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ABSTRACT

Integer programs (IP) are a commonly researched class of problems used by governments

and businesses to improve decision making through optimal resource allocation and schedul-

ing. However, integer programs require an exponential amount of effort to solve and in some

instances a feasible solution is unknown even with the most powerful computers.

There are several methods commonly used to reduce the solution time for IPs. One such

approach is to generate new valid inequalities through lifting. Lifting strengthens a valid

inequality by changing the coefficients of the variables in the inequality. Lifting can result

in facet defining inequalities, which are the theoretically strongest inequalities.

This thesis introduces the Cutting-plane Algorithm in Three Sets (CATS) that can help

reduce the solution time of integer programs. CATS uses synchronized simultaneous lifting

to generate a new class of previously undiscovered valid inequalities. These inequalities

are based upon three sets of indices from a binary knapsack integer program, which is

a commonly studied integer program. CATS requires quartic effort times the number of

inequalities generated. Some theoretical results describe easily verifiable conditions under

which CATS inequalities are facet defining.

A small computational study shows CATS obtains about an 8.9% percent runtime im-

provement over a commercial IP software. CATS preprocessing time is fast and requires an

average time of approximately .032 seconds to perform. With the exciting new class of in-

equalities produced relatively quickly compared to the solution time, CATS is advantageous

and should be implemented to reduce solution time of many integer programs.
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1 Introduction

This thesis introduces the Cutting-plane Algorithm in Three Sets (CATS) that can help re-

duce the solution time of integer programs. Integer programs (IP) are a commonly researched

class of problems from the field of discrete optimization. On a daily basis, governments and

businesses improve decision making by solving various types of integer programs.

With the recognition of IP’s importance, the proliferation of integer programming has

spread to many business sectors over the last 60 years. A commonly thought of example

involves the transportation industry [2, 25, 34, 39] with its truck routing problems. IP

has been used to solve financial problems, such as capital budgeting decisions [18, 23] and

financial portfolios [8, 33] to maximize earnings. In the medical profession, genetic research

[10, 17] and radiation treatments [28, 29] contain applications of integer programming. There

are applications of IP in the timber [11] and airline industries [1, 37] that save millions of

dollars annually. Even sports leagues, with their revenue dependence on marketing contracts

and fan support, use integer programming to develop the best schedules for all teams [14,

40, 41].

Surprisingly, the average person unknowingly tries to solve an IP each time he goes to

the grocery store. Suppose a person with $100 goes to the store. Each item in the store has

both a cost in dollars and an anticipated benefit. What should be purchased to maximize

the person’s benefit without exceeding the $100? This small grocery example illustrates an

important IP application critical to this thesis: the Knapsack Problem (KP).

KP is an application of integer programming where all the variables within the problem
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are binary. This famous example draws an analogy to a hiker preparing for an excursion.

He must decide to either bring along an item in his knapsack or omit the item. The items

each have a specific benefit and a specific weight. The hiker cannot bring a group of items

that violate a total weight.

In a complex industrial problem where an item may cost millions of dollars, the decision

could make or break the company. KPs are especially helpful when modeling scheduling

[3, 5, 26, 32] and capital budgeting problems [6, 22, 31], and this model is also useful for

portfolio allocations [13, 30, 35, 45].

Formally, an integer program is defined as:

ZIP = Maximize cTx

subject to Ax ≤ b

x ∈ Zn
+.

Integer programs are NP-Hard [24]. Unless P = NP , solving IP problems require

exponential time. In a problem with binary variables, exhaustively enumerating all possible

solutions to the IP results in 2n evaluations. In many IP instances, an IP can run on a

computer for years before finding a solution, let alone the optimal solution.

The most common way to solve integer programs is using the technique called the Branch

and Bound Algorithm (BBA), which utilizes the optimal solution, z∗LR, and x∗LR, from the

linear relaxation. The linear relaxation of an integer program merely removes the integer

requirement. Thus, the optimal solution may have fractional variables. In such a situation,

BBA creates two nodes or children. One of the children adds the constraint that a single
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fractional variable is less than or equal to the floor of the value of that variable in the optimal

linear relaxation solution. The other adds the constraint that is greater than or equal to

the ceiling of this value. Doing this enough times enables the exhaustive enumeration of all

integer points in a bounded region and gives the optimal integer solution, z∗IP , and feasible

solution, x∗IP .

A common method to try to reduce BBAs solution time is through the use of cutting

planes, also known as valid inequalities. Cutting planes are linear inequalities that are valid

for all the feasible points. In integer programming, cutting planes intersect some of the

linear relaxation space. The best cutting planes for the space are known as facet defining

inequalities and are the theoretically strongest of all valid inequalities.

Lifting seeks to increase the effectiveness of the inequality by changing the coefficient

of the variables. A valid inequality that is not facet defining can frequently be made facet

defining through lifting.

1.1 Motivation

In 2009, Bolton developed a Synchronized Simultaneous Lifting (SSL) algorithm that lifts

two sets of variables [9]. Her computational results showed a significant improvement in

processing time of IPs on a commercial IP solver. Additionally in 2009, Kubik developed

a pseudopolynomial time algorithm for knapsack problems to sequentially lift multiple sets

simultaneously into the knapsack constraint [27]. A natural question is: If synchronized

lifting three sets simultaneously is effective, is it possible for SSL to be extended to three

sets? Early research using manual calculations and hand-made graphs showed promise of
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new effective cutting planes.

1.2 Contributions

The contribution of this thesis is the Cutting-plane Algorithm in Three Sets (CATS). CATS

combines parts of Bolton’s and Kubik’s algorithms in a new advanced geometric surfacing

procedure that finds valid cutting planes. By increasing the number of sets from two to

three, many more valid inequalities are created from three sets as compared with two sets,

thereby increasing the algorithm’s potential effectiveness.

The input to CATS is a knapsack constraint and three sets of mutually exclusive indices.

Cutting planes are then formed using the outer most points of a related three dimensional

space. These cutting planes build off one another, and each new plane is formed using

information from the previous plane. The analogy of the framework being built over a large

sports arena illustrates how the algorithm seeks out the adjacent facets around the edge of

the integer space.

The contributions of this thesis lie in CATS’ ability to systematically define and find

adjacent facets on the edge of the feasible integer space. CATS generates these valid in-

equalities in a runtime of O(n4|T |), where |T | is the number of inequalities generated. CATS

is able to produce this efficient running time by utilizing adjacent facet points to compute

valid inequalities

The inequalities generated by CATS are shown to be a new class of previously undis-

covered inequalities. Furthermore, a theoretical result provides easily checkable conditions

when CATS cuts are facet defining. Thus, these inequalities are a new class of facet defining
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inequalities for the knapsack polyhedron and thus should be useful in practice.

A small computational study of CATS shows an improved solution time for certain

IPs. Two sets of 20 randomly generated problems showed an average improvement of 8.9%

compared to traditional CPLEX 10.0, a commercial integer programming software. This

amounted to an improvement of nearly 50 minutes on the 7.5 hour total runtime. Some

smaller problems solved over 50% faster then CPLEX. Thus, CATS gives promise of reduc-

ing the runtime in large integer programs.

1.3 Outline

As described previously, integer programming is an important area of research for efficient

use of resources and sound decision making. The goal of this thesis is to extend some of IP’s

theoretical development, as well as orient the reader to the field of integer programming.

The remainder of this thesis focuses on the fundamentals of IP and CATS itself.

Chapter 2 provides the IP definitions and terminology applicable to this thesis. The

Knapsack Problem is described in depth, and the benefits of cutting planes are discussed.

Various types of lifting methods and combinations of lifting methods are explained as well.

Examples of several of these lifting methods are shown.

Chapter 3 describes the Cutting-plane Algorithm in Three Sets. This chapter defines

the terminology of CATS with an explanation of the algorithm’s steps. Next, the proofs for

inequality validity and termination as well as the pseudocode further illustrate CATS to the

reader. A small example with diagrams help to convey the major concepts of CATS.
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A summary of the computational procedure and results are presented in chapter 4. The

types of problems generated and analyzed are described, as well as data to support that

these inequalities are effective in reducing the runtime of certain randomly generated integer

programs.

Finally, chapter 5 provides a conclusion of CATS and its computations results. There

are several possible future research topics resulting from this work. These are described as

well.
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2 Background Information

This chapter introduces the mathematical and integer programming background to under-

stand this thesis. This requires the understanding of not only linear algebra concepts, but

also the knowledge of various types of lifting and the importance of producing facet defin-

ing inequalities. Through this chapter’s descriptions, a person can become acquainted with

the concepts well enough to understand both the logic and benefits of CATS. An excellent

technical reference for additional IP information is Nemhauser and Wolsey [30].

The first section outlines some basic concepts of integer programming. Polyhedrons and

cutting planes are then formally introduced. Cover inequalities and their application to

the Knapsack Problem are explained. Finally, there are several sections describing types of

lifting.

2.1 Integer Programming

To begin, it is paramount to understand the basic definitions of integer programming. For-

mally, an IP is defined by

zIP = Maximize cTx

subject to Ax ≤ b

x ∈ Zn
+

where c ∈ Rn represents the objective coefficients, A ∈ Rm×n and b ∈ Rm×1 describes the

constraints. The feasible points of an integer program are denoted by P and so P = {x ∈

Zn
+ : Ax ≤ b}. Here the set of indices of the x variables is denoted as N = {1, ..., n}.
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Since one cannot typically solve an integer program quickly, the integer restrictions of

the IP are relaxed. This creates a linear program, which is called the linear relaxation. The

formal definition of the linear relaxation is:

zLR = Maximize cTx

subject to Ax ≤ b

x ∈ Rn
+.

The feasible solution area for the linear relaxation is denoted PLR, defined as {x ∈ Rn
+ :

Ax ≤ b}. The optimal solution, z∗LR from x∗LR, of the linear relaxation is found using

traditional linear programming algorithms [12]. Clearly P ≤ PLR, thus zIP ≤ zLP .

2.1.1 Polyhedrons, Cutting Planes and Facets

Convexity is a fundamental topic in mathematical optimization. A set S is convex if, and

only if, x ∈ S where x =
∑n

i=1 λix
i for some finite set of points {xi : i ∈ S : i = 1, ..., n} and

some λ ∈ Rn
+ with

∑n

i=1 λi = 1. Given a set S ⊆ Rn the intersection of all of the convex

sets that contain S is called the convex hull of S and is denoted by Sch. This means that all

the points on a line connecting any two points in S is in Sch.

Any single linear inequality restricts the feasible region to either above or below the

hyperplane. This is known as a half-space. Formally, a half space is defined as {x ∈ Rn :

∑n
i=1 αixi ≤ β}. The feasible region can be further defined by adding more inequalities. The

intersection of finitely many half spaces is called a polyhedron, and a bounded polyhedron

is a polytope.
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There are two important polyhedra associated with integer programming research. First,

PLR is defined by the linear relaxation bounds of the problem. The extreme points for PLR

can be integer or non-integer. Second, P ch is defined by the original linear bounds and the

integer constraints, and P ch has integer extreme points. One common IP research area is to

add inequalities to PLR in an attempt to convert it to P ch.

Formally, an inequality Σn
j=1αjxj ≤ β is valid for P ch if, and only if, Σn

j=1αjx
′
j ≤ β

is satisfied for every x′ ∈ P ch or equivalently for every x′ ∈ P . A cutting plane is a valid

inequality that removes some of PLR. Clearly there are infinitely many valid inequalities and

some are useful, while others can adversely affect the solution time of an integer program.

Theoretically, the usefulness of a valid inequality can be measured in terms of its induced

dimension on P ch. The dimension of the space is defined by the total number of linearly

independent vectors. However, P has no feasible vectors and so the dimension of P ch is

calculated as the maximum number of affinely independent points minus one. The points

x1, ..., xq in Rn are affinely independent if, and only if, the unique solution to
∑q

i=1 λix
i = 0

and
∑q

i=0 λi = 0 is λi = 0 for all i = 1, ..., q.

