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Abstract 

The trade of food, plant, and animal products has increased the worldwide movement and 

establishment of exotic pathogens with dramatic negative impacts on plant systems. Fusarium 

proliferatum is a broad host-range pathogen and among the most common maize pathogens 

globally. It is often seed-borne and symptomless in maize, making it a high risk for introduction 

in maize and other grains. Considering the global distribution of maize and the wide host range 

and production of mycotoxins by F. proliferatum, a better understanding of its life history is 

needed. To provide markers for tracking F. proliferatum in laboratory experiments, strains of F. 

proliferatum were transformed to express a green fluorescent protein (GFP). Active dispersal (at 

least 1.5cm at 25°C and -50mb soil matric potential) and colonization of organic matter in 

nonsterile field soil was demonstrated in soil microcosms. Fusarium verticillioides is commonly 

isolated from maize seed also colonized by F. proliferatum. A red fluorescent (mRFP) F. 

verticillioides transformant was developed to study competition with F. proliferatum. For 

quantification in host tissues, a TaqMan multiplex qPCR protocol was developed using primer 

and probe sets targeting fragments of the green and red fluorescence genes to detect F. 

proliferatum and F. verticillioides, respectively. Prior colonization of maize tissues by F. 

verticillioides (p=0.6749) and other seed-borne microorganisms (p=0.1910) did not affect 

subsequent colonization by F. proliferatum. Genotyping-by-sequencing (GBS) was used to 

identify genetic markers in F. proliferatum. Primer sets based GBS markers were designed to 

allow detection of specific isolates in field experiments. F. proliferatum populations were 

characterized from maize seed prior to planting and again after harvest. End-point PCR identified 

F. proliferatum isolates containing the GBS marker. AFLP-fingerprinting indicated that 23 of the 

817 F. proliferatum isolates contained the molecular marker and were genetically related to the 

original isolate. Based on the subclade and percentage similarity in UPGMA phylogenetic trees, 

and the population grouping observed in STRUCTURE and Principal Coordinate Analysis, these 

isolates could have a single origin and be clonal. Understanding the life cycle of F. proliferatum 

is critical for learning more about the risk of introducing seed-borne exotic isolates into new 

environments. 
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Abstract 

The trade of food, plant, and animal products has increased the worldwide movement and 

establishment of exotic pathogens with dramatic negative impacts on plant systems. Fusarium 

proliferatum is a broad host-range pathogen and among the most common maize pathogens 

globally. It is often seed-borne and symptomless in maize, making it a high risk for introduction 

in maize and other grains. Considering the global distribution of maize and the wide host range 

and production of mycotoxins by F. proliferatum, a better understanding of its life history is 

needed. To provide markers for tracking F. proliferatum in laboratory experiments, strains of F. 

proliferatum were transformed to express a green fluorescent protein (GFP). Active dispersal (at 

least 1.5cm at 25°C and -50mb soil matric potential) and colonization of organic matter in 

nonsterile field soil was demonstrated in soil microcosms. Fusarium verticillioides is commonly 

isolated from maize seed also colonized by F. proliferatum. A red fluorescent (mRFP) F. 

verticillioides transformant was developed to study competition with F. proliferatum. For 

quantification in host tissues, a TaqMan multiplex qPCR protocol was developed using primer 

and probe sets targeting fragments of the green and red fluorescence genes to detect F. 

proliferatum and F. verticillioides, respectively. Prior colonization of maize tissues by F. 

verticillioides (p=0.6749) and other seed-borne microorganisms (p=0.1910) did not affect 

subsequent colonization by F. proliferatum. Genotyping-by-sequencing (GBS) was used to 

identify genetic markers in F. proliferatum. Primer sets based GBS markers were designed to 

allow detection of specific isolates in field experiments. F. proliferatum populations were 

characterized from maize seed prior to planting and again after harvest. End-point PCR identified 

F. proliferatum isolates containing the GBS marker. AFLP-fingerprinting indicated that 23 of the 

817 F. proliferatum isolates contained the molecular marker and were genetically related to the 

original isolate. Based on the subclade and percentage similarity in UPGMA phylogenetic trees, 

and the population grouping observed in STRUCTURE and Principal Coordinate Analysis, these 

isolates could have a single origin and be clonal. Understanding the life cycle of F. proliferatum 

is critical for learning more about the risk of introducing seed-borne exotic isolates into new 

environments. 

 

 



vi 

Table of Contents 

List of Figures ................................................................................................................................ ix 

List of Tables ............................................................................................................................... xiii 

Acknowledgements ...................................................................................................................... xvi 

Dedication ................................................................................................................................... xvii 

 Literature Review ......................................................................................................... 1 

Biosecurity in Agriculture .......................................................................................................... 1 

Biosecurity in plant pathosystems .............................................................................................. 3 

The host: Zea mays ..................................................................................................................... 4 

The fungus: Fusarium proliferatum ........................................................................................... 6 

Development of diagnostic and detection methods in Fusarium ............................................. 10 

Objectives ................................................................................................................................. 12 

Figures and Tables .................................................................................................................... 14 

References ................................................................................................................................. 19 

 Significance and Description of Methodology .......................................................... 32 

 Active dispersal through soil and colonization of organic matter by Fusarium 

proliferatum ........................................................................................................................... 34 

Abstract ..................................................................................................................................... 34 

Introduction ............................................................................................................................... 34 

Materials and Methods .............................................................................................................. 36 

Fusarium proliferatum isolates ............................................................................................. 36 

Agrobacterium tumefaciens-mediated transformation of isolate Fp-70-2-5 ......................... 36 

Transformant characterization .............................................................................................. 36 

Soil collection, characterization, and determination of soil water retention curve ............... 37 

Source of inoculum and bait generation ............................................................................... 38 

Colonization of baits and statistical analyses ........................................................................ 38 

Results ....................................................................................................................................... 39 

Characterization of the transformed strain ............................................................................ 39 

Colonization of baits at different temperatures, distances, and soil matric potentials .......... 40 

Discussion ................................................................................................................................. 41 



vii 

Figures and Tables .................................................................................................................... 45 

References ................................................................................................................................. 48 

 Interspecific competition for colonization of maize between Fusarium proliferatum 

and Fusarium verticillioides .................................................................................................. 53 

Abstract ..................................................................................................................................... 53 

Introduction ............................................................................................................................... 54 

Materials and Methods .............................................................................................................. 55 

Fusarium isolates .................................................................................................................. 55 

Agrobacterium tumefaciens-mediated transformation of isolates and characterization of 

transformants ......................................................................................................................... 56 

Southern blot analysis ........................................................................................................... 56 

Source of inoculum and bait plants generation ..................................................................... 57 

Colonization of plants and analyses from RT-PCR data ...................................................... 57 

Primer and probe design ....................................................................................................... 58 

Real-time qPCR amplification of treatments ........................................................................ 59 

Real-time qPCR sensitivity and spiked assays ..................................................................... 59 

Results ....................................................................................................................................... 60 

Transformants characterization ............................................................................................. 60 

Southern blot analysis ........................................................................................................... 60 

Sensitivity and specificity assay of primers and probes and spiked assays .......................... 60 

Colonization of plants and analyses from RT-qPCR data .................................................... 61 

Discussion ................................................................................................................................. 63 

Figures and Tables .................................................................................................................... 66 

References ................................................................................................................................. 82 

 Introduction and dissemination of Fusarium proliferatum in maize seed ................. 85 

Abstract ..................................................................................................................................... 85 

Introduction ............................................................................................................................... 86 

Materials and Methods .............................................................................................................. 87 

Fusarium isolates collected from maize seeds ...................................................................... 87 

Genotyping-by-sequencing ................................................................................................... 87 

Restriction-Digestion and Ligation ................................................................................... 87 



viii 

Multiplexing and Amplification ....................................................................................... 87 

Filtering of MiSeq (GBS) data .......................................................................................... 88 

Design of specific primers using Stacks ........................................................................... 88 

Field experiment and data collection .................................................................................... 89 

Amplified Fragment Length Polymorphism Analysis .......................................................... 90 

Restriction-Digestion and Ligation ................................................................................... 90 

Pre-selective Amplification .............................................................................................. 90 

Selective Amplification .................................................................................................... 91 

Preparation of DNA samples for analysis ......................................................................... 91 

AFLP Marker Scoring and Error Rate Estimation ............................................................ 91 

AFLP Data Analysis ......................................................................................................... 92 

Results ....................................................................................................................................... 92 

Isolates collected from maize seeds ...................................................................................... 92 

Use of Stacks to analyze GBS data and preliminary data ..................................................... 93 

Field Experiments ................................................................................................................. 94 

AFLP fingerprinting of isolates ............................................................................................ 94 

Analyses of AFLP data ......................................................................................................... 95 

Discussion ................................................................................................................................. 97 

Figures and Tables .................................................................................................................. 101 

References ............................................................................................................................... 183 

 Conclusions and Future Directions .......................................................................... 189 

 

  



ix 

List of Figures 

Figure 1.1 United States maize acreage and yield production (in bushels per harvested acre). 

Figure taken from the Economic Research Service (ERS) component of the United States 

Department of Agriculture (USDA). .................................................................................... 14 

Figure 1.2 United States domestic use of maize. Figure taken from ERS-USDA. ....................... 15 

Figure 1.3 Production and revenue produced by top commodities in the United States in 2012. 

Figure taken from the Food and Agriculture Organization (FAO) of the United Nations. .. 16 

Figure 1.4 Three pathways of maize infection by Fusarium verticillioides. Figure taken from 

Battilani and Rossi, 2003. ..................................................................................................... 17 

Figure 3.1 The relationships among soil temperature, source-to-bait distance, soil matric 

potential on hyphal growth through non-sterile soil and colonization of organic matter by 

Fusarium proliferatum strain Fp-GH. The main effects (soil temperature, source-to-bait 

distance, soil matric potential) and their interactions were statistically significant.............. 45 

Figure 3.2 Covariance model fit for bait colonization data explains 78.8% of the variance 

(R2=0.7881). Predicted colonization was based on linear models (Figure 3.1) of bait 

colonization by distance, log-transformed soil matric potential (SMP), and the distance by 

SMP interaction for each of three temperatures. .................................................................. 46 

Figure 4.1 Graphical representation of Treatment 3 showing the plant parts (stem and roots) and 

the 3 plant segments for roots and stem. (A) Heat-treated cured seeds are planted with non-

viable heat-killed seed re-colonized with Fp-G. (B) The heat-killed re-colonized seed 

(sources of inoculum) introduces Fp-G effectively into the soil and colonizes tissue of the 

bait plant. ............................................................................................................................... 66 

Figure 4.2 Southern blot results for Fp-G and Fv-R suggest one insertion of the respective 

fluorescence gene in each genome. This suggests that GFP is found one time in the F. 

proliferatum genome and mRFP is found one time in the F. verticillioides genome. The 

respective parental types of Fp-G and Fv-R did not have the respective fluorescence gene.67 

Figure 4.3 Ct values and standard deviation detected for the assays for (A) Fp-G and (B) Fv-R. 

Fp-G assays show high sensitivity and specificity (no cross-reaction with Fv-R) on its 

detection in spiked and non-spiked assays. Fv-R assays show high sensitivity and specificity 

(no cross-reaction with Fp-G) on its detection in spiked and non-spiked assays. ................ 69 



x 

Figure 4.4 Standard curves were obtained for all real-time qPCR reactions. On the x-axis DNA 

concentrations were logarithmically transformed to obtain a linear graph. Reaction 

efficiency was calculated as described in the Bio-rad real-time PCR applications guide. (A) 

Fp-G and (B) Fv-R sensitivity assays, (C) Fp-G and (D) Fv-R sensitivity and specificity 

assays, (E) Fp-G and (F) Fv-R sensitivity and specificity inhibition-assays spiked with 

maize root extract, and (G) Fp-G and (H) Fv-R sensitivity and specificity inhibition-assays 

spiked with maize stem extract. ............................................................................................ 71 

Figure 5.1 Identification of polymorphic loci and single nucleotide polymorphisms (SNPs) of 

GBS samples in Stacks. ...................................................................................................... 101 

Figure 5.2 Stacks aligns a consensus sequence to the complete genome of F. proliferatum to 

identify polymorphisms (not shown). The identified polymorphisms are highlighted in light 

blue for easy interpretation of results. ................................................................................. 102 

Figure 5.3 Multiplex end-point PCR assay using strain-specific primers for isolates Fp-49-16-4 

and Fp-95-8-4 in 58 different F. proliferatum isolates showed specificity of the primers. Fp-

49-16-4 had a 498bp amplicon and Fp-95-8-4 had a 454bp amplicon. 60 additional F. 

proliferatum isolates were tested in the exclusivity panels. ................................................ 103 

Figure 5.4 Additional Fusarium isolates were collected from DuPont Pioneer maize hybrid 

33D49 and hybrid P1395R; the same seed lots that were used for the original GBS studies 

(white numbers). Of the 63 isolates collected from hybrid 33D49, three (numbers 25, 41 and 

59) contained the strain-specific molecular marker. Of the 61 isolates collected from hybrid 

P1395R, none had the molecular marker unique to isolate Fp-49-16-4. Additional Fusarium 

isolates were collected from the ears of the maize plants from the field experiment (yellow 

color) to test for the presence of the strain-specific molecular markers identified with GBS. 

Of the 35 isolates collected from hybrid 33D49, one of them (number 7) had the strain-

specific molecular marker. Of the 35 isolates collected from hybrid P1395R, none had the 

molecular marker unique to isolate Fp-49-16-4. The molecular marker for isolate Fp-49-16-

4 was 498 base pairs. Every gel had a positive control in the first lane (isolate Fp-49-16-4) 

and a negative control in the second lane (water) to detect potential cross-contamination 

between samples. Isolates were confirmed to be Fusarium by partial amplification of the 

TEF-1α gene (750 base pairs). ............................................................................................ 105 



xi 

Figure 5.5 Primers designed for isolate Fp-95-8-4 amplified a 454bp fragment in all the isolates 

collected from maize hybrid 33D49. This set of primers was not used in the field 

experiments as it was not specific to isolate Fp-95-8-4. ..................................................... 106 

Figure 5.6 UPGMA clustering tree identified two major clades: A) all F. proliferatum isolates 

and B) all F. verticillioides isolates. The clade with F. proliferatum isolates was divided into 

one outlier (Fp-49-2-2-666), and a subclade with all the other isolates. All isolates with the 

strain-specific molecular marker grouped in the same subclade with the two positive control 

replicates (Fp1-49-16-4 and Fp2-49-16-4) and separate from the other F. proliferatum 

isolates. 19 of those 23 isolates had at least 95% similarity with the two replicates. AFLP 

error rate was calculated as 6.36%; therefore, all isolates having the strain-specific 

molecular marker that have a similarity of 94% or greater are likely to be clonal. ............ 108 

Figure 5.7 UPGMA clustering only including F. proliferatum isolates showed the same results as 

the UPGMA analysis including all isolates. The isolates were divided into one outlier (Fp-

49-2-2-666), and a clade with all the other isolates. The 23 isolates with the unique 

molecular marker grouped in the same subclade with the two positive control replicates 

(Fp1-49-16-4 and Fp2-49-16-4). 19 of those 23 isolates had at least 95% similarity with the 

two replicates and they likely have a single origin and are clonal. This is explained by the 

AFLP error rate which was calculated to be 6.36%. ........................................................... 110 

Figure 5.8 STRUCTURE analysis determined the presence of two populations; F. proliferatum 

population is predominantly red and F. verticillioides population is predominantly green. 

Bars with both green and red indicate similarity of some loci............................................ 112 

Figure 5.9 Evanno’s delta K plot indicates two populations; STRUCTURE analyses of all 

isolates were done assuming two population. ..................................................................... 113 

Figure 5.10 STRUCTURE analysis of just F. proliferatum isolates determined the presence of 

two populations, one that includes the isolates with the strain-specific molecular marker 

(green), and the other one that includes all the other F. proliferatum isolates (red). Bars with 

both green and red indicate similarity of some loci. ........................................................... 114 

Figure 5.11 Evanno’s delta K plot indicates two populations; STRUCTURE analyses of F. 

proliferatum isolates were done assuming two population. ................................................ 115 



xii 

Figure 5.12 Principal coordinates analysis divided all the isolates into two clusters, F. 

proliferatum isolates (red) and F. verticillioides isolates (green). Coordinate 1 accounts for 

29.9% of the variation and coordinate 2 accounts for 15.36 % of the variation. ................ 116 

Figure 5.13 Principal coordinates analysis divided the F. proliferatum isolates in two clusters. 

Isolates with the strain-specific molecular marker (related to Fp-49-16-4; green) grouped 

close to each other in the same cluster with the other F. proliferatum isolates (red). 

Coordinate 1 accounts for 29.9% of the variation and coordinate 2 accounts for 15.36 % of 

the variation. ....................................................................................................................... 117 

Figure 5.14 Principal coordinates analysis divided the F. proliferatum isolates in two clusters, F. 

proliferatum isolates related to Fp-49-16-4 (green), and the other F. proliferatum isolates 

(red). Coordinate 1 accounts for 27.26% of the variation and coordinate 2 accounts for 

11.84% of the variation. ...................................................................................................... 118 

Figure 5.15 AMOVA analysis revealed that there was slightly more molecular variation among 

isolates between populations (species) (52%) than among isolates within population 

(species) (48%) for all isolates. ........................................................................................... 119 

Figure 5.16 AMOVA analysis for the F. proliferatum isolates revealed that there was more 

molecular variation within F. proliferatum populations (64%) than among F. proliferatum 

populations (36%). The two populations are F. proliferatum isolates related to Fp-49-16-4 

(unique molecular marker) and all the other F. proliferatum isolates.. .............................. 120 

Figure 5.17 STRUCTURE analysis of all isolates using k=8 (8 populations) gives a graphic 

representation of the diversity and molecular differences within and among populations. 

The variation among F. proliferatum isolates is higher when compared to the variation 

found among the F. verticillioides isolates. ........................................................................ 121 

Figure 5.18 STRUCTURE analysis of only F. proliferatum isolates using k=8 (8 population 

structures) gives graphic representation of molecular differences within and among 

populations. The variation among the F. proliferatum isolates is higher when compared to 

the variation found among the F. proliferatum isolates with the unique molecular marker.

 ............................................................................................................................................. 122 

 

  



xiii 

List of Tables 

Table 1.1 World production (tons) estimates for maize, wheat and rice production. Table 

generated using FAO data. .................................................................................................... 18 

Table 3.1 The effects of soil temperature, source-to-bait distance, and soil matric potential and 

their interactions on hyphal growth through non-sterile soil and colonization of organic 

matter by Fusarium proliferatum strain Fp-GH. .................................................................. 47 

Table 4.1 Real-time qPCR primer and probe sequences for Fp-G and Fv-R, and Southern blot 

probe sequences for Fp-G and Fv-R. The Fp-G primers produced a 134bp amplicon, and the 

Fv-R primers produced a 132bp amplicon. ........................................................................... 73 

Table 4.2 Competition between Fusarium proliferatum (Fp-G) and F. verticillioides (Fv-R) for 

colonization of maize seedlings. Maize seed were heat-cured in treatments 1, 2, 3, 4, 8, and 

9. ............................................................................................................................................ 75 

Table 4.3 Competitive colonization of maize plants by Fusarium proliferatum strain Fp-G in 

treatments 1, 2, 3, 5 and 9. Colonization of maize plants from sources of inoculum 

(treatments 1, 3 and 5) showed significant differences from the colonization of maize plants 

from the inoculated seeds (treatments 2 and 9). Colonization in treatment 3 (cured plants) 

was not significantly different from that in treatments 1 (comparison B) and 5 (comparison 

H). Comparisons were done using amount of Fp-G biomass which was calculated from the 

Ct values detected by real-time qPCR. ................................................................................. 76 

Table 4.4 Colonization of roots by Fp-G was higher than that of stems. Colonization of plant 

segments by Fp-G decreased as the distance from the seed increased. ................................ 77 

Table 4.5 Colonization of plant parts (roots and stems) and segments (1, 2 and 3) by Fp-G. Roots 

were more colonized than stems, and segments closer to the seed were more colonized than 

those farther away. ................................................................................................................ 78 

Table 4.6 Competitive colonization of maize plants by Fusarium verticillioides strain Fv-R in 

treatments 1, 2, 4, 6 and 8. Colonization of maize plants from sources of inoculum 

(treatments 2, 4 and 6) showed significant differences from the colonization of maize plants 

from the inoculated seeds (treatments 1 and 8). Colonization in treatment 4 (cured plants) 

was not significantly different from that in treatments 2 (comparison O) and 6 (comparison 



xiv 

R). Comparisons were done using amount of Fv-R biomass which was calculated from the 

Ct values detected by real-time qPCR. ................................................................................. 79 

Table 4.7 Colonization of roots by Fv-R was higher than that of stems. Colonization of plant 

segments by Fv-R decreased as the distance from the seed increased. ................................ 80 

Table 4.8 Colonization of plant parts (roots and stems) and segments (1, 2 and 3) by Fv-R. Roots 

were more colonized than stems, and segments closer to the seed were more colonized than 

those farther away. ................................................................................................................ 81 

Table 5.1 Primers for partial amplification of the TEF-1α gene were used in end-point PCR to 

confirm that the isolates belong to the genus Fusarium. .................................................... 123 

Table 5.2 Primers for partial amplification of the intergenic spacer (IGS) of rDNA were used in 

end-point PCR to identify F. proliferatum and F. verticillioides isolates. ......................... 124 

Table 5.3 Stacks identified seven F. proliferatum isolates (Fp) having unique molecular markers. 

Note that Fp-49-16-4 had the strain-specific locus with 6 SNPs not found in other isolates.

 ............................................................................................................................................. 125 

Table 5.4 GBS was used to identify loci unique to F. proliferatum strains. These strain-specific 

loci were used to design specific primers for use in end-point PCR for their identification 

(Fp-49-16-4 and Fp-95-8-4). Exclusivity panels revealed specificity of the primers. ........ 126 

Table 5.5 The amplicons generated by the strain-specific primers for Fp-49-16-4 and Fp-95-8-4- 

revealed similarity to F. fujikuroi draft genome. This can be explained by the high similarity 

between F. proliferatum and F. fujikuroi; however, the polymorphisms in the strain-specific 

molecular marker can still be used to identify the F. proliferatum isolates. ...................... 127 

Table 5.6 Germination and infection rates of seeds collected from the field. Infection and 

germination rates were determined by plating seed on Nash-Snyder medium. .................. 128 

Table 5.7 Percentage infection and percentage germination of kernels collected from hybrids 

33D49 (49) and P1395R (95) in each plot and subplot. ..................................................... 130 

Table 5.8 A total of 1,855 isolates were collected from the field. 817 were found to be F. 

proliferatum (Fp) and 751 were found to be F. verticillioides (Fv). 287 isolates could not be 

identified as F. proliferatum or F. verticillioides. 23 of the F. proliferatum isolates coming 

from hybrid 33D49 collected in the field were found to have the strain-specific molecular 

marker. ................................................................................................................................ 131 



xv 

Table 5.9 Number of F. proliferatum and F. verticillioides isolates cultured from kernels of 

hybrids 33D49 and P1395R from each plot and subplot. ................................................... 177 

Table 5.10 Eight primer combinations were tested with 6 isolates for use in selective 

amplification in the AFLP assay. ........................................................................................ 178 

Table 5.11 Number of alleles found in each of the 6 different isolates (5 F. proliferatum (Fp) and 

1 F. verticillioides (Fv)) tested. ........................................................................................... 179 

Table 5.12 Error rate estimation in 3 AFLP runs was found to average 6.36%. ........................ 180 

Table 5.13 Summary of analysis of molecular variance (AMOVA) of F. proliferatum and F. 

verticillioides isolates. Probability for ФPT is based on standard permutation across the full 

data set. ФPT = AP / (WP + AP) = AP / TOT (where AP, Est. Var among populations; WP, 

Est. Var. within populations). Levels of significance are based on 999 iterations. ФPT is 

significant (p-value 0.001) which suggests the two populations (F. proliferatum and F. 

verticillioides) are distinct. .................................................................................................. 181 

Table 5.14 Summary of analysis of molecular variance (AMOVA) of F. proliferatum isolates. 

Levels of significance are based on 999 iterations. ФPT is significant (p-value 0.001) which 

suggests the two populations are distinct. ........................................................................... 182 

 

  



xvi 

Acknowledgements 

I would like to thank Dr. Jim Stack for his guidance, support, and encouragement during my 

years at Kansas State University. I am very grateful to have been part of the amazing team in the 

Biosecurity lab. I would also like to thank my committee members, Dr. Doug Jardine, Dr. 

Barabara Valent, and Dr. Jacqueline Fletcher for all their help and support. 

I am so thankful to the wonderful people in the Biosecurity lab for all their advice and 

mentoring, and also for the support of the friends I made during my time at K-State. 

Finally, I would like to acknowledge my wife Rebekah for cheering and supporting me, and 

enduring a second Ph.D. experience, and my son Gabriel for always making me smile. Also, my 

family in Peru and the U.S. for always being there for me in spite of the distance. 

 

  



xvii 

Dedication 

To my wife and son for always showing me unconditional love. 

  



1 

Literature Review 

 Biosecurity in Agriculture 

Agriculture in the 21st century is under pressure to provide sufficient food for billions of people 

worldwide and farmers are highly dependent on crop protection to sustain or increase such 

production (Mujerki and Chincholkar, 2007). The challenge to feed 9.6 billion people by 2050 

(2.6 billion more than now or 37% increase in population) involves increasing the yield and 

quality of staple crops, increasing resistance to biotic and abiotic stresses, and protecting crops in 

the field and after harvest. Crop yields have increased significantly due to improved pest control 

management as well as plant breeding and genomic approaches seeking for resistance and higher 

yields. However, at present, the rate of increase in yield potential is much less than the expected 

increase in demand for maize, wheat, and rice, which provide two-thirds of energy in human 

diets (Cassman, 1999). Global rates of yield increases have declined for most major cereal crop 

species since the start of the green revolution in the 1960s (Grassini et al., 2013, Cassman, 1999; 

Fischer and Edmeades, 2010; Hafner, 2003). 

 

Chemical pesticides have improved the quality and quantity of food production worldwide 

(Tilman et al., 2002). Nevertheless, we have also seen an increase in concern for the 

environment and non-target organisms with the increase in pesticide use (Flexner et al., 1986; 

Pimentel, 1995). The increase of long distance commodity trade worldwide is increasing the 

introduction of exotic pathogens and pests into new environments with known and potentially 

unknown consequences for which there may not be pesticides for management (Elmer et al., 

1999; Elmer, 2001). The misuse and over use of chemical pesticides can result in the evolution 

of new pathogen and pest genotypes with acquired resistance to the chemicals; resistant pathogen 

and pest genotypes become hard to manage (Koenraadt et al., 1992; Jones and Walker, 1976; 

Stanis and Jones, 1985; Avenot and Michailides, 2010). 

 

Invasive species are often introduced in imported goods, or as stowaways on products, ships or 

shipping containers (Elmer et al., 1999; Elmer, 2001, Anagnostakis, 1987). For example, it is 

suspected that the bacterium Candidatus Liberibacter asiaticus, which causes the disease 

huanglongbing in citrus, was introduced in Florida in 2005 by the illegal importation of plant 
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material (Michaud, 2004). Moreover, there is a positive correlation between the magnitude of 

imports and the number of invasive species and their rate of introduction (Dalmazzone, 2000). 

For this reason, the interest in agricultural biosecurity has risen considerably over the last years 

in parallel with the increased trade in plant products (Stack and Fletcher, 2007; Stack et al., 

2006). 

 

The introduction of pathogens can also result from legal trade of asymptomatic but contaminated 

plant material (Fletcher et al., 2006; Kim et al., 2003; Williamson et al., 2002). This can occur 

when a pathogen is seed-borne and/or symptomless so inspection at ports of entry does not detect 

it. For example, it is suspected that the oomycete Phytophthora ramorum, which causes sudden 

oak death, was accidentally introduced into the United States by the importation of plants from 

Europe (Rizzo et al., 2002). Furthermore, the introduction of a pathogen can also happen 

inadvertently on shoes or clothing, trade commodities, migrating wildlife, and other moving 

entities (Stack et al., 2006). 

 

Early detection of exotic pathogens introduced in seed or symptomless plant material is often 

complicated by the large geographical areas that are devoted to agriculture. For example, every 

year the US plants on average 90 million acres (364,217 km2) of maize (United States 

Department of Agriculture - USDA, 2015) (Figure 1.1); approximately the size of Japan or 

Norway, and bigger than Germany and Malaysia. In addition, the 2012 U.S. census of agriculture 

revealed that there were 2.1 million farms covering an area of 3,698,827 km2 (USDA Census, 

2012). 

 

As a consequence, new diseases caused by introduced pathogens may not be detected until after 

several generations of the pathogen are produced in the field (Madden and Wheelis, 2003). For 

example, Candidatus Liberibacter asiaticus was first detected in Brazil in 2004, but researchers 

believe that it was introduced 10 years prior to 2004 (Gottwald et al., 2007). 

 

The impacts of exotic pathogens introduced into the U.S. are disastrous, as it could result in a 

ban placed upon imports of plant materials from the U.S. by members of the World Trade 

Organization (Nutter and Madden, 2005), which could result in huge economic losses. In 
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addition, introduced pathogens have had significant social impacts; e.g., the introduction of 

Phytophthora infestans into Ireland caused the devastating potato famine in the 1840s. 

 

 Biosecurity in plant pathosystems 

Humans have been moving plants and plant products for thousands of years, perhaps from 8000 

BC (Huxley, 1978), to the first nomadic cultures (Zhang et al., 2007), to explorers and colonists 

moving exotic crops between continents (Wyman, 1968), to the current globalized trade practices 

(Anderson et al., 2004). These human activities have affected the global distribution and 

diversity of plant pathogens (Goss, 2015), to such large extent that some crops and countries 

have been exposed to most of the known plant pathogens (Bebber et al., 2014). Although many 

plant pathogens are cosmopolitan in distribution, populations often differ in virulence, resistance 

to chemical controls, and genetic diversity (Goss, 2015). 

 

The use of new genotyping techniques and whole-genome sequencing has facilitated the study of 

the movement of these pathogens (Goss, 2015). Genome sequencing allows complete genotyping 

of plant pathogens, allowing the generation of high-quality molecular markers that can be used 

for analysis of migration of pathogens or study emerging and clonal pathogens with little genetic 

variation (Goss, 2015). 

 

Baysal et al., (2010) used inter-simple sequence repeats (ISSR) markers to study the 

dissemination of bacterial canker caused by Clavibacter michiganensis subsp. michiganensis 

(Cmm) in southern Turkey. ISSR primers that showed high polymorphism ratios were used to 

characterize Cmm strains and study their dissemination by seeds and seedlings. Another 

investigation used ISSR and sequence-related amplified polymorphism (SRAP) markers to study 

the genetic diversity of races of Fusarium oxysporum f. sp. lycopersici and F. oxysporum f. sp. 

radicis, the causal agents of root rot and crown rot diseases (Baysal et al., 2009). 

 

The development of these advanced genotyping methods and whole-genome sequencing allow 

the study of the introduction, establishment, and dispersal of plant pathogens. These tools are 

important considering the global movement and trade of plants and plant products. The 

information provided by these tools is valuable in identifying sources of plant pathogens, and 
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pathways of dispersal that can be used to reduce pathogen movement, or monitor their movement 

(Goss, 2015). 

 

 The host: Zea mays 

Maize is an annual row crop believed to have originated from a Mexican grass called teosinte in 

prehistoric times (Iltis, 1983). Its specialized physiology, C4 photosynthesis, makes it well suited 

to hot, dry climates, and breeding has made it possible to grow it in colder climates as well. 

Maize is one of the most important crops worldwide with an annual cultivation area of more than 

1.50 million km2 and an annual harvest of more than 800 million metric tons of grain (Food and 

Agriculture Organization Statistics - FAO STAT, 2009). 

 

According to the International Grains Council (IGC, 2013), maize production has increased 

dramatically over the last 40 years worldwide and has become the number one grain cereal crop 

over wheat and rice with respect to gross production (Table 1.1). Around 200 million people in 

developing countries consume maize directly as their staple food. 

 

Maize is grown in most U.S. states, but production is concentrated in the Midwest region 

including Illinois, Iowa, Indiana, Nebraska, eastern portions of South Dakota, western Kentucky 

and Ohio, and the northern part of Missouri. Iowa and Illinois are the top maize-producing states 

and their production is about one-third of the total U.S. maize production (Graham et al., 2007). 

The production of maize has risen over time as a result of improvements in technology and in 

production practices.  In addition, its production has expanded to non-traditional growing areas 

as adapted hybrids have been developed. 

 

Maize is the primary U.S. feed grain, accounting for 95 percent of total feed grain production 

and use. Other uses of maize include the production of ethanol, food, seed, and industrial uses 

(USDA, 2015) (Figure 1.2). Maize is the most produced agricultural commodity in the U.S. and 

fourth in revenue behind cattle and chicken meat, and cow milk (FAO, 2012) (Figure 1.3). 

 

Breeding of maize hybrids in the U.S. has allowed a steady increase in yield at a rate of 100.88 to 

134.5 kilograms per hectare per year since the 1950s (Figure 1.1) (Edgerton et al., 2009). Maize 
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improvement is based on several traits including yield, quality, time to maturity and resistance or 

tolerance to biotic and abiotic stresses. For example, DuPont Pioneer has 120 research locations 

in 30 countries devoted to maize breeding and testing of hybrids. By the time a DuPont Pioneer 

hybrid is offered for sale, it has been tested at more than 1,500 locations in more than 200 

customer fields (DuPont Pioneer  website - 

https://www.pioneer.com/CMRoot/Pioneer/About_Global/news_media/media_library/articles/m

aize_hybrid.pdf), which highlights the importance given to maize breeding programs. In 

addition, traditional breeding programs for different crops, including maize, are starting to use 

molecular tools (e.g. genetic modification to introduce R genes) to accelerate the development of 

crops resistant to different virus, bacteria, oomycetes, nematodes, and fungi (Hammond-Kosack 

and Parker, 2003; Fitch et al., 1992; Scofield et al., 2005; Martin et al., 1993; Steeves et al., 

2006; Aarts et al., 1998). 

 

Associations between fungi and plants are both ancient and ubiquitous (Alexopoulos et al., 1996; 

Berbee 2001; Heckman et al., 2001). These interactions can have many different outcomes that 

have different effects on the fungus and the plant (Faust and Raes, 2012). Certain species of 

Fusarium are known pathogens of maize; some are seed-borne and some produce mycotoxins 

that can affect human and animal health. Because Fusarium spp. can be seed-borne and 

symptomless in maize seed, they are hard to detect at ports of entry which facilitates the 

distribution of these fungi worldwide (Elmer, 2001). 

