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4
DEPARTURE FROM ASSUMPTIONS OF ANALYSIS OF VARIANCE AND

BEHAVIOUR OF MULTIPLE COMPARISON PROCEDURES (POWER AND

ROBUSTNESS) IN REAL DATA

Introduction

The main objective of this work is by using real datai

i. To determine which kinds of non-normality are most common as
well as to what extent heterogeneity of variance is present
and whether departure from assumptions differs between
disciplines.,

2, To investigate whether performance of selected multiple comparison
tests in real application is similar to results based on
theoretical considerations and simulation results.,

3. To examine whether or not departure from assumptions affected
the performance of selected multiple comparison procedures.

The Statistical Laboratory at Kansas State University provides statis-
tical consulting to several departments in the Kansas Agriculture Experi-
mental Station at Manhattan, Kansas., As a result of this work there is
easy access to many different data sets processed by Statistical Laboratory
statistical programs. Over a pericd of two years, September 1974 through
July 1976, data was collected from each data set processed by the Statis-
tical Laboratory analysis of variance program AARDVARK (Kemp, 1976). In
total 1765 different data sets from several departments were used.

Four multiple comparison procedures, because of their different
properties concerning protection against Type I error and power, were
considered: Fisher's LSD, Duncan's New Multiple Range Test, Tukey's HSD

(honestly significant differences) for 20 or fewer levels and Waller-Duncan
1 ,



Bayes t procedure for more than two levels of main effects only.

Each data set analyzed by AARDVARK was subjected to three basic
tests for normality: Shapiro-Wilk W-test for samples of size 50 or less,
skewness for samples of size 25 or more and kurtosis for samples of size
11 or more. In addition, the simple correlation between the subclass
mean and variance was computed to determine if the cell means and variances
were independent as they should be if assumptions hold.

To test homogeneity of variance Bartlett's test was applied.

Anticipated significance of this studyt

1. To obtain information about the type and frequency of most
common departure from assumptions in real data which should
instigate statisticians to develop more robust tests to that
particular kind of departure from assumptions. At the same
time this information should warn researchers in various fields
of agriculture, biology, social science, etec. to be more select-
ive concerning tﬁe tests used in the analysis of their data.

2, Several valuable simulation studies concerning the performance
of multiple comparison tests are available. However, the magni-
tude of true differences and the level of homogeneity among the
true treatment means depend on the structure of real data and
cannot be fully predicted by a simulation study. Therefore, our
study should be useful in showing to what extent the generalization
of simulation results can be accepted.

3, Finally, on the basis of this study while selecting a multiple
comparison procedure, in addition to the criteria concerning the
protection against Type I error and power, robustness of the

particular procedure should also be considered by researchers,



DEPARTURE FROM ASSUMPTIONS UNDERLYING ANALYSIS OF
VARIANCE IN REAL DATA

Introduction

Analysis of variance is based on three basic assumptions: First,
and perhaps most important, is the assumption of normality; second, is
that the variances of the distributions from which the samples have
been taken are the same; third is the statistical independence of error
deviations. The last assumption is usually not restrictive because
researchers can generally perform most research such that this require-
ment is met. However, the other two assumptions can be violelzd in more
ways that they can be satisfied.

Many different tests for normality as well as tests for homogeneity
of variance have been developed. However, the information concerning
these tests, as well as sirulation results on the effects of departure
from normality and heterogeneity of variance, are scattered throughout
the literature., To facilitate understanding the limitations impeosed by
different methods of testin: for normality and homogeneity of variance
a brief review of tha most significant tests as well as simulation results
is given.

The results of applying some of the tests for normality and homoge-
neous variance to 1765 sets of real data from several different disciplines
are presented and discussed. This information should prove valuable to
both researchers and statisticians. It should enable either to minimize
the chance of applying a nonrobust test to data where it 1s unlikely that

the basic assumptions are true.



TESTING FOR NORMALITY

Limitations and Sultability of Existing Test Statisties

Testing distributional forms in general, and for normality in
particular, has been an important area of continuing research in statis-
ties. The main reasbn of such great interest is the fact that many
jmportant statistical procedure have properties that are based on the
assumption of normality,

Many researchers have developed, or improved, tests which can detect
departures from normality. The result of these efforts is the existence
of several tests for normality. The intention of this review is not to
go into detail on how to perform these tests, but to summerize what has
been done until now,

Probably the oldest, and certainly the best known tests are the
{asts for skewness and kurtosis. The first is a measure of asymmetry, and
the coefficient of skewness g; = (bl)% = 0 (where (bi)% = m3/m23/2, see
33, p 86) for symmetric distribution. When g4 # O it can be concluded
that there is some departure from normality, but the converse is not
necessarily true; that is, when gy = 0 the distribution may be normal, but
it may be any other symmetrical distribution as well. Therefore, some
authors raise the question whether g4 should be regarded as a test of
normality (18, 38). However, this test, because of its simplicity, is
recommended in many text books (7, 30, 33). The magnitude of Kurtosis is
given by g = b2 - 3 (where b2 = mu/mzz,,see 33, p 87).. For normal distri-
bution bz = 3 and hence By = 0. Positive values of 8o indicate a density
more peaked around its center than the density of a normal curve, while

& negative valué characterizes a density which is flatter at its center



than the normal curve. Both tests can be readily used, because tables
for (bl)% and b, at 14, 5% and 10% significance levels are available.

Geary (1935) proposed the ratio of the mean deviation to the standard
deviation to be used as a test of normality. However, his method of
testing normality is not very reliable for samples smaller than 50 and,
thersfore, has limited value,

Some tests for normality are appropriate only as tests of simple
hypotheses. The better known tests include: Chi-square goodness of fit
test (33), Cramer-Von Mises test (1928) with test statistic CM, Kolmogorov-
Smirnov test (1933) with test statistic KS, Weighted Cramer-Von Mises test
(1954, see 32) with test statistic WCM and Durbin's test (1961) with test
statistic D. However, when used as tests for normality, the mean and
standard deviation of the hypothesized distribution must usually be speci-
fied, In most cases, where a test for normality is of interest, prior
information regarding the parameters of the supposed normal distribution
are not available and must be estimated. Unfortunately, these tests are
generally quite sensitive even to relatively small misspecification of the
parameters, and because of that their usefulness as practical statistical
procedures is questionable.

