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Abstract
Iterative hybridized threshold clustering (IHTC) is a recently developed algorithm de-

signed to decrease runtime and reduce memory usage of commonly used clustering algorithms

under massive data settings. The IHTC pre-processes the data with iterative threshold in-

stance selection (ITIS) to scale down the size of data before proceeding with the standard

clustering analysis, such as k-means and hierarchical clustering. However, when dealing

with massive amounts of data, for example, when the number of data points n > 108, the

computational cost of IHTC may still be prohibitive. Efficient parallel implementation may

provide a pathway to further reduce computational cost and memory usage of IHTC. In this

study, we partition the data points into batches and IHTC is performed on each batch. The

prototypes generated from IHTC are collected for k-means clustering. We implement the

parallelization using the R packages “Rdsm” and “parallel”, and test our implementation

on simulated data on the Beocat high-performance cluster by varying the number of cores

and batches. Performance is evaluated though accuracy, runtime in seconds, and memory

usage in GB. We find that parallelization improves the runtime of IHTC substantially. For

example, for a dataset of size n = 109, dividing the data into 500 batches and applying par-

alellization through the parallel package on a node with 8 cores decreases runtime by a factor

of 4.36. Additionally, Rdsm parallelism for small scale data (n ≈ 108) may decrease memory

usage while preserving clustering accuracy. We conclude that a parallel programming design

should create a proper number of threads to provide enough work for all cores to efficiently

use the available computing resources.
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Chapter 1

Introduction

1.1 Clustering Algorithms

Clustering is a machine learning method in which objects with comparatively more similar

traits are assigned into the same groups, called clusters. Clustering is unsupervised, meaning

that inference are drawn from data without labeled responses. It is one of the most widely

used methods in statistical data analysis, and employed to model difficult problems in many

fields involving machine learning (Nunez-Iglesias et al., 2013), image analysis (Rocha et al.,

2009), and bioinformatics (Olman et al., 2008).

Common techniques of clustering mainly include connectivity models, centroid models,

distribution models, and density models. Connectivity models (for example, hierarchical

clustering (Eisen et al., 1998)), as its name suggests, are based on distance connectivity.

Agglomerative hierarchical clustering starts by classifying each data point as a separate

cluster. Then, it repeatedly executes the procedure of identifying two most similar clusters

and merging them into a new cluster until the entire dataset is aggregated as one cluster. Its

variant, known as divisive hierarchical clustering, in contrast, initially treats all data points as

a single cluster, and then successively partitions these clusters. A dendrogram can visualize

the process of aggregating or dividing. Since the core idea of the hierarchical clustering

algorithm is based on data point being more similar to nearby data points than to those
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farther away, it has the advantage of being easy to interpret. Hierarchical clustering also

provides a theoretical foundation of other clustering algorithms and inspires the development

of density-based clustering analysis. However, it lacks scalability for handling large datasets

with the complexity of O(n3) (Bar-Joseph et al., 2001).

A well-known method of centroid models is k-means clustering (Likas et al., 2003), in

which each cluster is represented by a prototype which is the mean of data points in the

cluster. A prototype can also be defined with other central measures such as the median.

The objective of k-means clustering is to minimize the total intra-cluster variance. The

objective function is described as,

J =
k∑
j=1

n∑
i=1

(xji − cj)2 (1.1)

Where k is the number of clusters, n is the number of units, xji is unit i in cluster j and

cj is the center of cluster j. This clustering algorithm heuristically solves an optimization

problem defined by iteratively assigning data points to the cluster with the nearest pro-

totype to generate a new prototype such that the within-cluster distances are minimized.

The algorithm is conceptually close to the k-nearest neighbor classifier, which is a powerful

supervised learning technique in machine learning (Ding and He, 2004). It also has a the-

oretical relationship with the distribution model-based clustering when modified by using

expectation-maximization algorithms (Nasser et al., 2006). Even with intriguing theoretical

properties, k-means suffers from both problems of improper initial centroids and sensitive-

ness to sample outliers (Chawla and Gionis, 2013). Additionally, since the number of clusters

needs to be specified beforehand, it is restrictive by demanding prior knowledge before clus-

tering. Choosing initial centroids is an especially important task since it directly affects the

performance. Another large drawback is that the convergence to the global optimum is not

guaranteed, and performance depends on the choice of initial centroids. Many variations of

k-means clustering are proposed to improve different aspects of the algorithm. For example,

k-means++ method specifies an algorithmic approach to choosing initial cluster centroids,

as opposed to randomly choosing them, before standard k-means is performed (Arthur and
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Vassilvitskii, 2007). Clustering through k-medoids, or partitioning around medoids (PAM),

is more robust towards outliers by giving constraints on the choice of the centroid from

existing members in the cluster (Park and Jun, 2009).

A popular distributional model for clustering is the Gaussian mixture model using expectation-

maximization algorithm. This algorithm assumes that each data point is generated from one

of several Gaussian distributions. Similar data points are more likely to belong to the same

distribution. This algorithm shows a great advantage in optimizing multimodal functions

with only a few local optima, but it may struggle if data deviates substantially from a Gaus-

sian mixture distribution (Lu and Yao, 2005). Density-based clustering algorithm separates

clusters from each other through contiguous regions of low density of objects. Data objects

located in low-density regions are typically considered border points or noise (for example,

outliers). DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is one of

the most well-known clustering algorithms in this category (Kriegel et al., 2011).

However, these clustering algorithms often require prohibitive computational cost when

sample sizes n are massive. The iterative hybridized threshold clustering (IHTC) proposed

by Luo et al. (2019) is a novel statistical method which hybridizes with other clustering

algorithms to scales down data without loss of information. The parallel implementations of

IHTC in this report aim to increase the viability of these clustering methods under massive

data settings.

1.2 Dissimilarity measures

Dissimilarity measures often are critical for clustering methods. We now describe them

briefly. Suppose each unit i has a response yi and a p-dimensional covariate vector xi =

(xi1, xi2, . . . , xip). The dissimilarity between unit i and unit j, denoted dij or d(xi, xj), often

is a function of differences between covariate vectors xi and xj. A common choice—and the

one used in this study—is the Euclidean distance,
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d(xi, xj) =

√√√√ p∑
`=1

(xi` − xj`)2 (1.2)

Other commonly used measures of dissimilarity include the Manhattan distance, the Minkowski

distance, and the Mahalanobis distance.

A small value of dij indicates that unit i and unit j have similar covariates and vice

versa. Thus, the objective of clustering is to find a set of clusters such that units belonging

to the same cluster have small dissimilarities while units from different clusters have large

dissimilarities.

1.3 Iterative Hybridized Threshold Clustering

Threshold clustering (TC) is a recently developed clustering method that employs graph

theory to form clusters such that each cluster contains at least a pre-specified number of

units t∗ and so that maximum dissimilarity between any two units within the same cluster—

the maximum within-cluster dissimilarity (MWCD)—is small (Higgins et al., 2016). In

particular, TC tends to form clusterings comprised of many small clusters.

The steps of TC are as follows:

1. Construct (t∗ − 1)nearest-neighbor subgraph:

The (t∗− 1)-nearest neighbor graph connects unit i and unit j by an edge, if the their

distance dij is among the (t∗ − 1)-th smallest dissimilarity from unit i to all units. A

(t∗ − 1)-nearest-neighbor subgraph, denoted as NGt∗−1, is constructed based on the

Euclidean distances in this study.

2. Choose block seeds:

A set of units S is selected as block seeds which satisfy:

(1) There is no walk of length one or two in NGt∗−1 between any two seeds in S.

(2) Any unit outside the S can be reached by one seed in S in a walk of length at most

two in NGt∗−1.
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3. Grow from block seeds:

A cluster is formed by growing from each block seed in S, which contains the block

seed and any unit adjacent to it in NGt∗−1.

4. Assign remaining units:

For any unassigned unit, there exists a walk of length two from at least one seed in S

in NGt∗−1. Assign any remaining unit to the seed with the smallest dissimilarity.

Threshold clustering was initially proposed to perform statistical blocking of massive

experiments (Higgins et al., 2016). Unlike representative centroid models (e.g. k-means),

specifying the number of clusters beforehand is not required in TC. Instead, the number of

units in each cluster is specified in order to construct the nearest neighbors graph. Addi-

tionally, TC is a very efficient method, requiring O(n) runtime and memory outside of the

construction of a t∗-nearest-neighbor graph. Finally, the performance of TC has theoretical

guarantees. Specifically, out of all clusterings containing at least t∗ units, TC produces a

clustering with MWCD at most 4 times larger than the smallest MWCD possible.

Recently, Luo et al. (2019) proposed using TC as an instance selection (IS) method

called iterative threshold instance selection (ITIS). IS is a pre-processing step in which the

size of data is reduced before statistical analysis is performed. Ideally, conclusions made

on the reduced dataset would be the same had the analysis been performed on the original

dataset(Liu and Motoda, 2002). ITIS proceeds as follows. First, for a given t∗, TC is

performed on n units to generate n∗ clusters where each cluster contains at least t∗ units.

The centers of these n∗ clusters, called prototypes, are computed and used to represent the

original data set. Then TC is performed again on the n∗ prototypes until the data size is

sufficiently reduced.