 

Fusarium proliferatum is often found in maize seeds, a potentially important source of inoculum 

in the field (Cotten and Munkvold, 1998; Postic et al., 2012). This species has been associated 

with symptomatic and asymptomatic maize plants and is considered at times to be a primary 

causal agent of disease, a secondary invader, or a seed-borne organism. As a seed-borne 

organism, this fungus is suspected to colonize the emerging seedlings, the maturing plant, and 

the new ear and kernels (Logrieco et al., 1995). Multiple strains are often isolated from seed; 

however, some strains may be dominant (Jurado et al., 2010; Chulze et al., 2000). Research 

suggests that some of the mating populations of F. moniliforme may have co-evolved with the 

host with which they are most commonly associated, in this case, G. fujikuroi mating population 

D (i.e., F. proliferatum) and maize in America (Leslie, 1996). 

https://www.pioneer.com/CMRoot/Pioneer/About_Global/news_media/media_library/articles/maize_hybrid.pdf
https://www.pioneer.com/CMRoot/Pioneer/About_Global/news_media/media_library/articles/maize_hybrid.pdf
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Fusarium proliferatum is considered an endophyte organism that systemically colonizes maize 

plants, including the kernels (Olah et al., 2006). Endophytes are organisms that live within their 

host plants without causing any noticeable symptoms of disease (Carroll, 1988), except when the 

host is under stress conditions (Stone et al., 2000). Moreover, endophytes have the potential to 

confer protection to host plants against pests and to provide greater resistance to stress (e.g. 

drought), but that relationship has not been demonstrated in the maize – F. proliferatum 

association (Saunders and Kohn, 2009). Moreover, there is evidence that correlates the 

appearance of disease symptoms in maize plants with the presence of F. proliferatum under 

optimal conditions for the host (Saunders and Kohn, 2009). 

 

Fusarium proliferatum is thought to commonly exist systemically and asymptomatically in most 

field maize (in roots, stalk, tissues, and kernels) and to be passed from parent to progeny by seed-

borne infection (Wilke et al., 2007). In addition, kernel rot caused by F. proliferatum is often 

associated with feeding of insects (Munkvold and Hellmich, 2000) or mechanical harvesting 

(Munkvold, 2003). The mechanisms by which otherwise undamaged and uninfected plants are 

invaded remain unclear but may be significant (Maiorano et al., 2009). 

 

 The fungus: Fusarium proliferatum 

The genus Fusarium, described by Link in 1809, contains a large number of plant pathogenic 

fungi. The members of the genus can directly cause disease in plants, humans, and animals 

(Leslie and Summerell, 2006). The genus Fusarium belongs to the Ascomycota phylum, 

Ascomycetes class, and Hypocreales order, and its teleomorphs are classified in 3 genera 

including Gibberella, Hemanectria, and Albonectria. The genus Fusarium consists of species 

that attack many economically important crops, including wheat and maize, which are of high 

importance in the Midwest of the U.S. 

 

Fusarium proliferatum (Matsushima) Nirenberg ex Gerlach & Nirenberg is a fungal plant 

pathogen. Prior to the Nirenberg description, most isolates of F. proliferatum were identified as 

F. moniliforme. The sexual stage of this fungal species, known as Gibberella intermedia 

(fujikuroi) (Kuhlman), belongs to the section Liseola of Fusarium species (Nelson et al., 1983). 
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Fusarium proliferatum has worldwide distribution and has been recovered from numerous 

environments; it is considered to be a moderately aggressive pathogen (Stępień et al., 2011). It 

has an extraordinarily broad host range, causing disease in economically important plants as 

diverse as maize, asparagus, banana (Jimenez et al., 1993), citrus fruits (Hyun et al., 2000), 

orchids (Ichikawa et al., 2000; Benyon et al., 1996), rice (Desjardins et al., 2000) and sorghum 

(Leslie et al., 1990), to name a few. It is a cause of root rot of pine seedlings (Ocamb et al., 

2002), Fusarium crown and root rot of asparagus (Elmer et al., 1995) and date palm decline 

(Abdalla et al., 2000). It also causes stalk and cob rot of maize (Logrieco et al., 1995). There are 

two maize ear rots that are most commonly described: pink ear rot, which is caused by F. 

verticillioides in association with F. proliferatum and F. subglutinans, and red fusariosis, which 

is caused by F. graminearum. 

 

The ideal environmental conditions for F. proliferatum growth are water activity (aw) of 0.994-

0.98, temperature range of 20°C to 35°C and a pH of 5.5 (Marin et al., 1995). Maximum linear 

growth for F. proliferatum is reported to occur at 25°C and an osmotic potential of -1.0 MPa and 

conidia germinate optimally at 30°C (Marin et al., 1996). 

 

This fungus produces macroconidia and microconidia but not chlamydospores. The 

macroconidia are slender, thin-walled and relatively straight, usually with 3-to-5 septa. The 

microconidia are club shaped (clavate) with a flattened base and 0-septate in false heads and in 

chains that often form in pairs from polyphialides. Pyriform microconidia also may occur but are 

generally rare (Leslie and Summerell, 2006). 

 

Fusarium proliferatum has been identified as a colonizer of maize plants worldwide and is 

considered to be an increasingly important component of maize ear rot in Europe (Logrieco et 

al., 1995). Among Fusarium strains from 42 maize ear rot samples collected in Italy in 1992 and 

1993, for example, F. proliferatum infected a mean of 78% of the kernels in northern areas, 42% 

in central areas, 47% in southern areas, and 30% in Sardinia (Logrieco et al., 1995). Consistent 

isolation of F. proliferatum from symptomatic and asymptomatic plant tissues suggests that the 
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fungus can systematically colonize maize plants. F. proliferatum can persist in maize stalk debris 

either on the surface of soil or buried in a field for at least 21 months (Cotten et al., 1998). 

 

Along with F. verticillioides, F. proliferatum is considered to be the most common maize 

pathogen (Stepien et al., 2011) and the most effective producer of the polyketide-derived 

fumonisin mycotoxin:  fumonisin B1 (FB1) being the most prevalent (Rheeder et al., 2002). 

Fumonisins were first identified and described by Gelderblom et al., (1988), who reported that 

they had cancer-promoting activity. Fumonisin B1 is toxic to both humans and animals due to 

inhibition of sphingolipid metabolism and cell cycle regulation (Riley et al., 1996). It has been 

associated with esophageal cancer, liver cancer, and neural tube defects (Desjardins, 2006). 

Some strains of F. proliferatum are reported to produce FB1 in culture at more than 6,000 µg/g 

(for each gram of fungal culture) (Leslie et al., 2004). Fumonisin contamination has been 

associated with F. proliferatum infection of maize, animal feeds, and other agricultural 

commodities (Leslie et al., 2004; Logrieco et al., 1998; Thiel et al., 1991; Pascale et al., 2002). 

In horses, it causes leukoencephalomalacia, and in swine it causes pulmonary edema (Ross et al. 

1990). Divergence among strains from the same host plant has been demonstrated through 

variation in mycotoxin profiles. Among F. proliferatum from Nepalese rice, for example, some 

strains produced both fumonisins and moniliformin, whereas other strains produced only 

fumonisins or only moniliformin on laboratory culture media (Desjardins et al., 2000). 

Antioxidants can be used to treat grain and retard growth by F. proliferatum and reduce the 

amount of fumonisins produced in situ (Etcheverry et al., 2002; Reynoso et al., 2002). Fusarium 

proliferatum also produces a wide range of other mycotoxins and biologically actives 

metabolites, including beauvericin, enniatin, fusaric acid, fusarin, fusaproliferin, and 

moniliformin (Leslie and Summerell, 2006). 

 

The role fumonisins play in endophytic or pathogenic growth of Fusarium is poorly understood 

(Munkvold, 2003; Marin et al., 1999; Munkvold and Desjardins, 1997). Early work found that 

fumonisins likely play a role in seedling blight, but that they are not necessary to cause disease 

(Desjardins et al., 1995; Jardine and Leslie, 1999). Other research found that fumonisin is a 

phytotoxin responsible for disease symptoms on seedlings and other plant tissue (Nelson et al., 

1993; Glenn et al. 2004; Williams et al. 2007). 
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It has also been reported that the production of fumonisins (FB1, FB2, and/or FB3) is not required 

by F. verticillioides to cause maize ear infection and ear rot (Desjardins et al., 2002, Desjardins, 

and Plattner 2000). Recent work has shown that the roots of maize seedlings exposed to 

fumonisins have elevated levels of free sphingoid bases (Williams et al., 2006). In both plant and 

animal model systems, intermediates in the ceramide biosynthetic pathway (e.g. sphingoid bases) 

are important secondary messengers in stress responses (Ng et al., 2001; Hannun and Obeid 

2002; Chalfant and Spiegel 2005). The role, if any, of the increase in sphingoid bases in 

Fusarium–maize interaction remains to be determined. 

 

The life cycle of seed-borne F. proliferatum has not been fully studied, but it is suspected to 

share some similarities to that of F. verticillioides (Munkvold and Desjardins, 1997; Battilani 

and Rossi, 2003, Figure 1.4). The F. verticillioides-maize pathosystem is complex (Munkvold 

and Desjardins, 1997), consisting of three main infection pathways for kernel infection: the air- 

or splash-borne infection by conidia through silks or wounds; the systemic growth of the 

pathogen via the stalk, and the infection carried by spore-carrying insects (Munkvold et al., 

1997; Battilani and Rossi, 2003). 

 

Macroconidia and microconidia produced on crop residues and on tassels (Logrieco and 

Bottalico, 1987) are air and splash-dispersed and infect ears through silks or wounds (Ooka and 

Kommendal, 1977). Systemic development of the pathogen within the plant can result from root, 

stalk or leaf sheath penetration, or from seed transmission (Marin et al., 1996; Munkvold and 

Carlton, 1997). Spore-carrying insects, like European corn borer larvae, Ostrinia nubilalis (Le 

Bars et al., 1994), can transmit F. proliferatum providing wound sites for penetration and 

facilitating dissemination within systemically infected stalks (Munkvold et al., 1999). 

 

Phylogenetically, F. proliferatum is very closely related to Fusarium fujikuroi and Fusarium 

globosum in clade 3 of the Gibberella fujikuroi species complex (Geiser et al., 2003). The sexual 

stage of this heretothallic Fusarium species was first established in 1982 by crossing strains of F. 

proliferatum and was designated Gibberella fujikuroi variety intermedia (Kuhlman, 1982). The 

sexual stage was then identified as G. fujikuroi mating population D (Kerenyi et al., 1999; 
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Leslie, 1991). Phylogenetic analysis of DNA sequences of different and diverse strains of F. 

proliferatum has demonstrated that they are highly diverse but monophyletic and show mating 

compatibility despite their high levels of divergence (Geiser et al., 2003). 

 

Fusarium fujikuroi is also a species of the Gibberella fujikuroi complex and the causal agent of 

bakanae disease on rice (Carter et al., 2008). F. fujikuroi is seed-borne and produces fumonisin 

B1, moniliformin, beauvericin, fusaric acid, and fusarin (Carter et al., 2008, Leslie and 

Summerell 2006). F. proliferatum has been isolated from rice, but it does not cause bakanae 

disease (Amatulli et al., 2010 and 2012, Desjardins et al., 1997). Despite its close phylogenetic 

relationship with F. fujikuroi, F. proliferatum does not produce gibberellins. The potential for 

crossing and the formation of interspecific hybrids has been reported between F. proliferatum 

and F. fujikuroi (Leslie et al., 2004; Nor, 2014), increasing the risk of the unregulated 

introduction of F. proliferatum isolates into new environments. 

 

 Development of diagnostic and detection methods in Fusarium 

Developments in molecular biology and genetics, along with the development of more advanced 

technologies, have allowed for more detailed studies into the diversity and classification of fungi. 

The identification of Fusarium species is one of the most critical issues in fungal taxonomy 

given that the number of species recognized in the genus constantly changes due to different 

taxonomic systems (Chandra et al., 2011). 

 

Detection and diagnosis of Fusarium species was traditionally based on the combination of 

diagnostic symptoms on the host with the presence of the fungus in the affected tissues (Baayen, 

2000). This approach can be problematic when relying only on morphological traits for pathogen 

identification (Balajee et al., 2006; Cai et al., 2011; Chandra et al., 2011). For that reason, the 

use of molecular tools for the detection and diagnosis of pathogens has become widely used (Cai 

et al., 2011; Chandra et al., 2011). 

 

Conventional PCR has emerged as a major tool for the identification and study of fungi and has 

helped with detection and diagnosis at family, genus, and species level by targeting specific 

genome regions (Ristaino et al., 1998; Cullen et al., 2002; Glass et al., 1995). The use of nucleic 
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acid sequencing and online databases (e.g. NCBI BLAST) can further help in this endeavor. 

PCR-based protocols that can detect specific forma specialis (Moricca et al., 1998) and specific 

races within forma specialis (Jimenez-Gasco et al., 2003) also have been developed. However, 

the detection of specific and unique strains within a species requires more specific primers that 

target unique loci in specific strains. 

 

Discriminating among isolates of the same Fusarium species isolated from the same host 

genotype can be very difficult. However, it may be the only way to understand the life cycle of 

species such as F. proliferatum. Since F. proliferatum is seed-borne in maize and is introduced to 

new environments often, it is crucial to learn more about the fate of introduced F. proliferatum 

strains. The amount of genetic variation that occurs in a plant pathogen may have a direct impact 

on its biological activity and its role in the environment (Zabalgogeazcoa, 2008). It is important 

to monitor populations for shifts in virulence with changes in environmental factors and host 

cultivars. The variability within and between populations from different geographical locations is 

important to understand how different environments, host genotypes, and other factors impact 

virulence. Continuous evolutionary pressure for better adaptation to different ecosystems and 

hosts further increases the importance of having a better understanding of F. proliferatum 

populations for variation in biological activities. 

 

Various molecular markers are used to identify Fusarium species via PCR. These markers target 

different genomic regions such as the β-tubulin gene, the internal transcribed spacers (ITS 1/2) 

region of ribosomal genes, and the translation elongation factor 1-α (TEF-1α) gene; TEF-1α is 

the most useful in taxonomic studies of the Gibberella fujikuroi species complex, as well as in 

other members of the Fusarium genus (Geiser et al., 2004; Kristensen et al., 2005). However, 

this approach is not sensitive enough when trying to detect specific strains of F. proliferatum 

from other isolates of the same species. It has been reported that amplified fragment length 

polymorphism (AFLP) analysis might provide the best option for strain discrimination (Baayen 

et al., 2000; Zeller et al., 2003; Belabid et al., 2004). 

 

To discriminate among isolates of the same species it is necessary to identify unique markers or 

loci that are neutral (i.e. mutation on these markers do not have an impact on organism fitness) 
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and mitotically conserved in specific isolates (Leiononen et al., 2008; Ballard and Kreitman, 

1995). Different techniques are available to identify such loci, like amplified fragment length 

polymorphism (AFLP), inter simple sequence repeat (ISSR), multi locus sequence typing 

(MLST), and other techniques including restriction fragment length polymorphism (RFLP) and 

rapid amplified polymorphic DNA (RAPD). These different methods differ in discriminatory 

power, reproducibility (within and between labs and users), interpretation, and cost. Accurate 

classification of fungal species can be obtained by comparing DNA sequences (Mule et al., 

2005). In the same way, discrimination, identification, and characterization of isolates from the 

same species can be obtained by comparing DNA sequences found throughout the genome; 

genotyping-by-sequencing (GBS) is one such approach to identify strain-specific DNA 

sequences (Elshire et al., 2011). 

 

GBS libraries are constructed using restriction enzyme digests of whole genomic DNA. GBS is 

simple, quick, specific and highly reproducible (within and between laboratories). Restriction 

enzymes are methylation-sensitive and thus avoid repetitive regions of genomes. In addition, the 

whole genome is subjected to sequencing, which increases the discrimination power of GBS. 

 

To better understand F. proliferatum epidemiology in maize production systems, knowledge of 

the population genetic structure is required. Strain-level molecular characterization is necessary 

to analyze the potential for new isolates to establish in new environments. This can be 

accomplished by using strain-specific DNA markers that target unique polymorphic genome 

regions. 

 

 Objectives 

 Objective 1: To determine the potential for F. proliferatum to actively disperse from 

colonized maize seeds and establish in soil environments into which the colonized 

seed is planted (Chapter 3). 

 Objective 2: To determine the relative competitive ability of F. proliferatum and F. 

verticillioides with respect to colonization of maize tissues (Chapter 4).  

 Objective 3: To determine if specific strains of F. proliferatum introduced via 

colonized maize seed into a field environment are present in the seeds of the plants 
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grown from that seed and thus positioned for dispersal from that environmental site 

(Chapter 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 

 Figures and Tables 

 

Figure 1.1 United States maize acreage and yield production (in bushels per harvested 

acre). Figure taken from the Economic Research Service (ERS) component of the United 

States Department of Agriculture (USDA). 
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Figure 1.2 United States domestic use of maize. Figure taken from ERS-USDA. 
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Figure 1.3 Production and revenue produced by top commodities in the United States in 

2012. Figure taken from the Food and Agriculture Organization (FAO) of the United 

Nations. 
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Figure 1.4 Three pathways of maize infection by Fusarium verticillioides. Figure taken from 

Battilani and Rossi, 2003. 
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Table 1.1 World production (tons) estimates for maize, wheat and rice production. Table 

generated using FAO data. 

Crop Estimated production of maize, wheat and rice in million tons 

  2007/08 2008/09 2009/10 2010/11 2011/12 2012/13 

Maize 795 798 820 830 877 850 

Wheat  609 686 679 653 696 656 

Rice 433 448 441 448 465 466 
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Significance and Description of Methodology 

The fungus Fusarium proliferatum is seed-borne in maize seeds. Until 20 years ago, it was 

placed within a species complex known as Fusarium moniliforme, therefore not much is known 

about it. F. proliferatum has a broad host range with worldwide distribution. Moreover, this 

fungus is a prolific producer of mycotoxins (i.e. fumonisins) that are toxic to humans and 

animals. 

 

The introduction of this cryptic seed-borne organism into new environments can have 

devastating consequences, which include disruption of trade if the pathogen is detected post-

entry, and result in economic problems to the country producing the commodity (temporary or 

permanent trade bans), and expansion of the geographical range of undesirable 

populations/isolates (e.g., high mycotoxin producing isolates). 

 

In this research project, seven different maize hybrids were used to isolate seed-borne Fusarium 

species including F. proliferatum, F. verticillioides, F. andiyazi, F. fujikuroi, and F. thapsinum. 

The identities of the Fusarium species were confirmed morphologically and by polymerase chain 

reaction (PCR) amplification, followed by sequencing of TEF-1α and β-tubulin genes. 

 

After characterization and identification of the Fusarium species, Agrobacterium tumefaciens 

mediated transformation of a F. proliferatum strain was conducted to introduce hygromycin 

resistance and expression of green fluorescence (GFP). The transformants were used in active 

dispersal experiments from a source of inoculum colonized with GFP-F. proliferatum to a bait 

organic matter, under different temperature (10°C, 25°C and 35°C), soil matric potential (-50mb, 

-150mb, -330mb, and -1000mb) and distance (0cm, 0.5cm, 1cm, and 1.5cm) combinations. The 

presence/absence of the transformed F. proliferatum in the baits was determined by plating them 

in Nash-Snyder medium amended with hygromycin. 

 

Agrobacterium tumefaciens mediated transformation of a Fusarium verticillioides strain was 

conducted to introduce hygromycin resistance and expression of red fluorescence (mRFP). This 

transformant was used to study its competition with GFP-F. proliferatum for maize plants. A 
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TaqMan multiplex real-time qPCR protocol was developed by designing sensitive and specific 

primer and probe sets targeting a fragment of the respective fluorescence gene, GFP for F. 

proliferatum and mRFP for F. verticillioides. This protocol was used to identify and quantify 

these two Fusarium species in roots and stem segments of maize plants. 

 

Genotyping-by-sequencing (GBS) was used to identify unique polymorphisms in maize seed-

borne F. proliferatum isolates from specific maize hybrids. The polymorphisms were used to 

design specific primer sets to accurately detect specific isolates of F. proliferatum by end-point 

PCR. In field experiments, a molecularly characterized seed-borne isolate of F. proliferatum was 

studied. Ears of maize were collected from the field and kernels plated on Nash-Snyder medium. 

DNA of the growing Fusarium was extracted and the specific primer set was used in end-point 

PCR to detect the GBS-characterized F. proliferatum isolates. The isolates that tested positive 

for the presence of the molecular marker were subjected to further fingerprinting using amplified 

fragment length polymorphism (AFLP) to assess their genetic relatedness to the original isolates 

that were characterized with GBS. The AFLP binary data was analyzed in NTSYSpc (to generate 

a UPGMA tree), STRUCTURE (to determine population structure), and GenAlEx (to do 

Principal Coordinate Analysis, and AMOVA).  
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Active dispersal through soil and colonization of organic 

matter by Fusarium proliferatum 

 Abstract 

Fusarium proliferatum is a broad host-range, mycotoxin-producing fungus and among the most 

common maize colonizers globally. It is seed-borne in maize, providing an efficient vehicle for 

introduction into new soil environments. The ability of F. proliferatum to grow from colonized 

maize seed through nonsterile soil and colonize non-viable maize seeds was investigated. To 

provide markers to track the fungus in soil microcosms, F. proliferatum was transformed to 

express a green fluorescent protein and hygromycin-resistance (Fp-GH). Maize seeds were heat-

killed (75°C water bath for 20 minutes) and re-colonized with Fp-GH (1*106 spores/ml 

suspension overnight). Re-colonized seeds served as sources of inoculum and were added to non-

sterile soil with heat-killed, non-colonized maize seeds (baits) at several soil temperature, soil 

matric potential, and source-to-bait distance combinations. Controls included sources of 

inoculum consisting of non-viable maize seeds that were not re-colonized (negative control) and 

non-viable maize seeds that were re-colonized with non-transformed parental type Fp (positive 

control). Baits were retrieved over time from soil and plated on Nash-Snyder medium amended 

with hygromycin (1µl/ml). Fp-GH grew at least 1.5cm through non-sterile sieved soil and 

colonized the bait seeds. Growth through soil and colonization of baits was less in soil with 

intact field structure; Fp-GH grew at least 0.5cm after 7 days. In addition to plant and seed 

colonization, F. proliferatum may have an active soil resident phase in its life history. 

 

 Introduction 

Over the past few decades the trade of food, plant, and animal products has resulted in the 

worldwide movement, introduction and establishment of exotic pests and pathogens that in some 

cases had dramatic negative impacts on native and cultivated plant systems (Jeger et al. 2011). 

Because F. proliferatum can be symptomless and seed-borne in maize, it has a high risk of being 

introduced into new environments. Introduction of seed-borne organisms into new environments 
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can disrupt trade if the pathogen is detected post-entry, and it can extend the geographical range 

of undesirable populations and/or strains (e.g., high toxin producing strains). 

 

Fusarium proliferatum (Matsushima) Nirenberg ex Gerlach & Nirenberg, also known as 

Gibberella fujikuroi mating population D, is a fungal plant pathogen with worldwide 

distribution. It has an extraordinarily broad host range, colonizing and causing disease in 

economically important plants as diverse as asparagus (Elmer, 1990), banana (Jimenez et al., 

1993), citrus fruits (Hyun et al., 2000), onion (Stankovic et al. 2007), orchids (Benyon et al., 

1996), maize (Munkvold 2003), rice (Desjardins et al., 2000) and sorghum (Leslie, 2008). 

 

Fusarium proliferatum is seed-borne in maize and colonizes maize plants worldwide (Logrieco 

et al., 2002). This fungus is considered to be the most effective producer of polyketide-derived 

fumonisin mycotoxins, fumonisin B1 (FB1) being the most prevalent (Rheeder et al., 2002). 

Fumonisin B1 is toxic to animals, including humans, due to inhibition of sphingolipid 

metabolism and cell cycle regulation. It has been associated with esophageal cancer, liver cancer, 

and neural tube defects in humans (Desjardins, 2006). Strains of F. proliferatum are reported to 

produce FB1 at more than 6000 µg/g (ppm) in culture (Leslie et al., 2004). In humans, there is 

little information on the acute toxicity of FB1 and the LD50 of FB1 is unknown. No information is 

available on the toxicological effects of single dose exposure to FB1 by inhalation or dermal 

routes (EHC, 2000). However, based on the potential adverse effects caused by fumonisins to 

humans and animals, the U.S. Food and Drug Administration (FDA) issued a recommendation 

for maximum levels of fumonisins in human food (4 ppm) and in animal feed (100 ppm) (FDA, 

2001). 

 

Fusarium proliferatum also produces a wide range of other mycotoxins and biologically active 

metabolites, including beauvericin, enniatin, fusaric acid, fusarin, fusaproliferin, and 

moniliformin (Desjardins et al., 2000; Leslie et al., 2004; Bacon et al., 1996; Herrmann et al., 

1996; Marasas et al., 1986; Moretti et al., 1996; Ritieni et al., 1995). 

 

The life cycle of seed-borne F. proliferatum has not been fully studied, but it is suspected to 

share some similarities to that of Fusarium verticillioides (Battilani et al. 2003). For this reason it 
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is assumed that dispersal of seed-borne F. proliferatum in the field is passive by conidia 

movement in water, air, or by insect-vector. This research presents evidence that active hyphal 

growth through soil is another means of dispersal for F. proliferatum.  

 

 Materials and Methods 

 Fusarium proliferatum isolates 

Fusarium proliferatum was isolated from maize seed (DuPont Pioneer® hybrid 32N70). Seed 

were surface sterilized with 10% sodium hypochlorite solution for 1 minute, rinsed in distilled 

water for 30 seconds, and plated onto isolation medium. Isolates were single-spored and grown 

on Nash-Snyder (NS) medium at 27°C for 7 days. Isolates were identified as F. proliferatum by 

morphological and molecular characteristics, including the amplification and sequencing of the 

TEF-1α and FUM genes. One isolate (Fp-70-2-5) confirmed as F. proliferatum was used in this 

study. 

 

 Agrobacterium tumefaciens-mediated transformation of isolate Fp-70-2-5  

A plasmid (pBV126, provided by Dr. Barbara Valent) carrying the green fluorescent protein 

(GFP) and antibiotic-resistance genes was used for the transformation of F. proliferatum 

following published protocols (Mullins et al., 2001; Rho et al., 2001). Transformations were 

considered successful when individual isolates expressed the GFP and hygromycin-resistance. 

Nineteen hygromycin resistant-colonies were confirmed as green transformants and stored in 

15% glycerol in cryovial tubes at -80°C.  

 

 Transformant characterization 

The nineteen transformed strains were tested to confirm that the insertion was mitotically stable 

by comparing them to the parent isolate, Fp-70-2-5. Characterization included morphology, 

hyphal growth rate, pathogenicity in apples, and colonization of maize seeds. The stability of the 

insertion was tested by sub-culturing five generations on Spezieller Nährstoffarmer Agar (SNA) 

medium (Kunitake et al., 2011); the fifth generation was characterized for morphology, hyphal 

growth rate, hygromycin resistance, and fluorescence. 
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Hyphal growth rate was determined by placing a colonized agar plug (~ 8mm diameter) in the 

center of NS and SNA agar medium plates and the radial hyphal growth measured for 7 

consecutive days. 

 

Pathogenicity was tested in organic Granny Smith apples; 5 puncture wounds (5 mm in diameter 

and 5 mm in depth) were made in each apple and 50µL of a spore suspension (1*106 spores/ml) 

was applied to the wounds. Two of the wounds were used for the negative control (sterile-

distilled water) and the positive control (the apple pathogen Penicillium expansum). The three 

other wounds were inoculated with F. proliferatum; one wound with the wild type (Fp-70-2-5) 

and two wounds with the transformed strain being tested. The inoculated apples were placed in a 

chamber with wet paper towels to maintain high humidity and the container placed in an 

incubator at 25°C. 

 

Colonization ability was tested using Dupont Pioneer hybrid 32N70 seeds. Seeds were hydrated 

for 5 hours in distilled water and then placed in a hot water-bath (65°C) for 3 minutes. Heat-treated 

seeds were subjected to one of 3 treatments: 1) distilled water (negative control), 2) Fp-70-2-5 

(positive control), and 3) a transformed strain (spore suspension of 1*106 spores/ml) for 20 hours. 

The seeds were then surface sterilized (10% sodium hypochlorite for one minute) and rinsed in 

distilled water for 30 seconds. The seeds were plated onto NS medium, incubated at 25°C for 5 

days and the percentage seed colonization determined. 

 

 Soil collection, characterization, and determination of soil water retention curve  

Soil was collected from a Kansas State University experimental field in Hutchinson, KS; maize 

had been grown the previous season. Soil was collected from the surface horizon (approximately 

the top 20cm) and sieved (1.5cm) to remove large debris. The following soil characterization was 

performed by the Kansas State University Soil Testing Lab: pH = 7.1; texture = 72% sand, 16% 

silt and 12% clay; total nitrogen content = 0.0901% (917ppm); total carbon content = 1.268%; 

total phosphorous content = 210ppm; and organic matter content = 2.3%. The soil characteristics 

were consistent with a sandy loam Shellabarger soil series (35% - 80% sand content, 2% - 19% 

clay content, sandy loam texture, acidic to neutral pH). 
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Water retention characteristics were determined experimentally at -15,000mb, -10,000mb, -

5,000mb, -1,000mb, -330mb, -100mb, and 0mb by the Kansas State University Soil Testing Lab 

and the Soil, Water and Plant Testing Lab at Colorado State University by using a published 

protocol (Klute, 1986). Similar results were obtained for measurements at both labs. 

 

The soil water retention curve was determined using the van Genuchten model in the RETC 

(version 1.0) software. The van Genuchten model parameters are ideal to precisely describe a 

curve for a broad range of soils including disturbed and undisturbed soils (van Genuchten et al., 

1991). Finally, an equation was developed to calculate the amount of water needed to add to the 

soil to reach the target soil matric potentials.  

 

 Source of inoculum and bait generation 

Maize seeds were heat-killed in water at 75°C for 20 minutes. Nonviable Fusarium-free seeds 

were placed in the following spore suspensions (1*106 spores/ml) and placed on the rotary 

shaker (80 RPM) at 25°C for 16 hours to allow colonization: (i) wild-type F. proliferatum Fp-70-

2-5 (hygromycin-sensitive, non-fluorescent) or (ii) F. proliferatum Fp-GH (hygromycin-

resistant, green fluorescent). Nonviable Fusarium-free seeds placed in sterile water served as the 

negative control. Fusarium proliferatum-colonized seeds were surface sterilized (10% sodium 

hypochlorite for 1 minute) and rinsed in distilled water (30 seconds). Seeds that served as 

sources of inoculum were tested for the presence of F. proliferatum, and it was found all of them 

were colonized with this fungus. These F. proliferatum-colonized seeds served as the sources of 

inoculum. Non-colonized, non-viable seeds were surface sterilized (10% sodium hypochlorite) 

and rinsed with distilled water (30 seconds). These non-colonized, non-viable seeds were used as 

bait organic matter. 

 

 Colonization of baits and statistical analyses 

Percentage of baits colonized by F. proliferatum Fp-GH was determined as a function of 

temperature (10°C, 25°C, and 35°C), soil matric potential (-50mb, -150mb, -330mb, and -

1000mb), and source-to-bait distance (0cm, 0.5cm, 1cm, and 1.5cm). Five replicates were used 
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for each temperature-soil matric potential-distance combination and the experiment was 

conducted twice. Preliminary data demonstrated that F. proliferatum did not actively disperse 

more than 2cm from the source of inoculum and that the optimum sampling times were 5 days 

for 0 cm, 7 days for 0.5 cm, 10 days for 1.0 cm and 14 days for 1.5 cm. At the appropriate 

sampling times, the baits were retrieved from the soil, surface sterilized (10% sodium 

hypochlorite for one minute), rinsed in distilled water for 30 seconds, plated onto NS agar 

amended with hygromycin (1µl/ml), and incubated at 27°C. Presence or absence of F. 

proliferatum Fp-GH was used to determine the percentage colonization of baits. 

 

A split-plot experimental design was used: each whole-plot was temperature (10°C, 25°C, or 

35°C) and each split-plot was a specific distance - soil-matric potential combination. A total of 

48 combinations (3 temperatures * 4 distances * 4 soil matric potentials = 48) were tested. Soil 

matric potential values were linearized by logarithm transformations. The data were analyzed 

using the covariance model of SAS® mixed procedure (Version 9.3; SAS Institute Inc., Cary, 

NC). 

 

To better mimic field conditions, soil columns with an intact soil structure were obtained using a 

golf cup cutter from the same field in Hutchinson, Kansas at the same sampling time. Small 

wells were sunk into the soil column to a depth of 2cm; baits were placed into wells at 0cm, 

0.5cm, 1cm, or 1.5cm from the source well. Constant temperature (25°C) and approximate soil 

moisture conditions (-50mb) were used. Five replicates were used for each distance and the 

experiment was repeated twice. 

 

 Results 

 Characterization of the transformed strain 

One transformed strain (Fp-GH) expressed strong fluorescence (GFP) and hygromycin 

resistance; it was selected for further characterization. With respect to morphology and 

pathogenicity, the transformed strain and the wild-type strain were indistinguishable. 

Morphologically, the transformed strain, Fp-GH, and the wild type, Fp-70-2-5, were identical: 

macroconidia were slender and 3- to 5- septate and microconidia were club shaped and formed in 
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chains from mono- and poly-phialides (Leslie and Summerell, 2006). Radial hyphal growth rate 

for the transformed strain and the wild type were indistinguishable on the two media tested, SNA 

(R2 = 0.99880) and NS (R2 = 0.99661). 

 

After 5 successive generations, the morphology of the transformed strain Fp-GH and the radial 

hyphal growth rate on the two media, NS (R2 = 0.99606) and SNA (R2 = 0.99830) remained 

identical to the wild type (Fp-70-2-5) with no change from the 1st generation. After 5 successive 

generations, there were no changes in fluorescence or hygromycin-resistance: the transformation 

was stable. 

 

Pathogenicity to apples and colonization of maize seeds by the transformed strain was identical 

to the wild type. After 5 successive generations, there were no changes in pathogenicity to apples 

or colonization of maize seeds. Both the transformant Fp-GH and wild type developed lesions in 

apples which had 3.6cm diameter on average twelve days after inoculation. In addition, maize 

seeds showed 100% colonization by both the transformant Fp-GH and the wild type. 

 

 Colonization of baits at different temperatures, distances, and soil matric potentials 

Growth through soil and colonization of baits was significantly affected by temperature 

(p=0.0365) and was linearly related to both distance (p<0.0001) and soil matric potential 

(p<0.0001). The optimum conditions for growth and colonization was 25o C and -50mb matric 

potential. There was a linear decrease in colonization of baits with increasing distances between 

source of inoculum and baits and a similar trend occurred with decreasing soil matric potentials. 