The induced points of an inequality on P ch is called a face. Every valid inequality

Σn
j=1αjxj ≤ β defines a face F ⊆ P ch that takes the form F = {x ∈ P ch : Σn

j=1αjxj = β}.

If F 6= ∅, then F supports P ch. The strength of a face depends upon its dimension relative

to P ch. The higher dimension of the face, as long as it is not equal to that of P ch, the more

likely it is to be useful.

Facet defining inequalities are the strongest of all inequalities. A facet defining inequality

has a face of dimension one less than the dimension of P ch. Including all facet defining
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inequalities completely defines P ch. Thus, all the extreme points are integer. In such a

situation, an integer program may be solved as a linear program.

The following example depicts these concepts.

Example

Consider the following integer program:

Maximize x1 + 2x2

Subject to 5x1 + 4x2 ≤ 20

3x1 + 5x2 ≤ 18

x1, x2 ∈ Z+.

Figure 2.1.1 provides a graphical view of this IP. The first constraint, 5x1 + 4x2 ≤ 20,

passes through points (0, 5), C and D. The second constraint, 3x1 + 5x2 ≤ 18, passes

through the points A, B, C and (6, 0). The linear relaxation of the IP is defined by these

two constraints, the x1 and x2 axes. The large circles represent P , the feasible integer points.

This illustration shows just how a new cutting plane may be beneficial in removing part

of the linear relaxation space. As is shown, a new inequality, x1 + x2 ≤ 4, is inserted into

the linear relaxation. It does so without removing any feasible integer points. Therefore,

x1 +x2 ≤ 4 is a valid inequality. The new cutting plane removes part of the linear relaxation

located within the BCD triangle. This graph provides a better definition of the extreme

integer points of the convex hull by passing through points (0, 4), B and D.

As stated earlier, a facet defining inequality is an inequality with dimension of one less

than the convex hull it is defining. The dimension of P ch can be bounded from below using
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the maximum number of affinely independent points in the space minus one. The points

(0, 0), (0, 1) and (1, 0) are affinely independent and feasible. The number of variables in

the example, two, bounds the dimension from above, and so the dimension of P ch is two.

The dimension of the facet is found to be one using the affinely independent points of (1, 3)

and (4, 0). Additionally, it can clearly be seen that the new inequality does not violate any

integer point. Thus, x1 + x2 ≤ 4 is a valid inequality. The other facet defining inequalities

of P ch are x2 ≤ 3, x1 ≥ 0 and x2 ≥ 0.

2.2 The Knapsack Problem

A well-known class of integer programming problems important to this thesis is the Knapsack

Problem (KP). When preparing for the mountain trail, the hiker may choose from a total

number of items n and must decide to include an item j or omit the item from his pack. A

nonnegative weight aj and a benefit cj are assigned to each item, and he is limited by the

total weight he can carry, b. The hiker tries to maximize his benefit.

Formally, an IP formulation for The Knapsack Problem begins by setting xj = 1 if item

j is taken and xj = 0 else.

Maximize
∑n

i=1 cixi

subject to
∑n

i=1 aixi ≤ b

xi ∈ B for all i = 1, 2, ..., n.

Let PKP be the set of feasible points of a KP problem, PKP = {x ∈ B
n :

∑n

i=1 aixi ≤ b}.

Now let P ch
KP be the intersection of every convex set that contains, P ch

KP = conv(PKP ).
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Without loss of generality, assume that the ai’s are sorted in descending order; if i, j ∈ N

and i < j, then ai ≥ aj. Furthermore, a1 ≤ b or x1 = 0 in all feasible solutions and can

therefore be removed from the KP instance. Consequently, P ch
KP is full dimensional using 0

and ei where ei is the ith identity point for i = 1, ..., n.

The applicability of KP research to general IP problems makes this area of research

highly attractive. Any single binary integer programming constraint can be converted into

a knapsack instance through a simple transformation. If the constraint is an = constraint,

two constraints are formed, ≤ and ≥. Any ≥ constraint is multiplied through by a −1. If

there exists an ai < 0, then xi is replaced with 1−x′
i. Thus, knowledge of cutting planes for

knapsack instances can be applied to any single binary integer programming constraint.

The following example illustrates KP.

Example 2.1 A hiker considers taking 16 items on a hiking trip. The hiker has assigned

each item with a benefit and a weight as shown in Table 1. The weights are listed in 1/2

pound units and the hiker can carry 47 lbs (or 94 units).

Object 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Benefit 25 29 20 13 17 12 11 15 13 14 19 16 7 6 9 8

Weight 31 30 28 25 20 20 19 18 18 17 17 15 14 14 13 12

Table 1: Benefit and weight of items that may be taken in the knapsack

An associated model is:

Maximize 25x1 + 29x2 + 20x3 + 13x4 + 17x5 + 12x6 + 11x7 + 15x8 + 13x9

13



+14x10 + 19x11 + 16x12 + 7x13 + 6x14 + 9x15 + 8x16

subject to 31x1 + 30x2 + 28x3 + 25x4 + 20x5 + 20x6 + 19x7 + 18x8 + 18x9

+17x10 + 17x11 + 15x12 + 14x13 + 14x14 + 13x15 + 12x16 ≤ 94.

xj ∈ {0, 1}, j ∈ {1, ..., 16}.

Solving this with an integer program shows that the hiker achieves a maximum benefit

of 89 by taking items 1, 2, 11 and 12 (25+29+19+16=89). The hiker should carry a total

weight of 46.5 lbs.

2.2.1 Covers

Finding facet defining inequalities in two dimensions is easy. In higher dimensions, it is

much more difficult. A cover is a set of indices from a binary knapsack constraint such that

setting all xj equal to one is infeasible (heavier than the load the hiker can carry). Covers

are primarily used to find an initial valid inequality and later the inequality is strengthened

through lifting. The use of cover inequalities in KP is important when seeking to create facet

defining inequalities.

Formally, C ⊆ N is a cover if and only if Σj∈Caj > b. A minimal cover is a cover such

that when one indice is removed from the set, the set is no longer a cover. In other words,

Σj∈C\{k}aj ≤ b for each k ∈ C .

Each cover (whether minimal or not) defines a cover inequality. Cover inequalities are

valid and take the form Σj∈Cxj ≤ |C| − 1. This is a valid inequality because the sum of all

of the coefficients Σj∈Caj is greater than the maximum amount allowed by the constraint;
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thus, at least one variable must be set to zero in every feasible solution.

Given a cover, an extended cover is E(C) = C ∪ {i ∈ N : ai ≥ aj for all j ∈ C} and

the extended cover inequality takes the form Σj∈E(C)xj ≤ |C| − 1. The following example

depicts these concepts.

Example 2.2 In looking back at the example Knapsack Problem from Example 2.1, the

single constraint is: 31x1 + 30x2 + 28x3 + 25x4 + 20x5 + 20x6 + 19x7 + 18x8 + 18x9

+17x10 + 17x11 + 15x12 + 14x13 + 14x14 + 13x15 + 12x16 ≤ 94

For this problem, a cover is C = {9, 10, 11, 12, 13, 14, 15, 16} because 18 + 17 + 17 + 15 +

14 + 14 + 13 + 12 = 120 ≥ 94. This is not a minimal cover, as indice 9 may be removed

and the set remains infeasible. A minimal cover is C = {10, 11, 12, 13, 14, 15, 16} because

17+17+15+14+14+13+12 = 102 ≥ 94. Notice that when any of the indices are removed

from C , the set becomes feasible and is no longer a cover. Therefore, the cover inequality

generated by the minimal cover C = {10, 11, 12, 13, 14, 15, 16} is x10 +x11 +x12 +x13 +x14 +

x15 + x16 ≤ 6. Its extended cover inequality is x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 +

x10 + x11 + x12 + x13 + x14 + x15 + x16 ≤ 6. This has the dimension of at least six due to the

points in Figure 2 below.

As shown, seven affinely independent points for the minimal cover inequality yield a

dimension of six. The cyclical permutation of any six of the seven points is shown. Cyclical

permutations are useful to determine the strength of inequalities and can help show an

inequality is facet defining. For this inequality to be facet defining, 16 affinely independent

points are needed. The next section details how facet defining inequalities may be found
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 1 1 1 1 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 0 1 1
1 1 1 1 1 0 1
1 1 1 1 1 1 0

Figure 2: Affinely independent points for knapsack cover

through lifting.

2.3 Lifting

The purpose of lifting inequalities in integer programming is to create stronger inequalities

from a valid inequality in a restricted space. The basic idea of a restricted space is that a

subset of the variables, say E, are forced to a fixed value, ki for each i ∈ E. Formally, let

P ch
E,K = conv{x ∈ P : xi = ki for all i ∈ E} where ki ∈ Z and K = (k1, k2, ..., k|E|).

In formal terms, suppose Σi∈Eαixi + Σi∈N\Eαixi ≤ β is a valid inequality in P ch
E,K where

E ⊂ N . Lifting attempts to create a valid inequality of P ch that takes the form Σi∈Eα′
ixi +

Σi∈N\Eαixi ≤ β ′. Lifting was first developed by Gomory [19] and is used to strengthen

inequalities by increasing the dimension of the cutting plane. The various types of lifting are

up lifting or down lifting, exact or approximate lifting, sequential or simultaneous lifting, and
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single or synchronized lifting. An example of a lifting method would be single, approximate,

simultaneous up lifting, which is one of the most studied classes of lifting.

2.3.1 Up vs. Down Lifting

Up lifting is the most common lifting technique and assumes all variables being lifted have

no initial coefficient αi = 0 for all i ∈ E, or K = (0, 0, ..., 0). This thesis uses up lifting

to create new inequalities. For simplicity, let P ch
E be defined as P ch

E,(0,0,...,0). Down lifting

assumes that all of the ki’s are set to the upper bound of xi for all i ∈ E. To date, down

lifting has only been done sequentially.

2.3.2 Exact vs. Approximate Lifting

Exact lifting seeks to increase the α′ and/or decrease the B ′ coefficients as much as possible

and still maintain a valid inequality. Any increase in the lifted coefficient on the left hand

side or a decrease in the right hand side would result in an invalid inequality. This type

of lifting frequently requires the exact solution to an integer program, which increases its

runtime and makes some instances so computationally challenging that the lifting problem

takes longer to solve than the original problem. There is some research into reducing the

computation time to polynomial time on certain IP instances, such as KP [7, 15, 35].

Approximate lifting provides an alternative to the computational intensity of exact lifting.

Researchers have developed approximate lifting methods that quickly generate coefficients

that maintain a valid inequality, but it still can be improved. Thus, the practitioner must

frequently decide about the tradeoff between precise solutions and a fast processing time.
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Some approximate lifting research includes sequential lifting [5] and sequence independent

lifting [4, 20, 36, 43].

2.3.3 Sequential vs. Simultaneous Lifting

Two major types of lifting are sequential and simultaneous lifting. The main difference

between these types of lifting is the size of E. In sequential lifting, |E| = 1, meaning the

variables are lifted one at a time. Simultaneous lifting lifts more than one variable at a time,

so |E| ≥ 2.

2.3.4 Sequential Lifting

Sequential lifting seeks to modify the coefficients of the variables individually. The order in

which the variables are lifted into the problem may vary, and this results in different inequal-

ities being produced from different orders. The sequential up lifting algorithm assumes that

Σn
j=2αjxj ≤ β is valid for P ch

{1}, and seeks to create a valid inequality α1x1 + Σn
j=2αjxj ≤ β

for P ch. Several individuals have performed research on sequential up lifting [5, 7, 42]

To obtain an exact sequential uplifted coefficient for a binary xi, the following procedure

is followed. First, the integer program for sequential up lifting of binary variables is solved.

z∗ = Maximize Σn
j=2αjxj

Subject to Ax ≤ b

x1 = 1

x1 ∈ {0, 1}, x2, ..., xn ∈ Zn
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Once the optimal solution is found, α1 = β − z∗. Wolsey showed that the dimension of

the inequality in P ch increases by at least one over P ch
1 for each sequentially lifted variable.

