
 

 

STABILITY OF ESSENTIAL NUTRIENTS IN PET FOOD MANUFACTURING AND 

STORAGE 

 

 

by 

 

 

ALAINA MOONEY 

 

 

 

B.S., Kansas State University, 2010 

 

 

 

A THESIS 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

MASTER OF SCIENCE 

 

 

 

Department of Grain Science and Industry 

College of Agriculture 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2016 

 

Approved by: 

 

Major Professor 

Dr. C.G. Aldrich 

  



 

 

Copyright 

ALAINA MOONEY 

2016 

 

 

  



 

 

Abstract 

Processing pet food can be beneficial, but can also have adverse effects on shelf-life and 

nutrient survival. Most affected are supplemental vitamins and essential fatty acids (EFA). Pet 

food complicates this relative to human foods by combining all elements into the product before 

processing and requiring an extensive shelf-life (up to 2 years). The objective of this research 

was to determine the effects of processing, diet, and storage conditions on vitamin (vitamin A, 

vitamin D3, vitamin E, folic acid and thiamine) and omega-3 fatty acid (with an emphasis on 

eicosapentaenoic acid; EPA 20:5n3, and docosahexaenoic acid; DHA; 22:6n3) retention. The 

research was conducted in two separate experiments. Each experimental diet was produced on a 

single-screw extruder and triple-pass dryer. Target nutrients were evaluated in premixes in 

tandem to extruded diets. The vitamin study was conducted as a 3 X 2 X 2 factorial arrangement 

of treatments with 3 levels of dietary crude protein (CP), 2 screw speeds in the extruder, and 2 

levels of time X temperature combinations in the dryer. Vitamins were added at 10 times normal 

levels to aid in analysis. The EFA study was conducted as a 3 X 3 factorial arrangement of 

treatments with 3 levels of dietary protein and 3 different omega-3 sources: fish oil, fish meal, or 

purpose-grown algae rich in DHA. In the vitamin premix study, the quantity of vitamins declined 

by approximately 50% over 6 months storage in ambient conditions (AMB; 20C, 50%RH), and 

all except folic acid were lost to some degree in stressed shelf life testing (SSLT; 50C, 70% RH) 

over 6 weeks. In all cases, the concentration of vitamins in food exiting the extruder and dryer 

were lower than target levels. As CP increased, the retention was higher (P ≤ 0.05) for vitamins 

A, E, and folic acid off the extruder (e.g. 225,352 vs. 219,184 and 206,249 IU/kg of vitamin A 

for high vs. medium and low CP, respectively), and vitamin D3, E, and folic acid off the dryer 

(e.g. 9,047 vs. 7,473 and 6,945 IU/kg of vitamin D3 for high vs. medium and low CP, 



 

 

respectively). During storage of finished pet food in AMB, vitamins A and D3 were lost (P < 

0.05) to the greatest degree (49 and 22%, respectively). The total retention following both 

processing and AMB storage was 27, 68, 78% for vitamins A, D3, and E, respectively, while folic 

acid and thiamine were relatively stable. In SSLT storage, all vitamins except vitamin E were 

depleted more than 60% (P < 0.05) by 24 weeks, whereas total retention following both 

processing and SSLT storage was 3, 59, 43, 33, and 7% for vitamins A, D3, and E, folic acid, and 

thiamine, respectively. This would suggest that beyond processing losses, the vitamins are 

relatively stable in premixes and foods if stored in AMB conditions. In the study to evaluate fatty 

acid stability within a vitamin premix, EPA, DHA, and total omega-3 fatty acids were relatively 

stable during storage over 6 weeks with losses no greater than 12% in stressed shelf life testing 

(SSLT; 40C, 70% RH).  While in ambient conditions (23C, 50% RH) over 3 months, there was a 

total loss of EPA, DHA and total fatty acids by 17, 9, and 11%, respectively. Exiting the extruder 

and dryer, EPA and DHA were not affected by CP level or Omega-3 source. As SSLT storage of 

finished pet food increased through 24 weeks, EPA, DHA, and total fatty acids declined slightly 

(P < 0.05; 125, 82 mg/kg for EPA and 77, 60 mg/kg for DHA, and 418, 476 mg/kg for total fatty 

acids at 0 vs. 24 wk. As time in ambient storage reached 24 months, EPA, DHA, and total fatty 

acids declined slightly (P < 0.05; 125 vs. 78 mg/kg for EPA and 77 vs. 50 mg/kg for DHA, and 

387 vs. 373 for total fatty acids at 0 vs. 24 mo.) Algal-DHA appears to be a stable source of 

DHA when compared to fish oil and fishmeal. During processing retention of fat soluble 

vitamins was less than water soluble vitamins, and the omega-3 fatty acids were relatively 

unaffected. Whereas, vitamins appeared to be more sensitive to temperature during storage and 

the omega 3 fatty acids more affected by time. 
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Chapter 1 - Introduction 

More than half of all American households own at least one dog or cat (American Pet 

Products Association Inc., 2015). Ownership has continued to increase over the last several 

decades as companion animals play a significant role in our lives by providing physical and 

emotional benefits (Serpell, 1991). Approximately 97.3 million households own either a cat or a 

dog in 2015 (American Pet Products Association Inc., 2015).  Nearly $22.26 billion was spent on 

pet food alone in 2014, with estimates for growth of pet food sales to reach $23.04 billion in 

2015, according to the American Pet Products Association, Inc.  

Extruded and baked products intended for human consumption differ from those for 

companion animals. Humans consume a variety of food sources providing a wide range of 

nutrients, where pet food is uniquely formulated to be nutritionally balanced (protein, lipids, 

carbohydrates, vitamins and minerals) and fed as a complete food item. With nutritional 

guidelines in place, like the National Research Council (2006) Nutrient Requirements of Dogs 

and Cats, the framework to provide balanced nourishment for pets to promote overall health and 

wellbeing is defined. The challenge is assuring their food is capable of delivering.   

 The raw ingredients sourced for pet food are often derived from the food industry as 

secondary or inedible by-products. After initial processing for the food industry, the excess 

material is collected and processed (e.g. drying or rendering) into valuable ingredients and made 

available to the pet food industry. The thermal processes in the food and feed industry provide 

substantial desirable benefits for digestibility and pathogen control, but can have adverse effects 

leading to oxidation and degradation of essential nutrients (Aldrich, 2012). The combination of 

essential nutrient sacrifice during raw storage, chemical interactions within a mash, and the 
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effects of thermal processing can result in the need for additional supplementation in order to 

support the animals’ nutrient requirements.  

Using current nutrient analytical information for finished products, nutritionists 

commonly over-formulate to offset vitamins sacrificed during thermal processing and food 

storage. While this seems an easy solution, it can increase the risk for nutrient imbalances or 

toxicities in companion animals if the target levels are not obtained. Thiamine alone in cat and 

dog food has led to numerous recalls of commercial foods in the pet food industry (Loew et al., 

1970; Davidson, 1992; FDA, 2016).   

Little research has been published on the magnitude of vitamin and essential fatty acid 

loss in pet food as a result of processing. It is imperative that we examine the effects processing 

and storage have on vitamin and essential fatty acid stability to aid in proper supplementation 

and compensate for the inevitable losses that are described in the original research herein. 

Besides nutrient losses there may also be changes to the sensory attributes of foods which has 

previously not been described (Appendix A). Therefore, the objectives of this work were to 

determine the effects of processing conditions and dietary protein on essential nutrients (vitamin 

A, vitamin D3, vitamin E, folic acid, thiamine, and omega-3 fatty acid sources (fish oil, fish 

meal, and algal sources of DHA, DHAgold™ S17-B; DSM Nutritional Products) added to the 

diet by premixes following extrusion-drying processing and extended storage. 
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Chapter 2 - Literature Review 

 Vitamins as Essential Nutrients 

Over the last century, the significant link between nutrition and health was discovered, in 

which dietary cures for numerous human diseases, such as beriberi, rickets, pellagra and scurvy, 

were found (Basu and Dickerson, 1996). These diseases plagued the human race until they were 

remedied by nutrient repletion. These essential organic elements initially described as vital 

amines, or, as we know them today, vitamins, are obtained from a broad cross section of foods or 

may be produced synthetically to support the vital functions of life. Supporting all the necessary 

vitamin requirements from ingredient sources alone is extremely difficult, and deficiencies can 

pose extreme risks to the animal. Because of this, nearly every commercial canine and feline 

food is supplemented to meet the animal’s essential vitamin requirements.  

The daily intake of vitamins is relatively small when compared to other nutrients. 

Vitamins are indispensable, performing specific functions as coenzymes for metabolic processes 

in order to maintain health and life (Adams, 1982). Without a sufficient amount of these 

micronutrients, there will be impairment to effective metabolism, growth, reproduction and 

health. Each vitamin has its own purpose(s), and each differs in chemical structure and 

composition. They are classified and grouped based on their solubility in fat or water, and differ 

greatly in functions. 

 Fat Soluble Vitamins 

The fat soluble vitamins A, D, E, and K are absorbed intact or in a slightly modified 

physiologically form from foods such as eggs, milk and milk products, fruits, vegetables and 

oils.  Daily consumption is not required because following absorption, they can be stored in the 
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liver and fatty depots of the body, and excesses can be expelled through metabolites in feces 

(Groff, 1995). Although less susceptible to acute deficiency due to storage capabilities 

physiologically, in foods the fat soluble vitamins degrade rapidly and are susceptible to light, 

oxidation, and alkali conditions (Albertini et al., 2010). All of which are common factors during 

commercial pet food manufacturing processes. 

One of the first essential micronutrients to be recognized officially, ‘Vitamin A’ refers to 

a group of fat soluble compounds comprised of mostly retinoids (Basu and Dickerson, 1996). 

Retinoids are chemical derivatives of preformed vitamin A and pro-vitamin A carotenoids 

(Groff, 1995). Preformed vitamin A, or retinyl esters and retinol, are found in organ meats like 

liver, eggs, whole milk, butter and cheese. Pro-vitamin A carotenoids, or β-carotene, α-carotene 

and β-cryptozanthin, are found in carrots, yellow and dark green leafy vegetables such as 

broccoli and spinach. The plants themselves do not produce vitamin A; rather many species are 

able to convert β-carotene into vitamin A through an enzymatic cleaving process by 15, 15’-

dioxygenase at the intestinal mucosa (Wyss et al., 2000, 2001). Cats are the exception and lack 

this enzyme (Schweigert et al., 2002) and require preformed vitamin A in the diet. Adequate 

intake of vitamin A is vital in vision and ocular health, immune system development, and 

neurologic function.  

Standard pet food formulations may contain β-carotene, and more likely, preformed 

vitamin A through macro-ingredients like fish oil, chicken meal and liver; however, the levels in 

the final ration for consumption may not be fully adequate to support the animals’ nutritional 

requirements. Further, vitamin A is sensitive to physical and chemical processes, and the 

commercial pet food manufacturing process can be detrimental to vitamin stability (Tran et al., 

2008). Therefore, fortification of foods is commonly considered to be necessary for complete 



5 

 

and balanced diets. But fortification is not always straightforward since losses can occur during 

food processing, transportation and storage (Dary & Mora, 2002).  

The latest publication of the National Research Council changed the units used when 

expressing vitamin A requirements from International Units (IU) to retinol equivalents (NRC, 

2006). This factors for the bioavailability of vitamin A from the various sources. For example, 1 

mg of retinol equals 3,333 IU of vitamin A for cats. The National Research Council (2006) 

proposed a vitamin A requirement of 1,515 retinol equivalents (RE) per kg DM for adult dogs 

and 1,000μg retinol per kg DM for adult cats. 

The terminology of vitamin A can refer to substances with a similar molecular structure, 

whether natural or manufactured commercially. Because vitamin A is susceptible to oxidation, 

most commercial manufacturer of vitamin A supplements encapsulate the vitamin A resin in 

protein-starch beadlet. This slows the degradation of vitamin A by adding a protective barrier 

from the external influences that accelerate degradation such as oxygen, UV light and chemical 

catalysts (Albertini et al., 2010). Simple storage in vitamin premixes can drop vitamin A levels 

from 3.9% to 20% per month and extrusion, and another 25% to 40% depending on extrusion 

parameters. Further, an additional 8% to 30% can be lost over time for product stored in the 

warehouse or on the retail shelf (Coelho, 2003).   

Vitamin D is another generic descriptor for a group of fat-soluble secosterioids that were 

discovered as a function of research to cure the disease known as rickets. Beyond the deficiency 

disease, vitamin D is responsible for calcium and phosphorous homeostasis. Vitamin D is crucial 

because calcium and phosphorous are necessary for a vast array of physiological functions, 

muscle contraction, nerve conductivity, bone formation, immunology, and much more (NRC, 

2006). Although vitamin D is often referred to as a singular item, it actually describes a group of 



6 

 

compounds where the two forms ergocalciferol (vitamin D2) and cholecalciferol (vitamin D3) are 

most prominent.  

Ergocalciferol is derived from the plant steroid ergosterol and is the less effective and 

investigated of the two forms. The more common and heavily researched form is cholecalciferol. 

To become active, it undergoes two hydroxylation steps in the body: one in the liver (25 

hydroxyvitamin D3) and a second in the mitochondria of the kidney proximal tubules (1,25-

dihydroxyvitamin D3; NRC, 2006). Once active, it functions by binding to steroid receptors 

homologous to those of estrogen and testosterone. In man and many animals, cholecalciferol is 

produced by UV radiation in the skin from 7-dehydrocholesterol (a cholesterol metabolite). Dogs 

and cats have much the same machinery in place to carry out this reaction, but because they also 

possess an abundance of the enzyme 7-dehydrocholesterol 7-reductase that converts 7-

dehydrocholestrol to cholesterol, this critical intermediate is unavailable for conversion to 

cholecalciferol (Morris, 1999). In other words, there isn't enough of the starting material left to 

produce vitamin D3. So for dogs and cats, we have to supply it in the diet. 

Natural forms of Vitamin D3 can be found in marine sources such as fish liver oils, 

sardines, herring, and salmon. Other sources for vitamin D include eggs, meat and milk, but due 

to processing and formulation, it is difficult to include enough of these raw materials to fulfill the 

animals’ nutritional requirements. According to the NRC, 2006 the cholecalciferol recommended 

allowance is 13.8 μg per kg DM for adult dogs (4,000 kcal diet) and 7 μg per kg DM for adult 

cats. The most common commercial sources for vitamin D3 are produced utilizing a partial 

synthesis technology starting with 7-dehydrocholesterol derived from a wool grease based 

cholesterol by various methods (Schlossman et al., 1978)  
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Like vitamin A, vitamin D is susceptible to oxidation and destruction during thermal 

processing. Most commercial manufacturers of vitamin D3 supplements that are used in the pet 

food industry encapsulate the molecule via cross-linked beadlet technology in combination with 

Vitamin A. This slows the degradation of vitamin D3 and protects it from external influences that 

accelerate degradation such as oxygen, UV light and chemical catalysts. Coelho (1991) reported 

that during extrusion and drying 25% to 65% is lost depending on extruder temperatures and 

shelf life can account for 15% loss as product is in storage within a warehouse or retail shelf.   

Vitamin E is another general term that actually encompasses eight fat-soluble compounds 

found in nature. Half of the compounds are classified as tocopherols, while the other are 

identified as tocotrienols. Functionally, these compounds perform a major biological function as 

an antioxidant breaking the chain reaction associated with free-radicals. Free-radicals are 

unpaired electrons naturally found as a part of metabolic process and in the environment, and can 

be harmful if left unregulated.  

A number of vitamin E compounds exist; structurally all forms are similar with a 6-

chromanol ring and a 16-carbon side chain (isoprenoid) on one end. The fully methylated (-CH3) 

and saturated side chain of the α-tocopherol results in the highest affinity for the RRR-α-

tocopherol. It is commonly found in vegetable oil sources, but is more commonly produced 

synthetically (Chow, 2001). The production of synthetic vitamin E occurs by molecular 

distillation along with methylation and esterification resulting in an ‘all-racemic’ mix, which is 

relatively low in RRR-tocopherol actives. Additional enhancement must occur in order to modify 

the synthetic form to make it stable. This is accomplished through an acetylation reaction with 

acetate or succinate (Torres et al., 2008).  
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The all-rac-α-tocopherol form of vitamin E is widely used for the stabilization of raw 

ingredients, but these true levels are commonly discounted by nutritionist as the amount of 

vitamin E needed is accounted for by the vitamin premix. The NRC (2006) expresses the 

requirement of vitamin E in mg α-tocopherol, but this is not a universal standard. The vitamin E 

requirements for dogs and cats is 30 and 38 mg/kg DM, respectively. Unlike vitamin A and D, 

vitamin E is more stable when exposed to acid, heat and moisture (Coelho, 2003). However, 

significant destruction of vitamin E can occur when exposed to other conditions like oxidation, 

UV light, trace minerals like copper, manganese, zinc, iron and lead salts (Riaz, 2009). During 

extrusion and drying, almost 15% can be lost and an additional 2.9% each month thereafter 

(Coelho, 2003). 

