). Researchers noted that with 35 g available 

carbohydrate, native maize starch exhibited a slower increase of postprandial blood glucose 

levels, and sustained blood glucose levels for a longer period of time, compared to maltodextrin, 

which dipped partially under baseline, due in part to fast decline of blood glucose concentration. 

Their waxy maize starch curve exhibited a peak similar to that of native maize starch, with 

reduced peak height and area, similar to the population curve for waxy maize starch produced in 

the current trial. A native maize starch curve with reduced peak height and area was also 

reported in a patent by Axelsen and Smith (2000) and with the use of PolyGlycopleX® 

(InovoBiologic Inc, Calgary, AB, Canada) in mixed formation (103). However, 

PolyGlycopleX® curves have not been graphed within published manuscripts on humans (103, 

104) or rodents (105-107) for comparison to current data. In humans, after consumption of 

PolyGlycopleX®, subjects experienced mild to moderate adverse effects. The volunteers from 

the current trial reported no adverse effects from CSCA. 

CSCA aided in the return to normal plasma glucose and/or glucose stabilization. After 

consumption of CSCA, only 20% of the volunteers passed below baseline at 2 h (Fig. 6.1.A). 

The remaining volunteers were approximately at baseline value. Another short-chain polymer, 

maltodextrin has been noted to cause a dip in blood glucose baseline (12). For glucose – 50%, 

and for waxy maize starch – 80% of all volunteers were below baseline at 120 min; these 

samples affected the volunteers’ glucose absorption differently than CSCA. The return to stable 

glucose levels is important for diet related disorders and CSCA should be further investigated for 

additional metabolic responses and at different concentrations in mixed formulations. 
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The calculated iAUC of CSCA (Fig. 6.1.B) significantly differed from the other samples 

and CSCA curves were lower than the respective glucose curve in all cases (Figure 6.2). iAUC 

is used to calculate and compare GI values between studies (23, 34, 108). High variation between 

volunteers of iAUC for waxy maize starch caused the sample to not be significantly different 

from 25 g CSCA with 25 g glucose. The iAUC of waxy maize starch is high due to the extension 

of the peaks in comparison the other samples. It is possible that a portion of the population was 

unable to digest raw waxy maize starch; however, further investigation would be required to 

confirm this.  

Table 6.2 lists the curve characteristics for all 50 g available carbohydrate samples. The 

relative change from baseline to peak value is shown with the peak range for the population and 

median values for each treatment (Table 6.2). The change from baseline to peak (range) was as 

follows: glucose > 25 g CSCA with 25 g glucose > CSCA > waxy maize starch (raw). The peak 

range for 50 g CSCA was 4.25‒5.57 glucose mmol/L, and calculated as only 3‒40% of the iAUC 

of the glucose peak. The 25 g CSCA with 25 g glucose sample had a peak range of 5.81‒9.14 

glucose mmol/L and waxy maize starch from 4.82‒6.03 glucose mmol/L. The ranges overlapped 

in most cases, and expressed the high variability between individuals (34). Peak ranges (glucose 

mmol/L) differed, even though all samples contained the same amount of ‘available 

carbohydrate’, by definition of the GI. If the GI for glucose is 100 (109), then GI of CSCA 

ranged from 3 to 40, with an assigned value of 21. The GI value and RS content of foods are 

inverse correlated (110). The GI of CSCA was influenced by the sample’s modifications, 

processing and chemical structure. The amount of carbohydrate content in a food is not the only 

factor determining GI, as multiple factors affect digestion (27, 111). In this study, 25 g CSCA 

with 25 g glucose had a GI value of 71, and waxy maize starch had a GI value of 50. The high GI 
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value of 25 g CSCA with 25 g glucose is attributed to the high concentration of available D-

glucose from the commercial solution. A recent study to determine the influence of starch 

substrates to energy expenditure or appetite, waxy maize starch lead to a lowered and extended 

plasma glucose curve when compared to white bread and maltodextrin (100). Their study did not 

provide a glucose standard and utilized white bread as the control to calculate total glucose (28), 

however the calculated reduction of the curve was similar to the current findings. 

