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Abstract

Variable-rate (VR) nitrogen (N) applications have the potential to improve efficiency of
grain sorghum production. Field experiments were conducted in 2010 and 2011 in Stockton and
Manhattan, KS. Four VR-N prescriptions were generated using various combinations of grid
soil sampling data, soil electrical conductivity (EC) data, and yield maps, and were compared in
the field with a uniform application based on a composite soil sample and whole field average
yield goal. Soil EC data were used to create management zones that were individually soil
sampled. Prescriptions were applied before planting and grain sorghum was harvested and
recorded with a yield monitor in the fall. Grain sorghum yields responded to N at both sites with
a higher response in 2010 due to more precipitation during the growing season. At Stockton in
both years, greatest yields and returns were realized with prescription 4, a combination of
management zone soil data and spatially-variable yield goal, while the smallest yields were
realized with prescription 2 based on management zone soil data and field average yield goal.
Prescription 5, which used grid-soil sampling and a spatially-variable yield goal, and prescription
2 resulted in the lowest returns in both years. At Manhattan in both years, greatest yields and
returns were realized with prescription 3, combining a composite soil sample with spatially-
variable yield goal. Prescription 5 was among the lowest returning treatments in both years. At
Stockton, there was no correlation between yield and soil EC during the 2010 growing season,
however there was a significant correlation between yield and shallow EC during the drier 2011
season. At Manhattan, yield was correlated to deep EC in 2010 and to shallow EC in 2011.
Overall, increasing spatial intensity of data to develop the prescriptions did not necessarily result
in an increased yield response to the application. Prescriptions that included a variable yield goal

component tended to perform better across both sites and years.
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Chapter 1 - Review of Literature

Kansas has the greatest production of grain sorghum (Sorghum bicolor (L.) Moench) in
the United States, with almost 810,000 hectares being harvested in 2011 to produce 2.8 million
Mg of grain. This accounts for over 50% of the grain sorghum produced in the United States
(NASS 2012). Much of this is due to the favorable growing conditions for sorghum in western
Kansas. According to the 2010 Kansas county estimates nearly 95% of the state’s grain sorghum
was grown in the western two-thirds of the state (NASS 2011) where limited rainfall and high
temperatures can make it difficult for other crops to perform. Grain sorghum is considered a
relatively drought tolerant C, plant, capable of performing better than other crops such as corn
(Zea mays L.) and soybeans (Glycine max L. Merr.) when growing in moisture limited and high
temperature conditions (Stahlman and Wicks 2000).

In Kansas, grain sorghum is often substituted for corn in crop rotations and like corn,
grain sorghum can require large amounts of nitrogen (N) fertilizer to achieve high yields.
Nitrogen is one of the most essential and extensively applied nutrients in grain sorghum (Buah et
al. 1998) and often the most expensive input for the crop. When managing N fertility, it is
important to understand that spatial variability exists and that under- and over-applications of N
will cause either N deficiencies in the crop or N losses due to leaching or runoff (Koch et al.
2004). Both of these situations will have an economic impact for farmers and the N losses can
cause environmental concerns for the general public (Buah et al. 1998). One solution to the
under- and over-applications of N fertilizer is to use variable-rate (VR) application methods.
However, very little research has been done pertaining to VR-N application in grain sorghum.

Soil fertility can vary significantly within a field so the traditional nutrient management

strategy of applying a single rate of fertilizer could be considered a misapplication (Thrikawala



et al. 1999). Other variables in the field including soil texture, slope, and yield potential can also
cause a similar result of mismanaged N fertilizer. Many of these field variables can be
measured, recorded, and manipulated to be used in VR fertilizer prescription development.
However, not only does the usefulness of this information need to be studied, but the economics
behind collecting it and implementing it also need to be analyzed.

There are many methods of generating VR-N prescriptions with more new methods
surfacing each year (Anglund and Ayers 2003). Creating a VR-N prescription is based on some
type of variability within the field. Soil fertility, soil texture, soil depth, slope, water infiltration,
yield potential, or elevation can all be variables upon which the prescription is based.
Unfortunately, many of the new methods and technology being used have entered the market
without scientific verification of accuracy or efficacy (Anglund and Ayers 2003). In order for a
prescription to work well, the variables being used should have an influence on yield potential,
soil N content, or some factor that is either going to spatially boost yields, or reduce inputs.

With the cost of N increasing and the cost of VR technology and equipment decreasing, it
is becoming more economical to implement the technology. But for some smaller or less
productive farms the cost to implement the technology and services for VR still may outweigh
the savings on inputs. The potential for improved profitability due to VR-N application depends
on identifying areas in the field where additional N inputs will increase revenue on a scale that is
greater than the added costs and /or identifying areas where reducing N inputs will decrease costs
on a scale that is greater than potential revenue reduction associated with lower grain yield
(Snyder et al. 1999). In order for the returns to outweigh the costs, the fields involved need to
have a sufficient amount of spatial variability. Assessing field variability can be done using

various sampling methods such as grid-soil sampling or by mapping field measurements such as



soil electrical conductivity (EC), yield, topography, or soil type. Once the field variability is
assessed, an N prescription must be created. This step can be expensive to implement depending
on the approach. The profitability potential of VR-N management is significantly enhanced if

the initial means of preparing the prescription maps are less expensive (Koch et al. 2004).

Nitrogen Recommendations

Generating nitrogen recommendations in Kansas is typically done by using the Kansas
State University nitrogen recommendation equation (Leikam et al. 2003):

N recommendation for grain sorghum (lbs acre'l) = (Yield Goal (bu acre'l) x 1.6) - (OM
(%) x 20) — (Sample Depth (inch) x Profile N (ppm) x 0.3) — Manure N — Other N Adjustments
+ Previous Crop Adjustments [1]

The metric equivalent of the equation is:

N recommendation for grain sorghum (kg ha'l) = (Yield Goal (Mg ha'l) x 28.5) - (OM (g
kg'l) x 2.2) — (Sample Depth (cm) x Profile N (mg kg'l) % 0.13) — Manure N — Other N
Adjustments + Previous Crop Adjustments [2]

Yield goal is typically either estimated by the farmer’s past experiences with the field or
from yield monitor data. Soil organic matter content (OM) is measured by extracting 15-cm
depth soil samples and having a soil testing lab perform an OM analysis. The Profile N portion
of the equation is found by extracting 60-cm depth soil samples and having a soil testing lab
analyze them for NOs content. Manure N accounts for the nitrate content of any manure that is
applied to the field. Other N Adjustments would include any nitrates in irrigation water that may
have been applied. Previous Crop Adjustments would credit the field for having a legume
planted previously. This N credit could be anywhere from 22 to 134 kg N ha™! depending on the

quality of the legume crop and whether the crop was terminated and left on the surface or



incorporated using tillage (Leikam et al. 2003). Because each part of the equation has an effect
on the recommended amount of N to be applied, the methods for collecting the data to input as
well as spatial resolution of that data will generate different results. The challenge is selecting

which data to use based on economic feasibility of the approach.

Grid Soil Sampling

One approach for site-specific N studies is the use of grid soil sampling as the primary
method of developing VR-N prescriptions. The trouble is that grid soil sampling is time
consuming and labor intensive (Koch et al. 2004). With nutrients such as P and K, crop removal
values can be used to estimate how much nutrient was removed by the previous crop based on its

yield. This cannot be done with N, due to denitrification and its potential to leach.

Yield Monitoring

Previous crop yields should be considered when generating N prescriptions as one of the
main components of an N recommendation equation is the yield goal of the crop. Yield monitors
generate spatially dense data at a relatively low cost, potentially allowing characterization of the
spatial and temporal yield variability (Dobermann 2003). These data can be used to generate
yield potential for individual locations in a field by analyzing data from years past. However, as
more yield monitors are used and multiple years of yield data accumulate, there is an increasing
concern about how to process and interpret these data. This is due to the fact that the analysis
and interpretation of yield map data has lagged behind yield monitor adoption by farmers
(Dobermann 2003).

When calibrated properly, yield monitors perform quite well. One research project
reported that when compared to certified scales, yield monitors were accurate to within 2 to 5%

(Dobermann 2003). Before using the yield monitor data to make site-specific management
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decisions it is necessary to clean the data by removing points where: the combine header was
raised, no grain flow was detected, values exceeded minimum and maximum biological yield
limits, or the point was a local neighborhood outlier or a co-located point (Simbahan et al. 2004).
This will improve the quality of the yield maps and allow them to be a more accurate assessment

of yield.

Topography
A major portion of field variability is credited to topography. Topography affects yield

by influencing water availability and the redistribution of soil particles, OM, and soil nutrients
with resulting changes in physical and chemical properties of uphill and downhill soils
(Kravchenko and Bullock 2000). Topography also plays a large part in the traditional
management of many fields by giving a reason to terrace side-hills and plant with the contour.
For site-specific management, knowing elevation and slope throughout a field can be most
helpful for delineating areas where crop yields are more sensitive to extreme conditions, such as

erosion on hillsides and flooding in low areas (Kravchenko and Bullock 2000).

Soil Type

Creating nutrient management zones by soil type is another way to approach field
management in a site-specific manner. Using soil surveys is a great way of determining soil
types throughout a field, but often these surveys are created on a scale that is not accurate enough
to be used in site-specific management. Order 2 surveys are those seen in most county soil
survey publications and have a scale from 1:12,000 to 1:31,680. These were developed for
agriculture requiring detailed soils information for general planning purposes (Franzen et al.

2002). Order 1 surveys are needed for applications requiring very detailed soils information and



usually have a scale larger than 1:15,840. The order 1 survey is much more related to soil NO;

and would be more useful for determining nutrient management zones (Franzen et al. 2002).

Remote Sensing
Remote sensing is an increasingly popular source of data for site-specific crop

management. Defined as the process of acquiring information about objects from remote
platforms such as a boom, aircraft, or satellite, remote sensing provides important spatial and
temporal data (Shanahan et al. 2001). Nitrogen is the most limiting nutrient in production of
non-leguminous crops in the Great Plains (Osborne et al. 2002). However, with the use of
remote sensing plant N concentration can be predicted to help determine if the N content is
limiting the crop. One study shows that plant N concentration was best predicted using
reflectance in the red and green regions of the spectrum, while grain yield was estimated using
reflectance in the near-infrared (NIR) region (Osborne et al. 2002). Another study used green
and near-infrared reflectance to calculate an N reflectance index. This index was highly
correlated to a Nitrogen sufficiency index calculated from SPAD chlorophyll meter data and
provided a quick assessment of plant N (Hatfield et al. 2008). There are a number of additional
vegetative indices that are used for detecting crop health. One of the more commonly used
indices is the normalized difference vegetative index (NDVI), where NDVI= (NIR-Red) / (NIR
+ Red), where NIR is near infrared reflectance and Red is red light reflectance (Shanahan et al.
2001). The NDVI is used to assess the health and condition of a growing crop or natural cover.
Some research has shown that NDVI data could have issues due to soil background effects on the
imagery (Shanahan et al. 2001). Using remote sensing to detect plant health or measure N
concentration requires the crop to be growing, therefore it is not practical for pre-plant fertilizer

applications. However, it can be used as a follow-up to determine general crop health and



whether fertility was assessed correctly. Remote sensing is used more to direct topdressing, side-

dressing, and split applications of N fertilizer.

Soil Electrical Conductivity

Soil EC is a field mapping option that shows promise for site-specific management.
Depending on the strength of the relationship between EC and the soil’s characteristics, EC may
function as a direct or indirect indicator of numerous parameters such as soil moisture and clay
content (Johnson et al. 2003). However, the practical utility of EC remains elusive due to its
complex interactions between soil chemical and physical properties. Research has shown that
the spatial patterns in EC are more correlated with clay, sand, organic matter components,
subsoil structure, and exchange cations than the transient properties of soil water and temperature
(Farahani and Buchleiter 2004).

Collecting EC data is fast, inexpensive, and the data do not need to be collected yearly,
which is ideal for keeping input costs low. Soil EC is usually measured at two depths: a shallow
reading (0-30 cm) and a deep reading (0-90 cm) (Johnson et al. 2003). The temporal stability of
the deep readings will usually be greater than the shallow readings however it is dependent on
the type of soil (sand vs clay) (Farahani and Buchleiter 2004). Determining which depth
correlates to yield the best can depend on the field and the subsoil structure. Generally, shallow
EC has been shown to be highly correlated with soil moisture, organic matter, and N content
(Johnson et al. 2003). Deep EC has been shown to be correlated to claypan topsoil thickness and
water holding capacity (Farahani and Buchleiter 2004).

The typical usage of EC data was to create management zones based on spatial patterns
in EC. These zones will have similar characteristics which usually include OM, N content,

salinity, percent clay, and bulk density (Johnson et al. 2003). Soil EC has been recognized as



being a less expensive method for creating field management zones. Other means of
determining field management zones based on soil parameters include grid-soil sampling, which
can be costly and therefore economically unfeasible, particularly in dryland, low input farms

(McCann et al. 1996).