Example 2.3

Reconsider the knapsack polytope from Example 2.1. Observe that C = {10,11,12,13,14,15,16}

is a cover. The cover inequality is x10 +x11 +x12 +x13 +x14 +x15 +x16 ≤ 6. To sequentially

up lift x1, solve the following IP:

z∗ = Maximize x10 + x11 + x12 + x13 + x14 + x15 + x16

subject to 31x1 + 30x2 + 28x3 + 25x4 + 20x5 + 20x6 + 19x7 + 18x8 + 18x9

+17x10 + 17x11 + 15x12 + 14x13 + 14x14 + 13x15 + 12x16 ≤ 94

x1 = 1

xi ∈ {0, 1}, i = 1, ..., 16

The solution z∗ to the above integer program is z∗ = 4. This means that α1 = β − z∗, or

α1 = 6−4 = 2. The resulting valid inequality is 2x1+x10+x11+x12+x13+x14+x15+x16 ≤ 6.

To lift x9, solve z∗ = Maximize 2x1+x10+x11+x12+x13+x14+x15+x16+x17+x18+x19

subject to 31x1 + 30x2 + ... + 12x16 ≤ 94 and x9 = 1. The solution value is z∗ = 5, which

means that α9 = β − z∗ = 6− 5 = 1. The resulting valid inequality is 2x1 + x9 + x10 + x11 +

x12 + x13 + x14 + x15 + x16 ≤ 6.

When the process is repeated, for x8, x7, x6, x5, x4, x3, and x2, the final sequentially lifted

inequality is 2x1+2x2+2x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14+x15+x16 ≤ 6.

This inequality is facet defining. The points in Figure 3 show that this inequality is facet

defining:

19



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Figure 3: Affinely independent points for sequentially lifted inequality

Notice the cyclical permutation that allows for the inequality to reach the required num-

ber of affinely independent points, due to the minimal cover. Observe how the x∗ solution

of the lifted inequality IP is the point used to increase the dimension of the face.

The lifted inequality is determined by the order the variables are sequentially lifted. The

variables here could have been lifted in the order x1, x2, ..., x9, or any unique combination

of this group of variables. In this example, there is a total of nine factorial, 9! = 362, 880,

different orders that can yield nine factorial different inequalities. Coincidently, the same

inequality would have resulted from lifting the variables in a different order for this example.

Many times, a different lifting order will result in a different inequality, but frequently there

are numerous repeated inequalities [5].

If different inequalities are created using different combinations of lifting, these inequal-

ities may be combined to yield coefficients for each variable with an average value across
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all the inequalities. For example, if x1 had a coefficient of 2 in the first inequality and 3 in

the second inequality, the average coefficient would be 2.5. Averaging the coefficients across

all valid inequalities yields a new valid inequality. This inequality is not as strong as the

inequalities developed through simultaneous lifting, as detailed in the following section.

2.3.5 Simultaneous Lifting

Simultaneously up lifting the variables of E results in inequalities of the form α
∑

i∈E wixi +

∑
i∈N\E αixi ≤ β, where wi ∈ R is a weight, as described by Gutierrez [21]. Clearly the goal

is to seek the maximum α value for which this inequality is valid. Gutierrez also provided

theory to show that the exact lifting coefficient can be obtained by solving a single integer

program.

Zemel [44] calls his algorithm a simultaneous lifting algorithm, but more on this algorithm

is discussed in the next section. Hooker and Easton [15] developed a linear time algorithm to

simultaneously lift variables into cover inequalities for P ch
KP . In 2009, Kubik expanded on this

theory by creating a pseudopolynomial time algorithm that allows multiple simultaneously

lifted sets to be sequentially lifted into a valid inequality for P ch
KP .

2.3.6 Single vs. Synchronized Lifting

Further major types of lifting are single and synchronized lifting. To the best of the author’s

knowledge, this is the first written document to distinguish these types of lifting. Any

application of single lifting generates exactly one inequality. Synchronized lifting generates

multiple inequalities of the same form. The vast majority of methods are single lifting. Here
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the focus is on synchronized lifting.

Zemel [44] developed the first exact method to simultaneously lift multiple variables in

1978, but this method required the use of exponentially many integer programs and can

be applied only to cover inequalities from the binary Knapsack Problems. Zemel’s method

generates many inequalities by finding the extreme point of the polar, but is too compu-

tationally intensive to be efficiently implemented. In actuality Zemel’s method generates

numerous inequalities that are all simultaneously lifted. Thus, his method should have been

classified as a synchronized simultaneous lifting algorithm.

Balas’ well known result on the bounds of the lifting coefficients can now be viewed as

a synchronized approximate up lifting technique [5]. Bolton [9] introduced synchronized

simultaneous lifting (SSL), which is critical to this thesis and a brief description is provided

here. Credit is given to Tommy Morrison for providing the synchronized name.

2.3.7 Synchronized Simultaneous Lifting

The input to SSL requires a knapsack constraint and two mutually exclusive lifting sets E1

and E2. SSL outputs valid inequalities of the form αE1

∑
i∈E1

xi + αE2

∑
i∈E2

xi ≤ 1.

To begin SSL, the feasible combinations of the two sets are listed as ordered pairs. Next,

beginning at the first extreme point on the axis, the slope of the lines from the first point to

all other points is found. The line that does not eliminate any points is the most extreme.

The slope of the line is computed through finding α values for each set. αE1
is found by

taking (q − q∗)/(p∗q − q∗p), where p∗ and q∗ are the quantities from the first and second

set, respectively, feasible at the first point, and p and q are the quantities from the first and
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second set, respectively, feasible at the second point. The coefficient αE2
is found by taking

(p∗ − p)/(p∗q − q∗p).

The ratio of αE2
/αE1

gives the slope of the line between the two points. By selecting

the lowest ratio (or highest, depending on which axis is used as the starting point), the

next extreme point can be found. Should a tie occur in the ratio of the α values, the point

farthest down the list is selected. This corresponds to two or more points on the same line

with the steepest slope. The point farthest out would be selected. This extreme point is

now considered (p∗, q∗), and the slope of the lines to all subsequent points is found. This

process is repeated until the final extreme point candidate located on the axis is selected as

an extreme point.

Example 2.4 illustrates how SSL can be implemented in a KP to generate many valid

inequalities. Reconsider the knapsack polytope from Example 2.1.

Example 2.4 31x1 + 30x2 + 28x3 + 25x4 + 20x5 + 20x6 + 19x7 + 18x8 + 18x9

+17x10 + 17x11 + 15x12 + 14x13 + 14x14 + 13x15 + 12x16 ≤ 94.

x1, ..., x16 ∈ {0, 1}

For this example, arbitrarily set E1 = {1, 2, 3, 4} and E2 = {5, 6, 7, 8, 9, 10,11,12,13,14,15,16}.

As is seen above, the a coefficients have been sorted for each of the sets. All the feasi-

ble combinations of sets are found by starting the count for E1 at its maximum possible

and decreasing it while increasing E2. The values listed in Table 2 are returned from the

FeasiblePoints subroutine. The right two columns are the amounts from each set that are

feasible.
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count feasE1[count] feasE2[count]

0 3 0
1 2 1
2 2 2
3 2 3
4 1 4
5 1 5
6 0 6

Table 2: Data Reported by FeasiblePoints Subroutine

These are the potential candidates to be extreme points. A graphical representation of

these points is shown in Figure 4.

By drawing the feasible points in a two dimensional coordinate, it is easy to see the

relationship between the potential extreme point candidates. The slope of the line from the

starting point at (3,0) to every other point is computed, and the steepest slope will be used.

In this example, the next point chosen is (2,3), and so (2,3) becomes the next extreme point.

This is also shown computationally in Table 3 below. The αE1
, αE2

, and αE2
/αE1

values are

given. Notice the ratio of the α values is lowest when the slope is the greatest.

E1 E2 αE1
αE2

αE2

αE1

2 1 1
3

1
3

1

2 2 1
3

1
6

1
2

2 3 1

3

1

9

1

3

1 4 1
3

1
6

1
2

1 5 1
3

2
15

2
5

0 6 1
3

1
6

1
2

Table 3: Values for the first SSL inequality
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Figure 4: SSL algorithm finding next extreme point
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The point (2, 3) is chosen as the next extreme point, and the process is repeated for

calculating the slopes to all subsequent points. Figure 5 illustrates the convex hull after all

extreme points and α values have been found.

Figure 5: Final extreme points and inequalities produced

The valid inequalities produced in this example are 1
3

∑
i∈E1

xi+
1
9

∑
i∈E2

xi ≤ 1, 1
3

∑
i∈E1

xi+

2
15

∑
i∈E2

xi ≤ 1, and 1
3

∑
i∈E1

xi + 1
6

∑
i∈E2

xi ≤ 1. The third inequality produced is facet

defining, as shown in Figure 6 by the 16 affinely independent points.
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0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0

Figure 6: Affinely independent points for 1
3

∑
i∈E1

xi + 1
6

∑
i∈E2

xi ≤ 1

The other inequalities are not facet defining in the original problem. The inequality

1
3

∑
i∈E1

xi + 1
9

∑
i∈E2

xi ≤ 1 contains 10 affinely independent points, and the inequality

1
3

∑
i∈E1

xi + 2
15

∑
i∈E2

xi ≤ 1 contains only five affinely independent points.

Given this exciting SSL method and the new facet defining inequalities found in two di-

mensions, a logical next step was to create a synchronized simultaneously lifted algorithm for

three dimensions. The next chapter introduces the contribution of this thesis, an algorithm

that synchronized simultaneously lifts in three sets. Bring on the CATS!
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3 Cutting-plane Algorithm for Three Sets

This chapter formally introduces the Cutting-plane Algorithm for Three Sets (CATS), which

extends synchronized simultaneous lifting to three sets. The chapter begins by describing

the inputs and outputs of CATS, followed with explanations of CATS’ notation and the

procedure for finding valid inequalities. CATS pseudocode and related proofs are shown.

Finally, a full example that demonstrates how CATS can find previously undiscovered valid

inequalities ends the chapter.

3.1 CATS Definitions and Steps

From a high level CATS requires two types of inputs: a knapsack constraint Σj∈Najxj ≤ b,

and sets E1 = {i11, ..., i
1
e1
}, E2 = {i21, ..., i

2
e2
} and E3 = {i31, ..., i

3
e3
} ⊂ N such that E1, E2, E3 6=

∅, E1 ∩ E2 = ∅, E1 ∩ E3 = ∅, and E2 ∩ E3 = ∅, where e1 = |E1|, e2 = |E2| and e3 = |E3|.

Without loss of generality, these sets are sorted in ascending order of their indices (descending

order of their a coefficients).

CATS identifies the candidate extreme points and finds the convex hull of these extreme

points. This convex hull, described now as P ch3

, is a three dimensional polyhedron. Figure

7 depicts the extreme points (labeled 1-9) and the facets (A-G) of one such possible convex

hull. The output of CATS are inequalities that form facets of this convex hull. These facets

of P ch3

take the form αE1
y1 +αE2

y2 +αE3
y3 ≤ 1. Consequently, the valid inequalities of P ch

KP

take the form αE1

∑
i∈E1

xi +αE2

∑
i∈E2

xi +αE3

∑
i∈E3

xi ≤ 1. Clearly, the yi ≥ 0 and xi ≥ 0

inequalities are ignored as trivial facet defining inequalities of their respective polyhedrons.
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Figure 7: Example of a convex hull, P ch3

, with facets in three dimensions
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3.1.1 Starting CATS

Formally, CATS begins by identifying EP = {p1, ..., pq′} as the set of potential candidates

for extreme points around the convex hull. For i = 1, ..., q′ each pi = (pi
1, p

i
2, p

i
3) represents

a feasible point in P ch3

and thus
∑|E1|

j=|E1|−pi
1
+1

aj +
∑|E2|

j=|E2|−pi
2
+1

aj +
∑|E3|

j=|E3|−pi
3
+1

aj ≤ b.