The interaction of soil matric potential and temperature (p=0.0015) and the interaction of 

distance and soil matric potential (p<0.0001) were significant, indicating that the slopes 

associated with soil matric potential varied with both temperature and distance (Table 3.1). To 

illustrate this significant interaction, statistical models were developed to demonstrate the change 

in colonization of baits in the interaction of soil matric potential and temperature, and soil matric 

potential and distance (Figure 3.1). These models were built using the colonization estimates of 

the least square means table of the SAS mixed output. The slopes for soil matric potential had the 

greatest spread at smaller distances for the 3 temperatures. In addition, the slopes converged at 

greater distances due to the interaction of soil matric potential and distance. The average decline 
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in colonization with increasing distance was similar for all temperatures. Finally, the soil matric 

potential slopes are shifted upward when temperature is 25°C, which reflects the significant 

effect of temperature on hyphal growth through soil. This is evident because under same 

conditions (same soil matric potential, and distance between source of inoculum and bait) more 

baits are colonized at 25°C than at 10°C or 35°C. Furthermore, the models validate that the 

colonization of the baits decrease as the soil matric potential decreases for all temperatures, as 

demonstrated for the slopes. In addition, as the distance between the source of inoculum and the 

bait increases, the colonization decreases as demonstrated in the models (Figure 3.1). 

 

The models used to analyze the colonization of baits represented 78.8% of the variation in the 

data set (Figure 3.2) which demonstrates the fitness of the models to explain the differences in 

colonization for the different temperatures, distances and soil matric potentials. 

 

Sieving soil alters its natural structure, which could influence the hyphal growth and colonization 

of baits. Therefore, to determine if colonization could occur in soil with field structure, soil 

columns were obtained using a golf cup cutter. The experiments were conducted twice at -50mb, 

and 25°C. In the first experiment, F. proliferatum colonized 80% of the baits at 0 cm and 20% of 

the baits at 0.5 cm. In the second experiment F. proliferatum colonized 60% of the baits at 0 cm 

and 40% of the baits at 0.5 cm. 

 

 Discussion 

Fusarium proliferatum grew from colonized maize seed through nonsterile soil (sieved 

reconstituted soil and intact soil columns) and colonized organic matter. This demonstrates the 

capability of F. proliferatum for post-entry establishment in new locations subsequent to 

planting. Optimal soil conditions for hyphal growth and colonization of organic matter were 

25°C and -50mb. The colonization of baits decreased as the distance between the source of 

inoculum and the bait increased. The baits used in this experiment were non-viable heat-treated 

maize seeds free of seed-borne organisms. In natural field soils, organic matter is more diverse 

with respect to chemical composition and microbial communities which may influence the 

colonization potential of F. proliferatum. However, F. proliferatum has a wide host range that 
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includes monocots and dicots and is a successful saprophyte (Cotten and Munkvold, 1998), 

which makes it fit to compete for available organic matter with other microorganisms. 

 

A recent study (Wu et al., 2016) reported that GFP and DsRed transformants of F. verticillioides 

had decreased growth at different pH compared to the parental type; as well as fewer colony 

forming units (CFUs) in root samples. They found that in two cases, the integration of GFP had 

occurred in non-coding regions but the transformant still had an impact on its fitness. A different 

study reported that the insertion of GFP in the F. verticillioides genome did not have an impact 

in the ability of the fungus to colonize maize stalk (Wilke et al., 2007). Another investigation 

reported that the insertion of GFP and DsRed did not have an impact in the fitness of 

transformants in Fusarium oxysporum f. sp. lycopersici (Nahalkova and Fatehi, 2003). Based on 

the characterization of the transformant we performed that tested morphological characteristics, 

growth in different media and at different temperatures, stability of the insertion, and 

pathogenicity, we concluded that there were no observable differences between the transformed 

strain and the parental type. For this reason, we do not think the insertion had a large fitness 

impact in the behavior or ecology of the transformed strain in our investigation. 

 

Many organisms associated with the soil microbial community, including fungi, bacteria, and 

nematodes (Fierer et al., 2005; Neher and Campbell, 1994), may compete with F. proliferatum 

for available organic matter. A previous study performed in-vitro found that different fungi, 

including Aspergillus flavus, Aspergillus niger, Aspergillus ochraceus, and Penicillium 

implicatum, have a mutual inhibitory effect on the colonization of maize grain by F. proliferatum 

(Marin et al., 1998). However, additional research demonstrated that F. proliferatum is very 

competitive and dominant against Penicillium spp. and A. flavus when competing for a maize 

seed (Marin et al., 1998). In our experiments, to simulate field conditions of competition, these 

experiments were performed in non-sterile soil microcosms. The ability of F. proliferatum to 

grow through soil and colonize organic matter under different temperatures and soil matric 

potentials may provide an advantage in the competition for available resources in soil with 

organisms more sensitive to different environmental conditions. 
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There is evidence that F. proliferatum can survive in soil for extended periods of time (Leslie et 

al., 1990; Logrieco and Bottalico, 1988; Logrieco et al., 1995), at least 630 days in surface or 

buried maize residue (Cotten and Munkvold, 1998). Colonized residue has been shown to serve 

as a source of inoculum (Cotten and Munkvold, 1998). For this reason, ears of maize with 

kernels colonized by F. proliferatum could also serve as residue within which it can survive and 

from which it can disperse. The colonization of organic matter in soil from introduced sources of 

inoculum can enhance the survival capacity of F. proliferatum in the field, resulting in 

establishment in new environments. Furthermore, during different stages of field work, including 

tillage, sowing, harvest, and rotation, a vast amount of organic matter is incorporated into the 

soil, likely increasing the available substrates for utilization by F. proliferatum. 

 

These characteristics increase the risk that F. proliferatum can be introduced into new 

environments by contaminated maize seed. As a result, high-consequence strains of this fungus 

(i.e. high toxin producers, or highly aggressive) may become invasive in these new 

environments, where they could affect native and cultivated plant species as well as the native 

fauna. Since maize is the most produced agricultural commodity in the United States (FAO, 

2011) and is a major export and import commodity, there is a high chance that new strains are 

being introduced into new environments where they can establish (Elmer 1995). 

 

In previous study, which investigated the effects of water activity (aw), pH, and temperature on 

growth of F. proliferatum isolates from maize, growth was optimum at 0.994-0.90 aw in the 

temperature range of 20-35°C (optimum of 25°C) and pH of 5.5. Growth was reported also to 

occur at 4°C and 0.994-0.96 aw, but no growth was recorded at 40 and 45°C even under ideal aw 

(Marin et al., 1995). Germination of microconidia of F. proliferatum was optimal at 30°C (Marin 

et al., 1996). These studies were conducted in-vitro in artificial systems. This research 

demonstrated that hyphal growth of F. proliferatum occurs in non-sterile soil under different 

temperature and soil matric potential combinations. Fusarium proliferatum was capable of 

growing through both sieved and intact soil. The proportion of baits colonized was much lower 

in the latter possibly due to more restrictive pore size distribution and to natural physical barriers 

present in soil (Christensen, 2001). 
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Despite its global distribution and multiple hosts in diverse environments, the life cycle of F. 

proliferatum is still not well understood. Dispersal of seed-borne F. proliferatum in the field can 

be passive, by conidia movement in water, air, or by insect-vectors (Munkvold, 2003). This 

research demonstrated that hyphal growth through soil can be a means of short-range active 

dispersal for F. proliferatum and might suggest that it has the capacity for an active soil resident 

phase in its life history. 
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 Figures and Tables 

 

Figure 3.1 The relationships among soil temperature, source-to-bait distance, soil matric 

potential on hyphal growth through non-sterile soil and colonization of organic matter by 

Fusarium proliferatum strain Fp-GH. The main effects (soil temperature, source-to-bait 

distance, soil matric potential) and their interactions were statistically significant. 

A 

B 

C 
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Figure 3.2 Covariance model fit for bait colonization data explains 78.8% of the variance 

(R2=0.7881). Predicted colonization was based on linear models (Figure 3.1) of bait 

colonization by distance, log-transformed soil matric potential (SMP), and the distance by 

SMP interaction for each of three temperatures. 
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Table 3.1 The effects of soil temperature, source-to-bait distance, and soil matric potential and their interactions on hyphal 

growth through non-sterile soil and colonization of organic matter by Fusarium proliferatum strain Fp-GH. 

 

 

 

Individual Effects and Interactions of 

Variables 
p-value 

Distance 

(cm) 

Soil Matric 

Potential 

(mb) 

Colonization (%) 

    10°C 25°C 35°C 
Temperature 0.0365 0 50 40 80 50 

Distance <0.0001 0 150 10 30 10 

Distance*Temperature 0.1802 0 330 0 20 0 

Log(Soil Matric Potential)  <0.0001 0 1000 0 10 0 

Log(Soil Matric Potential)*Temperature 0.0015 0.5 50 20 50 30 

Distance*Log(Soil Matric Potential) <0.0001 0.5 150 0 30 10 

Distance*Log(Soil Matric Potential)*Temperature 0.4789 0.5 330 0 0 0 

  0.5 1000 0 0 0 

  1 50 0 30 0 

  1 150 0 10 0 

  1 330 0 0 0 

  1 1000 0 0 0 

  1.5 50 0 10 0 

  1.5 150 0 0 0 

  1.5 330 0 0 0 

  1.5 1000 0 0 0 
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Interspecific competition for colonization of maize 

between Fusarium proliferatum and Fusarium verticillioides 

 Abstract 

Fusarium proliferatum and Fusarium verticillioides are seed-borne pathogens of maize. They are 

often asymptomatic in seed, eluding symptom-based detection. Although co-colonization of 

individual seed occurs, some seed lots are colonized predominantly by a single species. 

Experiments were conducted in non-sterile soil to determine if interspecific competition 

influenced establishment in maize plants of an introduced isolate of F. proliferatum or F. 

verticillioides. Green fluorescent protein (GFP-tagged), hygromycin resistant F. proliferatum 

(Fp-G) and monomeric red fluorescent protein (mRFP-tagged) hygromycin resistant F. 

verticillioides (Fv-R) strains were developed to provide molecular markers to track fungal 

establishment. Heat-killed (75°C water bath for 20 minutes) Fusarium-free maize seeds, 

colonized with Fp-G or Fv-R by immersion in a spore suspension for 16 hours, served as source 

of inoculum. The ability of Fp-G and Fv-R to colonize viable seed already colonized by the other 

species was determined. Controls included non-colonized cured Fusarium-free seeds and 

naturally colonized viable seeds. Maize plants were retrieved from soil after 14 days and DNA 

extracted from three consecutive root segments (3cm each) and three consecutive stem segments 

(3cm each). A TaqMan multiplex real-time qPCR protocol was developed to identify and 

quantify Fp-G and Fv-R for each plant segment from each treatment; the experiment was 

repeated three times. This experiment confirmed that Fp-G and Fv-R effectively colonize roots 

and stems of the maize plant already colonized with the other species. Prior colonization did not 

preclude subsequent colonization by the challenger species. This investigation demonstrated that 

F. proliferatum can grow from seed in soil and effectively compete with a species (F. 

verticillioides) having a similar life cycle and occupying a common niche, as well as with other 

naturally occurring seed microorganisms to colonize a maize plant. 
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 Introduction 

Fusarium proliferatum and Fusarium verticillioides belong to the Liseola section of Fusarium 

(Leslie and Summerell, 2006). These two fungal species share many morphological 

characteristics and misidentification can occur (Leslie and Summerell, 2006). In addition, they 

are both seed-borne in maize and important colonizers of maize plants (Logrieco et al., 2002; 

Munkvold 2003). They have the ability to produce fumonisins and other mycotoxins in 

contaminated grain. 

 

To colonize maize plants, these Fusarium species compete against each other, as well as with 

other microorganisms, including other fungi and bacteria (Marin et al., 1998a; Marin et al., 

1998b; Marin et al., 1998c). The competition for a niche in the maize plant comes from other 

seed-borne microorganisms, as well as from microorganisms outside the seed. These studies 

were all done in vitro on culture media or on seed in chambers. Extrapolation of activity and 

competitive ability to natural environments (e.g., soils in agroecosystems) is not possible, though 

essential to estimating the significance to invasion potential. 

 

In addition, abiotic conditions can enhance or diminish the colonization ability of these 

organisms. Previous studies in synthetic media demonstrated the importance of water activity, 

pH, and temperature for the growth of F. proliferatum and other Fusarium species and fungi 

(Marin et al., 1995). The influence of abiotic factors on fungal interactions has been extensively 

demonstrated in a range of ecosystems (Magan and Lacey, 1984; Magan and Lacey, 1985; 

Ramakrishna et al., 1993). Fusarium species from the section Liseola (F. proliferatum and F. 

verticillioides) have similar abiotic requirements (Leslie and Summerell, 2006), which makes 

them ideal for interspecific competition experiments. 

 

Moreover, past investigations done in-vitro (Marin et al., 1998a) suggested that strains of F. 

proliferatum and F. moniliforme (now called F. verticillioides) were very competitive against a 

range of other maize colonizers. Niche overlap indices, based on patterns of carbon/nitrogen 

sources found that F. proliferatum was more competitive than F. moniliforme, and that, 

depending on abiotic factors (water potential and temperature), different niches were occupied 

by other species (Marin et al., 1998a). 
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Considering the ecological similarities of F. proliferatum and F. verticillioides, it is likely that 

they also have similarities in their life cycles. In the colonization of maize plants, it is likely that 

they compete against each other for the same niche. In Chapter 3, it was demonstrated that F. 

proliferatum hyphae can grow up to 1.5cm from a source of inoculum and colonize available 

organic matter under different abiotic conditions. In this study, we investigated how well F. 

proliferatum competes with F. verticillioides and other naturally occurring seed-borne 

microorganisms for a niche in maize plants. To facilitate strain discrimination of the two 

Fusarium species, they were transformed using Agrobacterium tumefaciens-mediated 

transformation; the F. proliferatum strain was transformed to express a green fluorescence 

protein (GFP-tagged) and hygromycin resistance, and the F. verticillioides strain was 

transformed to express a monomeric red fluorescence protein (mRFP-tagged) and hygromycin 

resistance. 

 

Detection of fungi in plant tissues using nucleic acid-based techniques can be hampered by the 

presence of plant DNA and DNA from other microorganisms (Arif et al., 2013). For this reason, 

we developed a multiplex TaqMan real-time qPCR assay with high specificity and sensitivity for 

the detection and quantification of Fp-G and Fv-R using their respective fluorescence genes as 

targets. 

 

 Materials and Methods 

 

 Fusarium isolates 

F. proliferatum and F. verticillioides were isolated from maize seed (DuPont Pioneer® hybrids 

32N70 and 33B54). Seeds were surface sterilized with a 10% sodium hypochlorite solution for 1 

minute, rinsed in distilled water for 30 seconds, and plated onto Nash-Snyder (NS) medium. 

Isolates were single-spored and grown on NS medium at 27°C for 7 days, and identified as F. 

proliferatum or F. verticillioides by morphological and molecular characteristics, including the 

amplification and sequencing of the TEF-1α and FUM genes. One isolate (Fp-70-2-5) confirmed 
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as F. proliferatum and another isolate (Fv-54-3-5) confirmed as F. verticillioides were used in 

this study. 

 

 Agrobacterium tumefaciens-mediated transformation of isolates and 

characterization of transformants  

A plasmid (pBV126, provided by Dr. Barbara Valent) carrying the green fluorescent protein 

(GFP) and hygromycin resistance was used for the transformation of F. proliferatum and a 

plasmid (pBV216, provided by Dr. Barbara Valent) carrying the monomeric red fluorescent 

protein (mRFP), and hygromycin resistance was used for the transformation F. verticillioides. 

Transformations were done following published protocols (Mullins et al., 2001; Rho et al., 

2001). Transformations were considered successful when F. proliferatum expressed the GFP and 

hygromycin-resistance and F. verticillioides expressed the mRFP and hygromycin-resistance. 

Nineteen hygromycin-resistant colonies were confirmed as green F. proliferatum transformants, 

and four hygromycin resistant-colonies were confirmed as red F. verticillioides transformants. 

 

The transformed strains were tested to confirm that the insertion was mitotically stable by 

comparing them to the parent isolates, Fp-70-2-5 and Fv-54-3-5. Characterization included 

morphology, hyphal growth rate, pathogenicity in apples, and colonization of maize seeds as 

described in Chapter 3. 

 

 Southern blot analysis 

The number of insertions of the fluorescent genes in the transformants was determined by 

Southern blot analysis of DNA of the transformed strains. For each reaction, 5µg of genomic 

DNA was digested with EcoRI-HF (New England Biolabs) overnight, separated in a 0.7% 

agarose gel, and blotted to a positively charged nylon membrane using an upward alkaline 

capillary transfer. Probe preparation and labeling, hybridization of the probe, and washes of the 

nylon membrane were done using the AlkPhos Direct Labeling and Detection System with CDP-

Star (GE Healthcare Life Sciences). A 557 base-pair long gene fragment was selected as the 

probe for the green fluorescence gene and a 647 base-pair long gene fragment was selected as the 

probe for the red fluorescence gene, to detect the gene copy number. The two probes were 
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hybridized onto the membrane at the same time. Probes were synthesized as gBlocks® gene 

fragments by IDT (Table 4.1) (Integrated DNA Technologies, Inc., Corelville, IA). 

 

 Source of inoculum and bait plants generation 

Maize seeds were heat-killed and disinfected in water at 75°C for 20 minutes. These nonviable, 

Fusarium-free seeds were placed in the following spore suspensions (1*106 spores/ml) and 

placed on the rotary shaker (80 RPM) at 25°C for 16 hours to allow colonization: (i) F. 

proliferatum Fp-70-2-5-G2 (hygromycin-resistant, green fluorescent), or (ii) F. verticillioides 

Fv-54-3-5-R1 (hygromycin-resistant, red fluorescent); and (iii) nonviable, Fusarium-free seeds 

placed in sterile water which served as the negative control. These colonized seeds were surface 

sterilized (10% sodium hypochlorite for 1 minute) and rinsed in distilled water (30 seconds), and 

they served as the sources of inoculum. 

 

Non-colonized, and naturally or artificially colonized, viable seeds were surface sterilized (10% 

sodium hypochlorite) and rinsed with distilled water (30 seconds), and used as bait plants. To 

artificially colonize viable maize seeds, we modified a published protocol to eradicate and cure 

maize seeds (Daniels, 1983) of naturally occurring Fusarium by exposing the seeds to 65°C 

water-bath for 4 minutes, and then re-colonized the seeds by placing them in spore suspensions 

as described above. These viable seeds were surface sterilized with 10% sodium hypochlorite for 

1 minute and rinsed in distilled water for 30 seconds. 

 

 Colonization of plants and analyses from RT-PCR data 

Colonization of plants was investigated in 9 different treatment groups (Table 4.2) to study Fp-G 

and Fv-R performance within different competition events. The experiment used a split-plot 

design in which each experiment was treated as the whole plot, and each individual treatment 

group was treated as a subplot. The experiment was repeated three times in the same growth 

chamber, and the environmental conditions were kept at 25°C day and 21°C night temperature, 

and 16 hours of light and 8 hours of dark, to reduce the variability among experiments. 
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Treatment 7, the negative control for each experiment, was included to ensure that no cross-

contamination occurred among treatment groups. Treatment groups 1, 3 and 5 were used to 

compare the ability of Fp-G to grow from a source of inoculum and colonize a maize plant under 

different competition conditions, including maize plants colonized with Fv-R, colonized with 

naturally occurring microorganisms, or cured. Treatments 2, 4 and 6 were used to compare the 

ability of Fv-R to grow from a source of inoculum and colonize a maize plant under different 

competition conditions, including maize plants colonized with Fp-G, colonized with naturally 

occurring microorganisms, or cured. Treatment 8 was compared to treatment 1 to assess whether 

the presence of Fp-G had an effect on Fv-R. Treatment 9 was compared to treatment 2 to assess 

whether Fv-R had an effect on Fp-G. 

 

Two weeks after planting, plants were retrieved from the soil and rinsed with water to remove 

soil and other particles which had adhered to the plant. Then, for each plant, the root and the 

stem were divided in three equal segments of 3cm each. The segments were labeled R1, R2, R3, 

for segments collected from the root, R1 being closest to the seed and R3 furthest away, and S1, 

S2 and S3, for segments collected from the stem, S1 being closest to the seed and S3 furthest 

away (Figure 4.1). 

 

These segments were sterilized with 10% sodium hypochlorite for 1 minute and rinsed with 

water for 1 minute. Genomic DNA was extracted from the root and stem segments using the 

GeneJet Plant Genomic DNA Purification kit (ThermoFisher Scientific) according to the 

manufacturer’s instructions. Detection and quantification of Fp-G and Fv-R in the plant 

segments was done using real-time qPCR. 

 

The data were logarithmically transformed, and analysis was done using GLIMMIX procedure 

from SAS® (Version 9.3; SAS Institute Inc., Cary, NC). 

 

 Primer and probe design 

Sequences of the green fluorescent protein (GFP) and red fluorescent protein (mRFP) genes were 

used to design two primer and probe sets specific to each gene (Table 4.1). The two fluorescence 

genes were aligned using Geneious to find polymorphic regions to ensure specificity in the 
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design of the primer and probe sets, and they were designed using Primer3 (Rozen and 

Skaletsky, 1999). The specificity was also confirmed in-silico by using BLASTn (Altschul et al., 

1990) to screen the primer and probe sequences (Arif et al., 2013). Primer thermodynamics, 

internal structures and self-dimer formation were examined in-silico with mFold (Zuker, 2003). 

Primers and double-quencher probes sets were synthesized by IDT. The probe for the detection 

of GFP in the transformed F. proliferatum was 5’-/6-carboxyfluorescein (6-FAM)/ZEN/3’ Iowa 

Black FQ, and the probe for the detection of mRFP in the transformed F. verticillioides was 5’-

/cyanine5 (Cy5)/TAO/3’ Iowa Black RQ. 

 

 Real-time qPCR amplification of treatments 

The amplification reactions were carried out in 20µl mixtures containing 10µl Sso Advanced 

Universal Probes Supermix (Bio-Rad), 1µl (5µM) of mixture of forward and reverse primer for 

GFP, 1µl (5µM) of mixture of forward and reverse primer for mRFP, 1µl (5µM) of probe for 

GFP, 1µl (5µM) of probe for mRFP, 5µl of nuclease-free water, and 1µl of genomic DNA. 

Negative control (nuclease-free water) was used in each run to control for cross-contamination. 

In addition, for each run, one of the genomic DNA samples was run in three replicates. Cycling 

parameters included an initial hold for 3 minutes at 95°C, followed by 40 cycles at 95°C for 15 

seconds and 58°C for 30 seconds. The assays were performed in a Bio-Rad CFX96 Real-Time 

System thermocycler, and data analysis was done using Bio-Rad CFX Manager software 2.1. 

 

 Real-time qPCR sensitivity and spiked assays  

The detection limits and accuracy of the detection were tested for the two primer and probe sets. 

Genomic DNA from Fp-G or Fv-R was diluted 10-fold and tested from 1ng to 10fg per mixture. 

Initial DNA concentrations were determined using Qubit, and the quality was determined using a 

NanoDrop v.2000 spectrophotometer. Each reaction was performed in five replicates and the 

average data were used to build a standard curve with Ct in the y-axis and amount of DNA (in 

ng) in the x-axis, using a linear fit. In addition, spiked assays including known quantities of Fp-G 

and Fv-R genomic DNA were performed in triplicate in reactions mixed with root or stem 

extracts from maize as described in Arif et al., 2013, and without root or stem extracts from 

maize to assess reactions efficiency. 
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 Results 

 Transformants characterization 

One transformed strain of F. proliferatum (Fp-G) and one transformed strain of F. verticillioides 

(Fv-R) having strong fluorescence and stable hygromycin-resistance were selected for further 

characterization. The analyses were performed as previously described (Chapter 3) using 

morphological and pathogenicity traits to compare the transformed strains to the parental types. 

In all characteristics measured, the transformed strains of both species were stable and 

indistinguishable from their respective parental types. 

 

 Southern blot analysis 

End-point PCR using the primers developed for the real-time qPCR reactions confirmed the 

presence of the respective fluorescence genes, GFP in the F. proliferatum strain and mRFP in the 

F. verticillioides strain. For the Southern blot analysis, each transformed strain, Fp-G and Fv-R, 

was replicated three times to ensure accuracy of the results. The results showed that they each 

contained one copy of the respective fluorescence gene; the parental types (negative control) of 

both transformed strains did not have the fluorescence gene (Figure 4.2). This indicated that the 

Ct values obtained in the real-time qPCR assays could be directly compared and were not 

confounded by different copy numbers of the fluorescence genes. 

 

 Sensitivity and specificity assay of primers and probes and spiked assays 

Primer and probe sets designed for Fp-G and Fv-R showed high specificity as the real-time 

qPCR successfully detected Fp-G or Fv-R without cross-reactions. For the specificity assays, 

both primer and probe sets detected as little as 10 fg of genomic DNA. Spiked assays which 

included known amounts of genomic DNA from Fp-G and Fv-R in single reactions also showed 

high sensitivity (10 fg) and high specificity (no cross-reaction). In addition, the spiked assays, 

that included known amounts of genomic DNA from Fp-G and Fv-R and extracts either from 

maize roots or maize stems, also showed high specificity and no inhibition or reduction in 

sensitivity caused by inhibitors in the plant (Figure 4.3). The presence of root or stem extracts 
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had no detectable effect on the real-time qPCR reactions for the detection of Fp-G and/or Fv-R. 

The double-quenched probes increased signal detection (assay sensitivity) and decreased 

background fluorescence. 

 

The real-time qPCR data-generated standard curves for Fp-G and Fv-R were similar (R2 ≥ 0.98) 

for the non-spiked and spiked assays, which indicated that the reactions were accurate, specific 

and sensitive (PCR reaction efficiencies between 90-105%) (Figure 4.4). 

 

 Colonization of plants and analyses from RT-qPCR data 

The data from the three experiments were analyzed together as the results indicated that there 

was no statistically significant interaction between experiment and treatments. To analyze the 

significance of the interactions among variables a Bonferroni correction of p-values was 

calculated; the critical p-value (α) was divided by the number of comparisons. This step was 

necessary to account for the multiple comparisons (statistical tests) of data that increased the 

probability of obtaining a significant result due to chance. The Bonferroni adjustments reduced 

the chance of obtaining false-positive results (type I errors) (Verhoeven et al., 2005). 

 

Real-time qPCR data for Fp-G treatments 1, 2, 3, 5 and 9 were analyzed together, and real-time 

qPCR data for Fv-R treatments 1, 2, 4, 6 and 8 were analyzed together. 

 

The real-time qPCR data for F. proliferatum indicated that the colonization of maize plants from 

sources of inoculum showed significant p-value differences from the colonization of maize 

plants from the inoculated seeds (Table 4.3). This was evidenced by the amount of Fp-G biomass 

calculated in the plant tissues in the different treatments (values shown in parenthesis in the 

comparisons). There were no significant differences among treatments 1 (1.28 picograms), 3 

(2.22 picograms) and 5 (0.94 picograms), however they were significantly different from 

treatments 2 (5.39 picograms) and 9 (5.45 picograms); there was no significant difference 

between treatments 2 and 9. These results (comparison G) indicate that subsequent colonization 

by F. verticillioides (treatment 2) did not significantly impact F. proliferatum colonization of 

that plant (treatment 9). Also, interestingly, colonization by Fp-G in treatment 3 (cured plants) 

was not significantly different from that in treatments 1 (Fv-R-colonized plants; comparison B) 
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and 5 (natural microflora; comparison H). The latter data suggest that the presence of F. 

verticillioides (treatment 1), or of naturally occurring seed-borne microorganisms (treatment 5), 

in the plant does not inhibit F. proliferatum from colonizing the maize plants from sources of 

inoculum in soil. 

 

Colonization of roots by Fp-G (4.43 picograms) was greater than colonization of stems by Fp-G 

(1.68 picograms) by a 2.64-fold difference (p<0.0001) (Table 4.4). There was a significant 

inverse gradient in the degree of colonization (fungal biomass) of the plant tissues as a function 

of the distance from the seed; the most fungal biomass was found in the root and stem segments 

closest to the seed (Table 4.4). The amount of Fp-G biomass in the segment closest to the seed 

(segment 1) was 5.24 picograms, the amount of Fp-G biomass in the second segment closest to 

the seed (segment 2) was 3.21 picograms, and the amount of Fp-G biomass in the segment 

farthest away from the seed (segment 3) was 0.72 picograms; a 7.3-fold difference in Fp-G 

biomass across that gradient. 

 

Analysis of the combination of plant parts (root or stem) and plant segments (1, 2 or 3) was done 

to study the colonization of maize plants by Fp-G. There were significant differences, supporting 

the conclusion that roots are more colonized than stems, and that plant segments closer to the 

seed are more colonized than those far away (Table 4.5). 

 

The real-time qPCR data for F. verticillioides indicated that the colonization of maize plants 

from sources of inoculum showed significant p-value differences from the colonization of maize 

plants from the inoculated seeds (Table 4.6). This was evidenced by the amount of Fv-R biomass 

calculated in the plant tissues in the different treatments (values shown in parenthesis in the 

comparisons). There were no significant differences among treatments 2 (0.92 picograms), 4 

(1.80 picograms) and 6 (0.39 picograms), however they were significantly different from 

treatments 1 (3.50 picograms) and 8 (3.39 picograms); there was no significant difference 

between treatments 1 and 8. These results (comparison N) indicate that subsequent colonization 

by F. proliferatum (treatment 1) did not significantly impact F. verticillioides colonization of 

that plant (treatment 8). Also, interestingly, colonization by Fv-R in treatment 4 (cured plants) 

was not significantly different from that in treatments 2 (Fp-G-colonized; comparison O) and 6 
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(natural microflora; comparison R). The latter data suggest that the presence of F. proliferatum 

(treatment 2), or of naturally occurring seed-borne microorganisms (treatment 6), in the plant do 

not inhibit F. verticillioides from colonizing the maize plants from sources of inoculum in soil. 

 

Colonization of roots by Fv-R (2.14 picograms) was greater than colonization of stems by Fv-R 

(1.86 picograms) by a 1.15-fold difference (p<0.0001) (Table 4.7). There was a significant 

inverse gradient in the degree of colonization (fungal biomass) of the plant tissues as a function 

of the distance from the seed; the most fungal biomass was found in the root and stem segments 

closest to the seed (Table 4.4). The amount of Fv-R biomass in the segment closest to the seed 

(segment 1) was 3.61 picograms, the amount of Fv-R biomass in the second segment closest to 

the seed (segment 2) was 1.53 picograms, and the amount of Fp-G biomass in the segment 

farthest away from the seed (segment 3) was 0.86 picograms; a 4.2-fold difference in Fv-R 

biomass across that gradient. 

 

Analysis of the combination of plant parts (root or stem) and plant segments (1, 2 or 3) was done 

to study the colonization of maize plants by Fv-R. There were significant differences, supporting 

the conclusion that roots are more colonized than stems, and that plant segments closer to the 

seed are more colonized than those far away (Table 4.8). 

 

 Discussion 

This investigation demonstrated that F. proliferatum can grow from a source of inoculum in soil, 

infect a maize plant, and effectively compete against F. verticillioides and the natural maize 

microflora for a niche in the roots and stems of developing maize plants. We used a TaqMan 

multiplex real-time qPCR approach with two primer and probe sets which were highly sensitive 

and specific to detect the fluorescence genes that were targeted, GFP for F. proliferatum and 

mRFP for F. verticillioides. Southern blot analysis indicated a single insertion of GFP in the Fp-

G genome and a single insertion of mRFP in the Fv-R genome; hence, the real-time qPCR data 

did not require transformation for analysis. Sensitivity and specificity of the primer and probes 

were important to obtain accurate and reliable results of the colonization of maize plants by Fp-G 

and Fv-R. No non-specific or cross-reactions were observed for the two primer and probe sets. In 
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addition, we found that the presence of maize tissue suspension did not inhibit or decreased the 

detection of Fp-G or Fv-R. 

 

In Chapter 3 it was found that F. proliferatum can actively grow from a source of inoculum and 

colonize available non-colonized organic matter in a non-sterile soil under different temperature 

and soil matric potential combinations; this was true in a sieved, reconstituted field soil as well 

as in non-sterile soil with an intact field structure. This research complements those findings by 

demonstrating that F. proliferatum can also colonize living plants already colonized with other 

microorganisms, even those likely to compete for the same substrate/niche. For this project, F. 

verticillioides was selected to compete against F. proliferatum because of their ecological and 

life cycle similarity and common co-existence in maize plants (Chulze et al., 2000; Leslie and 

Summerell, 2006). These two fungi are known for systemically colonizing maize plants, causing 

disease in different plant tissues, and producing mycotoxins in kernels. 

 

F. proliferatum can survive in soil for extended periods of time (Leslie et al., 1990; Logrieco and 

Bottalico, 1988; Logrieco et al., 1995) and at least 630 days in surface or buried maize residue 

(Cotten and Munkvold, 1998). Therefore, F. proliferatum can potentially act as source of 

inoculum for at least 2 growing seasons. In addition, this fungus has worldwide distribution and 

a wide host range that includes both monocots and dicots. These factors may increase the risk of 

infection for plants in a field with multiple sources of inoculum. 

 

Population genetics research on F. proliferatum indicated that strains vary in aggressiveness in 

certain crops (Elmer, 1991; Iglesias et al., 2010) and that some strains can be predominant in 

some fields (Elmer, 1991; Elmer et al., 1999). Moreover, there is genetic and phenotypic 

variation among strains from different plant hosts (Stepien et al., 2011), but host specialization 

has not been reported. Therefore, the introduction of F. proliferatum on one plant species may be 

an important source for infection/colonization of other plant species. This can occur where crop 

rotations of different plant species, such as maize with wheat, soybean, or alfalfa are practiced. 