Economic Considerations
Grid-soil sample-based field management is a tedious process and an intensive

management strategy, however it is still feasible to manage some fields using a grid layout. As
long as the increases in gross revenue or decreases in N input costs outweigh the added cost of
technologies or services needed for VR, the management practice is sufficient (Koch et al. 2004).
This is usually the case when a field is highly productive and highly variable. Changes in soil
properties over time will affect the frequency of sampling when considering temporal variability.
Often, crop rotations and intensity will have an influence on how often soil sampling needs to
occur and can range from being performed annually, biannually, or even less frequently. This
will have a large impact on the economic analysis of any type of sampling taking place. There
has been research conducted regarding the economics behind VR-N application (Thrikiwala et
al. 1999; Roberts et al. 2000) however, most was done using crop modeling or hypothetical
scenarios in corn. Using a theoretical model, Roberts et al. (2000) found that yield would most
likely increase O to 125 kg ha™ on average using VR-N application compared to a uniform N
application. This indicated that a significant reduction in N input was required in order to see an
economical advantage from VR-N technology. Thrikiwala et al. (1999) found that a uniform N
application was likely to be more economical when field areas were small and when there was
little spatial variability in soil properties. Variable rate N applications can potentially improve

yields and reduce inputs enough to be economically advantageous in fields with moderate to high



variability. Ideally, economic analysis should be done on a field to field basis due to differences
in spatial variability among individual fields (Roberts et al. 2000).

Site-specific management zones (SSMZ) is one way of classifying field regions with
similar characteristics. By creating SSMZ a producer will have subfields that will be treated
homogenously rather than treating the whole field in this manner. With similar productivity
potential, fertilizer can be variably applied in accordance with the nutrient needs of each zone
(Hornung et al. 2006). The purpose of using SSMZ was to capture the variabilty throughout a
field while allowing the field management to remain economically feasible. Creating SSMZ can
be approached in numerous ways involving many different types of data, such as soil surveys,
topographic maps, remote images, soil EC, yield maps, and others (Hornung et al. 2006). There
are multiple ways to combine these data to make SSMZ. One effective way was to combine
topography and EC data (Fraisse et al. 2001). Another method was to use yield data and create
yield region maps (Flowers et al. 2005). However, the appropriateness of management zones
was based on the particular field and location of the area of interest (Schepers et al. 2004).

The objective of this study was to develop, apply, and evaluate five different N fertilizer
prescriptions for grain sorghum. The prescriptions were generated by using different levels of
input information intensity. The prescriptions included the use of site-specific data such as grid
soil sampling, soil EC, and historical yield monitor data in multiple combinations. Prescriptions
build upon each other, each one adding more intensity to the input data than the previous one.
The first prescription begins with a traditional fertilization method with a consistent, uniform N
rate. The second prescription adds EC management zones into the generation process and the
third prescription uses spatially-variable yield data. The fourth prescription combines

prescriptions 2 and 3 while prescription 5 brings the most intensity by adding grid-soil sampling



data with spatially-variable yield data. The prescriptions were applied in the field at two
locations over two years (four site-years) and compared based on yield response to N,
prescription yield performance compared to historic yields, correlations of variables to yield,
prescription revenues, prescription input expenses, and returns over N prescription costs. The
hypothesis was that increasing the amount of spatially-variable data input into the N
recommendation equation may boost yields while lowering the N fertilizer required thus

improving returns in grain sorghum in Kansas.
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Chapter 2 - Generating Variable-Rate Nitrogen Prescriptions Using
Yield Data, Soil Electrical Conductivity, and Grid-Soil Sampling

ABSTRACT

Variable-rate (VR) technology has been developed to capture and manage spatial
variability within fields. A major uncertainty, however, is how to take advantage of and
document this in-field variability. Although VR nitrogen (N) management can reduce inputs and
potentially boost yields, it also requires an investment in technology and information. The
purpose of this study was to create multiple VR-N fertilizer prescriptions based on various sets
of data collected from four different fields. Fields were in Stockton and Manhattan, KS in 2010
and 2011 where grid soil sampling data, soil electrical conductivity (EC) data, and historic yield
maps were used in different combinations to generate four VR-N prescriptions and one uniform
N prescription to be used in grain sorghum. One prescription involved combining yield map data
with grid soil sampling data to provide spatially-variable yield goals, profile N tests, and soil
organic matter (OM) tests across the fields. Another prescription used yield map data and soil
EC data to provide spatially-variable yield goals and EC zones that were sampled for profile N
and OM. The other prescriptions used historic yield data for a spatially-variable yield goal with
a field-composite soil test, used grid soil samples with a fixed overall yield goal, and used a
field-composite soil test and fixed overall yield goal. Each prescription offered a different level
of data intensity with respect to the inputs involved in creating it. All prescriptions were
generated using EASi Suite GIS software and the KSU nitrogen recommendation equation for
grain sorghum. The prescriptions were compared based on the variability of soil test data, EC,

and yield goals. The variability and range of the input data had little effect on the total N
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required to apply the prescription across the whole field. Typically, as prescription input data
became more intense, more spatial-variability was captured by that prescription, as expected.
The next step will be to field test the prescriptions and collect yield data to determine which
prescriptions were more accurate and whether those requiring less or more N to fulfill the

recommendations were under- or over-applying N.
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INTRODUCTION

As the era of precision agriculture expands, the use and understanding of field data being
collected must also expand. Understanding how the data can be gleaned and manipulated to be
used in decision making process is widely undervalued. One aspect of precision agriculture that
requires the use of these field data is variable-rate (VR) fertilizer applications. When it comes to
managing the most essential crop nutrients, such as nitrogen (N), it is important to realize that
spatial variability exists and that over- and under-applications of N occur using traditional
management (Koch et al. 2004). Soil fertility can vary significantly within a field so the typical
nutrient management strategy of applying a single rate of fertilizer could be considered a
misapplication (Thrikawala et al. 1999). Other spatially-variable field properties, including soil
texture, water holding capacity, and yield potential can also cause a misapplication of N.

Even with an understanding that spatial variability exists within a field, a challenge still
presents itself: building prescriptions. There are many methods of generating a VR-N
prescription with more new methods surfacing each year. Unfortunately, many of the new
methods and technologies have entered the market without scientific verification of accuracy or
efficacy (Anglund and Ayers 2003). Regardless of the method being used, it is important to use
some form of N recommendation equation to be sure all N sources and field variables are
accounted for. The Kansas State University N recommendation equation accounts for the yield
goal of the field to initially set the total N required. In-field N sources such as profile NO3,
organic matter (OM), legume crop residue, and manure are taken into account and subtracted
from the total N required to provide the producer with a recommended N fertilizer value (Leikam
et al. 2003). Using an equation such as this, a producer can account for the variables that affect N

fertilizer requirements for a crop and reduce over- or under-applications of N. The equation used
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for grain sorghum (Sorghum bicolor (L.) Moench) suggests that each bushel of grain produced
will need 1.6 1bs of N (1 kg of grain needs 28.5 g N) to be taken up by the plant. This value is

based on N use efficiency (NUE) of 50% (Leikam et al. 2003). Depending on the soil and the

year, NUE can fluctuate drastically, but if NUE is consistently higher or lower, then the 1.6 1bs
of N can be adjusted.

In 2011, Kansas produced over 50% of the grain sorghum in the United States (NASS
2012). Much of this is due to the favorable growing conditions for sorghum in western Kansas.
Grain sorghum is considered a relatively drought tolerant C4 plant, capable of performing better
than other crops such as corn (Zea mays L.) and soybeans (Glycine max L. Merr.) when growing
in moisture-limited and high temperature conditions (Stahlman and Wicks 2000). Very little
research has been done pertaining to VR-N application in grain sorghum, even though grain
sorghum is often substituted for corn in crop rotations in Kansas.

The objective of this study was to use multiple methods to generate five different N
fertilizer prescriptions. The prescriptions will include the usage of site-specific data such as grid
soil sampling, soil electrical conductivity (EC), and yields in multiple combinations.
Prescriptions build upon each other, each one adding more spatiall-intense input data than the
previous. The first prescription consists of a more traditional method by recommending a
constant, uniform N rate across the field. The second prescription adds EC management zones
into the generation process and the third prescription uses spatially-variable yield data. The
fourth prescription combines prescriptions 2 and 3 while prescription 5 brings the most intensity
by adding grid soil sampling to yield data. The hypothesis was that as input data increases in
intensity, more field variability will be captured, and therefore, the N recommendation output

will become more variable and fine-tuned.
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MATERIALS AND METHODS

Nitrogen fertilizer recommendations were generated for two grain sorghum production
fields in 2010 and in adjacent fields at the same farms in 2011. The first farm was a farmer-
owned and operated production field in Stockton, KS and the second farm was located at the
Kansas State University Department of Agronomy North Farm in Manhattan, KS. The Stockton
fields were larger tracts than those used in Manhattan with the 2010 field being 38 ha and the
2011 field being 17.8 ha, both with a Holdrege silt loam soil, as compared with the Manhattan
fields which were 8.9 ha and 7.3 ha in 2010 and 2011, respectively. Manhattan fields were a
Smolan silt loam soil with partial inclusions of Wymore silty clay.

Prior to each growing season, soil samples were taken in a grid pattern. Due to the small
scale of the experiments, Stockton sites were sampled on a 0.4 ha grid while the Manhattan sites
were sampled on a 0.2 ha grid. Each sample included a 15 cm surface depth to acquire pH, OM,
potassium, phosphorus, and surface NO3; measurements accompanied with a 15 to 46 cm profile
depth used to provide profile NO3; measurements. Samples were submitted to the Kansas State
University Soil Testing lab for analysis.

Prescriptions were generated with the software package EASi Suite version 2009.01
(Mapshots Inc., Cumming, GA). Using this software all soil sample data were imported for each
field, interpolated using inverse distance weighting (IDW), and saved as a layer. When creating
these layers, polygons were used to create the surface of the field. Each polygon was fitted with
its own set of data estimated via interpolation. In this case, dimensions of the polygons were
directly related to the width of the fertilizer application equipment to be used in each field. The

applicator width was 10.7 m for Stockton, therefore interpolation was done in 10.7 by 10.7 m
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polygons. The applicator width for Manhattan was 4.6 m, therefore interpolation was done in
4.6 by 4.6 m polygons.

Soil EC measurements were taken at each site using a Veris 3100 EC cart (Veris
Technologies, Salina, KS). In 2010, Stockton field was measured on May 17 and the Manhattan
field was measured on May 24. In 2011, the Stockton field was measured on May 6 and
Manhattan field was measured on May 4. The Veris cart measures EC at two depths, Shallow
(30cm) and Deep (90cm), by inducing an electrical current into the soil through two coulter
electrodes and measuring the voltage drop across two pairs of coulters (Lund et al. 2000).

Soil EC data were imported into EASi Suite where it was interpolated using IDW and
saved as a layer. In order to use the soil EC data to generate the prescriptions, the layer was
grouped into site-specific management zones that possess similar EC measurement values thus
creating zones with similar soil properties that may include clay content, soil water content,
salinity, bulk density, depth of conductive soil layers, and OM (Johnson et al. 2003; Kitchen et
al. 2003). Management zones were developed using a format similar to a contour map where
division lines were drawn between clusters of similar data. Management zones were based on
the shallow EC measurements. Shallow EC has been reported be correlate to soil water, organic
matter content, and total N (Johnson et al. 2001). Both Stockton fields were divided into five
management zones while the Manhattan fields were divided into six zones in 2010 and five
zones in 2011. These zones were treated as homogenous regions and the grid-soil sample data
from within each zone were averaged to give soil test values for each zone (Table 2.2). This
layer was used in generating prescriptions 2 and 4.

Stockton fields had historical yield data from three previous growing seasons available

while Manhattan fields had yield data from six growing seasons. It was important to have an
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adequate number of growing seasons of yield data in order to represent spatial yield performance
in each field. Historic yield data were subsequently used to establish a spatially-variable yield
potential, or yield goal, in the fields. Historical yield data were imported into the software,
filtered, and cleaned using the ARS yield editor add-on within EASi Suite. This removed
erroneous data caused by rapid harvester speed changes, flow delays, and simple harvester
machine dynamics (Griffin et al. 2007). Once the skewed and inaccurate data were removed, the
yield data from each year were interpolated using IDW and saved as a layer. Each year’s layer
then had to go through a process called normalization. This converted each yield data polygon
into an annual relative yield that lies on a scale between -1 and 1 and allowed for comparison of
multiple years of yield data when different crops were in the rotation. This calculation was
called annual relative difference (ARD) and was performed within the EASi Suite option
IntelliCalc. The calculation of ARD for each polygon was:

ARD = (Yield - Average Yield) / Average Yield [1]
where Yield (kg ha) is the measured yield in given polygon and Average Yield (kg ha) is the
observed field average.

Before the ARDs can be used to create a yield goal component it was important to
compare among years to ensure that the field highs and lows were correlated to each other. If the
multiple crops in the rotation were not all correlated, it was acceptable to exclude those with low
correlations. All ARDs were highly correlated for all locations and years (data not shown). This
allowed the ARDs for each field to be averaged into one layer labeled mean relative difference
(MRD) by placing each layer on top of another and averaging the values that were “skewered”

through each polygon (Figure 2.1). This estimates a MRD for each polygon in the field and
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indicated whether the polygon had high, medium, or low performance based on average yields.
The calculation for MRD was:
MRD = (ARD; + ARD;..... ARDyx)/ X [2]
where x is the years of yield data available. The MRD layer was then used to calculate the grain
sorghum yield goal for each individual polygon in the field. Yield Goal was calculated for each
field using:
Yield Goal = [(MRD + 1) X Field Average Yield] X 1.1 [3]

where the Field Average Yield is the expected grain sorghum yield for that field based on past
records or experience. This calculation used the past yield data to weigh in with each polygon’s
relative potential while using a producer’s field average yield to set the basis for yield prediction.
The last term in equation 3 provides a 10% increase over field average yield as yield goals are
usually aimed at achieving above average yields. Table 2.3 indicates the range in yield goals for
all four fields. This yield goal layer was used in the process of generating prescriptions 3 and 5.