Fortunately, these can be determined with O(n2) effort following Kubik’s algorithm [27].

A critical component in CATS identifies adjacent points. These adjacent points create

a Eulerian tour [16]. Every pi ∈ EP has an even number of adjacencies. These adjacencies

are denoted as a left and right and the reader can create duplicate points to handle more

than a single visit to a point in the extreme Eulerian tour. So define adjpi

l and adjpi

r to be

the extreme point located to left and right of pi for each i = 1, ..., q′. Every point in EP has

a set of left and right adjacencies or no adjacent points. The left and right references are

identified by envisioning oneself standing on that point looking into P ch3

.

Next, CATS identifies the sets EP1 = {pi ∈ EP : pi
1 = 0}, EP2 = {pi ∈ EP : pi

2 = 0}

and EP3 = {pi ∈ EP : pi
3 = 0}. A modified version of Bolton’s SSL algorithm [9] is used

independently on EP1, EP2 and EP3. This modified version identifies the actual extreme

points on the respective E1, E2, and E3 axes and identifies the adjacent extreme points for

these points in the obvious fashion.

CATS now begins the main step. A candidate extreme point pi with a nonempty adjpi

l

is identified and labeled as the middle point and called pm. The analogy for searching for

a violated point can be made of a windshield wiper sweeping across a windshield. Figure 8

shows the iterative process for finding the valid cutting planes.
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The two adjacent points to pm become pr = adjpi

r and pl = adjpi

l . A plane is created

that passes through the three points pm, pl, and pr. Clearly, the plane, takes the form

αE1
y1 + αE2

y2 + αE3
y3 = 1. The formula to calculate the equation of this plane is obtained

by solving the following system of equations for αE1
, αE2

and αE3
.

αE1
pm

1 + αE2
pm

2 + αE3
pm

3 = 1

αE1
pl

1 + αE2
pl

2 + αE3
pl

3 = 1

αE1
pr

1 + αE2
pr

2 + αE3
pr

3 = 1.

The solution to this system of equations is

d = (pm
1 (pl

2p
r
3 − pr

2p
l
3) + pl

1(p
r
2p

m
3 − pm

2 pr
3) + pr

1(p
m
2 pl

3 − pl
2p

m
3 )). (i)

αE1
= (pm

2 (pl
3 − pr

3) + pl
2(p

r
3 − pm

3 ) + pr
2(p

m
3 − pl

3))/d.

αE2
= (pm

3 (pl
1 − pr

1) + pl
3(p

r
1 − pm

1 ) + pr
3(p

m
1 − pl

1))/d.

αE3
= (pm

1 (pl
2 − pr

2) + pl
1(p

r
2 − pm

2 ) + pr
1(p

m
2 − pl

2))/d.

Thus, αE1
y1+αE2

y2+αE3
y3 ≤ 1 is a candidate cutting plane of P ch3

. CATS calls a subroutine

to check whether or not this inequality is valid.

3.1.2 Valid Inequality Check

This valid inequality subroutine verifies that all points pi ∈ EP satisfy this inequality by

testing whether or not αE1
pi

1 + αE2
pi

2 + αE3
pi

3 ≤ 1. Every time a pi is found such that

αE1
pi

1 + αE2
pi

2 + αE3
pi

3 > 1, as depicted Figure 8, then the candidate inequality is not valid.

In this situation a new plane is created from the points pm, pl and pi by solving the obvious

system of equations (i). This new inequality is verified by continuing to check the remaining
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points in EP . Once all points have been tested, the inequality is valid, stored as T t, t is

increased by 1 and a subroutine to find all adjacent extreme points in this plane is called.

Figure 8: Creating new planes from a violated point

3.1.3 Extreme Plane Routine

The extreme plane routine begins by finding all the extreme points in EP that meet the

valid inequality at equality. So EE = {pi ∈ EP : αE1
pi

1 + αE2
pi

2 + αE3
pi

3 = 1}. To find the

extreme points, begin by setting qr := pm and qm := pl.

The following procedure determines which pi ∈ EE \ {pl} is adjacent to pl and thus it

is done for each pi ∈ EE \ {pl}. Calculate the plane passing through pl, pi and the point

(r′, r′, r′) where r′ is an irrational number larger than 0 and less than 1
3
. This can be achieved

by solving for three temporary alpha values, α′
1, α′

2 and α′
3, similar as before with a right

hand side of 1. Clearly, this plane must exist since r′ is irrational and both pl and pi are

rational.

If either every pj ∈ EE has α′
1p

j
1 + α′

2p
j
2 + α′

3p
j
3 ≤ 1 and α′

1q
r
1 + α′

2q
r
2 + α′

3q
r
3 < 1 or every

such pj has α′
1p

j
1 + α′

2p
j
2 + α′

3p
j
3 ≥ 1 and α′

1q
r
1 + α′

2q
r
2 + α′

3q
r
3 > 1, then pi is a candidate

adjacent point to the right of pl = qm. Once all pi ∈ EE have been tested, let pk be the
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point that is a candidate adjacent point to the right of pl and is farthest from pl. Therefore,

pk is the adjacent point to the right of pl, so assign adjpl

r := pk, adjpk

l := pl, adjpm

l := pk and

adjpk

r := pm. Now let qr := qm and qm := pk, and now continue this process in the obvious

fashion by creating and testing the planes containing qm, pi and (r′, r′, r′) for each i ∈ EE.

This procedure terminates once qm is assigned to pm. At this point assign adjql

r := pr and

adjpr

l := ql. Observe that this ExtremePlaneRoutine replaces the edge pm to adjpm

l in the

Eulerian tour with the path of the adjacent extreme points proceeding from adjpm

l to pm. A

graphical explanation of this instance is given in the next section and in Figure 11.

Figure 9 describes the extreme point routine graphically. Notice that all points except

for (r′, r′, r′) are in the plane created by pl, pm and pr. The point pA is found as the adjacent

point to pl. Notice also how in the second graphic the temporary plane bissects the points

in EE, with pA on one side and the other points are on the opposite. Thus, the point pB is

not adjacent to pl.

CATS continues to seek valid inequalities stemming from pm until the following condition

is met: adjpm

r = pi, which is also adjpm

r = adjpm

l . Alternatively, when an inequality passing

through the original adjacent point right to pm is found to be valid, all valid inequalities from

pm have been exhausted. Referring back to the windshield wiper analogy, this is essentially

the wiper hitting its terminal point, pr, after rotating across the width of the windshield.

3.1.4 The Eulerian Tour and Termination

Now that all valid inequalities are found from pm, it can be removed and a new point is

chosen to repeat this process. So let EP := EP \ {pm}. Let pj ∈ EP such that adjpj

l 6= ∅,
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Figure 9: Example of the extreme plane determining next adjacent point to pl

34



if none exists, then the algorithm terminates. Else let pm := pj, pl := adjpj

l and pr := adjpj

r .

This entire process repeats until the termination condition is satisfied and then the algorithm

terminates by reporting all valid inequalities of P ch3

.

It could now be inferred by the reader that the adjacency list inducing the extreme

Eulerian tour is what enables CATS to define the convex hull. Initially, all the points on

the axes have adjacent points. As new inequalities are defined by points located within the

convex hull away from the axes, the adjacency lists must also be modified. If one would

follow the adjacency list from one point to the next, it is possible to transverse a portion

of the convex hull and arrive at the original point. This is because the adjacency lists from

each extreme point define a Eulerian tour, and no matter what new points are found within

the convex hull, this tour remains intact. However, through the updating process, any point

with identical left and right adjacencies is removed from EP . Figures 10 and 11 illustrate

the progression of the Eulerian tour throughout CATS.

In the two figures, notice how the heavy line begins on the convex hull axes, illustrating

the adjacencies of the points located on the axes. As CATS develops valid cutting planes,

the Eulerian tour follows the newly verified plane. As more planes are confirmed, the tour

becomes smaller until, and as seen on the lower right graphic of Figure 11, the Eulerian tour

contains only one plane. At this point, all facets in P ch3

have been identified. CATS will

continue until termination, but no more inequalities are found. Notice points with adjr = adjl

are illustrated with a dashed line and removed from EP and the Eulerian tour.
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Figure 10: Evolution of Eulerian tour
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Figure 11: Evolution of Eulerian tour continued
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3.2 Pseudocode for CATS

The pseudocode for CATS includes the main step of CATS, the Extreme Plane Adjacencies

routine, and modified versions of Kubik’s feasible point subroutine and Bolton’s algorithm

to find adjacencies. Formally, the pseudocode for CATS is as follows.

CATS

Initialization

Use Kubik’s Feasible Point Subroutine in Three Sets to define candidate extreme

points EP := {p1, ..., pq′}.

Use Bolton’s SSL Subroutine on each of the three axises, EP1, EP2 and EP3, to

define the left and right adjacencies for some of the points in EP .

Main Step

While there exists a pi with adjpi

l 6= ∅ and adjpi

l 6= adjpi

r begin

Check the adjacency lists and remove any pj′ that has adjpj′

r = adjpj′

l

from EP .

Let pm := pi, origr := adjpi

r and pl := adjpi

l .

While adjpl

r 6= origr begin

pr := origr.

Find α1, α2, α3 on pm, pr and pl using (i).

For j = 1 to q′ begin
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If α1p
j
1 + α2p

j
2 + α3p

j
3 > 1, then begin

adjpl

r := pj , adjpj

l := pl, adjpm

l := pj and adjpj

r := pm.

pr := pj .

Find new α1, α2, α3 on pm, pr and pl using (i).

End if

End for

Call Extreme Plane Adjacencies to update the adjacencies.

Report α1

∑
k∈E1

xk + α2

∑
k∈E2

xk + α3

∑
k∈E3

xk ≤ 1 as a valid inequality.

End while

EP := EP \ {pm}.

End while

Extreme Plane Adjacencies

Let EE = {pj ∈ EP : α1p
j
1 + α2p

j
2 + α3p

j
3 = 1}.

Let qm := pl and qr := pm.

While qm 6= pm begin

For each pi ∈ EE \ {qr, qm} begin

Use equation (i) to find α′
E1

, α′
E2

and α′
E3

on the points qm, pi and (r′, r′, r′)

where r′ is an irrational number 0 < r′ < 1
3
.
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CP := ∅.

If all pj ∈ EE satisfy α′
1p

j
1 + α′

2p
j
2 + α′

3p
j
3 ≤ 1 and α′

1q
r
1 + α′

2q
r
2 + α′

3q
r
3 < 1 or

all pj ∈ EE satisfy α′
1p

j
1 + α′

2p
j
2 + α′

3p
j
3 ≥ 1 and α′

1q
r
1 + α′

2q
r
2 + α′

3q
r
3 > 1

then begin CP := CP ∪ {pj}, pk := pj.

If adjpk

l 6= ∅ then begin

EP := EP ∪ {pk′

} where pk′

is a duplication of pk.

adjpk′

l := adjpk

l , adjpk′

r := adjpk

r , adj
adj

pk

l
r := pk′

and adjadj
pk

r

l := pk′

.

End if

Let adjpk

l := qm and adjqm

r := pk.

Let qr := qm and qm := pk.

End For

End While

Let adjqr

r := origr and adjorigr

l := qr.

Check the adjacency lists and remove any pj′ that has adjpj′

r = adjpj′

l from EP .