Iterative hybridized threshold clustering (IHTC) is designed to increase the scalability of

clustering algorithms (Luo et al., 2019). In IHTC, data is pre-processed with ITIS before

proceeding with clustering algorithms, for example, k-means and hierarchical clustering (Luo

et al., 2019). That is, after condensing the data to a set of prototypes with ITIS, another
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clustering algorithm, like k-means, is applied to the current prototypes. These prototypes

still maintain the information of the original data but dramatically reduce the size of data.

IHTC shows advantages in decreasing the required runtime and memory usage of the original

clustering algorithms had they been performed on the entire dataset with minimal loss in

clustering accuracy. In this study, we propose two methods to implement parallelization of

IHTC to increase its ability to deal with massive data.

1.4 IHTC Procedure

The IHTC is performed as follows(Luo et al., 2019):

1. Threshold clustering

2. Create prototypes:

A center vector is generated as a prototype for each cluster.

3. Terminate or continue:

Replace the original data with the prototypes generated above. If the data is reduced

to the desired size, then ITIS is completed. Otherwise, repeat steps 1 to 3.

4. Apply clustering algorithm:

IHTC can be hybridized with different standard clustering algorithms, such as k-means

and hierarchical clustering. We take k-means as an example to describe here.

(a) Initialize the cluster centers:

A set of cluster centers are selected randomly.

(b) Assign units to centers:

All units are assigned to a nearest center (with the smallest Euclidean distance

to the center vector) and temporary clusters are formed by the cluster center and

its assigned units.
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(c) Update the cluster centers:

The cluster centers are updated by computing the center of each temporary clus-

ter.

(d) Repeat and terminate:

Repeat step (b) and (c) until the cluster centers converge.

The ITIS procedure is illustrated in Figure 1.1 (Luo et al., 2019) and the workflow to

implement IHTC in this report is shown in Figure 1.2.

1.5 Parallel Computing

Parallel computing refers to the simultaneous execution of operations in order to solve a com-

putational problem with the use of multiple computing resources, such as Central Processing

Unit (CPU), Graphics Processing Unit (GPU), or cluster. Parallel computing dramatically

improves the efficiency in runtime and remote memory usage. Parallel computing can also

take advantage of remote computing resources and make better use of modern computer hard-

ware. Because of these properties, parallel computing plays a huge role in high-performance

computing (Czarnul, 2018) and has broad applications in various areas.

The simulation of large problems is of growing importance in the fields of science and

engineering, and greater and greater computing power and memory are needed for precise

simulations. Parallel computing has been widely used to model complex problems in a large

range of disciplines, like atmosphere (Tolstykh et al., 2017), physics (Amadio et al., 2017),

biochemistry (Porter et al., 2019), genetics (Gonzalez-Dominguez and Martin, 2017), geol-

ogy (Mao et al., 2016), seismology (Corneio-Surez et al., 2018), and other natural sciences.

Also, with the rapid development of industrial and commercial data, efficient parallel imple-

mentation techniques are the key to meet the required scalability and performance in data

analyses.
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Figure 1.1: Iterative threshold instance selection (ITIS) procedure for a sample of n = 20
bivariate data points with 2 iterations of constructing a 2-nearest-neighbors graph.
a: The original data is represented by 20 black points. b: Threshold clustering is performed using
1-nearest-neighbors graph (red dashed circles). c: 10 prototypes are generated and are displayed
as red points. Then the threshold clustering (blue dashed circles) is performed again on these
prototypes. d: The blue points are final prototypes formed from ITIS.

1.5.1 Evolution in Parallelism

The first discussion of parallelism in numerical calculations dates back to 1958, after the

launch of a project in 1956, which aimed to design a supercomputer with 100 times the

performance of any available at that time. The technical and commercial success of the first
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Figure 1.2: Workflow to implement iterative hybridized threshold clustering (IHTC).
Apply iterative threshold instance selection (ITIS) on the data to form prototypes. Then k-means
clustering is performed and the labels from k-means are matched to the original data points.

supercomputer in 1964 and breakthroughs in shared memory multiprocessors throughout the

60’s to 70’s helped promote the implementation and application of parallel computing. In the

1980’s, massively parallel processors (MPPs)—a single computer with many interconnected

networked processors—appeared and dominated the field of computing until the emergence of

clusters in the 80’s. A cluster is built from a group of loosely coupled computers connected by

a network. Since then, cluster computing, with its formidable competitive advantage, became

the dominant architecture and eventually displaces MPPs in many fields (Hockney and

Jesshope, 2019). Today, about 87% of 500 most powerful commercially available computers

are clusters and the remaining are MPPs. From the 1980’s to 2000, frequency scaling was

the primary computer architecture paradigm to improve computer performance (Malyshkin,
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2017). However, increasing the frequency brings the problems of power consumption and

consequently heat generation (Mullen et al., 2017).

To deal with the concern of CPU overheating, instead of straining to increase the speed of

a single processor, effort was shifted to obtain more computing power by stamping multiple

processors on a single chip. Each core in multiple-core computers serves as a computing unit

independently, and all cores access shared memory. Instead of increasing clock frequency,

enhancing the computing power of multi-core architectures is realized by paralleling the

tasks in order to accelerate the runtime. Thus, improving performance achieved through

parallel processing is much more efficient than that by frequency scaling. That is, the

rapid development of microprocessor performance and network bandwidth, as well as the

prevalence of multi-core processors in desktop and laptop systems, make parallel computing

the mainstream in computer architecture paradigm.

1.5.2 Types of Parallelism

Parallel computing systems have many different forms, for example, a supercomputer with

thousands of processors, a network consisting of computers with hundreds of processors,

and even a desktop equipped with multi-core processors (Mashfiq, 2012). Modern parallel

architectures can be categorized based on the different processing mechanisms, including

manners of memory access and message passing between the processors. The most com-

mon classes of parallel computers are scalar computers, parallel vector processors (PVP),

symmetrical multi-processing or shared memory multiprocessors (SMP), distributed memory

massively parallel processors (MPP), distributed memory shared memory multiprocessors,

cluster systems, and grid computing (Peng et al., 2017).

In SMP, shown in Figure 1.3a, the processors operate independently but access a shared

memory and connect via a bus. Usually, SMP has small processors and a sufficient amount

of memory bandwidth, which are cost-effective. Processors in a MPP (Figure 1.3b) also

work independently with its own memory and copy of the operating system and appli-

cation. Communication between processors is achieved through interconnected networks.
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Figure 1.3: Common parallel computing systems.
a: shared memory multiprocessor (SMP); b: distributed memory massively parallel processor
(MPP); c: distributed memory shared memory multiprocessor; d: cluster systems.

Distributed memory shared-memory multiprocessors (Figure 1.3c) is a hybrid system of dis-

tributed memory and SMP. Processing elements are connected by a network, within which

processors share the same memory. Cluster computing (Figure 1.3d) is composed of a couple

of distributed memory computers which are connected by a network (Mashfiq, 2012).

1.5.3 Design of Parallelism

When an algorithm is transformed into a parallel program, there are two important compo-

nents to consider: concurrency and synchronization. Concurrency refers to the parts of the

algorithm which can be carried out independently and are the target for parallel computing.

Synchronization is the communication between multiple processors, including synchroniza-

tion of processes, and synchronization of data. Synchronization of processes refers to the

concept that different processors “handshake” to execute a certain sequential action dur-
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ing paralleling. Synchronization of data refers to the coherence of data storage in different

processors to maintain data integrity. Therefore, a suitable parallel programming includes

enough independent computation and effective synchronization in terms of both time and

memory.

Even though the rapid development in hardware brings more support to parallelism,

there is an upper bound on the speedup of parallel programming regardless of increased

number of processors. Because maximum speedup to parallel an algorithm depends on the

parallelizable proportion of computations. The maximum speedup of parallel programming

for a designed task is given by the famous Amdahl’s law (Amdahl, 1967).

Speedup = T1

Tp
, (1.3)

where T1 is the time taken by sequential programming and Tp is the time taken by parallel

programming on the same task. Therefore,

Speedup = T1

αT1 + (1−α)T1
m

= 1
α + (1−α)

m

(1.4)

where, α is the proportion of sequential part of the task before parallelization, and m is the

total number of processors for parallel computing.

Figure 1.4 gives a graphical representation of Amdahl’s law. Even if we have an extremely

efficient program with only a 5% sequential portion, the maximum speedup achieved by

parallelization is 20 times. Also, the speedup is not increased much after the number of

processor increase to more than 64 when 90% of operations are parallelizable in a program.

In addition to the theoretical upper bound of parallelization, reasonable design of the

parallel program also contributes to the attainable speedup. Parallel execution time consists

of both the time for the parallel computation by processors and the time for information

exchange or synchronization between processors. This includes the time starting from the

execution of action on the first processor to the completeness of tasks on all processors.

Firstly, the parallel execution time is affected by the distribution of work to processors.
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Figure 1.4: A graphical representation of Amdahl’s Law. (Mashfiq, 2012)

If the parallelizable computation is too simple and could be carried out in a short time,

work distribution may lead to more time than sequential execution, which means designing

a parallel program is not worth the effort. Also, for a large number of subtasks, the work

assigned to each processor may be quite small, then the time for thread creation, management

and termination yields a significant portion of the overall time.