 Water Soluble Vitamins  

Water soluble vitamins (B-complex and vitamin C) are obtained by the ingestion of 

breads, cereals, fruits, vegetables and animal products. Mammals lack the ability to store these 

critical compounds so, they are required daily in the diet.  They are passively absorbed in the 

small intestine, and excess is excreted in the urine.  In general, the water soluble vitamins are 

more heat stable when compared to the fat soluble; however, water soluble vitamins are more 

sensitive to a change in pH or exposure to trace elements common in vitamin and trace mineral 

premixes (Coelho, 2003).   

Thiamine, vitamin B1, was the first of the water-soluble vitamins to be isolated from rice 

bran in the early 1900’s and found to be the cure for the disease beriberi. Thiamine deficiencies 

in cat and dog food have led to recalls of commercial foods in the pet food industry (Loew et al., 

1970; Davidson, 1992). An acute thiamine deficiency results in symptoms such as fatigue, 

insomnia, irritability and lack of concentration. Chronic cases can lead to anorexia, cognitive 
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impairment, convulsions and even death. Cats are often more susceptible to deficiency, perhaps 

because their requirement is five times greater than that of the dog.  

 The molecular structure of thiamine {3-[(4-amino-2-methyl-5-pyrimidinyl) methyl] 5-(2-

hydroxyethy)-4-methylthiazolium chloride} is unique and contains a complex chemistry 

allowing the molecule to engage in both oxidation and reduction reactions (Georghiou, 1977). 

Thiamine present in plants is found in a non-phosphorylated form, whereas thiamine in animal 

tissues is predominantly bound as thiamine pyrophosphate (TPP), monophosphate (TMP) and 

triphosphate (TTP; NRC, 2006). The primary functions of thiamine relate to the coenzyme role 

in the form of TPP. As the coenzyme form, it aids in the full activation of enzymes, which play a 

crucial role in the production of energy from carbohydrate metabolism. Another vital role of 

thiamine is the activation of the transketolase enzyme, which is responsible for the catabolism 

reactions in the pentose phosphate pathway. This pathway provides the basis for an array of 

prominent compounds such as adenosine triphosphate (ATP), guanosine triphosphate (GTP), 

nicotinamide adenine dinucleotide phosphate (NADPH) and the nuclic acids deoxyribonucleic 

acid (DNA) and ribonucleic acid (RNA; Tanphaichitr, 1999). Other functions for thiamine that 

do not involve coenzyme functions is the important role it plays in nerve and muscle tissue in the 

TTP form (Rindi, 1996).  

In most natural ingredients, thiamine is found in small amounts. Dried brewer’s yeast, 

some meat sources, such as pork and some species of fish, whole grain cereals, bran, pulses and 

nuts are rich sources of thiamine. These are common ingredients found in pet food formulations. 

Despite this, thiamine levels are generally insufficient to meet dietary requirements, so 

fortification is necessary. According to the NRC (2006), adult maintenance requirements for 

dogs and cats are 2.25 and 5.6 mg/kg DM, respectively (4,000 kcal diet). Two common 
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supplemental sources are thiamine mononitrate and thiamine hydrochloride. Thiamine 

mononitrate is the most preferred source in vitamin premixes because the hydrochloride form has 

hydroscopic tendencies and is more prone to instability (Adams, 1982).  

 Thiamine is well known for its lack of stability. Degradation occurs when thiamine is 

exposed to a number of common conditions. It is easily oxidized by UV light, gamma irradiation, 

and destroyed by elevated heat, high water activity, and sulfites (often utilized as a preservative), 

and can be sacrificed by natural thiaminase enzyme activity found in fish viscera (NRC, 2006; 

Trible, 2015).  An estimated 6-50% may be lost during the extrusion process and 1-39% for the 

dryer depending on processing parameters. Further, commercial pet food’s sit for an extensive 

amount of time on the shelf which can reduce thiamine an additional 4-4.5% for each month 

following processing (BASF, 2000).   

 Vitamin B9 is a member of the folate group which includes folic acid and other natural 

occurring folates. More commonly known as folic acid, vitamin B9 is a synthetic form that is 

frequently used in supplemental vitamin premixes. The name was derived from the Latin word 

for “leaves”, as it was first isolated from spinach. Naturally rich sources of folate are beef liver, 

dark leafy greens, like spinach and kale, beans, egg yolks, milk and dairy products (Subar et al., 

1989)   

 Structurally, folic acid (pteroylmonoglutamic acid) consists of a pteridine ring system 

linked by a methylene group. Within the body, the active form of folate, tetrahydrofolate, acts as 

a coenzyme for a number of essential metabolic reactions such as the metabolism of amino acids. 

Folate is also heavily involved in other functions, such as the synthesis of nucleic acids and 

formation of blood cells. This process is essential for normal cell division and proper growth in 

order to prevent anemia and fetal development (Brody et al., 2001).  



11 

 

Unlike thiamine, folic acid is relatively stable when exposed to processing conditions. 

However, destruction of folic acid can occur when exposed oxidation and UV light (Riaz, 2009). 

Research has reported that during extrusion and drying, nearly 30% can be lost depending on the 

extruder temperatures and configuration and an additional 4.5% loss per month thereafter 

(Coelho, 2003). Because of this loss, pet food requires additional supplementation with folic acid 

to meet the NRC (2006) adult maintenance requirements for dogs and cats are 270 and 750 

µg/kg DM, respectively (4,000 kcal/diet). 

Little research has been published regarding the magnitude of vitamin losses through 

premix storage, extrusion manufacturing and storage of pet food. The most recent 

recommendations for fortification to overcome losses was provided by a technical bulletin from 

BASF authored by Coelho (2000). However, the research supporting their recommendations was 

never published so that researchers could better understand the context driving their conclusions. 

In this technical bulletin Coelho (2000) accounted for degradation in all cases. The magnitude of 

loss was greater for vitamin A, vitamin D3, MSBC (synthetic Vitamin K3), folic acid and 

thiamine when compared to riboflavin, vitamin B12 and vitamin E. This work served as the 

foundation for their recommendations over the past 20 years, however the matrix of modern pet 

food has changed. Today, the ingredient matrix has become more consumer driven with formats 

such as grain-free and high protein formulations to name but a few. In addition, the vitamin 

premix manufacturers have made advancements in vitamin technology to increase stabilization 

(Albertini et al., 2010). Currently, nutritionists are compensating for estimated losses by over-

formulating based on these previous assumptions. They may also utilize complementary 

ingredients as another strategy. To fill the voids in our knowledge, some companies will perform 

validation testing to compare theoretical versus actual vitamin levels in the finished kibble as a 
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final step. However, this can be too little too late and lead to great waste. There is a need for 

updated retention data to verify that the vitamin fortification in processed pet foods.  

 

 Essential Fatty Acids 

Like vitamins, fats are also an important component of companion animal diets. They 

provide a source of energy for the body, over twice the calories of carbohydrate and protein 

while aiding in the absorption of other essential nutrients like vitamins A, D, E, and K. Fat can 

also aid manufacturing and enhance flavor and texture, while supplying essential fatty acids 

(EFA). Dietary fat has been recognized as essential in nature since the early 20th century, with 

later focus specifically on linoleic acid (LA; C8:2n-6) and α-linolenic acid (ALA; C18:3n-3; 

Spector, 2015).  

Essential fatty acid requirements vary among species. Unlike plants, companion animals 

are unable to synthesize sufficient omega-3 and omega-6 fatty acids for maintenance. There are 

differences, as well among the species. For example, the domestic dog is able to synthesize 

arachidonic acid (ARA) from LA (Dunbar & Bauer, 2002), but it is a dietary requirement for the 

cat (Rivers et al., 1975). More recent research has led to an increased awareness about omega-3 

fatty acids, such as ALA, eicosapentaenoic acid (EPA; 20:5n-3), and docosahexaenoic acid 

(DHA; 22:6n-3). Increased consumption of these fatty acids has been reported to decrease 

inflammation, improve skin and coat quality, boost immune system response, treat cancer and 

retinal degeneration, enhance development of the nervous system and improve overall cognition 

(Lenox, 2013). 

Until the last two decades, dog and cat diets were formulated to meet these essential 

needs with the knowledge that omega-3 fatty acids were beneficial, but little consideration was 



13 

 

given to the relationship of omega-3 fatty acids to omega-6 fatty acids (Connor, 1988). Omega-3 

fatty acid sources like fish, fish oil, and flax seed can be more expensive and less stable than the 

more conventional fat sources like tallow, pork fat or poultry fat. These latter sources are 

predominately enriched with omega-6 fatty acids and contribute very little omega-3 fatty acids to 

the diet. Diets depleted of omega-3 fatty acids resulted in less health benefits when compared to 

a high omega-3 to omega-6 fatty acid ratio (Nesbitt et al., 2003).  

 Fatty Acid Metabolism 

Fatty acids can be classified in a number of ways based on their hydrocarbon chain 

characteristics. The more common approach utilizes the descriptive methods based on chain 

length and the number of carbons within the fatty acid chain. Omega-3 and omega-6 fatty acids 

are classified as polyunsaturated fatty acids with the first double bond located between the third 

and fourth carbon and sixth and seventh carbon atom when counting from the methyl end of the 

molecule (Lenox, 2015). 

Linoleic acid (LA) is metabolized through a series of elongation and desaturation steps to 

form arachidonic acid, a pro-inflammatory intermediate in the production of the eicosanoids: 4-

series leukotrienes (LTB4), 2-series prostaglandins (PGE2), and 2-series thromboxanes (TX2) 

and IL-1 and IL-6. Alpha-linolenic acid (ALA) is elongated to EPA and docosapentaneoic acid 

(DPA; Bibus et al., 1998) and elongation and desaturation resulting in eicosapentaenoic acid 

(EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3). EPA and DHA are considered anti-

inflammatory intermediates in the production of the eicosanoids: 5-series leukotrienes (LTB5), 

3-series prostaglandins (PGE3), and 3-series thromboxanes (TX3;Calder, 2012). The two 

pathways depend upon the same delta-5-desaturase enzyme for the production of their respective 

pro-inflammatory or anti-inflammatory end products. Changes in the activity of this enzyme or 
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competition for the enzyme can have profound effects on inflammatory responses (Calder, 

2012).  

 Omega-3 Fatty Acids 

Omega-3 fatty acids made their debut within the commercial pet food markets through 

“derm” diets for dogs’ skin and coat. According to Scott et al., (1997), atopy (allergic skin 

reactions) is the most common allergic dermatitis in the dog, and second only to flea-bite 

hypersensitivity. These conditions, along with dermatitis, pruritus (localized itching) and 

erythema (skin redness and swelling) have been related to immune and inflammation responses 

that have been shown to be elevated and an improved skin and coat scoring through dietary 

supplementation (Reese et al., 2001). 

Research results have been mixed with some studies showing significant improvements 

when supplemented with omega-3 and omega-6 fatty acids and others have failed to show 

benefit. For example, Scott et al. (1997) fed a commercial lamb and rice diet enriched with fish 

oil as a single-blinded, self-controlled clinical trial. It was reported 8 of 18 (44%) dogs that were 

previously unresponsive atopic mixed-breed dogs responded to an omega-6: omega-3 ratio of 

5.5:1 within 21 days. In another study, Nesbitt et al., (2003) determined the effect of various 

doses of omega-3 fatty acids at various omega-6:omega:3 fatty acid ratios (1:1, 3:1, 6:1, and 

27:1) on dogs (n=58) with pruritus for 56 days resulting in improved total clinical scores across 

all treatment groups. Abba et al. (2004) reported that different-stage atopic dogs fed essential 

fatty acid (EFA) supplementation resulted in an overall improvement in clinical evaluations for 

all dogs, however dogs with early stage atopy responded greater than the later stage.  Rees et al. 

(2001) reported that dogs fed kibbles coated with crushed flaxseed or sunflower seed (source of 

omega-6s) for 84 days had improved hair coat scores for the first 28 days, regardless of 
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treatment. In this study the dog’s skin condition scores improved during days 14 to 28 of the 84-

day trial, but progress became stagnant following the initial 28 days. Whereas, the condition of 

dogs fed crushed sunflower seed-coated kibbles did not improve or deteriorate. Plasma 

triglyceride omega-3 concentrations were analyzed and reported greater on 84-day trial for dogs 

fed the kibble with crushed flaxseed. On the contrary, there were no fluctuations in omega-6 

concentrations between the treatments throughout the study (Bauer et al., 1998).  

Supplementation of omega-3 fatty acids hold promise for benefits against chronic 

disease, trauma, infection, and the effects of aging. Ontsouka et al. (2012) reviewed treatment of 

canine chronic enteropathies with a diet enriched with omega-3 PUFA and concluded the 

duodenal fatty acid uptake was potentially altered by the enriched diet. The uptake of PUFA 

could benefit treatment of canine inflammatory bowel disease. Mooney et al. (1998) reported 

diets containing omega-3s were found to be supportive to wound healing. Beagles (n=30) were 

fed diets enriched with various combinations of fish oil (menhaden), flax, and sunflower oil to 

achieve omega-6:omega-3 fatty acid ratios of 5:1, 10:1, 25:1, 50:1, and 100:1. Over the 12 week 

study skin biopsies contained increasing ratios of pro-inflammatory fatty acids and eicosanoids 

as the omega-6: omega-3 fatty acid ratio increased. These results support that omega-3 fatty 

acids modify inflammation and improve wound healing. 

Companionship between pets and humans has evolved from the outdoor barnyard cat or 

dog to an indoor member of the family. This evolution has a direct relationship to life span of the 

companion animal and their quality of life. This has been in part due to increased owner 

education, more nutritious foods, and receiving better health care. With older animals, there is a 

growing interest in the nutritional needs of the geriatric dog and cat. Much like humans, dogs and 

cats show external signs of aging with slowing activity levels and changes to internal physiology 
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from declining enzyme activities and the immune system begins to decline in its response 

magnitude (Pati et al., 2015). Several studies with geriatric canines have reported an intimate 

link between the immune system and inflammation. Kearns et al. (1999) studied the effects of 

omega-6: omega-3 fatty acid ratios on immune response and oxidative status. In their work, 

supplementation of fish oil and ground flaxseed omega-3 fatty acids were fed in an experiment 

with both adult and geriatric Labrador retrievers (n = 18) and fox terriers (n = 18).  They reported 

that in an 8 week switch-back feeding trial, diets enriched with omega-3s supported an immune 

response in old dogs without an effect on oxidative status. Hall et al. (2003) published a study 

which supported the lack of oxidative response by reporting an optimum dose of vitamin E of 

101 mg/kg food for dogs on a high omega-6:omega-3 fatty acid ratio diet (40:1).  The vitamin E 

supplementation, regardless of dose (17, 101, or 447 mg/kg food), did not substantially impact 

humoral or cell mediated immune responses in female geriatric dogs (n=32) that were fed a low, 

fish oil source omega-6:omega-3 fatty acid ratio diet (1.4:1). In contrast, Wander et al. (1997) 

also investigated the ratio of omega-6 to omega-3 fatty acid with 31:1, 5.4:1, and 1.4:1 ratios. 

Healthy geriatric female beagles (n=20) were fed diets supplemented with fish oil and corn oil to 

determine the effects on immune response and lipid peroxidation. The dogs fed an omega-

6:omega-3 ratio of 1.4:1 was found to reduce immune response, decrease inflammatory 

eicosanoids (PGE2), and oxidative status.    

As dogs age, the prevalence of renal failure is increased from 1% to 10% in dogs over 15 

years of age (Brown et. at 1998). For a number of years, this was thought to be nutritionally 

related to high protein diets or diets with elevated salts. However, the cause of the disease 

remains elusive as the link to protein level has been summarily dismissed (Brown et al., 1991). 

An active effort using a variety of strategies has been attempted to decrease the severity and 
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rapidity of this disease onset. One has been to alter the inflammatory effects on the nephron, 

lowering systemic arterial pressure, and altering plasma lipid concentrations to preserve renal 

function by adjusting the dietary fatty acids in the dogs’ circulation. Brown et al. (2000) tested 

this hypothesis that omega-3 and omega-6 PUFA would reduce the magnitude of glomerular 

capillary hypertension by feeding adult mixed-breed dogs that were 11/12th nephrectomized (a 

model for renal failure) diets supplemented with menhaden fish oil (omega-3 enriched), 

safflower oil (super-rich omega-6 source), or beef tallow (saturated fat). Supplementation with 

safflower oil increased pro-inflammatory intermediates (PGE2) and glomerular hypertension and 

hypertrophy got worse. Dogs fed beef tallow experienced a progressive decline in renal function, 

but at a slower rate. Omega-3 supplementation with menhaden fish oil appeared to be renal-

protective by lowering inflammatory response in early stages of the disease for dogs.  

Most of the research regarding the benefits of fatty acids on circulation and heart disease 

have been reported in man. Some of these studies have used the dog as a model and may be 

revealing about the activity of omega-3s. The known anti-inflammatory properties of consuming 

omega-3 fatty acids stemmed from research on the potential benefits for cardiac disease in dogs. 