Five different N fertilizer prescriptions were generated for each grain sorghum crop using
data collected from each field. Each prescription was created using the Kansas State University
Nitrogen Recommendation Equation:

N (Ibs/acre) = (YIELD GOAL * 1.6) — (% OM x 20) — (0.3 *x 18” x PROFILE NO3) [4]
where YIELD GOAL (bu/ac), OM (%), and PROFILE NOs (ppm) were the three input variables
used to generate the five prescriptions.

Prescription 1 used a field composite soil test to provide the PROFILE NO3z and OM
input values and a fixed YIELD GOAL to generate a uniform N prescription. The field
composite soil sample was used as a whole field representation and was generated by averaging

together several grid sample points from across the field to simulate the field composite soil
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sample. The fixed yield goal was determined by using an estimated field average for grain
sorghum yield.

Prescription 2 used the soil EC measurements to create management zones which were
individually soil sampled to create zone-composite soil tests. These soil data provided the
PROFILE NO; and OM input values and together with the fixed YIELD GOAL, a VR-N
prescription was generated.

Prescription 3 used the yield data from previous cropping seasons to create a spatially-
variable YIELD GOAL that was combined with a field composite soil sample to provide the
PROFILE NO3 and OM input values to generate a VR-N prescription.

Prescription 4 combined the spatially-variable YIELD GOAL component from
prescription 3 with the soil EC management zone approach from prescription 2 to provide the
PROFILE NO; and OM values and create a VR-N prescription.

Prescription 5 combined the spatially-variable YIELD GOAL component from
prescription 3 with PROFILE NO3; and OM input values based on grid soil samples rather than
field composite or EC management zone soil samples to generate a VR-N prescription.

Prescriptions 2, 3, 4, and 5 were all VR-N prescriptions, due to one or more components
being spatially variable and needed to be prepared using IntelliCalc. Prescription 1 did not have
any spatially-variable inputs and therefore could be calculated using only the KSU N
recommendation equation (Leikam et al 2003). The four fields were compared using average,
minimum, and maximum values of the historical yields and soil properties measured.
Prescriptions for each field were compared based on the variability in yield goal, NO3, and OM

that each one captured and used to generate a N recommendation. Comparisons were also based
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on average, minimum, and maximum N rates to be applied among prescriptions and the total N

required by each prescription to fertilize the entire field area.

RESULTS AND DISCUSSION

Data intensity increased from prescription 1 through prescription 5 with regards to extent
of spatial variability of input data and the variability in the N rate to be applied. Tables 2.2
through 2.4 indicate the large ranges in the measurements of yield goal, NOs, and OM as the
prescription number increases in Stockton 2010 and 2011 and Manhattan 2010. Manhattan 2011
had a yield goal range of over 6000 kg ha™' in prescriptions 3 through 5, whereas prescriptions 1
and 2 have no range in yield goal (Table 2.5). The variability of profile soil NO3 was much
greater for prescription 5 than it was for prescriptions 2 and 4, again due to the density of
sampling for the input data (Tables 2.2 to 2.5). Prescriptions 1 and 3 have no variability in
profile soil NOj test data, as those data came from the field composite soil sample. Prescription
5 had the most range in yield goal, NO3, and OM in all fields due to the high density of data from
grid soil sampling. The result of capturing more variability often allowed prescription 5 to
decrease the total N required (Tables 2.6 to 2.9). Prescriptions 3 and 4, although more intensive,
often had higher total N requirements than the lower intensity treatments, but this varied from
field to field. Prescription 3 had the highest average N rate recommended to be applied across all
four fields yet it did not always have the highest maximum N rate or the widest range of N rates
(Tables 2.6 to 2.9). This was a result of the yield goal component having such a large influence
on the outcome of the N recommendation equation.

The degree of N rate variability shown in Tables 2.6 through 2.9 is an indicator of how
differently these prescriptions captured variability in the field. The total N required to fulfill

each prescription also shows how variability was captured differently. For example, a range of
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170 kg of total N was required to fertilize across the different prescriptions in Manhattan 2010
compared to a range of 1405 kg of total N required to fertilize across the five prescriptions in
Stockton 2010.

Mallarino and Wittry (2004) found that more intensive grid sampling approaches
uncovered more variability than zone sampling approaches which agrees with our results.
However, adoption of an intensive grid-soil sampling approach may not be practical due to the
increased costs associated with the approach and the possibility that increases in variability
uncovered may not result in a crop response. Another approach to mapping in-field soil
variability was zone sampling. Shaner et al. (2008) found that soil EC effectively assisted in
developing management zones that provided soil fertility information comparable to grid soil
sampling without the large number of samples and high cost. Soil EC also provided more
valuable information towards generating zones than Order 2 soil surveys and topography maps in
some fields (Shaner et al. 2008; Kitchen et al. 2003). Yields were also variable across the field
and were captured using yield monitors. Using yield monitor data from previous years can be an
improved way of determining yield goals on a spatial basis (Taylor 1998). Spatial yield goals
have been reported to be beneficial and should be used when making management zones and
fertility recommendations (Chang et al. 2004). Due to the differences in spatial variability
captured across fields, it is important to understand which variables might drive the yield
potential for any given field. This may allow for a starting point, if not some conclusive

reasoning for selecting VR-N prescription generation methods.
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Figure 2.1 Illustration of the “‘skewering’ effect on a polygon in a field through multiple
layers of data. This example shows how annual relative difference (ARD) layers of

multiple years (2006, 2007, 2008, and 2009) were combined.
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Table 2.1 Average, CV, minimum, and maximum values for variables measured in each field.

Field Statistic ECspaiow ~ ECpeep YG NO, oM P K pH
------ mS m"'----- kg ha mg kg'1 g kg'1 mg kg'1 mg kg'1

Stockton 2010 Average 77.0 70.1 6903 6.9 1.9 14.9 587 6.4
Cv 154 55 13.0 24.5 17.3 46.8 5.8 7.6
Minimum 41.0 50.0 4393 4.5 1.2 7.2 528 5.7
Maximum  106.0 98.7 9249 11.5 2.6 33.2 672 7.7

Stockton 2011 Average 28.0 - 6777 10.0 1.7 13.6 536 59
Cv 10.7 - 6.0 29.0 20.1 23.6 6.7 32
Minimum 15.0 - 4769 5.0 1.0 9.0 464 5.6
Maximum 40.0 - 9249 19.0 2.0 220 679 6.4

Manhattan 2010 ~ Average 88.0 67.2 7154 7.7 2.2 26.1 294 6.5
Cv 8.8 3.8 7.9 159 164 75.4 6.0 9.5
Minimum 64.0 589 3972 6.5 1.6 4.3 196 5.8
Maximum  115.0 76.0 8333 9.0 3.1 70.4 351 7.8

Manhattan 2011 Average 320 - 7593 13.2 2.3 15.0 394 5.7
Cv 21.2 - 13.6 12.6 14.7 85.0 139 8.4
Minimum 16.0 - 3796 8.8 1.7 53 337 52
Maximum 55.0 - 10228 17.8 2.9 117.0 570 7.0

ECshatow - 30-cm soil electrical conductivity, ECqeep - 100-cm soil electrical conductivity, YG — yield goal based on normalized yield,
NOj3— 45-cm nitrate content, OM — 15-cm organic matter content, P — 15-cm phosphorus content, K — 15-cm potassium content
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Table 2.2 Average, minimum, and maximum input values used in generating prescriptions for Stockton 2010.

Yield Goal NO; Organic Matter

Prescription  Average  Minimum Maximum Average Mimnimum Maximum Average  Mmnimum Maximum
——————————————— kg 1 ———————————————mgkg’l——————————————‘ ———————————————gkg'l———————————————

1 6903 6903 6903 16.3 16.3 16.3 2.1 2.1 2.1

2 6903 6903 6903 16.0 10.9 27.3 1.9 1.7 2.0

3 6903 4393 9249 16.3 16.3 16.3 2.1 2.1 2.1

4 6903 4393 9249 16.0 10.9 27.3 1.9 1.7 2.0

5 6903 4393 9249 227 8.5 34.2 1.9 2.7 2.4

Table 2.3 Average, minimum, and maximum input values used in generating prescriptions for Stockton 2011.

Yield Goal NO;3 Organic Matter

Prescription ~ Average Mmimum Maximum Average  Minimum Maximum Average Mmnimum Maximum
——————————————— kgha'l——————————————- ———————————————mgkg'l——————————————‘ ———————————————gkg'l———————————————

1 6777 6777 6777 27.3 27.3 27.3 1.7 1.7 1.7

2 6777 6777 6777 234 18.9 40.5 1.7 1.0 2.1

3 6777 4769 9989 27.3 27.3 27.3 1.7 1.7 1.7

4 6777 4769 9989 234 18.9 40.5 1.7 1.0 2.1

5 6777 4769 9989 23.2 12.1 479 1.7 0.9 2.3
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Table 2.4 Average, minimum, and maximum input values used in generating prescriptions for Manhattan 2010.

Yield Goal NO; Organic Matter

Prescription  Average  Minimum Maximum Average  Mmnimum Maximum Average  Mmnimum Maximum
——————————————— kg 1 — e 11 =4 ¢~ i kg’l———————————————

1 6087 6087 6087 10.0 10.0 10.0 2.1 2.1 2.1

2 6087 6087 6087 9.0 4.9 21.4 1.8 2.0 2.5

3 6087 3972 8333 10.0 10.0 10.0 2.1 2.1 2.1

4 6087 3972 8333 9.0 4.9 21.4 1.8 2.0 2.5

5 6087 3972 8333 10.8 4.8 25.9 2.2 1.6 3.1

Table 2.5 Average, minimum, and maximum input values used in generating prescriptions for Manhattan 2011.

Yield Goal NO; Organic Matter

Prescription  Average Minimum Maximum Average  Minimum Maximum Average  Minimum Maximum
——————————————— kgha'l——————————————- cmmmmmmeme——-mg kg - ———————————————gkg'l———————————————

1 6903 6903 6903 38.5 38.5 38.5 2.4 2.4 2.4

2 6903 6903 6903 34.9 30.8 41.2 2.3 2.0 2.6

3 6903 3796 10228 38.5 38.5 38.5 2.4 2.4 2.4

4 6903 3796 10228 34.9 30.8 41.2 2.3 2.0 2.6

5 6903 3796 10228 35.5 229 47.5 2.4 1.7 2.9
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Table 2.6 Average, minimum, and maximum prescribed N rates for each prescription in

Stockton 2010.

N rate

Prescription ~ Average Minimum  Maximum Total N Required
-------------------------- kg Y,

1 106 106 106 4043

2 88 80 112 3362

3 125 54 189 4767

4 122 99 142 4639

5 105 32 187 4001

Table 2.7 Average, minimum, and maximum prescribed N rates for each prescription in

Stockton 2011.

N rate

Prescription ~ Average Minimum  Maximum  Total N Required
-------------------------- kg R

1 132 132 132 2352

2 132 108 149 2352

3 142 114 197 2532

4 139 109 168 2472

5 141 113 181 2512
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Table 2.8 Average, minimum, and maximum prescribed N rates for each prescription in

Manhattan 2010.

N rate

Prescription ~ Average Miimum  Maximum  Total N Required
—————————————————————————— kg 72—

1 131 131 131 1166

2 123 103 231 1096

3 138 57 171 1226

4 131 83 188 1166

5 127 32 185 1126

Table 2.9 Average, minimum, and maximum prescribed N rates for each prescription in

Manhattan 2011.

N rate

Prescription ~ Average Minimum  Maximum  Total N Required
—————————————————————————— kg Y,

1 116 116 116 850

2 128 122 225 932

3 148 80 223 1079

4 146 82 243 1063

5 124 62 209 908
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Chapter 3 - Grain Sorghum Yield Response to Variable-Rate
Nitrogen Applications

ABSTRACT

Variable-rate (VR) nitrogen (N) applications have the potential to improve efficiency of
grain sorghum production. Field experiments were conducted in 2010 and 2011 in Stockton and
Manhattan, KS. Four VR-N prescriptions were generated using various combinations of grid
soil sampling data, soil electrical conductivity (EC) data, and yield maps, and were compared in
the field with a uniform application based on a composite soil sample and whole field average
yield goal. Soil EC data were used to create management zones that were individually soil
sampled. Prescriptions were applied before planting and grain sorghum was harvested with a
combine equipped with a yield monitor in the fall. Both sites had good yield responses to N with
a higher response in 2010 due to more precipitation during the growing season. At Stockton in
both years, greatest yields were realized with prescription 4, a combination of management zone
soil data and spatially-variable yield goal, while the smallest yields were realized with
prescription 2 based on management zone soil data and field average yield goal. At Manhattan
in both years, greatest yields were realized with prescription 3, combining a composite soil
sample with spatially-variable yield goal. At Stockton, there was no correlation between yield
and soil EC during the 2010 growing season, however there was a significant correlation
between yield and shallow EC during the drier 2011 season. At Manhattan, yield was correlated
to deep EC in 2010 and to shallow EC in 2011. Overall, increasing spatial intensity of data to
develop the prescriptions did not necessarily result in an increased yield response to the
application. Prescriptions that included a variable yield goal component tended to perform better

across both sites and years.
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INTRODUCTION

In 2011, Kansas produced over 50% of the grain sorghum (Sorghum bicolor (L.)
Moench) in the United States (NASS 2012). Much of this is due to the favorable growing
conditions for grain sorghum in western Kansas. Grain sorghum is considered a relatively
drought tolerant C4 plant, capable of performing better than other crops such as corn (Zea mays
L.) and soybeans (Glycine max L. Merr.) when growing in moisture-limited and high
temperature conditions (Stahlman and Wicks 2000). In Kansas, grain sorghum is often
substituted for corn in crop rotations, and like corn, grain sorghum can require large amounts of
nitrogen (N) fertilizer to achieve high yields. Nitrogen is one of the most essential and
extensively applied nutrients in grain sorghum (Buah et al. 1998). It is also very mobile in the
soil and is transported in soil water. A majority of N taken up by plants is actually in water and
taken up by mass flow. This means that when moisture is limited, N uptake in plants becomes
limited as well.

