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CHAPTER I

INTRODUCTION

During recent years folded plate construction has found
inereasing application for roofs of industrial buildings and
hangers., Such construction is particularly well-suited to
fairly long spans, possessing some of the attributes of thin
shell construction with the added advantage of somewhat
gsimpler fabrication or forming. The materials required are
usually much less than needed for flat slab, beam and slab or
other conventional systems and are little more than required
for eontinmuously curved shells with the advantage of utilizing
relatively simple form work.,

Several procedures for the analysis of folded plate
structures have been developed for the determination of
stresses throughout these structures., In addition, several
experimental studiesd» 7410 *have been reported which indicate
satisfactory agreement between measured and predicted values
of stresses indueed in such structures by the presence of
transverse applied loads. Because information concerning the
possibility of local or general instability of folded plate

structures has been lacking, 1t has not ordinarily been

possible in the past to predict the buckling load. To the

* Superscripts refer to references listed in the References.



writer's knowledge, however, before Swart.z's6

analysis there
has been little or no work published which deals with the
bueckling behaviour of folded plate structures. This report
is concerned with the possibility of buckling of an indivi-
dual plate element of a folded plate structure. Such a plate
element is considered to be elastically supported along its
longitudinal edges and simply supported along its transverse
edges, Following Bleich,2 the buckling may be considered to
be caused essentially by the in-plane forces. SwartzG’T’B
iﬁtroduced a buckling analysis of the folded plate and
considered two possible types of buckling behaviour. The
first type of buckling is that caused by transverse in-plane
forces and it is treated separately from the second type of
buckling caused by the longitudinal and shear in-plane forces
acting in combination. In reality, as indicated by Swartsz

and Mikhail7 all of these in-plane forces should be taken

into account at the same time,

The method used herein to determine the critical load is
based upon an energy approach, An analysis considering trans-
verse, longitudinal and shearing in-plane forces acting at
the same time which utilizes an energy approachg is presented
in Chapter II. A necessary deflection field satisfying the
boundary conditions used in this analysis is that given by
Lundquist and Stowell,s The scope of this report is confined
to the buckling analysis of folded plate structures composed

of rectangular thin plates rigidly connected along their



common ridges. The structure is supported on two end dia-
phragms perpendicular to the longitudinal axis and is acted
upon by a uniformly distributed load.

By assuming pure compression, pure shear and simple
supports on all sides, some numerical results for buckling
loads are obtained in Chapter III., Assuming the plates are
elastically supported along their longitudinal edges and
simply supported along their transverse edges, a computer
program was used to apply this analysis to two types of
models of folded plate structures. The buckling results for
these two types of models are listed in Chapter III and are
compared with the results obtained from (1) the analysis of

6,8

Swartz and Guralnick, (2) an analysis without considering

the effect of shearing forces, and (3) experimental model

tasts.1o



CHAPTER II
BUCKLING ANALYSIS OF FOLDED PLATES

In the calculation of critical values of forces applied
in the middle plane of a plate at which the flat form of
equilibrium becomes unsiable and the plate begins to buckle,
the same methods as in the case of compressed bars can be
used,

By assuming that from the beginning the plate has some
initial curvature or some lateral loading, the critical
values of the forces acting in the middle plane of a plate
can be obtained. Then those values of the forces in the
middle plane at which deflections tend to grow indefinitely
are usually the critical values,

Another way of investigating such a stability problem is
to assume that the plate buckles slightly under the action of
forces applied in its middle plane and then to calculate the
magnitudes that the forces must have in order %o keep the
plate in such a slightly buckled shape., Referring to Fig. Ty

the differential equation of the deflectiom surface in this

case is obtained by Timgshankozg
a4w a4w a4w 1 ( azw 32w
—— g 2 ¢ = N, — 4+ e
ax4 ax2 ayz ay4 D % axz Ny a:{z
azw
+2N ) ® & ® e @ € @ & & & @ @& @ 201
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in which