Secondly, the execution time is also influenced by information exchange or synchroniza-

tion between the subtasks, which are the greatest obstacles to achieve an efficient parallel

computing performance. Moreover, longer parallel execution time also results from designs

with more idle time. Idle time refers to the time when only one or a small number of pro-

cessors are active while others are doing nothing but waiting for an operation. For example,

this occurs when some processors wait until all other processors have reached a certain point

to exchange information, and only then do they continue the execution of the subsequent

program code. This results in a sequentialization of execution, and the available parallelism
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cannot be used. Equally assigning workload to processors, which is called load balancing,

can reduce the idle time in some degree. Avoiding frequent information exchanges between

processors is also important to design efficient parallelism. In general, a good design and im-

plementation of parallel programming helps obtain greater performance by making effective

communication between subtasks.

1.6 Parallel Iterative Hybridized Threshold Clustering

The IHTC shows advantages in the improvement of runtime and memory usage by scaling

down the size of original data. However, when dealing with a larger size of data (for example,

n > 108), it is still costly in time and memory. In this study, we propose two paralleled

versions of iterative hybridized threshold clustering and use simulated data to evaluate the

efficiency in aspects of accuracy, runtime, and memory.

The structure of parallel programming is illustrated in Figure 1.5. First, the simulated

data is randomly partitioned into batches without replacement. This partition can be com-

pleted in O(n) time(Durstenfeld, 1964)(Knuth, 1997). The prototypes from different batches

are collected and used for standard clustering algorithms, which is a step of sequential pro-

gramming. Then, the labels assigned from the original clustering method are matched to

the original data points, which is paralleled also based on batches. Because the labels from

the clustering methods are different from those we assigned in simulation, a second step of

matching labels is performed sequentially. Finally, the total runtime and memory usage are

recorded to evaluate the paralleled algorithms performance. For supervised or simulated

data, for which cluster labels are known, the accuracy may also be computed. As shown in

Figure 1.5, the green parts are sequential while blue parts are parallel programmed.

This structure of implementation in Figure 1.5 is shared in these two paralleled versions

of IHTC in this report. The differences are mostly on data synchronization. The first method

to implement parallelism, belonging to distributed memory MPP system (Figure 1.3b), is

executed on processors with its own copy of data. The second parallelism implementation

is to use shared memory parallel programming from SMP system (Figure 1.3a), where all
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processors get access to data stored in shared memory. The performance of these two versions

differ in the capacity of data magnitude, as well as runtime and memory, but the accuracy

is similar and both close to the non-parallel algorithm.

Figure 1.5: An illustration of iterative hybridized threshold clustering (IHTC) parallelism.
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Chapter 2

Simulation

We evaluate the performance of paralleled IHTC using simulated data with two data sizes,

108 and 109. To be consistent with the previous study, the setting of simulation follows the

descriptions in Luo et al. (2019). The data points are sampled independently from a mixture

of three bivariate Gaussian distributions with parameters µj and Σj, j = 1, 2, 3. The pdf of

mixture distribution is,

f(x) = 0.5f(x|µ1,Σ1) + 0.3f(x|µ2,Σ2) + 0.2f(x|µ3,Σ3), (2.1)

where f(x|µj,Σj) is the pdf of Gaussian distributions and the values of parameters are given

as,

µ1 =

1

2

 , µ2 =

7

8

 , µ3 =

3

5

 , (2.2)

Σ1 =

1 0

0 0.5

 ,Σ2 =

2 0

0 1

 ,Σ3 =

3 0

0 4

 . (2.3)

Based on the three distributions, the data points are grouped into three clusters and

labeled with 1, 2, or 3 as true labels. IHTC is performed with threshold t∗ = 2 and the

number of iteration m = 3 to generate prototypes. Then, k-means is applied with the
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number of clusters k = 3. The Euclidean distance is employed as the dissimilarity measure

in this study. Accuracy, run time in seconds, speedup, and memory usage in gigabytes are

used to evaluate the performance of two versions of IHTC parallelism, and are compared to

those in sequential IHTC.

Simulation and parallel programming are implemented in the R language. The Rdsm and

parallel packages are employed for implementing parallelism. The scclust package is

used for threshold clustering (Sävje et al., 2017), and k-means clustering is performed using

the R default kmeans function. All works are run on the Beocat cluster, a High-Performance

Computing (HPC) cluster at Kansas State University. To make the results comparable, we

only use the same node, wizard24, with 32 cores and a maximum memory of 1546 GB.

2.1 Implementation and Results

We propose two strategies for parallel processing in this study depending on whether the

cores in the cluster share memory. The two versions of parallelism are programmed in Rdsm

package and parallel package.

The code parallelism is done through one of two main approaches, sockets or forking.

When setting up a cluster, which refers to launching a collection of cores or threads on the

computer, the sockets approach creates a new version of R on each core, while the forking

approach copies the entire original version of R to each new core. Even though forking

is faster than sockets, the sockets approach is available for any system while forking only

works on POSIX systems (e.g. Linux) but not Windows. The earliest packages for parallel

processing in R are the multicore package (by forking) and snow package (by socket).

These two powerful packages were merged into the parallel package in base R, and hence,

the parallel package can create the clusters via either forking or sockets. In this study,

we use the makeCluster function with default type, sockets, to make it more comparable

to the Rdsm library which works only via network sockets.
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2.1.1 Parallelism with Rdsm Package

Rdsm, named from distributed shared memory for R, creates a programming environment

where nodes in a cluster share physical or conceptual memory. The variables shared by

different processors must be stored in a special form of matrices using the bigmemory library.

The dimension of a shared matrix needs to be specified beforehand, which is a constraint

in Rdsm. The shared memory reduces memory usage by reducing redundant copies of data.

However, there are still some temporal variables in the cache in each processor. In this

study, we store the data, intermediate variables, and results in shared variables, which are

easy to implement and update. However, due to the capacity of the bigmemory library, the

maximum data size in simulation using Rdsm parallelism is 108.

To perform ITIS, we merge the ITIS functions to an executable paralleling function

which is executed by every thread. Another paralleling function is coded for matching

prototype labels from k-means to original data points. Then, we export these two paralleling

functions and some parameter variables to the working environment of each thread using

clusterExport function. The clusterEvalQ, which is from snow, is used to launch the

threads to run the paralleling function. The Rdsm function getidxs can partition the

workload into chunks according to the number of threads(cores), which is different from

parallelism with the parallel package. This is achieved via the built-in Rdsm variable

myinfo, which is a list of the total number of threads (nwrkrs) and the ID number of the

thread (id). Then, the work chunk assigned to its core is copied and stored in a temporal

variable, but not used directly from shared variables. Employing separate variables to store

part of the data may help avoid costly cache misses and keep cache coherency by reducing

the number of accesses to shared data.

After the first parallel computation, the prototypes are generated from ITIS. The coor-

dinates of prototypes of threads are exported as a list. The labels to match the prototypes

to original data points are stored in shared variables. However, the problem is that, since

the speed of thread is different, the work chunks are not necessarily completed as the order

of the ID of threads. So we need a variable to keep track of the results, for example, which
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chunk of the result is from which thread. In order to give a number to each chunk ac-

cording to the order of completeness, we use a pair of synchronization function, rdsmlock

and rdsmunlock. When a thread executes rdsmlock, it will lock the section between

rdsmlock and rdsmunlock so that other threads can not access until it has finished this

section and exited. Then the next thread will enter and repeat this process until all threads

have executed it. In Rdsm, another function called barr, which makes the thread wait at

this point until all threads have arrived, is also commonly used for synchronization, but is

not used in this study.

After that, the k-means is applied on the prototypes, which is sequential programming.

Then the second parallel processing is used to match the prototype labels assigned by k-

means to the original data points. Because the original data points are associated with their

prototypes and labels from k-means on prototypes need to be manually matched to original

data points. However, the labels produced from k-means may not be the same as true labels

we assign in simulation. So a matching step is taken, which is sequential because the task is

too simple to parallel.

2.1.2 Parallelism with Parallel Package

The second method of parallelism is through the parallel package where each core has

its own copy of data and variable. This causes more memory usage when we employ more

cores. But it has the advantages of more flexibility in coding and larger capacity of data

size. It can even handle data with a size of 109, but due to the available memory in the

computing cluster, larger scalability of data is difficult to simulate. The parallel processing is

very flexible with multiple modes. In this simulation, we use clusterApplyLB, which is a load

balancing and dynamic way to launch parallel computing. With the help of snow function

splitIndices, the data is partitioned into batches. Then each core works on one batch of

data and once finished, it continues to take the next available batch. As mentioned in Rdsm

parallelism, the number of subtasks is constrained to be the number of cores. However, the

number of subtasks or batches in the parallel package can be any number more than the

19



number of cores. Thus, we set the number of batches to be 50, 100, 200, 500 or the number

of cores to compare the effect of number batches on the performance. As a whole, the entire

procedure is almost the same as that in Rdsm aside from data structures for input and

output of IHTC.

After parallel computing, the intermediate results are exported as a list of lists. As a

result, output from the same batch are tied in a list and it is not necessary to track batch

unlike Rdsm. However, unlisting output by according to different results (such as prototype

coordinates, prototype labels, number of prototypes from different processors) becomes more

challenging than Rdsm implementation.

2.1.3 Results

In this study, we design the parallelism with the combinations of different number of cores

and number of batches using Rdsm and parallel packages. The data size varies from 108

to 109. Rdsm parallelism only works on the data with a size of 108 due to the constraint of

bigmemory library. The accuracy, run time in seconds and memory usage in GB are given

in Table 2.1, 2.2, and 2.3. The speedup is the ratio of the average runtime of non-parallel

algorithm and average runtime of parallel design.