When managing N fertility, it is important to understand that spatial variability across a
field exists. This can be as simple as variation in profile N concentration or a more complex
series of soil characteristics that determine how much N the crop will require, such as soil
organic matter (OM) or soil texture. Failure to realize variation in N requirements across a field
can lead to under- and over-applications of N that will cause either N deficiencies in the crop or
N losses due to leaching or runoff (Koch and Khosla 2004). Both of these situations will have a
negative economic impact for farmers and the N losses can cause environmental concerns for the
general public (Buah et al. 1998). A solution to the under- and over-application of N fertilizer is
to use variable-rate (VR) application methods. However, very little research has been conducted

pertaining to VR-N application in grain sorghum.
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There have been numerous VR-N studies in corn including one by Roberts et al. (2000)
which found that yield would most likely increase 0 to 125 kg ha' on average using VR-N
application rather than a uniform application. This study, like many others, was performed using
crop modeling rather than field research. Koch et al. (2004) reported that simulated VR-N
applications increased the average N rate applied by up to 30% when compared to uniform N
application. However, Snyder et al. (1999) reported that simulated VR-N applications reduced
average N rates by 10% when compared to a uniform N application. This indicated that the
response of VR-N applications can vary greatly from field to field.

Five prescriptions for N application in grain sorghum were developed with increasing
levels of intensity of input data. The first prescription was a constant, uniform rate of N based on
field average yield goal. The second prescription used soil electrical conductivity (EC)
management zone-based soil sample data with field average yield goal, while the third
prescription used a composite soil sample and spatially-variable yield goal. Prescription four
combined EC management zone-based soil sample with spatially-variable yield goal and
prescription five used grid-based soil sample data with spatially-variable yield goal. The
hypothesis was that by increasing the amount of spatially-variable data input into the N
recommendation equation, grain sorghum yields will increase while lowering N fertilizer
required. The specific objective was to apply these five prescriptions to grain sorghum in the
field and evaluate their performance based on yield response to N applied, relative performance

compared to historical yields, and correlations between yield and measured soil variables.

MATERIALS AND METHODS

Field experiments were established during the spring of 2010, one at a farmer-owned and

operated production field in Stockton, KS and the other at the Kansas State University
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Department of Agronomy North Farm in Manhattan, KS. These studies were repeated in 2011 in
different but adjacent fields at both locations. In each year, the experimental area at Stockton
was 10.5 ha consisting of a Holdrege silt loam soil while the experimental area at Manhattan was
2.8 ha consisting of a Smolan silt loam soil and partial inclusions of Wymore silty clay soil. The
previous crop for all sites was winter wheat (Triticum aestivum L.). The experimental design
consisted of six treatments arranged in parallel strips with two replications. Each treatment was
applied down the length of the field with each plot width equal to one pass of the fertilizer
applicator available, and was 10.7 m in Stockton and 4.6 m in Manhattan. The six treatments
were the four VR-N prescriptions (see Chapter 2), a uniform N rate prescription, and treatment 6
which was a series of N test strips that ramped from 0 kg N ha™ to 224 kg N ha and back to 0
kg N ha™! repeatedly across the length of the field. Increments of 22.4 kg N ha™ were used within
the test strip, which allowed each rate to be applied over a 27 m length for a total of 10 rates over
270 m. This distribution of numerous N test strips across the plot area provided a measure of
grain sorghum yield response to N in different areas of the field. All prescriptions were
decreased by 5.3 kg N ha™' before being applied to account for application of starter fertilizer at
planting. Table 3.1 summarizes the treatments and the components involved to create them.
Treatments at Stockton were applied each year with a 10.7 m wide custom-made,
anhydrous knife-injector applicator with a Raven AccuFlow control system (Raven Industries,
Sioux Falls, SD). A handheld GPS unit with Farm Site Mate software (version 11.40, CTN Data
Service, Inc., Hamilton, IN) was used to communicate all of the N prescriptions to the Raven
controller by reading the treatments that had been imported into Site Mate. An EZ Guide 500
GPS guidance system (Trimble, Sunnyvale, CA) was used to guide the application equipment

and provide a 5 Hz GPS signal for quicker data logging. At Manhattan in 2010, liquid UAN (28-
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0-0) was applied using a 4.6 m wide, three-point mounted sprayer equipped with surface banding
nozzles. The application was controlled by using a Raven 440 controller (Raven Industries,
Sioux Falls, SD) and pulse-width modulating nozzles to accurately and quickly change rates.
The treatments were communicated to the controller through a handheld GPS unit equipped with
Farm Site Mate software and application guidance was provided by an EZ Guide 500. In 2011,
the Manhattan site was fertilized with liquid UAN using a 4.6 m wide, custom-made, three-point
mounted coulter injector. This applicator was controlled using a Trimble EZ Boom in
conjunction with an EZ Guide 500 guidance system to provide guidance and GPS signal. The
treatments were capable of being directly imported into the EZ Guide 500 to bypass needing a
handheld GPS unit.

After prescriptions were applied, atrazine + s-metolachlor (Bicep II Magnum, Syngenta
Crop Protection, Greenboro, NC) herbicide was applied preplant, followed by no-till planting
grain sorghum in 0.76-m rows. A starter fertilizer (10-34-0) was applied with the planter which
provided 5.3 kg ha™ of additional N and 18 kg ha™ of P to provide sufficient P levels in the soil.
Grain sorghum was combine harvested in the fall using the respective equipment at each location
(Table 3.2). Yield data from all sites were filtered and cleaned using the ARS Yield Editor and
compiled using EASi Suite software (version 2009.00.01, Mapshots Inc., Cumming, GA).

Grain sorghum yield response to N applied was determined using the test strips that made
up treatment 6. The analysis was conducted by exporting raw yield data and N application data
into a spreadsheet and estimating response curves. The biological optimum N rate (BONR) was
the maximum N rate for which a yield response was observed and this was calculated by setting

the first derivative of the response equation equal to zero and solving for N.
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In order to look at within-plot variability, historical yield data were used to categorize the
field area where treatment 6 was applied into three stable yield levels: low, medium, and high,
based on annual relative difference (ARD) values from all three years (Stockton) or six years
(Manhattan) of yield data available. Only the polygons in the field that had a consistent ARD
from year to year were included in the stable categories. Polygons that were temporally variable
regarding ARD values were considered instable, did not fit into these categories, and were left
out of the analysis. The categorization was accomplished by exporting the raw ARD data for
each year of historical yield data in each individual polygon in the fields (10.7 m by 10.7 m in
Stockton and 4.6 m by 4.6 m in Manhattan). A mean ARD value and standard deviation was
then calculated for the multi-year set of data in each polygon. Using the means, the polygons
were sorted from lowest to highest and divided into low, middle, and high categories by using
the lowest 25% of the polygons as the low category and the highest 25% of the polygons as the
high category. The middle category contained the 25% that most closely surrounded a zero
mean. This left 12.5% of the polygons between each category as a buffer to ensure the
categories were not too alike. The polygons in each stable yield category were then sorted from
low to high based on the standard deviations. The top 50% of the polygons (smallest deviation)
were accepted as stable polygons in each stable yield category. Yield data and N application
data from each stable polygon were fitted with a quadratic N response curve in each category in
each field.

To compare among theprescriptions, yield data by treatment were extracted from EASi
Suite and compared to each other based on average yield per prescription. Prescription yield
performance was also compared in each stable yield category by using the raw yield data that

were extracted from EAS1 Suite. Using the same stable yield categories developed for the N
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response analysis, prescription yields were compared to historic yields in each category to
determine the change in yield (A yield). The A yield is the difference between the observed yield
and the yield goal (based on normalized historical yield) at any given polygon in the field. This
allowed for an assessment of within-plot variability of yields and a basis on which to compare
prescriptions on performance at multiple yield potentials. Results were analyzed using PROC
GLM at P <0.15 in SAS version 9.2 (SAS Institute Inc., Cary, NC).

Soil EC datasets were typically large and generated a “data cloud” when plotted. A
boundary-line analysis was used to describe the relationship between soil EC (shallow and deep)
and either historical yields or observed yield. Creating the boundary-line was accomplished by
using yield polygons above the 95™ percentile for each 100 point increment of EC data along the
x-axis. Boundary-line analysis puts the focus on the upper boundaries of the values within a
scatter plot. This makes the examination less confusing when looking at large “clouds” of data
with hundreds or thousands of data points plotted (Kitchen et al. 2003). When observing these
scatter plots it must be understood that the upper boundary represents the maximum possible
yield response to soil EC. The points below the boundary-line were assumed to have been
influenced by other factors that limited the response of yield relative to soil EC.

Pearson correlation coefficients were calculated between all of the spatial data that were
collected in each field using PROC CORR at P <0.05 in SAS. The elevation data used in the
correlation were collected using the yield monitor, which provided relative elevation values in

each field.

RESULTS AND DISCUSSION

Yield Response to Nitrogen
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Overall, the field in Stockton 2010 had the greatest yield response to N with the BONR
being at 250 kg N applied ha' (Figure 3.1). The field in Manhattan 2010 had the second highest
BONR at 205 kg N applied ha™! (Figure 3.2). The Stockton 2011 field had a BONR of 177 kg N
applied ha™' which was much lower than that observed in 2010 (Figure 3.3). The yield response
to N at Manhattan in 2011 was erratic and, therefore, misleading. Based on the results from the
test strips, the response curve was a flat line (Figure 3.4). Nitrogen response varied between
locations and years, which was expected due to the varying weather conditions and the fact that
none of the fields were irrigated. Rainfall was more abundant in 2010 with 719 mm of
precipitation in Stockton and 524 mm in Manhattan throughout the growing season compared to
593 mm in Stockton and 401 mm in Manhattan throughout the 2011 growing season. These
Stockton fields were in close proximity to each other and had a similar soil type but precipitation
varied between growing seasons. This caused grain sorghum in Stockton 2011 to grow under
more stressful conditions, which likely explains the different N responses. Manhattan growing
conditions were much less favorable in 2011 than 2010 due to only receiving 60% of the average
rainfall during the 2011 growing season (Weather Data Library, Kansas State University).

The multiple test strips in treatment 6 provided data to evaluate the yield response to N
inputs and to determine the yield response at three different yield-potential categories (low,
medium, and high). The objective of this was to determine whether it was more practical to
focus on applying more N to historically high yielding portions of the field to take advantage of
the high performance potential or applying higher N rates to the historically low yielding
portions of the field in an attempt to increase these yields to achieve a more uniform yielding
field. At Stockton in 2010, BONR increased from 90 to 142 to 161 kg N ha™ as stable yield

category increased from low to medium to high (Figure 3.5). In 2011, Stockton BONR increased
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from 147 to 192 kg N ha™' between the low and medium stable yield categories then decreased to
101 kg N ha™ in the stable high yield category (Figure 3.6). The different N response between
the two growing seasons was most likely influenced by the lack of rainfall later in the season
during 2011. Differences in soil properties, such as infiltration rate, water holding capacity, and
texture will influence how quickly moisture stress will affect N uptake and N mobility in
different portions of the field. At Manhattan in 2010, the BONR increased from 0 to 91 kg N ha’
! between the low and medium stable yield categories, then increased to 215 kg N ha™' in the
high stable yield category (Figure 3.7). The Manhattan 2011 field had very erratic yield
response to N in all stable yield categories due to the very dry growing conditions experienced in
2011. Therefore, very few conclusions could be drawn from the N response data (data not
shown). Overall, these N responses indicate that the stable low yield category typically reached
maximum yields at lower N rates than either the medium or the high stable yield category. Also,
the stable high yield category did not always respond to higher N rates than the stable medium
category. This suggests that the focus should be on applying appropriate N rates for each yield

category rather than trying to have a uniform field or improving already high performing areas.

Comparison of N Applied and Yields across Prescriptions
In Stockton, average N applied (kg ha') was greatest for prescriptions 3 and 4 in 2010
and for prescription 5 in 2011 (Table 3.3). In Manhattan, average N applied was greatest for
prescription 3 in 2010 and for prescriptions 3 and 4 in 2011. Amounts of N applied for each
prescription varied because of different levels of spatial variability inherent in each strip.
Correspondingly, the greatest average yield (kg ha™) in Stockton 2010 was obtained with
prescription 4 but it was not different from prescriptions 3 or the uniform application

(prescription 1). In 2011, the greatest average yield (kg ha™) was achieved with prescriptions 4
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and 5, although not different from prescriptions 1 and 3 (Table 3.3). In Manhattan 2010, the
greatest average yield was obtained with prescription 3, while in 2011 no differences were
obtained among prescriptions (Table 3.3). Overall, prescriptions 3, 4, and 5 tended to be the
higher yielding treatments. Most likely this was due to the spatially-variable yield goal
component included in these prescriptions. Prescriptions 1 and 2 used a fixed yield goal for the
entire field and therefore did not capture the yield variability.

