ITERATIVE SOLUTION OF NETWORK FLOW PROBLEMS

BY DYNAMIC PROGRAMMING

by

DEEPAK KESHAV PAI

B. E. M. E., University of Poona, India, 1963 M. Tech. M. E., Indian Institute of Technology, Bombay, India, 1965

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1967

Approved by:

illinan

Professor

LV 268 R4 1967 P28 C.2

TABLE OF CONTENTS

1.	INTRODUCTION	1
2.	THE TRAFFIC ASSIGNMENT PROBLEM	3
	2.1 Definitions	4
	2.2 Formulation of Traffic Assignment Problem	7
	2.3 Example Problems	9
3.	GENERAL PIPELINE PROBLEM	10
	3.1 Example Problems	11
4.	LITERATURE SURVEY	12
5.	DYNAMIC PROGRAMMING	14
6.	THE SOLUTION PROCEDURE	16
	6.1 The Solution of a N x M Traffic Assignment	16
	Problem by Dynamic Programming	16
	6.2 Example 1	20
	6.3 Example 2	29
•	6.4 Example 3	35
	6.5 Example 4	38
7.	SUMMARY	43
8.	CONCLUSION	44
9.	ACKNOWLEDGMENTS	45
10.	REFERENCES	46
11.	APPENDIX I	48
12:	APPENDIX II	49
13.	APPENDIX III	58
14.	APPENDIX IV	66

1. INTRODUCTION

Many problems of economic and physical origin form . important classes of network problems. Traffic assignment and pipeline problems constitute such classes of problems.

In the traffic assignment problem the streets form the network and the vehicles may enter or leave at any of the intersections. In this situation various types of traffic flows can take place. For example all the vehicles may enter at one point on the network and travel on different streets to some common destination. This is called a one way flow problem. If the vehicles enter and leave at two different points, traveling in two different directions, this is called a two way flow problem. Thus there are as many types of problems as there are directions of traffic flows. In each of these problems vehicles may enter and leave the network at any of the intersections.

An optimal path through a network can be selected based on a number of different objectives. It has been observed that more time is required to travel a street as the traffic volume increases. Thus in making a trip, the driver will tend to select a route which requires the minimum time. Thus the traffic assignment problems arise where vehicles are to be assigned on each street so that the total travel time for all drivers is a minimum.

Pipeline problems arise in a similar fashion as the traffic assignment problems. These occur when oil, gas,

water or any fluid is collected from various reserves and transported to a number of destinations through a network of pipelines. It is assumed in these problems that the cost of transportation of the fluid increases as the volume increases. This problem becomes one of assigning the volume of fluid to be transported over each link so that the total cost of transportation is minimum.

The solution of the traffic assignment problem can be used to determine the deficiencies of the existing transportation system and to assist in the development of future transportation system. The solution of the pipeline problem can be used for determining the optimum utilization of the existing system and to evaluate alternate system proposals for the development of future systems.

2. THE TRAFFIC ASSIGNMENT PROBLEM

In this section, the traffic assignment problem considered is one of assigning the vehicles to the streets of a network, where the vehicles enter or leave at one or more points on the network and travel in the same or different directions and minimize the total travel time for all drivers.

Figure 1. represents a travel time volume relationship. The form of the equation is:

$$t = k_1 + k_2 \cdot V + k_3 \cdot (V/c)^r$$
 (2.1)

where

t = link travel time in hours per vehicle

k2,k3 = empirically derived constants

- V = link volume in vehicles per link per hour
- c = link capacity in vehicles per link per hour

r = empirically derived exponent

The first term of equation (2.1) represents the travel time at free flow conditions. The second term serves to increase travel time as the link volume increases. The increase in travel time due to a unit increase in volume depends on the magnitude of the constant k_2 . The first two terms of equation (2.1) represents the linear portion of the time-volume curves between the points A and B as shown in Figure 1. The third term represents the effect of congestion on the travel time for the facility under consideration. As the link volume nears capacity, the value of this term increases rapidly and at volumes beyond capacity (V)c) the travel time becomes so great that in effect the link has been closed for additional traffic. In Figure 1., the curve between B and C represents conditions of congestion and thus is the undesirable region for operation. Total travel time through each link is obtained by multiplying both the sides of equation (2.1) by the traffic volume V.

$$\Gamma = K_1 \cdot V + K_2 \cdot V^2 + K_3 \cdot \left(\frac{V}{c}\right)^{r} \cdot V$$
(2.2)

A traffic assignment problem is illustrated in Figure 2. The following definitions and terms are given here to simplify the latter discussion of the mathematical formulation of the traffic assignment problem.

2.1 Definitions

- Objective function: The function which is to be optimized. In this discussion it is the time function and it is to be minimized.
- 2. Zone Centroid: The place of trip origin or destination.
- 3. Node: The point where the segments of the streets system connect.
- 4. Link: The connection between two nodes which represent the segments of a street system.

AVERAGE LINK VOLUME

Figure 2. NxM network

5. Path: The series of connected links representing the trip route.

6. Network: The combination of all links and nodes.

2.2 Formulation of the Traffic Assignment Problem

Consider the network of streets as shown in Figure 2 where the following notations are used:

- (n,m) = represents the nodes (n = 0,1,2,...N; m = 0,1, 2,...N)
- v(n,m) = the total number of vehicles entering at the node (n,m)

Z(n,m) = the total number of vehicles at the node (n,m)

X(n,m) = the total number of vehicles going in the H horizontal direction from the node (n,m) towards node (n,m+1)

X(n,m) = the total number of vehicles going in the V vertical direction from the node (n,m) towards node (n+1,m)

Using the above notations the percentage of the volume at the node (n,m) which travel in the horizontal direction can be expressed as:

$$P^{(n,m)} = \chi_{H}^{(n,m)} / Z^{(n,m)}$$
(2.3)

and consequently,

$$1 - P^{(n,m)} = \chi_{V}^{(n,m)} / Z^{(n,m)}$$
(2.4)

The last term of the equation (2.2), which is (r+1) $K_3 \cdot \frac{V}{r}$, is insignificant at lower values of V and hence

it can be neglected for small values of V. Thus the total time required to travel the network when this occurs is given by:

$$T = \sum_{m=0}^{M} \sum_{n=0}^{N} \kappa_{H1}^{(n,m)} \cdot \chi_{H}^{(n,m)} \div \kappa_{H2}^{(n,m)} \cdot (\chi_{H}^{(n,m)})^{2} \div \kappa_{V1}^{(n,m)} \cdot \chi_{V}^{(n,m)} \div \kappa_{V2}^{(n,m)} \cdot (\chi_{V}^{(n,m)})^{2}$$
(2.5)

with initial conditions that:

$$p^{(n,M)} = 0.0 \text{ and } X^{(n,M)} = 0.0, (n = 0, 1, 2..., N)$$
 (2.6)

$$P^{(N,m)} = 1.0 \text{ and } \chi^{(N,m)}_{V} = 0.0, (m = 0, 1, 2..., M)$$
 (2.7)

and where
$$_{K_{V1}^{(n,m)}}$$
, $_{K_{V2}^{(n,m)}}$ = the constants associated with
the vertical streets from the
node (n,m) to (n+1,m)
 $_{K_{H1}^{(n,m)}}$, $_{K_{H2}^{(n,m)}}$ = the constants associated with the
horizontal street from the node
(n,m) to (n,m+1)

In summary then, the problem becomes one of minimizing T given by equation (2.5) by finding suitable values of P(n,m) (n = 0,1,2,...,N; m = 0,1,2,...,M) and satisfying the conditions given by equations (2.6) and (2.7).

2.3 Example Problems

- 1. The 3 x 3 network shown in Figure 4 is solved where v(0,0) vehicles enter at node (0,0) and leave at node (3,3). The problem is to determine p(n,m) (n = 0,1,2,3; m = 0,1,2,3) for the network which will minimize the total traveling time.
- 2. The 2 x 2 network shown in Figure 5 is solved where V(0,0) vehicles enter the network at node (0,0) from NW the Northwest and leave at node (2,2) and V(2,0) vehicles enter the network at the node (2,0) from the Southwest and leave at node (2,0). The problem is to determine P(n,m) and P(n,m) (n = 0,1,2; m = 0,1,2) which Will minimize the total traveling time.
- 3. The 2 x 2 network shown in Figure 7 is solved where $V_{NW}^{(0,0)}$ vehicles enter at node (0,0) from the Northwest and $V_{NW}^{(2,1)}$, $V_{NW}^{(2,2)}$ and $V_{NW}^{(1,2)}$ vehicles leave at node (2,1), (2,2) and (1,2) respectively. Similarly, $V_{SW}^{(2,0)}$ vehicles enter the netowrk at (0,2) and $V_{O,1}^{(0,1)}$, $V_{SW}^{(0,2)}$ and $V_{SW}^{(1,2)}$ leave at node (0,1), (0,2) and (1,2) respectively. The problem is to determine $P_{NW}^{(n,m)}$ and $P_{SW}^{(n,m)}$ (n = 0,1,2; m = 0,1,2) which will minimize the total traveling time.

3. GENERAL PIPELINE PROBLEM

The pipeline problem is similar to the traffic assignment problem with the exception that the flow of fluid is considered as a continuous function. The fluid can be fed in or tapped at any node. The cost of transporting fluid through a section of pipe can be represented by the following equation:

$$C = K_1 \cdot v + K_2 \cdot v^2$$
 (3.1
where K_1 , K_2 = the constants for the pipeline to be
experimentally determined
 v = the quantity of the fluid flowing through
the pipe under consideration.

Thus the total cost for N X M pipeline network is given by:

$$C = \sum_{m=0}^{M} \sum_{\substack{n=0\\ M \neq 0}}^{N} K_{H1}^{(n,m)} \cdot X_{H}^{(n,m)} + K_{H2}^{(n,m)} \cdot (X_{H}^{(n,m)})^{2} + K_{V1}^{(n,m)} \cdot X_{V}^{(n,m)} + K_{V2}^{(n,m)} \cdot (X_{V}^{(n,m)})^{2}$$
(3.2)

where $K_{V1}^{(n,m)}$, $K_{V2}^{(n,m)}$ = the constants for the vertical pipe from (n,m) to (n + 1,m) $K_{H1}^{(n,m)}$, $K_{H2}^{(n,m)}$ = the constants for the horizontal pipe from (n,m) to (n,m + 1) $X_{H}^{(n,m)}$ = the quantity of fluid flowing in the horizontal direction from the node (n,m) to (n,m + 1)

 $X_V^{(n,m)}$ = the quantity of fluid flowing in the vertical direction from the node (n,m)

to (n + 1, m)

Using the above notations the percentage of the volume at the node (n,m) which flows in the horizontal direction can be expressed by:

$$P^{(n,m)} = \chi_{H}^{(n,m)} / (\chi_{H}^{(n,m)} + \chi_{V}^{(n,m)})$$
(3.3)

with initial conditions that

$$P^{(n,m)} = 0.0 \text{ and } \chi^{(n,m)}_{H} = 0.0 (n = 0, 1, 2)$$
 (3.4)

$$P(N,m) = 1.0 \text{ and } \chi(N,m) = 0.0 \ (m = 0,1,2)$$
 (3.5)

3.1 Example Problem

4. A 2 x 2 network shown in Figure 8 is solved where y(0,0) units of fluid enter at node (0,0) and y(n,m) $(n = 0,1,2; m = 0,1,2; (n,m) \neq (0,0)$) units of fluid enter and leave at other nodes which are not necessarily the same nodes. The problem is one of determining p(n,m) that will minimize the total cost of transportation of the fluid through the network.

4.0 LITERATURE SURVEY

Various optimization techniques and algorithms have been used as a basis for traffic assignment. Wilson Campbell (1) presented a procedure to assign traffic to expressways in 1956. Moore (2) and Dantzing (3) developed algorithms for selecting the shortest path through a network. Wattleworth and Shuldiner (4) illustrated a basic application of inear programming to traffic assignment problems. Since 1957 many other techniques have been developed to determine the shortest path through a network. However, these techniques have not been as widely adapted as the Moore algorithm which is currently the method used with most computer traffic assignment problems(5).

Current traffic assignment are of "all or nothing" type, that is, all of the trips between two zones are assigned to a single route regardless of traffic volume on that route. This method lacks realism in that it does not provide for a revision of the link travel time as traffic volume increases.