Modified Three Set Feasible Point Algorithm [27]

For p = 0 to |E1|

q := 0 and sum := Σp
k=1ai1

e1−k+1
.

While sum ≤ b and q ≤ |E2| begin
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EP := EP ∪ {pj} where pj = (p, q, 0).

q := q + 1.

sum := sum + ai2e2−q+1
.

End While

If sum > b, then begin

sum := sum − ai2e2−q+1
and q := q − 1.

While q ≥ 0 and r ≤ |E3| begin

If sum ≤ b, then begin

EP := EP ∪ {pj} where pj = (p, q, r).

r := r + 1 and sum := sum + ai3e3−r+1
.

else

sum := sum − ai2e2−q+1
and q := q − 1.

End While

End If

End For

Modified Bolton’s Algorithm to Find Adjacencies for E3 [9]

Initialization:

Let EP3 = {e1, ..., ef} be the reduced set of points in reverse lexicographic order on
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the E3 axis in EP . Let ei = (pi, qi, 0) for i = 1, ..., f . Note the cases for EP2 and

EP1 follow similar logic.

Let p∗ = max pi ∈ EP3 : qi = 0 where i∗ is the argument where p∗ occurs and q∗ = 0.

While p∗ > 0 begin

count =: i∗ + 1 and α := ∞.

While count ≤ f begin

p := pcount and q := qcount.

α′ := q−q∗

p∗q−q∗p
and α′′ := p∗−p

p∗q−q∗p
.

If α′ 6= 0, then begin

If α ≥ α′′

α′
, then begin

α := α′′

α′
, mark := count.

count := count + 1.

End While

adjei∗

l := emark, adjemark

r := ei∗ .

p∗ := pmark and q∗ := qmark.

End While
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3.3 CATS’ Theoretical Results

The following section describes the valid inequalities produced by CATS, as well as proofs

of termination, runtime, and capability of producing facet defining inequalities. The termi-

nation of CATS is dependent upon the Eulerian tour, which decreases the number of nodes

every time a pm is removed from EP . CATS runtime is due to the steps through which

CATS finds and confirms valid inequalities. The final proof describes the conditions for

facet defining in P ch
KP .

Lemma 3.1 Every inequality reported by CATS is valid for P ch
KP .

Proof : Let αE1

∑
i∈E1

xi + αE2

∑
i∈E2

xi + αE3

∑
i∈E3

xi ≤ 1 be any inequality reported from

CATS. Kubik’s feasible point routine identifies all potential candidates for extreme points

called EP . CATS only reports an inequality if every pi ∈ EP satisfies the inequality. Thus,

αE1
y1+αE2

y2+αE3
y3 ≤ 1 is a valid inequality of P ch3

. Since Kubik’s algorithm uses the sorted

order of the knapsack constraint, no points in P ch
KP violate αE1

∑
i∈E1

xi + αE2

∑
i∈E2

xi +

αE3

∑
i∈E3

xi ≤ 1 and so it is valid.

2

Theorem 3.2 CATS terminates in a finite number of steps and reports all nontrivial facet

defining inequalities of P ch3

.

Proof : Clearly, the initialization runs in a finite number of steps and correctly identifies

both the set of potential extreme points and the set of adjacent extreme points along the

E1, E2 and E3 axes due to Kubik’s and Bolton’s theorems. The remainder will be shown
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algorithmically.

The main step begins with a Eulerian tour of adjacent extreme points and selects one

such extreme point pm. Furthermore, pm, adjpm

l and adjpm

r are all known to be extreme

points. CATS finds a facet defining inequality that contains pm and adjpm

l with a point that

is a candidate pj extreme point. Now it must be shown that the next iteration maintains a

Eulerian tour of adjacent extreme points.

CATS finds all points on the plane between pm, adjpm

l and pj , which form the set EE.

CATS identifies the extreme adjacent points in EE by creating a plane between the irrational

point (r′, r′, r′), the most recently known extreme point (adjpm

l in the first case) and some

other point pk in EE. The point (r′, r′, r′) is guaranteed to be in the interior of P ch3

. If

this plane has all points in EE on one side and the second most recent extreme point (pm

in the first case) is not on this plane, then pk is a candidate for an extreme point. From

all of these candidate extreme points, the one that is farthest from the most recent extreme

point is selected as the next extreme point. The adjacencies are updated and the process

continues until pm is reached.

Once pm is reached the most recent extreme point becomes the left adjacent of pm, which

has successfully updated the Eulerian tour. If the left adjacent of pm is not pr, then there

still remains a Eulerian tour of adjacent extreme points. If not, then pm is removed from EP

and all facet defining inequalities of P ch3

that abut pm between adjpm

l and adjpm

r are found.

Once pm is removed, there still remains a Eulerian tour of adjacent extreme points. So

this process continues. Since there is a finite set of points in EP , this process terminates in a

finite number of steps and furthermore CATS reports all nontrivial facet defining inequalities
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of P ch3

.

2

Theorem 3.3 CATS requires O(n4|T |) effort where |T | is the number of generated inequal-

ities.

Proof : Kubik showed that her subroutine runs in O(n2). Furthermore, this algorithm gen-

erates at most O(n2) points. Thus, |EP | is on the order of O(n2). Bolton proved that her

algorithm runs in O(n2) and the modified version is a subset of this algorithm and so it also

runs in at most O(n2) effort.

The main step of CATS runs in O(n4|T |). In each iteration, this step finds a single

inequality. Furthermore, all of the points in EP are examined exactly one time to create

this inequality, thus determining a single valid inequality requires O(n2).

Once this plane is determined, extreme plane is called and requires O(n4) effort. To

see this |EE| is bounded by O(n2). Furthermore to determine the next adjacent point

requires scanning through all points in EE at most n2 times. There can be at most n2 such

adjacencies and this subroutine is therefore bounded by O(n4).

Therefore, the main step of CATS requires O(n4|T |) effort where |T | is the number of

generated inequalities.

2

The class of valid inequalities produced by CATS is capable of being facet defining.

To test if these inequalities are facet defining, use the conditions outlined in the following
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theorem.

Theorem 3.4 Let αE1

∑
i∈E1

xi +αE2

∑
i∈E2

xi +αE3

∑
i∈E3

xi ≤ 1 be an inequality reported

from CATS. Furthermore, let this inequality be generated from the points pt1 = (pt1

1 , pt1

2 , pt1

3 ),

pt2 = (pt2

1 , pt2

2 , pt2

3 ) and pt3 = (pt3

1 , pt3

2 , pt3

3 ). If there exists an ordering of these three points

that meets the following four conditions

i) 1 ≤ pt1

1 ≤ e1 − 1 and

a) if pt1

1 = 1, then the set {i11, i
2

e2−pt1

2
+1

, ..., i2e2
, i3

e3−pt1

3
+1

, ..., i3e3
} is not a cover;

b) if 2 ≤ pt1

1 ≤ e1−2, then the sets {i11, i
1

e1−pt1

1
+2

, ..., i1e1
, i2

e2−pt1

2
+1

, ..., i2e2
, i3

e3−pt1

3
+1

, ..., i3e3
}

and {i1
e1−pt1

1

, ..., i1e1−1, i
2

e2−pt1

2
+1

, ..., i2e2
, i3

e3−pt1

3
+1

, ..., i3e3
} are not covers.

c) if pt1

1 = e1 − 1, then the set {i11, ..., i
1
e1−1, i

2

e2−pt1

2
+1

, ..., i2e2
, i3

e3−pt1

3
+1

, ..., i3e3
}

is not a cover.

ii) 1 ≤ pt2

2 ≤ e2 − 1 and

a) if pt2

2 = 1, then the set {i1
e1−pt2

1
+1

, ..., i1e1
, i21, i

3

e3−pt2

3
+1

, ..., i3e3
} is not a cover;

b) if 2 ≤ pt2

2 ≤ e2−2, then the sets {i1
e1−pt2

1
+1

, ..., i1e1
, i21, i

2

e2−pt2

2
+2

, ..., i2e2
, i3

e3−pt2

3
+1

, ..., i3e3
}

and {i1
e1−pt2

1
+1

, ..., i1e1
, i2

e2−pt2

2

, ..., i2e2−1, i
3

e3−pt2

3
+1

, ..., i3e3
} are not covers.

c) if pt2

2 = e2 − 1, then the set {i1
e1−pt2

1
+1

, ..., i1e1
, i21, ..., i

2
e2−1, i

3

e3−pt2

3
+1

, ..., i3e3
}

is not a cover.

iii) 1 ≤ pt3

3 ≤ e3 − 1 and

a) if pt3

2 = 1, then the set {i1
e1−pt3

1
+1

, ..., i1e1
, i2

e2−pt3

2
+1

, ..., i2e2
, i31} is not a cover;
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b) if 2 ≤ pt3

3 ≤ e3−2, then the sets {i1
e1−pt3

1
+1

, ..., i1e1
, i2

e2−pt3

2
+1

, ..., i2e2
, i31, i

3

e3−pt3

3
+2

, ..., i3e3
}

and {i1
e1−pt3

1 +1
, ..., i1e1

, i2
e2−pt3

2

, ..., i2e2−1, i
3

e3−pt3

3

, ..., i3e3−1} are not covers.

c) if pt3

3 = e3 − 1, then the set {i1
e1−pt3

1 +1
, ..., i1e1

, i2
e2−pt3

2 +1
, ..., i2e2

, i31, ..., i
3
e3−1}

is not a cover.

iv) At least one of the following three sets is not a cover where j is the smallest index in

N \ (E1 ∪ E2 ∪ E3)

a) {j, i1
e1−pt1

1
+1

, ..., i1e1
, i2

e2−pt1

2
+1

, ..., i2e2
, i3

e3−pt1

3
+1

, ..., i3e3
},

b) {j, i1
e1−pt2

1 +1
, ..., i1e1

, i2
e2−pt2

2 +1
, ..., i2e2

, i3
e3−pt2

3 +1
, ..., i3e3

}, or

c) {j, i1
e1−pt3

1 +1
, ..., i1e1

, i2
e2−pt3

2 +1
, ..., i2e2

, i3
e3−pt3

3 +1
, ..., i3e3

}.

Then αE1

∑
i∈E1

xi + αE2

∑
i∈E2

xi + αE3

∑
i∈E3

xi ≤ 1 is facet defining for P ch
KP .

Proof : Let αE1

∑
i∈E1

xi +αE2

∑
i∈E2

xi +αE3

∑
i∈E3

xi ≤ 1 be some inequality returned from

CATS. This inequality is valid due to Lemma 3.1. Let F be the face of this valid inequality,

F = {x ∈ P ch
KP : αE1

∑
i∈E1

xi +αE2

∑
i∈E2

xi +αE3

∑
i∈E3

xi = 1}. Furthermore, the origin is

not in F and thus F 6= P ch
KP so dim(F ) ≤ n−1. Now it suffices to find n affinely independent

points in F . All xi’s are zeros except the xi’s mentioned specifically.

The first e1 points follow the assumptions of ia), ib) or ic). If ia) is true, then the e1

points are xi = 1, if i ∈ {i2
e2−pt1

2 +1
, ..., i2e2

, i3
e3−pt1

3 +1
, ..., i3e3

} and xj = 1 for each j ∈ E1. If ib)

is true, then the e1 points are xi = 1 if i ∈ {i1
e1−pt1

1
+2

, ..., i1e1
, i2

e2−pt1

2
+1

, ..., i2e2
, i3

e3−pt1

3
+1

, ..., i3e3
}

and xj = 1 for each j ∈ {i11, ...i
1

e1−pt1

1 −1
}. The remainder of the e1 points for ib) occur when

xi = 1, if i ∈ {i2
e2−pt1

2
+1

, ..., i2e2
, i3

e3−pt1

3
+1

, ..., i3e3
} and also xi = 1 for all i ∈ {i1

e1−pt1

1

, ..., i1e1
}\{j}
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for each j ∈ {i1
e1−pt1

1

, ..., i1e1
}. Finally, if ic) is true, then xi = 1 for all i ∈ {i11, ..., i

1
e1
} \ {j} for

each j ∈ {i11, ..., i
1
e1
}.