To maintain consistency across simulations, we attempt simulations using the same node,

Wizard24, on the Beocat research cluster. However, we are not able to get as many replica-

tions of experiments because we do not have priority access to this node. Additionally, due

to the large size of data in this study, the requirements of number of cores and memory are

larger, and execution time is longer compared to other users, which also makes it difficult

to get access to computing resource to complete the simulations. Hence, the number of

replicates varies among simulations and these results are obtained with substantial effort.

Fortunately, the small standard deviations indicate that the results are stable to reproduce.

From the results in Table 2.1 and Figure 2.1, in general, the accuracy tends to decrease

with an increase in the number of batches, except simulations in Rdsm and two combinations

in parallel, 8 cores with 8 batches, and 16 cores with 16 batches. These five designs of
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parallel processing even show higher accuracy than that of the non-parallel algorithm. We

can not find a good explanation for accuracy increase at this time, but this makes these

designs good candidates for parallelism. Besides, the accuracy depends on the number of

batches regardless of the number of cores. Potential interpretation is that sub-grouping data

may affect the algorithm accuracy theoretically while the number of cores only represents

the productivity of the implementation.

The results in Figure 2.2, Table 2.1 and 2.2 indicate that, for a fixed number of cores, the

runtime is shortened as the number of batches increases. When number of batches is fixed,

we found that speedup increases and then decreases as the number of cores increases. For

both n = 108 and n = 109, the maximum speedup occurs using 8 cores with 500 batches. The

maximum speedup for n = 108 is 3.82 and for 109 is 4.36. This is reasonable because, with

more cores, the execution time becomes longer due to longer synchronization time caused

by more frequent communications between threads. By comparing the speedup of data size

108 and 109, the parallelism performs better when dealing with larger scale data.

Rdsm performs better than parallel in terms of memory usage. In parallel sim-

ulations, more cores requires more copies of data, leading to increased memory usage. So

parallelism design, for example, the choice of package, number of cores and batches, should

be determined by our requirements of saving time or memory as well as balance between

speedup and accuracy performance.

2.2 Discussion

On average, parallelized IHTC provides more than 3 times speedup over the original algo-

rithm with a relatively small cost of additional memory. There is still space to improve these

implementations of parallelization in terms of time and memory.

The first improvement involves the R package Itis (Luo et al., 2019) used to implement

ITIS, which is a non-public early version of the package designed for massive data. At the

first try of parallelism, we failed to install the local Itis package successfully in lynx system

of Beocat. So we need to code the functions in Itis into our functions. The problem is that
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108 Core Batch Accuracy Run Time (second) Speedup
Non-parallel - - 0.9238708 (0) 1372.44 (84.53) -

Rdsm
4 - 0.9238789 (0) 550.41 (18.92) 2.49
8 - 0.9239127 (0) 444.37 (12.75) 3.09
16 - 0.9238757 (0) 418.22 (40.03) 3.28

Parallel

4

4 0.9238665 (0) 490.28 (3.07) 2.80
50 0.9238676 (0) 423.17 (1.99) 3.24
100 0.9238304 (0) 406.75 (7.69) 3.37
200 0.9237778 (0) 390.53 (4.55) 3.51
500 0.9237962 (0) 374.23 (4.18) 3.67

8

8 0.9238811 (0) 409.44 (5.57) 3.35
50 0.9238676 (0) 386.47 (4.15) 3.55
100 0.9238304 (0) 371.14 (3.83) 3.70
200 0.9237778 (0) 364.18 (1.33) 3.79
500 0.9237962 (0) 359.52 (0.79) 3.82

16

16 0.9238865 (0) 421.06 (5.51) 3.26
50 0.9238676 (0) 406.76 (2.76) 3.37
100 0.9238304 (0) 396.84 (2.00) 3.46
200 0.9237778 (0) 396.95 (1.44) 3.46
500 0.9237962 (0) 387.64 (2.63) 3.54

32

32 0.9238487 (0) 507.84 (22.47) 2.70
50 0.9238676 (0) 515.74 (2.69) 2.66
100 0.9238304 (0) 499.80 (3.45) 2.75
200 0.9237778 (0) 487.50 (8.47) 2.82
500 0.9237962 (0) 482.21 (7.04) 2.85

Table 2.1: Average accuracy and run time of the simulation with data size of 108. The
number of cores and number of batches are given for each simulation. The average accuracy,
run time in second and speedup is used to evaluate the performance of parallelism. Dashed
lines indicate that the values don’t exist. The standard deviation is given in parentheses.
The non-parallel result is based on 10 replicates of simulation. The Rdsm parallelism is from
8 replicates and parallel parallelism is from 4 replicates.
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109 Core Batch Accuracy Run Time (second) Speedup
Non-parallel - - 0.9239411 (0) 18383.48 (1875.31) -

Parallel

4

4 0.9239370 (0) 7065.36 (424.09) 2.60
50 0.9239333 (0) 6235.92 (419.09) 2.95
100 0.9239426 (0) 5997.54 (457.02) 3.07
200 0.9239314 (0) 5869.90 (366.82) 3.13
500 0.9239269 (0) 5520.57 (343.48) 3.33

8

8 0.9239490 (0) 5148.96 (438.94) 3.57
50 0.9239333 (0) 4701.94 (526.80) 3.91
100 0.9239426 (0) 4603.99 (504.99) 3.99
200 0.9239314 (0) 4484.60 (542.24) 4.10
500 0.9239269 (0) 4214.93 (561.74) 4.36

16

50 0.9239333 (-) 4975.82 (-) 3.69
100 0.9239426 (-) 4697.25 (-) 3.91
200 0.9239314 (-) 4673.92 (-) 3.93
500 0.9239269 (-) 4486.62 (-) 4.10

Table 2.2: Average accuracy and run time of the simulation with data size of 109. The
number of cores and number of batches are given for each simulation. The average accuracy,
run time in second and speedup is used to evaluate the performance of parallelism. Dashed
lines indicate that the values don’t exist. The standard deviation is given in parentheses.
The non-parallel result is based on 8 simulations. The parallel result with 4 or 8 cores
is from 10 simulations and the result with 16 cores is from 1 simulation.
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Memory (GB) Core Batch 108 109

Non-parallel - - 22.03 (0.40) 201.22 (0.65)

Rdsm
4 - 22.00 (0.20) -
8 - 36.76 (0.34) -
16 - 43.53 (0.86) -

Parallel

4

50 35.80 (0.01) 340.74 ( - )
100 34.93 (0.17) 399.66 ( - )
200 35.45 (0.98) 343.31 ( - )
500 34.30 (0.026) 337.03 ( - )

8

50 51.37 (0.33) 492.13 ( - )
100 50.35 (0.04) 497.18 ( - )
200 51.93 (0.04) 497.18 ( - )
500 50.00 (0.06) 491.01 ( - )

16

50 76.53 (10.85) 796.16 ( - )
100 75.50 (9.96) 790.67 ( - )
200 77.38 (11.58) 800.42 ( - )
500 75.39 (9.87) 797.39 ( - )

32

50 133.28 (9.14) -
100 133.30 (9.17) -
200 139.02 (9.55) -
500 133.22 (9.04) -

Table 2.3: Memory usage of the simulation with data size of 108 and 109. The number of
cores and number of batches are given for each simulation. The memory usage in GB is
used to evaluate the performance of parallelism. Dashed lines indicate that the values don’t
exist. The standard deviation is given in parentheses. The non-parallel results for size of
108 and 109 are based on 10 and 8 simulations, respectively. The Rdsm parallelism is from
3 replicates. Parallel parallelism results for size of 108 are from 3 simulations and result
for size of 109 is from 1 simulation.
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Figure 2.1: Accuracy of parallelism with different number of batches. Red solid line: paral-
lelism using parallel package with data size of 108. Red dashed line: sequential algorithm
with data size of 108. Blue solid line: parallelism using parallel package with data size
of 109. Blue dashed line: sequential algorithm with data size of 109. Green solid line:
parallelism using Rdsm package with data size of 108.

the cpp functions in Itis are unable to define beforehand because cpp function can’t be

exported into work environments in each thread. So we have to merge these cpp function

into paralleling functions, which means cpp functions are redefined every time the thread
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Figure 2.2: Speedup of parallel parallelism with different number of batches and cores
with data size of 108. Grey line: parallel parallelism using 4 cores. Red line: parallel
parallelism using 8 cores. Green line: parallel parallelism using 16 cores. Blue line:
parallel parallelism using 32 cores.

begin a new batch. After simulations are done, we succeed to install the Itis package

and we could call Itis inside paralleling functions which saves a lot of time. A second

improvement is to reduce memory usage by removing the original data after data is copied

to the thread environment and release intermediate variables once they will not be used.
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By these two changes in coding, the memory usage of design with 16 cores and 50 batches

for size 109 is 428.24 GB, which is 53.79% of the previous result. There is also a decrease in

overall runtime despite the time cost required to release memory. The speedup of 16 cores

with 50 batches for size 109 is 4.09 compared to the previous 3.69 speedup. However, the

simulation results in this report are not based on this improved version due to the limited

computing resources. Although we are not able to run the simulations using the improved

version, the codes are attached in Appendix for future study.
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Chapter 3

Conclusion

3.1 Conclusion

In this study, we proposed two parallelism methods for IHTC to deal with massive data.