Tsung-chang Yang and R. R. Snell (6) presented an application of an optimal traffic assignment technique which has the ability to overcome the capacity restraint shortcoming of the present day assignment procedure. They used the discrete version of the "maximum principle" (7) with linear time functions. R. R. Snell, M. L. Funk and J. B. Blackburn (5) used the same method with constant, linear and nonlinear time volume relationship.

Cantrell (9) has made investigations of pressure and flow of fluid through pipeline network. He determines the pressure drop in an existing pipeline for a given Reynold's number. However, a suitable method of assigning the volume of fluid to be transported over each link has not been developed. By considering the pressure drop as a cost of transportation the proposed dynamic programming method will provide such a method.

No one has yet solved the problems 2,3, and 4 above and no one has utilized dynamic programming for solving these types of problems. Thus the purpose of this paper is to illustrate that dynamic programming can be used to solve the problems stated above.

5. DYNAMIC PROGRAMMING

Dynamic programming developed by Bellman (9) is a mathematical technique which is used to serve many types of multistage decision problems. This technique is based on the "principle of optimality" which is stated by Bellman as:

"An optimal policy has the property that whatever the initial decisions are, the remaining decisions must constitute an optimal policy with regard to the state resulting from first decisions."

Let the function to be maximized be denoted by:

 $R(X_1, X_2, \dots, X_k) = g_1(X_1) + g_2(X_2) + \dots$

+ g_v(X_v)

over the region $X_k \ge 0.0$ and $\sum_{k=1}^{K} X_k = X$

where

X = the amount of resources available

 X_1 = the amount of resources allocated at stage k. Since the maximum of the function $R(X_1, X_2, \dots, X_K)$ over the designated region depends upon X and K, the sequence of functions $f_k(X)$ are introduced and are defined for k = 1, 2....X and $X_k \ge 0.0$ as follows:

$$f_{k}(X) = maximum R(X_{1}, X_{2}, \dots, X_{K})$$
 (5.2)

(5.1)

where

$$X_k \ge 0.0$$
 and $\frac{K}{\frac{1}{2}} = X$

The optimal value of the function $f_k(X)$ is obtained by allocating the resources X to the K activities in an optimal fashion. The problem considered here satisfies the following relationship:

$$f_1(\mathbf{X}) = g_1(\mathbf{X}), \qquad \mathbf{X} \geqslant \mathbf{0} \qquad (5.3)$$

where

 $f_{0}(0) = 0.0$

The recurrence relation connecting $f_{K}(X)$ and $f_{K} = f(X)$ for some arbitrary X is obtained from equation (5.1), thus

$$f_{K}(x) = \text{Maximum} \left[g_{K}(x) + f_{K-1}(x - X_{K}) \right] .$$
(5.4)
$$0 \leqslant X_{k} \leqslant X$$

The process is repeated for f $_{\rm K}$ - (X - X $_{\rm K}$) to obtain the resurrence relationship

$$f_{k}(X') = \text{Maximum} \left[g_{k}(X_{k}) \neq f_{k-1}(X' - X_{k}) \right]$$
(5.5)
$$0 \leqslant X_{k} \leqslant X'$$

where

 $X' = X - \sum X_i$

Thus if $f_1(X')$ is known, the sequence $f_k(X')$ can be obtained from equation (5.5).

6. THE SOLUTION PROCEDURE

Before discussing the method of solution for a traffic and pipeline network, it is necessary to state the assumptions made for each problem.

- I. For the traffic assignment problem the assumptions are:
 - 1. There are no turn penalties, that is, no extra time is required in making a turn.
 - 2. The zone centriod coincides with the nodes.
 - 3. The traffic directions are known.
 - 4. Travel time is the only factor that influences the traffic pattern.
 - 5. The travel time on each link can be expressed by Equation (2.1) with the appropriate constants.

II. For the pipeline problem the assumptions are:

- 1. The flow directions are known.
- 2. Cost is the only factor that influences the flow pattern.
- Fluid is tapped or fed into the network only at the nodes.
- The cost of transportation for each link is given by Equation (3.1) with the appropriate constants.
- 6.1 The Solution of a N x M Traffic Assignment Problem by

Dynamic Programming

The following procedure is outlined for solving a N x M network by dynamic programming.

- STEP 1: Divide the network into K stages in the following
 way:
 Kth stage: All the routes that form a rectangular
 - whose diagonal nodes are (N 1, M 1)and (N,M).
 - (K-1)th stage: All the routes that form a rectangle whose diagonal nodes are (N - 1, M - 2)and (N,M).
 - (K-2)th stage: All the routes that form a rectangle whose diagonal nodes are (N - 2, M - 1)and (N,M).

1st stage: All the routes that form a rectangle whose diagonal nodes are (0,0) and (N.M).

In short the network can be formed by moving a diagonal straight line, perpendicular to the line joining (0,0) and (N,M). Whenever this line touches the node (n,m) (n \neq N and m \neq M) a stage can be formed by taking all the routes that form a rectangle whose diagonals are (n,m) and (N,M). Figure 4 shows a step by step procedure of dividing a 3 x 3 network into 9 stages. It is also noted that the nodes covered with hatch marks should be excluded from the stages since they do not alter the value of $_{\rm P}(n,m)$ in determining the minimum travel time.

STEP 2: Assume an initial value of 0.5 for all $_{P}(n,m)$, the fraction of vehicles at node (n,m) that travel in the horizontal direction towards the node (n,m + 1) with the exceptions that:

$$P(n,M) = 0.0$$
; $n = 0, 1, 2..., N$

and P(N,m) = 1.0, m = 0, 1, 2..., M

STEP 3: With these values of p(n,m), start from the node (0,0) and determine the number of vehicles on all the routes. This number must be an integer. If it is a fraction, convert it to the nearest integer.STEP 4: Now with the vehicles loads as determined in step 3, start at the kth stage, which represents node (i,j) and by keeping the number of vehicles entering the kth stage constant, determine the new value of p(i,j) that minimizes the total time given by the following equation:

$$T = \sum_{m=j}^{M} \sum_{n=i}^{N} \kappa_{H1}^{(n,m)} \cdot \chi_{H}^{(n,m)} + \kappa_{H2}^{(n,m)} \cdot (\chi_{H}^{(n,m)})^{2} \quad (6.1)$$

$$+ \kappa_{V1}^{(n,m)} \cdot \chi_{V}^{(n,m)}$$

$$+ \kappa_{V2}^{(n,m)} \cdot (\chi_{V}^{(n,m)})^{2}$$

In this discussion a single search technique (see appendix I for details) has been used for all the problems. Now the previous value of $_{P}(i,j)$ is replaced with the new value and the number of vehicles on all the routes are adjusted according to the following relation:

$$X_{H}^{(n,m)} = P^{(n,m)} \cdot (X_{H}^{(n,m-1)} + X_{V}^{(n-1,m)})$$
 (6.2)

(n = i, i + 1, ..., N; m = j, j + 1, ..., M)Procede to the next stage and repeat the process. The process is repeated for all stages until new values for all $_{D}(n,m)$ have been determined.

STEP 5:

One iteration is complete when the new values for all the $_{\rm P}({\rm n},{\rm m})$ have been determined. The values of $_{\rm P}({\rm n},{\rm m})$ from this iteration are compared to the corresponding values from the previous iteration. When the values of $_{\rm P}({\rm n},{\rm m})$ do not differ significantly on two successive iterations the answer is considered optimal. If they do differ significantly, go to step 3 using these new values of the $_{\rm P}({\rm n},{\rm m})$ as the initial values and repeat the entire procedure until an optimalsolution is obtained.

The solution procedure is illustrated by solving Example 1.

6.2 Example 1.

Example 1 is based on the 3 x 3 network illustrated in Figure 3 where all nodes are denoted by $(0,0),\ldots,(3,3)$. The percentage of vehicles at each node which procede in the horizontal direction is denoted by $_{\rm P}(n,m)$ (n = 0,1,2,3; m = 0,1,2,3). Similarly the percentage of the vehicles which procedes in the vertical direction is denoted by $1 - _{\rm P}(n,m)$. The number of vehicles entering the network at node (0,0)is denoted by $_{\rm V}(0,0)$. The total time required to travel from (0,0) to (3,3) is given by the following equation:

$$T = \sum_{m=0}^{3} \sum_{n=0}^{3} K_{H1}^{(n,m)} \cdot x_{H}^{(n,m)} + K_{H2}^{(n,m)} \cdot (x_{H}^{(n,m)})^{2}$$
(6.3)
+ $K_{V1}^{(n,m)} \cdot x_{V}^{(n,m)}$
+ $K_{V2}^{(n,m)} \cdot (x_{V}^{(n,m)})^{2}$

where $\kappa_{H1}^{(n,m)}$, $\kappa_{H2}^{(n,m)}$ = the constants for the horizontal street from the node (n,m) to (n,m + 1) $\kappa_{V1}^{(n,m)}$, $\kappa_{V2}^{(n,m)}$ = the constants for the vertical street from the node (n,m) to (n + 1,m) $\kappa_{H}^{(n,m)}$, $\chi_{V}^{(n,m)}$ = number of vehicles passing in the horizontal and vertical direction from the node (n,m) to (n,m + 1)and (n + 1,m) respectively. In this example: p(n,3) = 0.0; n = 0,1,2,3

(6.4)

(0,0)	(0,1)	. (0,2)	(0,3)
P(0,0)	$-P^{(0,1)}$	${p}(0,2)$	-
 _ P ^(0,0)	$ _{1 - P}^{(0,1)}$	$1 - P^{(0,2)}$	
ł			
(1,0)	(1,1)	(1,2)	(1,3
${P}(1,0) \rightarrow$	${P}(1,1)$	-p(1,2)	
$1 - P^{(1,0)}$	$ - P^{(1,1)}$	$1 - P^{(1,2)}$	
. +		ł	
(2,0)	(2,1)	(2,2)	(2,3)
$- P(2,0) \rightarrow$	$- P^{(2,1)}$	- P(2,2)	
$1 - P^{(2,0)}$	$ _{1 - P}^{(2,1)}$	$1 - P^{(2,2)}$	
	Y		
	(31)	(3 2)	(3 3)

Figure 3. 3x3 Network

Note : The hatched portion is omitted from consideration since the vehicles in that area do not affect the value of $p^{(n,m)}$ at that stage.

Figure 4. 9 stages of a 3x3 network.

and
$$p(3,m) = 1.0$$
; $m = 0,1,2,3$ (6.5)

Thus
$$P(n,m) = x_H^{(n,m)} / (x_H^{(n,m)} + x_V^{(n,m)})$$
 (6.6)

The objective is to determine the set of p(n,m)(n = 0,1,2,3; m = 0,1,2,3) which will minimize the time required to travel from node (0,0) to node (3,3). The procedure for solving this problem by dynamic programming is as follows:

$$p(n,3) = 0.0$$
; $(n = 0,1,2,3)$

and

p(3,m) = 1.0; (m = 0,1,2,3)

Now, starting from node (0,0), determine the number of vehicles on all the routes of the network by equation (6.2).

STEP 3: Beginning at the kth stage and keeping the number of vehicles entering this stage constant, p(i,j) is determined by changing X^(i,j) such that the total travel time for this stage is a minimum. The equation for determining the travel time at each stage are given below.