Elevated cytokine concentrations have been correlated with heart failure in man, but it wasn’t 

until Freeman et al. (1998) reported that when dogs (n=8) with chronic heart failure were 

supplemented with fish oil (1 g/d), they had improved cachexia scores and lower AA, EPA and 

DHA baselines for dogs with heart failure when compared to the control dogs. A reduction of 

interleukin-1 beta (IL-1; a pro-inflammatory cytokine) was also found and was correlated with 

predicted survival in this study. In another study, Billman et al. (1999) explored the effects of 

consuming fish oil on fatal ventricular arrhythmias. Dogs were surgically fitted with an inflatable 

hydraulic cuff placed around the left circumflex coronary artery and were intravenously dosed 
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with ALA, DHA, and EPA. The study concluded that each pure free fatty acid was as effective 

as the fish oil emulsion in preventing ischemia-induced ventricular fibrillation.  

Cancer is an emotionally sensitive disease and does not discriminate amongst species. 

Approximately 4.2 million dogs and 1.66 million humans are annually diagnosed with cancer in 

the United States (Siegel et al., 2015, Schiffman and Breen, 2015) Advances in comparative 

oncology have allowed researchers from human and veterinary medicine to work across species 

to advance both human and animal oncology discoveries (Schiffman & Breen, 2015). However, 

little work has been reported on dietary approaches to enhance cancer therapy or survival in the 

dog or cat. Previous research has indicated that omega-3 fatty acids could aid in inhibiting 

metastasis. Ogilvie et al. (2000), conducted a double-blind randomized clinical feeding trial in 

which thirty-two dogs with lymphoma were supplemented with fish oil (menhaden) and arginine 

or soybean oil (control) diets before and after doxorubicin chemotherapy. It was reported that 

circulating DHA and EPA were greater in dogs with lymphoma which were fed diets containing 

fish oil. The elevated levels were associated with longer disease free intervals and survival times 

than for the control.  

In other applications, certain breeds of dogs are prone to an inborn error of metabolism 

that leads to complete blindness, progressive rod-cone degeneration (PRCD), which parallels 

retinitis pigmentosa in humans. Aguirre et al. (1997) reported the disease could be associated 

with reduced uptake and synthesis of DHA. In one study, Anderson et al. (1991)  supplemented 

poodles and Irish setters affected with PRCD with linseed oil (high in linolenic acid) and 

reported that circulating DHA did not increase as expected, but declined. Results were consistent 

with a defect in the desaturase activity for the poodles affected with PRCD when compared to 

the control.  Therefore, it is likely that pre-formed DHA should be provided to dogs with this 
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condition. However, no reports in the literature were found in which DHA from marine oil 

sources were supplemented to animals exhibiting PRCD as a test of this hypothesis.  

Clearly there is a benefit to omega-3 support in the diet. However, assuring that these 

very labile ingredients remain stable can be a challenge. In part because of the severe thermal 

process and overall nature by which pet foods are distributed and stored, some pet food 

companies opt to use fish meal rather than the oil as their source of omega-3s. Marine omega-3 

oils are highly prone to oxidation. The oxidation process could potentially alter biological 

activity, which could render them ineffective (Albert et al., 2013). Fish meal provides a high 

quality protein and in a dry product seems to be easier to stabilize with current antioxidant 

technology when compared to fish oil, which is susceptible to oxidation. Oceanic sources of fish 

meal are derived from Menhaden, Whiting, Capelin, Herring, Pollock, and Salmon to name a 

few. Meal from catfish, due to their grain-based feeding practices, has a fatty acid profile more 

similar to chicken fat than that of ocean derived fish.  

The importance of omega-3 fatty acids has become increasingly evident for brain and 

retinal development within recent years.  Fish oil usually contains both EPA and DHA, and algal 

oils are predominately DHA. Research has shown that in neonate formulas PUFAs are essential 

for proper neural and retinal development in several mammalian species. Heinemann et al. 

(2005) fed varying amounts of vegetable and marine fatty acid to dogs during gestation and 

lactation (n=12) and reported improved visual performances, rod responses, rod sensitivities in 

the puppies fed the highest amounts of omega-3 PUFA’s when compared to the other diet 

groups. Overall, the study concluded that preformed omega-3 fatty acids resulted in  a more 

effective response during perinatal development and improved visual performance than ALA in 

enriching plasma DHA. 
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 Ingredient Sources 

Sources of omega-3 fatty acid supplementation commonly include flax seed, fish oil, and 

fish meal. More recently, purpose-grown algae has been shown to have potential as a supplement 

because it provides high levels of docosahexaenoic acid. Purpose-grown algae have been shown 

to be safe (Fedorova-Dahms, 2011, Hammond et al., 2001) and stable (Abuzaytoun and Shahidi, 

2006). Recently there was evidence to suggest a better transfer rate of the DHA into circulation 

of puppies by supplementation with high levels of fish oil rather than flaxseed oil (Heinemann et 

al., 2005). Fish oil usually contains both EPA and DHA, whereas algal oil is predominantly 

DHA-rich and may provide a more targeted fatty acid solution.  

With this targeted delivery of DHA in algal form in dog and cat diets, there exist 

questions regarding handling characteristics, stability through the pet food production processes, 

interactions with other ingredients, and potential impact on long-term shelf life of the fatty acid. 

Therefore our objectives were to determine the effect of processing on Omega-3 fatty stability of 

fish and algal source of DHA, (DHAgold™ S17-B; DSM Nutritional Products) added to the diet 

in a premix, the impact on extrusion and forced air drying processes, and extended storage time. 

 Commercial Manufacturing of Pet Food 

The demand for companion animal commercial food goes beyond the fundamental 

requirements of nutritional adequacy as increased emphasis has been placed on the overall safety 

of the product. This is where the concept of thermal processing, also known as cooking, can be 

applied in a number of ways to preserve and extend the shelf-life of foods, enhance sanitation, 

and ensure food safety. Thermal processing is able to provide a number of benefits such as 

improving digestibility, enhancing flavor and texture, improving consistency, adding 

convenience, and controlling pathogens. Extensive thermal processing utilizing moisture, heat, 
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time and temperature can also have detrimental effects, including degradation of essential 

nutrients and oxidation of lipids. Most commercial pet food products can be grouped into three 

broad manufacturing processes: canned, baked, or extruded. Each of these methods is also 

commonly used in the manufacturing process of human foods.   

 Extrusion  

 Basic extrusion has been used in a vast array of industrial applications like rubber, 

plastic, metal. It was first applied to food in the 1930’s (Bruin et al., 1978). Extrusion technology 

has gained widespread use in the food manufacturing today as a multifaceted process that 

combines several unit operations including: mixing, cooking, kneading, shearing, sterilization, 

shaping and forming, all within a single piece of equipment. Extrusion is considered one of the 

most aggressive food cooking processes because the dominant effects result from high pressure 

(400-1,000 PSI), heat (100-150ºC), and humidity (30% moisture). The highly versatile 

equipment is able to produce a wide variety of products by allowing flexibility in the 

combination of ingredients, processing conditions, screw profile, and different die sizes and 

shapes. The time-temperature conditions in modern food cooking extrusion can be comparable to 

other high-temperature, short-time (HTST) processes; however, this style of processing offers a 

number of additional unique features. The basic component features of an extruder include a 

feeding or delivery system, preconditioner, extruder barrel and knife cutter. However, a number 

of additional independent variables and more complex systems can also be considered when 

reviewing the art of extrusion cooking (Bruin et al., 1978). 

 Feeding/Delivery Systems and Preconditioner The dry ingredients are first held and 

introduced into the extrusion process by a delivery system. Volumetric and gravimetric systems 

are the two main types; their name describe the style of delivery system. The material is fed into 
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the next portion of the extrusion system known as the preconditioner. This portion is not 

necessary to all applications, but is beneficial to pet food production as it preconditions the mix 

by hydrating ingredients while increasing retention time for the moisture to penetrate the starch 

matrix. Overall, the preconditioner allows for an increase in thermal energy input to the product.  

 Extruder Barrel The extruder barrel is where the work of the system occurs. It is 

comprised of screws, sleeves, barrel heads and dies (Figure 3.1). If one shaft, then it is 

designated as a single screw, and if two shafts, a twin-screw. This has implications on energy 

and mixing. The shaft and screw section of the extrusion system is responsible for the mixing 

and cooking of the ingredients where high pressure and severe shear transforms the ingredient 

matrix. It is this location that the additional independent variables may come into play such as 

injecting water or steam into the extruder, reconfiguring the screw profile to incorporate different 

flights, different shear or steam locks or adjusting the rotations per minute of the shaft. As the 

ingredients flow down the extruder barrel, a motor driving the screw shafts exerts mechanical 

energy onto the product in the form of friction (Riaz, 2000).  

 Knife Cutter/Dryer The final portion of the extrusion system is located at the end of the 

extruder barrel. This is where the die and knife cutter assembly are located. Their main purpose 

is to shape, form, and then cut the product to the desired length and shape. Additional 

independent variables can be selected at this point. The number of openings, number knife 

blades, and speed of rotation. An additional element upstream from the die-knife assembly is the 

back pressure valve that will allow the operator to restrict the flow of material and thereby 

increase the pressure on the mass immediately before it passes through the die opening. Mixing 

small water droplets throughout the dough allows for uniform vaporization that results in 

expansion of the product and cell formation as the water turns to gas during the exit from the die 
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opening. Pet food kibble is generally within the 20-30% wet basis moisture and 100°C as it 

leaves the extruder (Riaz, 2003). It is essential to convey or pneumatically transport the kibble to 

an additional step in order to dry the material. The drying apparatus in the pet food 

manufacturing process are often a convection ovens comprised of multiple perforated conveyor 

beds, heating elements, and air/heat-exchange systems. Procedurally the wet kibble is conveyed 

into shallow beds on the top belt as hot air (typically between 100-175°C) is forced through the 

belt and kibble bed. Having multiple conveyor levels allows for an increase in time for drying 

and improves the uniformity as the wet kibble has a more shallow bed depth to prevent 

clumping. As the kibble dries, the bed depth can be increased to accommodate for necessary 

retention time. Common drying principles apply during this application as an increase in 

temperature results in faster drying rates due to the heat transfer to the kibble (Petfood 

Technology, 2003). 

Effects of Thermal Processing on Product Quality and Food Safety 

Thermal processing kills pathogenic microorganisms within the food product and helps 

ensure food safety and reduce food-borne illnesses. The same thermal processing parameters that 

contribute to food safety can also impact product quality. A topic that has been extensively 

reviewed in human foods (Cheftel, 1986; Murray et al., 1999, Harper, 1978).  There are a 

number of thermal processing production practices utilized to manufacture pet foods, such as 

extrusion, expansion, baking, canning, and pasteurization. These processes provide a number of 

benefits, primarily the destruction of pathogenic microorganisms to assure food safety, but they 

also impact nutritionally important chemical bonds (Björck, 1983). As an example, pet food 

manufacturing improves the utilization of starch through gelatinization as a result of extrusion 

cooking. This gelatinization process alters the starch and increases its digestibility (Murray et al., 
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2001; Kienzle, 1994). However, in the extreme thermal processing negative effects to utilization 

and digestibility of essential amino acids and vitamins can occur (Hendriks et al., 1999).  

All vitamins appear to be affected to some degree at every step of the process from 

production through shelf-storage. The loss in fat-soluble vitamins (A, D, E, and K) is the most 

significant in extruded products with losses of more than 50% occurring before the kibble goes 

into the bag (Coelho, 2000). In wet foods, the water-soluble B-vitamin thiamine can be almost 

completely lost due to its reactivity with heat, moisture, sulfites, elevated pH and the thiaminase 

enzymes found in fish and organ meats (Loew et al., 1970). 

Pet food manufacturing is unique in that once the ingredients are exposed to the severe 

extrusion parameters and formed into a kibble, they exit the die relatively wet and must be dried 

to prevent mold growth. The typical pet food dryer uses a large volume, approximately 62.3 cubic 

meters per minute of super-heated air to remove moisture, much like a personal hairdryer and then 

an additional 39.6 cubic meters per minute on the cooler belt. Under these extremes in temperature 

and retention time, Tran (2008) reported in his thesis that lysine bioavailability may be reduced 

and linoleic acid lost. This was most probably due to oxidation. Further the additional hot-air 

drying time and temperature reduced kibble durability and texture. The alterations in kibble 

durability and texture could impact product quality and negatively affect merchandising and 

overall palatability for the animal.  

There are many effects of thermal processing that have yet to be described. The main 

focus of most published reviews on processing changes has been restricted to dietary ingredients, 

livestock feed, and the effects processing variables during extrusion have when compared to the 

companion animal foods (Colheo,1991; Dust et al., 2004; Hendriks et al., 1999).  A number of 

difficulties are prevalent when summarizing published data for the extrusion process. Such as, 



25 

 

the variety of processing parameters, variation in equipment or type of extruder used among the 

trials, isolating single factors that influence the results, and interrelations between processing 

conditions. While some process conditions are nutritionally beneficial to animals, in several 

areas, formulators compensate with over fortification to offset processing losses for essential 

nutrients like vitamins, amino acids and fatty acids. Although this has been an effective method, 

occasional toxicities and deficiencies result in recalls (FDA, 2016). This would suggest that there 

is still need for more comprehensive evaluation of the nutritional effects of thermal processing of 

pet foods with better models to support fortification needs. Therefore, it was our objectives to 

determine the effect of processing conditions and dietary protein levels on essential fatty acid 

and vitamin retention (vitamin A, vitamin D3, vitamin E, folic acid and thiamine) during 

extrusion and drying and subsequent effects during storage at ambient and elevated temperatures 

and humidity. 
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Chapter 3 - Effects of processing conditions and dietary protein 

content on vitamin retention during extrusion, drying and storage at 

elevated and ambient temperatures in pet food. 

 Abstract 

Little research has been published regarding the magnitude of vitamin losses through 

extrusion manufacturing and storage of pet food. The matrix of pet food has changed 

dramatically within the past twenty years since vitamin degradation wasinitially published. 

Therefore, the objective of our research was to determine the effects of thermal processing 

conditions and dietary protein content on vitamin retention (vitamin A, vitamin D3, vitamin E, 

folic acid and thiamine) during extrusion and drying and the subsequent effect during storage at 

elevated temperatures. Three diets differing in protein (21.7, 25, and 30% CP; Low, Medium, 

and High, respectively) were produced. Diets were extruded at 350 and 450 rpm screw speed on 

a Wenger X-20 single screw extruder (Wenger Mfg, Sabetha, KS) and dried at 104°C for 6 min 

at each pass or 127°C for 10 min at each pass in a Wenger (Wenger Mfg, Sabetha, KS) triple 

pass dryer. Samples from each treatment were analyzed immediately following production. 

Without current established criterion for stressed shelf life studies of pet food, conditions 

consistent with industry laboratories were used; 50°C and 75% relative humidity for 3, 6, 12, 18 

and 24 weeks. Additional samples were stored in ambient conditions (20°C and <50% relative 

humidity) and sampled at 3, 6, 12, and 18 months. Vitamin retention was not affected (P > 0.05) 

by extruder screw speed or dryer conditions. As time in stressed storage increased through 3, 6, 

12, 18 and 24 weeks vitamin A (P < 0.05; 172,442, 108,192, 71,033, 24,687, 7,633.2, and 

2,743.4 IU/kg, respectively), vitamin D3 (P < 0.05; 7,821.8, 5,692.5, 4,001.4, 2,124.8, 1,656.1, 

and 3,059 IU/kg, respectively), vitamin E (P < 0.05; 960.6, 1092.6, 930.4, 943.6, 904.9, and 
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856.7 mg/kg, respectively), folic acid (P < 0.05; 1.97, 2.03, 4.43, 1.64, 1.42, and 0.67 mg/kg, 

respectively), and thiamine (P < 0.05; 25.7, 22.1, 18.2, 8.2, 3.7, and 1.8 mg/kg, respectively) 

concentrations decreased. These results suggest that the processing parameters in this study had 

little effect on vitamin losse, but elevated temperature during storage for 24 weeks could reduce 

vitamin content from initial by 98.4, 78.8, 10.8, 66, and 93% for vitamin A, vitamin D3, vitamin 

E, folic acid and thiamine, respectively. As time in ambient storage (20°C) increased through 3, 

6, 12, 18, and 24 months vitamin A (P < 0.05; 172,442, 119,939, 133,721, 85,734, 58,920, and 

87,658 IU/kg, respectively) concentrations decreased nearly 50%. Whereas the trend-line for 

vitamin D3 reflected a 30% sacrifice, but vitamin E, folic acid and thiamine appear to be 

relatively stable over 24 months. Vitamin fortification of extruded pet diets must take into 

account these changes to avoid deficiency diseases.   
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 Introduction 

Vitamin retention during food processing is contingent on a number of factors. It can 

depend on the molecular structure and chemical characteristics of the vitamin, the heat and 

duration during processing, moisture levels, substrate pH, inorganic material composition, UV 

light, and oxygen (Coelho, 1991). These factors are common elements for vitamins in pet food 

production: from how they are initially stored in raw “straight” forms, then blended together with 

a carrier to create a premix, and then mixed with the remainder of the food macro-ingredients 

into a total ration.  Each of these steps, coupled with other conditions during production, present 

a challenge when ensuring the food retains its target vitamin levels.   