It was important to investigate whether each prescription performed adequately at all
yield levels in the field. In order to do so, the prescriptions were compared to each other within
each stable yield category of the field based on the change in yield (A yield) relative to the
historical average spatial yields. At Stockton in 2010, A yield values were positive among all
prescriptions within the stable low yield category, while the stable medium and stable high
categories were mostly positive values with the exception of prescription 2 in the medium
category and prescriptions 2 and 3 in the high category (Figure 3.8). In 2011, all Stockton
prescriptions had positive A yield values in all stable yield categories (Figure 3.9). This was a
result of sufficient rainfall during a majority of the growing season. At Manhattan in 2010,
nearly all A yield values were negative among all prescriptions within the low and medium stable
yield categories with the exceptions of prescriptions 1 and 5 in the low category and prescription
5 in the medium category, while the stable high category had all negative A yield values (Figure
3.10). The primary reason for so many negative A yield values was the lack of precipitation for
the season partnered with greater historical yields rather than the ill-performing N prescriptions
applied in 2010. Manhattan 2011 had mostly positive A yield values in the stable low yield

category with only prescriptions 4 and 5 being negative. The stable medium yield category only
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had a positive A yield value for prescription 3, while the stable high yield category had all
negative A yield values (Figure 3.11).

At Stockton in 2010, prescription 4 generated the greatest A yield across categories but it
was not different from prescription 5 in low or in high stable yield categories (Figure 3.8). Both
prescriptions used variable yield goal with some level of variable soil test. In Stockton 2011,
there were no differences among prescriptions in any of the stable yield categories (Figure 3.9).
At Manhattan in 2010, A yield values of prescriptions 5 and 1 were not different from zero in all
categories and were greater than most other prescriptions within each category. In Manhattan
2011, there were no differences among the A yield values of treatments in the low or high stable
yield categories (Figure 3.11). In the stable medium yield category prescription 3 had the
greatest A yield value although it was not different from prescriptions 1, 2, and 5. Prescription 4
had a lower A yield value than prescription 3. These results all indicate that there were little or
no differences between prescription performances in many stable yield categories. There were
often little or no differences between the VR-N applications and the uniform N application
(prescription 1) as well indicating that VR-N did not have much advantage within a stable yield

category.

Relating EC to Yield

Using boundary-line analysis, it was determined that historical yield and shallow EC at
Stockton 2010 had a slightly negative though significant linear relationship such that historic
yield decreased as EC increased (Figure 3.12). The 2010 observed yield data had a negative
quadratic relationship to shallow EC rather than linear (Figure 3.13). Due to the high correlation
between shallow and deep EC, the historical yield had a slight negative quadratic relationship to
deep EC (Figure 3.14). The 2010 observed yield also had a negative quadratic relationship to
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deep EC (Figure 3.15). In Stockton 2011, the historical yield had a negative linear relationship
to shallow EC (Figure 3.16). The 2011 observed yield also had a negative quadratic relationship
(Figure 3.17). This indicated that, on average, EC has a negative correlation to yield but it may
not be as evident on a yearly basis. The shallow EC relationship with yield was more likely to
change on a yearly basis, not only due to yield variation but also due to the temporal variability
that existed with shallow EC due to the exposure of the soil surface to the environment.
Correlation coefficients between shallow EC, deep EC, and yield for Stockton in 2010 and 2011
are shown in Table 3.4.

Soil EC relationships to historic and observed yields in Manhattan were quite different
from those observed in Stockton. The historical yield responded negatively to an increase in
shallow EC and a quadratic model was fit to those data at Manhattan 2010 (Figure 3.18). The
2010 yield did not respond quite the same to shallow EC as the normalized yield (Figure 3.19) as
yield responded positively to increasing soil EC which gave a positive quadratic relationship.
The historical yield and the 2010 yield had positive quadratic relationships with deep EC in
Manhattan 2010 (Figures 3.20 and 3.21). The 2011 Manhattan boundary-line analysis had
similar responses to those seen in the 2010 field (Figure 3.22). The historical yield responded
negatively as shallow EC increased and a quadratic model was best fit to these data. The 2011
yield had a positive linear response to increases in shallow EC (Figure 3.23). Both Manhattan
fields showed that shallow EC was more vulnerable to temporal changes, as the seasonal yield
relationships to EC both opposed the long term average relationships. Also, both seasons in
Manhattan, especially 2011, produced lower than average yields due to hot, dry weather. This
had a large influence on the yield to EC relationship due to the high correlation between EC and

soil water holding capacity.
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Correlation Analysis

Understanding which variables influenced yield was important when determining how to
create a VR-N prescription for any field. Not all variables can be accounted for or predicted,
such as environmental conditions. Environmental conditions will not only influence yield, but
how soil characteristics and fertility interact to affect yield. In 2010, grain sorghum yield in
Stockton had the highest correlation to elevation with a Pearson correlation coefficient of 0.31
(Table 3.4). The next best correlations were to N rate, phosphorus, and OM content. In Stockton
2011, the highest correlation to yield was shallow EC with a negative Pearson correlation
coefficient of -0.31. Elevation and OM had the next best correlations to grain sorghum yield. In
Manhattan 2010, grain sorghum yield had the greatest positive correlation to phosphorus with a
coefficient of 0.57 (Table 3.5). There was also a high correlation between yield and potassium,
OM, and deep EC. Correlation in Manhattan 2011 was the greatest between yield and shallow
nitrate with a Pearson correlation coefficient of 0.51. The next greatest correlations to yield were
phosphorus, elevation, and potassium. In general, greatest correlations to yield were soil fertility
elements, but elevation was also strongly correlated at most locations. This was most likely due
to either precipitation accumulation in low lying areas or topsoil accumulation in low lying areas

from erosion of hillsides over time.

CONCLUSIONS

Overall, grain sorghum yields did not consistently increase as the intensity of input data
for the VR-N prescription increased, however the type of input data being used in each
prescription did have a direct effect on yield outcome. Between both Stockton fields,
prescription 4 (management zones and variable yield goal) was consistently the highest yielding

and prescription 2 (EC zones and field average yield goal) was the lowest yielding. In
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Manhattan, both fields recorded highest yields from prescription 3 (composite soil test and
variable yield goal). The common input between these results was the use of historical yield data
to create a spatially-variable yield goal. This indicated that a variable yield goal was a valuable
tool in creating VR-N prescriptions at both Stockton and Manhattan. Another common
observation between fields was that EC management zones used alone resulted in poor yields at
all locations except 2011 Manhattan, which performed poorly overall. This indicated that EC
management zones alone were not a good fertility management approach in these fields.
However, when partnered with a variable yield goal (prescription 4), EC management zones can
perform very well. The yield responses to N applied in the stable yield categories suggests that
the VR-N applications should focus on applying appropriate N rates for each yield category
rather than trying to improve already high performing areas in the field or trying to create a
uniform field by improving the low yielding areas. The A yield analysis concluded that there
were very few differences among treatments in a majority of the stable yield categories, although
some prescriptions were consistently among the top performing treatments throughout categories
at most locations (prescription 4). The uniform prescription (prescription 1) also performed quite
well at times, bringing into question whether VR-N applications were beneficial within the stable
yield categories. Based on the correlation analysis it could be beneficial to use a few other inputs

for prescription generation, such as elevation, phosphorus, and potassium.
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Table 3.1 Descriptive breakdown of the six N prescriptions.

Uniform or Variable Soil
Prescription VR application Yield Goal Sampling Approach
1 Uniform NO Composite Sample
2 VR NO EC Zones
3 VR YES Composite Sample
4 VR YES EC Zones
5 VR YES Grid Samples
6 TEST STRIP APPLICATION
Table 3.2 Fertilization and planting details for all fields.
Stockton Manbhattan
2010 2011 2010 2011
Date of Fertilization 18-May 11-May 7-Jun 7-Jun
Nitrogen Source NH; NH; UAN UAN
Date of Planting 2-Jun 5-Jun 19-Jun 8-Jun
Seeding Rate (seeds ha™) 148,000 148,000 156,000 156,000
Sorghum Variety DKS42-20 DKS37-07 DKS42-20 DKS44-20
Harvest Date 7-Nov 26-Oct 9-Nov 1-Nov
Harvesting Equipment Case IH 2588 Case IH 2388 Gleaner F3 Gleaner F3
Yield Monitor System AFS Pro 600 Ag Leader Edge Ag leader PF 3000 Ag Leader PF 3000
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Table 3.3 Average N rates applied and grain sorghum yields observed in each prescription

in Stockton and Manhattan, 2010 and 2011.

N Applied Yield
Prescription 2010 2011 2010 2011
————————————————————————————— kgha  --------mmmmmmmmm
Stockton 1 106.4 c 122.2 ¢ 7683 ab 7383 ab
2 87.5d 1342 b 7133 b 7260 b
3 1253 a 118.5¢ 7378 ab 7370 ab
4 123.0 a 130.2 b 7909 a 7526 a
5 110.6 b 1439 a 7192 b 7529 a
LSD<0.15 3.0 7.4 643 181
Manhattan 1 1314 b 106.6 ¢ 5671 b 3478 ab
2 122.6 ¢ 121.3 bc 5654 b 3441 ab
3 140.1 a 140.1 a 6189 a 3966 ab
4 1309 b 134.0 ab 5818 b 2991 b
5 1289 b 113.2 ¢ 5698 b 3275 ab
LSD <0.15 6.2 15.5 206 772
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Table 3.4 Pearson correlation coefficients between EC, soil test values, N rate applied, and

grain sorghum yield within each 10.7 by 10.7 m polygon at Stockton, KS in 2010 and 2011.

Elevation ECghaiow ECaeep NO3 shatiow NO3 peep P K OM N Rate
————————————————————————————— Pearson correlation coefficient, 1 ------------==--ccoccmmeeeo-
2010

ECshatlow -0.258

ECeep -0.240 0.686

NOj3 shattow -0.221  -0.082 -0.198

NO3 peep 0.260 -0.210 -0.144 0.542

P 0.257 -0.300 -0.286 0.230 0.485

K 0.093  -0.400 -0.165 -0.348  -0.391 0.408

OM -0.440 -0.089 0.004 -0.090 0.145 -0.289 -0.023

N Rate 0494 -0.301 -0.197 -0.225  -0.098 0.279 0.287 -0.257

Yield 0.311 0.016 -0.087 -0.007 0.114 0.238 -0.023 -0.232 0.236

2011

ECshatiow -0.188

NOj3 shattow 0.306  -0.661

NO3 peep 0.300 -0.370 -- 0.498

P 0.369 -0.499 -- 0.872 0.453

K 0.075  -0.337 -- -0.097  -0.328 0.567

OM 0.697 -0.506 -- 0.584 0.380 0.558 -0.176

N Rate -0.045 0.103 -- -0.227 -0.038 -0.142 0.220 -0.079

Yield 0313 -0.315 -- 0.162 -0.024 0.130 -0.018 0.278 0.187

ECshatow - 30-cm soil electrical conductivity, ECyeep - 100-cm soil electrical conductivity,

NO3 ghatow — 15-cm nitrate content, NO3 geep— 45-cm nitrate content, P — 15-cm phosphorus
content, K — 15-cm potassium content, OM — 15-cm organic matter content, N Rate — N fertilizer
applied, Yield — observed yield.

Numbers in bold indicate significance o < 0.05.

-- no data collected
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Table 3.5 Pearson correlation coefficients between EC, soil test values, N rate applied, and

grain sorghum yield within each 4.6 by 4.6 m polygon at Manhattan in 2010 and 2011.

Elevation ECgam0w ECdeep NOj3 shattow NO3 Deep P K OM N Rate
————————————————————————————— Pearson correlation coefficient, r ---------=-=-==-=-cocmceeo—_.
2010

ECshatiow -0.343

ECeep 0.092 0.446

NO3 shattow -0.102 0.084  0.178

NO3 peep 0.454 -0.549  0.238 0.234

P 0.259 -0.195  0.535 -0.167 0.378

K 0.209 -0.117  0.633 0.170 0.388 0.649

oM 0.281 -0.278  0.451 0.201 0.658 0.458 0.888

N Rate 0.079 0.224  0.282 -0.066 0.134 0.224 0.105 0.014

Yield 0.145 -0.093  0.367 -0.030 0.084 0.566 0.547 0.407 0.329

2011

ECshallow 0.105

NOj3 shattow 0.264  -0.063

NO3 peep 0.430 -0.750 -- 0.115

P 0.095 -0.294 -- -0.432 0.481

K 0.252 -0.225 -- -0.429 0.435 0.892

oM -0.072 -0.788 -- -0.156 0.787 0.511 0.502

N Rate 0.088 0.017 -- -0.103 0.112 0.249 0.228 0.078

Yield -0.425 -0.206 -- -0.510 0.071 0.432 0.333 0.323 0.083

ECshatow - 30-cm soil electrical conductivity, ECyeep - 100-cm soil electrical conductivity,

NO3 ghatow — 15-cm nitrate content, NO3 geep— 45-cm nitrate content, P — 15-cm phosphorus
content, K — 15-cm potassium content, OM — 15-cm organic matter content, N Rate — N fertilizer
applied, Yield — observed yield.

Numbers in bold indicate significance o < 0.05.

-- ECpeep Was not recorded properly in 2011.
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Figure 3.1 Grain sorghum yield (Mg ha™) in response to increasing N applied (kg ha™)
across treatment 6 N test strips in Stockton 2010 (n=231).
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Figure 3.2 Grain sorghum yield (Mg ha™) in response to increasing N applied (kg ha™)
across treatment 6 N test strips in Manhattan 2010 (n=188).
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Figure 3.3 Grain sorghum yield (Mg ha™) in response to increasing N applied (kg ha™)

across treatment 6 N test strips in Stockton 2011 (n=250).
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Figure 3.4 Grain sorghum yield (Mg ha™) in response to increasing N applied (kg ha™)
across treatment 6 N test strips in Manhattan 2011 (n=148).
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Figure 3.5 Grain sorghum yield response to applied N across three stable yield categories: low, average, and high - in

Stockton 2010.
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Figure 3.6 Grain sorghum yield response to applied N across three stable yield categories: low, average, and high - in Stockton
2011.
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Figure 3.7 Grain sorghum yield response to applied N across three stable yield categories: low, average, and high - in
Manhattan 2010.
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Figure 3.8 Delta yield values comparing treatments in the stable yield categories: low,

medium, and high for Stockton 2010. Error bars represent standard error.
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Figure 3.9 Delta yield values comparing treatments in the stable yield categories: low,

medium, and high for Stockton 2011. Error bars represent standard error.
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Figure 3.10 Delta yield values comparing treatments in the stable yield categories: low,

medium, and high for Manhattan 2010. Error bars represent standard error.
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Figure 3.11 Delta yield values comparing treatments in the stable yield categories: low,

medium, and high for Manhattan 2011. Error bars represent standard error.
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Figure 3.12 Boundary-line analysis of historical yield vs. shallow EC for Stockton 2010.
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Figure 3.13 Boundary-line analysis of 2010 yield vs. shallow EC for Stockton 2010.