The equation for the 9th stage is:

$$T = \sum_{m=2}^{3} \sum_{n=2}^{3} K_{H1}^{(n,m)} \cdot X_{H}^{(n,m)} + K_{H2}^{(n,m)} \cdot (X_{H}^{(n,m)})^{2} + K_{V1}^{(n,m)} \cdot X_{V}^{(n,m)} + K_{V2}^{(n,m)} \cdot (X_{V}^{(n,m)})^{2}$$
(6.7)

The equation for the 8th stage is:

$$T = \sum_{m=2}^{3} \sum_{n=1}^{3} K_{H1}^{(n,m)} \cdot X_{H}^{(n,m)} + K_{H2}^{(n,m)} \cdot (X_{H}^{(n,m)})^{2} + K_{V1}^{(n,m)} \cdot X_{V}^{(n,m)} + K_{V2}^{(n,m)} \cdot (X_{V}^{(n,m)})^{2}$$
(6.8)

The equation for the 7th stage is:

$$T = \sum_{m=1}^{3} \sum_{n=2}^{3} K_{H1}^{(n,m)} \cdot X_{H}^{(n,m)} + K_{H2}^{(n,m)} \cdot (X_{H}^{(n,m)})^{2} + K_{V1}^{(n,m)} \cdot X_{V}^{(n,m)} + K_{V2}^{(n,m)} \cdot (X_{V}^{(n,m)})^{2}$$
(6.9)

The equation for the 6th stage is:

$$T = \sum_{m=1}^{3} \sum_{n=0}^{3} K_{H1}^{(n,m)} \cdot X_{H}^{(n,m)} + K_{H2}^{(n,m)} \cdot (X_{H}^{(n,m)})^{2} + K_{V1}^{(n,m)} \cdot X_{V}^{(n,m)} + K_{V2}^{(n,m)} \cdot (X_{V}^{(n,m)})^{2}$$
(6.10)

The equation for the 5th stage is:

$$T = \sum_{m=1}^{3} \sum_{n=1}^{3} K_{H1}^{(n,m)} \cdot X_{H}^{(n,m)} + K_{H2}^{(n,m)} \cdot (X_{H}^{(n,m)})^{2} + K_{V1}^{(n,m)} \cdot X_{V}^{(n,m)} + K_{V2}^{(n,m)} \cdot (X_{V}^{(n,m)})^{2}$$
(6.11)

The equation for the 4th stage is:

$$T = \sum_{m=0}^{3} \sum_{h=0}^{3} K_{H1}^{(n,m)} \cdot x_{H}^{(n,m)} + K_{H2}^{(n,m)} \cdot (x_{H}^{(n,m)})^{2} + K_{V1}^{(n,m)} \cdot x_{V}^{(n,m)} + K_{V2}^{(n,m)} \cdot (x_{V}^{(n,m)})^{2}$$
(6.12)

The equation for the 3rd stage is:

$$T = \sum_{m=1}^{3} \sum_{n=0}^{3} K_{H1}^{(n,m)} \cdot \chi_{H}^{(n,m)} + K_{H2}^{(n,m)} \cdot (\chi_{H}^{(n,m)})^{2} + K_{V1}^{(n,m)} \cdot \chi_{V}^{(n,m)} + K_{V2}^{(n,m)} \cdot (\chi_{V}^{(n,m)})^{2}$$
(6.13)

The equation for the 2nd stage is:

$$T = \sum_{m=0}^{3} \sum_{n=1}^{3} K_{H1}^{(n,m)} \cdot X_{H}^{(n,m)} + K_{H2}^{(n,m)} \cdot (X_{H}^{(n,m)})^{2} + K_{V1}^{(n,m)} \cdot X_{V}^{(n,m)} + K_{V2}^{(n,m)} \cdot (X_{V}^{(n,m)})^{2}$$
(6.14)

The equation for the 1st stage is:

$$T = \sum_{m=0}^{3} \sum_{n=0}^{3} K_{H1}^{(n,m)} \cdot X_{H}^{(n,m)} + K_{H2}^{(n,m)} \cdot (X_{H}^{(n,m)})^{2} + K_{V1}^{(n,m)} \cdot X_{V}^{(n,m)} + K_{V2}^{(n,m)} \cdot (X_{V}^{(n,m)})^{2}$$
(6.15)

Thus the new value of $_{P}(2,2)$ for the 9th stage is the one which minimizes the time given by the equation for the 9th stage and this is determined by varying the value of $_{X_{H}}(2,2)$. The previous value of $_{P}(2,2)$ is replaced by this new value and the number of vehicles on all the routes are adjusted according to equation (6.2).

(n = 0, 1, 2, 3; m = 0, 1, 2, 3)

$$X_{H}^{(n,m)} = P^{(n,m)} \cdot (X_{H}^{(n,m-1)} + X_{V}^{(n-1,m)})$$

(6.16)

- STEP 4: Preceding to the 8th stage and repeat step 3 to determine the new value of $_{P}(2,1)$ that will minimize the total time for all vehicles at the 8th stage given by equation (6.8). The previous value of $_{P}(2,1)$ is replaced by the new value and the number of vehicles on all the routes are adjusted. This procedure is repeated for all the stages to determine the new value of $_{P}(n,m)$.
- STEP 5: One iteration is completed when all the values of p(n,m) have been determined. These values are then compared with the corresponding values of

the previous iteration. If they are not significantly different the optimal answer has been obtained. If they are different the procedure continues at step 3 and the number of vehicles on all the routes are adjusted for this new set of p(n,m). The procedure is repeated until the optimal solution is obtained.

This procedure has been programmed for the IBM 1410 computer and is listed in appendix II. The solution to example 1 which follows was obtained using this program. Example 1.

Data

$K_{\rm H1}^{(0,0)} = 50.$.0	$K_{\rm H2}^{(0,0)} = 2.8$		$K_{\rm H1}^{(0,1)} = 66$.0	$K_{H2}^{(0,1)} =$	2.1
$K_{\rm H1}^{(0,2)} = 56.$.0	$K_{\rm H2}^{(0,2)} = 1.7$		$K_{\rm H1}^{(1,0)} = 80$	0.0	$K_{H2}^{(1,0)} =$	1.9
$K_{\rm H1}^{(1,1)} = 60.$.0	$K_{\rm H2}^{(1,1)} = 1.3$		$K_{\rm Hl}^{(1,2)} = 45$.0	K ^(1,2) =	2.1
$K_{\rm H1}^{(2,0)} = 52.$.0	$K_{H2}^{(2,0)} = 1.2$		K ^(2,1) = 71	.0	K ^(2,1) =	3.2
$K_{\rm H1}^{(2,2)} = 91.$.0	$K_{H2}^{(2,2)} = 1.6$	8,8 -	$K_{\rm H1}^{(3,0)} = 63$	5.0	$K_{H2}^{(3,0)} =$	1.4
$K_{\rm H1}^{(3,1)} = 51.$.0	$K_{H2}^{(3,1)} = 1.9$		$K_{\rm H1}^{(3,2)} = 30$	0.0	$K_{H2}^{(3,2)} =$	2.8
$K_{V1}^{(0,0)} = 60.$.0	$K_{V2}^{(0,0)} = 3.2$		$K_{V1}^{(0,1)} = 75$.0	$K_{V2}^{(0,1)} =$	2.5
$K_{V1}^{(0,3)} = 71.$.0	$K_{V2}^{(0,3)} = 2.1$		K _{V1} ^(1,0) = 85	.0	$K_{V2}^{(1,0)} =$	2.6
$K_{V1}^{(1,1)} = 45.$.0	$K_{V2}^{(1,1)} = 2.9$		$K_{V1}^{(1,2)} = 52$	2.0	$K_{V2}^{(1,2)} =$	1.8
$K_{V1}^{(1,3)} = 90.$.0	$K_{V2}^{(1,3)} = 3.1$		K _{V1} ^(2,0) = 61	0	$K_{V2}^{(2,0)} =$	1.4
$K_{V1}^{(2,1)} = 31.$.0	$K_{V2}^{(2,1)} = 2.6$		$K_{V1}^{(0,2)} = 66$.0	$K_{V2}^{(0,2)} =$	3.1
$K_{V1}^{(2,2)} = 81.$.0	$K_{V2}^{(2,2)} = 2.5$	4	$K_{V1}^{(2,3)} = 50$.0	$K_{V2}^{(2,3)} =$	2.1
v(0,0) = 100	0.0						

Results

$P^{(0,0)} = 51.000\%$	$P^{(0,1)} = 52.941\%$	$P^{(0,2)} = 58.851\%$
P ^(1,0) = 44.897%	P ^(1,1) = 63.043%	P ^(1,2) = 26.190%
$P^{(2,0)} = 44.444\%$	P ^(2,1) = 37.931%	$P^{(2,2)} = 66.666\%$

6.3 Example 2.

Example 2 is based on a simple 2 x 2 network illustrated in Figure 5 where the nodes are represented by (0,0), (0,1) ..., (2,2). In this example $V_{NW}^{(0,0)}$ denotes the vehicles which enter the network from the northwest at node (0,0) and leave at node (2,2). Similarly $V_{V}^{(2,0)}$ denotes the vehicles which enter the network at node (2,0) from the Southwest and leave at node (0,2). $P_{NW}^{(0,0)}$, $P_{NW}^{(1,0)}$ and $P_{NW}^{(1,1)}$ represent the percentage of the vehicles which enter from northwest and turn in the horizontal direction. Similarly $P_{SW}^{(2,0)}$, $P_{SW}^{(2,1)}$, $P_{SW}^{(1,0)}$ and $P_{SW}^{(1,1)}$ represents the percentage of vehicles which enter from the Southwest and travel in the horizontal direction. The problem is one of determining the values of $P_{NW}^{(n,m)}$ and $P_{SW}^{(n,m)}$ which will minimize the total travel time of the network.

Observe from Figure 5 that the directions of these two types of vehicles are not the same everywhere. When the directions of two types of vehicles are the same, their sum can be combined to equal $\chi(n,m)$ in equation (2,4), but when H they are not traveling in the same direction, their times are found separately and added.

This problem is treated as a combination of two problems which are solved simultaneously. Thus there are eight stages; four for the Northwest vehicles and four for the Southwest

Figure 5. 2x2 Network

Note : A stage with solid hatched lines represents the part of the network where $P_{NW}^{(n,m)}$ is to be determined by varing the Northwest vehicles on the appropriate routes and by keeping the other vehicles which enter the stage constant. The alternate is true for the Southwest vehicles represented by dashed lines. The cross hatched portion is omitted from consideration since the vehicles in that area do not affect the value of $P_{NW}^{(n,m)}$ or $P_{SW}^{(n,m)}$ at that stage.

Figure 6. 8 stages of a 2x2 network.

vehicles. The procedure for solving this problem is as follows:

- STEP 1: Divide the network into eight stages as shown in Figure 6. The Northwest and Southwest vehicles are considered alternately.
- STEP 2: Assume initial values for $P_{NW}^{(0,0)}$, $P_{NW}^{(0,1)}$, $P_{NW}^{(1,1)}$, $P_{NW}^{(1,0)}$, $P_{SW}^{(2,0)}$, $P_{SW}^{(2,1)}$, $P_{SW}^{(1,0)}$, $P_{SW}^{(1,1)}$ to be equal to 0.5.
- STEP 3: Starting from (0,0) and (2,0) respectively assign the Northwest and the Southwest vehicles to all the routes using the initial values of P(n,m)NW

```
and P_{SW}^{(n,m)}.
```

- STEP 4: Starting from stage 8 and keeping all the vehicles entering the stage 8 constant, change $\chi_{NWH}^{(1,1)}$ in such a way that the total travel time given by equation (2.4) for this stage is minimum. From this value of $\chi_{NWH}^{(1,1)}$ determine the value of $P_{NW}^{(1,1)}$ and replace the previous value with it. Make the new assignment of vehicles using this new value of $P_{NW}^{(1,1)}$ and procede to step 5.
- STEP 5: Repeat the procedure of step 4 for the Southwest vehicles at stage 7 and determine the value of $P_{SW}^{(1,1)}$ which will minimize the traveling time at stage 7. Replace the previous value of $P_{SW}^{(1,1)}$ by

this new value and make the new assignment of vehicles using these new values of p(1,1) and $P_{SW}^{(1,1)}$. Repeat the procedure for all the remaining stages to determine the corresponding values of P(n,m) and P(n,m). At each stage the new P_{NW} values of $P_{NW}^{(n,m)}$ and $P_{SW}^{(n,m)}$ are used to make the new assignment of vehicles on the links. STEP 7: One iteration is complete when all the values of $P_{NW}^{(n,m)}$ and $P_{SW}^{(n,m)}$ have been determined. These values are compared with the values of the previous iteration. If there is no significant difference the optimal solution has been obtained. If they are different, return to step 3 with new set of values for $P_{NW}^{(n,m)}$ and $P_{SW}^{(n,m)}$.

This procedure has been programmed for the IBM 1410 computer and is listed in appendix III.

The solution to example 2 which follows was obtained using this program.

Example 2.