We implement parallel processing with Rdsm and parallel packages and test on designs

with different number of cores and batches. The increased performance through parallelism

is evaluated though accuracy, runtime, and memory usage.

From simulation results, we find that for the IHTC algorithm, the speedup is about 3

times with negligible decrease in accuracy. Parallel processing with 8 cores and 500 batches

using parallel package achieves the highest speedup, 3.82 for 108 and 4.36 for 109. Rdsm

parallelism for small scale data uses memory efficiently. We also conclude that a parallel

programming design should create a proper number of threads to provide enough work for

all cores to efficiently use the available computing resources.

3.2 Future Work

Although the performance, in terms of accuracy, of parallelized IHTC is comparable to

sequential IHTC, we could consider improve the performance by pre-processing data more

efficiently. A possible pre-processing is to cheaply sort or group the data points on one
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covariate and to perform sampling of units according to this sorting, which may yield better

performance with, possibly, only a slight increase in runtime. Additionally, we can consider

use other R paralleling packages, such as foreach in snow and doParallel, and compare

their performances with packages in this study. Finally, implementing parallelization in C

may provide another path to achieve reduce in runtime. The parallel programming tools in

C, for example, OpenMP, may allow for flexible coding and efficient synchronizations, making

it a good candidate for future work, especially since a large portion of the implementation

of IHTC uses C++.
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Appendix A

R Code

A.1 Improved Parallel

library(’mvtnorm ’)

library(’parallel ’)

library(’Itis’)

library(’distances ’)

library(’scclust ’)

library(’pdist’)

# n: sample size

# round : number of batches / subgroups

# chunksize : subsample size in each batch / subgroup

# c: number of cores

n=10^9

round =50

chunksize=n/ round

c <- 16

# dostep1 : a function to do threshold clustering
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# ichunk : a list of sequence of index ,

# each core get one sequence of index from the list at one time

dostep1 <- function(ichunk) {

require(distances)

require(scclust)

mydat <- as.matrix(x[ichunk ,])

Itis::Itis_fct_nomid(mydat , t, m, d, chunksize)

}

# dostep2 : matching the labels of all points to the prototypes

dostep2 <- function(ichunk2) {

mclu <- unlist(mres[ichunk2 ])

ll<- sum(nprotos [1:( ichunk2 )])+1

ul<- sum(nprotos [1:( ichunk2 +1)])

ft <- Itis:: fastJoin2(mclu , ktag[ll:ul])

return(ft)

}

# test : main function

test <- function(cls , n, d, t, m, k,chunksize) {

# ####### step1 ( parallelized )

# paralle the threshold clustering step

ichunk=splitIndices(n, ceiling(n/chunksize ))

# create a list of sequence of index

clusterExport(cls ,c("x","dostep1","n","d","t","m","k",

"chunksize"))

# export variables to worker environment
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time0=proc.time()

mres <- clusterApplyLB(cls ,ichunk ,dostep1)

# execute dostep1 in each cores , mres is a list of b list (b

#is number of batches ), each list contains of prototypes

# and labels in this batch

print(proc.time()-time0)

# time of parallelizabel time in step1

protos <- matrix(unlist(lapply(mres , function(u) t(u[1][[1]])

)),ncol=2,byrow=T)# prototype coordinates

nprotos <<- c(0, unlist(lapply(mres , function(u) length(unlist

(u[1]))/2))) # number of prototypes in each batch

# #######

# ####### step2 ( sequential )

# run the k- means with prototypes

kfit <- kmeans(protos , centers = k, nstart = 10)

ktag<<- kfit$cluster # get kmeans labels for prototypes

mres<<- lapply(mres , function(u) u[-1] )

# remove prototype coordinates to save memory , only keep

# labels of all points according to prototypes ,

# because we will pass mres to workers later

# write . table (mres , file =’ mres .txt ’, row . names =F)

# write . table (ktag , file =’ ktag .txt ’, row . names =F)

# write . table ( nprotos , file =’ nprotos .txt ’, row . names =F)

# #######

# ####### step3 ( parallelized )
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# match kmeans labels of prototypes to all points

clusterExport(cls ,c("mres","ktag","nprotos"))

# export variables to worker environment

nchunk=n/chunksize # nchunk is just number of batches

ichunk2=splitIndices(nchunk , ceiling(nchunk ))

# create a list of sequence of index , each list

# has 1 number ( index )

time0=proc.time()

mres2 <- clusterApplyLB(cls ,ichunk2 ,dostep2)

# execute dostep2 in each cores

print(proc.time()-time0)

# time of parallelizabel time in step3

mclusterlabel=cbind(unlist(lapply(mres2 ,function(u) t(u))),y)

# combine labels of kmeans and true labels of all data points

# write . table ( mclusterlabel , file =’ mclusterp1 .txt ’, row . names =F)

# #######

rm(list=setdiff(ls(),c("mclusterlabel","k")))

# ####### step4 ( sequential )

# match the true lables and labels from k- means

match <- rep(0,k)# k is the number of different true labels ,

#k is 3 in our simulation

for (i in 1:k){

match[i] <- which.max(as.matrix(table(

c(1:k,mclusterlabel[mclusterlabel [,2]==i ,1]))))

# for points with true label of i,

# find the most frequent predicted label
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}

print(match)

mclusterlabel [,1] <- 0 - mclusterlabel [,1]

# change the predicted label to negative value , to avoid

# error when replacing the labels in next loop

for (i in 1:k){

mclusterlabel[mclusterlabel [,1]==- match[i],1] <- i

# replace the predicted label with matching label

}

# #######

# ####### rest part ( sequential )

# write . table ( mclusterlabel , file =’ clp1 .txt ’, row . names =F)

ctab=table(mclusterlabel [,1], mclusterlabel [,2],

dnn=c("Predicted","True"))

# create a confusion matrix

# write . table (ctab , file =’ ctabp1 .txt ’)

acc=sum(diag(ctab))/n # calculate the accuracy

# #######

return(acc)

}

# simulation

d=2; t=2; m=3; k=3

x0<- cbind(rbind(rmvnorm (0.5*n,mean=c(1,2),sigma=matrix

(c(1,0,0,0.5), ncol=2,byrow=T)), rmvnorm (0.3*n,mean=c(7,8),

sigma=matrix(c(2,0,0,1),ncol=2,byrow=T)),rmvnorm (0.2*n,mean
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=c(3,5),sigma=matrix(c(3,0,0,4),ncol=2,byrow=T))),c(rep

(1,0.5*n),rep(2,0.3*n),rep (3,0.2*n)))

x0<- x0[sample.int(n),]

x<- x0[,1:2]

y<- x0[,3]

rm(x0)# remove x0 to save memory

cls=makeCluster(c)# make a cluster of cores

# call the main function and record time

tim0=proc.time()

acc=test(cls , n, d, t, m, k, chunksize)

(proc.time()-tim0)# total time ( data simulation not included )

A.2 Rdsm

library(’mvtnorm ’)

library(’Rdsm’)

library(’parallel ’)

library(’Rcpp’)

library(’distances ’)

library(’scclust ’)

library(’pdist’)

# ############################

## parallel function ##

# ############################

# The function dostep1 generates the prototypes in shared

# memory parallelization using package ’Rdsm ’ and ’parallel ’.
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# The function dostep2 matches the cluster labels of original

# points to the labels of prototypes by k- means clustering .

# The output includes mclusterlabel and proto in main function .

# mclusterlabel is a n by 4 shared matrix ,

#1st column is an index for tasks ,

#2nd column is index for myproto in its own chunk of prototypes ,

#3rd column is cluster label assigned by simulation ,

#4th column is the predicted label .

# proto is a f by 3 matrix from mapreduce ,

# f is the number of prototypes ,

# the first 2 columns are prototypes ,

# 3rd column is an index for tasks .

dostep1 <- function(n,t,d,m,dat ,mclusterlabel ,cumm) {

require(parallel)

require(Rcpp)

require(distances)

require(scclust)

require(RcppAlgos)

cppFunction(’NumericMatrix␣fastAgg(NumericMatrix␣orgMeans ,␣IntegerVector␣cats)␣{

long␣catLeng␣=␣cats.length ();

int␣numCols␣=␣orgMeans.ncol ();

long␣numCats␣=␣max(cats);

IntegerVector␣catSize(numCats +1);

NumericMatrix␣aggMeans(numCats+1,numCols );

␣␣␣␣␣␣␣␣␣␣␣␣␣␣for(int␣j␣=␣0;␣j␣<␣numCols;␣j++){

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣for(long␣i␣=␣0;␣i␣<␣catLeng;␣i++␣){
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␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣//Different␣instructions␣if␣j␣=␣0␣and␣if␣j␣notequal␣zero

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣if(j␣==␣0){

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣catSize[cats[i]]++;

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣aggMeans(cats[i],j)␣=␣(double )( catSize[cats[i]]-1)/catSize[cats[i]]*aggMeans(cats[i],j)␣+␣(double )1/catSize[cats[i]]*orgMeans(i,j);

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣}else{

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣aggMeans(cats[i],j)␣=␣(double)aggMeans(cats[i],j)␣+␣(double )1/catSize[cats[i]]*orgMeans(i,j);

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣}

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣}

␣␣␣␣␣␣␣␣␣␣␣␣␣␣}

␣␣␣␣␣␣␣␣␣␣␣␣␣␣return␣aggMeans;