David (1954) developed a test for normality (test statistic U) based
on the ratio of range to standard deviation. The U statistic has particularly
good properties against symmetric, especially short-tailed (uniform) distri-
butions, but seems to be inefficient with respect to asymmetry, which is
often the case regarding a departure from normality.

Shapiro and Wilk (1965) developed an excellent test for normality

(test statistic W). The computation requires an extensive table of constants



because a different set of n/2 constants is required for each sample

size n. The authors have been provided a table of these constants for
sample size up to 50, as well as the table of critical values of W, This
test seems to be the most powerful test for normality pr- sently available,
However, when sample size exceeds 50 the computation of W for normality
testing becomes very cumbersome,

D'Agostino (1971 a) presented an alternative test for normality
(test statistic D)., The test is very powerful for detecting departures
from normality for moderate and large sample sizes, and tables for D
statistic are available for sample sizes 10 to 2000, (10, 38), The only
inconvenience in using this test is that, because of very small range of
D values, at least 5 decimal place accuracy should be used in its compu-
tation. This test seems to be an ideal complement to Shapiro-Wilk's test
(1965) for sample sizes larger than 50,

Finally, there are some tests for normality, which are useful only
in special cases. One such test was presented by Uthoff (1970) with test
statistic W. This test is the most powerful test of normality against a
distribution which is umiform. Unfortunately, W has relatively poor

performance for heavy-tailed distributions.

Testing for Normality in Simulation Experiments

A few Monte Carlo simulation studies have been undertaken to investi-
gate the performance of different tests for normality. The most extensive
study of this kind was done by Shapiro and Wilk (1968). They presented
results from a simulation study regarding the sensitivity of nine statistical
procedures for evaluating the normality of a complete sample. The nine

statistics were: W (Shapiro-Wilk, 1965), (bi)% (skewness), b, (Kurtosis),



KS (Kolmogorov-Smirnov), CM (Cramer-Von-Mises), WCM (Weighted CM),

D (modified KS), CS (chi-square) and U (studentized range). Their conclu-
sion was: "(i) The W statistic provides generally superior omnibus measure
of non-normality; (ii) the distance tests (KS, CM, WCM, D) are typically
insensitive; (1ii) the U statistic is excellent against symmetric,
especially short-tailed, distributions, but has virtually no sensitivity

to asymmetry; (iv) a combination of both (bi)% and b, usually provides

a sensitive judgment but even their combined performance is usually dominated
by W."

Another interesting Monte Carlo simulation study was presented by Hogg
(1972). Four statistics were employed: K, kurtosis, V, the ratio of one=-
half of the range to the mean deviation from the sample median; U, the
ratio of standard deviation to the mean deviation from the sample median,
and W, the ratio of one=half of the range to the standard deviation. A
random sample of size 21 was taken from each of four symmetric distributions:
uniform, normal, logistic and double exponential, For each sample K, U, V.
and W were computed. This was repeated 1000 times providing empirical
distribution functions for these statistics with four different underlying
distributions. The statistics wére ranked from worst to best within each
cell by assigning ranks 1, 2, 3, 4. The following averages of the rank of
each statistic were obtained: 2.58 for K, 2.13 for U, 3.04 for V and 2.25
for W. V showed superior performance in this study. By another investi-
gation Davenport (1971) supported this result, but only for sample size less
than 30, Thus, K seems to be more suitable for testing normality over a

wide range of sample sizes.



Normality in Real Experimental Data

Although testing for normality has been a well established procedurs
for some time, very little is known about the extent and types of non-
normality encountered in real data.

The Statistical Laboratory at Kansas Stafe University provides
statistical consulting to several departments in the Kansas Agriculture
Experimental Station at Manhattan, Kansas. As a result of this work there
is easy access to many different data sets processed by Statistical
Leboratory statistical programs, Over & period of two years, September,
1974 through July 1976, data was collected from each data set processed
by the Statistical Laboratory analysis of wvariance program AARDVARK (Kemp,
1976). In total 1765 different data sets from several departments were
used,

The primary interest was to determine what, if any, kinds of non-
normality exist in real data and how frequently they occur. This informa-
tion should be helpful to those interested in developing new tests or
modifying existing tests to make them more robust to violations of the
normality assumption. If one knows what kind of non-normality is most
frequent, efforts can be dirscted toward developing of tests that are
robust to that particular type of non-normality.

The secondary concern was to break the data down into subsets, by
discipline, so that researchers in variocus fields of agriculture, biology,
social secience, etc., may have some idea as to the kinds of non-normality
that are most common in their data. Given such information, they may then
select statistical tests which are the most robust to that particular type

of non-normality, thereby improving their chances of valid analyses.



In analysis of data sets for particular discipline we were obliged
to eliminate departments and/or colleges from which we obtained insuffi-
cient number of data sets for a valid analysis. However, there were 11
departments and/or colleges that submitted 25 or more different data
sets for which we were able to compute normality tests. The 11 departments
for which such data were available were: Pathology (College of Veterinary
Medicine), Plant Pathology (Agriculture), Dairy and Poultry Science (Agri-
culture), Agronomy (Agriculture), Horticulture and Forestry (Agriculture),
Grain Science (Agriculture), Entomology, Adult and Occupational Education
(College of Education), Industrial Engineering (College of Engineering),
Foods and Nutrition (College of Home Economics), plus a general category
of agriculture. Thus all together we had 11 different sources of data
sets.,

As is evident from previous discussions the number of normality tests
available for general application is fairly limited. The three most commonly
used tests for normality were chosen to be run on each of the real data
sets, They were: W-test (Shapiro-Wilk, 1965) for samples of size 50 or
less, skewness for samples of size 25 or more, kurtosis for samples of size
11 or more. These limitations were based on the availability of tables
of eritical values, In addition, the simple correlation between the
subclass mean and variance was alsc computed to determine if the cell means
and variances were independent. Each data set was analyzed for departure
from normality by computing sum of squares using the deviation within the
highest order interaction subclass fit in the model.