Data

$K_{\rm H1}^{(0,0)} = 4$	40.0	$K_{H2}^{(0,0)} = 1.1$	$K_{\rm H1}^{(0,1)} = 32.0$	$K_{\rm H2}^{(0,1)} = 1.5$
K(1,0) =	29.0	$K_{\rm H2}^{(1,0)} = 1.3$	$K_{\rm H1}^{(1,1)} = 35.0$	$K_{H2}^{(1,1)} = 1.2$
$K_{H1}^{(2,0)} = $	34.0	$K_{H2}^{(2,0)} = 1.2$	$K_{H1}^{(2,0)} = 32.0$	$K_{H2}^{(2,0)} = 1.0$
$K_{V1}^{(0,0)} = 3$	30.0	$K_{V2}^{(0,0)} = 0.8$	K _{V1} ^(0,1) = 41.0	$K_{V2}^{(0,1)} = 0.9$
$K_{V1}^{(0,2)} = 1$	51.0	$K_{V2}^{(0,2)} = 1.2$	K _{V1} ^(1,0) = 42.0	$K_{V2}^{(1,0)} = 1.6$
K _{V1} ^(1,1) =	51.0	$K_{V2}^{(1,1)} = 1.5$	K _{V1} ^(1,2) = 42.0	$K_{V2}^{(1,2)} = 1.3$
V ^(0,0) =	100.0	$v_{SW}^{(2,0)} = 100.0$		

į

Results			
$P_{NW}^{(0,0)} = 41.00\%$	P _{NW} ^(0,1) = 66.10%	$P_{\rm NW}^{(1,0)} = 9.76\%$	P _{NW} ^(1,1) = 57.89%
$P_{SW}^{(2,0)} = 55.00\%$	$P_{SW}^{(1,0)} = 36.36\%$	$P_{SW}^{(2,1)} = 50.00\%$	$P_{SW}^{(1,1)} = 29.54\%$
6.4 Example 3.

Example 3 shown in Figure 7 is similar to problem 2 except that vehicles enter and leave at several nodes of the network. The problem is one of determining the values of $P_{NW}^{(n,m)}$ and $P_{SW}^{(n,m)}$ so that the total travel time is minimum.

The method of solving this example is same as example 2. When the vehicles are assigned to the routes, the arrival or departure of the respective vehicles at corresponding nodes are taken into account.

The solution to example 3 was obtained using the computer program in appendix III.

Example 3.

Data

 $K_{H1}^{(n,m)}, K_{H2}^{(n,m)}, K_{V1}^{(n,m)}$ and $K_{V2}^{(n,m)}$ (n = 0,1,2; m = 0,1,2) are same as example 2. $V_{NW}^{(0,0)} = 100.0$ $V_{SW}^{(1,0)} = 100.0$ $V_{NW}^{(1,2)} = -20.0$ $V_{NW}^{(2,1)} = -30.0$ $V_{SW}^{(0,1)} = -30.0$ $V_{SW}^{(1,2)} = -10.0$

Results

$$P_{NW}^{(0,0)} = 43.00\% \qquad P_{NW}^{(1,0)} = 71.92\% \qquad P_{NW}^{(0,1)} = 27.90\% \qquad P_{NW}^{(1,1)} = 58.33\%$$

$$P_{SW}^{(2,0)} = 59.00\% \qquad P_{SW}^{(1,0)} = 31.70\% \qquad P_{SW}^{(1,1)} = 59.32\% \qquad P_{SW}^{(1,1)} = 10.81\%$$

Figure 7. 2x2 Network

37

ч,

6.5 Example 4.

Pipeline problems are similar to traffic assignment problems except that fluid is treated as a continuous variable rather than a discrete or integer valued variable. The problem is one of determining the values of p(n,m) which minimize the cost of transporting fluid. The procedure of solving a 2 x 2 pipeline network, shown in Figure 7, is as follows. STEP 1: Divide the network into four stages in the same

way as the traffic problems. The stages for this example are shown in Figure 8.

- STEP 2: Assume initial values for p(n,m) to be 0.5 and assign the corresponding quantity of fluid for all the pipes, taking into consideration the amount of fluid entering and leaving each node.
- STEP 3: Starting from the 4th stage and keeping all the fluid entering into this stage constant, search for the suitable value of $_{P}(1,1)$ which will minimize the cost of transportation at the 4th stage which is given by equation (4.2). Replace the previous value of $_{P}(1,1)$ with this new value and make new assignment of fluid into network using this new value.
- STEP 4: This procedure is repeated until all the new values of p(1,0), p(0,1) and p(0,0) have been determined and the volume of fluid in the links of the network have been adjusted.

2x2 Network

STAGE # 4

STAGE # 2

stage.

Figure 9.

STEP 5: Compare these values of p(n,m) with the corresponding values of the previous iteration. If there is no significant difference the optimal solution has been obtained. If there is a significant difference make the new load assignment with the new values of p(n,m) and return to the step 3. Repeat the whole procedure until an optimal solution is obtained. The solution to example 4 was obtained using the computer program in appendix IV. Example 4.

Data

$K_{\rm H1}^{(0,0)} = 51.0$	$K_{H2}^{(0,0)} = 1.8$	$K_{\rm Hl}^{(0,1)} = 67.0$	$K_{\rm H2}^{(0,1)} = 1.9$
$K_{\rm H1}^{(1,0)} = 70.0$	$K_{H2}^{(1,0)} = 1.6$	$K_{\rm H1}^{(1,1)} = 63.0$	$K_{H2}^{(1,1)} = 1.4$
$K_{\rm H1}^{(2,0)} = 65.0$	$K_{\rm H2}^{(2,0)} = 1.2$	$\kappa_{\rm H1}^{(2,1)} = 65.0$	$K_{\rm H2}^{(2,1)} = 1.8$
^K V1 = 55.0	$K_{V2}^{(0,0)} = 1.2$	$K_{V1}^{(0,1)} = 61.0$	$K_{V2}^{(0,1)} = 1.1$
$K_{V1}^{(0,2)} = 58.0$	$K_{V2}^{(0,2)} = 1.5$	$K_{V1}^{(1,0)} = 65.0$	$K_{V2}^{(1,0)} = 1.3$
$K_{V1}^{(1,1)} = 58.0$	$K_{V2}^{(1,1)} = 1.4$	$K_{V1}^{(1,2)} = 45.0$	$K_{V2}^{(1,2)} = 1.2$
v ^(0,0) = 100.0	v ^(0,1) = 100.0	$v^{(0,2)} = 50.0$	v ^(1,1) = 100.0
v ^(2,0) = 50.0	v ^(2,1) = -50.0	v ^(2,2) = -350.0	

Results

7. SUMMARY

A number of one way traffic, two way traffic and pipeline problems have been solved by this method on IBM 1410 and 1620 computer. This method is suitable for small network problems. As the size of the network increases, the size of program reaches the capacity of the existing computer.

This method is not well suited for the complicated cases of example 3 with vehicles entering or leaving the network at more than two nodes. One reason is that the entrance or exit of the Northwest or the Southwest vehicles at any node other than the last stage, as in example 3, are dependent on the directions of each other. However, this method is applicable to pipeline problems since the question of multidirectional flow does not arise.

The success of this method lies in its simplicity. An important aspect of this method is that it is selfcorrecting and thus converges to the optimal solution if errors occur from roundoff, by performing additional iterations.

The percentage of vehicles at the node (n,m) which travels in the horizontal direction, that is p(n,m) $(n = 0, 1, \ldots, N; m = 0, 1, \ldots, M)$, is a function of number of vehicles and it will not remain the same as the number of vehicles are doubled.

8. CONCLUSION

One way or two way traffic problems can be successfully solved by this method. The program size is the limiting factor. This method is applicable for simple cases of two way traffic problems like example 2 and 3. However, this method is not applicable for two way traffic problems with vehicles entering or leaving the network at more than two nodes. The success of this method lies in its simplicity and computational efficiency. Even if the mistakes are made at a previous step, it is possible to obtain correct answer at the cost of few more iterations.

ACKNOWLEDGMENTS

The writer is deeply indebted to Dr. Frank A. Tillman, Head, Industrial Engineering Department, for his able guidance and suggestions given throughout this work.

He wishes to thank the staff members and friends of Industrial Engineering Department for the valuable aid in successful completion of this report.

REFERENCES

(1) Campbell, E. Wilson

A Mechanical Method for Assigning Traffic to Expressways., Bulletin 130, Highway Research Bd., Washington D. D., 1956.

(2) Moore, Edward G.

The Shortest Path Through a Maze., Proceeding of an International Symposium on the Theory of Switching, April, 1957.

- (3) Dantzing, George B.
 The Shortest Route Problem. Operation Research,
 5; 270-3, 1957.
- (4) Wattleworth, Joseph A. and Shuldiner, Paul W.
 Analitical Method in Transportation: Left Turn Penalties in Traffic Assignment Models., Journal of the Engineering Mechanics Division, ASCE, Vol. 89, No. EM6, December, 1963.
- (5) Snell, Funk and Blackburn

Traffic Assignment by Discrete Maximum Principle Using Constant Linear and Nonlinear Time-Volume Relationship. For Presentation at the Annual Meeting of highway Research Board, Washington D. C., January 16-20, 1967.

(6) Tsung-chang Yang and Snell, R. R. Traffic Assignment by Maximum Principle., Journal

of Highway Division, October 1966.

(7) Pontryagin, L. S., Boltyanskii, V. C., Gamkrelidze, R. V. The Mathematical Theory of Optimal Process., Interscience, Inc., New York, N. Y., 1962.

(8) Bellman, R.

Dynamic Programming., Princeton University Press, Princeton, N. J., 1961.

(9) Cantrell, H. N.

Incompressible Flow Network Calculations., Comm. Acm. 6, June 1963.

APPENDIX I

SINGLE SEARCH METHOD

In order to find the value of p(i,j) of the kth stage which will minimize the time for this stage, the following procedure is used.

- STEP 1: Keep all the vehicles entering the X^{th} stage constant and assume an initial value of $\chi_{H}^{(1,j)}$ to equal 0.0. Adjust vehicles on all the routes according to the equation (6.2) and find the total time for k^{th} stage according to the equation (6.1). Denote this time by T_0 .
- STEP 2: Increase the value of $\chi_{H}^{(i,j)}$ by 5.0, adjust vehicles and find total time in the same way as in step 1. Denote this time by T₁.
- STEP 3: Compare T_0 and T_1 . If $T_1 < T_0$, replace the value of T_0 by the value of T_1 , go to step 2 and repeat the procedure. If $T_1 \ge T_0$, go to step 4.
- STEP 4: Decrease the value of X(i,j) by 1.0, adjust vehicles and find the total time in the same way as in step 1. Denote this time by T₂.
- STEP 5: Compare T₂ and T₁. If T₂ < T₁, replace the value of T₁ by the value of T₂, go to step 4 and repeat the procedure. If T₂ > T₁ the value of p(i,j) which minimizes the time for the kth stage is given by: $p^{(i,j)} = (x_H^{(i,j)} + 1) / (x_H^{(i-1,j)} + x_V^{(i,j-1)})$

APPENDIX II

PR 115 PROGRAM FOR EXAMPLE 1.