CSCA had the lowest impact on glycemia and did not appear to initially alter or inhibit 

the glucose absorption, as noted from the range and median. The median is reported for better 

depiction of the range values. The median values for the change from baseline to peak were as 

follows, and were noted to not follow the order of the range values: waxy maize starch > 25 g 

CSCA with 25 g glucose > glucose > CSCA. The medians (Table 6.2) and glucose curves (Fig. 

6.1.A; Figure 6.2) of CSCA compared to those of 25 g CSCA with 25 g glucose, imply that 

CSCA also aids to shift either the ability or the use of insulin to control plasma glucose levels 

(78) and relative reduction of the peak. Adding 25 g CSCA to 25 g glucose invoked curves that 

were significantly different from the control (glucose solution) GI curve at p=0.0404. Treatments 

peaked blood glucose concentration at various times across the population. In Figure 6.2, 60% 

of the population peaked glucose concentration at the 30 min testing for the standard solution. 

All volunteers peaked glucose concentration for CSCA at or within 45 min. The response of 25 g 

CSCA with 25 g glucose was the most variable treatment, and 50% of the population peaked 

glucose concentration at or before 30 min. For waxy maize starch, 40% of the population peaked 

glucose concentration at the 45 min glucose testing.  

While CSCA had no measured dietary fiber value by AOAC Method 991.43, its 

classification as type 3 RS proposes CSCA may be a functional fiber (112), and it may contain 
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dietary fiber with AOAC Method 2009.06 or 2011.25. RS usually analyzes with some TDF value 

(73), which is a required value by the Nutrition Labeling and Education Act to support any fiber 

content claims (73). The problem of including RS as a fiber is derived from RS not containing 

the properties of soluble and insoluble fiber, and has been discussed (48, 73), although there is a 

tendency for type 3 RS to behave physiologically as a fiber (113). By GI of type 3 RS without 

TDF value (CSCA), available carbohydrate found to be digestible by in vitro analysis was not 

necessarily available in vivo. With present methods, in vivo studies seem necessary to define 

carbohydrates, as chemical structure does not take into account their physiological response on 

satiety, emptying, or glycemic levels. The use of CSCA in food applications requires further 

study, as type 3 RS typically has no improved digestibility with reheating (2) and CSCA exhibits 

thermal stability (14). 

 Gas production 

Gas production 

H2 and CH4 production was recorded for all treatments with all volunteers; however 

production of H2 and CH4 was variable within the same volunteer and across the population 

(Figure 6.2) in consistence with a previous study (74). One volunteer experienced values for H2 

and CH4 that were consistently higher than the population, one volunteer fermented all samples, 

except 50 g glucose, and another volunteer did not produce CH4 throughout the trial. 

The H2 curves for all samples are graphed in Figure 6.2, with the corresponding glucose 

curve. The comparison of individual glucose curves to the corresponding H2 production curve 

shows high absorption of glucose with a relatively low H2 production curve or low absorption of 

glucose with a relatively high H2 production curve, in most cases. Within the fermentation 

curves, a significant peak, denoting production (if present), is identified with a star; while a 
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significant rise (if present) is identified with an arrow. Significance was calculated statistically 

and measured against previously published values of significant H2 increase (71, 114). Multiple 

H2 production peaks within a curve are assumed to be attributed to normal fluctuation. Normal 

H2 levels regularly fluctuate over a period of hours within a volunteer (74), as observe in the 

individual graphs. In 40% of waxy maize starch H2 production curves, volunteers experienced an 

increase in gas production around 5 h. For these volunteers, a supplemental reading was recorded 

for 6.5-7 h, until H2 readings began to decrease. In the current experiment, four volunteers 

produced increased H2 values after consumption of CSCA and four with waxy maize starch; with 

2 of 4 volunteers producing in both treatments (Figure 6.2). Increased starch resistance with 

octenyl succinic anhydride modification, noted increased H2 production by breath hydrogen 

testing (115). However, it was observed that CSCA did not always increase H2 production more 

than samples containing lower RS content and further studies with a large number of subjects are 

needed to determine if level of resistance (%RS) is directly proportional to H2 production.  