Table 1 shows that skewness is the least frequent form of non-normality

of those computed in this study. In general the other tests show similar
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results among themselves. Nearly one third of the data sets processed
showed at least one kind of non-normality at the 0.05 level of significance.
This certainly makes clear the need for tests robust to the vioclation of
assumptions. Apparently, it is more important to have tests robust to
kurtosis than to skewness. However, almost one~fourth of the data sets
showed significant skewness at the 0.05 level of significance,

In reviewing Tables 2 through 12 we find that data from the Department
of Pathology displays the least amount of non-normality with most of the
percentages of significance close to the nominal type I error rate. The
Watest was significant at the-0.05 level of significance for nearly half
or more of the data sets from Industrial Engineering (Table 9), Grain
Science (Table 10) and Dairy and Poultry Science (Table 3). The W.test
is not a test for testing a specific type of non-normality. However,
researchers in these disciplines should be careful about using tests based
on normal distribution theory in view of the large proportion of data sets
displaying some form of non-normality as indicated by the W-test. Other
departments showed results quite similar to the combined data for all
departments.,

Data from the College of Agriculture (Table 4) and Grain Science
(Teble 10) showed very little skewness. Most of the other departments
displayed skewness in a magnitude similar to the combined data except
Flant Pathology (Table 6) which showed considerable skewness at the 5% and
10% levels of significance.,

The Department of Plant Pathology (Table 6), Industrial Engineering
(Table 9) and Grain Science (Table 10) showed high incidence of significant

kurtosis with more than half the data sets having kurtosis signifiecant at
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10% level. Data from the College of Agriculture (Table 4), Department

of Agronomy (Table 7), Horticulture and Forestry (Table 8), and Foods and
Nutrition (Table 11) indicate that these departments have less kurtosis
than most departments, but still have significant kurtosis at the 10%
level of significance in about one-fourth of the data sets analysed.

The simple correlation between mean and variance was computed to
determine whether or not the subclass mean and variance were independent, as
they should be for a normal distribution with homogeneous variance among
the subclass cells. The Department of Pathology (Table 2), Dairy and Poultry
Science (Table 3), Adult and Occupational Education (Table 5), Flant Patho-
logh (Table 6), and Foods and Nutrition (Table 11) showed a lower incidence
of significant correlation than the combined data (Table 1). The College
of Agriculture (Table 4) and Department of Grain Secience (Table 10) and
Entomology (Table 12) displayed higher percentages of significant corre-
lation than the combined data (Table 1), especially at the 10% level of
significance.

To compare the frequency of the joint occurence of significant non-
normality of different forms, a set of 2 x 2 contingency tables was cons-
tructed (Tables 13 to 16)., These tables were based on data sets which had
sample sizes in the range of 25 to 50. Only those data sets included all
four tests as a result of the restrictions previously menticned. While all
four chi-square statistics were highly significant (P = .1’”) the reader
should note the strong relationship between the W-test and kurtosis. These
results show that significant (P £ 0.05) W-test and significant (P £ 0,05)
kurtosis very often occur together indicating that the W-test is quite

sensitive to kurtosis. From Table 16 it can be seen that while there is a
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relationship between kurtosis and skewness it is not nearly as strong as

the relationship either has with the W-test.

Conclusion

A total of 1765 different data sets were subjected to three basic
tests for normality:-Shapiro-Wilk's W-test (1965), skewness and kurtosis,
In addition the simple correlation between the subclass mean and variance
was computed for the highest order interaction cell in an analysis of
variance model. The results showed that about one-third of all data sets
displayed a significant (P £0.05) W-test, kurtosis or correlation between
the subclass mean and subclass variance. About one-fourth of the data sets
had significant (P £0,05) skewness. Detailed information is given concer=
ning a more specific break down of type of non-normality by disciplines
for 11 major research areas. Chi-square contingency analysis showed a very
strong relationship between the performance of the W-test and the incidence

of kurtosis,



Table 1 Percent of Data Sets which Showed Non-normality

for All Disciplines Combined

Test W-test Skew. Kurt, Corr.
No Ran 1153 1379 1765 1755
01 27,49 5.37 L,19 21,14
5-1go
005 3)"'?8 2208‘”’ 34'90 33.33
level
' .10 41 .46 30.09 Lk 65 33.72

Table 2 Percent of Data Sets which Showed Non-normality

for.Department of Pathology

Test W-test Skew, Kurt. i Corr.
No Ran 26 10 28 | 28
.01 0.0 0.0 | 0.0 | 0.0
sig. ]
.05 | 0.0 0.0 | 7.k | 7.4
level
.10 | 0.0 60.0 | 7.14 | 14,29

Table 3 Percent of Data Sets which Showed Non-normality

for Department of Dairy and Poultry Science

Test Watast Skew. Kurt. Corr.
| No Ran 114 120 134 134
.01 29.82 0.0 0.0 0.0
sig., :
.05 43,86 31.67 ; 29.85 22 .39
level
10 54,39 40,00 31.3% 29.85

13



for College of Agriculture

Table 4 Percent of Data Sets which Showed Non-normality

Test W-test Skew. Kurt,. Corr,
No Ran ol 86 142 142

01 21,28 0.0 0.0 19.72
sig.

05 31,91 6.98 16.90 36,62
level

.10 46,81 | 11.63 | 25.35 | 45.07

Table 5 Percent of Data Sets which Showed Non-normality

for Department of Adult and Occupational Educatlion

Test W-test | Skew. | Kurt. Corr,
No Ran 25 0 25 25

.01 12,00 0.0 0.0 0.0
sig,

.05 28,00 0,0 | 32,00 | 24,00
level f

.10 28,00 | 0.0 | 40.00 | 24,00

for Department of Flant Pathology

Table 6 Percent of Data Sets which Showed Nonenormality

Test W-test Skew, Kurt. Corr,
Ne Ran 53 64 105 95
.01 28,30 0.0 0.0 737
sig.
.05 33,96 | 39,06 | 50.48 10.53
level
.10 4i.51 53.13 58.10 27.37

14



Table 7 Percent of Data Sets which Showed Non-normality

for Department of Agronomy

Test W-test Skew. Kurt. Corr.
No Ran 168 163 255 255

.01 19.64 14,72 9,41 14,12
sig.

+05 27.98 22,09 21,96 30,20
level

.10 30.95 31.29 35.69 33.33

Table 8 Percent of Data Sets which Showed Non-normality

for Department of Horticulture and Forestry

Test Wetest Skew. Kurt. Corr,
No Ran L 220 331 331

.01 10.42 0.00 0.00 25,68
sig.