MONEE	JCB					
NUNCE	COMT	15 MIN	UTES,10	D PAGES	5	
MONES	ASGN	MJR + 12				
MONEE	ASGN	MG0 - 16				
MONES	MODE	GOLTES	Ŧ			
MONICE	EVEO	EODIDA	1 NI	NOOI		
	EXEC	PURINA	201 00	,,NUUI	1201	DE (20) D((20)
DIMENSION		20)920	201993	(20), P4	+(20);	PD(20),P6(20)
DIMENSION	1 P7()	20),98(20), P9	(20)		
160 FORLAT(12	91919	• • • • 1 5 •	2)			
BK1 = 50 •						
BK2=60.						
BK3=66.						
BK4=75.						
BK5=56.						
BK6=66.						
PY7=71.						
BK8=80						
BK9=85						
BK10=50						
BK11-45.						
BK12-45						
0812-42.						
DK12=02+						
EK14=90.						
BK15=52•						
HK16=61.						
PK17=71.						
BK18=31.						
PK10=01.						
RK20=81.						
BK21≃5℃.						
BK22=63.						
BK23=51.						
BK24=30.						
CK1=2.8						
CK2=3•2						
CK3=1.1						
CY4=:5						
CK5=1.7						
Cr6=3.1						
CK7=2.1						
CK8=1.9						
CK9=2+6						
CK10=1.3						
CK11=2.9						
CK12=2 • 1						
CK13=1.8						
CY14=3.1						
CK15=1.2						
CK16=1.4						
CK17=3.2						
Cr18=2.6						
CK19=1.6						

	CK20=2.5 CK21=2.1 CK22=1.4 CK22=1.9 CK24=2.8	
	SMA=100. P1(1)=.5	
	P2(1)=•5 P3(1)=•5	
	P4(1) = .5 P5(1) = .5	
	P6(1)=•5 P7(1)=•5	
	P8(1)=•5 P2(1)=•5	
	IA=1	
	I C = 1	
	I D = 1 I F = 1	
	IF=1 IG=1	
1	$\Box = \Box$	
	DB=0. DC=0.	
	DD=C.	
	DF=0.	
	DH=(.	
	DI=0. M]=P1(IA)*SMA+.5	
2	SM1=M] SM2=SMA-SM1	
	M3=P2(IR)*SM1+.5 SM3=M3	
3,	SM4=SM1-SM3	
	SM8=M8	
4	SM9=SM2-SM8 M5=P3(IC)*SM3+.5	
5	SM5=M5 SM6=SM3-SM5	
,	SM7=SM5	
	SM10=M10 SM10=M10	+•5
5	SM11=(SM4+SM8)-SM10 M15=P7(IG)*SM9+.5	
	SM15=M15	

```
7 SM16=SM9-SM15
   SM22=SM16
   M12=P6(IF)*(SM6+SM10)+.5
   SM12=M12
 8 SM13=(SM6+SM10)-SM12
   SM14=SM12+SM7
   M17=|8(IH)*(SM11+SM15)+.5
   SM17=M17
 9 SM18=(SM11+SM15)-SM17
   SM23=SM18+SM22
   M19=P9(II)*(SM13+SM17)+.5
   SM19=M19
10 SM20=(SM13+SM17)-SM19
   SM21=SM14+SM19
   SM24=SM23+SM20
11 IF (II-IH) 12,12,30
12 IF (IH-IF) 13,13,33
13 IF (IF-IG) 14,14,36
14 IE (IG-IE) 15,15,39
15 IF (IE-IC) 16,16,42
16 IF (IC-ID) 17,17,45
17 IF (ID-IB) 18,18,48
18 IF (IB-IA) 19,19,51
19 IF (IA-M) 60,60,54
30 CI1=BK19*SM19+CK19*SM19**2+BK20*SM20+CK20*SM20**2
   CI2=RV21*SM21+CV21*SM21**2+RV24*SM24+CV24*SM24**2
   CI = CI1 + CI2
   IF (SM19-DI) 66,61,63
3 CH1=RK17*SM17+CK17*SM17**2+RK18*SM18+CK18*SM18**2
   CH2=PK23*SM23+CK23*SM23**2+BK20*SM20+CK20*SM20**2
   CH3=PK19*SM19+CK19*SM19**2+BK24*SM24+CK24*SM24**2
   CH4=PK21*SM21+CK21*SM21**2
   CH=CH1+CH2+CH3+CH4
   IF (SM17-DH) 76,71,73
36 CF1=RK12*SM12+CK12*SM12**2+BK13*SM13+CK13*SM13**2
   CF2=BK14*SM14+CK14*SM14**2+BK19*SM19+CK19*SM19**2
   CF3=BK20*SM20+CK20*SM20**2+BK21*SM21+CK21*SM21**2
   CF4=PK24*SM24+CK24*SM24**2
   CF=CF1+CF2+CF3+CF4
   IT (SM12-DF) 86,81,83
39 CG1=PK15*SM15+CK15*SM15**2+BK16*SM16+CK16*SM16**2
   CG2=PF22*SM22+CK22*SM22**2+PK18*SM18+CK18*SM18**2
   CG3=PK17*SM17+CK17*SM17**2+PK20*SM20+CK20*SM20**2
   CG4=BK23*SM23+CK23*SM23**2+BK19*SM19+CK19*SM19**2
   CG5=PK24*SM24+CK24*SM24**2+BK21*SM21+CK21*SM21**2
   CG=C(1+CG2+CG3+CG4+CG5
  ·IF (SM15-DG) 96,91,93
42 CE1=BK10*SM10+CK10*SM10**2+BK11*SM11+CK11*SM11**2
   CE2=RK12*SM12+CK12*SM12**2+BK18*SM18+CK18*SM18**2
```

CE2=RK12*SM12+CK12*SM12**2+BK18*SM18+CK18*SM18**2 CE3=RK13*SM13+CK13*SM13**2+BK17*SM17+CK17*SM17**2 CF4=UK14*SM14+CK14*SM14**2+BK23*SM23+CK23*SM23**2 CE5=PK20*SM20+CK20*SM20**2+BK19*SM19+CK19*SM19**2

52

```
CE=CE1+CE2+CE3+CE4+CE5+CE6
   IF (SM10-DE) 106,101,103
45 CC1=RK5*SM5+CK5*SM5**2+BK6*SM6+CK6*SM6**2
   CC2=RY7*SM7+CK7*SM7**2+RK12*SM12+CK12*SM12**2
   CC3=RF13*SM13+CK13*SM13**2+BK19*SM19+CK19*SM19**2
   CC4=BK14*SM14+CK14*SM14**2+BK20*SM20+CK20*SM20**2
   CC5=RK21*SM21+CK21*SM21**2+RK24*SM24+CK24*SM24**2
   CC=CC1+CC2+CC3+CC4+CC5
   IF (SM5-DC) 116,111,113
48 CD1=LK8*SM8+CK8*SM8**2+BK9*SM9+CK9*SM9**2
   CD2=BK15*SM15+CK15*SM15**2+BK11*SM11+CK11*SM11**2
   CD3=BK10*SM10+CK10*SM10**2+BK13*SM13+CK13*SM13**2
   CD4=BK17*SM17+CK17*SM17**2+BK12*SM12+CK12*SM12**2
   CD5=BK]4*SM]4+CK14*SM14**2+BK19*SM19+CK19*SM19**2.
   CD6=[K16*SM16+CK16*SM16**2+BK18*SM]8+CK18*SM18**2
   CD7=PK22*SM22+CK22*SM22**2+BK23*SM23+CK23*SM23**2
   CD8=PK20*SM20+CK20*SM20**2+PK21*SM21+CK21*SM21**2
   CD9=PK24*SM24+CK24*SM24**2
   CP=CP1+CD2+CD3+CD4+CD5+CD6+CD7+CD8+CD9
   IF (SM8-DD) 126,121,123
51 CB1=BK3*SM3+CK2*SM3**2+BK4*SM4+CK4*SM4**2
   CB2=BK5*SM5+CK! *SM5**2+BK6*SM6+CK6*SM6**2
   CB3=BK7*SM7+CK7*SM7**2+BK10*SM10+CK10*SM10**2
  CB4=RK12*SM12+CK12*SM12**2+BK11*SM11+CK11*SM11**2
  CB5=BK13*SM13+CK13*SM13**2+BK14*SM14+CK14*SM14**2
  CB6=RK17*SM17+CK17*SM17**2+BK19*SM19+CK19*SM19**2
  CB7=BK18*SM18+CK18*SM18**2+BK20*SM20+CK20*SM20**2
  CB8=BK21*SM21+CK21*SM21**2+BK23*SM23+CK23*SM23**2
  CR9=RK24*SM24+CK24*SM24**2
  CB=CB1+CB2+CB3+CB4+CB5+CB6+CB7+CB8+CB9
  IF (SM3-DR) 136,131,133
54 CA1=PK1*SM1+CK1*SM1**2+BK2*SM2+CK2*SM2**2
  CA2=BK3*SM3+CK3*SM3**2+BK4*SM4+CK4*SM4**2
  CA3=RK5*SM5+CK5*SM5**2+BK6*SM6+CK6*SM6**2
  CA4=BK7*SM7+CK7*SM7**2+BK8*SM8+CK8*SM8**2
  CA5=BK9*SM9+CK9*SM9**2+BK10*SM10+CK10*SM10**2
  CA6=BK1]*SM11+CK11*SM11**2+BK12*SM12+CK12*SM12**2
  CA7=BK13*SM13+CK13*SM13**2+BK14*SM14+CK14*SM14**2
```

CA8=RK15*SM15+CK15*SM15**2+BK16*SM16+CK16*SM16**2 CA9=RK17*SM17+CK17*SM17**2+BK18*SM18+CK18*SM18**2 CA10=RK19*SM19+CK19*SM19**2+BK20*SM20+CK20*SM20**2 CA11=RK21*SM21+CK21*SM21**2+RK22*SM22+CK22*SM22**2 CA12=BK23*SM23+CK23*SM23**2+BK24*SM24+CK24*SM24**2 CA=CA1+CA2+CA3+CA4+CA5+CA6+CA7+CA8+CA9+CA10+CA11+CA12

CE6=BK21*SM21+CK21*SM21**2+BK24*SM24+CK24*SM24**2

```
60 II=II+1
SM19=0.
GC TC 10
61 CCI1=CI
```

IF (SM1-DA) 146,141,143

```
62 SM19=SM19+5.
```

GC TC 10

```
63 CCI2=CI
   IF (CCI1-CCI2) 65,65,64
64 CCI1=CCI2
   GC TC 62
65 SM19=SM19-1.
   DI=SM19+5.
   GC TC 10
66 CCI3=CI
   IF (CCI2-CCI3) 69,69,67
67 CCI2=CCI3
   GC TC 65
69 P9(II)=(SM19+1.)/(SM13+SM17)
   GC TC 70
70 IH=IH+1
   SM17=0.
   GO TO 9
71 (CH1=CH
72 SM17=SM17+5.
   GO TO 9
73 CCH2=CH
   IF (CCH1-CCH2) 75,75,74
74 CCH1=CCH2
   GO TO 72
75 SM17=SM17-1.
   DH=SM17+5.
   GC TC 9
76 CCH3=CH
   IF (CCH2-CCH3) 79,79,77
77 CCH2=CCH3
   GC TC 75
79 P8(IH)=(SM17+1.)/(SM11+SM15)
   GC TC 80
80 IF=IF+1
   SM12=0.
   GO TO 8
81 CCF1=CF
82 SM12=SM12+5.
   GC TC 8
P3 CCF2=CF
   IF (CCF1-CCF2) 85,85,84
84 CCF1=CCF2
   GO TO 82
85 SM12=SM12-1.
   DF=SM12+5.
   GO TO 8
86 CCF%=CF
   IF (CCF2-CCF3) 89,89,87
87 CCF2=CCF3
   GO TO 85
89 P6(IF)=(SM12+1.)/(SM6+SM10)
   GC TC 90
90 IG=IG+1
   SM15=0.
   GO TO 7
```