59



9.0

y=-0.002x2+ 0.2583x- 0.9948

20 4 R?2=0.2141
— 1 e
‘_"ru 7.0 ® ®
e &
é 6.0 - oo 0’0 Y
o
@ 5.0 A
—
D 40 |
L
©
E 3.0 1
=]
=

2.0 1

¢ Below 95th Percentile
1.0 - # Boundary-line
00 T T T T T
55 60 65 70 75 80

Deep EC (mS m1)

Figure 3.14 Boundary-line analysis of historical yield vs. deep EC for Stockton 2010.
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Figure 3.15 Boundary-line analysis of 2010 yield vs. deep EC for Stockton 2010.
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Figure 3.16 Boundary-line analysis of historical yield vs. shallow EC for Stockton 2011.
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Figure 3.17 Boundary-line analysis of 2011 yield vs. shallow EC for Stockton 2011.

61

40



9.0

y=0.0006x2- 0.1267x+ 13.957
30 4 R?=0.5558
7.0 - © &
S 6.0 % ol
= 8o S
o
S 5.0
e
240 4
=
-
7] Loy < cod
3.0 4 L~ aad %
L]
£ o e 3
5 2.0 wf®o ¢
= s Y i
000 elow 95th Percentile
1.0 < @ Boundary-line
L4
0.0 T T T T T
60 70 ad 100 110 120

90
Shallow EC (mS m1)

Figure 3.18 Boundary-line analysis of historical yield vs. shallow EC for Manhattan 2010.
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Figure 3.19 Boundary-line analysis of 2010 yield vs. shallow EC for Manhattan 2010.
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Figure 3.20 Boundary-line analysis of historical yield vs. deep EC for Manhattan 2010.
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Figure 3.21 Boundary-line analysis of 2010 yield vs. deep EC for Manhattan 2010.
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Figure 3.22 Boundary-line analysis of historical yield vs. shallow EC for Manhattan 2011.
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Figure 3.23 Boundary-line analysis of 2011 yield vs. shallow EC for Manhattan 2011.
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Chapter 4 - Economic Analysis of Variable-Rate Nitrogen
Applications

ABSTRACT

Demonstrating the economic benefits of variable-rate (VR) nitrogen (N) application in
grain sorghum would increase its appeal to producers. Field experiments were conducted in
2010 and 2011 in Stockton and Manhattan, KS to evaluate the performance of four different VR-
N prescriptions. Grid soil sampling data, soil electrical conductivity (EC) data, and yield data
maps were used in different combinations to generate four VR-N prescriptions and one uniform
N prescription to be applied in grain sorghum. Prescriptions were applied as treatments before
planting and harvested for grain in the fall. Yield was recorded using yield monitor-equipped
harvesters. Prescription expenses and returns were compared for each field. Soil sampling based
on grids was the most expensive method at $24.71 ha™', while sampling based on EC zones were
less expensive at $5.56 ha followed by field composite samples that cost $0.37 ha”. Stockton
sites recorded highest returns from prescription 4 (EC zones and variable yield goal) and the
lowest returns from both prescriptions 2 (EC zones and fixed yield goal) and 5 (grid soil samples
and variable yield goal). Prescription 2 failed to capture the appropriate N requirements of the
field, resulting in low yields. As for the other prescriptions, the cost of different input data was
the driving factor that allowed some prescriptions to have higher returns than others. Manhattan
sites recorded highest yields and returns from prescription 3 (composite soil sample and variable
yield goal). Prescription 5 was among the lowest returning prescriptions as a result of the high
cost of prescription input data (grid sampling), similar to Stockton sites. Overall, increasing
intensity of data input in a prescription did not necessarily result in a revenue increase from the

application. Increasing prescription intensity, while keeping input expenses low, such as using
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EC zones, did result in improved returns. Increased revenue did not outweigh the costs
associated with prescription 5, the most data intensive treatment. Prescriptions that included a

variable yield goal component tended to have higher returns across all sites.
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INTRODUCTION

Kansas produced nearly 2.8 million Mg of grain sorghum (Sorghum bicolor (L.) Moench)
in 2011, which was equivalent to more than 50% of the US grain sorghum production (NASS
2012). Grain sorghum is considered a relatively drought tolerant C4 plant, capable of performing
better than other crops such as corn (Zea mays L.) and soybeans (Glycine max L. Merr.) when
growing in moisture-limited and high temperature conditions such as those found in western
Kansas (Stahlman and Wicks 2000). In Kansas, grain sorghum is often substituted for corn in
crop rotations and grain sorghum requires large amounts of nitrogen (N) fertilizer to achieve
yields similar to corn production. Nitrogen is one of the most essential and extensively applied
nutrients in grain sorghum (Buah et al. 1998) and often the most expensive input for this crop.
When managing N fertility, it is important to understand that spatial variability exists and that
under- and over-applications of N will cause either N deficiencies in the crop or N losses due to
leaching or runoff (Koch et al. 2004). Both of these situations will have a negative economic
impact for farmers and the N losses can cause environmental concerns for the general public
(Buah et al. 1998). A solution to the under- and over-applications of N fertilizer is to use
variable-rate (VR) application methods. However, very little research has been done pertaining
to VR-N application and its potential economic benefits in grain sorghum.

Soil fertility can vary significantly within a field so that the traditional nutrient
management strategy of applying a single rate of fertilizer across the whole field could be
considered a misapplication (Thrikawala et al. 1999). Other spatially-variable field variables
include soil texture, slope, and yield potential could also lead to mismanaged N fertilizer
applications. Many of these field variables can be spatially measured, recorded, and manipulated

to be used in VR fertilizer prescription development. The usefulness of this information needs to
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be studied and the tradeoffs to collecting and implementing the data relative to the savings in N
applied and yield gained needs to be evaluated. In order for a prescription to work well, the
variables being used should have an influence on yield potential, N content, or some factor that is
either going to spatially boost yields or reduce inputs.

One of the original methods of assessing field variability was grid-based soil sampling
(Koch et al. 2004). Field management based on grid soil samples is a tedious process and an
intensive management strategy, but it may be feasible for some fields to manage fertility using a
grid layout if it increases gross revenue or decreases N input costs such that they outweigh the
added cost of technologies or services needed for VR management (Koch et al. 2004). Temporal
changes in soil properties and fertility will affect the frequency of sampling. Often, crop
rotations and cropping intensity also influence how often soil sampling may take place, such as
annually, biannually, or even less frequently. This will have a large impact on the economic
analysis of any type of sampling taking place. In principle, grid sampling-based N application
seems logical, but economically there are limitations. Minimal cost, yet effective approaches for
managing spatial variability are needed (Koch et al. 2004).

Creating management zones is often a more effective and economical option compared to
more detailed grid-based soil sampling (Fleming and Westfall 2000). There are numerous
methods of defining management zones such as using variations in topography, soil color, and
yield potential to group areas with similar characteristics. Another method is using soil electrical
conductivity (EC), which may function as a direct or indirect indicator of numerous soil
properties such as soil moisture and clay content (Johnson et al. 2003). Soil EC data are often
used to create site-specific management zones (Johnson et al. 2003; Shaner et al. 2008). These

zones are developed by spatially grouping sites in the field with similar EC measurements thus
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creating zones with similar soil properties that may include clay content, soil water content,
salinity, bulk density, depth of conductive soil layers, and organic matter (OM) (Johnson et al.
2003; Kitchen et al. 2003). The EC zones are then used as soil sampling zones to make the
process more strategic and cost effective than arbitrarily using a grid-based sampling procedure.
Soil EC is usually measured at two depths: a shallow reading (0-30 cm) and a deep reading (0-90
cm) (Johnson et al. 2003). Deep EC has been correlated to claypan topsoil thickness and water
holding capacity and has been found to have more temporal stability whereas shallow EC is
more affected by transient soil properties such as solution concentration, topsoil water content,
and soil temperature (Farahani and Buchleiter 2003). Due to the temporal stability of deep EC, a
single EC mapping can suffice to define these zones without need for remapping. These findings
justify EC measurements as an economical tool to create management zones that may benefit
from varying inputs and practices (Farahani and Buchleiter 2003). Collecting EC data is fast,
inexpensive, and the data do not need to be collected frequently while other means of
determining the soils’ parameters, such as grid-based soil sampling can be economically
unfeasible, particularly in dryland, low input crop production (McCann 1996). It is important to
keep in mind that the profit potential of VR-N management is significantly enhanced if the initial
means of preparing prescription application maps are inexpensive (Koch and Khosla 2003).
Yield potential is a very useful tool when generating VR-N prescriptions. Whether the
yield potential is being used to create a spatially-variable yield goal or to generate management
zones it requires the use of a yield monitor. Determining if the investment in a yield monitor is
economical can be difficult for some producers, especially if the producer does not know how to
use yield data. This is not uncommon for the average producer. A major reason producers do

not buy yield monitors is because the benefits are ill defined and are not realized initially after
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the purchase (Swinton and Ahmad 1997). The benefits realized from yield monitors by
producers vary widely due to the range of use between producers. For example, one producer
may not even download yield data from his monitor, while another producer uses the data to
create VR fertilizer prescriptions. Generally, yield monitor benefits must be measured
empirically on individual farms (Swinton and Ahmad 1997).

Today, most combines are equipped with a yield monitor when they are purchased and
many used combines being traded are already equipped, which means many producers do not
need to purchase a new yield monitor system. Economic studies can be difficult for yield
monitors because it is difficult to separate costs and benefits of yield mapping from VR input
management and other uses of yield data (Swinton and Lowenberg-Deboer 1998). It is also
important to assess fixed costs, such as a yield monitor, over the entire area of farmland to
calculate returns on a per hectare basis. Returns will increase as field area covered increases
since fixed costs are spread over more hectares (Thrikawala et al. 1999). The same should apply
for other fixed costs, such as the purchase of a VR fertilizer applicator.

Implementing VR-N application leads to the question of whether the potential increase in
returns is sufficient to cover the cost of paying for services such as grid sampling, soil EC
measurements, or the application itself (Roberts et al. 2000). The potential for improved
profitability due to VR-N application depends on identifying areas in the field where additional
N inputs will increase revenue on a scale that is greater than the added costs and/or identifying
areas where reducing N inputs will decrease costs on a scale that is greater than potential revenue
reduction associated with lower grain yield (Snyder et al. 1999). There are few analyses of

revenues, costs, and returns associated with VR-N applications, and the results of the few
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existing analyses have not been communicated well to growers interested in practicing VR-N
application (Koch et al. 2004).

The objective of this study was to economically analyze five different VR-N
prescriptions applied in grain sorghum to determine the added value, if any, of using yield data,
grid soil sampling, and soil EC data. Prescriptions build upon each other, each one adding more
intensity to the input data than the previous one. The hypothesis was that increasing intensity of
input data will allow for higher returns by decreasing the cost of N required, increasing revenue

from yield, or a combination of both.

MATERIALS AND METHODS

Field experiments were established during the spring of 2010, one at a farmer-owned and
operated production field in Stockton, KS and the other at the Kansas State University
Department of Agronomy North Farm in Manhattan, KS. These studies were repeated in 2011 in
different but adjacent fields at both locations. In each year, the experimental area at Stockton
was 10.5 ha consisting of a Holdrege silt loam soil while the experimental area at Manhattan was
2.8 ha consisting of a Smolan silt loam soil and partial inclusions of Wymore silty clay soil. The
previous crop for all sites was winter wheat (Triticum aestivum L.). The experimental design
consisted of six treatments arranged in parallel strips with two replications. Each treatment was
applied down the length of the field with each pass of the equipment being one plot. Plot width
was based on the fertilizer applicator available and was 10.7 m in Stockton and 4.6 m in
Manhattan. Development of the four VR-N prescriptions was described in chapter 2. Chapter 3
describes the application of these four prescriptions together with treatment 1, a uniform N rate
across field, and treatment 6, a N test strip that increased N rates from 0 kg ha™' to 224 kg ha™

and then decreased rates back to 0 kg ha™! repeatedly across the length of the field. After
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prescriptions were applied, atrazine + s-metolachlor (Bicep Il Magnum, Syngenta Crop
Protection, Greenboro, NC) herbicide was applied pre-plant followed by no-till planting grain
sorghum in 0.76-m rows. A starter fertilizer (10-34-0) was applied with the planter which
provided 5.3 kg ha™ of additional N and 18 kg ha™ of P to provide sufficient P levels in the soil.
Grain sorghum was harvested in the fall using combines equipped with yield monitors. Yield
data from all sites were filtered and cleaned using the ARS Yield Editor and compiled using

EASi Suite software version 2009.00.01 (Mapshots Inc., Cumming, GA).