In addition, because the presence of F. proliferatum in plant and seed can be asymptomatic, this 

fungus can be inadvertently introduced into new environments, thereby extending the 

geographical range of these undesirable strains. 
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In interspecific competition between fungi, environmental factors play an important role and 

influence the dominance of species (Magan and Lacey, 1985). F. proliferatum and F. 

verticillioides have similar abiotic requirements for optimal growth (Nelson et al., 1990; Marin 

et al., 1996) and commonly occur together in plants, which makes them ideal to study 

competition. These previous studies were conducted in vitro. Understanding the competitive 

ability of F. proliferatum under more natural conditions is essential to assessing the risk of entry 

and establishment of new strains into new environments via colonized seed. 
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 Figures and Tables 

 

Figure 4.1 Graphical representation of Treatment 3 showing the plant parts (stem and 

roots) and the 3 plant segments for roots and stem. (A) Heat-treated cured seeds are 

planted with non-viable heat-killed seed re-colonized with Fp-G. (B) The heat-killed re-

colonized seed (sources of inoculum) introduces Fp-G effectively into the soil and colonizes 

tissue of the bait plant. 
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Figure 4.2 Southern blot results for Fp-G and Fv-R suggest one insertion of the respective 

fluorescence gene in each genome. This suggests that GFP is found one time in the F. 

proliferatum genome and mRFP is found one time in the F. verticillioides genome. The 

respective parental types of Fp-G and Fv-R did not have the respective fluorescence gene. 
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Figure 4.3 Ct values and standard deviation detected for the assays for (A) Fp-G and (B) 

Fv-R. Fp-G assays show high sensitivity and specificity (no cross-reaction with Fv-R) on its 

detection in spiked and non-spiked assays. Fv-R assays show high sensitivity and specificity 

(no cross-reaction with Fp-G) on its detection in spiked and non-spiked assays. 
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Figure 4.4 Standard curves were obtained for all real-time qPCR reactions. On the x-axis 

DNA concentrations were logarithmically transformed to obtain a linear graph. Reaction 

efficiency was calculated as described in the Bio-rad real-time PCR applications guide. (A) 

Fp-G and (B) Fv-R sensitivity assays, (C) Fp-G and (D) Fv-R sensitivity and specificity 

y = -3.5836x + 20.697
R² = 0.9965

Reaction Efficiency: 90.13%

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

-6 -4 -2 0

C
t 

va
lu

e

Concentration (ng)

Spiked Assay of Fp-G and 
root extract

y = -3.356x + 20.084
R² = 0.9881

Reaction efficiency: 98.60%

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

-6 -4 -2 0

C
t 

va
lu

e

Concentration (ng)

Spiked Assay of Fv-R and root 
extract

y = -3.6026x + 20.702
R² = 0.9957

Reaction efficiency: 89.49%

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

-6 -4 -2 0

C
t 

va
lu

e

Concentration (ng)

Spiked Assay of Fp-G and 
stem extract

y = -3.3515x + 20.241
R² = 0.984

Reaction efficiency: 98.78%

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

-6 -4 -2 0

C
t 

va
lu

e

Concentration (ng)

Spiked Assay of Fv-R and 
stem extract

E F 

G H 



72 

assays, (E) Fp-G and (F) Fv-R sensitivity and specificity inhibition-assays spiked with 

maize root extract, and (G) Fp-G and (H) Fv-R sensitivity and specificity inhibition-assays 

spiked with maize stem extract. 
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Table 4.1 Real-time qPCR primer and probe sequences for Fp-G and Fv-R, and Southern 

blot probe sequences for Fp-G and Fv-R. The Fp-G primers produced a 134bp amplicon, 

and the Fv-R primers produced a 132bp amplicon. 

 

Real-time 

qPCR primers 

and probes 

and Southern 

blot probes 

Sequences 

Fp-G real-time 

qPCR forward 

primer 

5'-GAACGGCATCAAGGTGAACT-3' 

Fp-G real-time 

qPCR reverse 

primer 

5'-AGCTCAGGTAGTGGTTGTCG-3' 

Fv-R real-time 

qPCR forward 

primer 

5'-ATGAGGCTGAAGCTGAAGGA-3' 

Fv-R real-time 

qPCR reverse 

primer 

5'-CTCGTTGTGGGAGGTGATG-3' 

Fp-G real-time 

qPCR probe 

5’-/6-carboxyfluorescein (6-FAM)-

AACATCGAG/ZEN/GACGGCAGCGTG-3’-Iowa Black FQ 

Fv-R real-time 

qPCR probe 

5’-/cyanine5 (Cy5)-ACGACGCCG/TAO/AGGTCAAGACCAC-3’-Iowa 

Black RQ 

Fp-G Southern 

blot probe 

(double 

stranded) 

5'-

AAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGA

GCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCG

AGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTC

ATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTG

ACCACCTTCGGCTACGGCCTGCAGTGCTTCGCCCGCTACCCCGAC

CACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGC

TACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTAC

AAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAA

CCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACA

TCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTC

TATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTT

CAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCG

ACCACTACCAGCAGAACACCCCCAT-3' 

Fv-R Southern 

blot probe 

(double 

stranded) 

5'-

TCCTCCGAGGACGTCATCAAGGAGTTCATGCGCTTCAAGGTGCGC

ATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGCGA

GGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGA

AGGTGACCAAGGGCGGCCCCCTGCCCTTCGCCTGGGACATCCTGT

CCCCTCAGTTCCAGTACGGCTCCAAGGCCTACGTGAAGCACCCCG
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CCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCA

AGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTGACC

GTGACCCAGGACTCCTCCCTGCAGGACGGCGAGTTCATCTACAAG

GTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATG

CAGAAGAAGACCATGGGCTGGGAGGCCTCCACCGAGCGGATGTA

CCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGATGAGGCTGA

AGCTGAAGGACGGCGGCCACTACGACGCCGAGGTCAAGACCACC

TACATGGCCAAGAAGCCCGTGCAGCTGCCCGGCGCCTACAAGAC

CGACATCAAGCTGGACATCACCTCCCACAACGAGGACTACACCA

TCGTGGAACAGTACGAGCGCGCCGA-3' 
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Table 4.2 Competition between Fusarium proliferatum (Fp-G) and F. verticillioides (Fv-R) 

for colonization of maize seedlings. Maize seed were heat-cured in treatments 1, 2, 3, 4, 8, 

and 9. 

 

Treatments  Source of inocula* Target maize seedlings (colonized with)** 

1 Fp-G Fv-R 

2 Fv-R Fp-G 

3 Fp-G Non-colonized 

4 Fv-R Non-colonized 

5 Fp-G Natural seed microflora 

6 Fv-R Natural seed microflora 

7 Non-colonized Non-colonized 

8 Non-colonized Fv-R 

9 Non-colonized Fp-G 

*For source of inoculum, maize seeds were heat-killed and then subsequently colonized by Fp-G 

or Fv-R; non-colonized heat-killed maize seeds were used in some control treatments (7, 8, 9). 

**For target seedlings, maize seeds were heat-cured and colonized by Fp-G or Fv-R (treatments 

1, 2, 8, 9), heat-cured and not colonized by Fp-G or Fv-R (treatments 3, 4, 7), or not heat-cured 

(treatments 5, 6). 
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Table 4.3 Competitive colonization of maize plants by Fusarium proliferatum strain Fp-G 

in treatments 1, 2, 3, 5 and 9. Colonization of maize plants from sources of inoculum 

(treatments 1, 3 and 5) showed significant differences from the colonization of maize plants 

from the inoculated seeds (treatments 2 and 9). Colonization in treatment 3 (cured plants) 

was not significantly different from that in treatments 1 (comparison B) and 5 (comparison 

H). Comparisons were done using amount of Fp-G biomass which was calculated from the 

Ct values detected by real-time qPCR. 

 

Comparison TRT Source Bait TRT Source Bait 
Adj p-

value* 

A 1 Fp-G Fv-R 2 Fv-R Fp-G 0.0009 

B 1 Fp-G Fv-R 3 Fp-G 
Non-

colonized 
0.6749 

C 1 Fp-G Fv-R 5 Fp-G 
Natural seed 

microflora 
1.0000 

D 1 Fp-G Fv-R 9 
Non-

colonized 
Fp-G 0.0013 

E 2 Fv-R Fp-G 3 Fp-G 
Non-

colonized 
0.0089 

F 2 Fv-R Fp-G 5 Fp-G 
Natural seed 

microflora 
0.0004 

G 2 Fv-R Fp-G 9 
Non-

colonized 
Fp-G 1.0000 

H 3 Fp-G 
Non-

colonized 
5 Fp-G 

Natural seed 

microflora 
0.1910 

I 3 Fp-G 
Non-

colonized 
9 

Non-

colonized 
Fp-G 0.0148 

J 5 Fp-G 
Natural seed 

microflora 
9 

Non-

colonized 
Fp-G 0.0006 

 

*p-values were adjusted with a Bonferroni correction 
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Table 4.4 Colonization of roots by Fp-G was higher than that of stems. Colonization of 

plant segments by Fp-G decreased as the distance from the seed increased. 

 

 

*p-values were adjusted with a Bonferroni correction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect PART  PART  Adj p-value* 

PART Root  Stem  <.0001 

Effect  SEGMENT  SEGMENT Adj p-value* 

SEGMENT  1  2 <.0001 

SEGMENT  1  3 <.0001 

SEGMENT  2  3 <.0001 
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Table 4.5 Colonization of plant parts (roots and stems) and segments (1, 2 and 3) by Fp-G. 

Roots were more colonized than stems, and segments closer to the seed were more 

colonized than those farther away. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*p-values were adjusted with a Bonferroni correction 

 

 

 

 

 

 

 

 

 

PART SEGMENT PART SEGMENT Adj p-value* 

Root 1 Root 2 0.0339 

Root 1 Root 3 <.0001 

Root 1 Stem 1 0.0011 

Root 1 Stem 2 <.0001 

Root 1 Stem 3 <.0001 

Root 2 Root 3 <.0001 

Root 2 Stem 1 0.8744 

Root 2 Stem 2 <.0001 

Root 2 Stem 3 <.0001 

Root 3 Stem 1 0.0111 

Root 3 Stem 2 0.6293 

Root 3 Stem 3 <.0001 

Stem 1 Stem 2 <.0001 

Stem 1 Stem 3 <.0001 

Stem 2 Stem 3 0.0004 



79 

Table 4.6 Competitive colonization of maize plants by Fusarium verticillioides strain Fv-R 

in treatments 1, 2, 4, 6 and 8. Colonization of maize plants from sources of inoculum 

(treatments 2, 4 and 6) showed significant differences from the colonization of maize plants 

from the inoculated seeds (treatments 1 and 8). Colonization in treatment 4 (cured plants) 

was not significantly different from that in treatments 2 (comparison O) and 6 (comparison 

R). Comparisons were done using amount of Fv-R biomass which was calculated from the 

Ct values detected by real-time qPCR. 

 

*p-values were adjusted with a Bonferroni correction 

 

 

Comparison TRT Source Bait TRT Source Bait 
Adj p-

value* 

K 1 Fp-G Fv-R 2 Fv-R Fp-G 0.0009 

L 1 Fp-G Fv-R 4 Fv-R 
Non-

colonized 
0.0092 

M 1 Fp-G Fv-R 6 Fv-R 
Natural seed 

microflora 
0.0004 

N 1 Fp-G Fv-R 8 
Non-

colonized 
Fv-R 1.0000 

O 2 Fv-R Fp-G 4 Fv-R 
Non-

colonized 
0.7032 

P 2 Fv-R Fp-G 6 Fv-R 
Natural seed 

microflora 
1.0000 

Q 2 Fv-R Fp-G 8 
Non-

colonized 
Fv-R 0.0013 

R 4 Fv-R 
Non-

colonized 
6 Fv-R 

Natural seed 

microflora 
0.1447 

S 4 Fv-R 
Non-

colonized 
8 

Non-

colonized 
Fv-R 0.0142 

T 6 Fv-R 

Natural 

seed 

microflora 

8 
Non-

colonized 
Fv-R 0.0005 
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Table 4.7 Colonization of roots by Fv-R was higher than that of stems. Colonization of 

plant segments by Fv-R decreased as the distance from the seed increased. 

 

Effect PART  PART  Adj p-value* 

PART Root  Stem  <.0001 

Effect  SEGMENT  SEGMENT Adj p-value* 

SEGMENT  1  2 <.0001 

SEGMENT  1  3 <.0001 

SEGMENT  2  3 <.0001 

*p-values were adjusted with a Bonferroni correction 
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Table 4.8 Colonization of plant parts (roots and stems) and segments (1, 2 and 3) by Fv-R. 

Roots were more colonized than stems, and segments closer to the seed were more 

colonized than those farther away. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*p-values were adjusted with a Bonferroni correction 

 

 

 

 

 

 

 

PART SEGMENT PART SEGMENT Adj p-value* 

Root 1 Root 2 0.3514 

Root 1 Root 3 <.0001 

Root 1 Stem 1 0.1143 

Root 1 Stem 2 <.0001 

Root 1 Stem 3 <.0001 

Root 2 Root 3 <.0001 

Root 2 Stem 1 1.0000 

Root 2 Stem 2 <.0001 

Root 2 Stem 3 <.0001 

Root 3 Stem 1 0.0014 

Root 3 Stem 2 0.1332 

Root 3 Stem 3 <.0001 

Stem 1 Stem 2 <.0001 

Stem 1 Stem 3 <.0001 

Stem 2 Stem 3 <.0001 
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Introduction and dissemination of Fusarium proliferatum 

in maize seed 

 Abstract 

Fusarium proliferatum has a broad host range with worldwide distribution and is a prolific 

producer of mycotoxins that are toxic to humans and animals. Strains of F. proliferatum vary 

substantially in toxigenicity. The global movement of maize seed harboring F. proliferatum may 

promote geographic range expansion of undesirable populations/strains of these pathogens (e.g., 

high mycotoxin producers).Tests for introduction and seed dissemination of maize seed-borne F. 

proliferatum were assessed in field experiments. Genotyping-by-sequencing (GBS) was used to 

identify unique strain-specific genetic markers in isolates of seedborne F. proliferatum collected 

from two Dupont Pioneer maize hybrids, 33D49 and P1395R. The strain-specific markers 

allowed accurate detection of specific isolates of F. proliferatum by end-point PCR. Extensive 

exclusivity panels were performed to validate the accuracy of the strain-specific primer sets; two 

F. proliferatum isolates from the two maize hybrids were uniquely identified. Using a 

randomized complete block design, two plots each containing six subplots (three of each hybrid) 

were planted. At maturity, six ears were collected arbitrarily from each subplot and isolations 

made from 50 kernels from each ear. A total of 1855 isolates from 3600 kernels from 72 ears 

were collected (914 from hybrid 33D49, and 941 from hybrid P1395R); 817 isolates were 

identified as F. proliferatum, 751 isolates as F. verticillioides, and 23 isolates were idenfitied as 

having the unique genetic marker. Isolates that tested positive for the unique genetic marker were 

subjected to DNA fingerprinting using amplified fragment length polymorphism to determine 

genetic relatedness to the original F. proliferatum isolates that were characterized with GBS. 

Phylogentic analyses indicated that 19 of the field isolates with the unique genetic marker were 

genetically indistinguishable from the originally GBS characterized isolates, suggesting a single 

origin. Strains of F. proliferatum introduced via seed into a new environment may be 

disseminated within that environment to the next generation of seed produced thus facilitating 

dissemination from that environment. 
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 Introduction 

Fusarium proliferatum (Matsushima) Nirenberg ex Gerlach & Nirenberg is a fungal plant 

pathogen with worldwide distribution. It has been recovered from numerous environments 

(Leslie and Summerell, 2006) and has an extraordinarily broad host range, causing disease in 

economically important plants (Stępień et al., 2011). 

 

Fusarium proliferatum is often found in maize seeds, constituting an important source of 

inoculum in the field (Cotten and Munkvold, 1998). Associated with symptomatic and 

asymptomatic plants, it is considered to be a primary causal agent of disease (Munkvold, 2003) 

and a seed-borne organism in maize (Christensen and Kaufmann, 1965; McGee, 1988). As a 

seed-borne organism, this fungus can colonize emerging seedlings, the maturing plant, and the 

newly developed ear (Al-Juboory and Juber, 2013). Although seed can contain a diversity of 

isolates; a few isolates are usually dominant (Elmer, 1995). 

 

Fusarium proliferatum has been identified as a colonizer of maize plants worldwide and is 

considered to be an increasingly important component of maize ear rot in Europe (Logrieco et 

al., 2002). Consistent isolation of F. proliferatum from symptomatic and asymptomatic plant 

tissues suggests that the fungus can systemically colonize maize plants. F. proliferatum can 

persist in maize stalk debris either on the surface of soil or buried in soil for at least 21 months 

(Cotten and Munkvold, 1998). 

 

In addition, F. proliferatum is considered to be the most effective producer of the polyketide-

derived fumonisin mycotoxins:  fumonisin B1 (FB1) is the most prevalent (Rheeder et al., 2002). 

Fumonisin B1 is toxic to both humans and animals due to inhibition of sphingolipid metabolism 

and cell cycle regulation. It has been associated with esophageal cancer, liver cancer, and neural 

tube defects (Desjardins, 2006). 

 

Considering the global distribution and trade of maize seed, the wide host range of F. 

proliferatum, and the potential production of mycotoxins by F. proliferatum, there is risk for the 

introduction, dispersal, and seed dissemination of exotic isolates of this fungus into new 

environments. For this reason, it is important to have a better understanding of the life cycle of 
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seed-borne F. proliferatum. In this investigation, we used genotyping-by-sequencing (GBS) 

(Elshire et al., 2011) and molecular detection tools to study the introduction and dissemination of 

F. proliferatum in field experiments.  

 

 Materials and Methods 

 Fusarium isolates collected from maize seeds  

Fusarium species were isolated from two different maize hybrids (33D49 and P1395R) provided 

by Dupont Pioneer Hybrid Seeds®. Seed were surface sterilized with 10% sodium hypochlorite 

solution for 1 minute, rinsed in distilled water for 30 seconds, and plated onto Nash-Snyder (NS) 

medium. Isolates were single-spored and grown on NS medium at 27°C for 7 days. Isolates were 

identified as F. proliferatum, F. verticillioides, F. andayazi, F. fujikuroi or F. thapsinum using 

morphological and molecular characteristics, including the amplification and sequencing of the 

translation elongation factor 1-α (TEF-1α) and β-tubulin genes. Ninety-six isolates of F. 

proliferatum and F. verticillioides were arbitrarily selected and characterized using GBS. 

 

 Genotyping-by-sequencing 

 Restriction-Digestion and Ligation 

Genomic DNA (100ng) was restriction-digested in 20µl of 10X CutSmart Buffer with 8U of 

PstI-HF and 8U of MspI (New England BioLabs). The digestion was conducted at 37°C for 2 

hours and then the samples were incubated at 65°C for 20 minutes to inactivate the enzymes. 

 

Ligation was completed in the same tube as the digestion in a 36µl reaction containing T4 DNA 

ligase (200U) in 10X NEB Buffer 4 with additional ATP (final concentration of 1mM). For each 

reaction, 2µl of a mix containing 0.1pmol of Adapter 1 and 15pmol of Adapter 2 (common Y 

adapter) was added as described in Poland et al (2012). The ligation was completed at 22°C for 2 

hours and then the samples were incubated at 65°C for 20 minutes to inactivate the enzyme. 

 

 Multiplexing and Amplification 
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The 96-samples were pooled together (5µl per sample) and cleaned using the QIAquick PCR 

Purification Kit (Qiagen). The amplification was completed in a 25µl reaction containing 10µl of 

the cleaned pooled sample, 5X Taq NEB Master Mix (New England Biolabs), and 1µl of 10µM 

of Illumina primers (forward and reverse) as described by Poland et al (2012). The library was 

amplified for 24 cycles: 95°C for 30 seconds, 62°C for 20 seconds and 68°C for 90 seconds. The 

sample was cleaned using the QIAquick PCR Purification Kit (Qiagen). The library was checked 

using BioRad Experion automated electrophoresis system, and quantified using Qubit 3.0 

(Invitrogen). The library was sequenced on a single lane of Illumina MiSeq using 300 cycles, 

single-end reads. The unfiltered and raw data had “.fastq” format. 

 

 Filtering of MiSeq (GBS) data 

Geneious® v. 7.1.7 was used to sort the raw reads (sequences) using the barcode adapters to 

group the sequence reads by isolate. 

 

Galaxy (Goecks et al., 2010) was used to design a pipeline to analyze the raw sequence data. 

Quality trimmer was used to trim 3’ ends of reads based on a PHRED quality score of at least 20 

(99% base call accuracy). Reads with unknown bases (N) and reads shorter than 15 nucleotides 

were discarded. The reads were then filtered by quality with a minimum PHRED score of 25 in 

at least 50% of the bases of all reads. Finally, Bowtie 2 (Langmead and Salzberg, 2012) was used 

to align the reads with a draft genome of F. proliferatum (Yue and Toomajian, unpublished).  

 

 Design of specific primers using Stacks 

Stacks (Catchen et al., 2013) was used to analyze all reads from all samples and to identify 

samples with unique polymorphic loci and single nucleotide polymorphisms (SNPs) (Figure 5.1). 

Stacks grouped and aligned similar DNA sequence reads from all isolates and identified 

polymorphisms that were used as molecular markers for these isolates. It also provided 

information about the coverage depth (14x in Figure 5.2) and the number of isolates represented 

in the comparison. These polymorphic reads were aligned to a draft complete genome sequence 

of F. proliferatum (Yue and Toomajian, unpublished) and used to design strain-specific primers. 

The specificity of the primers was confirmed by obtaining unique amplicons in end-point PCR 
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for those isolates. Extensive exclusivity panels including isolates of F. proliferatum, F. 

verticillioides and F. fujikuroi were tested to increase confidence on the specificity of the 

primers. 

 

Additional Fusarium isolates were obtained from the same seed lots (33D49 and P1395R) used 

to collect isolates for GBS and used to test the specificity of the primers. Amplification of the 

partial TEF-1α gene was used to confirm that the isolates belonged to the genus Fusarium 

(O’Donnell et al., 1998) (Table 5.1). 

 

 Field experiment and data collection 

Seeds from two maize hybrids (33D49, P1395R) were planted (May 1st & June 9th) in a 

randomized complete block design (2 plots, 6 subplots, 8 rows per subplot) at the K-State 

research farm in Manhattan, KS. Each row was 15 feet long, seeds were planted 6 inches apart, 

and rows spacing was 30 inches. At maturity (October 6th), 20 ears were harvested per subplot; 

15 ears from the center 4 rows in the middle of each subplot and 5 ears from the rows adjacent to 

subplots with the other hybrid. 

 

Four weeks prior to harvest, a pre-sampling was done to collect Fusarium isolates from the two 

hybrids (33D49 and P1395R) to further test the specificity of the primers. Amplification of the 

partial TEF-1α gene was used to confirm that the isolates belonged to the genus Fusarium 

(O’Donnell et al., 1998) (Table 5.1). 

 

From the harvested ears, 6 were arbitrarily selected per subplot and 50 kernels were arbitrarily 

collected per ear for isolation of Fusarium. Kernels were surface sterilized (10% sodium 

hypochlorite solution for 1 minute), rinsed in distilled water (30 seconds) and plated onto NS 

medium (27°C). After 7 days, the following data were recorded: the percentage germination of 

seeds, the percentage Fusarium infection of seeds, the number of F. proliferatum isolates and the 

number of F. verticillioides isolates. The identity of F. proliferatum and F. verticillioides isolates 

was confirmed by endpoint PCR using specific primers published in the literature (Jurado et al., 

2006; Patino et al., 2004) (Table 5.2). Mycelia samples of all isolates were stored in 30% 
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glycerol at -80°C. Genomic DNA was collected for all isolates using the GeneJet Genomic DNA 

Purification kit (ThermoFischer) and stored at -20°C. 

 

 Amplified Fragment Length Polymorphism Analysis 

Amplified Fragment Length Polymorphism (AFLP) fingerprinting was used to determine the 

genetic relatedness of the field-collected isolates that tested positive for the presence of the 

strain-specific molecular marker (identified with GBS). Two replicates (Fp1-49-16-4 and Fp2-

49-16-4) of the GBS-characterized F. proliferatum isolate Fp-49-16-4 were included as positive 

controls. Additional F. proliferatum and F. verticillioides isolates lacking the strain-specific 

molecular marker were used for comparison to the isolates having the strain-specific molecular 

marker. 

 

 Restriction-Digestion and Ligation 

The digestion and ligation reactions were done in a single step. Genomic DNA (120ng) was 

digested and ligated in 20µl reactions of 10X OPA restriction digest buffer (50mM K acetate, 

10mM Mg acetate and 10mM Tris-acetate with a final pH of 7.4), 4U of EcoRI-HF, 2U of MseI, 

80U of T4 DNA ligase (New England Biolabs), T4 DNA ligase buffer, 0.4µl of 5µM EcoRI 

adaptor mix, 0.4µl of 50µM MseI adaptor mix and water. The EcoRI and MseI adaptor mix was 

designed and prepared as in Leslie and Summerell (2006). The digestion-ligation mixture was 

incubated at room temperature overnight to ensure complete digestion and ligation and then 

diluted 10X in water. 

 

 Pre-selective Amplification 

Pre-amplification reactions were done using primers that were complementary to the DNA 

restriction sites and adaptor pair (EcoRI=5’-CTCGTAGACTGCGTACCAATTC-3’and 

MseI=5’-GACGATGAGTCCTGAGTAA-5’). Individual pre-amplification PCRs were prepared 

in a final volume of 25µL per reaction and included: 5µl of diluted digestion-ligation template, 

0.205µl dNTPs (25mM each nucleotide), 0.65µl of EcoRI core primer (50ng/µl), 0.65µl of MseI 

core primer (50ng/µl), 5.1µl 5X GoTaq Buffer, 0.2µl (1U) GoTaq polymerase (Promega) and 

water. The pre-amplification PCR steps were 94°C for 5 minutes, 25 cycles of 94°C for 30 
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seconds, 56°C for 1 minute, and 72°C for 2 minutes, a final extension step at 72°C for 5 minutes, 

and a hold at 4°C. The pre-amplified templates were diluted 20X with water. 

 

 Selective Amplification 

For the selective amplification, 8 primer combinations were tested that included two labeled 5’-

HEX EcoRI (E) primers, E-AA and E-TG, and four non-labeled MseI (M) primers, M-TT, M-

CA, M-CC, and M-CT. Primer combinations were tested with five F. proliferatum isolates and 

one F. verticillioides isolate to identify the primer pair with the best discriminatory power. 

Primers 5’-HEX-E-TG and M-CT were chosen for further fingerprinting analysis of all the 

isolates because it gave a better discriminatory resolution of the isolate of interest (isolates with 

strain-specific marker). Individual selective amplification PCRs in a final volume of 20µL per 

reaction included 3µL diluted pre-selection amplification DNA template, 1.6µl 25mM MgCl2, 

0.4µL 10mM dNTPs, 5µM EcoRI selective primer, 5µM MseI selective primer, 2µL 10X PCR 

Buffer (Takara Clontech), 0.3µL GoTaq polymerase (5U/µL) (Promega) and water. The 

touchdown PCR steps were 94°C for 2 minutes, 10 cycles of 94°C for 20 seconds, 66°C for 30 

seconds (-1°C per cycle) and 72°C for 2 minutes, followed by 24 cycles of 94°C for 30 seconds, 

56°C for 30 seconds, and 72°C for 3 minutes, a final extension at 60°C for 30 minutes, and a 

hold at 4°C. The selective amplification template was diluted 10X in water. 

 

 Preparation of DNA samples for analysis  

A well-mixed solution of 9.5µl formamide and 0.5µl GeneScan-500 ROX internal size standard 

(Applied Biosystems) was equally distributed throughout the PCR plate and 2µl of the diluted 

selective amplification template added to each well. Samples were then centrifuged at 2100 RPM 

for 1 minute, denatured at 95°C for 5 minutes, cooled in ice for 5 minutes, and centrifuged at 

2100 RPM for 1 minute. Analysis of the samples was performed on an ABI Prism 3730 DNA 

Analyzer (Applied Biosystems, Foster City, CA). 

 

 AFLP Marker Scoring and Error Rate Estimation 

AFLP profiles were scored using GeneMarker software v. 1.97 (SoftGenetics LLC, State 

College, PA). Size Standard (size calling) peaks were manually calibrated for every sample to 
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obtain consistent results. A 500 relative fluorescent unit (RFU) minimum peak height was used 

for peak scoring as this was reliably above the noise of negative controls (water) and 20,000 

RFU was used as the maximum peak height. In addition, only bands between 60bp and 600bp 

were scored. 

 

To verify the consistency of the AFLP technique, DNA from the same isolate was included in 

every AFLP reaction and genotyping run. As reported by Bonin et al (2004), the AFLP technical 

error rate estimation was calculated by dividing the total number of mismatched bands by the 

total number of AFLP bands produced overall in the fingerprint. 

 

 AFLP Data Analysis 

Analyses of the AFLP binary data were done using Numerical Taxonomy and Multivariate 

Analysis System (NTSYSpc) version 2.2 to build an Unweighted Pair Group Method with 

Arithmetic Mean (UPGMA) tree to cluster the isolates (1000 bootstrap runs, data not shown on 

NTSYS). In addition, the full AFLP marker data set was analyzed using STRUCTURE version 

2.3.4 with 10,000 burn-in and 50,000 Markov chain Monte Carlo (MCMC) steps (Pritchard et 

al., 2000; Falush et al., 2007) and 20 iterations per k to analyze the structure of the population. 

Admixture was included in the model and correlated allele frequencies assumed. STRUCTURE 

HARVESTER (Earl, 2012) was used for the calculation of delta K (Evanno et al., 2005) to 

determine the number of clusters/structures (k). GenAlEx was used to perform Analysis of 

Molecular Variance (AMOVA) and Principal Coordinates Analysis (PCoA) of the populations 

(Peakall and Smouse, 2006); the calculations and algorithms were performed using previously 

published methods (Peakall and Smouse, 2007). 

 

 Results 

 Isolates collected from maize seeds  

Fusarium species were isolated and single-spored from two Pioneer® maize hybrids. The 

hybrids were from the same geographical location and showed different percentages of seed-

borne Fusarium species, 30% in hybrid 33D49 and 63% in hybrid P1395R, but similar 

percentages of seed-borne F. proliferatum isolates, 15% (Stack, personal communication). 
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 Use of Stacks to analyze GBS data and preliminary data 

The GBS run had a raw output of 21,792,630 reads. After quality control and filtering, 

approximately 50% of the reads were discarded. Stacks identified seven F. proliferatum isolates 

having unique molecular markers (Table 5.3). Stacks also provided information about the 

coverage depth and the number of samples represented (sequenced at that locus). Primers were 

designed for these unique molecular markers for use in end-point PCR amplification. Extensive 

exclusivity panels were tested using the primers in end-point PCR; two of the isolates (Fp-49-16-

4 and Fp-95-8-4) had unique molecular markers (Figure 5.3). The specificity of the primers was 

confirmed by end point PCR (Table 5.4) and was also confirmed in-silico by screening the 

primer sequences with BLASTn against the NCBI GenBank database (Altschul et al., 1990). The 

other molecular markers failed the exclusivity panels; and hence, they were not further used in 

this investigation. The exclusivity panels included isolates of F. proliferatum, F. verticillioides 

and F. fujikuroi. 

 

The unique amplicons for the two F. proliferatum strains were screened with BLASTn against 

the NCBI GenBank database; both (for isolates Fp-49-16-4 and Fp-95-8-4) had similarity to 

sequences of a draft genome of Fusarium fujikuroi (Table 5.5). This can be explained by the high 

similarity of F. proliferatum and F. fujikuroi which are often hard to distinguish morphologically 

and molecularly (Leslie and Summerell, 2006); hence this could be a genomic region shared by 

both species. However, the polymorphisms in that region are still useful to identify specific 

strains of F. proliferatum. 

 

Based on the results obtained in Stacks and the exclusivity panels, isolate Fp-49-16-4 was only 

found in maize hybrid 33D49, and isolate Fp-95-8-4 was only found in maize hybrid P1395R. 

These two maize hybrids were used in field experiments. 

 

Additional Fusarium isolates were obtained, 63 from hybrid 33D49 and 61 from hybrid P1395R, 

and tested using the strain-specific primers to amplify the unique locus (Figure 5.4). This 

increased the power of the exclusivity panels and the confidence in the strain-specific primers. 

Using the primers designed for the Fp-49-16-4 isolate, 3 out of the 63 isolates from hybrid 
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33D49 (4.8%) and 0 out of the 61 isolates from hybrid P1395R (0%) had the Fp-49-16-4-unique 

locus. The primers designed for isolate Fp-95-8-4 amplified sequence from isolates collected 

from hybrid 33D49 (Figure 5.5). Therefore, these primers were not used in the field experiments. 

 

 Field Experiments 

For the collection of F. prolfieratum isolates, 20 ears were harvested from each subplot in the 

field (240 ears total). Six ears were arbitrarily selected from each subplot and the kernels 

collected for further studies. From each ear, 50 arbitrary kernels were plated on NS medium 

(3,600 seeds) and infection and germination rates were scored (Table 5.6). Similar infection and 

germination rates were found for both hybrids in every plot and subplot (Table 5.7). A total of 

1855 isolates of seed-borne Fusarium were cultured; 817 isolates were identified as F. 

proliferatum, 751 were identified as F. verticillioides, and 287 were not determined. Of the 817 

F. proliferatum isolates, 23 had the unique strain-specific molecular marker (Table 5.8). The 

number of F. proliferatum and F. verticillioides isolates collected from both hybrids in every plot 

and subplot were recorded (Table 5.9). 

 

 AFLP fingerprinting of isolates 

Amplified fragment length polymorphism (AFLP) analysis was used to determine the genetic 

relatedness among isolates collected from the field with the strain-specific molecular marker (Fp-

49-16-4). 

 

For selective amplification, 8 primer combinations were tested (Table 5.10) on 6 isolates to 

optimize discrimination of the strain (Fp-49-16-4) of interest (Table 5.11). Primers 5’-HEX-

EcoRI-TG-3’ and 5’-MseI-CT-3’ were chosen for the selective amplification because they 

generated a consistent and high number of alleles and provided good discrimination of isolate 

Fp-49-16-4. 

 

Isolate Fp-49-16-4 was used in three runs to estimate the technical error rate as described by 

Bonin et al., (2004). The AFLP error rate estimation was done using binary data generated with 

primers 5’-HEX-EcoRI-TG-3’ and 5’-MseI-CT-3’ and counting 241 loci as the total number of 
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loci produced (Table 5.12).The error rate for the three AFLP runs were 4.15%, 10.37%, and 

4.56%.  

 

 Analyses of AFLP data 

All analyses were performed twice; 1) all F. proliferatum and F. verticillioides isolates included 

and 2) only F. proliferatum isolates included. NTSYSpc v. 2.2 was used to cluster isolates and 

generate a UPGMA-derived phylogenetic tree. The isolates were bootstrapped 1,000 times using 

the “re-sampling” option in NTSYS (the bootstrap data is not shown on NTSYS trees). Variation 

was assessed by calculating the simple matching (SM) similarity coefficient, which is an 

informative measure of similarity when working with closely related taxa (Kosman and Leonard, 

2005; Dalirsefat et al., 2009; Sesli and Yegenoglu, 2010; Balestre et al., 2008). The SM matrix 

was used to cluster the isolates using the Sequential, Agglomerative, Hierarchical, and Nested 

(SAHN) clustering methods (Sneath and Sokal, 1973) by UPGMA. The UPGMA analysis which 

included all F. proliferatum and F. verticillioides isolates grouped the isolates into two major 

clades; the F. proliferatum clade was divided into one outlier (Fp-49-2-2-666) and a subclade 

containing all the other isolates (Figure 5.6). In addition, all the isolates that contained the unique 

molecular marker grouped into the same subclade with the two positive control replicates (Fp-

49-16-4). 