91	CCG1=CG
92	SM15=SM15+5.
	GO TO 7
02	CCG2=CG
	IF (CCG1-CCG2) 95,95,94
94	CCG1=CCG2
	GC TC 92
05	SM15=SM15-1
	DG=SN15+5
	GO TO 7
06	CC63=C6
70	IE (CCG2=CCG3) 09.99.97
07	C(62 - C(63))
71	
00	D7/16/=/SM15+1 //SM0
44	$\frac{100}{100}$
100	15-15-100, 15-15-1
100	
101	
102	
102	60 TO 6
102	
100	TE (CCE1-CCE2) 105-105-104
104	CCE1-CCE2 10091009104
Trient	$\frac{1}{100} \frac{1}{100}$
105	SM10-SM10-1
1)	DE-EWICTE
	60 TO 4
106	
100	
	TE (CCE2=CCE3)100,100,107
107	IF (CCE2-CCE3)109,109,107
107	IF (CCE2-CCE3)109,109,107 CCE2=CCE3
107	IF (CCE2-CCE3)109,109,107 CCE2=CCE3 GO TO 105 D5/LE2=CCEM10+1
107 109	<pre>IF (CCE2-CCE3)109,109,107 CCE2=CCE3 GO TO 105 P5(IE)=(SM10+1.)/(SM8+SM4) GO TO 110</pre>
107 109	IF (CCE2-CCE3)109,109,107 CCE2=CCE3 GO TO 105 P5(IE)=(SM10+1.)/(SM8+SM4) GO TO 110 IC=IC+1
107 109 110	<pre>IF (CCE2-CCE3)109,109,107 CCE2=CCE3 GO TO 105 P5(IE)=(SM10+1.)/(SM8+SM4) GO TO 110 IC=IC+1 SM5=0.</pre>
107 109 110	IF (CCE2-CCE3)109,109,107 CCE2=CCE3 GO TO 105 P5(IE)=(SM10+1.)/(SM8+SM4) GO TO 110 IC=IC+1 SM5=0. GO TO 5
107 109 110	<pre>IF (CCE2-CCE3)109,109,107 CCE2=CCE3 GO TO 105 P5(IE)=(SM10+1.)/(SM8+SM4) GO TO 110 IC=IC+1 SM5=0. GO TO 5 CCC1-CC</pre>
107 109 110	<pre>IF (CCE2-CCE3)109,109,107 CCE2=CCE3 GO TO 105 P5(IE)=(SM10+1.)/(SM8+SM4) GO TO 110 IC=IC+1 SM5=0. GO TO 5 CCC1=CC SM5=CM5+5</pre>
107 109 110 111 112	<pre>IF (CCE2-CCE3)109,109,107 CCE2=CCE3 GO TO 105 P5(IE)=(SM10+1.)/(SM8+SM4) GO TO 110 IC=IC+1 SM5=0. GO TO 5 CCC1=CC SM5=SM5+5. GO TO 5</pre>
107 109 110 111 112	<pre>IF (CCE2-CCE3)109,109,107 CCE2=CCE3 GO TO 105 P5(IE)=(SM10+1.)/(SM8+SM4) GO TO 110 IC=IC+1 SM5=0. GO TO 5 CCC1=CC SM5=SM5+5. GO TO 5 CCC2=CC</pre>
107 109 110 111 112 113	<pre>IF (CCE2-CCE3)109,109,107 CCE2=CCE3 GO TO 105 P5(IE)=(SM10+1.)/(SM8+SM4) GO TO 110 IC=IC+1 SM5=0. GO TO 5 CCC1=CC SM5=SM5+5. GO TO 5 CCC2=CC LF (LCC1=CCC2) 115.115.114</pre>
107 109 110 111 112 113	<pre>IF (CCE2=CCE3)109,109,107 CCE2=CCE3 GO TO 105 P5(IE)=(SM10+1.)/(SM8+SM4) GO TO 110 IC=IC+1 SM5=0. GO TO 5 CCC1=CC SM5=SM5+5. GO TO 5 CCC2=CC IF ((CC1=CCC2) 115,115,114 CCC1=CCC2</pre>
107 109 110 111 112 113 114	<pre>IF (CCE2-CCE3)109,109,107 CCE2=CCE3 GO TO 105 P5(IE)=(SM10+1.)/(SM8+SM4) GO TO 110 IC=IC+1 SM5=0. GO TO 5 CCC1=CC SM5=SM5+5. GO TO 5 CCC2=CC IF ((CC1-CCC2) 115,115,114 CCC1=CCC2 GO TO 112</pre>
107 109 110 111 112 113 114	<pre>IF (CCE2=CCE3)109,109,107 CCE2=CCE3 GO TO 105 P5(IE)=(SM10+1.)/(SM8+SM4) GO TO 110 IC=IC+1 SM5=0. GO TO 5 CCC1=CC SM5=SM5+5. GO TO 5 CCC2=CC IF ((CC1=CCC2) 115,115,114 CCC1=CCC2 GO TO 112 SM5=SM5=1.</pre>
107 109 110 111 112 113 114 115	<pre>IF (CCE2-CCE3)109,109,107 CCE2=CCE3 GO TO 105 P5(IE)=(SM10+1.)/(SM8+SM4) GO TO 110 IC=IC+1 SM5=0. GO TO 5 CCC1=CC SM5=SM5+5. GO TO 5 CCC2=CC IF ((CC1-CCC2) 115,115,114 CCC1=CC2 GO TO 112 SM5=SM5+1. DC=SM5+5.</pre>
107 109 110 111 112 113 114 115	<pre>IF (CCE2-CCE3)109,109,107 CCE2=CCE3 GO TO 105 P5(IE)=(SM10+1.)/(SM8+SM4) GO TO 110 IC=IC+1 SM5=0. GO TO 5 CCC1=CC SM5=SM5+5. GO TO 5 CCC2=CC IF ((CC1-CCC2) 115,115,114 CCC1=CCC2 GO TO 112 SM5=SM5+1. DC=SM5+5. GO TO 5</pre>
107 109 110 111 112 113 114 115	<pre>IF (CCE2-CCE3)109,109,107 CCE2=CCE3 GO TO 105 P5(IE)=(SM10+1.)/(SM8+SM4) GO TO 110 IC=IC+1 SM5=0. GO TO 5 CCC1=CC SM5=SM5+5. GO TO 5 CCC2=CC IF ((CC1-CCC2) 115,115,114 CCC1=CCC2 GO TO 112 SM5=SM5+1. DC=SM5+5. GO TO 5 CCC3=CC</pre>
107 109 110 111 112 113 114 115	<pre>IF (CCE2-CCE3)109,109,107 CCE2=CCE3 GO TO 105 P5(IE)=(SM10+1.)/(SM8+SM4) GO TO 110 IC=IC+1 SM5=0. GO TO 5 CCC1=CC SM5=SM5+5. GO TO 5 CCC2=CC IF ((CC1-CCC2) 115,115,114 CCC1=CCC2 GO TO 112 SM5=SM5+1. DC=SM5+5. GO TO 5 CCC3=CC IF (CCC2-CCC3) 119,119,117</pre>
107 109 110 111 112 113 114 115 116	<pre>IF (CCE2-CCE3)109,109,107 CCE2=CCE3 GO TO 105 P5(IE)=(SM10+1.)/(SM8+SM4) GO TO 110 IC=IC+1 SM5=0. GO TO 5 CCC1=CC SM5=SM5+5. GO TO 5 CCC2=CC IF ((CC1-CCC2) 115,115,114 CCC1=CCC2 GO TO 112 SM5=SM5+1. DC=SM5+5. GO TC 5 CCC3=CC IF (CCC2-CCC3) 119,119,117</pre>
107 109 110 111 112 113 114 115 116 117	<pre>IF (CCE2-CCE3)109,109,107 CCE2=CCE3 GO TO 105 P5(IE)=(SM10+1.)/(SM8+SM4) GO TO 110 IC=IC+1 SM5=0. GO TO 5 CCC1=CC SM5=SM5+5. GO TO 5 CCC2=CC IF ((CC1-CCC2) 115,115,114 CCC1=CCC2 GO TO 112 SM5=SM5+1. DC=SM5+5. GO TO 5 CCC3=CC IF (CCC2-CCC3) 119,119,117 CCC2=CCC3</pre>

119	P3(IC) = (SM5+1.)/SM3
	GC TC 120
120	$I \cap = I \cap + 1$
de f.	SM8=0-
101	
171	
155	SM8=SM8+5.
	GO TO 4
123	CCD2=CD
	IF (CCD1-CCD2) 125,125,124
124	CCD1=CCD2
	GO TO 122
125	SM8=SM8-1.
	DD=SM8+5
120	
120	
	IF (((D)=((D3) 129,129,127
127	CCD2=CCD3
	GC TC 125
129	P4(ID) = (SM8+1.)/SM2
	GC TC 130
130	IB=IB+1
	SM3=(.
	GC TO 3
121	CCB1-CB
122	CM2-CM2+5
1.57	
133	
	IF (CCB1-CCB2) 135,135,134
134	CCB1=CCB2
	GC TC 132
135	SM3=SM3-1.
	DB=SM3+5.
	GC TC 3
136	CCB3=CB
- 1. · · ·	IE (CCB2-CCB3) 139.139.137
127	CCB2-CCB3
1	GO TO 125
120	
1.4.4	P2(1F)=(SM3+1•)/SM1
140	$\uparrow \land = \uparrow \land + \uparrow$
	SM1=0.
	GO TO 2
141	CCAI=CA
147	SM1=SM1+5.
	GO TO 2
142	CCA2=CA
	IF (CCA1-CCA2) 145,145,144
144	CCA1 = CCA2
	60 TO 142
1/. 5	SM1-CM1_1
14.)	
	11A-0111-70

```
GO TO 2
146 CCA3=CA
   IF (CCA2-CCA3) 149,149,147
147 CCA2=CCA3
   GO TO 145
149 P1(IA)=(SM1+1.)/SMA
   GO TO 150
150 WRITE(3,160)M,P1(IA),P2(IB),P3(IC),P4(ID),P5(IE),P6(IE),P7(IG),
  1P8(IH), P9(II), CCA2
   M = M + 1
171 IF (P1(IA)-P1(IA-1)) 1,172,1
172 IF (P2(IB)-P2(IB-1)) 1,173,1
173 IF (P3(IC)-P3(IC-1)) 1,174,1
174 IF (P4(ID)-P4(ID-1)) 1,175,1
175 IF (P5(IE)-P5(IE-1)) 1,176,1
176 IF (P6(IF)-P6(IF-1)) 1,177,1
177 IF (P7(IG)-P7(IG-1)) 1,178,1
178 IF (P8(IH)-P8(IH-1)) 3,179,1
179 IF (P9(II)-P9(II-1)) 1,180,1
180 STOP
   END
   MONSS.
             EXEQ LINKLOAD
             CALL NCO1
  MON$$
             EXEQ NC01,MJB
             JCB ACT$$ D. K. PAI
  MON$$
                                          IE
                                                     0313C40409
```

APPENDIX III

PR 115 PROGRAM FOR EXAMPLE 2 AND 3.

```
MONS5
              JOB.
              COMT 15 MINUTES, 10 PAGES
   MONSS
   MONSS
              ASGN MJR, 12
   MONSS
              ASGN MGC.16
   MONSE
              MODE GO, TEST
              EXEQ FORTRAN,,,,,,,NCO1
   MONSS
    DIMENSICNPR1(40), PR2(40), PR3(40), PR4(40), PB1(40), PB2(40), PB3(40),
   1PB4(40)
200 FORMAT(12,8F9.5,F15.3)
420 FORMAT (7F8.4)
    READ 420, RB11, RB12, RB2, RB8, RB69, RB10, RB1
    RFAD 420, RR1, RR2, RR3, RR4, RR56, RR8, RR11
    CK1=1.1
    C<sup>2</sup>2=.8
    CY3=1.5
    CK4=1.2
    CK5=.9
    CK6=1.3
    CK7=1.2
    CK8=*•6
    CK9=1.5
    CK10=1.3
    CK11=1.2
    CK12=1.0
    BK1=40.
    BK2=30.
    BK3=32 .
    RK4=51.
    BK5=41.
    BK6=29.
    BK7:35.
    BK8=42.
    BK9=51.
    BK10=42.
    BK11=34.
    BK12=32.
    I = I
    J=]
    K = ]
    [=]
    II = 1
    JJ=1
    KK = 1
    LL=1
    M = 1
    SMB=106.
    SMR=100.
    PB1(1)=.5
    PP2(1)=.5
    PP3(1)=.5
    PB4(1)=.5
    PR1(1)=.5
```