The next e2 points follow the assumptions of iia), iib) or iic). If iia) is true, then the e2

points are xi = 1, if i ∈ {i1
e1−pt2

1 +1
, ..., i1e1

, i3
e3−pt2

3 +1
, ..., i3e3

} and xj = 1 for each j ∈ E2. If iib)

is true, then the e2 points are xi = 1 if i ∈ {i1
e1−pt2

1
+2

, ..., i1e1
, i2

e2−pt2

2
+1

, ..., i2e2
, i3

e3−pt2

3
+1

, ..., i3e3
}

and xj = 1 for each j ∈ {i21, ...i
2

e2−pt2

1
−1
}. The remainder of the e2 points for iib) occur

xi = 1, if i ∈ {i1
e1−pt2

1 +1
, ..., i1e1

, i3
e3−pt2

3 +1
, ..., i3e3

} with xi = 1 for all {i2
e2−pt2

2

, ..., i2e2
} \ {j} for

each j ∈ {i2
e2−pt2

2

, ..., i2e2
}. Finally, if iic) is true, then xi = 1 for all {i21, ..., i

2
e2
} \ {j} for each

j ∈ {i21, ..., i
2
e2
}.

The next e3 points follow the assumptions of iiia), iiib) or iiic). If iiia) is true, then the e3

points are xi = 1, if i ∈ {i1
e1−pt3

1 +1
, ..., i1e1

, i2
e2−pt3

2 +1
, ..., i2e2

} and xj = 1 for each j ∈ E3. If iiib)

is true, then the e3 points are xi = 1 if i ∈ {i1
e1−pt3

1
+2

, ..., i1e1
, i2

e2−pt3

2
+1

, ..., i2e2
, i3

e3−pt3

3
+1

, ..., i3e3
}

and xj = 1 for each j ∈ {i31, ...i
3

e3−pt3

1
−1
}. The remainder of the e3 points for iiib) occur

xi = 1, if i ∈ {i1
e1−pt3

2 +1
, ..., i1e1

, i2
e2−pt3

3 +1
, ..., i2e2

} with xi = 1 for all {i3
e3−pt3

3

, ..., i3e3
} \ {j} for

each j ∈ {i3
e3−pt3

3

, ..., i3e3
}. Finally, if iiic) is true, then xi = 1 for all {i31, ..., i

3
e3
} \ {j} for each

j ∈ {i31, ..., i
3
e3
}.

The final set of points are generated from iv). If iva) is true, then these points are

xi = 1 for all i ∈ {i1
e1−pt1

1 +1
, ..., i1e1

, i2
e2−pt1

2 +1
, ..., i2e2

, i3
e3−pt1

3 +1
, ..., i3e3

} and xj = 1 for each

j ∈ N \ (E1 ∪ E2 ∪ E3).

Consequently, there are n points that meet αE1

∑
i∈E1

xi+αE2

∑
i∈E2

xi+αE3

∑
i∈E3

xi ≤ 1

at equality and so are in its face. Since pt1 , pt2 and pt3 induce a plane in P ch3

, they are affinely

independent. Thus, these n points are also affinely independent. So the induced face has
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dimension n − 1 and it is facet defining.

2

Using the notation and procedures described previously, this section provides a detailed

example of the algorithm and the inequalities produced in CATS. After reading a portion

of this section, the reader may realize the figures from this example were used to illustrate

the algorithm generally in the earlier section. The convex hull, illustrated to give the reader

a sense of P ch3

, is defined through this knapsack constraint. The reader may choose to

reference these figures throughout this section.

3.4 CATS Example

Recall the knapsack constraint from Example 2.1:

31x1 + 30x2 + 28x3 + 25x4 + 20x5 + 20x6 + 19x7 + 18x8 + 18x9 + 17x10 + 17x11 + 15x12+

14x13 + 14x14 + 13x15 + 12x16 ≤ 94.

xi ∈ {0, 1} for all i ∈ N .

Now let E1 = {1, 2, 3, 4}, E2 = {5, 6, 7, 8, 9, 10, 11} and E3 = {12, 13, 14, 15, 16}. Note that

E1 and E2 are both covers, but E3 is not a cover. The potential extreme candidate points

are found using part of Kubik’s method. These points in EP are given in Table 4. The

feasible points 1-18 that form EP are bolded, and the nonbolded points are not feasible but

are part of Kubik’s algorithm.

Using three replications of Bolton’s SSL algorithm, the extreme feasible points are found

along the E1, E2 and E3 axes. So EP1 = (5,0),(4,1),(3,3),(2,4),(1,5), and (0,5); EP2 =
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p E1 E2 E3 p E1 E2 E3 p E1 E2 E3 p E1 E2 E3

– 3 1 0 – 2 3 0 – 1 4 0 – 0 6 0

1 3 0 0 2 2 2 0 6 1 3 0 12 0 5 0

– 3 0 1 – 2 2 1 7 1 3 1 – 0 5 1

3 2 1 1 – 1 3 2 13 0 4 1

– 2 1 2 8 1 2 2 – 0 4 2

4 2 0 2 – 1 2 3 14 0 3 2

5 2 0 3 9 1 1 3 15 0 3 3

– 2 0 4 – 1 1 4 – 0 3 4

10 1 0 4 16 0 2 4

11 1 0 5 – 0 2 5

– 1 0 6 17 0 1 5

– 0 1 6

18 0 0 5

– 0 0 6

Table 4: Potential extreme candidates points on axes with feasible points bolded

(3,0),(2,3),(1,5), and (0,5); and EP3 = (3,0),(2,2),(1,3), and (0,5). Bolton’s SSL extreme

points on the axes are listed below in the order they would be found around P ch3

, assuming

an arbitrary starting point of (0,5,0).

p12=(0,5,0), adjp12

r = p15, adjp12

l = p2.

p2=(2,2,0), adjp2

r = p12, adjp2

l = p1.

p1=(3,0,0), adjp1

r = p2, adjp1

l = p5.

p5=(2,0,3), adjp5

r = p1, adjp5

l = p11.

p11=(1,0,5), adjp11

r = p5, adjp11

l = p18.

p18=(0,0,5), adjp18

r = p11, adjp18

l = p17.

p17=(0,1,5), adjp17

r = p18, adjp17

l = p15.
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p15=(0,3,3), adjp15

r = p17, adjp15

l = p12.

These points are ordered according to their position around the convex hull. Together,

they form the extreme adjacencies of a Eulerian tour for this example. So, EP contains the

points along the axes p12 = (0, 5, 0), p2 = (2, 2, 0), p1 = (3, 0, 0), p5 = (2, 0, 3), p11 = (1, 0, 5),

p18 = (0, 0, 5), p17 = (0, 1, 5), p15 = (0, 3, 3), along with the interior points p3 = (2, 1, 1),

p7 = (1, 3, 1), p8 = (1, 2, 2) and p9 = (1, 1, 3). The order of the interior points is arbitrary at

this point.

Now CATS’ main step begins with p12 = (0, 5, 0). So let pm := p12 and so pr := p15 =

(0, 3, 3) and pl := p2 = (2, 2, 0). Note these are the adjacent points to p12. Using these three

points, a candidate plane, T ′, is solved using the system of equations.

αE1
0 + αE2

5 + αE3
0 = 1,

αE1
2 + αE2

2 + αE3
0 = 1,

αE1
0 + αE2

3 + αE3
3 = 1.

which gives the values

d = (0(2 ∗ 3 − 3 ∗ 0) + 2(3 ∗ 0 − 5 ∗ 3) + 0(5 ∗ 0 − 2 ∗ 0)) = −30,

αE1
= (5(0 − 3) + 2(3 − 0) + 2(0 − 0))/(−30) = 3

10
,

αE2
= (0(0 − 0) + 0(2 − 0) + 3(0 − 2))/(−30) = 1

5
,

αE3
= (0(2 − 3) + 2(3 − 5) + 0(5 − 2))/(−30) = 2

15
.

So αE1
= 3

10
, αE2

= 1
5
, and αE3

= 2
15

. In the form of an inequality, this cutting plane, T ′,

3
10

y1 + 1
5
y2 + 2

15
y3 ≤ 1 is tested against all points in EP . Evaluating p1 = (3, 0, 0) results in
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3
10

∗ 3 + 1
5
∗ 0 + 2

15
∗ 0 = 9

10
≤ 1. Continuing through all points in EP , it is determined that

the point p7 = (1, 3, 1) violates this potential inequality 3
10

∗ 1 + 1
5
∗ 3 + 2

15
∗ 1 = 31/30 > 1.

So, let pi := p7. The point pr is dropped and pi is added to form a new plane.

Because p7 violated T ′, a new plane is created to accommodate the violated point. Let T ′

contain p12 = (0, 5, 0), p2 = (2, 2, 0), p7 = (1, 3, 1), and the inequality is 3
10

y1 + 1
5
y2 + 1

10
y3 ≤ 1.

This plane is tested for validity against all points in EP and is valid because all points in

EP satisfy this inequality. Thus, T ′ becomes T 1, and the subroutine extreme plane is called

to check for any more points meeting the plane at equality. None are found, and so the edge

between p2 and p12 is replaced with p2 to p7 and p7 to p12, which completes the Eulerian

tour. Thus, the adjacency sets for p12 and p2 are updated to include p7. So adj12
l := p7,

adj2
r := p7, adj7

r := p12, and adj7
l := p2.

Now, set T ′ = p12, p15, p7, with pm = p12, pl = p7 and pr = p15 and a plane equation of

4
15

y1 + 1
5
y2 + 2

15
y3 ≤ 1. This plane is checked against all extreme points, and since no points

are violated, it is determined to be valid as well. Therefore T 2 = T ′. The extreme plane

routine checks for any points in EE meeting this plane at equality. In this instance, no

others do, and so it is known that this is the final plane to use the point p12. The adjacent

points for each are updated as follows: adj15
l := p7, adj7

r := p15, and p12 is removed from EP .

Figure 10 depicts this scenario.

The algorithm now continues through the convex hull using the next extreme point, p2.

Note this is the original adjacent point left for p12. Let pm := p2, with adjacent points

adjp2

r := p7 and adjp2

l := p1. Now, T ′ = p2, p7, p1, with plane 1
3
y1 + 1

6
y2 + 1

6
y3 = 1. However,

p5 violates this inequality. Let pi := p5, and so now T ′ contains p2, p1, and p5 with plane
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1
3
y1 + 1

6
y2 + 1

9
y1 = 1. This plane violates no other points and so is called T 3. The extreme

plane subroutine does not find a new point that meets it at equality, and so p5 may be added

to the adjacency sets for p2 and p1. The next T ′ from p2 to be checked is comprised of the

points p2, p5, and p7, and its equation 5
16

y1 + 3
16

y2 + 1
8
y3 = 1 violates no points and is valid.

This plane T 4 := T ′, and the extreme plane subroutine finds no new points meeting it at

equality.

To demonstrate a case where EE is nontrivial, consider the plane found at the next pm.

T ′ is made up of the points pm := p5, pr := p7 and pl := p11 with plane 2
7
y1 + 4

21
y2 + 1

7
y3 = 1.

It violates no points in EP , so T 5 := T ′. However, p15 meets T 5 at equality and is the only

other point in EE besides p5, p7 and p11. This is an example of a plane with more than

three integer points that meet it at equality. For the purpose of this algorithm, p15 must

be determined to be either an extreme point or not. CATS creates three temporary planes,

as shown in Table 5. An r′ value approximately equal to 1
9
− ε is used, where ε is a small

irrational number that can be ignored in the calculations of this example. Let W ′ be the

temporary plane created for each step in the extreme plane routine. The values for each of

the points in Table 5 are found by inserting the components of each point into the equation

for the temporary planes (i).