 

The UPGMA analysis that included only the F. proliferatum isolates showed results similar to 

the one that included all isolates; it was divided into one outlier (Fp-49-2-2-666) and a clade 

containing all the other isolates. Similarly, isolates with the unique molecular marker grouped 

into a subclade separated from the other isolates (Figure 5.7). 

 

STRUCTURE and STRUCTURE HARVESTER analyses that included all isolates revealed the 

presence of two populations (Figure 5.8) based on delta K calculations (Figure 5.9). These 

populations divided F. proliferatum and F. verticillioides isolates. Isolate Fp-49-2-2-666 showed 

the greatest variation within the F. proliferatum isolates. STRUCTURE and STRUCTURE 

HARVESTER analyses with only F. proliferatum isolates identified two populations (Figure 

5.10) based on delta K calculations (Figure 5.11), 1) F. proliferatum isolates with the unique 
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strain-specific molecular marker and 2) all other F. proliferatum isolates that lacked the strain-

specific marker. 

 

Principal Coordinates Analysis (PCoA) of all isolates further showed how F. proliferatum and F. 

verticillioides isolates clustered separately (Figure 5.12). In addition, F. proliferatum isolates 

related to Fp-49-16-4 with the unique molecular marker grouped closer to each other than with 

the other F. proliferatum isolates within the cluster (Figure 5.13). 

 

PCoA analysis of just F. proliferatum isolates also clustered the isolates in two groups, 1) F. 

proliferatum isolates related to Fp-49-16-4 with the unique strain-specific molecular marker, and 

2) all the other F. proliferatum isolates (Figure 5.14). 

 

The analysis of molecular variance (AMOVA) for all F. proliferatum and F. verticillioides 

isolates revealed that there was slightly greater molecular variation among populations (52%) 

than within populations (48%) (Figure 5.15). The PhiPT (ФPT) obtained was 0.524 and highly 

significant (p=0.001), suggesting there were two populations (Table 5.13). AMOVA for the F. 

proliferatum isolates revealed greater molecular variation within populations (64%) than 

between populations (36%) (Figure 5.16). The PhiPT (ФPT) obtained was 0.363 and highly 

significant (p=0.001), suggesting there were two populations (Table 5.14). To understand the 

high molecular variation (AMOVA) within and among populations and get a graphic 

representation of the molecular differences, STRUCTURE analysis was done using 8 

populations (k=8) for all isolates (Figure 5.17) and for only F. proliferatum isolates (Figure 

5.18). This analysis showed the high variation present in the F. proliferatum isolates lacking the 

unique strain-specific molecular marker compared to the F. verticillioides isolates, and to the F. 

proliferatum isolates having the unique strain-specific molecular marker.  

 

Maize hybrid 33D49 yielded a total of 914 Fusarium isolates, of which 405 (44.3%) were 

identified as F. proliferatum and 380 (41.6%) were identified as F. verticillioides. Twenty-three 

of the 914 (2.52%) Fusarium isolates were identified as having the unique strain-specific 

molecular marker and likely had a single origin and were clonal.  
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 Discussion 

The results of this investigation demonstrate that specific F. proliferatum strains introduced into 

a new environment by planting maize seeds were detected in the newly formed kernels on the ear 

of the maize plant and hence are likely to be disseminated from that environment in the harvested 

seed. The unregulated movement of this cryptic fungus in maize seed may extend the 

geographical range of undesirable exotic populations or strains (e.g., high mycotoxin producers). 

 

Long-distance movement and establishment of microorganisms in new environments are favored 

by asymptomatic colonization of the seed, which allows repeated entry into new sites that may 

go undetected for years (Elmer, 2001). Considering the global distribution and trade of maize 

seed and the seed-borne nature of F. proliferatum, the introduction of maize seed-borne isolates 

into new locations is likely occurring. Because of the wide host range of F. proliferatum, crops 

other than maize can be affected as well. For example, F. oxysporum f.sp. apii, which causes 

Fusarium yellows of celery, was detected 3 years after its first introduction into Michigan. By the 

time it was detected, it comprised over 20% of all F. oxysporum isolates in that state (Elmer and 

Lacy, 1987) and was isolated from other plant species (Elmer and Lacy, 1987). During the time a 

microorganism goes undetected, it can build up inoculum, become established as the dominant 

pathogen in a field, and start colonizing other plant species that provide adequate niches. 

 

Our results demonstrate that the seed of different maize hybrids were colonized by different F. 

proliferatum strains. The association between a seed-borne microorganism and a plant host can 

be influenced by the host genotype (Ahlholm et al., 2002) and environmental factors (Ahlholm et 

al., 2002; Pamphile et al., 2002), which suggests the potential for genetic variability among seed-

borne microorganisms including maize seed-borne F. proliferatum. 

 

High genetic variability among seed-associated F. proliferatum isolates used in this investigation 

was demonstrated (STRUCTURE analysis with k=8, Figure 5.17). Higher genetic variability was 

detected in the F. proliferatum population than in the F. verticillioides population. High 

divergence among F. proliferatum isolates from the same host plant has been demonstrated 

through analyzing variation in mycotoxin profiles (Desjardins et al., 2000), suggesting that the 

introduction of a single maize seed or plant can greatly increase the diversity and genetic pool of 
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F. proliferatum. AMOVA analysis found 48% variation within species and 52% variation 

between species (Figure 5.15). 

  

Moreover, STRUCTURE HARVESTER identified 2 major populations when using all isolates 

(k=2 based on Delta K graph, Figure 5.9) and STRUCTURE divided those 2 populations into F. 

proliferatum isolates and F. verticillioides isolates (Figure 5.8). The F. proliferatum isolates 

having the unique molecular marker grouped with the other F. proliferatum isolates. Further 

analysis was done with only the F. proliferatum isolates; STRUCTURE HARVESTER identified 

2 major populations (k=2 based on Delta K graph, Figure 5.11). The F. proliferatum isolates 

having the genetic marker related to Fp-49-16-4 formed one cluster while the other F. 

proliferatum isolates formed the second cluster. This analysis supports the hypothesis that 

isolates introduced into new environments in seed can then be disseminated from that 

environment in the seed that is subsequently harvested. The PCoA analyses also demonstrated 

that the F. proliferatum isolates having the molecular marker grouped separately from the other 

F. proliferatum isolates, thus supporting the same conclusion. 

 

Phylogenetic analyses grouped all 23 isolates having the molecular marker (related to Fp-49-16-

4) in the same subclade as the two replicate positive-controls (Fp-49-16-4 and Fp2-49-16-4). A 

previous study that grouped F. proliferatum isolates by VCGs (Elmer et al., 1999) found that the 

different VCG groups had different virulence in asparagus, and that the isolates from group VCG 

US5, which could colonize asparagus residue faster (Elmer et al., 1991), were found in higher 

proportion in the United States and in Australia than isolates from other VCG groups. Elmer et 

al., (1999) hypothesized that group VCG US5 was likely introduced to Australia from the U.S. 

by importation of asparagus seeds or crowns, supporting the conclusion that seed transmission of 

F. proliferatum in asparagus is an important pathway of dispersal. The introduction of maize 

seed colonized by F. proliferatum isolates having high genetic variability may result in the 

introduction and establishment of undesirable isolates into new areas.  

 

Different technologies were used in this investigation including basic plant pathology techniques, 

basic and advanced molecular tools (AFLP), and next-generation sequencing (GBS) technology. 

The results obtained in GBS and AFLP were verified by estimation of their error rates. Both 
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techniques depend on uniform and precise restriction-digestion, ligation, amplification of 

fragments, and sequencing (GBS) or display (AFLP) of the fragments. 

 

GBS analysis of the F. proliferatum isolates allowed the generation of a uniform and reduced 

representation of their genomes (Elshire et al., 2011, Poland et al., 2012). Stacks analysis 

detected seven unique F. proliferatum isolates (Table 5.3) by finding isolate-specific 

polymorphic genomic regions (i.e. SNPs). However, the shallow depth of coverage in GBS 

(Table 5.3) resulted in SNP variation among identical samples that were used as controls; it has 

been reported that variant calling error rates are higher in GBS than in standard sequencing 

(Cooke et al., 2015). These errors in sequencing (SNP calls) were corroborated when primers 

were designed to detect the unique isolates in end-point PCR. In some cases, there were no 

amplifications, while in others the polymorphisms were not unique, as the primers failed the 

exclusivity panels. More quality control and filters of the raw data (GBS reads) can be used to 

increase the accuracy of the final reads. Furthermore, using a more powerful sequencer (i.e. 

Illumina HiSeq 2000/2500) can increase the representation of the genome, the final number of 

reads obtained and the coverage depth. 

 

AFLP fingerprinting of the isolates gave an electropherogram which displayed peaks 

representing loci of different size. The presence of the locus of a particular size was counted as 

“1”, and its absence counted as “0”. Therefore, the quality control of the peaks that represented 

loci was extensive to avoid the false inclusion or exclusion of loci. DNA fingerprinting 

technology is a powerful tool to compare isolates and has previously been used with a high 

success rate (Chiocchetti et al., 1999). AFLP has certain error rates with respect to 

reproducibility (Jones et al., 1997, Pei et al., 2007, Bonin et al., 2004) that can complicate the 

interpretation of results. The use of AFLP to study the population genetics of different Fusarium 

species, forma speciales, strains, and isolates is common (Baayen et al., 2000; Abdel-Satar et al., 

2003; Groenewald et al., 2006; Belabid et al., 2004; Moretti et al., 2004; Qu et al., 2008; 

Perchepied et al., 2005; Lee et al., 2009); however, the error rate of the AFLP results is not 

commonly reported, which complicates the interpretation of results and their reproducibility 

(Crawford et al., 2012). Other AFLP population studies have reported error rates of 2-10% and 

have an average of 5-6% for fungal species (Voyron et al., 2009; Avolio et al., 2011; Rouse et 
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al., 2011; Gray et al., 2014). This is consistent with the 6.36% error estimation in this study. 

Therefore, all isolates with the unique molecular marker that have a similarity of 94% or greater 

are likely to be clonal. 

 

It is important to recognize the role of seeds as vectors in spreading microorganisms to derive a 

more complete understanding of the epidemiology of some diseases (Elmer, 2001). Furthermore, 

many of the plant disease epidemics that occurred during the 1900s are correlated to the creation 

of seed industries and the movement of seed worldwide (Elmer, 2001). The dispersal of F. 

proliferatum in maize seed may be the result of the demand for seed in different markets. 

Moreover, F. proliferatum often goes undetected because it does not cause any visual disease 

symptoms in the seed nor does it hinder germination. This dispersal greatly increases the genetic 

variability of populations in new areas and can result in an aggressive, high toxin producing 

isolate becoming dominant. Therefore, early detection and identification of infested seed lots 

could slow dispersal (Elmer, 2001) and the movement of undesirable isolates. 
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 Figures and Tables 

 

Figure 5.1 Identification of polymorphic loci and single nucleotide polymorphisms (SNPs) of GBS samples in Stacks. 
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Figure 5.2 Stacks aligns a consensus sequence to the complete genome of F. proliferatum to identify polymorphisms (not 

shown). The identified polymorphisms are highlighted in light blue for easy interpretation of results. 
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Figure 5.3 Multiplex end-point PCR assay using strain-specific primers for isolates Fp-49-16-4 and Fp-95-8-4 in 58 different F. 

proliferatum isolates showed specificity of the primers. Fp-49-16-4 had a 498bp amplicon and Fp-95-8-4 had a 454bp amplicon. 

60 additional F. proliferatum isolates were tested in the exclusivity panels.  
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Figure 5.4 Additional Fusarium isolates were collected from DuPont Pioneer maize hybrid 33D49 and hybrid P1395R; the 

same seed lots that were used for the original GBS studies (white numbers). Of the 63 isolates collected from hybrid 33D49, 

three (numbers 25, 41 and 59) contained the strain-specific molecular marker. Of the 61 isolates collected from hybrid 

P1395R, none had the molecular marker unique to isolate Fp-49-16-4. Additional Fusarium isolates were collected from the 

ears of the maize plants from the field experiment (yellow color) to test for the presence of the strain-specific molecular 

markers identified with GBS. Of the 35 isolates collected from hybrid 33D49, one of them (number 7) had the strain-specific 

molecular marker. Of the 35 isolates collected from hybrid P1395R, none had the molecular marker unique to isolate Fp-49-

16-4. The molecular marker for isolate Fp-49-16-4 was 498 base pairs. Every gel had a positive control in the first lane (isolate 

Fp-49-16-4) and a negative control in the second lane (water) to detect potential cross-contamination between samples. Isolates 

were confirmed to be Fusarium by partial amplification of the TEF-1α gene (750 base pairs). 
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Figure 5.5 Primers designed for isolate Fp-95-8-4 amplified a 454bp fragment in all the isolates collected from maize hybrid 

33D49. This set of primers was not used in the field experiments as it was not specific to isolate Fp-95-8-4.  
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Figure 5.6 UPGMA clustering tree identified two major clades: A) all F. proliferatum isolates and B) all F. verticillioides 

isolates. The clade with F. proliferatum isolates was divided into one outlier (Fp-49-2-2-666), and a subclade with all the other 

isolates. All isolates with the strain-specific molecular marker grouped in the same subclade with the two positive control 

replicates (Fp1-49-16-4 and Fp2-49-16-4) and separate from the other F. proliferatum isolates. 19 of those 23 isolates had at 

least 95% similarity with the two replicates. AFLP error rate was calculated as 6.36%; therefore, all isolates having the strain-

specific molecular marker that have a similarity of 94% or greater are likely to be clonal. 
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Figure 5.7 UPGMA clustering only including F. proliferatum isolates showed the same results as the UPGMA analysis 

including all isolates. The isolates were divided into one outlier (Fp-49-2-2-666), and a clade with all the other isolates. The 23 

isolates with the unique molecular marker grouped in the same subclade with the two positive control replicates (Fp1-49-16-4 
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and Fp2-49-16-4). 19 of those 23 isolates had at least 95% similarity with the two replicates and they likely have a single origin 

and are clonal. This is explained by the AFLP error rate which was calculated to be 6.36%. 
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Figure 5.8 STRUCTURE analysis determined the presence of two populations; F. proliferatum population is predominantly 

red and F. verticillioides population is predominantly green. Bars with both green and red indicate similarity of some loci. 
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Figure 5.9 Evanno’s delta K plot indicates two populations; STRUCTURE analyses of all isolates were done assuming two 

population. 
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Figure 5.10 STRUCTURE analysis of just F. proliferatum isolates determined the presence of two populations, one that includes 

the isolates with the strain-specific molecular marker (green), and the other one that includes all the other F. proliferatum isolates 

(red). Bars with both green and red indicate similarity of some loci. 
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Figure 5.11 Evanno’s delta K plot indicates two populations; STRUCTURE analyses of F. proliferatum isolates were done 

assuming two population. 
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Figure 5.12 Principal coordinates analysis divided all the isolates into two clusters, F. proliferatum isolates (red) and F. 

verticillioides isolates (green). Coordinate 1 accounts for 29.9% of the variation and coordinate 2 accounts for 15.36 % of the 

variation.  
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Figure 5.13 Principal coordinates analysis divided the F. proliferatum isolates in two clusters. Isolates with the strain-specific 

molecular marker (related to Fp-49-16-4; green) grouped close to each other in the same cluster with the other F. proliferatum 

isolates (red). Coordinate 1 accounts for 29.9% of the variation and coordinate 2 accounts for 15.36 % of the variation. 
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Figure 5.14 Principal coordinates analysis divided the F. proliferatum isolates in two clusters, F. proliferatum isolates related to 

Fp-49-16-4 (green), and the other F. proliferatum isolates (red). Coordinate 1 accounts for 27.26% of the variation and 

coordinate 2 accounts for 11.84% of the variation.  
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Figure 5.15 AMOVA analysis revealed that there was slightly more molecular variation among isolates between populations 

(species) (52%) than among isolates within population (species) (48%) for all isolates. 

 

 

 

 

 

 

 

 

 

Among Pops
52%

Within Pops
48%

Percentages of Molecular Variance



120 

 

Figure 5.16 AMOVA analysis for the F. proliferatum isolates revealed that there was more molecular variation within F. 

proliferatum populations (64%) than among F. proliferatum populations (36%). The two populations are F. proliferatum isolates 

related to Fp-49-16-4 (unique molecular marker) and all the other F. proliferatum isolates.. 
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Figure 5.17 STRUCTURE analysis of all isolates using k=8 (8 populations) gives a graphic representation of the diversity and 

molecular differences within and among populations. The variation among F. proliferatum isolates is higher when compared to 

the variation found among the F. verticillioides isolates. 
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Figure 5.18 STRUCTURE analysis of only F. proliferatum isolates using k=8 (8 population structures) gives graphic 

representation of molecular differences within and among populations. The variation among the F. proliferatum isolates is 

higher when compared to the variation found among the F. proliferatum isolates with the unique molecular marker. 
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Table 5.1 Primers for partial amplification of the TEF-1α gene were used in end-point PCR 

to confirm that the isolates belong to the genus Fusarium. 

 

Primer/Genus Fusarium 

Forward Primer 5'-ATGGGTAAGGAGGACAAGAC-3' 

Reverse Primer 5'-GGAAGTACCAGTGATCATGTT-3' 

Amplicon size (bp) 750 
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Table 5.2 Primers for partial amplification of the intergenic spacer (IGS) of rDNA were 

used in end-point PCR to identify F. proliferatum and F. verticillioides isolates. 

 

Primer/Species Fusarium proliferatum Fusarium verticillioides 

Forward 

Primer 
5'-CGGCCACCAGAGGATGTG-3' 

5'-

CGCACGTATAGATGGACAAG-3' 

Reverse 

Primer 

5'-

CAACACGAATCGCTTCCTGAC-

3' 

5'-

CACCCGCAGCAATCCATCAG-3' 

Amplicon size 

(bp) 
230 700 
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Table 5.3 Stacks identified seven F. proliferatum isolates (Fp) having unique molecular 

markers. Note that Fp-49-16-4 had the strain-specific locus with 6 SNPs not found in other 

isolates. 

 

Isolates Depth 

Number of 

samples 

represented 

Number of samples 

with unique locus 

# 

SNPs 

Position of SNPs with 

respect to each other 

Fp-47-4-2 6 53 1 1 12 

Fp-95-14-5 6 70 1 1 50 

Fp-49-11-1 6 96 2 5 101,102,110,114,119 

Fp-95-8-4 2 64 1 1 68 

Fp-47-6-1 7 95 3 3 5,15,17 

Fp-49-11-

3B 2 96 1 1 11 

Fp-49-16-4 5 96 1 6 8,10,13,18,22,24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



126 

Table 5.4 GBS was used to identify loci unique to F. proliferatum strains. These strain-

specific loci were used to design specific primers for use in end-point PCR for their 

identification (Fp-49-16-4 and Fp-95-8-4). Exclusivity panels revealed specificity of the 

primers. 

 

Strains Fp-49-16-4 Fp-95-8-4 

Forward Primer 
5'-TTCTCTCAGAGCCGCGAGT-

3' 

5'-

CGCCCGCTACTGGAAAAA-3' 

Reverse Primer 

5'-

GACAGCAGAGGACCTTGGAG-

3' 

5'-

CTCGGTCATGATTTGGTTGG-

3' 

Amplicon Size (in 

bp) 
498 454 
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Table 5.5 The amplicons generated by the strain-specific primers for Fp-49-16-4 and Fp-

95-8-4- revealed similarity to F. fujikuroi draft genome. This can be explained by the high 

similarity between F. proliferatum and F. fujikuroi; however, the polymorphisms in the 

strain-specific molecular marker can still be used to identify the F. proliferatum isolates. 

 

 

 

 

 

 

 

Isolate Fp-49-16-4 Fp-95-8-4 

Amplicon 

Sequence 

5’-TTCTCTCAGA                                                  

GCCGCGAGTCCATCTGCTGCAGAT

GCTATGGGTCTGTAAATGTTTCCTT

AGGTTGTTTCGGTAGTTTGAGGAG

AGTTTGGTGTTTTCTCGTGGCCTCA

TGGAAGGCGCCAGACACTTTCC                                                              

ACTCGGGAGTCTGTAGTTTATTGA

AATCTAGTTTAATTAAAAGGTAAG

TACATCAACCCA                                                         

ATTTTCGAATCGTACCACTGTGAG

GTAAATAAGATAGTGACCGAGATA

CTAACGTTGCAA                                                               

TAACCAGGATGTGAACCCCGCACG

ACAACCGCCGATCCCACTCAAATT

CGGGGAACCTTG                                                              

ATCATATCCTTCCTGATTGAGTATA

CGGAACCGACGCTTATCGGGCGGT

CATGTTTCTCC                                                                

ATGATTGTTGAGCGAATCTCGGTG

CGGCTCTACAATTGAAGCCCGGAT

CCTTCTCGTCGCGCTGACTCGCTAT

AAAAGATCGACAGCGAGGCTTCCT

CGCTTTTCCTCCTCCAAGGTCCTCT

GCTGTC-3’ 

5’-CGCCCGCTACTGG                               

AAAAACAACAACGTCCAGTA

CAACGAACTTCGCATCTCTC

AATCAATCATTGTTGGCCGG

GCAGTGATTCTCGCTCAACC

TATGATGGCCCTTCCCTCACC

GCAAACTTTTAACCCCGAG                                                           

GCTGAAGCAGGCAGGTTCAG

CTGGCTGCTCTATGGAACAG

AGAAAGATATGTTTGAAATC                                                           

CATGGAGGTTGTGGCTTTTC

GAAGAAATTGTTGCATCTTA

TGAGCCAGGTAACGTATTGT                                                                 

GCAGGTCGATTGCAGCAAGA

GCCTGAATCCACCATCGTTC

CAATCACGGCAAAATTCCTC                                                               

TTGCGCGAACTATCAGAAAT

GCGACAATGGAGCCGTGAGG

GCAAAGACTGGGAGCTGGCT

CGAAAGTACCCACCAACGAT

AGACTGGGTGCGCGACAAAG

CAGACGAAGTGATAATCGAT

TCCAACCAAATCATGACCGA

G-3’ 

Amplicon 

Size 
498 base pairs 454 base pairs 

% 

Similarity to 

F. fujikuroi 

91% Identity to Fusarium fujikuroi IMI 

58289 draft genome, chromosome 

FFUJ_chr11 

99% Identity to Fusarium fujikuroi 

IMI 58289 draft genome, 

chromosome FFUJ_chr06 
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Table 5.6 Germination and infection rates of seeds collected from the field. Infection and 

germination rates were determined by plating seed on Nash-Snyder medium. 

 

# Hybrid 

Plot 

# 

Subplot 

# 

# Infected 

seeds 

% 

Infection 

# Germinated 

Seeds 

% 

Germination 

1 33D49 1 1 23 46 49 98 

2 33D49 1 1 25 50 44 88 

3 33D49 1 1 28 56 47 94 

4 33D49 1 1 27 54 43 86 

5 33D49 1 1 21 42 48 96 

6 33D49 1 1 23 46 47 94 

7 33D49 1 2 26 52 50 100 

8 33D49 1 2 27 54 50 100 

9 33D49 1 2 31 62 42 84 

10 33D49 1 2 29 58 46 92 

11 33D49 1 2 21 42 45 90 

12 33D49 1 2 20 40 47 94 

13 33D49 1 3 32 64 49 98 

14 33D49 1 3 20 40 43 86 

15 33D49 1 3 32 64 46 92 

16 33D49 1 3 20 40 46 92 

17 33D49 1 3 23 46 43 86 

18 33D49 1 3 26 52 46 92 

19 33D49 2 1 30 60 48 96 

20 33D49 2 1 21 42 41 82 

21 33D49 2 1 25 50 47 94 

22 33D49 2 1 21 42 46 92 

23 33D49 2 1 30 60 46 92 

24 33D49 2 1 24 48 45 90 

25 33D49 2 2 25 50 41 82 

26 33D49 2 2 30 60 44 88 

27 33D49 2 2 27 54 50 100 

28 33D49 2 2 27 54 50 100 

29 33D49 2 2 29 58 48 96 

30 33D49 2 2 23 46 49 98 

31 33D49 2 3 23 46 45 90 

32 33D49 2 3 30 60 41 82 

33 33D49 2 3 25 50 45 90 

34 33D49 2 3 26 52 42 84 

35 33D49 2 3 23 46 50 100 

36 33D49 2 3 21 42 48 96 
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37 P1395R 1 1 32 64 43 86 

38 P1395R 1 1 27 54 50 100 

39 P1395R 1 1 23 46 41 82 

40 P1395R 1 1 24 48 50 100 

41 P1395R 1 1 22 44 44 88 

42 P1395R 1 1 25 50 47 94 

43 P1395R 1 2 20 40 42 84 

44 P1395R 1 2 25 50 49 98 

45 P1395R 1 2 20 40 40 80 

46 P1395R 1 2 24 48 49 98 

47 P1395R 1 2 30 60 45 90 

48 P1395R 1 2 32 64 50 100 

49 P1395R 1 3 32 64 50 100 

50 P1395R 1 3 32 64 45 90 

51 P1395R 1 3 20 40 44 88 

52 P1395R 1 3 22 44 44 88 

53 P1395R 1 3 29 58 43 86 

54 P1395R 1 3 31 62 44 88 

55 P1395R 2 1 30 60 46 92 

56 P1395R 2 1 20 40 48 96 

57 P1395R 2 1 27 54 43 86 

58 P1395R 2 1 21 42 48 96 

59 P1395R 2 1 30 60 44 88 

60 P1395R 2 1 20 40 46 92 

61 P1395R 2 2 26 52 45 90 

62 P1395R 2 2 27 54 50 100 

63 P1395R 2 2 27 54 42 84 

64 P1395R 2 2 29 58 43 86 

65 P1395R 2 2 22 44 50 100 

66 P1395R 2 2 30 60 49 98 

67 P1395R 2 3 28 56 42 84 

68 P1395R 2 3 26 52 47 94 

69 P1395R 2 3 22 44 42 84 

70 P1395R 2 3 27 54 48 96 

71 P1395R 2 3 27 54 50 100 

72 P1395R 2 3 32 64 41 82 
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Table 5.7 Percentage infection and percentage germination of kernels collected from 

hybrids 33D49 (49) and P1395R (95) in each plot and subplot. 

 

# Infected - 49 914 # Germinated – 49 1657 

% Infected - 49 50.8 % Germinated – 49 92.1 

# Infected - 95 941 # Germinated – 95 1644 

% Infected - 95 52.3 % Germinated – 95 91.3 

    

# Infected - 49 (plot 1) 454 # Germinated - 49 (plot 1) 831 

% Infected - 49 (plot 1) 50.4 % Germinated - 49 (plot 1) 92.3 

# Infected - 49 (plot 2) 460 # Germinated - 49 (plot 2) 826 

% Infected - 49 (plot 2) 51.1 % Germinated - 49 (plot 2) 91.8 

# Infected - 95 (plot 1) 470 # Germinated - 95 (plot 1) 820 

% Infected - 95 (plot 1) 52.2 % Germinated - 95 (plot 1) 91.1 

# Infected - 95 (plot 2) 471 # Germinated - 95 (plot 2) 824 

% Infected - 95 (plot 2) 52.3 % Germinated - 95 (plot 2) 91.6 

    

# Infected - 49 (plot 1 - subplot 1) 147 # Germinated - 49 (plot 1 - subplot 1) 278 

% Infected - 49 (plot 1 - subplot 1) 49.0 % Germinated - 49 (plot 1 - subplot 1) 92.7 

# Infected - 49 (plot 1 - subplot 2) 154 # Germinated - 49 (plot 1 - subplot 2) 280 

% Infected - 49 (plot 1 - subplot 2) 51.3 % Germinated - 49 (plot 1 - subplot 2) 93.3 

# Infected - 49 (plot 1 - subplot 3) 153 # Germinated - 49 (plot 1 - subplot 3) 273 

% Infected - 49 (plot 1 - subplot 3) 51.0 % Germinated - 49 (plot 1 - subplot 3) 91.0 

# Infected - 49 (plot 2 - subplot 1) 151 # Germinated - 49 (plot 2 - subplot 1) 273 

% Infected - 49 (plot 2 - subplot 1) 50.3 % Germinated - 49 (plot 2 - subplot 1) 91.0 

# Infected - 49 (plot 2 - subplot 2) 161 # Germinated - 49 (plot 2 - subplot 2) 282 

% Infected - 49 (plot 2 - subplot 2) 53.7 % Germinated - 49 (plot 2 - subplot 2) 94.0 

# Infected - 49 (plot 2 - subplot 3) 148 # Germinated - 49 (plot 2 - subplot 3) 271 

% Infected - 49 (plot 2 - subplot 3) 49.3 % Germinated - 49 (plot 2 - subplot 3) 90.3 

# Infected - 95 (plot 1 - subplot 1) 153 # Germinated - 95 (plot 1 - subplot 1) 275 

% Infected - 95 (plot 1 - subplot 1) 51.0 % Germinated - 95 (plot 1 - subplot 1) 91.7 

# Infected - 95 (plot 1 - subplot 2) 151 # Germinated - 95 (plot 1 - subplot 2) 275 

% Infected - 95 (plot 1 - subplot 2) 50.3 % Germinated - 95 (plot 1 - subplot 2) 91.7 

# Infected - 95 (plot 1 - subplot 3) 166 # Germinated - 95 (plot 1 - subplot 3) 270 

% Infected - 95 (plot 1 - subplot 3) 55.3 % Germinated - 95 (plot 1 - subplot 3) 90.0 

# Infected - 95 (plot 2 - subplot 1) 148 # Germinated - 95 (plot 2 - subplot 1) 275 

% Infected - 95 (plot 2 - subplot 1) 49.3 % Germinated - 95 (plot 2 - subplot 1) 91.7 

# Infected - 95 (plot 2 - subplot 2) 161 # Germinated - 95 (plot 2 - subplot 2) 279 

% Infected - 95 (plot 2 - subplot 2) 53.7 % Germinated - 95 (plot 2 - subplot 2) 93.0 

# Infected - 95 (plot 2 - subplot 3) 162 # Germinated - 95 (plot 2 - subplot 3) 270 

% Infected - 95 (plot 2 - subplot 3) 54.0 % Germinated - 95 (plot 2 - subplot 3) 90.0 
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Table 5.8 A total of 1,855 isolates were collected from the field. 817 were found to be F. 

proliferatum (Fp) and 751 were found to be F. verticillioides (Fv). 287 isolates could not be 

identified as F. proliferatum or F. verticillioides. 23 of the F. proliferatum isolates coming 

from hybrid 33D49 collected in the field were found to have the strain-specific molecular 

marker. 