	PR2(1)=.5
	PP3(*) = .5
	PR4(1)=.5
100	<u>0</u> P.7=0.
	DB6=0.
	DB11=0.
	DB12=0.
	DR7=0.
	DR6=0.
	DR3=0.
	DR1=0.
	MR1=PR1(I)*SMR+.5
	SR1=MR1
٦	SP2=SMR-SP1
	VB11=PB1(II)*SNB+.5
	SB11=MB11
2	SP8=SM8-SB11
,	MR3=PR3(K)*(SR1+RR1)+.5
	SR3=MR3
3	SR5=SR1+RR1-SR3
	SR4=SR3+RR3
	MB12=PB3(KK)*(SB11+RB11)+.5
	SB12=MB12
4	SB9=SB11+RB11-SB12
	SB10=SB12+RB12
	MR6=PR2(J)*(SR2+RR2)+•5
	SP6=MP6
5	SR8=SR2+RR2-SR6
	SP11=SR8+PR8
	MR6=PR2(JJ)*(SB8+RB8)+.5
	SB6=MB6
6	SB2=SB8+RB8-SB6
	SB1=SB2+RB2
	MR7=PR4(L)*(SR5+SR6+RR56)+.5
	SP7=MR7
7	SR9=SR5+SR6+RR56-SR7
	SP10=SR7+SP4+RR4
	SR12=SR9+SR1J+RR11
	MP/=PP4(LL)*(SB9+SP6+RB69)+•5
~	SE/=MR/
8	SR5=* 86+SR9+RB69-SR7
	SR4=5P7+SB10+RB10
10	SH3=CD1+CD1
10	SM2-603+502
	SM7-CR7+CD7
	SM11-5011-5011
	CM12-CR12±CR12
1 1	TE (11-1) 12-12-20
12	TE (1-11) 13,12,22
12	IF (11-1) 14.14.26
14	$I = (1 - \gamma K) 15 \cdot 15 \cdot 29$
15	IF (KY-Y) 16,16,22

```
16 IF (K-II) 17,17,35
17 IF (II-I) 18,18,38
18 IF (I-M) 50,50,41
20 CBA1=BK7*SM7+CY7*SM7**2+BK3*SM3+CK3*SM3**2
   CBA2=BK4*(SR4+5B4)+CK4*(SR4**2+SB4**2)
   CBA3=BK5*(SR5+SB5)+CK5*(SR5**2+SB5**2)
   CBA=CBA1+CBA2+CBA3
   IF (SR7-DR7) 56.51,53
23 CRA1=PK7*SM7+CK7*SM7**2+BK12*SM12+CK12*SM12**2
   CPA2=PK9*(SP9+SP9)+CK9*(SR9**2+SB9**2)
   CRA3=BK10*(SR10+SR10)+CK10*(SR10**2+SR10**2)
   CRA = CRA1 + CRA2 + CRA3
   IF (SR7-DR7) 66.61.63
26 CBB1=RK6*SM6+CK6*SM6**2+BK7*SM7+CK7*SM7**2
   CBB2=EK1*SM1+CK1*SM]**2+BK3*SM3+CK3*SM3**2
   CBB3=BK2*(SR2+SB2)+CK2*(SR2**2+SB2**2)
   CBB4=BK5*(SR5+SB5)+CK5*(SR5**2+SB5**2)
   CBB5=BK4*(SR4+SB4)+CK4*(SR4**2+SB4**2)
   CBB=CPB1+CBB2+CBB3+CBB4+CBB5
   IF (SR6-DR6) 76,71,73
29 CRB1=RY6*SM6+CK6*SM6**2+RK7*SM7+CK7*SM7**2
   CPR2=RK11*SM11+CK11*SM11**2+RK12*SM12+CK12*SM12**2
   CPB3=BK8*(SR8+SB8)+CK8*(SR8**2+SB8**2)
   CRP4=PK9*(SR9+SB9)+CK9*(SR9**2+SB9**2)
   CPP5=BK10*(SP10+SB10)+CK10*(SR10**2+SB10**2)
   CPB=CRB1+CRB2+CRB3+CRB4+CRB5
   IF (SR6-DR6) 86,81,83
32 CBC1=RK12*SM12+CK12*SM12**2+BK7*SM7+CK7*SM7**2
   CBC2=BK3*SM3+CK3*SM3**2+BK9*(SR9+SB9)+CK9*(SR9**2+SB9**2)
   CBC3=PK10*(SR10+SB10)+CK10*(SR10**2+SB10**2)
   CPC4+PV4*(SR4+SB4)+CK4*(SR4**2+SB4**2)
   CBC5=BK5*(SR5+SB5)+CK5*(SR5**2+SB5**2)
   CPC=CRC1+CRC2+CRC3+CPC4+CRC5
   IF (CR12-DR12) 96,91,93
25 CRC1=PK12*SM12+CK12*SM12**2+BK7*SM7+CK7*SM7**2
   CPC2=PF3*SM3+CF3*SM3**2+BK9*(SR9+SB9)+CK9*(SR9**2+SB9**2)
   CRC3=BK10*(SR10+SB10)+CK10*(SR10**2+SB10**2)
   CRC4=PK4*(SR4+SB4)+CK4*(SR4**2+SB4**2)
   CRC5=RK5*(SR5+SB5)+CK5*(SR5**2+SB5**2)
   CPC=CRC1+CRC2+CRC3+CRC4+CRC5
   IF (SR3-DR3) 106+101,103
38 CBD?=BK1*SM1+CK1*SM1**2+BK3*SM3+CK3*SM3**2
  CBD2=BK6*SM6+CF6*SM6**2+BK7*SM7+CK7*SM7**2
  CBD3=EK11*SM11+CK11*SM11**2+BK12*SM12+CK12*SM12**2
   CBD4=BK2*(SR2+SB2)+CK2*(SR2**2+SB2**2)+BK5*(SR5+SB5)
  CBD5=CK5*(SR5**2+SB5**2)+BK4*(SR4+SB4)+CK4*(SR4**2+SB4**2)
  CBD6=PK8*(SP2+SB8)+CK8*(SR8**2+SB8**2)+BK9*(SR9+SB9)
   CBD7=CK9*(SP9**2+SB9**2)+BK10*(SR10+SB10)+CK10*(SR10**2+SB10**2)
   CBD=CBD]+CBD2+CBD3+CBD4+CBD5+CBD6+CBD7
   JE (CP11-DR11) 116.111.13
41 CRD1=BK1*SM1+CK1*SM1**2+BK3*SM3+CK3*SM3**2
   CRD2=BK6*SM6+CK6*SM6**2+BK7*SM7+CK7*SM7**2
```

CRD3=BK11*SM11+CK11*SM11**2+BK12*SM12+CK12*SM12**2 CRD4=PK2*(SR2+SB2)+CK2*(SR2**2+SB2**2)+BK5*(SR5+SB5) CRD5=CK5*(SR5**2+SB5**2)+BK4*(SR4+SB4)+CK4*(SR4**2+SB4**2) CRD6=BK8*(SR8+SB8)+CK8*(SR8**2+SB8**2)+BK9*(SR9+SB9) CRD7=CK9*(SR9**2+SB9**2)+BK10*(SR10+SB10)+CK10*(SR10**2+SB10**2) CRD=CRD1+CRD2+CRD3+CRD4+CRD5+CRD6+CRD7 IF (SR1-DR1) 126,121,123 50 LL=LL+1 SR7=C. 60 TL 8 51 CCPAI=CBA 52 SP7=SP7+5. 60 TO 8 53 CCBA2=CBA IF (CCBA1-CCBA2) 55,55,54 54 CCBA1=CCBA2 GO TO 52 55 SB7=SB7-1. DB7=SB7+5. GO TO 8 56 CCE/.3=CBA IF (CCBA2-CCBA1) 59,59,57 57 CCBA2=CCBA3 GO TO 55 59 PR4(11)=(SR7+1.)/(SR6+SR9) GO TO 60 60 L=L+1 SR7=0. GO TO 7 61 CCRA1=CRA 62 SP7=SR7+5. GC TC 7 63 CCRA2=CRA IF (CCPA1-CCRA2) 65,65,64 64 CCRA1 = CCRA260 TO 62 65 SP7=SP7-1. DR7=SR7+5. 60 TO 7 66 CCPA3=CRA IF (CCRA2-CCRA3) 69,69,67 67 CCRA2=CCPA3 GC TO 65 69 PP4(L)=(SR7+1.)/(SR5+SR6) GC TC 70 70 JJ=JJ+1 SP6=0. GC TC 6 71 CORRIECER 72 SP6=SR6+5. GO TO 6 73 CCBB2=CBB

IF (CCRB1-CCPB2) 75,75,74 74 CORE1=COBR2 60 TO 72 75 SB6=SB6-1. DB6=SB6+5. GC TC 6 76 CCBB3=CBB IF (CCBB2-CCBB3) 79,79,77 77 CCRR2=CCBR3 GO TO 75 79 PB2(JJ)=(SB6+1.)/SB8 60 TO 80 80 l=J+1 SP6=0. GO TO 5 81 CCRB1=CRB 82 SP6=SR6+5. GO TO 5 83 CCRB2=CRB IF (CCRB1-CCRB2) 85,85,84 84 CCPB1=CCRB2 60 TO 82 85 SR6=SR6-1. DRA=SPA+5. 60 TO 5 86 CCPR3=CPR IF (CCPR2-CCRB3) 89,89,87 87 CCRB2=CCRB3 GO TO 85 89 PP2(,)=(SR6+1.)/SR2 GO TO 90 90 KK=KK+1 SB12=0. GO TO 4 OI COPCIECRO 02 SR12=SP12+5. GO TO 4 02 CCRC2=CRC IF (CCBC1-CCBC2) 95,95,94 94 CCBC1=CCBC2 GO TO 92 95 SB12=SB12-1. DB12=SB12+5. 60 TO 4 96 CCEC3=CBC IF (CCBC2-CCBC3) 99.99.97

- 97 CCBC2=CCBC3 60 TO 95
- 99 PR3(KK)=(SP12+1.)/SB11 -50 TO 100

```
100 K=K+1
SP3=0.
```

	17 Kr. 1 Kr. 2
101	CCBC1=CRC
102	CD2-CD2+5
1. 6	3 - 3 - 3 R 3 + 2 •
	60 10 4
103	CCRC2=CRC
	IF (CCRC1-CCRC2) 105,105,104
104	CCRC1=CCRC2
10.	60 TO 102
105	SR3=SR3=1.
	DP3=SR3+5.
	GO TO 3
106	CCRC3=CRC
	IE (CCRC2-CCRC3) 109.109.107
107	
1.1	
100	$bbs(k) = (2bs+1) \cdot (2k1)$
	GC TC 110
110	I I = I I + I .
	SB11=0.
	60 TO 2
1 1 1	CCPD1-CPD
111	
112	5511=55J1+ 2 •
	GO TO Z
113	CCED2=CBD
	IF (CCPD1-CCBD2) 115,115,114
114	CCRD1=CCRD2
	GO TO 112
115	SB11=SB11-1.
· <u> </u>	DD11~CD11+5
110	CCBD3=CBD
	IF (CCBD2-CCBD3) 119,119,117
117	CCBD2=CCBD3
	GO TO 115
110	DD1(IT)=(SD11+1.)/SMB
	GO TO 120
120	$T = T \pm 1$
	CD1-0
	60 10 1
121	CCRDI=CRD
122	SR1=SR1+5.
	GO TO 1
123	CCRD2=CRD
	IF (CCRD1-CCRD2) 125,125,124
124	CCPD1=CCPD2
11	CO TO 122
120	
175	
	D71=SR1+5.
	GO TO]
126	CCBD3=CBD
	IF (CCPD2-CCPD3) 129,129,127
127	CCPDC=CCPD3

```
GO TO 125
129 PP1(I)=(SR1+1.)/SMR
   60 10 130
130 WRITE(3,200)M, FR1(I), PR2(J), PR3(K), PR4(L), PB1(II), PB2(JJ), PB3(KK)
  1.PB4(L1),CCRD2
   M = M + 1
   GC TC 140
140 IF (PR1(I)-PR1(I-1)) 300,141,300
141 IF (PR2(J)-PR2(J-1)) 300,142,300
142 IF (PR3(K)-PR3(K-1)) 300,143,300
143 IF (PR4(L)-PR4(L-1)) 300,144,300
144 IF (PP1(IJ)-PB1(II-1)) 300,145,300
145 JF (PP2(JJ)-PP2(JJ-1)) 300,146,300.
146 IF (PP3(KK)-PB3(KK-1)) 300,147,300
147 JF (PP4(LL)-PP4(LL-1)) 300,150.300
150 STOP
    END
   MONSS
             EXEQ LINKLOAD
             CALL NCO1
   MONSS
             EXEQ NC01,MJB
   MON55
             JOB ACTSS D. K. PAI
                                             ΙE
                                                       0313C40409
```

APPENDIX IV

FORGO PROGRAM FOR EXAMPLE 4.