.05 16.67 30.91 25.08 33.84
level :

,10 26,39 41,82 36,86 | 39.27

Table 9 Percent of Data Sets which Showed Nonenormality

for Department of Industrial Engineering

Test W-test Skew. Kurt,. Corr,
No Ran 19 88 97 97
.01 36.84 2,27 2,06 24,74
sig.
, .05 47.37 36.36 41.24 30.93
level
.10 47.37 43.18 53.61 38.14

15
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Table 10 Percent of Data Sets which Showed Non-normality

for Department of Grain Science

Test W-test Skew, Kurt, Corr.
No Ran 350 398 L4 Liy

01 46,29 0.0 0.0 28,99
sig. .

.05 Lo,14 L,52 53.62 41,06
level

.10 54,86 7,04 60.39 46,38

Table 11 Percent of Data Sets which Showed Non-normality

for Department of Foods and Nutrition

Test W=test Skew, Kurt. Corr.,
No Ran 64 82 82 82

.01 15.63 0.00 0.00 4,88
Sig-

.05 34.88 24,39 14.63 14,63
level

<10 43,75 | 36.59 | 39.02 19,51

Table 12 Perzent of Data Sets which Showed Non-normality

for Department of Entomology

Test W=test Skew, Kurt. Corr.
No Ran L6 8h 84 84
.01 30.43 0.00 ¢.00 16.67
sig.
«05 39.13 26.19 33.33 30.95
level
.10 43.48 33.33 h7.62 45,24
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Table 13 Contingency Table for Significant-Nonsignificant W-test

versus Significant-Nonsignificant Skewness at Alpha = .05

Test Skewness*
S NS TOT
) 88 201 289
W-test
NS 2 412 L1y
7T 90 613 703

*Test statistic X = 134; P < 0,0001

Table 14 Contingency Table for Significant-Nonsignificant W-test

versus Significant-Nonsignificant Kurtosis at Alpha = .05

Test Kurtosis*
s NS TOT
s = 236 . 53 289
W-tGS‘t.
NS 32 382 Lil

TOT 268 435 703

* Test statistic X = 391; P = 0.0001

Table 15 Contingency Table for Significant-Nonsignificant W-test

versus Significant-Nonsignificant Correlation at Alpha = .05

Test Correlation*
S NS 7T0T
S 162 127 289
Watest
NS 56 358 L4
TOT 218 485 703

2
* Test statistic X = 140; P < 0,0001
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Table 16 Contingency Table for Significant-Nonsignificant Kurtosis

versus Significant-Nonsignificant Skewness at Alpha = .05

Test Skewness*
S NS TOT
‘ 5 62 206 268
Kurtosis
NS 28 ko7 435

T0T 90 613 703
* Test statistic =40 ; P £0.0001
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TESTING FOR HOMOGENEITY OF VARIANCE

Discussion of Existing Tests

One of the basic assumptions underlying analysis of varlance is the
equality of the subclass variances. Moderate departures from this assump-
tion do not, however, seriously affect the sampling distribution of the
resulting F statistics when the equal cell numbers are used (30)., However,
if extreme inequality of variance is suspected and if cell numbers are not
equal a test for homogeneity of variances is needed.

Several statistiecs are available for testing homogeneity of variances,
Probably the most widely used test is Bartlett's test (1937) for homogeneity
of variances with test statistic B.B is approximately distributed as chi-
square with k-1 degrees of freedom where k is the number of subclasses,

This test is very powerful if the assumption of normality holds. However,
Box (1953) has shown that this test is extremely sensitive to non-normality
and in some cases tends to give significant results when variances are
equal. He illustrated this effect by using two extreme degrees of kurtosis
with equal variances (n=30). When b, =2 the probability of rejecting the
hypothesis at the nominal 0,05 level was actually 0.849, while with b, = -1
the probability was only 0.00001, —

Two other statistics commonly used for testing homogeneity of variances
are Fmax proposed by Hartley (1950) and C developed by Cochran (1941), These
tests are simpler computationally than Bartlett's test, but they shpw the
same lack of robustness to non-normality.

As a remedy for this situation, Box (1953) proposed an approximate
test, based on subdividing each population sample into ¢ subsamples of size

m (n=cm). However, there are no firm rules for the selection of ¢ and m
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and, therefore, this procedure is highly dependent on the skill of the

user.
Finally, Miller (1968) recommended the Tukey's (1962) jackknife
procedure for testing homogeneity of variances. This test is robust to

violations of the normality assumption and seems to have fairly sufficient

power.,

Performance in Simulation Experiments

Several Monte Carlo simulation studies have been performed to investi-
gate the robustness of different tests for homogeneity of varlances to
deviations from normality. |

Miller (1968) applied seven tests to each of the 1000 pairs of samples
of size 251 Fisher's F (1935), Box-Andersen (1955), jackknife (k=1, m=n),
jackknife (k=5, m=5), Levene (1960) S, Box (1953) and Moses (1963) (k=5,
m=5)., The tests were run on data from uniform, normal, double exponential,
skew double exponential and sixth power distributions. On the basis of
this study the following conclusions were made:

i) The F test is extremely sensitive to non-normality.

11) The jackknife with k=5 is not as powerful as the jackknife
with k=1.

4i1) The Box-Andersen test and the jackknife with k=1 have about
the same power, and generally are the most powerful.

iv) The Levene S and the Box tests are robust, but they are less
powerful then the tests under ii) and 1ii).

v) The Moses test (k=5) is the least powerful of all the tests.

Games (1972) presented two Monte Carlo simulation studies. In the first

study the power curves of the Fmax test, the Cochran test, the two Levene
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(1960) tests (L - X% and L - A) and Bartlett's test were compared using
six different populations for samplés of size n = 6, The second study
contrasted Bartlett's test with Box and Andersen (1955) M' test, the
Bartlett and Kendal (1946) tests (LEV-2 for k=2 and LEV-3 for k=3) and
the Foster and Barr (1964) Q test using the same distributions as in the
p&evious study, but for samples of size n = 18,

From the results obtained in the first study it is clear that Bartlett's,
Fmax and Cochran's tests show the trends Box (1953) indicated., For the
normal population when variances differ, Bartlett's and Fmax tests have
superior power over all other tests, The Levens tests (L - X% and L - A)
do not show the hoped-for robustness to vioclations of normality and generally
have low power. From the results in the second study, it can be seen that
the Foster and Barr Q-test performed similarly to the Barti-tt's test.