Minimum and peak H2 values for the population are listed in Table 6.3. Normal breath 

H2 excretion is very low (74), and few H2 basal levels were higher than 16 ppm, which is 

generally considered elevated from normal production H2 (114). In this study, 
1
/10

th
 of the 

population tested high for H2 production after 50 g glucose consumption, 
1
/10

th
 from 50 g CSCA, 

3
/10

th
 from 25 g CSCA with 25 g glucose, and 

1
/10

th
 from 50 g waxy maize starch. Rumessen 

(1990) suggests analyzing and reporting baseline rise to peak for gas production measurements 

of malabsorbed carbohydrates (65, 116), however, many of the values in Table 6.3 are not 

significantly different due to the high variation in the population, and some volunteers did not 

produce a significantly relevant change in H2 and CH4 production following consumption of any 

of the samples.  
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Increased H2 production may also contribute to development of abdominal bloating (63), 

and one volunteer did report a feeling of increased flatus with consumption of raw waxy maize 

starch (50 g) with increased H2 production. However, CSCA concentrations were tolerated by 

the volunteers. Twenty-eight grams of supplemented RS per day has been reported as tolerable 

by volunteers, while lower concentrations used in their study showed no change in gas 

production (117). Increased H2 excretion was also seen with 10.33 g RS supplementation, but not 

with lower quantities (118). The sample containing 25 g CSCA only increased H2 production in 

one volunteer. Therefore, for the population, 25 g CSCA in mixed formulation (with 25 g 

glucose) did not produce increased gas production. RS in various mixed formations has provided 

different digestive results (71). 

Figure 6.3 showed mean population curves for all treatments. Wave-like patterns CH4 

production curves influenced us to not display individual CH4 curves, as with H2 production 

curves in Figure 6.2. The population graph of 50 g glucose H2 production (Fig. 6.3A) showed a 

descending power trend that leveled around 150 min, with no trend in CH4 production. In the 

population graph of 50 g CSCA H2 production (Fig. 6.3B), there was an ascending power trend 

that elevated around 210 min, with a CH4 population graph that steadily increased at 210 min, 

just under significance (p≈0.05). The H2 production population graph for 25 g CSCA with 25 g 

glucose showed a descending power trend that leveled around 150 min, which then entered into 

an ascending power trend at 210 min (Fig. 6.3C); the CH4 population graph oscillated from 0-

360 min, one spike at 60 min. In the population graph of 50 g waxy maize starch (Fig. 6.3D), H2 

and CH4 production mimicked that of CSCA, with the exception of a CH4 production spike 

occurring at 330 min. Digestive transit periods vary between individuals (63), however, after 1 h, 

mean H2 values (ppm) for all treatments, except 50 g glucose, were above the mean production 
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of CH4 at the same period. There was commonality in the samples containing starch to produce 

some H2. 

Waxy maize starch contained low portions of RS by the in vitro test (Table 6.1) and was 

expected to be digested in the small intestine. In some cases, waxy maize starch increased H2 to 

produce 44-106 ppm H2 within the colon (Figure 6.2). Disconnection of in vitro analyses and in 

vivo breath hydrogen results have been previously observed (119). It is hypothesized that the 

maximum consumption of glucose at this period, for those volunteers, was reached. Therefore, 

easily fermentable, waxy maize starch may have overloaded glucose absorption and passed into 

the colon in some cases. Upon entering the colon, it would be quickly fermented, to produce high 

H2 values. Methane readings remained constant in these events, with wave-like responses. H2 can 

exhibit regular patterns, while CH4 does not simultaneously change with H2 (74). In some cases, 

RS was found to increase measurable end-expiratory CH4 in volunteers compared to that of 

lactulose load (71), however no pattern was observed in the measured CH4 values.  

Minimum and peak CH4 production values are listed in Table 6.3, mean basal values for 

CH4 production in all volunteers was 5.62±6.27 ppm, and 70% of volunteers produced methane. 

For CH4 categories of producing and nonproducing, 40% of the population was categorized as 

nonproducing, while only 30% averaged approximately 23 ppm CH4. The probability for 

whether CH4 production occurred in an individual or not, is consistent (68, 69), as noted by CH4 

production and nonproduction was categorized for the current population. As CH4 is only 

produced in the colon (120), and 30% of the population was over 1 ppm, yet under 23 ppm 

(Lauren Brewer, personal communication), it is possible that the products provided to the 

volunteers may have lowered CH4 production within CH4 producing individuals, by the only 

common factor: consumption of samples with no TDF content.  