C	С.	PIPELINE PROBLEM	
		DIMENSION P1(20),P:	2(20),P3(20),P4(20)
		R1=100.	
		R2=0.	
		R3=50.	
		R4=0.	
		R56-104	
		R 90- 50	
		R8=5U•	
		$R_{1} = -50$	
		CK1=1.8	
		CK2=1.2	,
		CK3=1.9	
		CK4=1.5	
		CK5=1.1	
		CK6=1.6	
		CK7=1.4	
		CK9=1•4	
		CK10=1.2	
		CK11=1.2	
		CK12=1.8	
		BK1=51.	
		BK2=55.	
		BK3=67.	
		BK4=58.	
		BK5=61.	
		BX6=70-	
		BK7=63-	
		BK8-45	
		DKO-50	
		BK10=45.	
		BK11=65•	
		BK12=65.	
		1 1 = 1	
] =]	
		J=1	
		K = 1	
		1 = 1	
		P1(1)=(-5	
		$P_2(1) = (1, 5)$	
		P4(1)=0.5	
	10	D1=.05	
		D2=.05	
		D3=.05	
		D4=.05	
	1	5MA=101.	
		S*1=P1(I)*100-	
		SM2=SMA-SM1	
	2	SM2=D3/V1#/SM1+D11	
		SM5-SM1+D1-SM2	
		SMA-CM2+D2	
	-		
	- 3	5M6=P2(J)*(SM2+R2)	

```
SM8=SM2+R2-SM6
  SM11 = SM8 + R8
4 SM7=P4(L)*(SM5+SM6+R56)
  SM9 = (SM5 + SM6 + R56) - SM7
  SM10 = SM7 + SM4 + R4
  SM12=SM9+SM11+R11
5 IF (L-J) 1,6,11
6 IF (J-K) 1,7,13
7 IF (X-I) 1,8,15
8 IF (I-II) 1.20,17
11 CO1=RK7*SM7+CK7*SM7**2+BK9*SM9+CK9*SM9**2
  CO2=PK10*SM10+CK10*SM10**2+PK12*SM12+CK12*SM12**2
  CA=C01+C02
  IF (P4(L)-D1) 26,21,23
13 CP1=BK6*SM6+CK6*SM6**2+BK8*SM8+CK8*SM8**2
   CP2=BK11*SM11+CK11*SM11**2+BK9*SM9+CK9*SM9**2
   CP3=BK7*SM7+CK7*SM7**2+BK10*SM10+CK10*SM10**2
  CP4=BK12*SM12+CK12*SM12**2
  CB=CP1+CP2+CP3+CP4
  IF (P2(J)-D2) 46,41,43
15 CQ1=RK3*SM3+CK3*SM3**2+BK4*SM4+CK4*SM4**2
  CQ2=BK5*SM5+CK5*SM5**2+BK7*SM7+CK7*SM7**2
   CQ3=PK9*SM9+CK9*SM9**2+BK10*SM10+CK10*SM10**2
  CO4=BK12*SM12+CK12*SM12**2
  CC = CQ1 + CQ2 + CQ3 + CQ4
  IF (P3(K)-D3) 66,61,63
17 CR1=BK1*SM1+CK1*SM1**2+BK2*SM2+CK2*SM2**2
   CR2=BK3*SM3+CK3*SM3**2+BK4*SM4+CK4*SM4**2
   CR3=BK5*SM5+CK5*SM5**2+BK6*SM6+CK6*SM6**2
   CR4=PK7*SM7+CK7*SM7**2+BK8*SM8+CK8*SM8**2
   CR5=BK9*SM9+CK9*SM9**2+BK10*SM10+CK10*SM10**2
   CR6=BK11*SM11+CK11*SM11**2+BK12*SM12+CK12*SM12**2
   CD=CR1+CR2+CR3+CR4+CR5+CR6
  IF (P1(I)-D4) 86,81,83
20 L=L+1
  P4(L)=.05
  GC TC 4
21 CA1=CA
22 P4(L)=P4(L)+.05
  .GO TO 4
23 CA2=(A
   IF (CA1-CA2) 25,25,24
24 CA1=CA2
  GO TO 22
25 P4(L)=P4(L)-.01
   D1=D1+5.
   60 10 4
26 CA3=CA
   IF (CA2-CA3) 28,28,27
27 CA2=CA3
  GC TC 25
```

```
28 P4(L) = P4(L) + .01
```

69.

	GC TC 40
40	J = J + 1
	$P_{2}(J) = .05$
	GC TC 3
41	CPJ = CP
42	P2(J) = P2(J) + .05
	GC TC 3
43	CR2=CR
	IF(CP1-CB2) 45,45,44
44	CB1=CB2
	GC TC 42
45	P2(J) = P2(J)01
	D2=D2+5.
	GC TC 3
46	CR3=CR
	IF (CB2-CB3) 48,48.47
47	CB2=(B3
	GO TO 45
48	P2(J) = P2(J) + 01
	GC TC 60
60	K = K + 1
	P3(K) = .05
	GC TO 2
61	
62	$P_{3}(K) = P_{3}(K) + .05$
	GO TO 2
63	
	IF (CC1-CC2) 65+65+64
64	
15	
02	
	$P_2(X) = P_2(X) = 0 $
	D3=D3+5.
66	D3=D3+5. 60 T0 2 CC3=CC
66	$D_3 = D_3 + 5$. $G_2 = C_2 = C_3 + 68.68.67$
65	D3=D3+5. G0 T0 2 CC3=CC IF (CC2-CC3) 68.68.67 CC2=CC3
6.6 6.7	$P_{0}(x) = P_{0}(x) - 01$ $D_{3} = D_{3} + 5 \cdot 60$ $F_{0}(x) = C_{0}(x) - 01$ $C_{0}(x) = C_{0}(x) - 0$
66 67 68	$P_{0}(X) = P_{0}(X) + 01$ $D_{3} = D_{3} + 5 \cdot 60$ $F_{0}(X) = P_{0}(X) + 01$ $P_{0}(X) = P_{0}(X) + 01$ $P_{0}(X) = P_{0}(X) + 01$
65 67 68	$P_{0}(K) = P_{0}(K) + 01$ $D_{3} = D_{3} + 5 \cdot 60$ $G_{0} = T_{0} - 2$ $C_{0}^{3} = C_{0}$ $IF_{0}(C_{0}^{2} - C_{0}^{3}) - 68 \cdot 68 \cdot 67$ $C_{0}^{2} = C_{0}^{3}$ $G_{0} = T_{0} - 65$ $P_{0}(K) = P_{3}(K) + 01$ $G_{0} = T_{0} - 80$
66 67 68 80	<pre>Po(K)=Po(K)=.01 D3=D3+5. G0 T0 2 CC3=CC IF (CC2-CC3) 68.68.67 CC2=CC3 G0 T0 65 P2(K)=P3(K)+.01 C0 T0 80 I=I+1</pre>
65 67 68 80	$P_{0}(X) = P_{0}(X) - 01$ $D_{3} = D_{3} + 5 \cdot 60$ $C_{3} = CC$ $IF (C_{2} - C_{3}) - 68 \cdot 68 \cdot 67$ $C_{2} = C_{3}$ $G_{0} = T_{0} \cdot 65$ $P_{2}(X) = P_{3}(X) + 01$ $C_{0} = T_{0} \cdot 80$ $I = I + 1$ $P_{1}(I) = 05$
66 67 68 80	<pre>Po(K)=Po(K)=.01 D3=D3+5. GO TO 2 CC3=CC IF (CC2-CC3) 68.68.67 CC2=CC3 GO TO 65 P2(K)=P3(K)+.01 C2 TO 80 I=I+1 P1(I)=.05 GO TO 1</pre>
66 67 68 80	<pre>Po(K)=Po(K)=.01 D3=D3+5. GO TO 2 CC3=CC IF (CC2-CC3) 68.68.67 CC2=CC3 GO TO 65 P2(K)=P3(K)+.01 CO TO 80 I=I+1 P1(I)=.05 GO TO 1 CO1=CD</pre>
65 67 68 80 81 82	<pre>Po(K)=Po(K)=.01 D3=D3+5. GC TC 2 CC3=CC IF (CC2-CC3) 68.68.67 CC2=CC3 GC TC 65 P2(K)=P3(K)+.01 CC TC 80 I=I+1 P1(I)=.05 GC TC 1 CC1=CD P1(I)=P1(I)+.05</pre>
66 67 68 80 81 82	<pre>Po(K)=Po(K)=.01 D3=D3+5. GO TO 2 CC3=CC IF (CC2-CC3) 68.68.67 CC2=CC3 GO TO 65 P2(K)=P3(K)+.01 CO1=CD 80 I=I+1 P1(I)=.05 GO TO 1 CO1=CD P1(I)=P1(I)+.05 GO TO 1</pre>
66 67 68 80 81 82 82	<pre>Po(K)=Po(K)=.01 D3=D3+5. GO TO 2 CC3=CC IF (CC2-CC3) 68.68.67 CC2=CC3 GO TO 65 P2(K)=P3(K)+.01 CO1 C 80 I=I+1 P1(I)=.05 GO TO 1 CO1=CD P1(I)=P1(I)+.05 GO TO 1 CD2=CD</pre>
66 67 68 80 81 82 82	<pre>Po(K)=Po(K)=.01 D3=D3+5. GO TO 2 CC3=CC IF (CC2-CC3) 68.68.67 CC2=CC3 GO TO 65 P2(K)=P3(K)+.01 CO TO 80 I=I+1 P1(I)=.05 GO TO 1 CO1=CD P1(I)=P1(I)+.05 GO TO 1 CD2=CD IF (CD1-CD2) 85.85.84</pre>
65 67 80 81 82 82 82	<pre>Po(K)=Po(K)=.01 D3=D3+5. GO TO 2 CC3=CC IF (CC2=CC3) 68.68.67 CC2=CC3 GO TO 65 P2(K)=P3(K)+.01 CC TO 80 I=I+1 P1(I)=.05 GO TO 1 CO1=CD P1(I)=P1(I)+.05 GO TO 1 CD2=CD IF (CD1=CD2) 85.85.84 CD1=CD2</pre>
 65 67 68 81 82 82 84 	<pre>Po(K) = Po(K) = .01 D3=D3+5. GO TO 2 CC3=CC IF (CC2=CC3) 68.68.67 CC2=CC3 GO TO 65 P2(K)=P3(K)+.01 CO TO 80 I=I+1 P1(I)=.05 GO TO 1 CO1=CD P1(I)=P1(I)+.05 GO TO 1 CD2=CD IF (CD1=CD2) 85.85.84 CD1=CD2 GO TO 82</pre>
 К.Б. К.Б.<!--</th--><th><pre>Po(K)=Po(K)=.01 D3=D3+5. GO TO 2 CC3=CC IF (CC2-CC3) 68.68.67 CC2=CC3 GO TO 65 P2(K)=P3(K)+.01 CO TO 80 I=I+1 P1(I)=.05 GO TO 1 CD1=CD P1(I)=P1(I)+.05 GO TO 1 CD2=CD IF (CD1-CD2) 85.85.84 CD1=CD2 GO TO 82 P1(I)=P1(I)01</pre></th>	<pre>Po(K)=Po(K)=.01 D3=D3+5. GO TO 2 CC3=CC IF (CC2-CC3) 68.68.67 CC2=CC3 GO TO 65 P2(K)=P3(K)+.01 CO TO 80 I=I+1 P1(I)=.05 GO TO 1 CD1=CD P1(I)=P1(I)+.05 GO TO 1 CD2=CD IF (CD1-CD2) 85.85.84 CD1=CD2 GO TO 82 P1(I)=P1(I)01</pre>

```
GO TO 1
86 CD3=CD
    IF (CD2-CD3) 88,88.87
07 CD2=CD3
   60 TO 85
88 P1(I)=P1(I)+.01
    PUNCH 100, JI, P1(I), P2(J), P3(K), P4(L), CD3
    PRINT 100, II, P1(I), P2(J), P3(K), P4(L), CD3
100 FORMAT (12,2XF6.4.2XF6.4,2XF6.4,2XF6.4,2XF6.4,2XF8.0)
   I I = ] I + ]
   GC TC 110
110 IF (P4(L)-P4(L-1)) 10,111,10
111 IF (P3(K)-P3(K-1)) 10,112,10
112 IF (P2(J)-P2(J-1)) 10,113.10
113 IF (P1(I)-PJ(I-1)) 10,115,10
115 STOP
```

END
SOLUTION OF NETWORK FLOW PROBLEM

BY DYNAMIC PROGRAMMING

by

DEEPAK KESHAV PAI

B. E. M. E., University of Poona, India, 1963 M. Tech. M. E., Indian Institute of Technology, Bombay, India, 1965

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1967

The purpose of this report is to demonstrate the application of dynamic programming to the network type traffic assignment and pipeline problems. This technique allows the use of nonlinear time-volume and cost-volume relationships.

A number of one way and two way traffic assignment and pipeline problems have been solved by this technique. The success of this technique lies in its simplicity, computational efficiency and selfcorrecting characteristics.