The LEV-2 test had unsatisfactory power. LEV-3 test shoulc be used if
there is reason to expect lepto-kurtosis (density curve mo:- peaked around
its center) in the populations or if there is no a priori information on
the form. However, to compensate for lower power of this method the sample
size rust be increased.

Layard (1973) conducted two Monte Carlo simulation studies which differ
only in the sample sized (n=25), n=10). Five hundred sets of four samples
were generated in both cases. For each of 500 sets of samples Bartlett's,
chi-square (24), Jackknife, and Box (1953) (k=5) test statistics were
computed. The tests were run on data from uniform, normal and double expo=
nential distributions. These results agree fairly well with those of
Miller (1968). The author recommends the use of either jackknife or chi-

square for samples of size greater than ten (minimum).



From the previous discussion it can be seen that a wide variety
of tests for homogeneity of variances exist. However, most of the robust
tests lack power. The Box-Andersen and jackknife tests seem to be the
best choice. Unfortunately, these tests are based on subdivision of
population samples into subsamples and for a wide range of sample sizes
the number of possible subsamples is very large. Because of a lack of firm
rules concerning subdivision into subclasses, these tests have little
practical value., Therefore, we chose Bartlett's test because it is the

most commonly used test,

Results end Discussion

Bartlott’s test was run on 1765 different real data sets (see Normality
in Real Experimental Data section of this paper). The results showed that
35% of these data sets had a significant Bartleti's statistic at the 0.01
type I error rate and almost 46% at the 0.10 significance level. These
results indicate that unequal variances may well be very common in real
data, Therefore, researchers and statisticians, working with such data,
should be careful in using tests that are based on the assumption of equal
variances.

Among the 1765 data sets there were 11 disciplines which had 25 or
more data sets. The results for each discipline ars given in Table 17.
Most departments seem to have a large proportion of data sets with unequal
variances, ©Only the Department of Pathology had low incidence of unequal
variance.

In view of information in the literature regarding the effect of
non-normality on Bartlett's test we decided to run 2 x 2 contingency tests

on the 703 data sets for which all normality tests were performed. The
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results are presented in Tables 18 through 21, These tables indicate
that a significant Bartlett's test is associated with all the normality
tests, however, it was most related to significant kurtosis. In view of
Box's (1953) finding that Bartlett's test is not reliable in the presence
of kurtosis, our results showing a high incidence of unequal variance may

be invalidated,

Conclusion

One-thousand-seven-hundred and sixty-five different data sets were
analysed for homogeneity of variance using Bartlett's test. The lowest
heterogeneity of variance was found in Pathology and the highest in Grain
Science., Most disciplines had a large proportion of data sets which showed
2 significant Bartlett's test, Seven hundred and three data sets were
analyzed by means of 2 x 2 contingency tables for Bartlett's tests versus
four normality tests. Bartlett's test was highly related to all departures

from normality, but especially to kurtesis.



Table 17 Percent of Data Sets Showing a Significant

Department

Combined
Pathology

Dairy and
Poultry Science

Agriculture

Adult and Ocecupa-
tional Education

Plant Pathology

Agronomy

Horticulture
and Forestry

Industrial
Engineering

Grain Science

Foods and
Futrition

Entomology

Bartlett's Test

No
Ran

1765
28

134

142

a7

b1k

82

sig, level

0.01 0.05
35.41 41,08
7.14 7.14
28,36  37.31
16.590 18,31
12,00  24.00
43,81 49,52
21.18 28,24
32.02  36.25
41,24 46,39
48,31  53.14
29.27 43.90
38.10 42.86

0.10
45,67
14,29

43,28
19,72
32.00

52.38
3+.90

39.88
Lo 48
58494

L8.78

L7.62

24
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Table 18 Contingency Table for Significant-Nonsignificant Bartlett's

Test versus Significant-Nonsignificant W-test at Alpha = .05

Test " Wetest*
S. NS TOT
S 206 85 291
Bartlett's
NS 83 329 12
TOT 289 4i4 703

£
* Test statistic Z = 179; P < 0.0001

Table 19 Contingency Table for Significant-Nonsignificant Bartlett's

Test versus Significant-Nonsignificant Skewness at Alpha = .05

Test Skewness*
S NS TOT
S 56. 235 291
Bartlett's
NS 34 378 k12
TOT Q0 613 703

2
* Tast statistie X=17; P = 0,0001

Table 20 Contingency Table for Significant-Nonsignificant Bartlstt's

Test versus Significant-Nonsignificant Kurtosis at Alpha = ,05

Test Kurtosis*
.8 NS “TOT
S 224 67 201
Bartlett's

NS H4 368 L12
TOT 268 435 703

2
* Test statistic 2 = 318 = 0.0001
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Table 21 Contingency Table for Significant-Nonsignificant Bartlett's

Test versus Significant-Nonsignificant Correlation at Alpha = .05

Test Correlation*
S NS TOT
S 158 133 291
Bartlett's
NS 60 352 412
TOT 218 L85 703

2
* Test statistic A= 124; P <0,0001
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POWER OF MULTIPLE COMPARISON FROCEDURES IN REAL DATA

Introduction

Numerous procedures are available for the performance of multiple
comparisons in the analysis of variance. The basic rule is to compare the
observed difference between any two means to the critical value correspon-
ding to the multiple comparison test used., If the observed difference is
larger than the critical value, the difference is declared significant and
vice versa, However, the magnitude of critical values for different
multiple comparison test may vary considerably and so will the number of
significant differences declared. Because of that, large controversy has
arisen among statisticians concerning the reliability of different multiple
compariscn procedures,

Due to this situation, the area of multiple comparison methods has
become one of the most confusing area in statistics. The choice of the
proper procedure for a particular set of data from the existing arsenal of
multipls comparison techniques has become the problem of how to untie the
Gordian knot. A good discussion of the pith of the problem was given by
Kemp (1973).

Another stumbling block in the use of multiple comparison tests 1s
whether or not a significant Fatest must first be obtained before multiple
comparisons can be performed. Although, some authors claim that their proce-
dures do not require an a priori F-test, for example, Duncan (1955), many
researchers prefer to apply even those procedures only after a significant
overall F-test has been found. Howsver, the purpose of this paper is not to
recommend the best multiple comparison procedure, but to present a study of

actual behaviour (power) of chosen multiple comparison tests in real data,
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To facilitate the reader’s understanding of the results obtained, theoreti-
cal considerations as well as simulation results concerning the most studied

mltiple comparison procedures will first be discussed.