184 

 

Significant differences for the population graphs were analyzed after AVOVA by Tukey's 

multiple comparison tests, and percent significance is reported in reference to the population in 

Table 6.4. By 1-way AVOVA, all gas production curves differed significantly within an 

individual (ranging from p<0.0001-0.042), except in cases where no production was found. 

However, significant differences for all treatments were not present for the population. CSCA 

treatments were significantly different from other treatments in 26% of measurements. No 

significant response from over 40% of the population with any sample was found. Previous 

studies have shown high-RS and low-RS diets (n=10) (72), HYLON VII, cooked, and raw potato 

starch curves (n=7), where all breath H2 treatments were significantly different. Retrograded 

high-amylose maize starch and a lipid complex high-amylose maize starch have been measured 

(unpublished) by breath hydrogen testing on healthy subjects (62). Within their experiment on 

intubation (121), the researchers noted that with slower fermentation of RS, the procedure is 

qualitative under these conditions, and some H2 may be utilized by the flora over the extended 

period. Therefore, they do not recommend breath hydrogen testing for only RS quantification 

(62). In some cases, H2 production in the current trial may have been lessen by bacteria during 

the extension of the curve from slow fermentation. 

 Conclusions 

This study confirms that RS content in a product affects GI value as a variable 

independent of dietary fiber. CSCA alone and in mixed formation reduced all curves, compared 

to the response from glucose. Development of the GI method to include RS concentration by 

utilizing current dietary fiber methods (such as AOAC Method 2009.06 or 2011.25) to determine 

the true value of the test material would provide better representation of the carbohydrate in 

clinical testing.  
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Large variations in individual breath hydrogen results were noted and as a result, group 

observations for the current population were difficult to conclude. Of the ten volunteers tested in 

this trial, four increased H2 production when consuming CSCA, and four increased H2 

production when consuming waxy maize starch; with two of those experiencing the change in 

both treatments. CSCA was found to not significantly differ from the waxy maize starch breath 

H2 responses, in the majority of cases (60%).  
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Figure 6.1. Population glucose responses to 50 g available carbohydrate samples of glucose, 

crystalline short-chain amylose (CSCA), 25 g CSCA with 25 g glucose, and waxy maize 

starch, raw. A. plasma glucose (mmol/L) over time and includes the control 50 g glucose 

solution; while B. incremental area under the glucose curve. Data presented are mean ± 

standard deviation; with significance as P < 0.05; and, different letters indicate difference 

between treatments. 

A 

a 

b 

b 

c 
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 Figure 6.2. Individual breath hydrogen curves (ppm H2), up to 390 min with 

corresponding 120 min blood glucose curve. Individual breath hydrogen curves (ppm H2), 

up to 390 min, with corresponding 120 min blood glucose curve, after consumption of 50 g 

available carbohydrate samples of glucose, crystalline short-chain amylose (CSCA), 25 g 

CSCA with 25 g glucose, and waxy maize starch, raw. A star denotes a significant, peak for 

that graph, while an arrow denotes a significant raise, p<0.05. 
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Figure 6.3. Mean and standard deviation of increased gas production (ppm) after 

consumption of 50 g available carbohydrate samples over time. Squares represent 

hydrogen and diamonds represent methane (both as ppm) for a) glucose, b) crystalline 

short-chain amylose (CSCA), c) 25 g CSCA with 25 g glucose, and d) waxy maize starch, 

raw. 
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Table 6.1. Resistant starch (RS) and total dietary fiber (TDF) contents of crystalline short-

chain amylose (CSCA), waxy maize starch and HYLON VII. 

Sample  RS* (%) TDF† (%) 

CSCA 75.0 ± 1.4a 0.0 ± 0.01b 

Waxy maize starch 0.6 ± 1.9c 0.0 ± 0.00b 

HYLON VII 68.2 ± 0.7b 16.5 ± 0.01a 

Column data with like letters are not significantly different (p>0.05); n=3 

* RS content was determined by a previously reported method (Englyst et al., 1992), where RS = 100%−% digestible starch at 

120 min. 

†TDF values were determined  by AOAC Method 991.43.  
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Table 6.2. Variation in blood glucose response among volunteers after consumption of 50 g 

of available carbohydrate from four treatments: glucose, crystalline short-chain amylose 

(CSCA), 25 g CSCA with 25 g glucose and waxy maize starch, raw.  