 

# 
Maize 

Hybrid 
Plot Subplot 

Primer 

49 

Fusarium 

proliferatum 

Fusarium 

verticillioides 
Unknown Result 

1 33D49 1 1   0 1 0 Fv 

2 33D49 1 1   0 1 0 Fv 

3 33D49 1 1   0 0 1 unknown 

4 33D49 1 1   0 1 0 Fv 

5 33D49 1 1   1 0 0 Fp 

6 33D49 1 1   0 1 0 Fv 

7 33D49 1 1   0 1 0 Fv 

8 33D49 1 1   0 1 0 Fv 

9 33D49 1 1   0 1 0 Fv 

10 33D49 1 1   1 0 0 Fp 

11 33D49 1 1   0 1 0 Fv 

12 33D49 1 1   0 1 0 Fv 

13 33D49 1 1   0 0 1 unknown 

14 33D49 1 1   1 0 0 Fp 

15 33D49 1 1   1 0 0 Fp 

16 33D49 1 1   0 1 0 Fv 

17 33D49 1 1   0 0 1 unknown 

18 33D49 1 1   1 0 0 Fp 

19 33D49 1 1   1 0 0 Fp 

20 33D49 1 1   0 0 1 unknown 

21 33D49 1 1   0 0 1 unknown 

22 33D49 1 1   1 0 0 Fp 

23 33D49 1 1   1 0 0 Fp 

24 33D49 1 1   1 0 0 Fp 

25 33D49 1 1   1 0 0 Fp 

26 33D49 1 1   1 0 0 Fp 

27 33D49 1 1   1 0 0 Fp 

28 33D49 1 1   1 0 0 Fp 

29 33D49 1 1   1 0 0 Fp 

30 33D49 1 1   1 0 0 Fp 

31 33D49 1 1   1 0 0 Fp 

32 33D49 1 1   1 0 0 Fp 

33 33D49 1 1   1 0 0 Fp 
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34 33D49 1 1   1 0 0 Fp 

35 33D49 1 1   1 0 0 Fp 

36 33D49 1 1   1 0 0 Fp 

37 33D49 1 1   1 0 0 Fp 

38 33D49 1 1   1 0 0 Fp 

39 33D49 1 1   1 0 0 Fp 

40 33D49 1 1   1 0 0 Fp 

41 33D49 1 1   1 0 0 Fp 

42 33D49 1 1   1 0 0 Fp 

43 33D49 1 1   1 0 0 Fp 

44 33D49 1 1 1 1 0 0 Fp 

45 33D49 1 1   1 0 0 Fp 

46 33D49 1 1   1 0 0 Fp 

47 33D49 1 1   1 0 0 Fp 

48 33D49 1 1   1 0 0 Fp 

49 33D49 1 1   1 0 0 Fp 

50 33D49 1 1   1 0 0 Fp 

51 33D49 1 1   1 0 0 Fp 

52 33D49 1 1   1 0 0 Fp 

53 33D49 1 1   0 1 0 Fv 

54 33D49 1 1   0 1 0 Fv 

55 33D49 1 1   0 1 0 Fv 

56 33D49 1 1   0 1 0 Fv 

57 33D49 1 1   0 1 0 Fv 

58 33D49 1 1   0 1 0 Fv 

59 33D49 1 1   0 1 0 Fv 

60 33D49 1 1   1 0 0 Fp 

61 33D49 1 1   0 1 0 Fv 

62 33D49 1 1   0 1 0 Fv 

63 33D49 1 1   0 1 0 Fv 

64 33D49 1 1   0 1 0 Fv 

65 33D49 1 1   0 1 0 Fv 

66 33D49 1 1   1 0 0 Fp 

67 33D49 1 1   0 1 0 Fv 

68 33D49 1 1   0 1 0 Fv 

69 33D49 1 1   0 1 0 Fv 

70 33D49 1 1 1 1 0 0 Fp 

71 33D49 1 1   0 1 0 Fv 

72 33D49 1 1   0 1 0 Fv 

73 33D49 1 1   1 0 0 Fp 

74 33D49 1 1   0 0 1 unknown 
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75 33D49 1 1   0 0 1 unknown 

76 33D49 1 1   0 0 1 unknown 

77 33D49 1 1   1 0 0 Fp 

78 33D49 1 1   1 0 0 Fp 

79 33D49 1 1   0 0 1 unknown 

80 33D49 1 1   1 0 0 Fp 

81 33D49 1 1   1 0 0 Fp 

82 33D49 1 1   0 0 1 unknown 

83 33D49 1 1   0 0 1 unknown 

84 33D49 1 1   1 0 0 Fp 

85 33D49 1 1   1 0 0 Fp 

86 33D49 1 1   1 0 0 Fp 

87 33D49 1 1   0 1 0 Fv 

88 33D49 1 1   1 0 0 Fp 

89 33D49 1 1   1 0 0 Fp 

90 33D49 1 1   1 0 0 Fp 

91 33D49 1 1   1 0 0 Fp 

92 33D49 1 1   0 1 0 Fv 

93 33D49 1 1 1 1 0 0 Fp 

94 33D49 1 1   0 0 1 unknown 

95 33D49 1 1   0 0 1 unknown 

96 33D49 1 1   1 0 0 Fp 

97 33D49 1 1   1 0 0 Fp 

98 33D49 1 1   1 0 0 Fp 

99 33D49 1 1   1 0 0 Fp 

100 33D49 1 1   0 1 0 Fv 

101 33D49 1 1   1 0 0 Fp 

102 33D49 1 1   1 0 0 Fp 

103 33D49 1 1   1 0 0 Fp 

104 33D49 1 1   1 0 0 Fp 

105 33D49 1 1   0 1 0 Fv 

106 33D49 1 1   0 1 0 Fv 

107 33D49 1 1   0 1 0 Fv 

108 33D49 1 1   0 0 1 unknown 

109 33D49 1 1   0 1 0 Fv 

110 33D49 1 1   0 1 0 Fv 

111 33D49 1 1   0 1 0 Fv 

112 33D49 1 1   0 0 1 unknown 

113 33D49 1 1   0 0 1 unknown 

114 33D49 1 1   0 1 0 Fv 

115 33D49 1 1   0 0 1 unknown 
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116 33D49 1 1   0 1 0 Fv 

117 33D49 1 1   0 1 0 Fv 

118 33D49 1 1   0 1 0 Fv 

119 33D49 1 1   0 1 0 Fv 

120 33D49 1 1   0 1 0 Fv 

121 33D49 1 1   0 1 0 Fv 

122 33D49 1 1   0 0 1 unknown 

123 33D49 1 1   0 1 0 Fv 

124 33D49 1 1   0 1 0 Fv 

125 33D49 1 1   0 1 0 Fv 

126 33D49 1 1   0 1 0 Fv 

127 33D49 1 1   0 1 0 Fv 

128 33D49 1 1   0 1 0 Fv 

129 33D49 1 1   0 0 1 unknown 

130 33D49 1 1   0 1 0 Fv 

131 33D49 1 1   0 1 0 Fv 

132 33D49 1 1   0 1 0 Fv 

133 33D49 1 1   0 1 0 Fv 

134 33D49 1 1   0 1 0 Fv 

135 33D49 1 1   0 1 0 Fv 

136 33D49 1 1   0 1 0 Fv 

137 33D49 1 1   0 1 0 Fv 

138 33D49 1 1   0 1 0 Fv 

139 33D49 1 1   0 1 0 Fv 

140 33D49 1 1   0 1 0 Fv 

141 33D49 1 1   0 1 0 Fv 

142 33D49 1 1   0 1 0 Fv 

143 33D49 1 1   0 1 0 Fv 

144 33D49 1 1   0 1 0 Fv 

145 33D49 1 1   0 1 0 Fv 

146 33D49 1 1   0 1 0 Fv 

147 33D49 1 1   0 1 0 Fv 

148 33D49 1 2   0 1 0 Fv 

149 33D49 1 2   0 1 0 Fv 

150 33D49 1 2   0 1 0 Fv 

151 33D49 1 2   0 1 0 Fv 

152 33D49 1 2   0 1 0 Fv 

153 33D49 1 2   0 1 0 Fv 

154 33D49 1 2   0 1 0 Fv 

155 33D49 1 2   0 1 0 Fv 

156 33D49 1 2   0 1 0 Fv 
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157 33D49 1 2   0 1 0 Fv 

158 33D49 1 2   1 0 0 Fp 

159 33D49 1 2   1 0 0 Fp 

160 33D49 1 2   1 0 0 Fp 

161 33D49 1 2   1 0 0 Fp 

162 33D49 1 2   1 0 0 Fp 

163 33D49 1 2 1 1 0 0 Fp 

164 33D49 1 2   1 0 0 Fp 

165 33D49 1 2   1 0 0 Fp 

166 33D49 1 2   1 0 0 Fp 

167 33D49 1 2   1 0 0 Fp 

168 33D49 1 2   1 0 0 Fp 

169 33D49 1 2   1 0 0 Fp 

170 33D49 1 2   1 0 0 Fp 

171 33D49 1 2   1 0 0 Fp 

172 33D49 1 2   1 0 0 Fp 

173 33D49 1 2   1 0 0 Fp 

174 33D49 1 2   1 0 0 Fp 

175 33D49 1 2   1 0 0 Fp 

176 33D49 1 2   1 0 0 Fp 

177 33D49 1 2   1 0 0 Fp 

178 33D49 1 2   1 0 0 Fp 

179 33D49 1 2 1 1 0 0 Fp 

180 33D49 1 2   0 1 0 Fv 

181 33D49 1 2   0 1 0 Fv 

182 33D49 1 2   0 1 0 Fv 

183 33D49 1 2   0 1 0 Fv 

184 33D49 1 2   0 1 0 Fv 

185 33D49 1 2   0 1 0 Fv 

186 33D49 1 2   0 1 0 Fv 

187 33D49 1 2   0 1 0 Fv 

188 33D49 1 2   0 1 0 Fv 

189 33D49 1 2   0 1 0 Fv 

190 33D49 1 2   0 1 0 Fv 

191 33D49 1 2   0 1 0 Fv 

192 33D49 1 2   0 1 0 Fv 

193 33D49 1 2   0 1 0 Fv 

194 33D49 1 2   0 1 0 Fv 

195 33D49 1 2   0 1 0 Fv 

196 33D49 1 2   0 1 0 Fv 

197 33D49 1 2   0 1 0 Fv 
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198 33D49 1 2   0 1 0 Fv 

199 33D49 1 2   0 1 0 Fv 

200 33D49 1 2   0 1 0 Fv 

201 33D49 1 2   0 1 0 Fv 

202 33D49 1 2   0 1 0 Fv 

203 33D49 1 2   0 1 0 Fv 

204 33D49 1 2   1 0 0 Fp 

205 33D49 1 2   1 0 0 Fp 

206 33D49 1 2   1 0 0 Fp 

207 33D49 1 2   0 1 0 Fv 

208 33D49 1 2   1 0 0 Fp 

209 33D49 1 2   1 0 0 Fp 

210 33D49 1 2   1 0 0 Fp 

211 33D49 1 2   0 1 0 Fv 

212 33D49 1 2   1 0 0 Fp 

213 33D49 1 2   1 0 0 Fp 

214 33D49 1 2   1 0 0 Fp 

215 33D49 1 2   1 0 0 Fp 

216 33D49 1 2   0 1 0 Fv 

217 33D49 1 2   1 0 0 Fp 

218 33D49 1 2   0 1 0 Fv 

219 33D49 1 2   1 0 0 Fp 

220 33D49 1 2   0 1 0 Fv 

221 33D49 1 2   1 0 0 Fp 

222 33D49 1 2   0 0 1 unknown 

223 33D49 1 2   1 0 0 Fp 

224 33D49 1 2   1 0 0 Fp 

225 33D49 1 2   1 0 0 Fp 

226 33D49 1 2   1 0 0 Fp 

227 33D49 1 2   0 1 0 Fv 

228 33D49 1 2   1 0 0 Fp 

229 33D49 1 2 1 1 0 0 Fp 

230 33D49 1 2   1 0 0 Fp 

231 33D49 1 2   1 0 0 Fp 

232 33D49 1 2   1 0 0 Fp 

233 33D49 1 2   1 0 0 Fp 

234 33D49 1 2   0 1 0 Fv 

235 33D49 1 2   0 1 0 Fv 

236 33D49 1 2   0 1 0 Fv 

237 33D49 1 2   0 1 0 Fv 

238 33D49 1 2   0 1 0 Fv 
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239 33D49 1 2   0 1 0 Fv 

240 33D49 1 2   0 1 0 Fv 

241 33D49 1 2   1 0 0 Fp 

242 33D49 1 2   0 0 1 unknown 

243 33D49 1 2   1 0 0 Fp 

244 33D49 1 2   1 0 0 Fp 

245 33D49 1 2   1 0 0 Fp 

246 33D49 1 2   0 1 0 Fv 

247 33D49 1 2   1 0 0 Fp 

248 33D49 1 2   1 0 0 Fp 

249 33D49 1 2   0 1 0 Fv 

250 33D49 1 2   0 1 0 Fv 

251 33D49 1 2   1 0 0 Fp 

252 33D49 1 2   0 1 0 Fv 

253 33D49 1 2   1 0 0 Fp 

254 33D49 1 2   1 0 0 Fp 

255 33D49 1 2   0 0 1 unknown 

256 33D49 1 2   1 0 0 Fp 

257 33D49 1 2   1 0 0 Fp 

258 33D49 1 2   1 0 0 Fp 

259 33D49 1 2   1 0 0 Fp 

260 33D49 1 2   1 0 0 Fp 

261 33D49 1 2   0 1 0 Fv 

262 33D49 1 2   1 0 0 Fp 

263 33D49 1 2   1 0 0 Fp 

264 33D49 1 2   1 0 0 Fp 

265 33D49 1 2   1 0 0 Fp 

266 33D49 1 2   1 0 0 Fp 

267 33D49 1 2   0 0 1 unknown 

268 33D49 1 2   1 0 0 Fp 

269 33D49 1 2   1 0 0 Fp 

270 33D49 1 2   1 0 0 Fp 

271 33D49 1 2   1 0 0 Fp 

272 33D49 1 2   1 0 0 Fp 

273 33D49 1 2   1 0 0 Fp 

274 33D49 1 2   0 0 1 unknown 

275 33D49 1 2   1 0 0 Fp 

276 33D49 1 2   1 0 0 Fp 

277 33D49 1 2   1 0 0 Fp 

278 33D49 1 2   1 0 0 Fp 

279 33D49 1 2   1 0 0 Fp 
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280 33D49 1 2   1 0 0 Fp 

281 33D49 1 2   0 1 0 Fv 

282 33D49 1 2   0 1 0 Fv 

283 33D49 1 2   0 1 0 Fv 

284 33D49 1 2   0 1 0 Fv 

285 33D49 1 2   0 1 0 Fv 

286 33D49 1 2   0 1 0 Fv 

287 33D49 1 2   0 1 0 Fv 

288 33D49 1 2   0 1 0 Fv 

289 33D49 1 2   0 1 0 Fv 

290 33D49 1 2   0 1 0 Fv 

291 33D49 1 2   0 1 0 Fv 

292 33D49 1 2   1 0 0 Fp 

293 33D49 1 2   1 0 0 Fp 

294 33D49 1 2 1 1 0 0 Fp 

295 33D49 1 2   1 0 0 Fp 

296 33D49 1 2   0 1 0 Fv 

297 33D49 1 2   1 0 0 Fp 

298 33D49 1 2   1 0 0 Fp 

299 33D49 1 2   1 0 0 Fp 

300 33D49 1 2   1 0 0 Fp 

301 33D49 1 2 1 1 0 0 Fp 

302 33D49 1 3   0 0 1 unknown 

303 33D49 1 3   0 1 0 Fv 

304 33D49 1 3   0 0 1 unknown 

305 33D49 1 3   0 0 1 unknown 

306 33D49 1 3   0 0 1 unknown 

307 33D49 1 3   0 0 1 unknown 

308 33D49 1 3   0 0 1 unknown 

309 33D49 1 3   0 0 1 unknown 

310 33D49 1 3   0 0 1 unknown 

311 33D49 1 3   0 0 1 unknown 

312 33D49 1 3   0 1 0 Fv 

313 33D49 1 3   0 0 1 unknown 

314 33D49 1 3   0 1 0 Fv 

315 33D49 1 3   0 0 1 unknown 

316 33D49 1 3   0 0 1 unknown 

317 33D49 1 3   0 0 1 unknown 

318 33D49 1 3   0 0 1 unknown 

319 33D49 1 3   0 0 1 unknown 

320 33D49 1 3   0 0 1 unknown 
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321 33D49 1 3   1 0 0 Fp 

322 33D49 1 3   1 0 0 Fp 

323 33D49 1 3   0 1 0 Fv 

324 33D49 1 3   0 0 1 unknown 

325 33D49 1 3   0 0 1 unknown 

326 33D49 1 3   0 0 1 unknown 

327 33D49 1 3   0 0 1 unknown 

328 33D49 1 3   0 0 1 unknown 

329 33D49 1 3   0 0 1 unknown 

330 33D49 1 3   1 0 0 Fp 

331 33D49 1 3   0 1 0 Fv 

332 33D49 1 3   0 0 1 unknown 

333 33D49 1 3   0 0 1 unknown 

334 33D49 1 3   0 0 1 unknown 

335 33D49 1 3   0 0 1 unknown 

336 33D49 1 3   0 0 1 unknown 

337 33D49 1 3   0 1 0 Fv 

338 33D49 1 3   0 1 0 Fv 

339 33D49 1 3   0 0 1 unknown 

340 33D49 1 3   0 0 1 unknown 

341 33D49 1 3   1 0 0 Fp 

342 33D49 1 3   1 0 0 Fp 

343 33D49 1 3   1 0 0 Fp 

344 33D49 1 3   1 0 0 Fp 

345 33D49 1 3   1 0 0 Fp 

346 33D49 1 3   0 1 0 Fv 

347 33D49 1 3   1 0 0 Fp 

348 33D49 1 3   0 1 0 Fv 

349 33D49 1 3   0 1 0 Fv 

350 33D49 1 3   0 1 0 Fv 

351 33D49 1 3   0 1 0 Fv 

352 33D49 1 3   0 1 0 Fv 

353 33D49 1 3   0 1 0 Fv 

354 33D49 1 3   0 1 0 Fv 

355 33D49 1 3   0 1 0 Fv 

356 33D49 1 3 1 1 0 0 Fp 

357 33D49 1 3   1 0 0 Fp 

358 33D49 1 3   0 1 0 Fv 

359 33D49 1 3   0 1 0 Fv 

360 33D49 1 3   0 1 0 Fv 

361 33D49 1 3   0 1 0 Fv 
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362 33D49 1 3   0 1 0 Fv 

363 33D49 1 3   1 0 0 Fp 

364 33D49 1 3   0 1 0 Fv 

365 33D49 1 3   0 1 0 Fv 

366 33D49 1 3   0 1 0 Fv 

367 33D49 1 3   0 0 1 unknown 

368 33D49 1 3   0 0 1 unknown 

369 33D49 1 3   0 0 1 unknown 

370 33D49 1 3   0 0 1 unknown 

371 33D49 1 3   1 0 0 Fp 

372 33D49 1 3   0 1 0 Fv 

373 33D49 1 3   0 1 0 Fv 

374 33D49 1 3   0 0 1 unknown 

375 33D49 1 3   0 1 0 Fv 

376 33D49 1 3   1 0 0 Fp 

377 33D49 1 3   0 1 0 Fv 

378 33D49 1 3   0 1 0 Fv 

379 33D49 1 3   0 1 0 Fv 

380 33D49 1 3   0 1 0 Fv 

381 33D49 1 3   1 0 0 Fp 

382 33D49 1 3   0 1 0 Fv 

383 33D49 1 3   0 1 0 Fv 

384 33D49 1 3   0 0 1 unknown 

385 33D49 1 3   1 0 0 Fp 

386 33D49 1 3   1 0 0 Fp 

387 33D49 1 3   0 1 0 Fv 

388 33D49 1 3   0 0 1 unknown 

389 33D49 1 3   1 0 0 Fp 

390 33D49 1 3  1 0 0 Fp 

391 33D49 1 3 1 1 0 0 Fp 

392 33D49 1 3   0 0 1 unknown 

393 33D49 1 3   1 0 0 Fp 

394 33D49 1 3   1 0 0 Fp 

395 33D49 1 3   1 0 0 Fp 

396 33D49 1 3   1 0 0 Fp 

397 33D49 1 3   1 0 0 Fp 

398 33D49 1 3   1 0 0 Fp 

399 33D49 1 3   1 0 0 Fp 

400 33D49 1 3   1 0 0 Fp 

401 33D49 1 3   1 0 0 Fp 

402 33D49 1 3   1 0 0 Fp 
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403 33D49 1 3   1 0 0 Fp 

404 33D49 1 3   1 0 0 Fp 

405 33D49 1 3   1 0 0 Fp 

406 33D49 1 3   1 0 0 Fp 

407 33D49 1 3   1 0 0 Fp 

408 33D49 1 3   1 0 0 Fp 

409 33D49 1 3 1 1 0 0 Fp 

410 33D49 1 3   1 0 0 Fp 

411 33D49 1 3   1 0 0 Fp 

412 33D49 1 3   1 0 0 Fp 

413 33D49 1 3   1 0 0 Fp 

414 33D49 1 3   1 0 0 Fp 

415 33D49 1 3   1 0 0 Fp 

416 33D49 1 3   1 0 0 Fp 

417 33D49 1 3   1 0 0 Fp 

418 33D49 1 3   1 0 0 Fp 

419 33D49 1 3   1 0 0 Fp 

420 33D49 1 3   1 0 0 Fp 

421 33D49 1 3   1 0 0 Fp 

422 33D49 1 3   1 0 0 Fp 

423 33D49 1 3   1 0 0 Fp 

424 33D49 1 3   0 1 0 Fv 

425 33D49 1 3   0 1 0 Fv 

426 33D49 1 3 1 1 0 0 Fp 

427 33D49 1 3   0 1 0 Fv 

428 33D49 1 3   0 1 0 Fv 

429 33D49 1 3   0 1 0 Fv 

430 33D49 1 3   0 1 0 Fv 

431 33D49 1 3   1 0 0 Fp 

432 33D49 1 3   0 1 0 Fv 

433 33D49 1 3   0 1 0 Fv 

434 33D49 1 3   0 1 0 Fv 

435 33D49 1 3   0 1 0 Fv 

436 33D49 1 3   0 1 0 Fv 

437 33D49 1 3   1 0 0 Fp 

438 33D49 1 3   0 1 0 Fv 

439 33D49 1 3   0 1 0 Fv 

440 33D49 1 3   0 1 0 Fv 

441 33D49 1 3   1 0 0 Fp 

442 33D49 1 3   0 1 0 Fv 

443 33D49 1 3   0 1 0 Fv 
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444 33D49 1 3   1 0 0 Fp 

445 33D49 1 3   0 0 1 unknown 

446 33D49 1 3   0 0 1 unknown 

447 33D49 1 3   0 0 1 unknown 

448 33D49 1 3   1 0 0 Fp 

449 33D49 1 3   1 0 0 Fp 

450 33D49 1 3   0 0 1 unknown 

451 33D49 1 3   1 0 0 Fp 

452 33D49 1 3   1 0 0 Fp 

453 33D49 1 3   0 0 1 unknown 

454 33D49 1 3   0 0 1 unknown 

455 33D49 2 1   1 0 0 Fp 

456 33D49 2 1   1 0 0 Fp 

457 33D49 2 1   1 0 0 Fp 

458 33D49 2 1   0 1 0 Fv 

459 33D49 2 1   1 0 0 Fp 

460 33D49 2 1   1 0 0 Fp 

461 33D49 2 1   1 0 0 Fp 

462 33D49 2 1   1 0 0 Fp 

463 33D49 2 1   0 1 0 Fv 

464 33D49 2 1   1 0 0 Fp 

465 33D49 2 1   0 0 1 unknown 

466 33D49 2 1   0 0 1 unknown 

467 33D49 2 1   1 0 0 Fp 

468 33D49 2 1   1 0 0 Fp 

469 33D49 2 1   1 0 0 Fp 

470 33D49 2 1 1 1 0 0 Fp 

471 33D49 2 1   0 1 0 Fv 

472 33D49 2 1   1 0 0 Fp 

473 33D49 2 1   1 0 0 Fp 

474 33D49 2 1   1 0 0 Fp 

475 33D49 2 1   1 0 0 Fp 

476 33D49 2 1   0 1 0 Fv 

477 33D49 2 1   0 1 0 Fv 

478 33D49 2 1   0 1 0 Fv 

479 33D49 2 1   0 0 1 unknown 

480 33D49 2 1   0 1 0 Fv 

481 33D49 2 1   0 1 0 Fv 

482 33D49 2 1   0 1 0 Fv 

483 33D49 2 1   0 0 1 unknown 

484 33D49 2 1   0 0 1 unknown 
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485 33D49 2 1   0 1 0 Fv 

486 33D49 2 1   0 0 1 unknown 

487 33D49 2 1   0 1 0 Fv 

488 33D49 2 1   0 1 0 Fv 

489 33D49 2 1   0 1 0 Fv 

490 33D49 2 1   0 1 0 Fv 

491 33D49 2 1   0 1 0 Fv 

492 33D49 2 1   0 1 0 Fv 

493 33D49 2 1   0 0 1 unknown 

494 33D49 2 1   0 1 0 Fv 

495 33D49 2 1   0 1 0 Fv 

496 33D49 2 1   0 1 0 Fv 

497 33D49 2 1   0 1 0 Fv 

498 33D49 2 1   0 1 0 Fv 

499 33D49 2 1   0 1 0 Fv 

500 33D49 2 1   0 0 1 unknown 

501 33D49 2 1   0 1 0 Fv 

502 33D49 2 1   0 1 0 Fv 

503 33D49 2 1   0 1 0 Fv 

504 33D49 2 1   0 1 0 Fv 

505 33D49 2 1   0 1 0 Fv 

506 33D49 2 1   0 1 0 Fv 

507 33D49 2 1   0 1 0 Fv 

508 33D49 2 1   0 1 0 Fv 

509 33D49 2 1   0 1 0 Fv 

510 33D49 2 1   0 1 0 Fv 

511 33D49 2 1   0 1 0 Fv 

512 33D49 2 1   0 1 0 Fv 

513 33D49 2 1   0 1 0 Fv 

514 33D49 2 1   0 1 0 Fv 

515 33D49 2 1   0 1 0 Fv 

516 33D49 2 1   0 1 0 Fv 

517 33D49 2 1   0 1 0 Fv 

518 33D49 2 1   0 1 0 Fv 

519 33D49 2 1   0 1 0 Fp 

520 33D49 2 1   0 1 0 Fv 

521 33D49 2 1   0 1 0 Fv 

522 33D49 2 1   0 1 0 Fv 

523 33D49 2 1 1 1 0 0 Fp 

524 33D49 2 1   0 1 0 Fv 

525 33D49 2 1   0 1 0 Fv 
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526 33D49 2 1   0 1 0 Fv 

527 33D49 2 1   0 1 0 Fv 

528 33D49 2 1   0 1 0 Fv 

529 33D49 2 1   1 0 0 Fp 

530 33D49 2 1   1 0 0 Fp 

531 33D49 2 1   1 0 0 Fp 

532 33D49 2 1   1 0 0 Fp 

533 33D49 2 1   1 0 0 Fp 

534 33D49 2 1   1 0 0 Fp 

535 33D49 2 1   1 0 0 Fp 

536 33D49 2 1   1 0 0 Fp 

537 33D49 2 1   1 0 0 Fp 

538 33D49 2 1   1 0 0 Fp 

539 33D49 2 1   1 0 0 Fp 

540 33D49 2 1   1 0 0 Fp 

541 33D49 2 1   1 0 0 Fp 

542 33D49 2 1   1 0 0 Fp 

543 33D49 2 1   1 0 0 Fp 

544 33D49 2 1   1 0 0 Fp 

545 33D49 2 1   1 0 0 Fp 

546 33D49 2 1   1 0 0 Fp 

547 33D49 2 1   1 0 0 Fp 

548 33D49 2 1   1 0 0 Fp 

549 33D49 2 1   1 0 0 Fp 

550 33D49 2 1   1 0 0 Fp 

551 33D49 2 1   0 1 0 Fv 

552 33D49 2 1   0 1 0 Fv 

553 33D49 2 1   0 1 0 Fv 

554 33D49 2 1   0 1 0 Fv 

555 33D49 2 1   0 1 0 Fv 

556 33D49 2 1   0 1 0 Fv 

557 33D49 2 1   0 1 0 Fv 

558 33D49 2 1   0 1 0 Fv 

559 33D49 2 1   0 1 0 Fv 

560 33D49 2 1   0 1 0 Fv 

561 33D49 2 1   0 1 0 Fv 

562 33D49 2 1   0 1 0 Fv 

563 33D49 2 1   0 1 0 Fv 

564 33D49 2 1   0 1 0 Fv 

565 33D49 2 1   0 1 0 Fv 

566 33D49 2 1   0 1 0 Fv 
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567 33D49 2 1   0 1 0 Fv 

568 33D49 2 1   0 1 0 Fv 

569 33D49 2 1   0 1 0 Fv 

570 33D49 2 1   0 1 0 Fv 

571 33D49 2 1   0 1 0 Fv 

572 33D49 2 1   0 1 0 Fv 

573 33D49 2 1   0 1 0 Fv 

574 33D49 2 1   0 1 0 Fv 

575 33D49 2 1   1 0 0 Fp 

576 33D49 2 1   1 0 0 Fp 

577 33D49 2 1   1 0 0 Fp 

578 33D49 2 1   0 1 0 Fv 

579 33D49 2 1   1 0 0 Fp 

580 33D49 2 1   1 0 0 Fp 

581 33D49 2 1   1 0 0 Fp 

582 33D49 2 1 1 1 0 0 Fp 

583 33D49 2 1   1 0 0 Fp 

584 33D49 2 1   1 0 0 Fp 

585 33D49 2 1   1 0 0 Fp 

586 33D49 2 1   1 0 0 Fp 

587 33D49 2 1   0 1 0 Fv 

588 33D49 2 1   1 0 0 Fp 

589 33D49 2 1   0 1 0 Fv 

590 33D49 2 1   1 0 0 Fp 

591 33D49 2 1   0 1 0 Fv 

592 33D49 2 1   1 0 0 Fp 

593 33D49 2 1   0 0 1 unknown 

594 33D49 2 1   1 0 0 Fp 

595 33D49 2 1   1 0 0 Fp 

596 33D49 2 1   1 0 0 Fp 

597 33D49 2 1   1 0 0 Fp 

598 33D49 2 1   0 1 0 Fv 

599 33D49 2 1   1 0 0 Fp 

600 33D49 2 1   1 0 0 Fp 

601 33D49 2 1   1 0 0 Fp 

602 33D49 2 1   1 0 0 Fp 

603 33D49 2 1   1 0 0 Fp 

604 33D49 2 1   1 0 0 Fp 

605 33D49 2 1   0 1 0 Fv 

606 33D49 2 2   0 1 0 Fv 

607 33D49 2 2   0 1 0 Fv 
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608 33D49 2 2   0 1 0 Fv 

609 33D49 2 2   0 1 0 Fv 

610 33D49 2 2   0 1 0 Fv 

611 33D49 2 2   0 1 0 Fv 

612 33D49 2 2   1 0 0 Fp 

613 33D49 2 2   0 0 1 unknown 

614 33D49 2 2   1 0 0 Fp 

615 33D49 2 2   1 0 0 Fp 

616 33D49 2 2   1 0 0 Fp 

617 33D49 2 2   0 1 0 Fv 

618 33D49 2 2   1 0 0 Fp 

619 33D49 2 2 1 1 0 0 Fp 

620 33D49 2 2   0 1 0 Fv 

621 33D49 2 2   0 1 0 Fv 

622 33D49 2 2   1 0 0 Fp 

623 33D49 2 2   0 1 0 Fv 

624 33D49 2 2   1 0 0 Fp 

625 33D49 2 2   1 0 0 Fp 

626 33D49 2 2   0 0 1 unknown 

627 33D49 2 2   1 0 0 Fp 

628 33D49 2 2   1 0 0 Fp 

629 33D49 2 2   1 0 0 Fp 

630 33D49 2 2   1 0 0 Fp 

631 33D49 2 2   1 0 0 Fp 

632 33D49 2 2   0 1 0 Fv 

633 33D49 2 2   1 0 0 Fp 

634 33D49 2 2   1 0 0 Fp 

635 33D49 2 2   1 0 0 Fp 

636 33D49 2 2   1 0 0 Fp 

637 33D49 2 2   1 0 0 Fp 

638 33D49 2 2   0 0 1 unknown 

639 33D49 2 2   1 0 0 Fp 

640 33D49 2 2   1 0 0 Fp 

641 33D49 2 2   1 0 0 Fp 

642 33D49 2 2   1 0 0 Fp 

643 33D49 2 2   1 0 0 Fp 

644 33D49 2 2   1 0 0 Fp 

645 33D49 2 2   0 0 1 unknown 

646 33D49 2 2   1 0 0 Fp 

647 33D49 2 2   1 0 0 Fp 

648 33D49 2 2   1 0 0 Fp 
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649 33D49 2 2   1 0 0 Fp 

650 33D49 2 2   1 0 0 Fp 

651 33D49 2 2   1 0 0 Fp 

652 33D49 2 2   0 1 0 Fv 

653 33D49 2 2   0 1 0 Fv 

654 33D49 2 2   0 1 0 Fv 

655 33D49 2 2   0 1 0 Fv 

656 33D49 2 2   0 1 0 Fv 

657 33D49 2 2   0 1 0 Fv 

658 33D49 2 2   0 1 0 Fv 

659 33D49 2 2   0 1 0 Fv 

660 33D49 2 2   0 1 0 Fv 

661 33D49 2 2   0 1 0 Fv 

662 33D49 2 2   0 1 0 Fv 

663 33D49 2 2   1 0 0 Fp 

664 33D49 2 2   1 0 0 Fp 

665 33D49 2 2   1 0 0 Fp 

666 33D49 2 2   1 0 0 Fp 

667 33D49 2 2   0 1 0 Fv 

668 33D49 2 2   1 0 0 Fp 

669 33D49 2 2   1 0 0 Fp 

670 33D49 2 2   1 0 0 Fp 

671 33D49 2 2   1 0 0 Fp 

672 33D49 2 2   1 0 0 Fp 

673 33D49 2 2   0 0 1 unknown 

674 33D49 2 2   0 1 0 Fv 

675 33D49 2 2 1 1 0 0 Fp 

676 33D49 2 2   0 0 1 unknown 

677 33D49 2 2   0 0 1 unknown 

678 33D49 2 2   0 0 1 unknown 

679 33D49 2 2   0 0 1 unknown 

680 33D49 2 2   0 0 1 unknown 

681 33D49 2 2   0 0 1 unknown 

682 33D49 2 2   0 0 1 unknown 

683 33D49 2 2   0 1 0 Fv 

684 33D49 2 2   0 0 1 unknown 

685 33D49 2 2   0 1 0 Fv 

686 33D49 2 2   0 0 1 unknown 

687 33D49 2 2   0 0 1 unknown 

688 33D49 2 2   0 0 1 unknown 

689 33D49 2 2   0 0 1 unknown 
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690 33D49 2 2   0 0 1 unknown 

691 33D49 2 2   0 0 1 unknown 

692 33D49 2 2   1 0 0 Fp 

693 33D49 2 2   1 0 0 Fp 

694 33D49 2 2   0 1 0 Fv 

695 33D49 2 2   0 0 1 unknown 

696 33D49 2 2   0 0 1 unknown 

697 33D49 2 2   0 0 1 unknown 

698 33D49 2 2   0 0 1 unknown 

699 33D49 2 2   0 0 1 unknown 

700 33D49 2 2   1 0 0 Fp 

701 33D49 2 2   0 1 0 Fv 

702 33D49 2 2   0 0 1 unknown 

703 33D49 2 2   0 0 1 unknown 

704 33D49 2 2   0 0 1 unknown 

705 33D49 2 2 1 1 0 0 Fp 

706 33D49 2 2   0 0 1 unknown 

707 33D49 2 2   0 1 0 Fv 

708 33D49 2 2   0 1 0 Fv 

709 33D49 2 2   0 0 1 unknown 

710 33D49 2 2   0 0 1 unknown 

711 33D49 2 2   1 0 0 Fp 

712 33D49 2 2   1 0 0 Fp 

713 33D49 2 2   0 1 0 Fv 

714 33D49 2 2   0 1 0 Fv 

715 33D49 2 2   0 1 0 Fv 

716 33D49 2 2   0 1 0 Fv 

717 33D49 2 2   0 1 0 Fv 

718 33D49 2 2   0 1 0 Fv 

719 33D49 2 2   0 1 0 Fv 

720 33D49 2 2   0 1 0 Fv 

721 33D49 2 2   1 0 0 Fp 

722 33D49 2 2   1 0 0 Fp 

723 33D49 2 2   1 0 0 Fp 

724 33D49 2 2   1 0 0 Fp 

725 33D49 2 2   1 0 0 Fp 

726 33D49 2 2   1 0 0 Fp 

727 33D49 2 2   1 0 0 Fp 

728 33D49 2 2   1 0 0 Fp 

729 33D49 2 2   0 1 0 Fv 

730 33D49 2 2   0 1 0 Fv 
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731 33D49 2 2   0 1 0 Fv 