Theoretical Considerations Concerning Multiple Comparison Procedures

Up to now, the best known multiple comparison procedures are the
following: Multiple t-test or unprotected LSD (least significant difference),
Fisher's (1935) LSD, or protected t-test. Scheffe's (1959) S method, Student-
Newman-Keuls (1927, 1939, 1952) SNK (also known as Newman-Keuls test),
Duncan's (1955) DNMRT (new multiple range test), Tukey's (1953) ﬁSD (honestly
significant difference) and the Waller-Duncan (1969) BLSD (Bayes t procedure).
However, ther; is common agreement that Scheffe's S method 1s the most
conservative test of all multiple comparison procedures and, therefore, will
be excluded from further consideration.

The critical value for unprotected LSD (multiple t-test) is computed
asti

LSD = t(e, f)sd
where t(er, f) is the table value of Student's (1908) t-statistic for signifi=
cance level o¢ and { degrees of freedom of the standard error of the difference
between two means (sd). If the difference between any two means exceeds
the LSD value it is declared to be significant. This procedure was criticized
by many statisticians because of its low protection against Type I error,
especially if all means are homogensous,

A modification of unprotected LSD was proposed by Fisher (1935).

He suggested that LSD test should be performed only if an overall significant
F-test is obtained, otherwise the differences should be declared nonsigni-

ficant, In other words, if F.test is significant



ISD = t(=t, f)sy
as previously, but if F-test is not significant
LSD = o=
This test is very powerful in detecting differences among the means and
has more protection against Type I error when means are homogeneous, than
doas the unprotected LSD. However, some authors think that protectlon
against Type I error is too low and, therefore, do not recommend its use,
To provide added protection against Type I error, Tukey (1953) developed
HSD test, which has critical valuet
HSD = q(of.p.f)sd(Z).%.
whers q(«,p,f) is studentized range statistic at < significance level, for
p treatments and f degrees of freedom for error (sd). HSD is equal to LSD
for two means, but when there are more than two means HSD is considerably
larger and, therefore, the power of the test is lower than LSD. A priori
F-test is not required for HSD.
While LSD and HSD procedures each require the computation of a single
eritical value, the Student-Newman<Keuls test requires calculation of
p = (n-1) critical values; thus the critical values are:
SNK , = q(Q}p.f)sd(2)-%r
and vary depending on the number (p) of means in the set, where q(~,p,f)
end sy are the same as for HSD. This procedure performs similarly to Tukey's
HSD test eoncerning the power and protection against Types I error,
Duncan (1955) developed a multiple comparison test for which the
rate of Type I error is somewhere between LSD and H5D. A preliminary Fatest
is not required. The critical value is given byt |
DNIRT, = qq(=, psf)sq(2) 2,
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where q4 can be obtained from spscial tables computed for this test by
Duncan. The critical value DNMRTp varies as does the SNK test, with the
number (p) of means in the set. This test is more powerful than SNK and
HSD, but statisticians have divided opinion concerning its protection
against Type I error,

Finally, a2 test based on a Bayesian approach to the multiple comparison
problem was proposed by Waller and Duncan (1969). Its critical value is
computed ast

BLSD = t(k,F,f,q)sd,
where t(k,F,f,q) is the minimum average risk t value for the chosen value
of k (Type I to Type II error weighted ratioc), F is the value of ordinary
F-test, f is degrees of freedom of error, and q is the degrees of freedom
emong treatments. No preliminary Fatest is necessary, but t becomes infinite
when F = 1, When F is large the performance of BLSD is similar tec LSD,
while for F less than 2,5, the BLSD is more conservative and closer to HSD,
Such properties of this test should result in a better power for large F

and smaller Typs I error rate for small F.

Simulation Results

Several Monte Carlo simulation studies concerning the behaviour of
most used MRT's (multiple comparison tests) are available.

Balaam (1963) examined the behaviour of LSD, SNK and DNMRT under two
conditions, that is, when & preliminary F-test was not performed (mgthod I¥
and after a significant F-test was obtained (method II). He concluded that
under both conditions NSK has considerably lower power than LSD and DNMRT,
while LSD had the greatest power with sufficient protection against Type I

erTor,
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Waller (1970) in a Monte Carlo simulation study examined four proce-
dures: Multiple-t, Fisher's LSD, Tukey's HSD and Bayes BLSD. He found that
HSD had a low power, while BLSD had a good power and sufficient protection
against Type I error.

Boardman (1971) studied five MRT's: LSD, DNMRT, SNK, HSD and Scheffe's
S procedure to compare their Type I error rates (comparisonwise and experi-
mentwise). He concluded that LSD and DNMRT are too liberal in terms of
experimentwise error rates, while Scheffe is extremely conservative, there-
fore, the choice should be SNK or HSD.

Carmer and Swanson (1971, 1973) presented two Monte Carlo simulation
studies. In the first study five MRT's were examined: LSD (unprotected),
FLSD (protected), TSD, DNMRT and BLSD., They found remarkably high degree
of similarity in the sensitivity of LSD, FLSD and BLSD, DNMRT was consis-
tently slightly less powerful than LSD, while TSD had a very poor sensitivity.
They concluded that experimenters should use FLSD, DNMRT or BLSD. TSD
should be avoided unless eﬁperimenter is extremely concerned about Type I
error,

The second study represents the most extensive study of its kind.

They compared 10 MRT's with respect to their power and Type I and Type II
error rates. The results obtained in the previous study concerning FLSD,
DNMRT and BLSD were confirmed. They concluded that Scheffe's S method and
TSD should not be used because they are too conservative.