Sample 

(50 g available 

carbohydrate*) 

Peak range 

(glucose 

mmol/L) 

Relative change from 

baseline to peak value† 

  R  
Glucose 6.24‒9.77 2.30‒5.28 2.85 

CSCA 4.25‒5.57 0.18‒1.42 0.88 

25 g CSCA with 25g glucose 5.81‒9.14 1.43‒4.71 2.99 

Waxy maize starch, raw 4.82‒6.03 0.00‒1.45 1.065 

* available carbohydrate AOAC Method 996.11 

† = median; R = range; produced from n =10 
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Table 6.3. Mean gas production of minimum and peak values from breath hydrogen 

testing. Mean gas production of minimum and peak values for 50 g available carbohydrate 

of glucose, crystalline short-chain amylose (CSCA), 25 g CSCA with 25 g glucose, and waxy 

maize starch treatments. 

 Population treatment response* 

  Hydrogen (ppm) Methane (ppm) 

 Minimum value 

50 g glucose 3.40 ± 3.13bc 6.09 ± 8.73a 

50 g CSCA 2.50 ± 3.25b 2.00 ± 4.04a 

25 g CSCA, 25 g glucose 2.75 ± 2.40b 3.00 ± 5.21a 

50 g waxy maize starch, raw 3.90 ± 4.33bc 3.30 ± 4.69a 

 Peak value 

50 g glucose 10.60 ± 11.56ab 8.73 ± 11.05a 

50 g CSCA 22.38 ± 15.38ac 7.00 ± 8.49a 

25 g CSCA, 25 g glucose 16.38 ± 8.16ab 8.50 ± 7.76a 

50 g waxy maize starch, raw 29.60 ± 31.88a 11.70 ± 12.42a 

* Column data with like letters are not significantly different (p>0.05); n=10 
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Chapter 7 - Appendix list 

Appendix A. Wheat kernel with detailed wheat bran layers 
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Appendix B. Antioxidant chemical structures  

Basic phenolic compound 

 

 

Basic anthocyanin 

 

 

Basic flavonoids 

                                 

 

Flavone 
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Carotenoids 

Beta-carotene  

 

Lutein  

 

Zeaxanthin  

Isoflavone 
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Appendix C. Wheat bran particle size reduction scheme 

  

 

 

Key 

Analyses – the multiple analytical techniques used to quanitify attributes for the each particle 

size distribution 

Fraction –  the desired particle size distribution (200 or 500 µm) 

Pass – sending the wheat bran through the roller with the experimental gap at the desired setting 

Sieve – sieving the material with the predetermined sieves for the desired particle size 

distribution (as noted in Table 3.1).  
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Appendix D. Antioxidant analyses 

 

Extraction of soluble phenolic compounds 

1. 1 g extracted for 2 h with 10 ml of 80% methanol at room temperature on an orbital 

shaker set at 150 rpm, 37 C 

2. Extracts pooled and evaporated at 45 C in a vacuum oven 

3. Freeze dry and record weights 

4. Redissolve in 5 ml methanol 

 

Extraction of bound phenolic compounds 

Adom (2005) procedure is used on the pellet from the previous extraction 

1) 1 g sample digested with 2M sodium hydroxide at room temperature for 1 h 

a. Under continuous nitrogen gas 

2) Neutralize with HCl and extract with hexane to remove lipids 

3) Extract solution 5 times with ethyl acetate 

4) Pool ethyl acetate extracts together and evaporate to dryness 

a. Under continuous nitrogen gas 

5) Dissolve phenolics compounds in 10 ml methanol and hold in the freeze at -20 C 

 

Extraction of total phenolic compounds (TPC) 

1. To one tube add: 

a. 200 µL of extract solution (that was shaken for 1 minute) 

b. 1 ml of diluted (1:10 with water) folin-ciocalteu reagent 

2. Shake mixture 

3. Add 800 µL of 10% Na2CO3 

4. Take volume up to 5 ml with distilled water 

5. After 2 hour reaction, read the absorbance at 760 nm  

 

Molybdenum(VI) + e → Mo(V) 

Theorized that molybdenum is easier to be reduced: the e- transfer occurs between reductants & 

MoVI 

 

Determination of total antioxidant capacity 

1. To one tube add 

a. 0.3 ml sample 

b. 3 ml of reagent solution (0.6 M sulfuric acid, 28 mM sodium phosphate and 4 

mM ammonium molybdate) 