Economic Analysis

Treatments were compared based on returns from yield, cost of prescription inputs and N
fertilizer, and returns over costs. The analysis was conducted using the 5-yr average prices for
grain sorghum ($156.71 Mg™"), NHj; fertilizer ($0.86 kg™ N), and UAN liquid fertilizer ($1.28 kg
! N) (NASS 2011). Several assumptions had to be made in order to analyze the data on a per
hectare basis. The first assumption was that average field size was 32 ha. This allowed the cost
of a field composite soil sample to be distributed across each hectare. The next assumption was
that this 32-ha field could be divided into five EC management zones, each having 6.5 ha per
zone. This allowed the cost of each composite soil sample for that zone to be distributed across
each hectare of the management zone. The cost associated with analysis of each composite soil
sample was $12.00 (KSU soil testing lab). Cost of hiring a person to grid soil sample was
$24.71 ha™! (Nathan Woydziak, Personal communication, Crop Quest). It was assumed that soil
samples were taken annually. The cost for collecting EC data was assumed to be $16.00 ha™ and
was spread out over five years using an 8% interest rate, thus costing $4.03 ha™ annually, and
when including cost of analysis for each soil sample in the EC management zones, the total cost

was $5.56 ha”. No added cost was included for the yield monitor itself as it was assumed that

72



the producer’s combine was equipped with a yield monitor but the data that has been collected
has not been utilized. Other variable input costs were not accounted for (such as seed, herbicide
and/or other pesticides and fertilizers) and therefore, results were presented as returns over N
prescription costs.

Grain sorghum yield response to N applied was determined using the test strips that make
up treatment 6. The analysis was conducted by exporting raw yield data and N application data
into a spreadsheet and estimating response curves. The biological optimum N rate (BONR) was
determined as the maximum N rate for which a yield response was observed. It was calculated
by setting the first derivative of the response equation equal to zero and solving for N. To
calculate the economic optimum N rate (EONR) the response equation was set equal to the N:
grain sorghum price ratio ($ kg™ N): ($ kg™ grain sorghum) and solved for N.

The economic analysis was performed using the 5-yr average prices for N and grain
sorghum, but changes in this price ratio could lead to different results when comparing the
returns of the treatments. Due to this possibility, a sensitivity analysis was completed to generate
a range of prices to determine whether lower returning treatments would become more
competitive at different price ratios. All sensitivity tables included grain sorghum prices ranging
from $78.57 Mg to $315 Mg while Stockton N prices ranged from $0.44 to $1.32 kg™ of N

(using NH3) and Manhattan N prices ranged from $0.44 to $2.21 kg™ of N (using UAN).

RESULTS AND DISCUSSION

Economically optimum N rates (EONR) were always lower than the BONR across both
fields and years. The BONR was the maximum N rate to which yield responded compared to the
EONR, which was the N rate at which returns on yield over N costs were maximized. In 2010,

the BONR for Stockton was 250 kg N applied ha' while the EONR was 197 kg N ha' (Figure
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4.1). In 2011, the BONR was 177 kg ha™! compared to the EONR of 140 kg N ha'. The
difference between the two years was likely due to less precipitation received in 2011 across the
region. As for Manhattan in 2010 the BONR was 205 kg N ha™! compared with the EONR of
138 kg ha' (Figure 4.3). In 2011, there was a poor N response observed, therefore BONR and
EONR were both equal to zero (Figure 4.4). At Manhattan, 2010 had below average rainfall for
the region but not nearly as severe as the drought during the 2011 growing season. Soil water
availability has a direct effect on N uptake into the plant and therefore influences how well the N
is utilized.

Data from grid-based soil sampling was the most expensive to obtain for creating VR-N
prescriptions. Grid-based soil sampling cost $24.71 ha™! compared to using soil EC management
zones which cost $5.56 ha™ to implement, and the yield data were free (based on assumptions).
The additional cost of developing the prescriptions depended on how many spatially-variable
data sources were included (Table 4.2). Excluding the N fertilizer cost, it was evident that the
uniform N prescription (prescription 1) would cost the same to develop as the spatially-variable
yield goal prescription (prescription 3) and both were the least expensive with only the additional
cost of a composite soil sample ($0.37 ha™) for both prescriptions. The prescriptions using EC
management zones (prescriptions 2 and 4) both cost $5.56 ha whether the variable yield goal
was used or not. Using grid samples and a variable yield goal (prescription 5), the cost was
$24.71 ha™. The N fertilizer costs varied greatly across treatments and were not consistently
reduced or increased by the more data intensive prescriptions at any locations. The N each
prescription required varied from field to field and depended entirely on whether the prescription

captured the variables that influenced yield at each field.
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At all locations, prescriptions differed greatly when comparing the average expenditures,
but few differences existed when comparing the average revenues generated with each
prescription (Tables 4.3 and 4.4). Prescription 4 (management zones and variable yield goal)
generated the greatest revenue from yield at Stockton in 2010 which allowed it to have the
highest returns as well. Prescription 2 (management zones) generated the least revenue at
Stockton 2010; however, it did have higher returns than prescription 5 (grid samples and variable
yield goal), which had the greatest expenses across treatments and was the lowest returning
prescription. In Stockton 2011, prescription 5 generated the greatest revenue from yield but
because it was the most expensive prescription it resulted in returns next to lowest. Prescription
4 had the greatest returns across treatments in Stockton 2011. In Manhattan 2010, prescription 3
(variable yield goal) generated the greatest revenue from yield which allowed it to have the
greatest returns across treatments. Prescription 5 was the most expensive treatment and
generated the lowest revenue, which made it the lowest returning treatment in Manhattan 2010.
In Manhattan 2011, prescription 3 generated the greatest revenue from yield, had the highest
expenses, and the highest returns across treatments. Prescription 4 generated the lowest revenue
which caused this treatment to have the lowest returns. Three of the four locations resulted in the
highest average N rate coming from treatment 3. Both Manhattan locations also achieved the
highest yields from prescription 3; however, it was lower performing at the Stockton sites.
Prescription 5, which used grid-based soil sampling, was the least profitable at both Stockton and
Manhattan in 2010 while it was nearly the least profitable in both fields in 2011. Prescription 1,
the uniform rate treatment, was consistently in the middle regarding prescription returns and
yields. The low expenses of this prescription often allowed it to outperform the more expensive,

higher intensity prescriptions, such as prescription 5.
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The economic analysis for the 2010 Stockton field shows that prescriptions 4 and 1 were
significantly better than prescription 5. Using sensitivity tables, it was determined that no
combination of grain sorghum and N prices allowed prescription 5 to improve returns to the level
of prescriptions 4 or 1. The Stockton 2011 results indicated that prescription 4 had the highest
returns of all treatments. Using sensitivity analysis, it was evident that realistically adjusting the
price ratio would not make prescriptions 2 and 5 more competitive with prescription 4.
However, a combination of high N costs and low grain sorghum value can allow prescriptions 1
and 3 to be indifferent from prescription 4 regarding returns (Tables 4.5 and 4.6).

Results for Manhattan 2010 indicated that prescription 3 had the highest returns of all
prescriptions. Using sensitivity tables, it was determined that no other prescriptions can equal
the returns of prescription 3. Manhattan 2011 results indicate that prescription 3 was the highest
returning but only statistically higher than prescription 4. Sensitivity analysis indicates that no

realistic price ratio could improve returns of prescription 4 to equal prescription 3.

CONCLUSIONS

Both Stockton sites saw highest returns from prescription 4 followed by prescription 3.
Both prescriptions involved the use of a variable yield goal which indicated that using historic
yield data was a beneficial tool in developing VR-N recommendations at Stockton. Prescription
4 also involved using EC management zones to guide the soil sampling process which proved to
be very beneficial when paired with a variable yield goal. However, using EC management
zones alone did not have the same high returning results (prescription 2) indicating soil EC may
not be a good resource by itself when generating N prescriptions. Prescription 5 (grid sampling
and variable yield goal) did not result in enough added revenue from yield to overcome the high

costs of generating it, therefore this prescription was one of the lowest returning across
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treatments. Both Manhattan sites saw the highest returns from prescription 3 (composite soil
sample and variable yield goal). Prescription 4 performed well in Manhattan 2010 with high
returns but the high drought stress in 2011 caused poor yields and low returns across all
prescriptions. The performance of these two prescriptions indicated that historic yield data was a
very useful tool in prescription generation at Manhattan. The drought stricken season in
Manhattan 2011 did not show advantages to having spatially variable soil tests, as the top two
returning prescriptions (3 and 1) used a field composite soil testing method.

Revenue from yield was a much larger determining factor than expenses in determining
returns over prescription costs. If a treatment had the lowest revenue from yield it was much
more likely to have lowest returns regardless of the expenses involved. However, as prescription
revenues became more comparable, the expenses became more influential on how the
prescription returns ranked.

The VR-N prescriptions had an advantage in most fields in regards to yield and returns.
However, on occasion the advantage over a uniform N rate was considered insignificant.
Intensifying the input data for VR-N prescriptions did not allow for any consistent decrease or
increase in N applied. Using yield monitor data to create a variable yield goal tended to provide
a more strategic dispersal of N applied to allow for a yield advantage.

The results of this study suggest that grid-soil sampling is too intensive to be done yearly
and see any economic benefit. It may not ever be an economically beneficial option for some
cropping systems, but a one-time-only grid-sampling of a field could uncover underlying
features or variability that would improve field management. Soil EC management zones were
not a sufficient field management option, most likely due to the lower correlations between EC

and yield. However, when an accurate yield goal component was introduced to the EC
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management zones, the yield performance was enhanced. In sloping fields, such as the sites in
this study, elevation will most likely have a significant influence on yield due to soil erosion,
depositing of topsoil, and water infiltration which are driven by elevation and slope. This

suggests that topography could be useful as a field management tool.
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Table 4.1 Descriptive breakdown of the six N prescriptions.

Uniform or Variable Soil

Prescription VR application Yield Goal Sampling Approach

1 Uniform NO Composite Sample

2 VR NO EC Zones

3 VR YES Composite Sample

4 VR YES EC Zones

5 VR YES Grid Samples

6 TEST STRIP APPLICATION
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Table 4.2 Breakdown of the total expenses into soil sampling costs and N costs for each

prescription in Stockton and Manhattan, 2010 and 2011.

Prescription Soil Sampling Cost N Cost Total Expenses
__________________ R S
Stockton 2010 1 0.37 91.43 91.80
2 5.56 73.92 79.48
3 0.37 107.72 108.09
4 5.56 104.55 110.11
5 2471 95.42 120.13
LSD <0.15 2.76
Stockton 2011 1 0.37 105.03 105.40
2 5.56 114.20 119.76
3 0.37 101.84 102.21
4 5.56 110.77 116.33
5 24.71 124.12 148.83
LSD<0.15 6.05
Manhattan 2010 1 0.37 172.82 173.19
2 5.56 161.45 167.01
3 0.37 184.34 184.71
4 5.56 171.04 176.60
5 24.71 171.41 196.12
LSD<0.15 9.64
Manhattan 2011 1 0.37 137.30 137.67
2 5.56 155.09 160.65
3 0.37 180.59 180.96
4 5.56 171.54 177.10
5 2471 146.23 170.94
LSD<0.15 19.98
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Table 4.3 Treatment revenues, expenses, and returns in Stockton 2010 and 2011.

Treatment Revenues Expenses Returns over Prescription Costs
$ha’
2010 1 1204.14 ab 91.80 ¢ 1112.37 a
2 1118.00 b 79.48 d 1038.51 ab
3 1156.40 ab 108.09 b 1048.32 ab
4 1239.60 a 110.11 b 112949 a
5 1127.20 b 120.13 a 1007.08 b
LSD <0.15 100.79 2.76 101.47
2011 1 1157.08 ab 105.40 ¢ 1051.68 b
2 113791 b 119.76 b 1018.15 d
3 1155.03 ab 102.21 ¢ 1052.82 b
4 1179.56 a 11633 b 1063.23 a
5 1180.05 a 148.83 a 1031.22 ¢
LSD <0.15 28.38 6.05 6.41
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Table 4.4 Treatment revenues, expenses, and returns in Manhattan 2010 and 2011.

Treatment Revenues Expenses Returns over Prescription Costs
$ha
2010 1 893.27 b 173.19 ¢ 720.08 be
2 890.60 b 167.01 c 723.57 be
3 974.81 a 184.71 b 790.10 a
4 916.49 b 176.60 bc 739.90 b
5 897.52 b 196.12 a 701.39 c
LSD <0.15 32.52 9.64 32.52
2011 1 545.03 ab 137.67 ¢ 407.37 a
2 539.30 ab 160.65 b 378.66 ab
3 621.60 a 180.96 a 440.65 a
4 468.80 b 177.10 ab 291.73 b
5 513.25 ab 170.94 ab 342.33 ab
LSD <0.15 121.02 19.98 112.28
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Table 4.5 Difference in returns between prescription 4 (management zones and variable yield goal) and prescription 3

(composite sample and variable yield goal) across a series of price ratios for Stockton 2011.