To find the adjacency from p11 = adjpm

l , let qm := p11 and qr := pm = p5. The first

temporary plane, W 1, is composed of the points qm, p15 and (r′, r′, r′). Evaluating p5 and

p7 in this plane results in 191
15

and 191
15

, respectively. Since both are strictly greater than 1,

p15 is a candidate adjacent point to p11. The second temporary plane, W 2, is composed

of the points qm, p7 and (r′, r′, r′). Evaluating p5 and p15 in this plane results in 23 and
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Figure 12: Temporary planes W’ created in the extreme plane routine
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Temp Points α′
E1

α′
E2

α′
E3

p Value p Value Conclusion

W 1 p11, p15, (r′, r′, r′) 26
3

28
15

−23
15

p5 191
15

p7 191
15

pj := p15

W 2 p11, p7, (r′, r′, r′) 16 −4 −3 p5 23 p15 −21 pj : 6= p7

W 3 p5, p11, (r′, r′, r′) 2
7

60
7

1
7

p15 183
7

p7 183
7

pj : 6= p5

Table 5: Temporary plane points, coefficients, values and outcomes

−21, respectively. Thus, p7 is not a candidate extreme point adjacent to p11. Finally, the

temporary plane, W 3, is composed of the points qm, p5 and (r′, r′, r′). Evaluating p7 and

p15 in this plane results in 183
7

and 183
7

, respectively. However, qr, which is pr = pm, is on

this plane and so p5 is not a left candidate extreme point adjacent to p11. Thus, qm’s left

extreme point is p15. A graphic of this routine is illustrated in Figure 12.

Now qm := p15 and qr := p11. This process continues to identify the adjacent extreme

points on T 5. The next extreme points, p7 and then p5, complete the Eulerian tour as the

adjacent points are updated. Thus, the original edge between p11 and p5 is replaced with the

edges from p11 to p15, p15 to p7, and p7 to p5. Notice that p15 previously contained adjacent

points, and these must be retained during the updating process.

CATS continues by selecting the next extreme point, pm := p11. T ′ is p11, p18 and

p15, which is violated by p17. T ′ is now p11, p18 and p17, yielding a valid inequality T 6 =

0y1 +0y2 + 1
5
y3 ≤ 1. T 7 is confirmed through p11, p17 and p15, resulting in 1

6
y1 + 1

6
y2 + 1

6
y3 ≤ 1

as the valid inequality.

T 7 is the last valid inequality to define P ch3

. From here on, CATS continues finding

duplicate inequalities using the remaining extreme points until the algorithm terminates.
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Figure 13 illustrates the list of valid inequalities as they define the convex hull. The valid

inequalities produced from CATS for P ch3

with their respective points are listed below.

Additionally, the valid inequalities for P ch
KP in the form of αE1

∑
i∈E1

xi + αE2

∑
i∈E2

xi +

αE3

∑
i∈E3

xi ≤ 1 are listed immediately following.

Figure 13: Valid inequalities T ′ that define P ch3

T 1 : p12 = (0, 5, 0), p2 = (2, 2, 0), p7 = (1, 3, 1) is 3
10

y1 + 1
5
y2 + 1

10
y3 ≤ 1

3
10

∑
i∈E1

xi + 1
5

∑
i∈E2

xi + 1
10

∑
i∈E3

xi ≤ 1.
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T 2 : p12 = (0, 5, 0), p7 = (1, 3, 1), p15 = (0, 3, 3) is 4
15

y1 + 1
5
y2 + 2

15
y3 ≤ 1

4
15

∑
i∈E1

xi + 1
5

∑
i∈E2

xi + 2
15

∑
i∈E3

xi ≤ 1.

T 3 : p2 = (2, 2, 0), p1 = (3, 0, 0), p5 = (2, 0, 3) is 1
3
y1 + 1

6
y2 + 1

9
y3 ≤ 1

1
3

∑
i∈E1

xi + 1
6

∑
i∈E2

xi + 1
9

∑
i∈E3

xi ≤ 1.

T 4 : p2 = (2, 2, 0), p5 = (2, 0, 3), p7 = (1, 3, 1) is 5
16

y1 + 3
16

y2 + 1
8
y3 ≤ 1

5
16

∑
i∈E1

xi + 3
16

∑
i∈E2

xi + 1
8

∑
i∈E3

xi ≤ 1.

T 5 : p5 = (2, 0, 3), p11 = (1, 0, 5), p7 = (1, 3, 1) is 2
7
y1 + 4

21
y2 + 1

7
y3 ≤ 1

2
7

∑
i∈E1

xi + 4
21

∑
i∈E2

xi + 1
7

∑
i∈E3

xi ≤ 1.

T 6 : p11 = (1, 0, 5), p18 = (0, 0, 5), p17 = (0, 1, 5) is 0y1 + 0y2 + 1
5
y3 ≤ 1

0
∑

i∈E1
xi + 0

∑
i∈E2

xi + 1
5

∑
i∈E3

xi ≤ 1.

T 7 : p11 = (1, 0, 5), p17 = (0, 1, 5), p15 = (0, 3, 3) is 1
6
y1 + 1

6
y2 + 1

6
y3 ≤ 1

1
6

∑
i∈E1

xi + 1
6

∑
i∈E2

xi + 1
6

∑
i∈E3

xi ≤ 1.

These inequalities are all valid in P ch
KP due to Lemma 3.1. To determine if any or all of

these seven inequalities are facet defining, check with Theorem 3.4. The inequality from T 4

is selected for demonstration because of the interesting alpha values, but this procedure is

repeated for the other inequalities.

The three points from T 4 are p2, p5 and p7. From the theorem, let p1 := p7 which is

(1, 3, 1), so p1
1 = 1, p1

2 = 3, and p1
3 = 1. Let p2 := p2 which is (2, 2, 0), so p2

1 = 2, p2
2 = 2,

57



and p2
3 = 0. Finally, p3 := p5 which is (2, 0, 3), so p3

1 = 2, p3
2 = 0, and p3

3 = 3. Figure

14 illustrates the affinely independent points for this inequality. In the figures of affinely

independent points, lines have been drawn to help the reader visualize the conditions of the

theorems and how the elements are arranged for each of the three points.

In the first column, notice how the first point, contains one element from E1, three

elements from E2, and one element from E3. The element is the largest in E1, and so once

this point is valid, the remaining three points are valid as well. This follows condition i of

Theorem 3.4, where p1
1 = 1. The elements in E2, i2

e2−pt1

2
+1

, ..., i2e2
, and E3, i3

e3−pt1

3
+1

, ..., i3e3
,

correspond to the lightest elements, pi
2 and pi

3, in E2 and E3 that the hiker can carry. Thus

point (1, 3, 1) has four affinely independent points.

Through a similar procedure, (2, 2, 0) and (2, 0, 3) are also confirmed to be affinely inde-

pendent. Notice for both points (2, 2, 0) and (2, 0, 3), condition ii of Theorem 3.4 is employed,

and only the first and last affinely independent points in each set require validation. These

are the points that, once checked, confirm the feasibility of the other points.

This facet defining inequality is a new class of inequalities that CATS can efficiently

find. First, rewrite 5
16

∑
i∈E1

xi + 3
16

∑
i∈E2

xi + 1
8

∑
i∈E3

xi ≤ 1 to 5
∑

i∈E1
xi + 3

∑
i∈E2

xi +

2
∑

i∈E3
xi ≤ 16. Since there are only 6 elements in E3, this inequality is not based upon

a cover inequality. Clearly, it is not possible to obtain this inequality using Zemel’s or

Bolton’s method. Obviously, this inequality could be generated using simultaneous lifting,

but you would have to have started with 5
∑

i∈E1
xi + 3

∑
i∈E2

xi ≤ 16 or one of the other

two combinations and lift in the third set. No one except an oracle would know to choose

such a bizarre inequality as a starting inequality and thus it can be concluded CATS can
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find new classes of facet defining inequalities.

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1
1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0

Figure 14: Affinely independent points for 5
16

∑
i∈E1

xi + 3
16

∑
i∈E2

xi + 1
8

∑
i∈E3

xi ≤ 1

Theorem 3.4 is used to confirm four of the seven inequalities as facet defining, and as

illustrated in Figure 13, these facet defining inequalities occur primarily across the center of

P ch3

. Below is a list of the facet defining inequalities and their affinely independent points.

T 2 : p12 = (0, 5, 0), p7 = (1, 3, 1), p15 = (0, 3, 3) is 4
15

y1 + 1
5
y2 + 2

15
y3 ≤ 1 Figure 15

T 3 : p2 = (2, 2, 0), p1 = (3, 0, 0), p5 = (2, 0, 3) is 1
3
y1 + 1

6
y2 + 1

9
y3 ≤ 1 Figure 16

T 4 : p2 = (2, 2, 0), p5 = (2, 0, 3), p7 = (1, 3, 1) is 5
16

y1 + 3
16

y2 + 1
8
y3 ≤ 1 Figure 14

T 5 : p5 = (2, 0, 3), p11 = (1, 0, 5), p7 = (1, 3, 1) is 2
7
y1 + 4

21
y2 + 1

7
y3 ≤ 1 Figure 17

CATS’ ability to systematically find new inequalities throughout P ch3

makes this ben-

eficial for removing part of the linear relaxation for P ch
KP . Furthermore, this new class of
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1
1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0

Figure 15: Affinely independent points for 4
15

∑
i∈E1

xi + 1
5

∑
i∈E2

xi + 2
15

∑
i∈E3

xi ≤ 1

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

Figure 16: Affinely independent points for 1
3

∑
i∈E1

xi + 1
6

∑
i∈E2

xi + 1
9

∑
i∈E3

xi ≤ 1
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 1 1 1 1 1 1 1 0 1 0 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Figure 17: Affinely independent points for 2
7

∑
i∈E1

xi + 4
21

∑
i∈E2

xi + 1
7

∑
i∈E3

xi ≤ 1

inequalities would not have been found without CATS. For example, the inequality from T 4,

5
16

y1 + 3
16

y2 + 1
8
y3 ≤ 1, defines much of the center of P ch3

. The likelihood of finding and

choosing this inequality through traditional lifting methods is minimal, if not impossible.

Therefore, CATS theoretically appears to be a useful computational tool. The proceeding

chapter discusses the beneficial computational results of CATS.
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4 CATS Computational Results

The contribution of this research is the application of synchronized simultaneous lifting in

three sets and the development of an algorithm to systematically find a new class of valid

inequalities. The purpose of this section is to describe the quantitative advancements of

CATS to support its implementation into commercial integer programming software. The

computational results show that CATS cuts are found relatively easily compared with the

IP solving time, and CATS does decrease the solution time for some IPs.

The results of this computational study were obtained through the use of an Intel (R)

Core i7 computer with a 1.58 GHz processor and 3.0 GB of RAM. A commercial optimization

software, CPLEX [38], was used to compare the results with and without the CATS cuts.

All results are reported in seconds. The code itself is created in C++.

The search for an appropriate class of problems attempted a variety of factors. The

number of variables was considered, as well as the number of constraints, the range of

constraint and objective function coefficients, size of the sets, analysis of gaps between sets,

and even the reduced costs for each variable. An appropriate class of problems also has to

solve within a general time interval. Problems solving too quickly are unlikely to show either

positive nor negative results for CATS. Problems requiring numerous hours to solve or that

exhausted the computers memory are also impractical for a computational study.