Combining natural sacrifice of essential nutrients during storage, with chemical 

interactions with the food matrix, and the effects of food processing increases the need for 

additional supplementation in order to meet animal requirements. Using current information 

about vitamin sacrifice nutritionists over-formulate to offset the losses due to thermal processing 

(Aldrich, 2016). While over-fortification may address some issues, this is not a complete solution 

and may even increase the risk for imbalances or toxicity in companion animals if production 

errors occur. Little research has been published regarding the magnitude of vitamins lost during 

storage in a premix or through pet food extrusion cooking steps and during product storage.  

Advances in vitamin manufacturing technology has decreased susceptibility to losses and 

maintained bioavailability to the user in certain circumstances. For example, creating an external 

structure through an insoluble cross-linkage between a sugar and gelatin, “beadlet coating” 

technology surrounds the vitamin and provides physical protection. More specifically in this 

process, starch is applied externally as a spray-dried coating, which creates an external physical 

barrier preventing environmental chemical reactions with the vitamin molecule. Then, a protein-

based coating is applied and heated to bind the coating and taking advantage of malliard 
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reactions to create the beadlet. This technology is not exempt from the harsh conditions of a 

process like that of a hammermill and it may be more expensive, but the reduction in sacrifice 

compared to the raw counterpart outweighs the additional cost of the gelatin beadlet (Diguet et 

al., 2012). 

Several of the vitamin companies conducted retention and (or) loss studies in the 1990’s 

and provided tables to formulators with estimates regarding fortification of supplements (BASF, 

2000). However, the specific details of these studies were never published for review or 

deliberation. Additionally, modern pet food and some processing parameters have changed since 

the previous guidelines were produced. Thus, it was our objective to validate the previous the 

assumptions regarding vitamin stability in extruded foods and to determine the effects different 

levels of dietary protein, extruder processing conditions, and dryer conditions have on key 

vitamin retention in a pet food. 
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 Materials and Methods 

 Dietary Treatments 

The experiment was organized as a 3 X 2 X 2 factorial arrangement of treatments with 

three dietary protein levels, two extruder screw speeds, and two oven-dryer conditions. The three 

dietary treatments were designed to meet target crude protein levels; low (21%), medium (25%) 

and high (30%; Table 3.1). The formulations were intended to mimic the crude protein content of 

commercial maintenance canine, performance canine and feline diets, respectively. The inclusion 

of vitamins were increased 10 fold the recommended levels to aid in reducing error and 

analytical variance inherit with micronutrients.   

Brewers rice, corn, wheat, beet pulp, chicken by-product meal, corn gluten meal, calcium 

carbonate, potassium chloride, salt, dicalcium phosphate, choline chloride, dry natural 

antioxidant preservative based on mixed tocopherols, trace mineral premix were supplied as a 

blend by a local mill (Lortscher Animal Nutrition Inc; Bern, KS., U.S.A.). The chicken fat was 

dosed with natural antioxidant liquid preservative (ADF; Springfield, Mo), and a dry flavor for 

dogs (AFB International; O’Fallon, MO., U.S.A.) were coated topically on the kibbles. The 

vitamin premixes (DSM Nutritional Products; Ames, IA., U.S.A.) were added to the ration prior 

to extrusion and were targeted to be included at 10 times the normal target level.  

The dry ingredients were blended in a twin-shaft double ribbon mixer (Scott Equipment, 

New Prague, MN) and the particle size of the final batch was reduced in a hammermill (Bliss 

4460; Lortscher Animal Nutrition; Bern, KS) to meet the requirements of 90% passing through a 

US# 14 sieve.  A pre-weighed quantity of each base-mix was blended with vitamin premix in a 

double ribbon mixer (Scott Equipment, New Prague, MN) for 5 minutes and representative 

samples were obtained for analysis. 
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 Extrusion 

Dietary treatments were produced on a pilot-scale single screw extruder (Model X-20, 

Wenger Manufacturing Inc., Sabetha, KS, U.S.A.). Diets were initially conditioned with steam 

and water in a differential diameter cylinder (DDC) pre-conditioner (Wenger Manufacturing 

Inc., Sabetha, KS, U.S.A.) fed by a volumetric feeding system with feeder screw speeds at 20.4 

rpm and a constant feed rate of 200 kg/hr. The pre-conditioner shaft speed was held to a constant 

400 rpm to attain discharge temperatures between 96-99°C. Samples were taken at timed 

intervals to obtain a representative composite and then split for analysis.  

The extruder screw configuration had three heating zones set to temperatures of 60, 75 

and 90°C from the feed entry to discharge end of the extruder. The extruder profile (Figure 3.1) 

consisted of single flight screws and transitioning to double flight half pitch screws with shear 

locks increasing in size between the screw elements. The die plate consisted of a one circular 

insert of 5 mm in diameter and a face-mounted rotary knife equipped with six blades. The knife 

speed was kept constant at 1,730 rpm.  

The three dietary treatments were processed at two extruder screw speeds of 350 and 450 

rpm to evaluate different processing effects due to the residence time and exertion of mechanical 

energy. Upon exit from the extruder the extrudate was pneumatically conveyed to a double pass 

dryer/cooler (Series 4800, Wenger Manufacturing Co. Sabetha, KS, U.S.A.). Two levels of 

thermal energy (low and high) were obtained by varying the dryer temperature and retention 

times. Samples were taken at timed intervals to obtain a representative composite and then split 

for analysis.  For the low setting, product was dried at 104ºC and adjusted for 20 minute 

retention time (10 minutes each for the top and bottom belts) and then cooled on the third belt 

with room temperature air for 10 minutes until the target end product moisture of 6% was met. 
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For the high setting, product was dried at 126.7ºC and adjusted for 12 minute retention time (6 

minutes each for the top and bottom belts) and then cooled on the third belt with room 

temperature air for 6 minutes until the target end product moisture of 6% was met. Samples were 

taken at timed intervals to obtain a representative composite and then split for analysis.  The pre-

weighed quantities of finished product were enrobed in chicken fat and dry digest flavor in a 

double ribbon mixer for 5 minutes. Samples were taken at timed intervals to obtain a 

representative composite and then split for analysis. 

Tests for specific mechanical energy (SME) were done in per unit mass of extrudate and 

calculated as follows: 

𝑆𝑀𝐸 (
𝑘𝐽

𝑘𝑔
) =

(
𝑇

100) (
𝑁

𝑁𝑟𝑎𝑡𝑒𝑑
) 𝑃𝑟𝑎𝑡𝑒𝑑

𝑚̇
 

Where T= net motor load percentage, N = screw speed (rpm), Nrated = rated screw speed (507 

rpm), Prated = rated power (37.3 kW), and 𝑚̇ = net mass flow rate (kg/s).  

 

 Nutrient Analysis 

The proximate composition of finished product were analyzed according to AOAC 

International official methods (University Missouri Analytical Lab, Columbia, MO). Moisture 

was determined at 135ºC for 2h (AOAC 930.15), crude protein by nitrogen via combustion (N X 

6.25; AOAC 990.03), crude fat by acid hydrolyzed petroleum ether extract (AOAC 920.39), 

crude fiber (AOCS, Ba 6a-05), and ash by muffle furnace at 600ºC for 2 h (AOAC 942.05; Table 

3.2). 

 The vitamin A analysis was performed by enzymatic digestion at an alkaline pH 

followed by saponification, ether extraction and injection into a normal phase HPLC; detection 
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wavelength was 325 nm (AOAC 974.29).  The vitamin D3 analysis was a modified version of 

AOAC method 2011.12; wherein, a sample was mixed with D2 as internal standard solution, 

ethanol, and potassium hydroxide. The mixture was saponified, cooled and extracted with n-

heptane. The analysis was completed with Liquid Chromatography Mass Spectrometry (LC-

MS/MS; AOAC 2011.12). Vitamin E analyzed by dispersing in deionized water and 3A alcohol 

and extracted with petroleum ether. The extract was analyzed by a normal phase HPLC system 

using fluorescence detection by a modified version of AOAC 971.3. Folic Acid was analyzed on 

a stand-alone Biacore Q, biosensor-based instrument. A specific concentration of antibody was 

injected at a set flow rate into a known volume of sample. The antibody binds to folic acid. The 

unbound antibody was measured when binding occurred. Antigen (or purified form of the 

vitamin) was then immobilized onto the surface. Thiamine was analyzed by autoclaving the 

thiamine sample in dilute acid to extract thiamine. The resulting solution was incubated with 

buffered enzyme solution to release bound thiamine. This solution was purified on an ion-

exchange column and an aliquot was taken and reacted with potassium ferricyanide to convert 

thiamine to thiochrome. Thiochrome was extracted into isobutyl alcohol and determined on a 

fluorometer (AOAC 942.23, 953.17, 957.17).  

 

 Shelf Life Evaluation 

The vitamin premix was stored in 4.0 mm thick whirl pack, low density virgin 

polyethylene bags in quantities of 200 g. Two storage conditions were used: ambient (23ºC and 

<70% relative humidity) and stressed (55ºC and 75% relative humidity) conditions. Samples 

stored in ambient conditions were analyzed at 0 months initially and 1, 2, 3 and 6 month 



44 

 

increments thereafter. Samples stored in stressed shelf life conditions (SSLT) were sampled 

initially and at 1, 2, 3 and 6 weeks following.  

The dry mash, wet extrudate, and dry finished product were analyzed immediately 

following production for determination of processing effects. Finished product samples were 

stored whirl packs and partitioned into groups representative of date and treatment for analysis. 

Two storage conditions were used in which treatments were placed in ambient (23ºC and <70% 

relative humidity) and stressed (55ºC and 75% relative humidity) conditions. Treatment samples 

stored in ambient conditions were analyzed initially (0 month) and at 3, 6, 12, 18 and 24 month 

increments, while the samples in the environmental chamber exposed to stressed conditions were 

sampled initially (0 month) and at 3, 6, 12, 18 and 24 weeks following production. 

 Statistical Analysis  

Experimental treatments were organized as 3 X 2 X 2 a  factorial arrangement with three 

levels of protein, two extruder shaft rotations speeds, and two drier time and temperature 

settings. Main effects from processing and shelf life stability studies were analyzed by two-way 

ANOVA using PROC GLIMMIX procedure (SAS version 9.2 SAS Institute Inc. Cary, North 

Carolina, U.S.A). Means separation was conducted using the LSMEANS statement. Differences 

were considered significant if P <0.05 and trends 0.05 < P < 0.10. Percent retained standard error 

of the means were reported from initial values.  
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 Results 

 Chemical Composition 

The experimental diets nutrient values were compared to the predicted levels to ensure 

formulated targets were met (Table 3.2). Each treatment met and exceeded the target value for 

crude protein for low, medium and high protein diets by 1.98, 2.24 and 4.37%, respectively 

(Table 3.2). The target moisture for each of the treatments was approximately 10% where the 

actual values were lower, averaging 4.79%. For each of the treatments, the targeted values for 

crude fiber, ash and crude fat were within 0.3% units when compared to the actual values.   

 Effects of Storage Conditions on Vitamin Retention within a Vitamin Premix 

The retention of vitamins within a vitamin premix over a 6 week shelf life at stressed 

shelf life conditions of 50°C and 75% relative humidity were analyzed and reported in Figure 

3.2. Vitamin A, vitamin D3, vitamin E, and folic acid were relatively stable through week two, 

but thiamine decreased 24% from initial. From week two to week three there was a sacrifice of 

an additional 47, 62, 26, 70 and 6% for vitamin A, vitamin D3, vitamin E, folic acid and 

thiamine, respectively. But, these values were not consistent with the final week of stressed 

storage conditions as overall sacrifice resulted in 36, 7, 14 and 35% for vitamin A, vitamin D3, 

vitamin E and thiamine, respectively, and folic acid did not appear to decline over the 6 weeks 

(Figure 3.2).  

The vitamin premix stored within ambient shelf life conditions (20°C and 50% relative 

humidity) over a period of six months (Figure 3.3) and vitamin A declined steadily from initial to 

month 6 by an average of 24% resulting in over half of the vitamin depleted. Vitamin D3 

decreased substantially from month two to month three (61%) with an overall sacrifice from 

initial of 67%. Like vitamin D3, Vitamin E resulted in a greater sacrifice between months two and 
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three and by month six 56% of vitamin E was retained. Folic acid and Thiamine appeared 

relatively stable from initial through month three, and by month six retention was 65 and 40% 

for folic acid and thiamine, respectively. 

 

Effects of Experimental Crude Protein Level on Vitamin Retention through 

Processing 

The effects of experimental protein level on vitamin retention as the pet food ration 

exited the extruder appear to result in a lower vitamin concentration when compared to the target 

for all the protein levels (Table 3.3). The specific mechanical energy (SME) was higher for the 

low protein treatments when compared to the medium and high (130.1 vs. 114.1 and 119.5 

kj/kg). The same was true for the in barrel moisture as the low CP treatments were higher when 

compared to the medium and high (20.5 vs. 19.8 and 20.0%). Where the bulk density was greater 

for the high when compared to the medium and low CP treatments (392.3 vs. 320.8 vs. 310.5 

g/L). Vitamin A retention was greatest (P < 0.05) for the high protein diet relative to the medium 

and low diets (225,352 vs. 206,249 and 219,184 IU/kg, respectively). Vitamin D3 was not 

different among the treatments (average 8,139 IU/kg). The same relationship as seen for vitamin 

A occurred with vitamin E and folic acid. Thiamine retention was not affected by dietary protein 

level (average 23.13 mg/kg).   

The effects of protein level on vitamin retention for product exiting the dyer were lower 

again when compared to the target (Table 3.4). Vitamin A levels do not appear to be affected by 

protein levels at the end of the production process (average 172,441.7 IU/kg). The vitamin D3 

levels were higher (P < 0.05) for the high protein diet compared to the medium and low 

(9,047.07 vs. 7,472.59 IU/kg and 6945.7 IU/kg, respectively). The same relationship occurred 
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with vitamin E; wherein, the high protein diet retained more vitamin E than the medium or low 

(1,102.3 vs. 884.8 and 894.7 IU/kg). Folic acid was also greater (P < 0.05) for High relative to 

Medium and Low protein (2.2 vs. 1.9 and 1.8 mg/kg, respectively). Thiamine did not differ 

among the dietary treatments (average 25.73 mg/kg).  
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 Effects of Processing on Vitamin Retention 

The formulated target concentration for vitamin A in the dry flour was 240,000 IU/kg and 

the actual 237,135 IU/kg on average (Figure 3.4). There was an effect on vitamin retention from 

the overall extrusion and drying process. However screw speeds during extrusion and dryer 

temperatures did not have an effect on vitamin retention. Given the lack of extruder screw speed 

and dryer temperature effects the remainder of the treatment data were pooled (Figure 3.5). 

Among the processing steps a greater quantity of vitamin A, vitamin D3 and vitamin E were 

retained in the dry flour when compared to their initial targeted values. Following the initial 

processing through the extruder, vitamin A declined (P = 0.24) 29.5% and an additional (P=0.02) 

19.3% following exit from the drier. Vitamin D3 followed a similar trend (P = 0.89) with a 22.7% 

reduction through the extrusion process, but remained steady (P = 0.1) through the drier with a 

2.6% loss. Vitamin E had the greatest sacrifice (P = 0.72) through the extrusion process (62%), 

but no additional degradation (P = 0.88) occurred from drying. Folic Acid and thiamine appeared 

to be relatively stable (P = 0.74, 0.58) through the manufacturing process.  

 Effects of Storage Conditions on Vitamin Retention 

Samples from the various processing treatments were pooled and stored for a 24 week 

shelf life test at conditions of 50°C and 75% relative humidity. Over the 24 weeks, vitamin A 

decreased asymptotically (P < 0.05) with losses of 37.3, 21.6, 26.9, 9.8, and 2.8%, over 3, 6, 12, 

18, and 24 weeks, respectively (Figure 3.6). Vitamin A was nearly depleted with a loss of 

98.41% by 24 weeks. Vitamin D3 shared a similar fate with losses (P < 0.05) of 27.2, 21.6, 24.0, 

and 6% over 18 weeks and a gain, perhaps due to sampling variation, of 17.94% at week 24 of 

the study, respectively. Overall, nearly 61% of the vitamin D3 was sacrificed through the elevated 

temperature storage conditions. Like vitamin A and vitamin D3, thiamine decreased steadily (P < 
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0.05) until near depletion over the 24 weeks with losses of 14.1, 15.1, 39.1, 17.2, and 7.5%, 

respectively. Folic acid and vitamin E displayed a different trend; wherein folic acid appeared to 

rise at week six, but then return to the trend line for 12, 18, and 24 weeks and result in  a nearly 

60% depletion (P < 0.05) by the 24 week end. Vitamin E decreased (P < 0.05) but appears to be 

relatively stable for the entire duration of the 24 weeks when compared to the other vitamins.   