2. Incubate at 95C for 90 minutes 

3. After the mixture cools to RT read absorbance of the solution at 695 nm, against a blank 
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molybdate + e → molybdate 

Theorized that molybdate is easier to be reduced: the e- transfer occurs between reductants & 

molybdate 

 

2,2-diphenyl-1-picryl hydrazl (DPPH) assay 

    --DPPH radical scavenging assay (von Gadow et al., 1997; Zielinski and 

Kozlowska, 2000) -- 

Buffers: Prepare DPPH solution 0.004% in methanol 

1. To one tube add  

a. 1.9 ml DPPH solution 

b. 100 µL sample 

2. Keep in a dark room to react for 30 minutes 

3. Test absorbance at 517 nm 

 

Purple color goes to intense yellow color at that wavelength when DPPH and antioxidants 

combine 

The test relies on the ability to act as donors of hydrogen atoms in the transformation of the 

DPPH radical to its reduced form (DPPH•-H). 

Watch decrease in absorbance at 515 nm over time until stable – calculate % inhibition  

(von Gadow et al., 1997) 

DPPH• + AH → DPPH•(-H) + A•     

 

Ferric reducing/anti-oxidant power (FRAP) assay 

 

Chemicals 

Acetate buffer 

 300 mM pH 3.6 

 3.1 g sodium acetate 0.3 H2O 

 16 ml glacial acetic acid 

 Distilled water to 1 liter  

 Check pH, store at 4C 

 

Dilute HCl: 40 mM 
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 1.46 ml conc HCl (11M) 

 Distilled water to 1 liter 

 Store at room temperature 

 

TPTZ (2,4,6-tri[2-pyridyl]-s-triazine): 10 mM 

 0.031 g TPTZ in 10 ml of 40 mM HCl, dissolve at 50C in water bath, MAKE FRESH 

ON THE DAY OF ASSAY 

 

Ferric chloride: 20mM 

 0.054 g FeCl2 6H2O 

 Dissolve in 10 ml distilled water  

 MAKE FRESH ON THE DAY OF ASSAY 

 

Standards of ferrous sulfate were used 

Prepare 1 mM solution: 0.278 g FeSO4 in 1 liter distilled water.  

Dilute for a series of standards 

 

Standard concentration (mM) FeSO4 7H2O solution (ml) Distilled water (ml) 

0.1 1 9 

0.2 2 8 

0.4 4 6 

0.6 6 4 

0.8 8 2 

1.0 10 0 

 

FRAP reagent (10:1:1) 

--Keep in water bath at 37C-- 

100 ml acetate buffer 

10 ml TPTZ solution 

10 ml FeCl3 solution 

(all above are the 10:1:1) 

12 ml distilled water  

 

For the FRAP assay: 

1. To one tube add: 

a. 1.8 ml FRAP reagent 
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b. 300 µl sample 

c. 180 µl distilled water 

2. Incubate at 37C for 4 minute 

3. Test absorbance at 593 nm 

*Blank is the FRAP reagent  

 

Will have an intense blue color at 593 nm 

Fe
3+

-TPTZ to Fe
2+

-TPTZ  

 

Oxygen radical absorbance capacity (ORAC) 

Extraction prep for ORAC analysis at USDA (Ou et al., 2002; Awika et al., 2003b) 

1) 0.5 g sample added to 20 ml hexane:dichloromethane (1:1) (HD) 

a. Extract lipophilic antioxidant constituents  

2) Mixed to turbulence under nitrogen at 25 °C - 1 h  

a. Modified extraction time (↑ 1 h)  

3) Evaporate HD extracts at room temperature (23 °C) under nitrogen to dryness 

a. With 1 ml methanol prior to analysis 

4) Previously extracted sample mixed to turbulence at 25 °C for 1 h with acetone:water 

(70:30) [nitrogen] 

a. Extract hydrophilic antioxidant constituents.  