In the opinion of the author, no ideal class of problems was found to demonstrate the

power of CATS inequalities. Further computational studies are encouraged to understand

the precise computational benefits of this thesis.
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The class of problems selected is a randomly generated multiple knapsack problem (MKP)

with two constraints. An MKP is simply a KP with one or more additional constraints, and

this may be formulated as Maximize
∑

i∈N cixi subject to
∑

i∈N ajixi ≤ bj for j = 1, ..., r and

xi ∈ {0, 1} ∀ i ∈ N where r is the number of rows and aji ≥ 0 for all i ∈ N and j ∈ {1, ..., r}.

The constraint coefficients, aij, are random integers from a uniform distribution between

50,000 and 250,000. Each objective coefficient, ci, is calculated by summing the column

coefficients and adding on a random integer between 0 and u. Alternatively, ci =
∑r

j=1 aji +

u′, where u′ is an integer taken from a U(0, u) for all j ∈ N . The right hand side of each

constraint is the sum of all aji in that constraint multiplied by s, where s is a slackness ratio

and rounded down. Formally, bj = bs
∑n

i=1 ajic for j = 1 and 2.

The number of variables in each problem is dependent on the solution time using CPLEX.

The problems that were neither trivial nor too demanding happened to have 50 and 55

variables. Additionally, in an effort to place variables in the sets that could have more of

an impact on removing part of the linear relaxation, the reduced costs for all variables are

sorted before the sets were chosen. The variables with reduced costs in the lowest 20% are

removed from the list of variables to be placed into the sets.

The size of the sets E1, E2 and E3 are made variable to remove nonuniform gaps from

within a particular set, with each set confined to a range of values appropriate for the size of

the problem. The coefficients are sorted in descending order, and so generally the magnitude

of E1 is smaller than E2, and E2 is smaller still than E3. With a minimum and maximum

set size predetermined, a subroutine seeks the largest gap between constraint coefficients

within that data range. The minimum size of E1 is 15% of the total number of variables,
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with a maximum value of 30%. The set E2 contains between 15% and 30%, and E3 contains

between 15% and the maximum number of variables remaining.

The preprocessing time for CATS is calculated by running 300 problems with one con-

straint without solving the integer program. The cumulative time is approximately 9.6

seconds, which gives an average time of .032 seconds per problem.

The first of the computational tests listed in Table 6 are for problems with s = .25 and

u = 4. This set of 20 randomly generated problems contains 50 variables and uses two

knapsack constraints. The preprocessing time is included in the recorded times, but it is

essentially negligible with CATS average runtime at less than one thirtieth of a second.

The second of the computational tests listed in Table 7 are 20 randomly generated prob-

lems, each containing 55 variables and using two knapsack constraints. With the values of

s = .125 and u = 5, CATS preprocessing time for this set of problems nearly matches the

previous set, even though the number of variables increased by 10%.

Both of these data sets illustrate the effectiveness of the previously undiscovered class of

inequalities. CATS finds approximately 12 distinct inequalities per problem, with an average

of 13.2 and 11.4 cuts from each set, respectively.

CATS finds these valid inequalities in a very short preprocessing time in this study.

Although the computational study is concerned only with the problems tested, from obser-

vations and theorical results the preprocessing time for CATS is proportionally linked to the

number of variables in the problem. For example, CATS requires approximately 6.3 seconds

to generate cuts for 60 problems with 100 variables (not solve the IP using CPLEX). Even in

these larger problems, the preprocessing time is reasonable with an average of .105 seconds.
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Problem CPLEX CATS (CPLEX −CATS) CATS% CATS Winner
Improvement Cuts

1 508 427 81 15.9% 10 CATS
2 524 774 -250 -47.7% 12 CPLEX
3 349 449 -100 -28.7% 13 CPLEX
4 664 292 372 56.0% 13 CATS
5 561 457 104 18.5% 12 CATS
6 312 752 -440 -141.0% 13 CPLEX
7 433 414 19 4.4% 15 CATS
8 106 83 23 21.7% 13 CATS
9 1002 451 551 55.0% 19 CATS
10 187 148 39 20.9% 8 CATS
11 82 126 -44 -53.7% 15 CPLEX
12 420 177 243 57.9% 13 CATS
13 194 242 -48 -24.7% 10 CPLEX
14 641 778 -137 -21.4% 16 CPLEX
15 675 363 312 46.2% 13 CATS
16 133 368 -235 -176.7% 11 CPLEX
17 735 514 221 30.1% 15 CATS
18 538 190 348 64.7% 20 CATS
19 173 164 9 5.2% 13 CATS
20 238 707 -469 -197.1% 10 CPLEX

Average 424 394 30 7.1% 13.2 12/20

Table 6: Data reported for problems with 50 variables
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Problem CPLEX CATS (CPLEX −CATS) CATS% CATS Winner
Improvement Cuts

1 1989 1338 651 32.7% 14 CATS
2 1309 1296 13 1.0% 8 CATS
3 1443 1179 264 18.3% 10 CATS
4 1097 927 170 15.5% 7 CATS
5 1494 834 660 44.2% 12 CATS
6 2208 2138 70 3.2% 10 CATS
7 1137 1152 -15 -1.3% 7 CPLEX
8 1174 955 219 18.7% 17 CATS
9 1020 1209 -189 -18.5% 11 CPLEX
10 1033 1078 -45 -4.4% 8 CPLEX
11 1450 1191 259 17.9% 13 CATS
12 1465 1022 443 30.2% 9 CATS
13 1268 1638 -370 -29.2% 18 CPLEX
14 1423 1636 -213 -15.0% 9 CPLEX
15 703 796 -93 -13.2% 14 CPLEX
16 1907 1621 286 15.0% 12 CATS
17 1089 1286 -197 -18.1% 13 CPLEX
18 1179 1019 160 13.6% 14 CATS
19 1501 841 660 44.0% 7 CATS
20 1718 1531 187 10.9% 14 CATS

Average 1380 1234 146 10.6% 11.4 13/20

Table 7: Data reported for problems with 55 Variables
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CATS is capable of reducing the processing time for some integer programs by an average

of 8.9% or more. The runtime was reduced by 7.1% in the first data set and by 10.6% in

the second data set. In this second set of problems, CATS cut nearly 50 minutes off of the

7.5 hour runtime. Given the greater length of the runtime for these problems and many

integer programs in general, CATS is able to maintain a runtime advantage for a wide range

of problems.

Further computational studies were performed with simpler problems requiring a total

between one and two minutes to solve. These results are even more impressive, as CATS

reduced these processing times by at least 30% and in some cases over 60%. Table 8 presents

data for 10 problems with a CATS runtime 51.5% better than CPLEX.

Problem CPLEX CATS (CPLEX −CATS) CATS% CATS Winner
Improvement Cuts

1 1 2 -1 -100.0% 16 CPLEX
2 1 1 0 0.0% 14 -
3 6 2 4 66.7% 10 CATS
4 22 1 21 95.5% 9 CATS
5 2 6 -4 -200.0% 7 CPLEX
6 5 3 2 40.0% 12 CATS
7 17 11 6 35.3% 9 CATS
8 12 11 1 8.3% 11 CATS
9 21 9 12 57.1% 12 CATS
10 10 1 9 90.0% 9 CATS

Average 9.7 4.7 5 51.5% 10.7 7/10

Table 8: Short runtime problems with 50 variables

CATS valid inequalities with the most pronounced impact on the reduction in processing

time are the inequalities spanning across the center of the P ch3

. For example, one of this

problems produced the inequality 11
∑

i∈E1
xi + 7

∑
i∈E2

xi + 4
∑

i∈E3
xi ≤ 60, which spans
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much of P ch3

. The points in EE that meet this inequality at equality are: (1,7,0), (3,3,1),

(3,2,3), (2,2,6) and (0,4,8). This is a large number of points in EE, indicating the effec-

tiveness of this cutting plane. Notice that this inequality could not be found with previous

lifting methods.

Overall, this computational study shows CATS is indeed fast in finding effective inequal-

ities, with the average preprocessing time of less than .032 seconds. The resulting CATS

inequalities can reduce the solution time of integer programming problems by about 8.9%

over CPLEX.
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5 Conclusion

The purpose of this research was to augment synchronized simultaneous lifting from two to

three dimensions. The Cutting-plane Algorithm in Three Sets does obtain valid inequalities

through systematically updating adjacent points and creating new inequalities when a vio-

lated point is found. Due to the methodical process for identifying valid inequalities from an

extreme point and maintaining the Eulerian tour, CATS is able to find all nontrivial facet

defining inequalities in P ch3

. These inequalities are then converted to valid inequalities for

P ch
KP .

CATS finds new classes of cutting planes for P ch
KP that cannot be found using any previous

methods without the help of an omniscient being. Furthermore, theoretical results show that

CATS runs in polynomial effort and that there are easily checkable conditions for CATS’

inequalities to be facet defining in P ch
KP .

The computational results support a significant reduction in solution time compared

with a commercial optimization software. The problems with CATS cuts solved 8.9% faster

than with standard CPLEX. The processing time for CATS is minimal at approximately

.032 seconds. Given its theoretical worst case time of quartic effort times the number of

inequalities generated, CATS is a viable technique to be implemented to solve large integer

programs.
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5.1 Future Work

Both CATS and synchronized simultaneous lifting are in their infancy and thus there remains

substantial research to be done in this area. This section provides the reader with a few of

these ideas.

There needs to be a greater computational understanding into the precise uses of three

set synchronized simultaneous lifting. This research primarily focused on the theoretical

advancements of CATS, and no ideal class of problems was found to demonstrate CATS true

power. It is the opinion of the author even greater computational results can be obtained

through selecting a different problem class and providing better guidelines for the input sets.

Additionally, CATS should be compared to benchmark knapsack problems to determine its

effectiveness against commonly studied problems.

An obvious future research idea is to expand synchronized simultaneous lifting to more

than three sets. This would require adjacency lists in a minimum of four dimensions, and

therefore graphical illustrations would no longer be feasible. The complexity of creating

CANS (Cutting-plane Algorithm in n Sets) would be significantly more than two and even

three sets. However, with the significant computational benefits of growing from two to three

sets would indicate that CATS in higher numbers of sets would provide even more reduction

in runtime.

CATS should be applied to problems where a cover inequality is given as the starting

inequality. Instead of simply finding valid inequalities from nothing, a cover inequality could

allow CATS to seek different inequalities on P ch. Thus, CATS would become a type of

synchronized simultaneous up lifting.
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CATS should also be applied to other classes of integer programs, including non-binary

problems, general mixed integer problems, and multiple constraint knapsack problems. Such

theoretical advancements could vastly improve CATS and make the computational results

much stronger.

Pursuing these research topics should enable CATS to have a lasting impact on integer

programming research. Ultimately, the implementation of CATS into commercial code would

solidify the lasting impact of this research.
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6 Afterthoughts

In some sense, the development of CATS has followed the progression of Kansas State Uni-

versity’s Men’s Basketball Program during the my college tenure (2006-2010). This research

began with hand drawn diagrams and an unknowingness of the author as to the complexities

of synchronized simultaneous lifting in three dimensional space. Similarly, KSU’s basketball

program did not qualify for the NCAA tournament in 2007. However, every challenge was

met with determination and new discoveries for both CATS, which slowly turned an idea

into a thesis and athletic potential into an Elite Eight appearance.

In my opinion, both CATS and the K-State’s Men’s Basketball team have the potential

to be remembered forever. The requirements are simply stated, but difficult to achieve. The

Wildcats need a national championship and CATS needs to be implemented into commercial

code. Other than dedicated support, I have no worthwhile recommendations as to how Coach

Martin should improve his team to win a championship. However, the future research section

describes several avenues with the potential to help take CATS to the next level.

On a personal note, each time I hear Dave Lewis yell ”BRING ON THE CATS!” and

the fans cheer ”GO CATS”, a smile will cross my face. Unknowingly, each fan not only

encourages Kansas State athletics, but is also cheering on my contribution to the field of

integer programming, Generating an Original Cutting-plane Algorithm in Three Sets (GO

CATS).
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