A matching set of samples of the extruded pet foods were stored in ambient conditions 

(20°C and 50% relative humidity) for 24 months (Figure 3.7). Among the samples vitamin A 

decreased steadily (P < 0.05) at each time point following initial production until 18 months then 

rose slightly at 24 months to result in a nearly 50% overall reduction. Vitamin D3 results were 

more erratic; wherein, at three, 12, and 24 months there appeared to be a gain by analysis. 

However, this may be a function of sampling or analytical error with the retention declining (P < 

0.05) by nearly 30% at 24 months versus the initial. Vitamin E, folic acid and thiamine appear to 

be relatively stable over a 24 month study if one considers final values relative to the initial 

concentrations.   
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 Discussion 

 

Proximate analysis was performed to ensure all products were close to the expected 

values for moisture, protein, fat, fiber and ash. The moisture content for each of the treatments 

were consistently less than the formulated value; however, 5% was targeted during production 

and confirmed by the analysis. Crude protein was consistently greater than the minimum, which 

was expected as the treatments were slightly over-formulated. Crude fiber and ash were very 

close to the target values as expected. However, the crude fat content was slightly less (~0.5%) 

than the formulated target for the medium and high crude protein treatments. During the 

extrusion process, a lipid-amylose complex forms and traditional methods of measuring fat are 

less effective compared to the recommended AOAC method 954.02 for acid hydrolysis. This 

method utilizes hydrochloric acid to break the trapped lipids and free the fat to be measured. The 

difference between the medium and high crude protein treatments versus the low crude protein 

may be attributed to the variability in raw materials.  

Initially, it was anticipated that there would be excess of each vitamin in the premix when 

compared to the target as this is a common practice by premix manufacturers to assure customers 

always get slightly more than they specify, and to off-set storage degradation of various vitamins 

during transport and storage (Aldrich, 2016). Currently nutritionist compensate for vitamin 

sacrifice through storage from upwards of 4-10 times the recommended levels. The premix used 

in this study was enhanced an additional 10 times from the levels of compensation for loss. Since 

these levels are much higher than recommended, there was concern that the higher levels may 

influence survival, but also aid in reducing sampling and analytical error. The analysis of the 

vitamin premix was limited to single point analysis. In our study, all vitamins had some sacrifice 

in the vitamin premix stored in SSLT, e.g. vitamin A sacrifice exceeded 35%. However, the 
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losses were not as severe for those samples stored in ambient temperatures e.g. vitamin A 

sacrifice exceeded 50%. This was unexpected for vitamin A and does not agree with previous 

research by Christian (1983) who demonstrated the negative effects of environmental conditions 

on vitamin A stability within a premix. Wherein, vitamin A retention was 88% of initial when 

exposed to low temperature and humidity for three months, and decreased slightly to 86% when 

temperatures were increased, then bottomed-out (to only 2% retention) when they were exposed 

to high temperatures and humidity. His study concluded that vitamin A was susceptible to 

temperature, and adding humidity amplified the impact. In a study by Kuong et al. (2016) it was 

also observed that an increase in vitamin loss, e.g. loss of 93% of vitamin A for a coated premix 

occurred at higher temperatures and humidity.  Similar to vitamin A, thiamine concentration in 

our study decreased during ambient storage, declining to nearly 35% by the sixth month.  For all 

vitamins, sacrifice exceeded 30% at time point (six months). These levels of sacrifice are more 

severe when compared to the BASF technical bulletins that most nutritionists use to fortify their 

diets. This is also more severe than previous research by Coelho (1991); wherein, no less than 

90% of vitamin A, vitamin D3, vitamin E, thiamine, and folic acid were retained during ambient 

storage. Li et al. (2011) also observed folic acid to be stable during ambient storage (nine 

months), retaining 75-95% within a reconstituted rice product. This would suggest that vitamins 

are relatively stable if we can store the vitamins in controlled environments. 

This study was performed on a small scale extruder and dryer vs. the larger more 

representative manufacturing equipment. The treatments were all produced in a single run where 

the run order was designed to help reduce the impact of sequencing and start up effects from the 

extruder. The degradation of vitamins during the manufacturing process was expected however, 

the lack of effects within the process changes was not. As the screw speed and dryer temperature 
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and retention time increased no differences were observed (Figure 3.2). The screw speed is 

directly related to the residence time for the material within the extruder. As the screw speed 

increases, the residence time decreases causing less contact between the extruder screw, barrel, 

and food materials. The decreased exposure to sheer in the extruder and increased retention time 

would potentially decrease the amount of sacrifice through processing. The effects of changing 

screw speed has not been researched extensively in pet food applications. A few research studies 

have examined the effect of screw speed on physical parameters. In a study with a rice based 

extrudate it was observed that there was little to no impact on the physicochemical properties and 

sensory characteristics of the extrudate with varying screw speeds (Guha et al., 1997; Ding et al., 

2004). This was consistent with the minimal effects observed by Fallahi et al. (2013) with similar 

extrusion parameters on a DDGS-based extrudate. Yanjik et al. (2010) observed the effects of 

thermal and mechanical energy on vitamin retention and concluded the predominant effects of 

degradation were caused by the mechanical input. Thermal and mechanical input energies are the 

mechanisms that speed starch gelatinization and may create amylose-lipid complexes (Gibson, 

2015). This may explain why our lack of changes due to screw speed on vitamin retention were 

less affected by minor processing changes than by big differences between processes.    

 The degradation of the vitamin A, vitamin D3, vitamin E and thiamine were expected 

considering previous research and the combination of the harsh conditions during pet food 

manufacturing. In conjunction with a number of environmental factors, the chemical 

confirmation also increases their susceptibility to degradation. In order to function properly, 

vitamins must be reactive to serve their purpose for normal physiology; however, this reactivity 

increases susceptibility to decay from external sources i.e. oxidation, heat, light, and radiation.  

As an example, vitamin E functions as an antioxidant protecting the body from damage but in 
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doing so sacrifices itself. Similar circumstances occur for vitamin A, beta-carotene, etc. (Coelho, 

1991; BASF, 2000; Killeit, 1994). Some vitamins may be less reactive in the whole. Li et al. 

(2011) demonstrated the stability of folic acid within a reconstituted rice product under high 

temperature and humidity (40°C and 60% RH). Under similar extrusion temperature ranges to 

our study (91-100°C), the level of vitamin sacrifice were less (Coelho, 1991). He reported a 

reduction of only 12, 5, 6, 8, and 9% for vitamin A, vitamin D3, vitamin E, folic acid and 

thiamine, respectively. Thiamine degradation has been extensively researched. For example, 

Guzman-Tello et al. (2007) reviewed thiamine degradation as an indicator for processing 

severity and concluded that under first order kinetics within their model. These processing data 

suggest that the initial production has profound impact on the vitamin survival, but changing the 

parameters within the process do not seem to have as large an impact. Further, the variability in 

degradation among these studies may indicate that diet composition has a big part in the outcome 

on how vitamins behave within a complex pet food matrix.  

Following extrusion, there was a positive effect of experimental protein level on vitamin 

retention. Previous research has shown that as crude protein levels increase there is an offsetting 

starch decrease which can increase product bulk density. Increased bulk density was observed in 

this study as the CP level increased. This results in a decreased expansion ratio as extruded 

kibble expands the starch to create the cellular structure during expansion (Zhu et al., 2010). The 

cross-sectional images of the cellular structure reveals a decrease in cellular size for products 

with an increased strength of the cell walls as the crude protein levels increase (Allen et al., 

2007). Thus, one might surmise that more vitamin gets trapped in the starch-matrix and exposed 

to the external environment with higher starch: lower protein foods. Said another way, the lower 

the expansion the less surface area exposed externally to air and oxidation and their associated 
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damage. The hardened external shell of the kibble, decreased cellular size, or increased protein 

entrapping the vitamins may provide a solution to a greater vitamin A retention if the excess air, 

light, and heat is unable to penetrate the kibble. To corroborate this hypothesis, the high protein 

diet had the highest retention for vitamin E and folic acid. It doesn’t appear to affect all vitamins 

the same as vitamin D3 and Thiamine were not affected by crude protein level (Table 3.3).  

  Shipping and storage of pet foods often requires transport across the equator and 

throughout very humid and hot environments where temperatures can exceed 40 to 50°C. Thus 

the experimental conditions in our study were intended to mimic these real conditions. 

Additional loss was expected as sacrifice due to heat has already been observed, however the 

elevated temperatures over a 24 week period depleted vitamin levels to nearly non-existent for 

vitamin A and thiamine and upwards of 70% sacrifice for vitamin D3 and folic acid (Figure 3.6). 

This is consistent with the knowledge about vitamin A and thiamine sensitivity to heat and 

humidity (Coelho, 2002). Pet food can be stored in environmentally controlled warehouses with 

temperatures in the 20 to 22°C range. In these cases we observed only slight losses of vitamin A, 

which was consistent with Kuong et al. (2016) who observed a loss of 30% in hot extruded rice 

and upwards of 77% for a coated rice premix. So too, this was expected based on Coelho (1991) 

and BASF (2000). However, in our study, even during ambient storage conditions nearly half of 

the vitamin A was depleted by 24 months, and vitamin D3 was a bit less at nearly 30%. However, 

vitamin E appeared to be relatively stable over the 24 month study. This might be expected as 

vitamin E is a known antioxidant and stabilizing agent in feed and food (Riaz, 2009). As well, 

folic acid and thiamine appear to be relatively stable in ambient conditions (Figure 3.7).  
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 Conclusion 

There was vitamin degradation when premixes were stored within extreme (increased 

humidity and temperature) and ambient conditions.  The collective extrusion and drying process 

resulted in vitamin losses; but, there were minimal effects from different screw speeds during 

extrusion or from changing the dryer conditions. Diets with higher protein content retained more 

vitamins than medium and low protein diets. Elevated temperature during storage for 24 weeks 

could reduce vitamin content from initial by 98.44, 60.89, 10.81, 65.54, and 92.86% for vitamin 

A, vitamin D3, vitamin E, folic acid and thiamine. Where, ambient storage conditions for 24 

months could reduce vitamin A content from initial by 50%, vitamin D3 by nearly 30%, where 

vitamin E, folic acid and thiamine appear relatively stable. The total retention following both 

processing and AMB storage was 27, 68, 78% for vitamins A, D3, and E, respectively while folic 

acid and thiamine were relatively stable. Therefore, storage conditions over a products entire 

shelf life play a substantial role when determining the level of vitamin sacrifice during storage.  
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Table 3.1: The ingredient composition of experimental diets evaluated in extruded pet food 

tests for determining shelf life of vitamin retention. 

      Crude Protein Level 

Ingredient, % as-is basis  Low Medium High 

 Brewer's Rice  20.18 17.50 13.02 

 Corn  20.18 17.50 13.02 

 Wheat  20.18 17.50 13.02 

 Beet Pulp  4.00 4.00 4.00 

 Chicken By-Product Meal  21.99 26.09 34.05 

 Corn Gluten Meal, 60%  2.50 5.00 7.50 

 Calcium Carbonate  0.25 0.25 0.25 

 Potassium Chloride  0.39 0.38 0.37 

 Salt  0.40 0.40 0.40 

 Dicalcium Phosphate  1.01 0.80 0.46 

 Choline Chloride, 60%  0.20 0.20 0.20 

 Natural Preservative   0.06 0.06 0.06 

 Chicken Fata  7.57 9.20 12.55 

 Digest-Dry Doga  0.50 0.50 0.50 

 Vitamin Premixb  0.50 0.50 0.50 

  Trace Mineral Premixc   0.10 0.10 0.10 

 

aChicken Fat and Digest topically applied. 

bVitamin Premix: Calcium Carbonate, Roughage Products, Vitamin E Supplement, Niacin 

Supplement, Vitamin B12 Supplement, Mineral Oil, D-Calcium Pantothenate, Vitamin A 

Supplement, Thiamine Mononitrate, Pyridoxine Hydrochloride, Riboflavin Supplement, Vitamin 

D3 Supplement, Biotin, And Folic Acid. 

cTrace Mineral Premix: Calcium Carbonate, Zinc Sulfate, Ferrous Sulfate, Copper Sulfate, 

Mineral Oil, Manganous Oxide, Sodium Selenite, Calcium Iodate  
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Table 3.2: Nutrient Composition of Experimental diets for Vitamin Stability 

  Nutrient Composition, % as-is basis 

  Crude  Crude  Crude 

Treatments  Protein* Moisture Fiber Ash Fat* * 

Low Protein – Target  21.00 10.00 2.35 6.26 12.00 

Low Protein – Actual   23.75 5.03 2.42 6.27 12.12 

Medium Protein – Target  25.00 10.00 2.36 6.60 14.00 

Medium Protein – Actual   27.24 4.34 2.09 6.17 13.84 

High Protein – Target  30.00 10.00 2.35 6.27 18.00 

High Protein – Actual    34.37 5.01 2.55 6.90 17.10 

* Percentage N X 6.25 

** Crude Fat by Acid Hydrolysis 
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Table 3.3: The effects of experimental protein level (low, medium and high) on vitamin retention 

exiting the extruder, as-is basis. 

    Protein Level   

       Item  Unit Target* Low Medium High SEM P= 

   Vitamin A IU/kg 241,014.0 206,249.0b 219,184.0a 225,352.0a 3,791.4 0.020 

   Vitamin D3 IU/kg 10,205.0 7,836.0 8,204.0 8,377.0 215.8 0.260 

   Vitamin E IU/kg 1,269.0 755.0c 801.0b 893.0a 32.0 0.050 

   Folic Acid mg/kg 2.3 1.4b 1.6b 1.8a 0.05 0.004 

   Thiamine mg/kg 28.2 22.5 23.3 23.6 0.36 0.200 

ab Means in a row with unlike superscripts differ (P < 0.05). 

*Target was not evaluated in statistical analysis and is provided as a form of reference for the 

target amount intended based on vitamins in premix. 
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Table 3.4: The effects of experimental crude protein level on vitamin retention as kibble 

exits the drier. 

     Protein Level   

       Item  Unit  Target* Low Medium High SEM P= 

   Vitamin A IU/kg 241,014.0 173,022.0 173,234.0 171,069.0 3,521.9 0.80 

   Vitamin D3 IU/kg 10,205.3 6,945.7b 7,472.6.0b 9,047.1a 458.1 0.006 

   Vitamin E IU/kg 1,269.1 894.7b 884.8b 1,102.3a 26.6 0.001 

   Folic Acid mg/kg 2.3 1.8b 1.9b 2.2a 0.03 0.0006 

   Thiamine mg/kg 28.2 25.5 25.1 26.6 0.6 0.14 

ab Means in a row with unlike superscripts differ (P < 0.05). 

*Target was not evaluated in statistical analysis and is provided as a form of reference for the 

target amount intended based on vitamins in premix. 
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Figure 3.1: Schematic showing pilot scale single screw extruder profile and barrel.  

 

Barrel Temperature 

60°C 75°C 90°C 

Product entry end                                                     Product                          discharge end 

       

       1                    2                     3          4          5          6           7         8           9        10       11    

       Element Numbers 

Extruder screw element numbers with screw types. 1-3 =single flight screws; 4=small steamlock; 

5=single flight screw; 6=small steamlock; 7=single flight screw; 8= medium steamlock; 9=half 

pitch, double flight screw; 10=large steamlock; and 11=half pitch, double flight, cut cone. 
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Figure 3.2: The retention of vitamins in a vitamin premix over six week’s shelf life (stressed 

shelf life testing; 50°C 75%RH) 
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Figure 3.3: The retention of vitamins in a vitamin premix over a six month shelf life 

(ambient conditions; 20°C and 50%RH) 
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Figure 3.4: The effects of retention time on vitamin A levels during processing. 
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Figure 3.5: The main effects of processing on vitamin retention in pet food diets. 
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Figure 3.6: The retention of vitamins in extruded pet foods over 24 week’s shelf life 

(stressed shelf life testing; 50°C 75%RH). 
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Figure 3.7: The retention of vitamins in extruded pet foods over 24 month shelf life 

(ambient conditions; 20°C and 50%RH). 
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Chapter 4 - Effects of processing conditions and dietary protein 

content on DHA, EPA and total omega-3 fatty acid retention during 

extrusion, drying and during storage at elevated and ambient 

temperatures in pet foods. 

  

 Abstract 

Essential fatty acid research has shown that omega-3 fatty acids, such as eicosahexaenoic 

acid (EPA) and docosahexaenoic acid (DHA; 22:6n3) may help maintain normal body structure, 

function and aid in long-term health and wellbeing. Common sources of omega-3 fatty acids 

include flax seed, fish oil, fishmeal, and more recently purpose-grown algae. This commercially-

produced source of omega-3 fatty acids has been evaluated as supplements to animal diets and 

the impact on metabolism; however, questions regarding the effect of process and storage in pet 

foods are unanswered. The objective was to determine the effect of processing on stability of an 

algal source of DHA, (DHAGold™ S17-B; DSM Nutritional Products) added to the diet by 

premix, extrusion-drying processing, and extended storage. Three nutritionally complete pet 

diets at protein levels 21.0, 25, and 30% CP (Low, Medium and High, respectively) were 

produced with equal levels of DHA supplied by Algal-DHA S17-B, fishmeal and fish oil. Diets 

were produced on a Wenger X-20 single screw extruder (Wenger Mfg, Sabetha, KS) and dried at 

104°C for 10 min at each pass in a triple pass dryer (Wenger Mfg, Sabetha, KS). Samples from 

each treatment were analyzed immediately following production for moisture and fatty acids. 