␣␣␣␣␣␣␣␣␣␣␣␣␣␣}’)

cppFunction(’IntegerVector␣fastJoin2(IntegerVector␣mer1 ,␣IntegerVector␣mer2)␣{

long␣numN␣=␣mer1.length ();

IntegerVector␣mer3(numN);

␣␣␣␣␣␣␣␣␣␣␣␣␣␣for(long␣j␣=␣0;␣j␣<␣numN;␣j++){

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣mer3(j)=mer2(␣mer1(j)␣);

␣␣␣␣␣␣␣␣␣␣␣␣␣␣}

␣␣␣␣␣␣␣␣␣␣␣␣␣␣return␣mer3;

␣␣␣␣␣␣␣␣␣␣␣␣␣␣}’)

myidxs <- getidxs(n)

mclusterlabel[myidxs ,3] <- dat[myidxs ,3]

mydat <- as.matrix(dat[myidxs ,1:2])

n1 <- length(myidxs)

clusterlabel <- rep(NA, n1)

for(i in 1:m){
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my_dist <- distances(mydat)

my_clustering_ new <- sc_clustering(my_dist , t)

aggdata_ old <- fastAgg(as.matrix(mydat), my_clustering_ new)

if(i == 1){

clusterlabel <- as.integer(my_clustering_ new)

}

else{

clusterlabel <- fastJoin2(my_clustering_old ,

my_clustering_ new)

}

mydat <- aggdata_ old

my_clustering_ old <- clusterlabel

}

mclusterlabel[myidxs ,2] <- clusterlabel

myproto <- mydat

mynpro <- nrow(myproto)

rdsmlock(’lck’)

cumm [1,1] <- cumm [1,1] + 1

cumm [1,2] <- cumm [1,2] + mynpro

cum=cumm [1,1]

rdsmunlock(’lck’)

mclusterlabel[myidxs ,1] <- cum

myproto <- cbind(myproto ,rep(cum ,mynpro ))

return(myproto)

}

dostep2 <- function(klabel ,mclusterlabel) {

42



require(parallel)

require(Rcpp)

cppFunction(’IntegerVector␣fastJoin2(IntegerVector␣mer1 ,␣IntegerVector␣mer2)␣{

␣␣␣␣␣␣␣␣␣␣␣␣␣␣//mer1␣is␣original␣data␣matrix

␣␣␣␣␣␣␣␣␣␣␣␣␣␣//mer2␣in␣final␣cluster

␣␣␣␣␣␣␣␣␣␣␣␣␣␣//This␣function␣want␣to␣perform␣inner␣join

␣␣␣␣␣␣␣␣␣␣␣␣␣␣//Store␣dimensons␣of␣the␣for␣loop

␣␣␣␣␣␣␣␣␣␣␣␣␣␣long␣numN␣=␣mer1.length ();

␣␣␣␣␣␣␣␣␣␣␣␣␣␣IntegerVector␣mer3(numN);

␣␣␣␣␣␣␣␣␣␣␣␣␣␣for(long␣j␣=␣0;␣j␣<␣numN;␣j++){

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣mer3(j)=mer2(␣mer1(j)␣);

␣␣␣␣␣␣␣␣␣␣␣␣␣␣}

␣␣␣␣␣␣␣␣␣␣␣␣␣␣return␣mer3;

␣␣␣␣␣␣␣␣␣␣␣␣␣␣}’)

mywok <- myinfo$id

mklabel <- klabel[klabel [,1]==mywok ,2]

mcluster <- mclusterlabel[mclusterlabel [,1]==mywok ,2]

ft <- fastJoin2(mcluster , mklabel)

mclusterlabel[mclusterlabel [,1]==mywok ,4] <- ft

return (0)

}

## main function ##

# cumm is a 1 by 2 shared matrix ,

# 1st number is accumulated number of tasks ,

# 2nd number is accumulated number of prototypes .

# klabel is a f by 2 shared matrix ,

43



# f is the number of prototypes ,

# 1st column is an index for tasks ,

# 2nd column is labels by kmeans clustering .

# ctab is a tabel for cluster labels , the rows are simulated

# label , the columns are predicted labels .

# is exported in ctab7 . txt .

# acc is the prediction accuracy .

# is exported in ctab7 . txt .

test <- function(datt ,cls , n, d, t, m, k) {

library(’parallel ’)

library(’Rdsm’)

library(’Rcpp’)

library(’distances ’)

library(’scclust ’)

library(’pdist’)

# make shared variables and lock in multiple cores

mgrinit(cls) # initial the cores

makebarr(cls) # shared bar

mgrmakevar(cls ,"dat",n,d+1)# shared variable must be a matrix

mgrmakevar(cls ,"mclusterlabel",n,4)

mgrmakevar(cls ,"cumm" ,1,2)

mgrmakelock(cls ,"lck") # shared lock

dat[,]<- datt # initial value of shared varibales

cumm[,]<- 0

clusterExport(cls ,c("dostep1","dostep2","n","d","t","m","k"))

# export variables to worker environment

mproto <- clusterEvalQ(cls ,dostep1(n,t,d,m,dat ,mclusterlabel ,
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cumm)) # execute dostep1 in each cores

proto <- matrix(unlist(lapply(mproto , function(u) c(t(u)))),

ncol=d+1, byrow=T) # mapreduce

print(cumm[,])

kfit <- kmeans(proto [,1:2], centers = k, nstart = 10)

# k- means clustering

mgrmakevar(cls ,"klabel",cumm [1,2],2)

klabel [,1] <- proto[,3]

klabel [,2] <- kfit$cluster

clusterEvalQ(cls ,dostep2(klabel ,mclusterlabel ))

# execute dostep2 in each cores

# write . table ( mclusterlabel [,], file =’ clusterlabelbef1 .txt ’,

row.names=F)

# ctab0 = table ( mclusterlabel [ ,4] , mclusterlabel [ ,3] , dnn =

c("Predicted","True"))

# write . table ( ctab0 , file =’ ctab0 .txt ’)

match <- rep(0,k)

# match the lables of simulation and k- means

for (i in 1:k){

match[i] <- which.max(as.matrix(table(c(1,2,3,

mclusterlabel[mclusterlabel [,3]==i ,4]))))

}

print(match)

mclusterlabel [,4] <- 0 - mclusterlabel [,4]

for (i in 1:k){

mclusterlabel[mclusterlabel [,4]==- match[i],4] <- i

}
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# write . table ( mclusterlabel [,], file =’ clusterlabelaft1 .txt ’,

row.names=F)

ctab=table(mclusterlabel [,4], mclusterlabel [,3],dnn=

c("Predicted","True"))

# write . table (ctab , file =’ ctab7 .txt ’)

acc=sum(diag(ctab))/n

print(acc)

return(acc)

}

## simulate , test , result ##

# simulation

d=2; t=2; m=3; k=3

n=10^8

c1 <- 4

c2 <- 8

c3 <- 16

c4 <- 32

x<- cbind(rbind(rmvnorm (0.5*n,mean=c(1,2),sigma=matrix

(c(1,0,0,0.5), ncol=2,byrow=T)), rmvnorm (0.3*n,mean=c(7,8),

sigma=matrix(c(2,0,0,1),ncol=2,byrow=T)),rmvnorm (0.2*n,mean

=c(3,5),sigma=matrix(c(3,0,0,4),ncol=2,byrow=T))),c(rep

(1,0.5*n),rep(2,0.3*n),rep (3,0.2*n)))

datt <- x[sample.int(n),]

rm(list=setdiff(ls(),c("datt","n","d","t","m","k","c1","c2",

"c3","c4","dostep1","dostep2","test")))
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cls1=makeCluster(c1)

tim0=proc.time()

acc=test(datt ,cls1 , n, d, t, m, k)

(tim1=proc.time()-tim0)

stopCluster(cls1)

rm(list=setdiff(ls(),c("datt","n","d","t","m","k","c1","c2",

"c3","c4","dostep1","dostep2","test")))

cls2=makeCluster(c2)

tim0=proc.time()

acc=test(datt ,cls2 , n, d, t, m, k)

(tim1=proc.time()-tim0)

stopCluster(cls2)

rm(list=setdiff(ls(),c("datt","n","d","t","m","k","c1","c2",

"c3","c4","dostep1","dostep2","test")))

cls3=makeCluster(c3)

tim0=proc.time()

acc=test(datt ,cls3 , n, d, t, m, k)

(tim1=proc.time()-tim0)

stopCluster(cls3)

A.3 Parallel

# traditional parallelization

# chunksize =n/ batch

# use number of cores : 4, 8, 16 , 32
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# use number of batches : number of cores , 50 , 100 , 200 , 500

# then chunksize is , n/ number of cores ,n/50 ,n/ 100 ,n/ 200 ,n/ 500

library(’mvtnorm ’)

library(’parallel ’)

library(’Rcpp’)

library(’distances ’)

library(’scclust ’)

library(’pdist’)

## parallel function ##

# The function dostep1 generates the prototypes in

# parallelization using package ’parallel ’.

# The function dostep1 returns a list of list after

# parallel , the outer list is results from different tasks ,

# note : the number of tasks is not the number of cores ,

# but the number of batch .

# inside each list ( result from each task ), there are

#3 elements to form a list , they are ,

# mydat : generated prototypes

# clusterlabel : label to match the original data point to

# the prototypes , the label is only valid in each own task .

# npro : the number of prototypes generated from each task

# The function dostep2 matches the cluster labels of original

# points to the labels of prototypes assigned by k- means .

# The output of function dostep2 is the predicted cluster

# for original data point

dostep1 <- function(ichunk) {
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require(parallel)

require(Rcpp)

require(distances)

require(scclust)

require(RcppAlgos)

cppFunction(’NumericMatrix␣fastAgg(NumericMatrix␣orgMeans ,␣IntegerVector␣cats)␣{