732 33D49 2 2 1 1 0 0 Fp 

733 33D49 2 2   0 1 0 Fv 

734 33D49 2 2   1 0 0 Fp 

735 33D49 2 2   0 1 0 Fv 

736 33D49 2 2   0 1 0 Fv 

737 33D49 2 2   0 1 0 Fv 

738 33D49 2 2   0 0 1 unknown 

739 33D49 2 2   0 0 1 unknown 

740 33D49 2 2   0 0 1 unknown 

741 33D49 2 2   0 0 1 unknown 

742 33D49 2 2   1 0 0 Fp 

743 33D49 2 2   0 1 0 Fv 

744 33D49 2 2   0 1 0 Fv 

745 33D49 2 2   0 0 1 unknown 

746 33D49 2 2   0 1 0 Fv 

747 33D49 2 2   1 0 0 Fp 

748 33D49 2 2   0 1 0 Fv 

749 33D49 2 2   0 1 0 Fv 

750 33D49 2 2   0 1 0 Fv 

751 33D49 2 2   0 1 0 Fv 

752 33D49 2 2   1 0 0 Fp 

753 33D49 2 2   0 1 0 Fv 

754 33D49 2 2   0 1 0 Fv 

755 33D49 2 2   0 0 1 unknown 

756 33D49 2 2   1 0 0 Fp 

757 33D49 2 2   1 0 0 Fp 

758 33D49 2 2   0 1 0 Fv 

759 33D49 2 2   0 0 1 unknown 

760 33D49 2 2   1 0 0 Fp 

761 33D49 2 2   1 0 0 Fp 

762 33D49 2 2   0 0 1 unknown 

763 33D49 2 2   0 0 1 unknown 

764 33D49 2 2   1 0 0 Fp 

765 33D49 2 2   1 0 0 Fp 

766 33D49 2 2   1 0 0 Fp 

767 33D49 2 3   1 0 0 Fp 

768 33D49 2 3   1 0 0 Fp 

769 33D49 2 3   1 0 0 Fp 

770 33D49 2 3   1 0 0 Fp 

771 33D49 2 3   1 0 0 Fp 



150 

772 33D49 2 3   1 0 0 Fp 

773 33D49 2 3   1 0 0 Fp 

774 33D49 2 3   1 0 0 Fp 

775 33D49 2 3   1 0 0 Fp 

776 33D49 2 3   1 0 0 Fp 

777 33D49 2 3   1 0 0 Fp 

778 33D49 2 3   1 0 0 Fp 

779 33D49 2 3   1 0 0 Fp 

780 33D49 2 3   1 0 0 Fp 

781 33D49 2 3   1 0 0 Fp 

782 33D49 2 3   1 0 0 Fp 

783 33D49 2 3 1 1 0 0 Fp 

784 33D49 2 3   1 0 0 Fp 

785 33D49 2 3   1 0 0 Fp 

786 33D49 2 3   1 0 0 Fp 

787 33D49 2 3   1 0 0 Fp 

788 33D49 2 3   1 0 0 Fp 

789 33D49 2 3   1 0 0 Fp 

790 33D49 2 3   1 0 0 Fp 

791 33D49 2 3   1 0 0 Fp 

792 33D49 2 3   1 0 0 Fp 

793 33D49 2 3   1 0 0 Fp 

794 33D49 2 3   1 0 0 Fp 

795 33D49 2 3   0 1 0 Fv 

796 33D49 2 3   0 1 0 Fv 

797 33D49 2 3   0 1 0 Fv 

798 33D49 2 3   0 1 0 Fv 

799 33D49 2 3   0 1 0 Fv 

800 33D49 2 3   0 1 0 Fv 

801 33D49 2 3   0 1 0 Fv 

802 33D49 2 3   1 0 0 Fp 

803 33D49 2 3   0 1 0 Fv 

804 33D49 2 3   0 1 0 Fv 

805 33D49 2 3   0 1 0 Fv 

806 33D49 2 3   0 1 0 Fv 

807 33D49 2 3   0 1 0 Fv 

808 33D49 2 3   1 0 0 Fp 

809 33D49 2 3   0 1 0 Fv 

810 33D49 2 3   0 1 0 Fv 

811 33D49 2 3   0 1 0 Fv 

812 33D49 2 3   1 0 0 Fp 
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813 33D49 2 3   0 1 0 Fv 

814 33D49 2 3   0 1 0 Fv 

815 33D49 2 3   1 0 0 Fp 

816 33D49 2 3   0 0 1 unknown 

817 33D49 2 3   0 0 1 unknown 

818 33D49 2 3   0 0 1 unknown 

819 33D49 2 3   1 0 0 Fp 

820 33D49 2 3   1 0 0 Fp 

821 33D49 2 3   0 0 1 unknown 

822 33D49 2 3   1 0 0 Fp 

823 33D49 2 3   1 0 0 Fp 

824 33D49 2 3   0 0 1 unknown 

825 33D49 2 3   0 0 1 unknown 

826 33D49 2 3   1 0 0 Fp 

827 33D49 2 3   1 0 0 Fp 

828 33D49 2 3   1 0 0 Fp 

829 33D49 2 3   0 1 0 Fv 

830 33D49 2 3   1 0 0 Fp 

831 33D49 2 3   1 0 0 Fp 

832 33D49 2 3   1 0 0 Fp 

833 33D49 2 3   1 0 0 Fp 

834 33D49 2 3   0 1 0 Fv 

835 33D49 2 3   1 0 0 Fp 

836 33D49 2 3   0 0 1 unknown 

837 33D49 2 3   0 0 1 unknown 

838 33D49 2 3   1 0 0 Fp 

839 33D49 2 3   1 0 0 Fp 

840 33D49 2 3   1 0 0 Fp 

841 33D49 2 3   1 0 0 Fp 

842 33D49 2 3   0 1 0 Fv 

843 33D49 2 3   1 0 0 Fp 

844 33D49 2 3   1 0 0 Fp 

845 33D49 2 3   1 0 0 Fp 

846 33D49 2 3   1 0 0 Fp 

847 33D49 2 3   0 1 0 Fv 

848 33D49 2 3   0 1 0 Fv 

849 33D49 2 3 1 1 0 0 Fp 

850 33D49 2 3   0 0 1 unknown 

851 33D49 2 3   0 1 0 Fv 

852 33D49 2 3   0 1 0 Fv 

853 33D49 2 3   0 1 0 Fv 
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854 33D49 2 3   0 0 1 unknown 

855 33D49 2 3   0 0 1 unknown 

856 33D49 2 3   0 1 0 Fv 

857 33D49 2 3   0 0 1 unknown 

858 33D49 2 3   0 1 0 Fv 

859 33D49 2 3   0 1 0 Fv 

860 33D49 2 3   0 1 0 Fv 

861 33D49 2 3   0 1 0 Fv 

862 33D49 2 3   0 1 0 Fv 

863 33D49 2 3   0 1 0 Fv 

864 33D49 2 3   0 0 1 unknown 

865 33D49 2 3 1 1 0 0 Fp 

866 33D49 2 3   0 1 0 Fv 

867 33D49 2 3   0 1 0 Fv 

868 33D49 2 3   0 1 0 Fv 

869 33D49 2 3   0 1 0 Fv 

870 33D49 2 3   0 1 0 Fv 

871 33D49 2 3   0 0 1 unknown 

872 33D49 2 3   0 1 0 Fv 

873 33D49 2 3   0 1 0 Fv 

874 33D49 2 3   0 1 0 Fv 

875 33D49 2 3   0 1 0 Fv 

876 33D49 2 3   0 1 0 Fv 

877 33D49 2 3   0 1 0 Fv 

878 33D49 2 3   0 1 0 Fv 

879 33D49 2 3   0 1 0 Fv 

880 33D49 2 3   0 1 0 Fv 

881 33D49 2 3   0 1 0 Fv 

882 33D49 2 3   0 1 0 Fv 

883 33D49 2 3   0 1 0 Fv 

884 33D49 2 3   0 1 0 Fv 

885 33D49 2 3   0 1 0 Fv 

886 33D49 2 3   0 1 0 Fv 

887 33D49 2 3   0 1 0 Fv 

888 33D49 2 3   0 1 0 Fv 

889 33D49 2 3   0 1 0 Fv 

890 33D49 2 3   0 1 0 Fv 

891 33D49 2 3   0 1 0 Fv 

892 33D49 2 3   0 1 0 Fv 

893 33D49 2 3   0 1 0 Fv 

894 33D49 2 3   0 1 0 Fv 
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895 33D49 2 3   0 1 0 Fv 