0.4
0.55
0.66
N cost 0.77
$kg') 0.88
0.99
1.10
1.21
1.32

Grain Sorghum Market Price ($ Mg')

78.75 98.44 118.13 137.81 157.50 177.19 196.88 216.56 236.25 255.94 275.63 295.31 315.00
1.91 4.99 8.08 11.16 1424 17.32 2041 2349 2657 29.65 3274 3582 3890
0.62 3.70 6.78 9.87 1295 16.03 19.11 2220 25.28 2837 3145 3453 37.62
-0.67 | 2.41 5.49 8.57 11.66 1474 17.82 2090 2399 27.08 30.17 3325 36.33
-1.97 1.12 4.20 7.28 1036 1345 1653 19.61 2269 2580 28.88 31.96 35.05
-3.26 -0.18 | 2091 5.99 9.07 12.15 1524 1832 2140 2451 27.60 30.68 33.76
-4.55  -1.47 1.61 4.70 7.78 10.86 1394 17.03 20.11 2323 2631 2939 32.48
-5.84  -2.776 | 0.32 3.40 6.49 9.57 1265 1573 18.82 21.94 2503 2811 31.19
-7.14  -4.05 -097 | 2.11 5.19 8.28 11.36 1444 17.52 20.66 2374 26.82 2991
-843  -535 -226 | 0.82 3.90 6.98 10.07 13.15 16.23 19.37 2246 25.54 28.62

Cells highlighted in yellow indicate when the returns from prescription 3 were equal or greater than returns from prescription 4.
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Table 4.6 The difference in returns between prescription 4 (management zones and variable yield goal) and prescription 1

(uniform N) across a series of price ratios in Stockton 2011.

0.44
0.55
0.66
N cost 0.77
($ke) 0.88
0.99
1.10
1.21
1.32

Grain Sorghum Market Price ($ Mg

78.75  98.44 118.13 137.81 157.50 177.19 196.88 216.56 236.25 255.94 275.63 295.31 315.00
2.51 5.33 8.15 1098 13.80 16.62 1945 2227 2509 2792 30.74 3356 36.39
1.62 4.45 1.27 10.09 12,92 15.74 1856 21.39 2421 27.03 29.85 32.67 35.50
0.74 3.56 6.39 9.21 12.03 1486 17.68 20.50 23.33 26.14 2896 31.78 34.61
-0.14 | 2.68 5.50 8.33 11.15 1397 16.80 19.62 2244 2525 28.07 30.89 33.72
-1.03 1.80 4.62 7.44 10.27 13.09 1591 1874 21.56 2436 27.18 30.00 32.83
-1.91 0.91 3.74 6.56 9.38 12.21 1503 17.85 20.68 23.47 2629 29.11 31.94
-2.779 [ 0.03 2.85 5.68 8.50 11.32 1415 1697 1979 2258 2540 2822 31.05
-3.68  -0.85 1.97 4.79 7.62 10.44 1326 16.09 1891 21.69 2451 27.34 30.16
-4.56  -1.74 1.09 3.91 6.73 9.56 12.38 1520 18.03  20.80 23.62 26.45  29.27

Cells highlighted in yellow indicate when the returns from prescription 1 were equal or greater than returns from prescription 4.
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Figure 4.1 Grain sorghum yield (Mg ha™) response to N applied (kg ha™) across treatment 6 test strips in Stockton 2010. Blue
line indicates economic optimum N rate at prices: sorghum = $156.71 Mg™"; NH; = $0.86 kg™
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Figure 4.2 Grain sorghum yield (Mg ha™) response to N applied (kg ha™) across treatment 6 test strips in Stockton 2011. Blue
line indicates economic optimum N rate at prices: sorghum = $156.71 Mg™'; NH; = $0.86 kg'l.
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Figure 4.3 Grain sorghum yield (Mg ha™) response to N applied (kg ha™) across treatment 6 test strips in Manhattan 2010.
Blue line indicates economic optimum N rate at prices: sorghum = $156.71 Mg™'; UAN = $1.28 kg
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Figure 4.4 Grain sorghum yield (Mg ha™) response to N applied (kg ha™) across treatment 6 test strips in Manhattan 2011.

Economic optimum N rate is equal to zero.
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Appendix A - Weather Data

Table A.1 Weather data from growing seasons of 2010 and 2011 at Stockton and Manhattan.

Stockton Manhattan
2010 2011 2010 2011

Month GDD  Precipitation GDD  Precipitation GDD  Precipitation GDD  Precipitation

--°C day--  --mm-- --°C day--  --mm-- --°C day--  --mm-- --°C day--  --mm--
May 186.1 143.5 224.1 248.7 225.8 92.2 247.9 131.1
June 448.0 293.1 452.2 78.5 457.6 168.1 455.1 121.2
July 514.3 72.6 607.9 169.7 5294 106.4 615.2 52.8
August 499.6 143.0 526.9 88.4 525.2 81.3 536.5 59.2
September 324.5 67.6 263.5 7.9 353.7 76.2 275.4 37.1
Total 1972.4 719.8 2074.7 593.1 2091.7 524.3 2130.1 401.3
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Appendix B - Soil Sample Data

Table B.1 Grid Soil Sample Data for Stockton 2010.

Sample ID pH oM. P K NO3 (15cm) NOj3 (45¢cm)
--0-- e PPMr----—mmmm oo
1 7.7 1.6 15.0 617 4.3 7.4
2 6.8 1.1 25.9 595 3.4 7.4
3 6.0 2.0 9.7 607 2.7 5.3
4 6.1 1.8 11.0 566 4.0 6.7
5 6.2 2.1 9.1 627 3.2 6.5
6 6.4 1.8 11.5 592 3.8 6.2
7 7.4 1.6 16.6 608 4.3 6.8
8 6.3 2.1 11.5 550 4.2 6.0
9 6.2 2.1 9.8 564 3.2 5.3
10 6.1 1.8 7.2 568 4.1 7.2
11 5.7 2.1 22.7 672 3.0 5.6
12 6.1 2.2 8.8 550 4.3 7.1
13 6.2 1.8 11.2 528 3.8 6.8
14 6.6 1.8 17.1 578 5.3 7.3
15 6.3 2.0 10.3 562 6.4 7.5
16 6.5 1.7 22.4 641 4.5 6.9
17 6.4 1.8 24.0 576 5.8 5.7
18 6.6 1.4 23.0 549 5.9 7.9
19 7.6 2.3 33.2 628 3.5 6.2
20 6.2 1.6 7.7 588 3.0 6.4
21 6.3 1.9 10.6 566 2.7 5.9
22 6.2 1.9 9.0 594 3.8 5.1
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Table B.2 Grid soil sample data for Manhattan 2010.

Sample ID pH O.M. P K NO;3 (15cm) NOs3 (45cm)
e e PP -—--——=—— - me -
1 7.8 1.8 19.5 294 1.5 3.5
2 6.8 3.0 23.5 286 1.4 2.4
3 6.3 2.6 9.6 296 1.0 2.0
4 6.2 2.5 18.6 297 1.2 3.5
5 5.9 2.4 16.2 284 1.2 7.2
6 6.0 1.7 5.1 268 1.3 3.0
7 6.0 2.1 10.4 278 1.1 3.3
8 6.3 2.0 13.5 307 1.0 2.2
9 6.5 2.3 26.9 321 1.0 1.3
10 6.8 2.5 60.0 322 1.4 1.4
11 7.6 2.1 52.2 276 1.6 4.1
12 5.1 2.4 9.3 112 4.3 2.7
13 7.8 1.8 20.9 292 1.3 2.4
14 6.3 2.6 9.6 296 1.0 2.0
15 6.2 2.5 18.6 297 1.2 1.8
16 5.9 2.4 16.2 284 1.2 1.2
17 6.0 1.7 5.1 268 1.3 1.5
18 6.0 2.1 10.4 278 1.1 3.8
19 6.3 2.0 13.5 307 1.0 1.6
20 6.5 2.3 26.9 321 1.0 3.2
21 6.8 2.5 60.0 322 1.4 6.3
22 7.6 2.1 52.2 276 1.6 2.1
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Table B.3 Grid soil sample data for Stockton 2011.

Sample ID  pH oM P K NOj (15cm) NOj3 (45cm)
--%0-- = e PPME-—-=— === —mmmm oo

1 5.8 1.8 22.3 305 9.6 7.2
g 2 5.8 1.8 19.7 290 11.0 3.0
3 5.6 1.6 17.4 284 12.2 3.3
4 5.9 1.7 18.0 282 8.3 2.2
5 5.9 1.3 11.9 294 5.7 1.3
6 6.4 0.9 9.7 286 4.1 1.4
7 6.0 1.2 12.3 296 6.8 4.1
8 6.0 1.2 9.4 297 5.0 2.7
9 6.1 1.4 10.5 284 5.5 2.4
10 6.1 1.6 10.0 268 5.6 2.0
11 5.9 1.9 13.0 278 7.4 1.8
12 5.9 1.7 9.4 307 6.2 1.4
13 6.3 1.0 10.9 321 4.3 1.5
14 5.8 1.6 13.4 322 8.6 3.8
15 6.0 1.4 12.0 276 5.8 1.6
16 5.6 1.7 16.2 112 8.0 4.1
17 5.8 2.0 14.3 292 9.1 6.3
18 6.2 1.6 13.1 296 6.3 2.1
19 5.9 2.3 11.7 297 5.3 3.5
20 6.2 1.2 13.3 284 6.6 2.4
21 6.1 1.8 12.6 268 6.3 2.0
22 5.8 2.1 17.2 278 7.0 3.5
23 6.0 1.4 12.5 307 7.2 2.4
24 5.9 1.9 12.8 321 7.6 3.2
25 5.7 1.8 15.1 322 8.4 4.1
26 5.9 1.9 15.6 276 9.1 3.1

94



Table B.4 Grid soil sample data for Manhattan 2011.

Sample ID pH OM P K NOj; (15cm) NO3 (45cm)
== Po-- e ppMr-------—mmmm e
1 7.0 2.7 117.0 570 5.1 7.3
2 6.6 2.9 35.3 496 6.2 7.5
3 5.8 2.6 11.6 494 7.2 6.9
4 5.5 2.4 6.6 339 9.0 5.7
5 5.4 2.5 8.7 367 9.2 7.9
6 5.2 2.2 6.4 381 8.0 6.2
7 54 2.0 6.0 367 7.5 7.4
8 5.4 1.9 6.6 367 9.1 6.4
9 6.0 1.8 5.3 362 6.8 5.9
10 6.1 1.8 5.9 371 5.5 5.1
11 6.1 2.1 7.5 359 5.2 54
12 5.9 2.2 9.5 391 6.2 6.1
13 5.9 2.5 7.2 357 7.9 5.3
14 5.4 2.4 6.4 345 7.7 7.4
15 5.2 2.6 7.6 357 8.2 7.2
16 5.3 2.6 9.1 366 5.2 5.6
17 5.3 2.6 7.3 350 6.0 7.1
18 5.3 2.6 8.0 337 6.0 6.8
19 5.5 2.8 14.9 393 6.0 7.3
20 5.7 2.8 8.2 366 5.1 8.6
21 6.1 1.7 7.3 378 5.0 3.8
22 5.7 1.9 9.0 520 6.5 5.5
23 5.4 2.3 10.9 343 6.0 5.6
24 5.5 2.0 14.3 352 6.4 7.5
25 6.1 2.4 12.1 503 5.5 7.7
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Appendix C - Field Images

Figure C.1 Aerial field images show terraces (Left), plot layout (Center), and grid-layout with soil sample points (Right) in the
Stockton 2010 field. The top of the images point north. Latitude: 39.50656, Longitude: -99.23899.
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Figure C.2 Profile NO; (mg kg™) (Left) and the Phosphorus (mg kg™) (Right) layers of the Stockton 2010 field.
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Figure C.3 Potassium content (mg kg'l) (Left) and the OM content (g kg'l) (Right) layers of the Stockton 2010 field.
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Figure C.4 Deep soil EC (mS m™) (Left) and shallow soil EC (mS m™) (Right) in the Stockton 2010 field.
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Figure C.5 Yield goal (bu ac'l) (Left) and elevation (ft) (Right) of the Stockton 2010 field.

100

1960




Figure C.6 Aerial image (Top), plot layout (Center), and grid-layout with soil sample
points (Bottom) in the Manhattan 2010 field. The top of the images point north. Latitude:
39.21656, Longitude: -96.59678.
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Figure C.7 Profile NO3; (mg kg'l) (Top) and Phosphorus (mg kg'l) (Bottom) in the
Manhattan 2010 field.
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Figure C.8 Potassium content (mg kg™) (Top) and the OM content (g kg™) (Bottom) in the
Manhattan 2010 field.
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Figure C.9 Deep soil EC (mS m'l) (Top) and shallow soil EC (mS m'l) (Bottom) in the
Manhattan 2010 field.
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Figure C.10 Yield goal (bu ac'l) (Top) and Elevation (ft) (Bottom) of the Manhattan 2010

field.
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Figure C.11 Aerial image (Left), plot layout (Center), and grid-layout with soil sample points (Right) in the Stockton 2011
field. The top of the images point north. Latitude: 39.51245, Longitude: -99.19461.
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Figure C.12 Profile NO; (mg kg™) (Left) and phosphorus content (mg kg™) (Right) in the Stockton 2011 field.
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Figure C.13 Potassium content (mg kg'l) (Left) and the OM content (g kg'l) (Right) in the Stockton 2011 field.
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Figure C.14 Shallow soil EC (mS m™) (Left) and Elevation (ft) (Right) in the Stockton 2011 field.

109



84
Figure C.15 Yield goal (bu ac'l) of the Stockton 2011 field.
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Figure C.16 Aerial image (Top) and plot layout (Bottom) of the Manhattan 2011 field. The
top of the images point north. Latitude: 39.21656, Longitude: -96.59952.

111



64

Figure C.17 Grid-layout with soil sample points (Top) and yield goal (bu ac'l) (Bottom) of
the Manhattan 2011 field.
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Figure C.18 Profile NO; (mg kg'l) (Top) and Phosphorus (mg kg'l) (Bottom) in the
Manhattan 2011 field.
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Figure C.19 Potassium content (mg kg'l) (Top) and the OM content (g kg'l) (Bottom) in the
Manhattan 2011 field.
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Figure C.20 Shallow soil EC (mS m'l) (Top) and Elevation (Bottom) (ft) in the Manhattan
2010 field.
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