Shelf-life samples were collected in whirlpaks with a pin-hole and stored at 40°C and 75% 

relative humidity for analysis at 3, 6, 12, 18 and 24 weeks following production. Retention of 

EPA and DHA at production time was not affected by CP level (P > 0.05), but was impacted by 
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DHA source (P < 0.05). The total omega-3 fatty acids were affected by DHA source and CP 

level (P < 0.05). As time in storage progressed through 0, 3, 6, 12, 18 and 24 weeks EPA (P < 

0.05; 125.27, 104.45, 101.85, 88.9, 83.8, and 82 mg/kg, respectively) and DHA (P < 0.05; 77.4, 

69.4, 72.3, 61.1, 64.0, 60.1 mg/kg, respectively) declined slightly; but, total omega-3 fatty acids 

(P < 0.05; 373.9, 476.7, 478.5, 444.6, 433.1, 418.0 mg/kg, respectively) were greater at all times 

than the start. These results suggest that elevated temperatures during storage for 24 weeks could 

result in slight EPA and DHA sacrifice. As time in storage progressed through 0, 3, 6, 12, 18, 

and 24 months EPA (P < 0.05; 125.27, 103.9, 105.0, 96.3, 86.5, and 78.3 mg/kg, respectively) 

and DHA (P < 0.05; 77.4, 70.56, 71.1, 67.9, 59.8, and 50.1 mg/kg, respectively) declined 

slightly; but, total omega-3 fatty acids (P < 0.05; 373.9, 452.5, 471.7, 488.0, 425.8, and 

387.1mg/kg, respectively) were greater at all times than the start. Algal-DHA S17-B appears to 

be a stable source of DHA when compared to fish oil and fish meal. 
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 Introduction 

Nutrition research has demonstrated that omega-3 fatty acids such as α-linolenic acid 

(ALA; 18:3n3), eicosapentaenoic acid (EPA; 20:5n3) and docosahexaenoic acid (DHA; 22:6n3) 

may help maintain normal body structure and (or) function and aid in long-term health and 

wellbeing (Larsen, 2011). Common ingredient sources of omega-3 fatty acids in commercially 

produced companion animal formulations include flax seed, fish oil, fish meal, and more recently 

purpose-grown algae (Palmquist, 2009). This commercially produced source of omega-3s has 

been evaluated as a supplement to animal diets and for its impact on metabolism; however, 

questions regarding the effect of process and storage in pet foods remain unanswered. Therefore 

our objectives were to determine the effect of processing on omega-3 fatty acid stability of fish 

and algal sources (DHAgold™ S17-B; DSM Nutritional Products) of DHA that were added to 

the diet by a premix, followed by extrusion and drying processes, and extended storage. 
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 Materials and Methods 

 Dietary Treatments 

Three dietary treatments were prepared based on CP levels; low (21.0%), medium (25%) 

and high (30%; Table 4.1). The formulations were intended to simulate a crude protein content 

similar to commercial maintenance canine, performance canine, and feline diets, respectively. 

The diets were formulated to have similar DHA levels to that of the algal source by replacing a 

portion of the diet with either Menhaden fish meal or Menhaden fish oil. 

The ingredients (brewers rice, corn, wheat, beet pulp, chicken by-product meal, fish meal, 

corn gluten meal, fish oil, calcium carbonate, potassium chloride, salt, dicalcium phosphate, 

choline chloride, dry natural antioxidant, trace mineral premix, and vitamin premix) were ground 

and mixed into a basemix by a local mill (Lortscher Animal Nutrition Inc; Bern, KS., U.S.A.). 

The chicken fat was dosed with natural antioxidant liquid (ADF; Springfield, Mo) and applied 

topically to kibbles after drying along with a dry flavor for dogs (AFB International; O’Fallon, 

MO., U.S.A.). The vitamin premixes with the algal-DHA (DHAGold™ DSM Nutritional 

Products, Ames, IA., U.S.A.) was mixed prior to extrusion. 

The dry ingredients were blended in a twin-shaft double ribbon mixer (Scott Equipment, 

New Prague, MN) and the particle size reduced in a hammermill (Bliss 4460; Lortscher Animal 

Nutrition; Bern, KS) such that 90% would pass through a US#14 sieve.  Pre-weighed quantities 

of each base-mix were blended with vitamin premix in a double ribbon (Scott Equipment, New 

Prague, MN) for 5 minutes and representative samples were obtained for analysis. 

 Extrusion 

Dietary treatments were produced on a pilot-scale single screw extruder (Model X-20; 

Wenger Manufacturing Inc., Sabetha, KS) Diets were initially conditioned with steam and water 
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in a differential diameter cylinder (DDC) pre-conditioner (Wenger Manufacturing Inc., Sabetha, 

KS) fed by a volumetric feeding system with feeder screw speeds at 20.4 rpm and a constant feed 

rate of 200 kg/hr. The pre-conditioner shaft speed was held constant at 400rpm to attain 

discharge temperatures between 88-93°C. Samples were taken at timed intervals to obtain a 

representative composite and then split for analysis. 

The extruder screw configuration commonly used for pet production had  three heating 

zones set to temperatures of 60, 75 and 90°C from the feed entry to discharge end of the 

extruder. The extruder profile consisted of single flight screws and transitioning to double flight 

half pitch screws with shear locks increasing in size between the screw elements (Figure 4.4). 

The die plate consisted of a single circular 5 mm diameter insert and a face-mounted rotary knife 

equipped with six blades. The knife speed was kept constant at 1,730 rpm.  

The three dietary treatments were processed at an extruder screw speed of 350 rpm. 

Samples were taken at timed intervals to obtain a representative composite and then split for 

analysis. Extrudate leaving the die was pneumatically conveyed to a double pass dryer/cooler 

(Series 4800, Wenger Manufacturing Co. Sabetha, KS). Product was dried at 104ºC and adjusted 

for 20 minute retention time (10 minutes each for the top and bottom belts) and then cooled on 

the third belt with room temperature air for 10 minutes until the target end product moisture of 

6% was met. Samples were taken at timed intervals to obtain a representative composite and then 

split for analysis. The pre-weighed quantities of finished product were coated with chicken fat 

and dry dog flavor in a double ribbon mixer for 5 minutes. Samples were taken at timed intervals 

to obtain a representative composite and then split for analysis. 

Tests for specific mechanical energy (SME) were done in per unit mass of extrudate and 

were calculated as follows: 
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Where T= net motor load percentage, N = screw speed (rpm), Nrated = rated screw speed (507 

rpm), Prated = rated power (37.3 kW), and 𝑚̇ = net mass flow rate (kg/s).  

 Nutrient Analysis 

The proximate composition of finished product were analyzed (University Missouri 

Analytical Lab, Columbia, MO) according to AOAC official methods. Moisture was determined 

at 135ºC for 2 h (AOAC 930.15), CP by nitrogen via combustion (N X 6.25; AOAC 990.03), 

crude fat by acid hydrolyzed petroleum ether extract (AOAC 920.39), crude fiber (AOCS, Ba 6a-

05), and ash by muffle furnace at 600ºC for 2h (AOAC 942.05).  

 Shelf Life Evaluation 

The vitamin premix was stored in 4.0 mm thick whirl pack low density virgin 

polyethylene bags. Two storage conditions were used: ambient (23ºC and <50% relative 

humidity) and stressed (40ºC and 75% relative humidity) conditions. Samples stored in ambient 

conditions were analyzed initially at 0 months then 1, 2, and 3 month increments thereafter. 

Samples stored in stressed conditions were sampled initially and at 1, 2, 3 and 6 weeks.  

The dry mash, wet extrudate, and dry finished product were analyzed immediately 

following production for determination of effects of processing. Finished product stored whirl 

packs. Two storage conditions were used; where treatment samples were placed in ambient 

(23ºC and <70% relative humidity) and stressed (40ºC and 75% relative humidity) conditions. 

Each treatment samples were stored in ambient conditions were analyzed at 0, 3, 6, 12, 18 and 24 

month increments while the samples in the environmental chamber exposed to stressed 

conditions were sampled initially and at 3, 6, 12, 18 and 24 weeks following production. 
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 Fatty Acid Analysis 

Omega-3 fatty acid analysis utilized the One Step Extraction (OSE) method. Samples 

freeze dried, then requiring 40-70 mg total fat in the weight of the sample to be extracted, 

combining acid digestion, solvent extraction and trans-esterification of food matrix in a single 

reaction tube. This results in the methyl ester form of the omega-3 fatty acid(s), which is 

measured using GC-FID to quantify eicosapentenoic acid (EPA), docosahexaenoic acid (DHA) 

and other Omega-3’s.   

 Statistical Analysis  

Treatments were organized in a factorial arrangement with three levels of protein and 

three sources of DHA. Main effects from processing and shelf life stability studies were analyzed 

by two-way ANOVA using PROC GLIMMIX procedure (SAS version 9.2 SAS Institute Inc. 

Cary, North Carolina, U.S.A). Means separation was conducted using the LSMEANS statement. 

Differences were considered significant if P < 0.05 and trends 0.05 < P < 0.10. 
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 Results  

 Chemical Composition 

The dietary nutrient values were compared to the theoretical to ensure formulated targets 

were met among the three omega-3 sources. Each treatment met and exceeded the target value 

for crude protein for low, medium and high protein diets by an average of 2.2%, respectively 

(Table 4.2). The target for moisture for each of the treatments was less than 10% and results 

were with an average of 3.45% (Table 4.2). For each of the treatments, the targeted values for 

crude fiber and ash were within 0.5% tolerance when compared to the actual values obtained 

(Table 4.2).  Targeted crude fat amongst the treatments ranged from 12, 14, and 18% for low, 

medium, and high protein diets. Low and medium CP diets were within an average of 1.1% 

when analyzed by acid-hydrolysis for crude fat within the treatments. However the omega-3 

source with fish meal formulated at high CP was elevated when compared to the other omega-3 

sources (20.3 vs. 16.0 and 15.5% for algal source and fish oil (Table 4.2). 

 Effects of Storage Conditions on Omega-3 Fatty Acid Retention within a Vitamin 

Premix 

The retention of DHA, EPA and total omega-3 fatty acids within a vitamin premix over a 

six week shelf life at SSLT of 40°C and 75% relative humidity were analyzed and reported in 

figure 4.2. DHA, EPA and total omega-3 fatty acids were relatively stable during this time 

period.  

The vitamin premix was also stored within ambient shelf life conditions (23°C and 50% 

relative humidity) over a period of three months (Figure 4.2). EPA dropped from initial to month 

2 by 16%, but remained steady through the rest of the study. DHA and total omega-3 fatty acids 
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followed a similar trend dropping an initial 6 and 7% and remaining stable through the end of the 

shelf life test (Figure 4.2). 

 Effects of Experimental Crude Protein Level on Omega-3 Retention through 

Processing 

The main effect means of dietary CP levels on fatty acid concentrations were obtained at 

various steps in the extrusion process (Table 4.3).  Eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA) retention did not differ amongst treatments (P > 0.05) across the 

crude protein levels, however the total omega-3 fatty acids were lowest (P < 0.05) for the low 

and medium protein diets compared to the high protein (3,348 and 3,650 vs. 4,220 mg/kg for low 

and medium vs. high CP). Following processing through the preconditioner, EPA and DHA 

retention did not differ amongst treatments (P > 0.05) across the crude protein levels, however 

the total omega-3 fatty acids were lowest (P < 0.05) for the low protein diet when compared to 

the medium and high protein (2,545 vs. 2,791 and 2,915 mg/kg). Retention following extrusion 

did not differ amongst crude protein for all three EPA, DHA, and total omega-3 fatty acids. In 

the finished kibble, EPA and DHA again did not differ ~774 and 1,252 mg/kg for EPA and 

DHA, respectively, amongst the dietary treatments, but the total omega-3 fatty acids retention 

was greater (P < 0.05) for the higher crude protein treatment than medium and low (4,220 vs. 

3,650 and 3,348 mg/kg, respectively). ). The specific mechanical energy (SME) was higher for 

the low protein treatments when compared to the medium and high (127.2 vs. 90.8 and 91.8 

kj/kg). The in barrel moisture was highest for the high CP treatment when compared to the 

medium and low (19.5 vs. 18.3 and 18.3%). Where the bulk density was greater for the high 

when compared to the medium and low CP treatments (452.3 vs. 384.3 vs. 356.3 g/L).  Overall 

the main effect means of dietary crude protein level on the fatty acid (mg/kg) concentrations 
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resulted the higher (P < 0.05) crude protein levels, the higher total omega-3 fatty acid 

concentrations. However, eicosapentenoic acid and docosahexaenoic acid specifically were not 

affected (P > 0.05) by dietary protein concentration.  

 Effects of Processing on DHA Retention 

The effects of processing on EPA reflect fluctuations at various stages of the process. The 

diets formulated with DHA as an omega source did not consider EPA as a factor for the algae 

treatment, however when analyzed incidental levels were recovered. The EPA levels decreased 

(P < 0.05) at 195, 101, and 91 mg/kg in the dry flour, off preconditioner, and off extruder, 

respectively (Figure, 4.1-A). Diets formulated with fish meal as an omega-3 source were 

expected to provide 1,200 mg/kg EPA, but during the manufacturing process this decreased (P < 

0.05) from 1,069, in the dry mash to 950, and 802 mg/kg when measured off preconditioner, and 

off the extruder, respectively. The diets formulated with fish oil were expected to contain 930 

mg/kg EPA and when analyzed during processing resulted in 877, 695, and 1,000 mg/kg in the 

dry flour, off the preconditioner, and off the extruder, respectively. Across all the treatments 

finished kibble exceeded the expected EPA values of 0, 1,200, and 930mg/kg with results of 92, 

1251, and 979 mg/kg.  

All treatments were formulated to meet a targeted amount of 670 mg/kg of DHA (Figure 

4.1-B). Formulas supplemented with the algae source of DHA exceeded the target by 1,657 

mg/kg when measured in the dry flour. However, once processed in the preconditioner DHA 

levels decreased by greater than 50% to 1,001 mg/kg and remained near these levels through the 

extruder and dryer. The diets formulated with fish meal and fish oil were closer to the target 

value (1,132 and 861 mg/kg, respectively). Like the algae source, fish meal and fish oil levels of 
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DHA decreased (P < 0.05) by 11% and 20%, following the preconditioner but remained 

relatively stable through the additional processing.  

The total omega-3 fatty acids encompass both DHA and EPA, as well as some other 

omega-3 fatty acids like linolenic acid (4.1-C). The overall effects of processing on the total 

omega-3 fatty acid retention were similar to the results observed for EPA and DHA. Wherein, 

the dry mash for each omega-3 fatty acid treatment exceeded the target by greater than 2,245, 

1,676, and 1,636 mg/kg for algae, fish meal and fish oil sources, respectively. Following 

processing in the preconditioner, each treatment omega-3 fatty acid level decreased (P < 0.05; 

1,400, 1,905, and 1,988 mg/kg, for algae, fish meal and fish oil sources, respectively). Following 

preconditioning the algae and fish meal omega-3 fatty acid levels remained stable with a slight 

increase in the finished kibble; however, the fish oil gained omega-3 fatty acids following 

extrusion (3,650 mg/kg vs. 3,847 mg/kg in the finished kibble). 

Effects of Storage Conditions on Omega-3 Retention within a Vitamin Premix 

The retention of omega-3 fatty acids within a premix were analyzed over a six week shelf 

life under stressed conditions of 50°C and 75% relative humidity (Figure 4.2). The retention of 

omega-3 fatty acids appears to be stable over time with a reduction of 12, 12, and gain of 10% 

for EPA, DHA and total omega-3 fatty acid, respectively. The retention of vitamins within a 

premix, over a three month shelf life under the ambient conditions of 20°C and 50% relative 

humidity decreased the first month by 6, 16 and 7% for EPA, DHA and total omega-3 fatty acid, 

respectively. After this initial loss, the omega-3 fatty acids appear to be relatively stable from 

month two to month three with a total overall loss of 9, 17, and 11% for EPA, DHA and total 

omega-3 fatty acid, respectively.  
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 Effects of Storage Conditions on Omega-3 Retention 

The samples produced at different protein levels were pooled for the shelf-life evaluation 

for retention of omega-3 fatty acids. As stressed shelf life storage of finished pet food increased 

through 24 weeks EPA, DHA, and total fatty acids declined slightly (P < 0.05; 125, 82 mg/kg for 

EPA and 77, 60 mg/kg for DHA, and 418, 476 mg/kg for total fatty acids at 0 vs. 24 wk) with an 

overall retention greater than 90% (Figure 4.3). As time in ambient storage reached 24 months 

EPA, DHA, and total fatty acids declined slightly (P < 0.05; 125 vs. 78 mg/kg for EPA and 77 

vs. 50 mg/kg for DHA, and 387 vs. 373 for total fatty acids at 0 vs. 24 mo.) with an overall 

retention greater than 80% (Figure 4.3) 
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 Discussion 

Proximate analysis was performed to ensure all products were close to the expected 

values for moisture, protein, fat, fiber and ash. The moisture content for each of the treatments 

were consistently less than the formulated value, however 5-6% was targeted during the trials. 