896 33D49 2 3   0 1 0 Fv 

897 33D49 2 3   0 1 0 Fv 

898 33D49 2 3   0 1 0 Fv 

899 33D49 2 3   0 1 0 Fv 

900 33D49 2 3   1 0 0 Fp 

901 33D49 2 3   1 0 0 Fp 

902 33D49 2 3   1 0 0 Fp 

903 33D49 2 3   1 0 0 Fp 

904 33D49 2 3   1 0 0 Fp 

905 33D49 2 3   1 0 0 Fp 

906 33D49 2 3   1 0 0 Fp 

907 33D49 2 3   1 0 0 Fp 

908 33D49 2 3   1 0 0 Fp 

909 33D49 2 3 1 1 0 0 Fp 

910 33D49 2 3   1 0 0 Fp 

911 33D49 2 3   1 0 0 Fp 

912 33D49 2 3   1 0 0 Fp 

913 33D49 2 3   1 0 0 Fp 

914 33D49 2 3   1 0 0 Fp 

915 P1395R 1 1   1 0 0 Fp 

916 P1395R 1 1   1 0 0 Fp 

917 P1395R 1 1   1 0 0 Fp 

918 P1395R 1 1   1 0 0 Fp 

919 P1395R 1 1   1 0 0 Fp 

920 P1395R 1 1   1 0 0 Fp 

921 P1395R 1 1   1 0 0 Fp 

922 P1395R 1 1   0 1 0 Fv 

923 P1395R 1 1   0 1 0 Fv 

924 P1395R 1 1   0 1 0 Fv 

925 P1395R 1 1   0 1 0 Fv 

926 P1395R 1 1   0 1 0 Fv 

927 P1395R 1 1   0 1 0 Fv 

928 P1395R 1 1   0 1 0 Fv 

929 P1395R 1 1   0 1 0 Fv 

930 P1395R 1 1   0 1 0 Fv 

931 P1395R 1 1   0 1 0 Fv 

932 P1395R 1 1   0 1 0 Fv 

933 P1395R 1 1   0 1 0 Fv 

934 P1395R 1 1   0 1 0 Fv 

935 P1395R 1 1   0 1 0 Fv 
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936 P1395R 1 1   0 1 0 Fv 

937 P1395R 1 1   0 1 0 Fv 

938 P1395R 1 1   0 1 0 Fv 

939 P1395R 1 1   0 1 0 Fv 

940 P1395R 1 1   0 1 0 Fv 

941 P1395R 1 1   0 1 0 Fv 

942 P1395R 1 1   0 1 0 Fv 

943 P1395R 1 1   0 1 0 Fv 

944 P1395R 1 1   0 1 0 Fv 

945 P1395R 1 1   0 1 0 Fv 

946 P1395R 1 1   1 0 0 Fp 

947 P1395R 1 1   1 0 0 Fp 

948 P1395R 1 1   1 0 0 Fp 

949 P1395R 1 1   0 1 0 Fv 

950 P1395R 1 1   1 0 0 Fp 

951 P1395R 1 1   1 0 0 Fp 

952 P1395R 1 1   1 0 0 Fp 

953 P1395R 1 1   0 1 0 Fv 

954 P1395R 1 1   1 0 0 Fp 

955 P1395R 1 1   1 0 0 Fp 

956 P1395R 1 1   1 0 0 Fp 

957 P1395R 1 1   1 0 0 Fp 

958 P1395R 1 1   0 1 0 Fv 

959 P1395R 1 1   1 0 0 Fp 

960 P1395R 1 1   0 1 0 Fv 

961 P1395R 1 1   1 0 0 Fp 

962 P1395R 1 1   0 1 0 Fv 

963 P1395R 1 1   1 0 0 Fp 

964 P1395R 1 1   0 0 1 unknown 

965 P1395R 1 1   1 0 0 Fp 

966 P1395R 1 1   1 0 0 Fp 

967 P1395R 1 1   1 0 0 Fp 

968 P1395R 1 1   1 0 0 Fp 

969 P1395R 1 1   0 1 0 Fv 

970 P1395R 1 1   1 0 0 Fp 

971 P1395R 1 1   1 0 0 Fp 

972 P1395R 1 1   1 0 0 Fp 

973 P1395R 1 1   1 0 0 Fp 

974 P1395R 1 1   1 0 0 Fp 

975 P1395R 1 1   1 0 0 Fp 

976 P1395R 1 1   0 1 0 Fv 
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977 P1395R 1 1   0 1 0 Fv 

978 P1395R 1 1   0 1 0 Fv 

979 P1395R 1 1   0 1 0 Fv 

980 P1395R 1 1   0 1 0 Fv 

981 P1395R 1 1   0 1 0 Fv 

982 P1395R 1 1   0 1 0 Fv 

983 P1395R 1 1   1 0 0 Fp 

984 P1395R 1 1   0 0 1 unknown 

985 P1395R 1 1   1 0 0 Fp 

986 P1395R 1 1   1 0 0 Fp 

987 P1395R 1 1   1 0 0 Fp 

988 P1395R 1 1   0 1 0 Fv 

989 P1395R 1 1   1 0 0 Fp 

990 P1395R 1 1   1 0 0 Fp 

991 P1395R 1 1   0 1 0 Fv 

992 P1395R 1 1   0 1 0 Fv 

993 P1395R 1 1   1 0 0 Fp 

994 P1395R 1 1   0 1 0 Fv 

995 P1395R 1 1   1 0 0 Fp 

996 P1395R 1 1   1 0 0 Fp 

997 P1395R 1 1   0 0 1 unknown 

998 P1395R 1 1   1 0 0 Fp 

999 P1395R 1 1   1 0 0 Fp 

1000 P1395R 1 1   1 0 0 Fp 

1001 P1395R 1 1   1 0 0 Fp 

1002 P1395R 1 1   1 0 0 Fp 

1003 P1395R 1 1   0 1 0 Fv 

1004 P1395R 1 1   1 0 0 Fp 

1005 P1395R 1 1   1 0 0 Fp 

1006 P1395R 1 1   1 0 0 Fp 

1007 P1395R 1 1   1 0 0 Fp 

1008 P1395R 1 1   1 0 0 Fp 

1009 P1395R 1 1   0 0 1 unknown 

1010 P1395R 1 1   1 0 0 Fp 

1011 P1395R 1 1   1 0 0 Fp 

1012 P1395R 1 1   1 0 0 Fp 

1013 P1395R 1 1   1 0 0 Fp 

1014 P1395R 1 1   1 0 0 Fp 

1015 P1395R 1 1   1 0 0 Fp 

1016 P1395R 1 1   0 0 1 unknown 

1017 P1395R 1 1   1 0 0 Fp 
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1018 P1395R 1 1   1 0 0 Fp 

1019 P1395R 1 1   1 0 0 Fp 

1020 P1395R 1 1   1 0 0 Fp 

1021 P1395R 1 1   1 0 0 Fp 

1022 P1395R 1 1   1 0 0 Fp 

1023 P1395R 1 1   0 1 0 Fv 

1024 P1395R 1 1   0 1 0 Fv 

1025 P1395R 1 1   0 1 0 Fv 

1026 P1395R 1 1   0 1 0 Fv 

1027 P1395R 1 1   0 1 0 Fv 

1028 P1395R 1 1   0 1 0 Fv 

1029 P1395R 1 1   0 1 0 Fv 

1030 P1395R 1 1   0 1 0 Fv 

1031 P1395R 1 1   0 1 0 Fv 

1032 P1395R 1 1   0 1 0 Fv 

1033 P1395R 1 1   0 1 0 Fv 

1034 P1395R 1 1   1 0 0 Fp 

1035 P1395R 1 1   1 0 0 Fp 

1036 P1395R 1 1   1 0 0 Fp 

1037 P1395R 1 1   1 0 0 Fp 

1038 P1395R 1 1   0 1 0 Fv 

1039 P1395R 1 1   1 0 0 Fp 

1040 P1395R 1 1   1 0 0 Fp 

1041 P1395R 1 1   1 0 0 Fp 

1042 P1395R 1 1   1 0 0 Fp 

1043 P1395R 1 1   1 0 0 Fp 

1044 P1395R 1 1   0 0 1 unknown 

1045 P1395R 1 1   0 1 0 Fv 

1046 P1395R 1 1   0 0 1 unknown 

1047 P1395R 1 1   0 0 1 unknown 

1048 P1395R 1 1   0 0 1 unknown 

1049 P1395R 1 1   0 0 1 unknown 

1050 P1395R 1 1   0 0 1 unknown 

1051 P1395R 1 1   0 0 1 unknown 

1052 P1395R 1 1   0 0 1 unknown 

1053 P1395R 1 1   0 0 1 unknown 

1054 P1395R 1 1   0 1 0 Fv 

1055 P1395R 1 1   0 0 1 unknown 

1056 P1395R 1 1   0 1 0 Fv 

1057 P1395R 1 1   0 0 1 unknown 

1058 P1395R 1 1   0 0 1 unknown 
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1059 P1395R 1 1   0 0 1 unknown 

1060 P1395R 1 1   0 0 1 unknown 

1061 P1395R 1 1   0 0 1 unknown 

1062 P1395R 1 1   0 0 1 unknown 

1063 P1395R 1 1   1 0 0 Fp 

1064 P1395R 1 1   1 0 0 Fp 

1065 P1395R 1 1   0 1 0 Fv 

1066 P1395R 1 1   0 0 1 unknown 

1067 P1395R 1 1   0 0 1 unknown 

1068 P1395R 1 2   0 0 1 unknown 

1069 P1395R 1 2   0 0 1 unknown 

1070 P1395R 1 2   0 0 1 unknown 

1071 P1395R 1 2   1 0 0 Fp 

1072 P1395R 1 2   0 1 0 Fv 

1073 P1395R 1 2   0 0 1 unknown 

1074 P1395R 1 2   0 0 1 unknown 

1075 P1395R 1 2   0 0 1 unknown 

1076 P1395R 1 2   0 0 1 unknown 

1077 P1395R 1 2   0 0 1 unknown 

1078 P1395R 1 2   0 1 0 Fv 

1079 P1395R 1 2   0 1 0 Fv 

1080 P1395R 1 2   0 0 1 unknown 

1081 P1395R 1 2   0 0 1 unknown 

1082 P1395R 1 2   1 0 0 Fp 

1083 P1395R 1 2   1 0 0 Fp 

1084 P1395R 1 2   1 0 0 Fp 

1085 P1395R 1 2   1 0 0 Fp 

1086 P1395R 1 2   1 0 0 Fp 

1087 P1395R 1 2   0 1 0 Fv 

1088 P1395R 1 2   1 0 0 Fp 

1089 P1395R 1 2   1 0 0 Fp 

1090 P1395R 1 2   0 1 0 Fv 

1091 P1395R 1 2   0 1 0 Fv 

1092 P1395R 1 2   0 1 0 Fv 

1093 P1395R 1 2   0 1 0 Fv 

1094 P1395R 1 2   0 1 0 Fv 

1095 P1395R 1 2   0 1 0 Fv 

1096 P1395R 1 2   0 1 0 Fv 

1097 P1395R 1 2   0 1 0 Fv 

1098 P1395R 1 2   1 0 0 Fp 

1099 P1395R 1 2   1 0 0 Fp 
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1100 P1395R 1 2   0 1 0 Fv 

1101 P1395R 1 2   0 1 0 Fv 

1102 P1395R 1 2   0 1 0 Fv 

1103 P1395R 1 2   0 1 0 Fv 

1104 P1395R 1 2   0 1 0 Fv 

1105 P1395R 1 2   1 0 0 Fp 

1106 P1395R 1 2   0 1 0 Fv 

1107 P1395R 1 2   0 1 0 Fv 

1108 P1395R 1 2   0 1 0 Fv 

1109 P1395R 1 2   0 0 1 unknown 

1110 P1395R 1 2   0 0 1 unknown 

1111 P1395R 1 2   0 0 1 unknown 

1112 P1395R 1 2   0 0 1 unknown 

1113 P1395R 1 2   1 0 0 Fp 

1114 P1395R 1 2   0 1 0 Fv 

1115 P1395R 1 2   0 1 0 Fv 

1116 P1395R 1 2   0 0 1 unknown 

1117 P1395R 1 2   0 1 0 Fv 

1118 P1395R 1 2   1 0 0 Fp 

1119 P1395R 1 2   0 1 0 Fv 

1120 P1395R 1 2   0 1 0 Fv 

1121 P1395R 1 2   0 1 0 Fv 

1122 P1395R 1 2   0 1 0 Fv 

1123 P1395R 1 2   1 0 0 Fp 

1124 P1395R 1 2   0 1 0 Fv 

1125 P1395R 1 2   0 1 0 Fv 

1126 P1395R 1 2   0 0 1 unknown 

1127 P1395R 1 2   1 0 0 Fp 

1128 P1395R 1 2   1 0 0 Fp 

1129 P1395R 1 2   0 1 0 Fv 

1130 P1395R 1 2   0 0 1 unknown 

1131 P1395R 1 2   1 0 0 Fp 

1132 P1395R 1 2   1 0 0 Fp 

1133 P1395R 1 2   0 0 1 unknown 

1134 P1395R 1 2   0 0 1 unknown 

1135 P1395R 1 2   1 0 0 Fp 

1136 P1395R 1 2   1 0 0 Fp 

1137 P1395R 1 2   1 0 0 Fp 

1138 P1395R 1 2   1 0 0 Fp 

1139 P1395R 1 2   1 0 0 Fp 

1140 P1395R 1 2   1 0 0 Fp 
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1141 P1395R 1 2   1 0 0 Fp 

1142 P1395R 1 2   1 0 0 Fp 

1143 P1395R 1 2   1 0 0 Fp 

1144 P1395R 1 2   1 0 0 Fp 

1145 P1395R 1 2   1 0 0 Fp 

1146 P1395R 1 2   1 0 0 Fp 

1147 P1395R 1 2   1 0 0 Fp 

1148 P1395R 1 2   1 0 0 Fp 

1149 P1395R 1 2   1 0 0 Fp 

1150 P1395R 1 2   1 0 0 Fp 

1151 P1395R 1 2   1 0 0 Fp 

1152 P1395R 1 2   1 0 0 Fp 

1153 P1395R 1 2   1 0 0 Fp 

1154 P1395R 1 2   1 0 0 Fp 

1155 P1395R 1 2   1 0 0 Fp 

1156 P1395R 1 2   1 0 0 Fp 

1157 P1395R 1 2   1 0 0 Fp 

1158 P1395R 1 2   1 0 0 Fp 

1159 P1395R 1 2   1 0 0 Fp 

1160 P1395R 1 2   1 0 0 Fp 

1161 P1395R 1 2   1 0 0 Fp 

1162 P1395R 1 2   1 0 0 Fp 

1163 P1395R 1 2   1 0 0 Fp 

1164 P1395R 1 2   1 0 0 Fp 

1165 P1395R 1 2   1 0 0 Fp 

1166 P1395R 1 2   0 1 0 Fv 

1167 P1395R 1 2   0 1 0 Fv 

1168 P1395R 1 2   0 1 0 Fv 

1169 P1395R 1 2   0 1 0 Fv 

1170 P1395R 1 2   0 1 0 Fv 

1171 P1395R 1 2   0 1 0 Fv 

1172 P1395R 1 2   0 1 0 Fv 

1173 P1395R 1 2   1 0 0 Fp 

1174 P1395R 1 2   0 1 0 Fv 

1175 P1395R 1 2   0 1 0 Fv 

1176 P1395R 1 2   0 1 0 Fv 

1177 P1395R 1 2   0 1 0 Fv 

1178 P1395R 1 2   0 1 0 Fv 

1179 P1395R 1 2   1 0 0 Fp 

1180 P1395R 1 2   0 1 0 Fv 

1181 P1395R 1 2   0 1 0 Fv 
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1182 P1395R 1 2   0 1 0 Fv 

1183 P1395R 1 2   1 0 0 Fp 

1184 P1395R 1 2   0 1 0 Fv 

1185 P1395R 1 2   0 1 0 Fv 

1186 P1395R 1 2   1 0 0 Fp 

1187 P1395R 1 2   0 0 1 unknown 

1188 P1395R 1 2   0 0 1 unknown 

1189 P1395R 1 2   0 0 1 unknown 

1190 P1395R 1 2   1 0 0 Fp 

1191 P1395R 1 2   1 0 0 Fp 

1192 P1395R 1 2   0 0 1 unknown 

1193 P1395R 1 2   1 0 0 Fp 

1194 P1395R 1 2   1 0 0 Fp 

1195 P1395R 1 2   0 0 1 unknown 

1196 P1395R 1 2   0 0 1 unknown 

1197 P1395R 1 2   1 0 0 Fp 

1198 P1395R 1 2   1 0 0 Fp 

1199 P1395R 1 2   1 0 0 Fp 

1200 P1395R 1 2   0 1 0 Fv 

1201 P1395R 1 2   1 0 0 Fp 

1202 P1395R 1 2   1 0 0 Fp 

1203 P1395R 1 2   1 0 0 Fp 

1204 P1395R 1 2   1 0 0 Fp 

1205 P1395R 1 2   0 1 0 Fv 

1206 P1395R 1 2   1 0 0 Fp 

1207 P1395R 1 2   0 0 1 unknown 

1208 P1395R 1 2   0 0 1 unknown 

1209 P1395R 1 2   1 0 0 Fp 

1210 P1395R 1 2   1 0 0 Fp 

1211 P1395R 1 2   1 0 0 Fp 

1212 P1395R 1 2   1 0 0 Fp 

1213 P1395R 1 2   0 1 0 Fv 

1214 P1395R 1 2   1 0 0 Fp 

1215 P1395R 1 2   1 0 0 Fp 

1216 P1395R 1 2   1 0 0 Fp 

1217 P1395R 1 2   1 0 0 Fp 

1218 P1395R 1 2   0 1 0 Fv 

1219 P1395R 1 3   0 1 0 Fv 

1220 P1395R 1 3   0 1 0 Fv 

1221 P1395R 1 3   0 0 1 unknown 

1222 P1395R 1 3   0 1 0 Fv 
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1223 P1395R 1 3   0 1 0 Fv 

1224 P1395R 1 3   0 1 0 Fv 

1225 P1395R 1 3   0 0 1 unknown 

1226 P1395R 1 3   0 0 1 unknown 

1227 P1395R 1 3   0 1 0 Fv 

1228 P1395R 1 3   0 0 1 unknown 

1229 P1395R 1 3   0 1 0 Fv 

1230 P1395R 1 3   0 1 0 Fv 

1231 P1395R 1 3   0 1 0 Fv 

1232 P1395R 1 3   0 1 0 Fv 

1233 P1395R 1 3   0 1 0 Fv 

1234 P1395R 1 3   0 1 0 Fv 

1235 P1395R 1 3   0 0 1 unknown 

1236 P1395R 1 3   0 1 0 Fv 

1237 P1395R 1 3   0 1 0 Fv 

1238 P1395R 1 3   0 1 0 Fv 

1239 P1395R 1 3   0 1 0 Fv 

1240 P1395R 1 3   0 1 0 Fv 

1241 P1395R 1 3   0 1 0 Fv 

1242 P1395R 1 3   0 0 1 unknown 

1243 P1395R 1 3   0 1 0 Fp 

1244 P1395R 1 3   0 1 0 Fv 

1245 P1395R 1 3   0 1 0 Fv 

1246 P1395R 1 3   1 0 0 Fv 

1247 P1395R 1 3   1 0 0 Fp 

1248 P1395R 1 3   0 1 0 Fp 

1249 P1395R 1 3   1 0 0 Fv 

1250 P1395R 1 3   1 0 0 Fp 

1251 P1395R 1 3   0 1 0 Fp 

1252 P1395R 1 3   0 1 0 Fv 

1253 P1395R 1 3   1 0 0 Fv 

1254 P1395R 1 3   1 0 0 Fp 

1255 P1395R 1 3   1 0 0 Fp 

1256 P1395R 1 3   0 1 0 Fp 

1257 P1395R 1 3   0 1 0 Fv 

1258 P1395R 1 3   1 0 0 Fv 

1259 P1395R 1 3   1 0 0 Fp 

1260 P1395R 1 3   1 0 0 Fp 

1261 P1395R 1 3   1 0 0 Fp 

1262 P1395R 1 3   0 1 0 Fp 

1263 P1395R 1 3   0 1 0 Fv 
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1264 P1395R 1 3   0 1 0 Fv 

1265 P1395R 1 3   1 0 0 Fv 

1266 P1395R 1 3   1 0 0 Fp 

1267 P1395R 1 3   0 1 0 Fp 

1268 P1395R 1 3   0 1 0 Fv 

1269 P1395R 1 3   1 0 0 Fv 

1270 P1395R 1 3   0 1 0 Fp 

1271 P1395R 1 3   0 1 0 Fv 

1272 P1395R 1 3   1 0 0 Fp 

1273 P1395R 1 3   1 0 0 Fp 

1274 P1395R 1 3   1 0 0 Fp 

1275 P1395R 1 3   1 0 0 Fp 

1276 P1395R 1 3   0 1 0 Fv 

1277 P1395R 1 3   0 1 0 Fv 

1278 P1395R 1 3   1 0 0 Fp 

1279 P1395R 1 3   1 0 0 Fp 

1280 P1395R 1 3   0 1 0 Fv 

1281 P1395R 1 3   0 1 0 Fv 

1282 P1395R 1 3   1 0 0 Fp 

1283 P1395R 1 3   0 1 0 Fv 

1284 P1395R 1 3   0 1 0 Fv 

1285 P1395R 1 3   1 0 0 Fp 

1286 P1395R 1 3   1 0 0 Fp 

1287 P1395R 1 3   1 0 0 Fp 

1288 P1395R 1 3   0 1 0 Fv 

1289 P1395R 1 3   0 1 0 Fv 

1290 P1395R 1 3   0 1 0 Fv 

1291 P1395R 1 3   1 0 0 Fp 

1292 P1395R 1 3   1 0 0 Fp 

1293 P1395R 1 3   0 1 0 Fv 

1294 P1395R 1 3   1 0 0 Fp 

1295 P1395R 1 3   1 0 0 Fp 

1296 P1395R 1 3   1 0 0 Fp 

1297 P1395R 1 3   0 1 0 Fv 

1298 P1395R 1 3   0 1 0 Fv 

1299 P1395R 1 3   1 0 0 Fp 

1300 P1395R 1 3   1 0 0 Fp 

1301 P1395R 1 3   0 0 1 unknown 

1302 P1395R 1 3   0 1 0 Fv 

1303 P1395R 1 3   0 1 0 Fv 

1304 P1395R 1 3   1 0 0 Fp 
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1305 P1395R 1 3   0 1 0 Fv 

1306 P1395R 1 3   0 0 1 unknown 

1307 P1395R 1 3   0 1 0 Fv 

1308 P1395R 1 3   0 1 0 Fv 

1309 P1395R 1 3   1 0 0 Fp 

1310 P1395R 1 3   1 0 0 Fp 

1311 P1395R 1 3   0 1 0 Fv 

1312 P1395R 1 3   1 0 0 Fp 

1313 P1395R 1 3   1 0 0 Fp 

1314 P1395R 1 3   0 1 0 Fv 

1315 P1395R 1 3   1 0 0 Fp 

1316 P1395R 1 3   0 0 1 unknown 

1317 P1395R 1 3   0 1 0 Fv 

1318 P1395R 1 3   0 1 0 Fv 

1319 P1395R 1 3   0 1 0 Fv 

1320 P1395R 1 3   0 1 0 Fv 

1321 P1395R 1 3   1 0 0 Fp 

1322 P1395R 1 3   1 0 0 Fp 

1323 P1395R 1 3   1 0 0 Fp 

1324 P1395R 1 3   0 1 0 Fv 

1325 P1395R 1 3   0 0 1 unknown 

1326 P1395R 1 3   1 0 0 Fp 

1327 P1395R 1 3   1 0 0 Fp 

1328 P1395R 1 3   0 1 0 Fv 

1329 P1395R 1 3   0 1 0 Fv 

1330 P1395R 1 3   0 1 0 Fv 

1331 P1395R 1 3   0 1 0 Fv 

1332 P1395R 1 3   0 1 0 Fv 

1333 P1395R 1 3   0 1 0 Fv 

1334 P1395R 1 3   1 0 0 Fp 

1335 P1395R 1 3   1 0 0 Fp 

1336 P1395R 1 3   1 0 0 Fp 

1337 P1395R 1 3   0 0 1 unknown 

1338 P1395R 1 3   1 0 0 Fp 

1339 P1395R 1 3   0 1 0 Fv 

1340 P1395R 1 3   0 1 0 Fv 

1341 P1395R 1 3   1 0 0 Fp 

1342 P1395R 1 3   1 0 0 Fp 

1343 P1395R 1 3   0 1 0 Fv 

1344 P1395R 1 3   1 0 0 Fp 

1345 P1395R 1 3   1 0 0 Fp 
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1346 P1395R 1 3   0 0 1 unknown 

1347 P1395R 1 3   1 0 0 Fp 

1348 P1395R 1 3   1 0 0 Fp 

1349 P1395R 1 3   0 1 0 Fv 

1350 P1395R 1 3   1 0 0 Fp 

1351 P1395R 1 3   0 0 1 unknown 

1352 P1395R 1 3   0 0 1 unknown 

1353 P1395R 1 3   0 0 1 unknown 

1354 P1395R 1 3   0 1 0 Fv 

1355 P1395R 1 3   0 1 0 Fv 

1356 P1395R 1 3   0 1 0 Fv 

1357 P1395R 1 3   0 1 0 Fv 

1358 P1395R 1 3   1 0 0 Fp 

1359 P1395R 1 3   0 0 1 unknown 

1360 P1395R 1 3   1 0 0 Fp 

1361 P1395R 1 3   1 0 0 Fp 

1362 P1395R 1 3   1 0 0 Fp 

1363 P1395R 1 3   0 1 0 Fv 

1364 P1395R 1 3   1 0 0 Fp 

1365 P1395R 1 3   0 1 0 Fv 

1366 P1395R 1 3   0 1 0 Fv 

1367 P1395R 1 3   0 0 1 unknown 

1368 P1395R 1 3   1 0 0 Fp 

1369 P1395R 1 3   1 0 0 Fp 

1370 P1395R 1 3   1 0 0 Fp 

1371 P1395R 1 3   1 0 0 Fp 

1372 P1395R 1 3   0 0 1 unknown 

1373 P1395R 1 3   1 0 0 Fp 

1374 P1395R 1 3   0 0 1 unknown 

1375 P1395R 1 3   0 1 0 Fv 

1376 P1395R 1 3   0 1 0 Fv 

1377 P1395R 1 3   0 1 0 Fv 

1378 P1395R 1 3   0 1 0 Fv 

1379 P1395R 1 3   0 0 1 unknown 

1380 P1395R 1 3   1 0 0 Fp 

1381 P1395R 1 3   0 1 0 Fv 

1382 P1395R 1 3   0 1 0 Fv 

1383 P1395R 1 3   0 1 0 Fv 

1384 P1395R 1 3   1 0 0 Fp 

1385 P1395R 2 1   1 0 0 Fp 

1386 P1395R 2 1   0 0 1 unknown 



165 

1387 P1395R 2 1   1 0 0 Fp 

1388 P1395R 2 1   0 1 0 Fv 

1389 P1395R 2 1   1 0 0 Fp 

1390 P1395R 2 1   0 1 0 Fv 

1391 P1395R 2 1   0 1 0 Fv 

1392 P1395R 2 1   1 0 0 Fp 

1393 P1395R 2 1   1 0 0 Fp 

1394 P1395R 2 1   0 1 0 Fv 

1395 P1395R 2 1   1 0 0 Fp 

1396 P1395R 2 1   1 0 0 Fp 

1397 P1395R 2 1   1 0 0 Fp 

1398 P1395R 2 1   1 0 0 Fp 

1399 P1395R 2 1   1 0 0 Fp 

1400 P1395R 2 1   0 1 0 Fv 

1401 P1395R 2 1   0 1 0 Fv 

1402 P1395R 2 1   0 0 1 unknown 

1403 P1395R 2 1   0 1 0 Fv 

1404 P1395R 2 1   0 0 1 unknown 

1405 P1395R 2 1   1 0 0 Fp 

1406 P1395R 2 1   1 0 0 Fp 

1407 P1395R 2 1   1 0 0 Fp 

1408 P1395R 2 1   1 0 0 Fp 

1409 P1395R 2 1   0 1 0 Fv 

1410 P1395R 2 1   1 0 0 Fp 

1411 P1395R 2 1   1 0 0 Fp 

1412 P1395R 2 1   1 0 0 Fp 

1413 P1395R 2 1   1 0 0 Fp 

1414 P1395R 2 1   1 0 0 Fp 

1415 P1395R 2 1   0 0 1 unknown 

1416 P1395R 2 1   0 1 0 Fv 

1417 P1395R 2 1   0 0 1 unknown 

1418 P1395R 2 1   0 0 1 unknown 

1419 P1395R 2 1   0 0 1 unknown 

1420 P1395R 2 1   0 0 1 unknown 

1421 P1395R 2 1   0 0 1 unknown 

1422 P1395R 2 1   0 0 1 unknown 

1423 P1395R 2 1   0 0 1 unknown 

1424 P1395R 2 1   0 0 1 unknown 

1425 P1395R 2 1   0 1 0 Fv 

1426 P1395R 2 1   0 0 1 unknown 

1427 P1395R 2 1   0 1 0 Fv 
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1428 P1395R 2 1   0 0 1 unknown 

1429 P1395R 2 1   0 0 1 unknown 

1430 P1395R 2 1   0 0 1 unknown 

1431 P1395R 2 1   0 0 1 unknown 

1432 P1395R 2 1   0 1 0 Fv 

1433 P1395R 2 1   0 1 0 Fv 

1434 P1395R 2 1   1 0 0 Fp 

1435 P1395R 2 1   1 0 0 Fp 

1436 P1395R 2 1   0 1 0 Fv 

1437 P1395R 2 1   0 0 1 unknown 

1438 P1395R 2 1   0 0 1 unknown 

1439 P1395R 2 1   0 0 1 unknown 

1440 P1395R 2 1   0 1 0 Fv 

1441 P1395R 2 1   1 0 0 Fp 

1442 P1395R 2 1   1 0 0 Fp 

1443 P1395R 2 1   0 1 0 Fv 

1444 P1395R 2 1   0 0 1 unknown 

1445 P1395R 2 1   0 0 1 unknown 

1446 P1395R 2 1   0 0 1 unknown 

1447 P1395R 2 1   0 1 0 Fv 

1448 P1395R 2 1   0 1 0 Fv 

1449 P1395R 2 1   1 0 0 Fp 

1450 P1395R 2 1   1 0 0 Fp 

1451 P1395R 2 1   0 0 1 unknown 

1452 P1395R 2 1   0 0 1 unknown 

1453 P1395R 2 1   1 0 0 Fp 

1454 P1395R 2 1   1 0 0 Fp 

1455 P1395R 2 1   1 0 0 Fp 

1456 P1395R 2 1   1 0 0 Fp 

1457 P1395R 2 1   1 0 0 Fp 

1458 P1395R 2 1   0 1 0 Fv 

1459 P1395R 2 1   1 0 0 Fp 

1460 P1395R 2 1   1 0 0 Fp 

1461 P1395R 2 1   0 1 0 Fv 

1462 P1395R 2 1   0 1 0 Fv 

1463 P1395R 2 1   0 1 0 Fv 

1464 P1395R 2 1   0 1 0 Fv 

1465 P1395R 2 1   0 1 0 Fv 

1466 P1395R 2 1   0 1 0 Fv 

1467 P1395R 2 1   0 1 0 Fv 

1468 P1395R 2 1   0 1 0 Fv 
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1469 P1395R 2 1   1 0 0 Fp 

1470 P1395R 2 1   1 0 0 Fp 

1471 P1395R 2 1   0 1 0 Fv 

1472 P1395R 2 1   0 1 0 Fv 

1473 P1395R 2 1   0 1 0 Fv 

1474 P1395R 2 1   0 1 0 Fv 

1475 P1395R 2 1   0 1 0 Fv 

1476 P1395R 2 1   1 0 0 Fp 

1477 P1395R 2 1   0 1 0 Fv 

1478 P1395R 2 1   0 1 0 Fv 

1479 P1395R 2 1   0 1 0 Fv 

1480 P1395R 2 1   0 0 1 unknown 

1481 P1395R 2 1   0 0 1 unknown 

1482 P1395R 2 1   0 0 1 unknown 

1483 P1395R 2 1   0 0 1 unknown 

1484 P1395R 2 1   1 0 0 Fp 

1485 P1395R 2 1   0 1 0 Fv 

1486 P1395R 2 1   0 1 0 Fv 

1487 P1395R 2 1   0 0 1 unknown 

1488 P1395R 2 1   0 1 0 Fv 

1489 P1395R 2 1   1 0 0 Fp 

1490 P1395R 2 1   0 1 0 Fv 

1491 P1395R 2 1   0 1 0 Fv 

1492 P1395R 2 1   0 1 0 Fv 

1493 P1395R 2 1   0 1 0 Fv 

1494 P1395R 2 1   1 0 0 Fp 

1495 P1395R 2 1   0 1 0 Fv 

1496 P1395R 2 1   0 1 0 Fv 

1497 P1395R 2 1   0 0 1 unknown 

1498 P1395R 2 1   1 0 0 Fp 

1499 P1395R 2 1   1 0 0 Fp 

1500 P1395R 2 1   0 1 0 Fv 

1501 P1395R 2 1   0 0 1 unknown 

1502 P1395R 2 1   1 0 0 Fp 

1503 P1395R 2 1   1 0 0 Fp 

1504 P1395R 2 1   0 0 1 unknown 

1505 P1395R 2 1   0 0 1 unknown 

1506 P1395R 2 1   1 0 0 Fp 

1507 P1395R 2 1   1 0 0 Fp 

1508 P1395R 2 1   1 0 0 Fp 

1509 P1395R 2 1   1 0 0 Fp 
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1510 P1395R 2 1   1 0 0 Fp 

1511 P1395R 2 1   1 0 0 Fp 

1512 P1395R 2 1   1 0 0 Fp 

1513 P1395R 2 1   1 0 0 Fp 

1514 P1395R 2 1   1 0 0 Fp 

1515 P1395R 2 1   1 0 0 Fp 

1516 P1395R 2 1   0 1 0 Fv 

1517 P1395R 2 1   0 1 0 Fv 

1518 P1395R 2 1   1 0 0 Fp 

1519 P1395R 2 1   1 0 0 Fp 

1520 P1395R 2 1   1 0 0 Fp 

1521 P1395R 2 1   1 0 0 Fp 

1522 P1395R 2 1   0 1 0 Fv 

1523 P1395R 2 1   1 0 0 Fp 

1524 P1395R 2 1   1 0 0 Fp 

1525 P1395R 2 1   1 0 0 Fp 

1526 P1395R 2 1   0 1 0 Fv 

1527 P1395R 2 1   1 0 0 Fp 

1528 P1395R 2 1   1 0 0 Fp 

1529 P1395R 2 1   1 0 0 Fp 

1530 P1395R 2 1   1 0 0 Fp 

1531 P1395R 2 1   0 1 0 Fv 

1532 P1395R 2 1   0 1 0 Fv 

1533 P1395R 2 2   1 0 0 Fp 

1534 P1395R 2 2   1 0 0 Fp 

1535 P1395R 2 2   1 0 0 Fp 

1536 P1395R 2 2   1 0 0 Fp 

1537 P1395R 2 2   0 1 0 Fv 

1538 P1395R 2 2   0 1 0 Fv 

1539 P1395R 2 2   0 1 0 Fv 

1540 P1395R 2 2   0 1 0 Fv 

1541 P1395R 2 2   0 1 0 Fv 

1542 P1395R 2 2   0 1 0 Fv 

1543 P1395R 2 2   0 1 0 Fv 

1544 P1395R 2 2   1 0 0 Fp 

1545 P1395R 2 2   0 1 0 Fv 

1546 P1395R 2 2   0 1 0 Fv 

1547 P1395R 2 2   0 1 0 Fv 

1548 P1395R 2 2   0 1 0 Fv 

1549 P1395R 2 2   1 0 0 Fp 

1550 P1395R 2 2   1 0 0 Fp 
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1551 P1395R 2 2   0 1 0 Fv 

1552 P1395R 2 2   0 1 0 Fv 

1553 P1395R 2 2   0 1 0 Fv 

1554 P1395R 2 2   1 0 0 Fp 

1555 P1395R 2 2   0 1 0 Fv 

1556 P1395R 2 2   0 1 0 Fv 

1557 P1395R 2 2   1 0 0 Fp 

1558 P1395R 2 2   0 0 1 unknown 

1559 P1395R 2 2   0 0 1 unknown 

1560 P1395R 2 2   0 0 1 unknown 

1561 P1395R 2 2   1 0 0 Fp 

1562 P1395R 2 2   1 0 0 Fp 

1563 P1395R 2 2   0 0 1 unknown 

1564 P1395R 2 2   1 0 0 Fp 

1565 P1395R 2 2   1 0 0 Fp 

1566 P1395R 2 2   0 0 1 unknown 

1567 P1395R 2 2   0 0 1 unknown 

1568 P1395R 2 2   1 0 0 Fp 

1569 P1395R 2 2   1 0 0 Fp 

1570 P1395R 2 2   1 0 0 Fp 

1571 P1395R 2 2   0 1 0 Fv 

1572 P1395R 2 2   1 0 0 Fp 

1573 P1395R 2 2   1 0 0 Fp 

1574 P1395R 2 2   1 0 0 Fp 

1575 P1395R 2 2   1 0 0 Fp 

1576 P1395R 2 2   0 1 0 Fv 

1577 P1395R 2 2   1 0 0 Fp 

1578 P1395R 2 2   0 0 1 unknown 

1579 P1395R 2 2   0 0 1 unknown 

1580 P1395R 2 2   1 0 0 Fp 

1581 P1395R 2 2   1 0 0 Fp 

1582 P1395R 2 2   1 0 0 Fp 

1583 P1395R 2 2   1 0 0 Fp 

1584 P1395R 2 2   0 1 0 Fv 

1585 P1395R 2 2   1 0 0 Fp 

1586 P1395R 2 2   1 0 0 Fp 

1587 P1395R 2 2   1 0 0 Fp 

1588 P1395R 2 2   1 0 0 Fp 

1589 P1395R 2 2   0 1 0 Fv 

1590 P1395R 2 2   0 1 0 Fv 

1591 P1395R 2 2   0 1 0 Fv 
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1592 P1395R 2 2   0 0 1 unknown 

1593 P1395R 2 2   0 1 0 Fv 

1594 P1395R 2 2   0 1 0 Fv 

1595 P1395R 2 2   0 1 0 Fv 

1596 P1395R 2 2   0 0 1 unknown 

1597 P1395R 2 2   0 0 1 unknown 

1598 P1395R 2 2   0 1 0 Fv 

1599 P1395R 2 2   0 0 1 unknown 

1600 P1395R 2 2   1 0 0 Fp 

1601 P1395R 2 2   0 1 0 Fv 

1602 P1395R 2 2   0 1 0 Fv 

1603 P1395R 2 2   0 1 0 Fv 

1604 P1395R 2 2   1 0 0 Fp 

1605 P1395R 2 2   0 1 0 Fv 

1606 P1395R 2 2   0 0 1 unknown 

1607 P1395R 2 2   0 1 0 Fv 

1608 P1395R 2 2   0 1 0 Fv 

1609 P1395R 2 2   1 0 0 Fp 

1610 P1395R 2 2   1 0 0 Fp 

1611 P1395R 2 2   0 1 0 Fv 

1612 P1395R 2 2   1 0 0 Fp 

1613 P1395R 2 2   0 0 1 unknown 

1614 P1395R 2 2   1 0 0 Fp 

1615 P1395R 2 2   1 0 0 Fp 

1616 P1395R 2 2   0 1 0 Fv 

1617 P1395R 2 2   1 0 0 Fp 

1618 P1395R 2 2   1 0 0 Fp 

1619 P1395R 2 2   0 1 0 Fv 

1620 P1395R 2 2   0 1 0 Fv 

1621 P1395R 2 2   0 1 0 Fv 

1622 P1395R 2 2   0 1 0 Fv 

1623 P1395R 2 2   0 1 0 Fv 

1624 P1395R 2 2   1 0 0 Fp 

1625 P1395R 2 2   1 0 0 Fp 

1626 P1395R 2 2   0 1 0 Fv 

1627 P1395R 2 2   0 1 0 Fv 

1628 P1395R 2 2   0 1 0 Fv 

1629 P1395R 2 2   0 1 0 Fv 

1630 P1395R 2 2   0 1 0 Fv 

1631 P1395R 2 2   0 1 0 Fv 

1632 P1395R 2 2   1 0 0 Fp 
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1633 P1395R 2 2   0 1 0 Fv 

1634 P1395R 2 2   0 1 0 Fv 

1635 P1395R 2 2   1 0 0 Fp 

1636 P1395R 2 2   1 0 0 Fp 

1637 P1395R 2 2   0 1 0 Fv 

1638 P1395R 2 2   0 1 0 Fv 

1639 P1395R 2 2   0 1 0 Fv 

1640 P1395R 2 2   1 0 0 Fp 

1641 P1395R 2 2   0 1 0 Fv 

1642 P1395R 2 2   1 0 0 Fp 

1643 P1395R 2 2   0 0 1 unknown 

1644 P1395R 2 2   0 0 1 unknown 

1645 P1395R 2 2   1 0 0 Fp 

1646 P1395R 2 2   1 0 0 Fp 

1647 P1395R 2 2   1 0 0 Fp 

1648 P1395R 2 2   1 0 0 Fp 

1649 P1395R 2 2   0 1 0 Fv 

1650 P1395R 2 2   1 0 0 Fp 

1651 P1395R 2 2   1 0 0 Fp 

1652 P1395R 2 2   0 1 0 Fv 

1653 P1395R 2 2   1 0 0 Fp 

1654 P1395R 2 2   1 0 0 Fp 

1655 P1395R 2 2   1 0 0 Fp 

1656 P1395R 2 2   1 0 0 Fp 

1657 P1395R 2 2   0 0 1 unknown 

1658 P1395R 2 2   0 1 0 Fv 

1659 P1395R 2 2   0 1 0 Fv 

1660 P1395R 2 2   1 0 0 Fp 

1661 P1395R 2 2   1 0 0 Fp 

1662 P1395R 2 2   1 0 0 Fp 

1663 P1395R 2 2   1 0 0 Fp 

1664 P1395R 2 2   0 1 0 Fv 

1665 P1395R 2 2   0 1 0 Fv 

1666 P1395R 2 2   1 0 0 Fp 

1667 P1395R 2 2   0 1 0 Fv 

1668 P1395R 2 2   0 1 0 Fv 

1669 P1395R 2 2   0 1 0 Fv 

1670 P1395R 2 2   1 0 0 Fp 

1671 P1395R 2 2   1 0 0 Fp 

1672 P1395R 2 2   0 1 0 Fv 

1673 P1395R 2 2   0 1 0 Fv 
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1674 P1395R 2 2   0 1 0 Fv 

1675 P1395R 2 2   0 1 0 Fv 

1676 P1395R 2 2   0 1 0 Fv 

1677 P1395R 2 2   0 1 0 Fv 

1678 P1395R 2 2   0 1 0 Fv 

1679 P1395R 2 2   0 1 0 Fv 

1680 P1395R 2 2   0 1 0 Fv 

1681 P1395R 2 2   0 1 0 Fv 

1682 P1395R 2 2   0 1 0 Fv 

1683 P1395R 2 2   0 1 0 Fv 

1684 P1395R 2 2   0 1 0 Fv 

1685 P1395R 2 2   0 1 0 Fv 

1686 P1395R 2 2   0 1 0 Fv 

1687 P1395R 2 2   0 1 0 Fv 

1688 P1395R 2 2   1 0 0 Fp 

1689 P1395R 2 2   1 0 0 Fp 

1690 P1395R 2 2   1 0 0 Fp 

1691 P1395R 2 2   0 1 0 Fv 

1692 P1395R 2 2   1 0 0 Fp 

1693 P1395R 2 2   1 0 0 Fp 

1694 P1395R 2 3   1 0 0 Fp 

1695 P1395R 2 3   0 1 0 Fv 

1696 P1395R 2 3   1 0 0 Fp 

1697 P1395R 2 3   1 0 0 Fp 

1698 P1395R 2 3   1 0 0 Fp 

1699 P1395R 2 3   1 0 0 Fp 

1700 P1395R 2 3   0 1 0 Fv 

1701 P1395R 2 3   1 0 0 Fp 

1702 P1395R 2 3   0 1 0 Fv 

1703 P1395R 2 3   1 0 0 Fp 

1704 P1395R 2 3   0 1 0 Fv 

1705 P1395R 2 3   1 0 0 Fp 

1706 P1395R 2 3   0 0 1 unknown 

1707 P1395R 2 3   1 0 0 Fp 

1708 P1395R 2 3   1 0 0 Fp 

1709 P1395R 2 3   1 0 0 Fp 

1710 P1395R 2 3   1 0 0 Fp 

1711 P1395R 2 3   0 1 0 Fv 

1712 P1395R 2 3   1 0 0 Fp 

1713 P1395R 2 3   1 0 0 Fp 

1714 P1395R 2 3   1 0 0 Fp 
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1715 P1395R 2 3   1 0 0 Fp 

1716 P1395R 2 3   1 0 0 Fp 

1717 P1395R 2 3   1 0 0 Fp 

1718 P1395R 2 3   0 1 0 Fv 

1719 P1395R 2 3   0 1 0 Fv 

1720 P1395R 2 3   0 1 0 Fv 

1721 P1395R 2 3   0 1 0 Fv 

1722 P1395R 2 3   0 1 0 Fv 

1723 P1395R 2 3   0 1 0 Fv 

1724 P1395R 2 3   0 1 0 Fv 

1725 P1395R 2 3   1 0 0 Fp 

1726 P1395R 2 3   0 0 1 unknown 

1727 P1395R 2 3   1 0 0 Fp 

1728 P1395R 2 3   1 0 0 Fp 

1729 P1395R 2 3   1 0 0 Fp 

1730 P1395R 2 3   0 1 0 Fv 

1731 P1395R 2 3   1 0 0 Fp 

1732 P1395R 2 3   1 0 0 Fp 

1733 P1395R 2 3   0 1 0 Fv 

1734 P1395R 2 3   0 1 0 Fv 

1735 P1395R 2 3   1 0 0 Fp 

1736 P1395R 2 3   0 1 0 Fv 

1737 P1395R 2 3   1 0 0 Fp 

1738 P1395R 2 3   1 0 0 Fp 

1739 P1395R 2 3   0 0 1 unknown 

1740 P1395R 2 3   1 0 0 Fp 

1741 P1395R 2 3   1 0 0 Fp 

1742 P1395R 2 3   1 0 0 Fp 

1743 P1395R 2 3   1 0 0 Fp 

1744 P1395R 2 3   1 0 0 Fp 

1745 P1395R 2 3   0 1 0 Fv 

1746 P1395R 2 3   1 0 0 Fp 

1747 P1395R 2 3   1 0 0 Fp 

1748 P1395R 2 3   1 0 0 Fp 

1749 P1395R 2 3   1 0 0 Fp 

1750 P1395R 2 3   1 0 0 Fp 

1751 P1395R 2 3   0 0 1 unknown 

1752 P1395R 2 3   1 0 0 Fp 

1753 P1395R 2 3   1 0 0 Fp 

1754 P1395R 2 3   1 0 0 Fp 

1755 P1395R 2 3   1 0 0 Fp 
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1756 P1395R 2 3   1 0 0 Fp 

1757 P1395R 2 3   1 0 0 Fp 

1758 P1395R 2 3   0 0 1 unknown 

1759 P1395R 2 3   1 0 0 Fp 

1760 P1395R 2 3   1 0 0 Fp 

1761 P1395R 2 3   1 0 0 Fp 

1762 P1395R 2 3   1 0 0 Fp 

1763 P1395R 2 3   1 0 0 Fp 

1764 P1395R 2 3   1 0 0 Fp 

1765 P1395R 2 3   0 1 0 Fv 

1766 P1395R 2 3   0 1 0 Fv 

1767 P1395R 2 3   0 1 0 Fv 

1768 P1395R 2 3   0 1 0 Fv 

1769 P1395R 2 3   0 1 0 Fv 

1770 P1395R 2 3   0 1 0 Fv 

1771 P1395R 2 3   0 1 0 Fv 

1772 P1395R 2 3   0 1 0 Fv 

1773 P1395R 2 3   0 1 0 Fv 

1774 P1395R 2 3   0 1 0 Fv 

1775 P1395R 2 3   0 1 0 Fv 

1776 P1395R 2 3   1 0 0 Fp 

1777 P1395R 2 3   1 0 0 Fp 

1778 P1395R 2 3   1 0 0 Fp 

1779 P1395R 2 3   1 0 0 Fp 

1780 P1395R 2 3   0 1 0 Fv 

1781 P1395R 2 3   1 0 0 Fp 

1782 P1395R 2 3   1 0 0 Fp 

1783 P1395R 2 3   1 0 0 Fp 

1784 P1395R 2 3   1 0 0 Fp 

1785 P1395R 2 3   1 0 0 Fp 

1786 P1395R 2 3   0 0 1 unknown 

1787 P1395R 2 3   0 1 0 Fv 

1788 P1395R 2 3   0 0 1 unknown 

1789 P1395R 2 3   0 0 1 unknown 

1790 P1395R 2 3   0 0 1 unknown 

1791 P1395R 2 3   0 0 1 unknown 

1792 P1395R 2 3   0 0 1 unknown 

1793 P1395R 2 3   0 0 1 unknown 

1794 P1395R 2 3   0 0 1 unknown 

1795 P1395R 2 3   0 0 1 unknown 

1796 P1395R 2 3   0 1 0 Fv 
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1797 P1395R 2 3   0 0 1 unknown 

1798 P1395R 2 3   0 1 0 Fv 

1799 P1395R 2 3   0 0 1 unknown 

1800 P1395R 2 3   0 0 1 unknown 

1801 P1395R 2 3   0 0 1 unknown 

1802 P1395R 2 3   0 0 1 unknown 

1803 P1395R 2 3   0 0 1 unknown 

1804 P1395R 2 3   0 0 1 unknown 

1805 P1395R 2 3   1 0 0 Fp 

1806 P1395R 2 3   1 0 0 Fp 

1807 P1395R 2 3   0 1 0 Fv 

1808 P1395R 2 3   0 0 1 unknown 

1809 P1395R 2 3   0 0 1 unknown 

1810 P1395R 2 3   0 0 1 unknown 

1811 P1395R 2 3   0 0 1 unknown 

1812 P1395R 2 3   0 0 1 unknown 

1813 P1395R 2 3   1 0 0 Fp 

1814 P1395R 2 3   0 1 0 Fv 

1815 P1395R 2 3   0 0 1 unknown 

1816 P1395R 2 3   0 0 1 unknown 

1817 P1395R 2 3   0 0 1 unknown 

1818 P1395R 2 3   0 0 1 unknown 

1819 P1395R 2 3   0 0 1 unknown 

1820 P1395R 2 3   0 1 0 Fv 

1821 P1395R 2 3   0 1 0 Fv 

1822 P1395R 2 3   0 0 1 unknown 

1823 P1395R 2 3   0 0 1 unknown 

1824 P1395R 2 3   1 0 0 Fp 

1825 P1395R 2 3   1 0 0 Fp 

1826 P1395R 2 3   1 0 0 Fp 

1827 P1395R 2 3   1 0 0 Fp 

1828 P1395R 2 3   1 0 0 Fp 

1829 P1395R 2 3   0 1 0 Fv 

1830 P1395R 2 3   1 0 0 Fp 

1831 P1395R 2 3   1 0 0 Fp 

1832 P1395R 2 3   0 1 0 Fv 

1833 P1395R 2 3   0 1 0 Fv 

1834 P1395R 2 3   0 1 0 Fv 

1835 P1395R 2 3   0 1 0 Fv 

1836 P1395R 2 3   0 1 0 Fv 

1837 P1395R 2 3   0 1 0 Fv 
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1838 P1395R 2 3   0 1 0 Fv 

1839 P1395R 2 3   0 1 0 Fv 

1840 P1395R 2 3   1 0 0 Fp 

1841 P1395R 2 3   1 0 0 Fp 

1842 P1395R 2 3   0 1 0 Fv 

1843 P1395R 2 3   0 1 0 Fv 

1844 P1395R 2 3   0 1 0 Fv 

1845 P1395R 2 3   0 1 0 Fv 

1846 P1395R 2 3   0 1 0 Fv 

1847 P1395R 2 3   1 0 0 Fp 

1848 P1395R 2 3   0 1 0 Fv 

1849 P1395R 2 3   0 1 0 Fv 

1850 P1395R 2 3   0 1 0 Fv 

1851 P1395R 2 3   0 0 1 unknown 

1852 P1395R 2 3   0 0 1 unknown 

1853 P1395R 2 3   0 0 1 unknown 

1854 P1395R 2 3   0 0 1 unknown 

1855 P1395R 2 3   1 0 0 Fp 
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Table 5.9 Number of F. proliferatum and F. verticillioides isolates cultured from kernels of 

hybrids 33D49 and P1395R from each plot and subplot. 

 

Both Hybrids Plot 1   Plot 2   
Total per 

hybrid 
  Total 

  33D49 P1395R 33D49 P1395R 33D49 P1395R   

Total F. 

proliferatum 
206 210 199 202 405 412 817 

Total F. 

verticillioides 
181 190 199 181 380 371 751 

Total Unknown 67 70 62 88 129 158 287 

Total 454 470 460 471 914 941 1855 

        

Maize Hybrid 

33D49 
Plot 1     Plot 2     Total 

  
Subplot 

1 

Subplot 

2 

Subplot 

3 

Subplot 

1 
Subplot 2 Subplot 3   

Total F. 

proliferatum 
61 85 60 63 67 69 405 

Total F. 

verticillioides 
67 64 50 79 55 65 380 

Total Unknown 19 5 43 9 39 14 129 

Total 147 154 153 151 161 148 914 

        

Maize Hybrid 

P1395R 
Plot 1     Plot 2     Total 

  
Subplot 

1 

Subplot 

2 

Subplot 

3 

Subplot 

1 
Subplot 2 Subplot 3   

Total F. 

proliferatum 
72 73 65 63 67 72 412 

Total F. 

verticillioides 
58 51 81 51 77 53 371 

Total Unknown 23 27 20 34 17 37 158 

Total 153 151 166 148 161 162 941 
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Table 5.10 Eight primer combinations were tested with 6 isolates for use in selective 

amplification in the AFLP assay. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primer Combinations 5'-HEX-EcoRI 

5’-MseI AA-3' TG-3' 

TT-3' 1 5 

CA-3' 2 6 

CC-3' 3 7 

CT-3' 4 8 
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Table 5.11 Number of alleles found in each of the 6 different isolates (5 F. proliferatum (Fp) 

and 1 F. verticillioides (Fv)) tested. 

 

 Primer Combination 

Strains 1 2 3 4 5 6 7 8 

Fp-70-15-3 178 154 146 158 134 162 157 156 

Fp-49-16-4 152 174 205 174 119 159 147 165 

Fp-95-8-4 197 147 197 183 176 172 155 152 

Fp-47-15-5 201 198 178 197 179 156 165 161 

Fp-49-19-5B 205 175 161 173 156 194 161 160 

Fv-73-26-4B 147 168 177 163 160 155 146 169 

Total Alleles 480 385 415 410 388 391 363 385 
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Table 5.12 Error rate estimation in 3 AFLP runs was found to average 6.36%. 

 

Isolate Fp-49-16-4 Same bands Mismatched bands % Error rate 

Run 1 231 10 4.15 

Run 2 216 25 10.37 

Run 3 230 11 4.56 
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Table 5.13 Summary of analysis of molecular variance (AMOVA) of F. proliferatum and F. 

verticillioides isolates. Probability for ФPT is based on standard permutation across the full 

data set. ФPT = AP / (WP + AP) = AP / TOT (where AP, Est. Var among populations; WP, 

Est. Var. within populations). Levels of significance are based on 999 iterations. ФPT is 

significant (p-value 0.001) which suggests the two populations (F. proliferatum and F. 

verticillioides) are distinct. 

 

Source df SS MS Est. Var. % Stat Value p-value 

Among Pops 1 
948.979 948.979 28.143 52% 

   

Within Pops 94 
2400.084 25.533 25.533 48% 

   

Total 95 
3349.063  53.676 100% 

PhiPT 0.524 0.001 
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Table 5.14 Summary of analysis of molecular variance (AMOVA) of F. proliferatum 

isolates. Levels of significance are based on 999 iterations. ФPT is significant (p-value 

0.001) which suggests the two populations are distinct. 

 

Source df SS MS Est. Var. % Stat Value p-value 

Among Pops 1 
415.140 415.140 11.832 36% 

   

Within Pops 73 
1513.420 20.732 20.732 64% 

   

Total 74 
1928.560  32.564 100% 

PhiPT 0.363 0.001 
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Conclusions and Future Directions 

The objective of this investigation was to improve our understanding of the life cycle of 

Fusarium proliferatum, specifically, the fate of seed-borne strains subsequent to introduction 

into new environments, to learn about the invasion process and the potential for establishment 

and dissemination. Knowledge gained from this research should allow the estimation of risk 

associated with the introduction of exotic strains in seed into new environments. It is important 

to acknowledge the function of seeds as vectors of pests and pathogens. 

 

In Chapter 3, the results demonstrated that seed-borne F. proliferatum can actively grow from a 

source of inoculum through non-sterile soil to colonize available organic matter within a 1.5 cm 

sphere of the source. Growth through soil and colonization of organic matter by F. proliferatum 

occurred over a temperature range of 10°C to 35°C with an optimum of 25°C. Colonization of 

organic matter was linearly related to both the source-to-bait distance and the soil water matric 

potential; the percentage colonization decreased as the distance increased and as the soil matric 

potential decreased. Soil structure was also important; the percentage colonization was less in 

soils with an intact structure compared to sieved reconstituted soils. Future experiments to 

increase the knowledge of the impact of environmental conditions in the active dispersal and 

colonization of organic matter by F. proliferatum could include the control of other abiotic 

conditions such as soil pH and soil composition (sand, silt and clay percentages). Moreover, 

different sources of organic matter (e.g. other plant species) could be used as baits to learn about 

the colonization capabilities and limitations of F. proliferatum. Also, transformation of 

additional F. proliferatum strains with different traits (e.g. aggressiveness to different hosts, 

mycotoxin production, mycotoxin profile) could help us understand the colonization as a 

function of those traits and weigh their importance. This research found that F. proliferatum 

actively dispersed at least 1.5 cm from a source of inoculum to a bait, and it would be important 

to learn if this fungus could disperse longer distances if baits are introduced at spatial and 

temporal intervals. This experiment would lead to the investigation of “chain-colonization”, in 

which the colonization from a source of inoculum to bait A, and then from bait A (new source of 

inoculum) to bait B, and then from bait B (new source of inoculum) to bait C, etc. The active 
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dispersal research will help generate more complete models about the risk of F. proliferatum 

active dispersal in field conditions. 

 

The research in Chapter 4 demonstrated that F. proliferatum can effectively compete with the 

microflora naturally found in the same niche, including F. verticillioides and microorganisms 

naturally occurring in maize seed. Roots were more colonized than stem (qPCR quantification) 

and tissue segments of the maize plant that were closer to the seed were more colonized than 

segments that were more distant. In all competition events, the species present in the plant first 

had a colonization advantage over the challenging species. Future experiments should include 

intraspecific competition between different strains of F. proliferatum for a niche in the maize 

plant using similar methods. This research would determine the significance of competition 

among strains with different aggressiveness and mycotoxin production and profile to identify 

traits that impact colonization of the plant. Similar interspecific and intraspecific competition 

experiments could be performed using other hosts including wheat and sorghum which are hosts 

of these two fungal species and also important commodities. Furthermore, an additional 

experiment could include the control of environmental variables such as temperature and soil 

matric potential to analyze how they impact the ability of the isolates to colonize the host plant 

and if they provide advantages or disadvantages to the resident or to the challenging species. 

 

Maize seed-borne F. proliferatum was transmitted to the kernels in the newly formed ear under 

field conditions (Chapter 5). This suggests that F. proliferatum strains, which can include high 

mycotoxin producers or highly aggressive strains, can disseminate from the planted seed into the 

new seed to be used in following planting seasons at distant locations. Additionally, considering 

global trade of commodities, these seeds can be introduced into new environments without 

consideration of its potential to be a vector of F. proliferatum strains. Moreover, once the strains 

are disseminated into the newly formed ear, they can be maintained as debris within the field 

during the harvest process. They can be further spread by other means such as insect-vectors. 

Future experiments should include the use of Illumina HiSeq sequencing of F. proliferatum 

isolates for genotyping-by-sequencing (GBS) to get more coverage depth, better representation 

of the genome and a higher number of reads. This would identify a higher number of 

polymorphisms that would allow tracking of multiple isolates simultaneously in field 
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experiments. A similar approach could be used with F. verticillioides. Moreover, establishment 

of the GBS-characterized F. proliferatum isolates could be monitored in the field in subsequent 

seasons. This could be done not only with maize but also with other hosts of F. proliferatum that 

are commonly used in crop rotation such as soybeans. 

 

The trade of food, plant, and animal products has increased the worldwide movement and 

establishment of exotic pathogens with dramatic negative impacts on plant systems as it was 

documented with examples in Chapter 1. Fusarium proliferatum is a broad host-range pathogen 

and among the most common maize pathogens globally. Therefore, it is critical to understand the 

life cycle of F. proliferatum to evaluate the risk of strains of F. proliferatum becoming invasive 

in new environments. Most invasion research is done at the species level; however, because F. 

proliferatum has worldwide distribution the greater risk is the introduction of exotic strains. 