␣␣␣␣␣␣␣␣␣␣␣␣␣␣long␣catLeng␣=␣cats.length ();

␣␣␣␣␣␣␣␣␣␣␣␣␣␣int␣numCols␣=␣orgMeans.ncol ();

␣␣␣␣␣␣␣␣␣␣␣␣␣␣long␣numCats␣=␣max(cats);

␣␣␣␣␣␣␣␣␣␣␣␣␣␣IntegerVector␣catSize(numCats +1);

␣␣␣␣␣␣␣␣␣␣␣␣␣␣NumericMatrix␣aggMeans(numCats+1,numCols );

␣␣␣␣␣␣␣␣␣␣␣␣␣␣for(int␣j␣=␣0;␣j␣<␣numCols;␣j++){

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣for(long␣i␣=␣0;␣i␣<␣catLeng;␣i++␣){

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣//Different␣instructions␣if␣j␣=␣0␣and␣if␣j␣notequal␣zero

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣if(j␣==␣0){

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣catSize[cats[i]]++;

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣aggMeans(cats[i],j)␣=␣(double )( catSize[cats[i]]-1)/catSize[cats[i]]*aggMeans(cats[i],j)␣+␣(double )1/catSize[cats[i]]*orgMeans(i,j);

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣}else{

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣aggMeans(cats[i],j)␣=␣(double)aggMeans(cats[i],j)␣+␣(double )1/catSize[cats[i]]*orgMeans(i,j);

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣}

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣}

␣␣␣␣␣␣␣␣␣␣␣␣␣␣}

␣␣␣␣␣␣␣␣␣␣␣␣␣␣return␣aggMeans;

␣␣␣␣␣␣␣␣␣␣␣␣␣␣}’)

cppFunction(’IntegerVector␣fastJoin2(IntegerVector␣mer1 ,␣IntegerVector␣mer2)␣{

␣␣␣␣␣␣␣␣␣␣␣␣␣␣long␣numN␣=␣mer1.length ();

␣␣␣␣␣␣␣␣␣␣␣␣␣␣IntegerVector␣mer3(numN);
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␣␣␣␣␣␣␣␣␣␣␣␣␣␣for(long␣j␣=␣0;␣j␣<␣numN;␣j++){

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣mer3(j)=mer2(␣mer1(j)␣);

␣␣␣␣␣␣␣␣␣␣␣␣␣␣}

␣␣␣␣␣␣␣␣␣␣␣␣␣␣return␣mer3;

␣␣␣␣␣␣␣␣␣␣␣␣␣␣}’)

mydat <- as.matrix(x[ichunk ,])

n1 <- length(ichunk)

clusterlabel <- rep(NA, n1)

for(i in 1:m){

my_dist <- distances(mydat)

my_clustering_ new <- sc_clustering(my_dist , t)

aggdata_ old <- fastAgg(as.matrix(mydat), my_clustering_ new)

if(i == 1){

clusterlabel <- as.integer(my_clustering_ new)

}

else{

clusterlabel <- fastJoin2(my_clustering_old ,

my_clustering_ new)

}

mydat <- aggdata_ old

my_clustering_ old <- clusterlabel

}

npro=nrow(mydat)

clusterlabel=cbind(clusterlabel ,y[ichunk ])

return(list(mydat , clusterlabel , npro))

}

dostep2 <- function(ichunk2) {
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require(parallel)

require(Rcpp)

cppFunction(’IntegerVector␣fastJoin2(IntegerVector␣mer1 ,␣IntegerVector␣mer2)␣{

␣␣␣␣␣␣␣␣␣␣␣␣␣␣long␣numN␣=␣mer1.length ();

␣␣␣␣␣␣␣␣␣␣␣␣␣␣IntegerVector␣mer3(numN);

␣␣␣␣␣␣␣␣␣␣␣␣␣␣for(long␣j␣=␣0;␣j␣<␣numN;␣j++){

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣mer3(j)=mer2(␣mer1(j)␣);

␣␣␣␣␣␣␣␣␣␣␣␣␣␣}

␣␣␣␣␣␣␣␣␣␣␣␣␣␣return␣mer3;

␣␣␣␣␣␣␣␣␣␣␣␣␣␣}’)

mclu <- matrix(unlist(mres[ichunk2]),ncol=2,byrow = FALSE)

ll<- sum(nprotos [1:( ichunk2 )])+1

ul<- sum(nprotos [1:( ichunk2 +1)])

ft <- fastJoin2(mclu[,1], ktag[ll:ul])

mclu[,1]<- ft

return(mclu)

}

## main function ##

test <- function(cls , n, d, t, m, k,chunksize) {

library(’parallel ’)

library(’Rcpp’)

library(’distances ’)

library(’scclust ’)

library(’pdist’)

ichunk=splitIndices(n, ceiling(n/chunksize ))

clusterExport(cls ,c("x","y","dostep1","dostep2","n","d","t",
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"m","k")) # export variables to worker environment

mres <- clusterApplyLB(cls ,ichunk ,dostep1)

# execute dostep1 in each cores

protos <- matrix(unlist(lapply(mres , function(u) t(u[1][[1]])) ),ncol=2,byrow=T)

nprotos <<- c(0, unlist(lapply(mres , function(u) u[3])))

kfit <- kmeans(protos , centers = k, nstart = 10)

ktag<<- kfit$cluster

mres<<- lapply(mres , function(u) u[-c(1,3)] )

clusterExport(cls ,c("mres","ktag","nprotos"))

nchunk=length(ichunk)

ichunk2=splitIndices(nchunk , ceiling(nchunk ))

mres2 <- clusterApplyLB(cls ,ichunk2 ,dostep2)

mclusterlabel <- matrix(unlist(lapply(mres2 , function(u) t(u)

)),ncol=2,byrow=T)

match <- rep(0,k)

# match the lables of simulation and k- means

for (i in 1:k){

match[i] <- which.max(as.matrix(table(c(1:k,

mclusterlabel[mclusterlabel [,2]==i ,1]))))

}

print(match)

mclusterlabel [,1] <- 0 - mclusterlabel [,1]

for (i in 1:k){

mclusterlabel[mclusterlabel [,1]==- match[i],1] <- i

}

# write . table ( mclusterlabel , file =’ clusterlabelp1 .txt ’,

row.names=F)

52



ctab=table(mclusterlabel [,1], mclusterlabel [,2],dnn=

c("Predicted","True"))

# write . table (ctab , file =’ ctabp1 .txt ’)

acc=sum(diag(ctab))/n

print(acc)

return(acc)

}

## simulate , test , result ##

# simulation

d=2; t=2; m=3; k=3

n=10^8

c1 <- 4

c2 <- 8

c3 <- 16

c4 <- 32

x0<- cbind(rbind(rmvnorm (0.5*n,mean=c(1,2),sigma=matrix

(c(1,0,0,0.5), ncol=2,byrow=T)), rmvnorm (0.3*n,mean=c(7,8),

sigma=matrix(c(2,0,0,1),ncol=2,byrow=T)),rmvnorm (0.2*n,mean

=c(3,5),sigma=matrix(c(3,0,0,4),ncol=2,byrow=T))),c(rep

(1,0.5*n),rep(2,0.3*n),rep (3,0.2*n)))

x0<- x0[sample.int(n),]

x<- x0[,1:2]

y<- x0[,3]

rm(list=setdiff(ls(),c("x","y","n","d","t","m","k","c1","c2",

"c3","c4","dostep1","dostep2","test")))

cls1=makeCluster(c1)
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tim0=proc.time()

acc10=test(cls1 , n, d, t, m, k, n/c1)

(tim11=proc.time()-tim0)

rm(list=setdiff(ls(),c("x","y","n","d","t","m","k","c1","c2",

"c3","c4","dostep1","dostep2","test")))

cls1=makeCluster(c1)

tim0=proc.time()

acc1=test(cls1 , n, d, t, m, k, n/50)

(tim11=proc.time()-tim0)

stopCluster(cls1)

rm(list=setdiff(ls(),c("x","y","n","d","t","m","k","c1","c2",

"c3","c4","dostep1","dostep2","test")))

cls1=makeCluster(c1)

tim0=proc.time()

acc12=test(cls1 , n, d, t, m, k, n/100)

(tim1=proc.time()-tim0)

stopCluster(cls1)

rm(list=setdiff(ls(),c("x","y","n","d","t","m","k","c1","c2",

"c3","c4","dostep1","dostep2","test")))

cls1=makeCluster(c1)

tim0=proc.time()

acc13=test(cls1 , n, d, t, m, k, n/200)

(tim1=proc.time()-tim0)

stopCluster(cls1)
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rm(list=setdiff(ls(),c("x","y","n","d","t","m","k","c1","c2",

"c3","c4","dostep1","dostep2","test")))

cls1=makeCluster(c1)

tim0=proc.time()

acc14=test(cls1 , n, d, t, m, k, n/500)

(tim1=proc.time()-tim0)

stopCluster(cls1)

rm(list=setdiff(ls(),c("x","y","n","d","t","m","k","c1","c2",

"c3","c4","dostep1","dostep2","test")))

cls2=makeCluster(c2)

tim0=proc.time()

acc20=test(cls2 , n, d, t, m, k, n/c2)