Products met the intended level of dryness. Crude protein was consistently greater than the 

minimum formulated value, which was expected as the raw materials aim to meet a target versus 

a minimum value. Crude fiber and ash were very close to the target values as expected. There 

was a discrepancy for the high crude protein fish meal treatment at 20.28% when compared to 

the fish oil and algal treatments of 15.54 and 16.04%. During experimental design, the focus was 

to formulate comparable levels of DHA amongst the treatments of 670 mg/kg, however this was 

more difficult to achieve during formulation than anticipated. During the extrusion process, a 

lipid-amylose complex may form making traditional methods of measuring fat less effective 

compared to the recommended AOAC method 954.02. This method utilizes hydrochloric acid to 

break the trapped lipid and allow the total fat to be measured. The difference between the high 

crude protein fish meal treatment and the others is attributed to the variability in raw materials. 

The algal source for DHA was mixed within the vitamin premix and single analysis was 

obtained for this research. When analyzed prior to manufacturing, 85-95% of the targeted value 

for each EPA, DHA and total omega-3 fatty acids was present. Following the initial production 

and sampling the premix was stored in elevated temperature and ambient storage. Abuzaytoun 

and Shahidi (2006) observed the stability of algal oils at room temperature without protection 

from light and concluded that minor oil constituents play a major role in stability. Similar to our 

study, we anticipated stability and retention of the omega-3 fatty acids when exposed to room 

temperatures. We observed an initial drop for EPA, DHA, and total omega-3 fatty acids of 16, 6, 
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and 7% from the first month to the second, respectively. Following the initial loss, the fatty acids 

appeared to be relatively stable through the remainder of the study.  

The degradation of total omega-3 fatty acids was anticipated as the severe thermal 

process and overall nature by which pet foods are manufactured, it is common for pet food 

companies opt to use fish meal rather than the oil as their source of omega-3s. Marine omega-3 

oils are highly prone to oxidation and other secondary oxidation products. The oxidation process 

could potentially alter biological activity, which could deem them ineffective (Albert et al., 

2013). Fish meal provides a high quality protein and in a dry product and seems to be easier to 

stabilize with current antioxidant technology when compared to fish oil (which is susceptible to 

oxidation). The dry nature of the fish meal contains an inherent form of oil where the added fish 

oil could impact extrusion. Fish oil usually contains both EPA and DHA and algal oils are 

predominately DHA, so the treatments formulated with DHA as an omega-3 source did not 

consider EPA as a factor for the treatment. However when analyzed incidental levels were 

recovered during each step in the manufacturing process for this treatment. The EPA recorded in 

the dietary treatments containing fish meal and fish oil remained stable following a drop, e.g. 182 

mg/kg for the fish oil treatment in the pre-conditioner step. DHA and total-omega-3 fatty acids 

followed the similar trend as EPA taking higher levels in the dry flour and remaining stable 

following a decrease in the pre-conditioning step of the manufacturing process. Nielsen (2015) 

reported the complexity determining stability in complex products and antioxidant mechanisms. 

He concluded extrinsic environmental factors e.g. exposure to light, heat, and oxygen can 

increase oxidation, all of which are present during pet food manufacturing. Because of the 

complexity in the products and inherent variability, he suggested each product be evaluated to 
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determine optimal composition, processing conditions, and efficacy of antioxidants within the 

omega-3 enriched products.   

 Each dietary treatment was also formulated to determine if there were any effects 

of crude protein level on the stability of omega-3 fatty acids. There were minimal effects of 

crude protein when examining EPA and DHA during each step of the manufacturing process, 

however the total omega-3 fatty acids did differ (P < 0.05) among the dietary treatments for 

crude protein for all steps in the process except when exposed to extrusion only. Previous 

research has shown that as crude protein levels increase, there is an offsetting starch decrease, 

which can increase product bulk density. This results in a decreased expansion ratio as extruded 

kibble expands the starch to create the cellular structure during expansion (Zhu et al., 2010). The 

cross-sectional images of the cellular structure reveals a decrease in cellular size for products 

with an increased strength of the cell walls as the crude protein levels increase (Allen et al., 

2007). Thus, one might surmise that more omega-3 fatty acids are trapped in the starch-matrix 

and exposed to the external environment with higher starch: lower protein foods. Said another 

way, the less the expansion, the less the surface area internal and external to be exposed to air 

and oxidation. The hardened external shell of the kibble and decreased cellular size may provide 

clues to how a greater total omega-3 fatty acid retention could occur if the excess air, light, and 

heat is unable to penetrate the kibble. 

Shipping and storage of pet foods often requires transport across the equator and 

throughout very humid and hot environments where temperatures can exceed 40-50°C. Thus, the 

experimental conditions in our study were intended to mimic these real conditions. Since our 

treatments contained a high level of polyunsaturated fatty acids, we expected a decrease in 

omega-3 fatty acids when exposed to shelf life studies and observe volatile oxidation compounds 
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to increase. Adios et al. (2002) observed an increase in volatile oxidation compounds in herring 

oil when placed within a closed vessel, exposed to oxygen, and stored in SSLT at 50°C for up to 

53 hours. Consistent with our study, samples were stored at extreme temperatures of 40°C, but 

samples were stored for and analyzed over 24 weeks. Within the 24 week SSLT EPA, DHA, and 

total omega-3 fatty acid concentrations declined slightly (P < 0.05) however retention was 

greater than 90%. Adios et al. (2002) also reviewed the stability of volatile oxidation compounds 

for herring oil when placed in lower storage temperatures consistent with ambient at 20°C. They 

observed a direct correlation between the oxidation of products over time and temperature 

dependency as secondary oxidation was observed for all treatments. The environmental 

conditions were similar to our study with ambient 23°C and 50% relative humidity. Within 24 

months EPA, DHA, and total omega-3 fatty acid concentrations declined slightly (P < 0.05) with 

a retention greater than 80%. In comparison to Adios et al. (2002), the volatile oxidation 

compounds were analyzed for each SSLT and ambient conditions, and it was observed that 

attributes known for oxidation in marine lipid sources were present (Appendix A).   
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Conclusion 

DHAgold® S17 B retained stability when stored in ambient and stressed conditions 

within a vitamin premix. During the manufacturing processing, a loss occurred for EPA, DHA 

(DHA gold® S17 B), and the total omega-3 fatty acids during the preconditioning step. Further 

research is needed to determine if sacrifice occurred in result of the preconditioning conditions or 

if there may be an over-estimate of omega-3 fatty acids in the dry ration.  Overall fluctuations 

occurred at various stages in the process, but final concentrations in the finished foods was not 

affected by the process. Fluctuations occurred in the higher crude protein levels leading to higher 

total omega-3 fatty acid concentrations, however the target values were met and excess was not 

reported.  EPA and DHA were not affected by the dietary protein concentration. More 

explorative studies need to be completed to determine the effects of the preconditioner step of 

the manufacturing process has on omega-3 fatty acid stability and the overall molecular break-

down and bio-availability of the fatty acids. 

EPA, DHA and the total omega-3 concentrations were not affected by stressed (24 

weeks) or ambient (24 month) storage conditions. DHAgold® S17 B appears to be stable in 

processed pet foods and comparable to the more traditional omega-3 fatty acid sources.  
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Table 4.1: The ingredient composition of experimental diets processed through extrusion to evaluate 

the effects of processing on DHA retention and shelf life. 

  Omega-3 Source 

 Algal-DHA Fish Meal Fish Oil 

 Crude Protein Level Crude Protein Level Crude Protein Level 

Ingredient, % as-is basis Low Medium High Low Medium High Low Medium  High 

Fish Meal 0.00 0.00 0.00 11.00 11.00 11.000 0.000 0.000 0.000 

Fish Oil 0.00 0.00 0.00 0.00 0.00 0.000 0.665 0.665 0.665 

Algal-DHA + Vit 0.50 0.50 0.50 0.00 0.00 0.000 0.000 0.000 0.000 

Chicken By-Product Meal     22.00 26.09 34.05 11.01 16.80 22.94 21.92 27.80 33.95 

Rice, Brewers               20.17 17.50 13.01 20.33 17.21 13.18 20.34 17.21 13.20 

Corn                        20.17 17.50 13.01 20.33 17.21 13.18 20.34 17.21 13.20 

Wheat                       20.17 17.50 13.01 20.33 17.21 13.18 20.34 17.21 13.20 

Chicken Fat 7.57 9.20 12.54 8.13 9.54 13.10 6.89 8.30 11.87 

Beet Pulp 4.00 4.00 4.000 4.00 4.00 4.00 4.00 4.00 4.00 

Corn Gluten Meal, 60% 2.50 5.00 7.50 2.50 5.00 7.50 2.50 5.00 7.50 

Digest - Dry Dog 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

Micro Nutrients a,b,c 2.41 2.19 1.84 1.85 1.49 1.39 2.46 2.09 1.89 

          
aMicro Nutrients: Calcium Carbonate, Potassium Chloride, Salt, Dicalcium Phosphate, Choline Chloride 

60% dry, Natural Antioxidant 
bVitamin Premix: Calcium Carbonate, Roughage Products, Vitamin E Supplement, Niacin Supplement, 

Vitamin B12 Supplement, Mineral Oil, D-Calcium Pantothenate, Vitamin A Supplement, Thiamine 

Mononitrate, Pyridoxine Hydrochloride, Riboflavin Supplement, Vitamin D3 Supplement, Biotin, And 

Folic Acid.  
cTrace Mineral Premix: Calcium Carbonate, Zinc Sulfate, Ferrous Sulfate, Copper Sulfate, Mineral Oil, 

Manganous Oxide, Sodium Selenite, Calcium Iodate 
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Table 4.2: The nutrient composition of experimental diets*processed through extrusion to evaluate 

the effects of processing on DHA retention and shelf life. 

  Omega-3 Source 

 Algal-DHA Fish Meal Fish Oil 

 Crude Protein Level Crude Protein Level Crude Protein Level 

Analysis % Low Medium High Low Medium High Low Medium High 

Crude Protein** 23.70 27.43 32.34 23.38 27.68 31.64 23.62 27.32 31.24 

Moisture 5.62 6.74 6.10 6.78 6.41 7.40 6.36 6.32 7.19 

Crude Fiber 2.09 1.72 1.66 1.71 1.67 1.85 1.66 1.59 1.78 

Ash 6.04 6.34 7.15 6.08 6.92 6.99 6.01 6.56 6.66 

Crude Fat 10.6 12.25 16.04 11.36 12.15 20.28 10.87 12.51 15.54 

          

*Results are expressed on an "as is" basis unless otherwise indicated.     

**Percentage N X 6.25     
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ab Means in a row with unlike superscripts differ (P < 0.05). 
c EPA - eicosapentenoic acid 
d DHA - docosahexaenoic acid 

e Total O3 - Octadecatrienoic acid (ALA), octadecatetraenoic acid (SDA), eicosatetraenoic acid 

(ETA), eicosapentenoic acid (EPA), heneicosapentaenoic acid (HPA), docosapentaneoic acid 

(DPA) and docosahexaenoic acid (DHA 

 

 

 

 

 

Table 4.3: Main effect means of dietary crude protein level on the fatty acid (mg/kg) 

concentrations at various processing steps as kibble is being produced through extrusion. 

CP Level Low Medium High SEM P-Value 

Mash         

 EPAc 703 707 730 24.4 0.06 

 DHAd 1,850 1,415 1,055 10.7 0.56 

 Total O3
e 4,245b 4,207b 5,202a 73.5 0.01 

Preconditioner Mash     

 EPA 552 597 596 17.9 0.24 

 DHA 853 921 911 30.4 0.33 

 Total O3 2,545b 2,791a 2,915a 58 0.03 

Off Extruder (undried)   

 EPA 652 624 618 16 0.37 

 DHA 991 985 1,029 37.9 0.70 

 Total O3 2,984 2,994 3,050 112 0.91 

Off Drier (finished kibble)    

 EPA 721 799 802 18.7 0.19 

 DHA 1,127 1,200 1,430 88.1 0.20 

  Total O3 3,348b 3,650b 4,220a 65.3 0.01 
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Figure 4.1:(A-C): The effect of fatty acid source (mg/kg) on resulting concentration at 

various processing points during kibble production. 
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Figure 4.2: Effect of omega-3 source on fatty acid stability in premix over time (Stressed 

Shelf Life Testing; 40°C 75%RH and Ambient 23°C and 50%RH) 
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Figure 4.3: Effect of omega-3 source on fatty acid stability in kibble over time (Stressed 

Shelf Life Testing; 40°C 75%RH and Ambient 23°C and 50%RH). 
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Figure 4.4: Schematic showing pilot scale single screw extruder profile and barrel  

 

Barrel Temperature 

60°C 75°C 90°C 

Product entry end                                                     Product                          discharge end 

       

       1                    2                     3          4          5          6           7         8           9        10       11    

       Element Numbers 

1-3=single flight screws; 4=small steamlock; 5=single flight screw; 6=small steamlock; 7=single 

flight screw; 8= medium steamlock; 9=half pitch, double flight screw; 10=large steamlock; and 

11=half pitch, double flight, cut cone. 
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Appendix A - The effects of storage conditions on sensory and 

volatiles of extruded pet food supplemented with fish or algal source 

of omega-3 fatty acids. 

 Introduction 

Research has shown that long-chain omega-3 polyunsaturated fatty acids (PUFA’s) such 

as eicosapentaenoic acid (EPA: 20:5n3) and docosahexaenoic acid (DHA; 22:6n3) have 

numerous health benefits such as maintaining normal body structure, lowering blood pressure, 

and aid in long-term heart health (Morris et al., 1993; Mozafarrian 2008). Unfortunately, these 

long-chain omega-3 PUFA sources like fish oil and the oil in fish meal are exceptionally prone to 

oxidation when compared to the monounsaturated fatty acids in many popular vegetable oils. 

The oxidation of these PUFA’s results in off-flavors and odors (Cho et al., 1987). These off-

flavors and odors have been shown to greatly affect the acceptability and has limited the 

application of DHA in food and feed products (Stansby, 1971). Therefore, our objectives were to 

determine the effects of storage conditions on sensory and volatiles of extruded pet food 

supplemented with fish and algal sources of omega-3 fatty acids.  
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 Materials and Methods 

Dietary Treatments 

Three dietary treatments were prepared based on crude protein levels; low (21.7%), 

medium (25%) and high (30%; Table 4.1). The formulations were intended to simulate a crude 

protein content similar to commercial maintenance canine, performance canine, and feline diets, 

respectively. The diets were formulated to have similar DHA levels to that of the algal source by 

replacing a portion of the diet with either Menhaden fish meal or Menhaden fish oil. 

The ingredients (brewers rice, corn, wheat, beet pulp, chicken by-product meal, fish meal, 

corn gluten meal, fish oil, calcium carbonate, potassium chloride, salt, dicalcium phosphate, 

choline chloride, dry natural antioxidant and trace mineral premix) were ground and mixed into a 

basemix by a local mill (Lortscher Animal Nutrition Inc; Bern, KS., U.S.A.). The chicken fat 

was dosed with natural antioxidant liquid (ADF; Springfield, Mo) and applied topically to 

kibbles after drying along with a dry dog flavor (AFB International; O’Fallon, MO., U.S.A.). 

The vitamin premixes with the algal-DHA (DHAGold™ DSM Nutritional Products, Ames, IA., 

U.S.A.) was mixed prior to extrusion. 

The dry ingredients were blended in a twin-shaft double ribbon mixer (Scott Equipment, 

New Prague, MN) and the particle size reduced in a hammermill (Bliss 4460; Lortscher Animal 

Nutrition; Bern, KS) such that 90% would pass through a US #14 sieve.  Pre-weighed quantities 

of each base-mix were blended with vitamin premix in a double ribbon (Scott Equipment, New 

Prague, MN) for five minutes. 

Extrusion 

Dietary treatments were produced on a pilot-scale single screw extruder (Model X-20; 

Wenger Manufacturing Inc., Sabetha, KS). Diets were initially conditioned with steam and water 
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in a differential diameter cylinder (DDC) pre-conditioner (Wenger Manufacturing Inc., Sabetha, 

KS) fed by a volumetric feeding system with feeder screw speeds at 20.4 rpm and a constant feed 

rate of 200kg/hr. The pre-conditioner shaft speed was held constant at 400rpm to attain discharge 

temperatures between 88-93°C. 

The extruder screw configuration commonly used for pet production had  three heating 

zones set to temperatures of 60, 75 and 90°C from the feed entry to discharge end of the 

extruder. The extruder profile consisted of single flight screws and transitioning to double flight 

half pitch screws with shear locks increasing in size between the screw elements (Figure 4.3). 

The die plate consisted of a single circular 5 mm diameter insert and a face-mounted rotary knife 

equipped with six blades. The knife speed was kept constant at 1,730 rpm.  