5) Mixed to turbulence under nitrogen at 25 °C - 1 h  

6) Centrifuge at 12,100 g for 15 min, and stored at -20°C 

7) Supernatants ready for analysis after appropriate dilution with 75 mM potassium 

phosphate buffer solution (pH 7.4) 

a. Diluted to 1/50 for analysis 

 

The assay measures the oxidative degradation of fluorescein (the loss of fluorescence) over 2 

hours using a Synergy 2 microplate reader equipped with Gen5TM data analysis software 

(Biotek Instruments Inc., Winooski, VT, USA). 
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Appendix E. Rumen digestive system 

 

Modified from (Lechner-Doll et al., 1995) 
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Appendix F. Volatile fatty acids (VFA)* 

*While other compounds exist, the following were analyzed in this dissertation. 

 

Acetate                       Propionate  

 

Butyrate      Isobutyrate  

 

Valerate      Isovalerate  
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Appendix G. Supplemental figures from Chapter 5 

Chapter 5, “Mechanism and enzymatic contribution to in vitro test method of digestion 

for maize starches differing in amylose content” was previously published: 

Brewer LR, Cai L, Shi YC. Mechanism and Enzymatic Contribution to In Vitro Test 

Method of Digestion for Maize Starches Differing in Amylose Content. J Agric Food Chem 

2012;60:4379-87http://dx.doi.org/10.1021/jf300393m. 

 

The following figures and descriptions are provided for further clarification of the 

methods. 

 

 

The above figure depicts the addition of 250 µl of in vitro digestion, added to 10 ml of 

66% ethanol. Note the failed dispersion of the material within the tubes with amyloglucosidase 

only due to the lack of alpha-amylase digestion.  
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Appendix H. CSCA supplemental figures 

 

 

The above figure is modified with permission from author (Cai et al., 2010). A) starch 

polymer solution at the beginning of debranching (enzymes added) and cloudy slurry after 24 h 

of crystallization (after debranching) at 50°C; B) SEM image of debranched waxy maize starch, 

after crystallization at 50°C for 24 h. The sample was recovered by filtration and oven dried 

(40°C).  

 

 

 

 

 

 

a 

b 
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Appendix I. RS and TDF analyses 

 

 

 

In the top figure, (from left to right) HYLON VII, waxy maize starch and CSCA are 

shown at 120 min digestion. %RS is listed below each figure. Note the high concentration of 

residual starch for HYLON VII and CSCA. In the bottom figure, (from left to right) HYLON 

VII, waxy maize starch and CSCA are shown after precipitation (during AOAC method 991.43) 

with 78% (heated) ethanol. %TDF is listed below each figure. Note the cloudiness of HYLON 

VII, due to the presence of fibrous material.
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Appendix J. YSI Stat Plus Glucose (and Lactose) analyzer 

(YSI Incorporated, Life Sciences, Yellow Springs, Ohio) 

 

Upon sampling of < 70 µl of blood, glucose oxidase is immobilized between 

polycarbonate and cellulose acetate membranes within the system. Glucose within the blood 

sample is oxidized when it enters the glucose oxidase layer. From the reaction hydrogen 

peroxide is produced. The hydrogen peroxide passes through cellulose acetate to a platinum 

electrode and is oxidized. The measured current is proportional to glucose concentration in the 

sample. 

The following equation accounts for the enzymatic reaction:  

D-glucose + O2      ─(glucose oxidase)→      D-glucono-δ-lactone + H2O2 

The following equation accounts for the anode reaction:  

H2O2  ─( platinum anode) →   2H
+
 + O2 + 2e- 

 

 

For further information on this equipment, please refer to: 

http://www.ysiuk.com/uploads/Documents/YSI%202300%20STAT%20Plus%20Leaflet.pdf 

 

 

 

 

http://www.ysiuk.com/uploads/Documents/YSI%202300%20STAT%20Plus%20Leaflet.pdf


216 

 

 

Appendix K. Quintron BreathTracker SC  

 

(Quintron USA, Milwaukee, WI) 

 
 

This instrument separates components by gas chromatography. Room air acts as the carrier gas 

for the sample. Hydrogen and methane are measured when separated from all other expelled 

gases (and from each other), and analyzed with a solid-state sensor. 

 

For further information on this equipment, please refer to: 

http://www.quintron-usa.com/images/pdfs/Support_Files/QT02444RD1-Catalog-

InfoBooklet.pdf 

 

http://www.quintron-usa.com/images/pdfs/Support_Files/QT02444RD1-Catalog-InfoBooklet.pdf
http://www.quintron-usa.com/images/pdfs/Support_Files/QT02444RD1-Catalog-InfoBooklet.pdf
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