(tim1=proc.time()-tim0)

stopCluster(cls2)

rm(list=setdiff(ls(),c("x","y","n","d","t","m","k","c1","c2",

"c3","c4","dostep1","dostep2","test")))

cls2=makeCluster(c2)

tim0=proc.time()

acc21=test(cls2 , n, d, t, m, k, n/50)

(tim1=proc.time()-tim0)

stopCluster(cls2)

rm(list=setdiff(ls(),c("x","y","n","d","t","m","k","c1","c2",

"c3","c4","dostep1","dostep2","test")))
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cls2=makeCluster(c2)

tim0=proc.time()

acc22=test(cls2 , n, d, t, m, k, n/100)

(tim1=proc.time()-tim0)

stopCluster(cls2)

rm(list=setdiff(ls(),c("x","y","n","d","t","m","k","c1","c2",

"c3","c4","dostep1","dostep2","test")))

cls2=makeCluster(c2)

tim0=proc.time()

acc23=test(cls2 , n, d, t, m, k, n/200)

(tim1=proc.time()-tim0)

stopCluster(cls2)

rm(list=setdiff(ls(),c("x","y","n","d","t","m","k","c1","c2",

"c3","c4","dostep1","dostep2","test")))

cls2=makeCluster(c2)

tim0=proc.time()

acc23=test(cls2 , n, d, t, m, k, n/500)

(tim1=proc.time()-tim0)

stopCluster(cls2)

rm(list=setdiff(ls(),c("x","y","n","d","t","m","k","c1","c2",

"c3","c4","dostep1","dostep2","test")))

cls3=makeCluster(c3)

tim0=proc.time()

acc30=test(cls3 , n, d, t, m, k, n/c3)
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(tim1=proc.time()-tim0)

stopCluster(cls3)

rm(list=setdiff(ls(),c("x","y","n","d","t","m","k","c1","c2",

"c3","c4","dostep1","dostep2","test")))

cls3=makeCluster(c3)

tim0=proc.time()

acc31=test(cls3 , n, d, t, m, k, n/50)

(tim1=proc.time()-tim0)

stopCluster(cls3)

rm(list=setdiff(ls(),c("x","y","n","d","t","m","k","c1","c2",

"c3","c4","dostep1","dostep2","test")))

cls3=makeCluster(c3)

tim0=proc.time()

acc32=test(cls3 , n, d, t, m, k, n/100)

(tim1=proc.time()-tim0)

stopCluster(cls3)

rm(list=setdiff(ls(),c("x","y","n","d","t","m","k","c1","c2",

"c3","c4","dostep1","dostep2","test")))

cls3=makeCluster(c3)

tim0=proc.time()

acc33=test(cls3 , n, d, t, m, k, n/200)

(tim1=proc.time()-tim0)

stopCluster(cls3)
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rm(list=setdiff(ls(),c("x","y","n","d","t","m","k","c1","c2",

"c3","c4","dostep1","dostep2","test")))

cls3=makeCluster(c3)

tim0=proc.time()

acc34=test(cls3 , n, d, t, m, k, n/500)

(tim1=proc.time()-tim0)

stopCluster(cls3)

rm(list=setdiff(ls(),c("x","y","n","d","t","m","k","c1","c2",

"c3","c4","dostep1","dostep2","test")))

cls4=makeCluster(c4)

tim0=proc.time()

acc40=test(cls4 , n, d, t, m, k, n/c4)

(tim1=proc.time()-tim0)

stopCluster(cls4)

rm(list=setdiff(ls(),c("x","y","n","d","t","m","k","c1","c2",

"c3","c4","dostep1","dostep2","test")))

cls4=makeCluster(c4)

tim0=proc.time()

acc41=test(cls4 , n, d, t, m, k, n/50)

(tim1=proc.time()-tim0)

stopCluster(cls4)

rm(list=setdiff(ls(),c("x","y","n","d","t","m","k","c1","c2",

"c3","c4","dostep1","dostep2","test")))

cls4=makeCluster(c4)
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tim0=proc.time()

acc42=test(cls4 , n, d, t, m, k, n/100)

(tim1=proc.time()-tim0)

stopCluster(cls4)

rm(list=setdiff(ls(),c("x","y","n","d","t","m","k","c1","c2",

"c3","c4","dostep1","dostep2","test")))

cls4=makeCluster(c4)

tim0=proc.time()

acc43=test(cls4 , n, d, t, m, k, n/200)

(tim1=proc.time()-tim0)

stopCluster(cls4)

rm(list=setdiff(ls(),c("x","y","n","d","t","m","k","c1","c2",

"c3","c4","dostep1","dostep2","test")))

cls4=makeCluster(c4)

tim0=proc.time()

acc44=test(cls4 , n, d, t, m, k, n/500)

(tim1=proc.time()-tim0)

stopCluster(cls4)

A.4 Non-parallel

library(’mvtnorm ’)

library(Rcpp)

library(distances)

library(scclust)
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# Define cpp function #

cppFunction(’NumericMatrix␣fastAgg(NumericMatrix␣orgMeans ,␣IntegerVector␣cats)␣{

long␣catLeng␣=␣cats.length ();

int␣numCols␣=␣orgMeans.ncol ();

long␣numCats␣=␣max(cats);

IntegerVector␣catSize(numCats +1);

NumericMatrix␣aggMeans(numCats+1,numCols );

for(int␣j␣=␣0;␣j␣<␣numCols;␣j++){

for(long␣i␣=␣0;␣i␣<␣catLeng;␣i++␣){

if(j␣==␣0){

catSize[cats[i]]++;

aggMeans(cats[i],j)␣=␣(double )( catSize[cats[i]]-1)/catSize[cats[i]]*aggMeans(cats[i],j)␣+␣(double )1/catSize[cats[i]]*orgMeans(i,j);

}

else{

aggMeans(cats[i],j)␣=␣(double)aggMeans(cats[i],j)␣+␣(double )1/catSize[cats[i]]*orgMeans(i,j);

}}}

return␣aggMeans;

}’)

cppFunction(’IntegerVector␣fastJoin2(IntegerVector␣mer1 ,␣IntegerVector␣mer2)␣{

long␣numN␣=␣mer1.length ();

IntegerVector␣mer3(numN);

for(long␣j␣=␣0;␣j␣<␣numN;␣j++){

mer3(j)=mer2(␣mer1(j)␣);

}

return␣mer3;

}’)
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# Itis function #

Itis_fct_nomid <- function(dat , t, m, d, n){

clusterlabel <- rep(NA, n)

for(i in 1:m){

my_dist <- distances(dat)

my_clustering_ new <- sc_clustering(my_dist , t)

aggdata_ old <- fastAgg(as.matrix(dat), my_clustering_ new)

if(i == 1){

clusterlabel <- as.integer(my_clustering_ new)

}

else{

clusterlabel <- fastJoin2(my_clustering_old ,

my_clustering_ new)

}

dat <- aggdata_ old

my_clustering_ old <- clusterlabel

}

return(list(dat , clusterlabel ))

}

Km_itis_nomid <- function(proto , clusterlabel , k){

kfit <- kmeans(proto , centers = k, nstart = 10)

ft <- fastJoin2(clusterlabel , kfit$cluster)

return(ft)

# assign (" finalcluster _ threshold ", ft , envir = globalenv ())

}
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## main function ##

test1 <- function(datt , n, d, t, m, k) {

try <- Itis_fct_nomid(datt[,1:2], t, m, d, n)

proto <- matrix(unlist(try[1]), ncol=2,byrow = FALSE)

clusterlabel <- unlist(try [2])

res <- Km_itis_nomid(proto , clusterlabel , k)

tru <- datt[,3]

match <- rep(0,k)

# match the lables of simulation and k- means

for (i in 1:k){

match[i] <- which.max(as.matrix(table(c(1:k,res[tru==i]))))

}

print(match)

res <- 0 - res

for (i in 1:k){

res[res==-match[i]] <- i

}

ctab=table(res ,tru ,dnn=c("Predicted","True"))

# write . table (ctab , file =’ ctabn1 _ 9. txt ’)

acc=sum(diag(ctab))/n

print(acc)

return(acc)

}

## simulate , test , result ##

# simulation
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d=2; t=2; m=3; k=3

n=10^8

x<- cbind(rbind(rmvnorm (0.5*n,mean=c(1,2),sigma=matrix

(c(1,0,0,0.5), ncol=2,byrow=T)), rmvnorm (0.3*n,mean=c(7,8),

sigma=matrix(c(2,0,0,1),ncol=2,byrow=T)),rmvnorm (0.2*n,mean

=c(3,5),sigma=matrix(c(3,0,0,4),ncol=2,byrow=T))),c(rep

(1,0.5*n),rep(2,0.3*n),rep (3,0.2*n)))

datt <- x[sample.int(n),]

rm(list=setdiff(ls(),c("datt","n","d","t","m","k","test1",

"Itis_fct_nomid","Km_itis_nomid","fastAgg","fastJoin2")))

# record time and accuracy in scn _ tim7 . txt

tim0=proc.time()

acc1=test1(datt , n, d, t, m, k)

tim1=proc.time()-tim0

print(tim1)

# cat (tim1 , acc1 , ’\n’, file =’ scn1 _ tim9 .txt ’)
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