The three dietary treatments were processed at an extruder screw speed of 350 rpm. 

Extrudate leaving the die was pneumatically conveyed to a double pass dryer/cooler (Series 

4800, Wenger Manufacturing Co. Sabetha, KS, U.S.A.). Product was dried at 104ºC and adjusted 

for 20 minute retention time (10 minutes each for the top and bottom belts) and then cooled on 

the third belt with room temperature air for 10 minutes until the target end product moisture of 

6% was met. The pre-weighed quantities of finished product were coated with chicken fat and 

dry dog flavor in a double ribbon mixer for five minutes.   

Tests for specific mechanical energy (SME) were done in per unit mass of extrudate and 

were calculated as follows: 

𝑆𝑀𝐸 (
𝑘𝐽

𝑘𝑔
) =

(
𝑇

100) (
𝑁

𝑁𝑟𝑎𝑡𝑒𝑑
) 𝑃𝑟𝑎𝑡𝑒𝑑

𝑚̇
 

Where T= net motor load percentage, N = screw speed (rpm), Nrated = rated screw speed (507 

rpm), Prated = rated power (37.3 kW), and 𝑚̇ = net mass flow rate (kg/s).  
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Nutrient Analysis 

The proximate composition of finished product were analyzed (University Missouri 

Analytical Lab, Columbia, MO) according to AOAC official methods. Moisture was determined 

at 135ºC for 2 h (AOAC 930.15), crude protein by nitrogen via combustion (N X 6.25; AOAC 

990.03), crude fat by acid hydrolyzed petroleum ether extract (AOAC 920.39), crude fiber 

(AOCS, Ba 6a-05), and ash by muffle furnace at 600ºC for 2h (AOAC 942.05).  

Shelf Life Evaluation 

Finished product was stored in 35 pound poly-lined, kraft paper bags. Two storage 

conditions were used; where samples were placed in ambient (23ºC and <70% relative humidity) 

and stressed (35ºC and 75% relative humidity) conditions.  Samples stored in ambient conditions 

were analyzed at 0, 3, 6, 12, 18 and 24 month increments while the samples in the environmental 

chamber exposed to stressed conditions were sampled initially and at 0, 1, 2, 3, 4, 5, 6, 7, and 8 

weeks following production. One sample bag exposed to the stressed conditions was left open to 

be exposed to the environment and the additional bags remained closed until sampled.  

Fatty Acid Analysis 

Omega-3 fatty acid analysis utilized the One Step Extraction (OSE) method, requiring 

40-70 mg total fat in the weight of the sample to be extracted, combining acid digestion, solvent 

extraction and trans-esterification of food matrix in a single reaction tube. This results in the 

methyl ester form of the omega-3 fatty acid(s), which is measured using GC-FID to quantify 

eicosapentenoic acid (EPA), docosahexaenoic acid (DHA) and other Omega-3’s.   
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Statistical Analysis  

Treatments were organized in a factorial arrangement with three levels of protein and 

three sources of DHA. Sensory analysis was performed by a difference from control (DFC) test 

comparing the control with each of the treatments and analyzed by using the Dunnett statistical 

test at an alpha of 0.05.  

Sensory and Volatile Analysis  

The sensory analysis was conducted using a difference from control (DFC) test which 

compared the control to each of the three dietary treatments at the initial sample collection (time 

0) and 3, 6, 12, 18, and 24 months for ambient and 0, 1, 2, 3, 4, 5, 6, 7 and 8 weeks for stressed, 

thereafter. Samples were presented with a labelled and masked control, to ensure panelist 

accuracy, along with coded dietary treatments. The panelists were pre-screened. At a minimum 

10-16 panelist were qualified for their ability to recognize fishy/rancid attributes within pet food. 

These qualified individuals were then engaged to test the samples. Data were obtained on ballots 

and summarized. Individual sensory parameter differences were compared against the control. A 

Dunnett statistical test of α of 0.05 was used in which the average value of a sample compared 

against a control to determine if a significant difference occurred.   

Samples were also prepared by homogenizing kibble with mortar and pestle, then 

assessed for headspace volatile analysis by a 2D Gas-Filled Time-Of-Flight (GC-GF-TOF) with 

Solid phase micro-extraction (SPME).  
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 Results 

Sensory analysis was performed by a difference from control (DFC) test, comparing a 

control to each of the treatments when exposed to ambient conditions (23ºC and <70% relative 

humidity). Amongst the low protein diets, the treatment containing fish meal resulted in 

significant differences when compared to the control sample. These samples were described as 

extremely fishy, marine and some slight metallic and painty notes. These same attributes were 

noted in the fish oil however. In contrast, the fish oil and algae source were also both slightly 

higher than the control except for month 12 and 24, but were not statistically different (Figure B-

1). The same was true for the medium protein treatment containing fish meal as it resulted in 

significant differences when compared to the control sample. These samples were described as 

extremely fishy, marine and some slight metallic and painty notes. In contrast, the fish oil and 

algae source were also both slightly higher than the control except for month 6, 1 and 24, but 

were not statistically different (Figure B.2). The high protein treatment containing fish meal 

again resulted in significant differences (P < 0.05) when compared to the control except for 

month 24. The treatments containing fish oil and algae sources of omegas were found to have 

greater fishy, marine and some slight metallic and painty notes. Most results were greater than 

the control except analysis for month 6 and 24 for fish oil and month 18 for algae but were not 

statistically different (Figure B.3).  

The samples stored in ambient conditions (23ºC and <70% relative humidity ) were 

analyzed volatiles in the headspace and peaks for for 1-Octen-3-one, 1-Penten-3-one (CAS), 2, 

4-Heptadienal II, 2, 4-Decadienal, (E,E)-(CAS), 2-Decenal, (E)-(CAS), 3-Octen-2-one (CAS), 4-

Heptenal, (Z), Heptanal (CAS), and Trans-2-CIS-6-Nonadienal, identified, respectively. These 

volatiles are known oxidation indicators and the dietary treatments were compared against the 

control. The low protein treatments formulated with the algae source were different (P < 0.05) 
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from the control for 1-Octen-3-one, 2, 4-Heptadienal II, 3-Octen-2-one (CAS), 4-Heptenal, (Z), 

Heptanal (CAS; Figure B.4). Treatments formulated with the fish oil were also analyzed for key 

volatile indicators and were different (P < 0.05) from the control for 1-Octen-3-one, 1-Penten-3-

one (CAS), 2, 4-Heptadienal II, 2,4-Decenal, (E)-(CAS), 3-Octen-2-one (CAS), 4-Heptenal, (Z), 

Heptanal (CAS), and Trans-2-CIS-6-Nonadienal (Figure B.4). Like the treatments with fish oil, 

the treatments containing fish meal were also different (P < 0.05) from the control in 1-Octen-3-

one, 1-Penten-3-one (CAS), 2, 4-Heptadienal II, 3-Octen-2-one (CAS), 4-Heptenal, (Z), and 

Trans-2-CIS-6-Nonadienal (Figure B.4). The medium protein treatments formulated with the 

algae source was significantly different from the control when analyzed for 1-Octen-3-one, 2, 4-

Heptadienal II, 2, 4-Decadienal, (E,E)-(CAS), 2-Decenal, (E)-(CAS) and  4-Heptenal, (Z) 

(Figure B-5). Treatments formulated with the fish oil were also analyzed for key volatile 

indicators and were different (P < 0.05) from the control for 1-Octen-3-one, 2, 4-Heptadienal II, 

2, 4-Decadienal, (E, E)-(CAS), 2-Decenal, (E)-(CAS), 4-Heptenal, (Z), and Trans-2-CIS-6-

Nonadienal (Figure B.5). Like the treatments for fish oil, the treatments for fish meal also 

differed (P < 0.05) from the control in 2, 4-Heptadienal II, 2-Decenal, (E)-(CAS), 4-Heptenal, 

(Z), and Trans-2-CIS-6-Nonadienal (Figure B.5).  The high protein treatments formulated with 

the algae source was significantly different from the control when analyzed for 2, 4-Heptadienal 

II, 4-Heptenal, (Z), Heptanal (CAS), and Trans-2-CIS-6-Nonadienal (Figure B-6). Treatments 

formulated with the fish oil were also analyzed for key volatile indicators and were significantly 

different (P < 0.05) from the control for 2, 4-Heptadienal II, 2, 4-Decadienal, (E, E)-(CAS), 2-

Decenal, (E)-(CAS), 4-Heptenal, (Z), Heptanal (CAS), and Trans-2-CIS-6-Nonadienal (Figure 

B-6). Like the treatments for fish oil, the treatments for fish meal also differed (P < 0.05) from 
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the control in 2, 4-Heptadienal II, 2, 4-Decadienal, (E, E)-(CAS), 2-Decenal, (E)-(CAS), 4-

Heptenal, (Z), Heptanal (CAS), and Trans-2-CIS-6-Nonadienal (Figure B.6).  

Sensory analysis was performed by a difference from control (DFC) test, comparing a 

control to each of the treatments within an open bag when exposed to stressed environmental 

conditions (35ºC and 75% relative humidity) for 8 weeks. Amongst the low protein diets, the 

treatment containing fish meal resulted in differences when compared to the control sample. 

These samples were described as very fish and marine, with metallic and painty notes as the 

duration of the study progressed. These same attributes were noted in the fish oil however, in 

contrast, the fish oil and algae source were also both higher than the control except for week 

eight for the algae source, but were not different (Figure B-7). The same was true for the medium 

protein treatment containing fish meal as it resulted in significant differences (P < 0.05) when 

compared to the control sample. These samples again, were described as extremely fishy, marine 

and some slight metallic and painty notes. In contrast, the fish oil and algae source were also 

both higher than the control, but were not statistically different (Figure B.8). The high protein 

treatment containing fish meal again resulted in differences (P < 0.05) when compared to the 

control. The treatments containing fish oil were recorded to have greater fishy, marine and some 

slight metallic and painty notes and results were greater than the control. Both fish oil and algae 

meal treatments were not statistically different from the control (Figure B.9). 

Sensory analysis was performed by a difference from control (DFC) test, comparing a 

control to each of the treatments within a closed bag when exposed to stressed environmental 

conditions (35ºC and 75% relative humidity) for 24 weeks. Amongst the low protein diets, the 

treatment containing fish meal resulted in significant differences when compared to the control 

sample. These samples were described as very fish and marine, with metallic and painty notes as 



104 

 

the duration of the study progressed. These same attributes were noted in the fish oil however, in 

contrast, the fish oil was higher than the control except for week 24, but were not different (P < 

0.05;Figure B-10). The treatments containing algae source of omegas were lower than those 

reported in the control, with the exception of the initial and when analyzed in week six. The 

same was true for the medium protein treatment containing fish meal as it resulted in significant 

differences (P < 0.05) when compared to the control sample. These samples again, were 

described as extremely fishy, marine and some slight metallic and painty notes. In contrast, the 

fish oil was both higher than the control, with the exception of week 13, but was not statistically 

different. The treatment containing algae meal was the least different when compared to the 

control (Figure B.11). The high protein treatment containing fish meal resulted in significant 

differences (P < 0.05), except for week 18 when compared to the control. The treatments 

containing fish oil were recorded to have greater fishy, marine and some slight metallic and 

painty notes and results were greater than the control with a significant difference at week 18. 

The treatments containing algae meal were not statistically different from the control (Figure 

B.12). 
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 Discussion 

In the 24 month sensory analysis, all cases except the dietary treatment with high protein 

at 24 months were not different between the three treatments (Figure B-3). This corresponds to 

the headspace results wherein all three treatments are different from the control (Figure B.6).  All 

treatments containing fish meal were defined as very fishy, marine, slight metallic and painty 

notes. The treatments containing fish oil were also described as having slightly fishy attributes 

where these characteristics were not mentioned for the treatment containing algae meal.  

Across the volatiles, a few displayed significant differences amongst the dietary 

treatments when compared to the control, as notated with asterisks in Figure B.4. For example, 

4-Heptenal is a well-known odor active compound that is associated with oxidation and 

displayed differences between the dietary treatments. Although each treatment displayed a 

statistically elevated level when compared to the control, DHAGold also showed a significantly 

lower level when compared to the fish meal and fish oil. This same pattern occurred for other 

volatile compounds when compared; for example, 2, 3-heptadienaland and 2, 6-nonadienal 

(Figure B.4, B.5, B.6). In the 24 month analysis, only the dietary treatment with high protein 

resulted in no significant difference between the three treatments, correlating with the headspace 

results where all three treatments are significantly different from the control (Figure B.6).    

Over an eight week open-bag shelf and sensory analysis study, the results indicate that 

within each of the dietary treatments, the fish meal gave the worst sensory analysis and 

consistently was significantly different from the control sample. Attributes common with 

rancidity and fishy notes were described in the fish meal and fish oil treatments, however the fish 

oil and algae source treatments had similar sensory properties when compared to the control.   

Over a 24 week, closed-bag shelf life and sensory analysis study, the results indicate that 

within each of the dietary treatments, the fish meal gave the worst sensory analysis and 
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consistently was significantly different from the control sample. Attributes common with 

rancidity and fishy notes were described in the fish meal and fish oil treatments, however the fish 

oil and algae source treatments had similar sensory properties when compared to the control. As 

the samples aged across the study, the difference amongst the samples began to diminish. This is 

contributed to the decline in quality of the control sample as reports of rancid attributes were 

noted.  

  



107 

 

 Conclusion 

During the course of the shelf-life sensory analysis, the results indicate that within each 

of the dietary treatments, the fish meal resulted in the worst sensory scores and consistently was 

different from the control sample. The sensory results were in agreement with the headspace 

analysis for samples stored in ambient conditions over the month 24 shelf life analysis -- several 

oxidation indicators were higher in the fish meal and fish oil samples when compared to 

DHAGold and the control. When consumers feed their pet’s algal sources of DHA, the decreased 

oxidation indicators may provide a more pleasant experience than the volatiles found from the 

fish sources.    
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Figure A.1. The effects of storage over 24 months in ambient conditions (23°C, <70%RH) on 

sensory scores for low protein dietary treatment. Results with (*) denote samples were 

significantly different at α = 0.05 from the control at the same time period. 
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Figure A.2. The effects of storage over 24 months in ambient conditions (23°C, 

<70%RH) on sensory scores for medium protein dietary treatments. Results with (*) denote 

samples were significantly different at α = 0.05 from the control at the same time period. 
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Figure A.3. The effects of storage over 24 months in ambient conditions (23°C, <70%RH) on 

sensory scores for high protein dietary treatments. Results with (*) denote samples were 

significantly different at α = 0.05 from the control at the same time period. 
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Figure A.4. The effects of storage over 24 months in ambient conditions (23°C, <70%RH) on 

volatile indicators (ppb) for low protein dietary treatments. Results with (*) denote samples were 

significantly different at α = 0.05 from the control at the same time period. (a) Inset showing 

zoomed region for 4-Heptenal. 
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Figure A.5. The effects of storage over 24 months in ambient conditions (23°C, <70%RH) on 

volatile indicators (ppb) for medium protein dietary treatments. Results with (*) denote samples 

were significantly different at α = 0.05 from the control at the same time period. (a) Inset 

showing zoomed region for 4-Heptenal.  

 

 



114 

 

Figure A.6. The effects of storage over 24 months in ambient conditions (23°C, <70%RH) on 

volatile indicators (ppb) for high protein dietary treatments. Results with (*) denote samples 

were significantly different at α = 0.05 from the control at the same time period. (a) Inset 

showing zoomed region for 4-Heptenal. 
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Figure A.7. The effects of elevated storage over 8 weeks in stressed conditions (35°C, <75%RH) 

on volatile indicators (ppb) for low protein dietary treatments within an open bag. Results with 

(*) denote samples were significantly different at α = 0.05 from the control at the same time 

period.  
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Figure A.8. The effects of elevated storage over 8 weeks in stressed conditions (35°C, <75%RH) 

on volatile indicators (ppb) for medium protein dietary treatments within an open bag. Results 

with (*) denote samples were significantly different at α = 0.05 from the control at the same time 

period.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



117 

 

Figure A.9. The effects of elevated storage over 8 weeks in stressed conditions (35°C, <75%RH) 

on volatile indicators (ppb) for high protein dietary treatments within an open bag. Results with 

(*) denote samples were significantly different at α = 0.05 from the control at the same time 

period.  
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Figure A.10. The effects of elevated storage over 24 weeks in stressed conditions (35°C, 

<75%RH) on volatile indicators (ppb) for low protein dietary treatments within a closed bag. 

Results with (*) denote samples were significantly different at α = 0.05 from the control at the 

same time period.  
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Figure A.11. The effects of elevated storage over 24 weeks in stressed conditions (35°C, 

<75%RH) on volatile indicators (ppb) for medium protein dietary treatments within a closed bag. 

Results with (*) denote samples were significantly different at α = 0.05 from the control at the 

same time period.  
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Figure A.12. The effects of elevated storage over 24 weeks in stressed conditions (35°C, 

<75%RH) on volatile indicators (ppb) for high protein dietary treatments within a closed bag. 

Results with (*) denotes samples were significantly different at α = 0.05 from the control at the 

same time period.  

 