Thomas (1973) compared seven methods of pairwise comparisons. He
concluded that LSD should not be used because of its high Type I error rate,
while DNMRT seems to be the best choice, because of its acceptably low Type I

error rate and uniformly high power.
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Einot and Gabriel (1975) compared the power of several multiple
comparison methods. They stated: “No.Mbnte Carlo study was needed to
realize the alleged inferiority of the Scheffe, Tukey and Newman-Keuls
procedures for detecting real differences". They recommend the use of

Rayan's (1962) method,

Discussion of Results Obtained in Real Data

As previocusly stated a large controversy has arisen among statistlcians
concerning the reliability of different MRT's, Several researchers conducted
valuable Monte Carlo simulation studies, which were undertaken to measure‘
the differences in sensitivity of the MRT's. However, there are some factors
which depend ;n the structure of real data and cannot be fully predicted in
a similation study. These factors are: the magnitude of true differences
and the level of homogensity among the true treatment means. These factors
might have a big effect on the performance of MRT's, thus, if in a real data
set there are many big differences between treatment means, the difference
in the power of the procedures may be small and vice versa,

To investigate the sensitivity of MRT's in real data, 1765 different
data sets wers analyzed by four MRT's: Fisher's (1935) LSD, Duncan's (1955)
DNMRT, Waller-Duncan (1969) Bayes-t procedure BLSD for main effects with
more than two levels and Tukey's (1953) HSD for treatments with 20 or fewer
levels. For the reasons given in the introduction all MRT's were applied
in two ways:

i, Comparisons of means was performed irrespective of F valu;;

2, Comparison of means was performed only if F-test was significant

at 5% significance level. When F-test was not significant it

was declared that there were no differences among the means.,
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Percent rejection of MRT's and possible number of comparisons for
two methods are presented in Tables 1 and 2 respectively. When all
effects and levels were present only LSD_and Duncan were compared, because
of the restrictions imposed by HSD and BLSD. F-test was significant in
39.28% of the cases. LSD was more powerful than DNMRT as expected, For
all effects and 20 or fewer levels HSD was, also, included. LSD had
superior power, but this time DNMRT was only slightly less powerful than
1SD, while HSD had considerably lower power than the other tests. F-test
had slightly lower percentage of significance. All four MRT's were
compared for main effects only and twenty treatment levels or fewer. The
difference in power of LSD, DNMRT and BLSD was small with LSD again leading,
while HSD was again considerably lower. The F-test was significant in
. 48.36% of the cases, which indicated that there was less homogeneity among
the means when only main effects were considered.

By examination of Table 2 it can be seen that the power of all MRT's
was increased, when they were applied after a significant F-test was
cbtained,. For all levels and effects as well as for all effects and 20
or fewer treatment levels, LSD and Duncan showed slightly smaller differences
in power than in the previous casej LSD having superlor power. When all
MRT's were compared LSD remained most powerful, but this time BLSD showed
slightly higher power than DNMRT. HSD was in all cases even more conser-
vative. .

In Table 3 percent of MRT's as well as possible number of multiple
comparisons when F ratio was not significant at 0.05 level are given. In
all cases LSD had the highest percentage of rejection. DNMRT was slightly

lower than LSD. HSD, as expected, was by far lower than LSD and DNMRT.
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BLSD showed the best performance being lowsr even than HSD.

Taking in account the results shown in Tables 2 and 3 we can conclude
that BLSD has high power when a preliminary F ratio was significant and
the lowest percentage of rejection when the F ratio was not significant,
Therefore, this test seems to be the best choice. However, this test can
be applied only for two or more levels of main effects and, therefore,
cannot be generally used.

To further investigate whether BLSD has the property to be conservative
for small F values and to have a high power for large F, all MRT's were
applied to the data sets with treatment levels greater than two and 20 or
fewer of main effects only. An a priori F-test was not performed. The
1imiting value of F was 2,5, The results are presented in Table 4, When
the F value was smaller than 2.5, BLSD was more powerful than DNMRT and
close to LSD, thus the expectation based on theoretical considerations
was fully confirmed by its performance in real data,

The results in Tables 1, 2, 3 and 4 seem to be in close agreement with
theoretical considerations and simulation results previously discussed.

The conclusion made by Carmer and Swanson (1971, 1973) on the basis of
their simulation results, that LSD (protected}, DNMRT and BLSD should be
used when powsr is the criterion of interest is fully confirmed by their

performance on real data,

Conclusion .

Four multiple comparison procedures were applied to analyze 1765
different data sets. MRT's were performed with and without a preliminary
significant F-test. In both cases LSD showed superior power, while HSD

was by far the most conservative procedure. Duncan's test showed slightly
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lower power than LSD, while ELSD pefformad similarly to DNMRT, having
slightly lower power than DNMRT when a preliminary F-test was not perfor-
med (Table 1) and slightly higher when a significant F-test was required
(Table 2). When F-test was not significant (Table 3) LSD and DNMRT showed
considerably higher percentage of rejection than HSD and BLSD; LSD being
the highest and BLSD the lowest. It was confirmed that BLSD has high
protection against Type I error for small F-values and a high power for
large F. LSD (protected) and DNMRT can be recommended when power is the
criterion of main concern. HSD can be recommended only when avoidance of
Type I error is very important., For data sets with two or more levels of
main effects only, BLSD is the best choice because of its high protection

egainst Type I error for small F-values and high power for large F ratios.
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Table 1 Percent Rejection of MRT's When F Ratio was Ignored

Effects Levels=L LsSD DNMRT HSD BLSD F
% 48,59 L2 L6 - - 39.28
A1l
No | 1,140,751 | 1,140,751
A1l
% 41.77 38,99 | 26.97 38,72
L £20
No 226,739 226,739 | 226,739 | =
% 39,88 36.77 25.49 | 35.96 | 48.36
Main 2 <L £20
No 48,514 48,514 48,514 | 45,856
Table 2 Percent Rejection of MRT's When F Ratio was
Significant at 0.05 Level
Effects | Levels-L LSD DNMRT HSD BLSD F
% 5947 52447 - " 100
A1l
No | 631,742 631,742
A1l
% 59,62 56,98 42,72 - 100
L £20
No 76,314 76,314 76,314
% 54,97 51,67 36,52 | 53.62 | 100
Main 2 <L <20
No 75,529 75,529 75,529 | 30,209




Table 3 Percent Rejection of MRT's When F Ratio

was not Significant at 0,05 Level

Effects Levels-L LSD DNMRT HSD BLSD
% 35.10 29.59 - =
All
No | 500,009 500,009
A1l
% 32,72 29,86 18,96 "
L S20
No | 150,425 150,425 | 150,425
% 8.63 5.91 2.66 1.87
Main 2<Ls20
No 15,799 15,799 15,799 | 15,647

Table 4 Percent Rejection of MRT's for Large and

Small Values of F

F LSD DNMRT HSD BLSD F
T 2.5 8.62 5.82 2.58 1.93 1.56
>2,5 | 56,69 | 53.42 37.81 55,26 | 89.99
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ROBUSTNESS OF MULTIPLE CCMPARISON PROCEDURES TO DEPARTURES
FROM NORMALITY AND HETEROGENEITY OF VARIANCE IN REAL DATA

Multiple coﬁparison procedures in recent years have become an impor-
. tant tool in the analysis and interpretation of experimental results in
many sciences., However, very 1ittie is known about the robustness of
these procedures to viclations of the assumptions underlying analysis of
variance. On the basis of theoretical and empirical studies it can be
concluded that both F and t-tests are little affected by the violation of
assumptions if equal cell numbers exist and there is not extreme hetero-
geneity of variances, In these cases testing the equality of only two
means does not present much of a problem.

Unfortunately, with the exception of the studentized range statistic
q, the behaviour of the statistics which are used in multiple comparisocn
tests have been explored very little. Ramsayer (1973), in a Monte Carlo
simulation study, investigated robustness of the q statistic under various
pattern of heterogeneous variances and departures from normality., He
concluded that q statistic withstands violations of the homogeneity of
variance assumption remarkably well as well as violations of the normality
assumption, when Type I error rate is the criterion of interest. However,
more work is needed regarding the robustness of q when power is the crite-
rion of interest. As for the other statistics used for multiple comparisons
there is little information about their robustness to the violation of
assumptions.

To throw more light on this question real data were subjected to three
multiple comparison procedures: Fisher's LSD (1935), Duncan's New Multiple
Range test (1955), and Tukey's HSD (1953) for treatments with 20 or fewer
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levels, Three tests for normality were alsc computed: Shapiro-Wilk
(1965) W-test, skewness and kurtosis (see 6 pp 86, 87). To test whether
subclass means and variances were independent, as they should be if all-
assumptions hold, a simple correlation between the subclass means and
variances was computed, Finally Bartelett's test (1937) was used for
testing hcmogeneity of variances.,

In Figures 1 through 5 percent differences found by MRT's (multiple
range tests) at 0.05 level at various significance levels of normality
tests as well as Bartlett's test is given. There were 5 significance
levels for W-test, correlation and Bartlett's test, while for kurtesis and
skewness the last two levels are pooled. Only-data sets for 20 or fewer
levels of main effects were analyzed. |

Figure 1 shows percent of differences declared significant by the
three MRT's for various significance lsvels of the W-test. All the MRI's
showed the same trend. The highest percentage of significant differences
occured between the 0 and 0,01 significance level, while the lowest was
for alpha hat between 0,01 and 0.05. The percentage was somewhere around
the mean of previous two for other three levels.

Figure 2 shows the percent differences found by the three MRT's at
various levels of significance of skewness. All tests had their maximum
and minimum at the same alpha hat #s previously, but, this time the percen-
tage continued to increase at other significance levels.

In Figure 3 the percent differences found by the three MRT's at various
significance levels of kurtosis is presented. All tests showed again, the
same pattern with maximum percentage for alpha hat between the 0 and 0.01,

but this time minimum occured for alpha hat between 0,05 and 0.1,



From Figure 4 the percent differences detscted by the MRT's at different
significance levels of correlation can be seen. For all tests the maximum
percentage cccured for alpha hat between the O and 0.01, while the minimum
for all MRT's was at alpha hat between 0.05.and O.1.

From Figures 1 to 4 it is evident that LSD and Duncan's tests perfor-
med similarly at all levels of significance for the non-normality tests,

LSD having slightly higher percentage of detected differences. Tukey's test
was much more conservative in all cases, especially for alpha hats in the
ranges of 0,01 to 0.05 and 0.05 to 0.1,

Figure 5 shows percent differences detected by three MRT's at five
significance levels of Bartlett's test. Duncan's, LSD and Tukey's tests
had the same trend at all significance levels of Bartlett's test except
at alpha hat between 0.1 and 0,5 where Duncan's was closer to Tukey's

than to LSD., This is somewhat surprising.

Conclusion

A study of robustness of four multiple comparison procedures to viola-
tions of the assumptions in real data was presented. Percentage of
differences found by MRT's for various alpha hats of normality tests as
well as Bartlett's test was given. All MRT's showed similar trends at
different significance levels of normality tests as well as Bartlett's
test; Tukey's test was the most conservative, From Figure 1 through 5 it
can be seen that all MRT's had a maximum at alpha hat between the 0 and 0.01
significance levels of the normality tests as well as Bartlett's test,
For all MRT's the minimum occured at alpha hat between 0.01 and 0.05
significance levels of W-test, skewness and Bartlett's test, while for

kurtosis and correlation it was shifted to alpha hat between 0,05 and 0O.1.
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FIG. 2 PERCENT DIFFERENCES FOUND BY MULTIPLE RANGE
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FI1G. 3 PERCENT DIFFEBENCES FGUND BY MULTIPLE RANGE
TESTS AT VARIOUS ALPHA HATS FOR KURTOSIS
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FIG. S PERCENT DIFFERENCES FOUND BY MULTIPLE BRANGE TESTS
AT VARIOUS ALPHA HATS FOR BARTLETT'S TEST
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ABSTRACT

In the first part departure from assumptions underlying analysis
of variance in real data was examined, Each data set (in total 1765
different data sets from eleven disciplines) analyzed by AARDVARK was
subjected to three basic tests for normality: Shapiro-Wilk W-test for
samples of size 50 or less, skewness for samples of size 25 or more and
kurtosis for samples of size 11 or more., In addition, the simple corelaticn
batween the subclass mean and variance was also computed to determine if
the cell means and variances were independent. To test homogeneity of
variance Bartlett's test was applied. The main interest was to determine
which kinds of non-normality are most common as well as to what extent
heterogeneity of variance is present and whether departure from assumptions
differs between disciplines.

In the second part actual behaviour of four multiple comparison
procedurest Fisher's LSD, Duncan's New Multiple Range Test, Tukey's H3D for
20 or fewer levels and the Waller-Duncan Bayes t procedure for more than
two levels of main effects only was investigated. The main objective was
to determine whether performance of multiple compariscn tests in real
application is similar to results based on theoretical considerations and
simulation results.

In the third part robustness of the four (same as in part two) multiple
comparison procedures to departure from normality and heterogeneity of
variance in real data (same data sets as in parts one and two) was investi-
gated, The main interest was to determine whether or not departure from

assumptions affected the performance of the multiple comparison procedures.