W = w(x,y)’ the deflection function
N, = longitudinal in-plane forces
H& = transverse in-plane forces
ny = ghearing in-plane forces

E b
D =

S

v = poisson's ratio

12 ( 1=

The simplest case is obtained when the forces Nx, Hy’
and ny are constant throughout the plate. Assuming that

there are given ratios between these forces so that-NyzaHx

and‘ﬁx =bN_, and solving Egn. 2.1 for the given boundary

x?
canditznna, one finds that the assumed buckling of the plate
is possible only for certain definite values of Hx. The
smallest of these wvalues is chosen to be the desired critical
value,

But folded plates have variable forces Nx, Hy, and ny
throughout each plate in the structure. The problem becomes
more inveolved, since Eqn. 2.1 has in this case variable
coefficients, but the general conclusion remains the same.

In such case it may be assumed that the expressions for the
forces Nx* HE’ and ny have a ecommon factor k, so that a
gradual increase of loading is obtained by an increase of
this factor, From the investigation of Egn. 2.1, together

with the given boundary conditions, it will be concluded then



that curved forms of equilibrium are possible only for certain
values of the factor k and that the smallest of these values
will define the eritical loading.

The energy method also can be used in investigating
buckling of plates. This method is especially useful in
those cases where a rigorous solutiom of Eqn. 2.1 is unknown
or where the plate is reinforced by stiffeners and it is
required to find only an approximate value of the critical
load. In applying this method it is assumed that the plate,
which is stressed by in-plane forces, undergoes some small
lateral bending consistent with the given boundary conditions,
Such limited bending can be produced without stretching of
the middle plane, and one needs consider only the energy of
bending and the corresponding work done by the in-plane for-
ces of the plate., If the work done by these forces is smaller
than the strain energy of bending for every possible shape of
lateral buckling, the flat form of equilibrium of the plate
is stable., 1If the same work becomes larger tThan the energy
of bending for any shape of lateral deflection, the plate is
unstable and buckling occurs.

Denoting the work done by external forces by I, and the
strain energy of bending by V,» the critical values of forces

may be found from the equationg

T-'—"'Y‘---ouna-ovoo--oc-. 202

Based upon numerical results for end supported folded



plaxea,1’3’4’5’8 it is assumed as shown in Fig. 4, Fig. 5,
and Fig. 6 that

1. The variation of N is linear in the plate transverse
direction and is parabolie in the longitudinal direction.

2. The variation of Nj is constant in the longitudinal
direction and is parabolic in the plate transverse direction.

3+ The variation of ny is linear in the longitudinal
direction and is parabolic in the plate transverse direction.

Based upon the above assumptions, the in-~plane forces
on a plate element due to a unit load acting over the entire

structure can be represented by:*

2
H%%l = —1——( Ay + 44 _f_ + Ay —Eg)
2 a a
2
¥ X X
+T(A02+A12—;—+A22?) e o o ¢ 2 o3

in which Ao1r 4979 A5y Ao A12’ and A,, are defined in
Appendix I;

y2

¥l -5 4 e B 2 . 4
y OBlb 2? ¢ & o & o ° s @ .

in which BO' Bi’ and B2 are defined in Appendix I;

* The derivations of N 91, ¥

yq;l’ andﬁxg=1 are outlined

in Appendix I.
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A sketch of a typical plate element with internal forces
and associated deflections is shown in Fig. 1. ZEach plate
is assumed to be supported on end diaphragms which are per-
fectly flexible normal to the plane of the diaphragms and
perfectly rigid parallel to the plane of the diaphragms. The
thickness of the plate is small compared to the other dimen-
sions and small deflections are assumed throughout, The ma-
terial is assumed to be homogeneous, isotropic and elastic.

A plate is divided longitudinally and transversely into
panels., Xach panel is assumed to be simply supported along
its transverse edges and to be elastically supported with
regard to rotation along its longitudinal edges. The deflec-
tions, W, along all edges are assumed to be zero,

The possibility of local buckling of the individual

7 carried out on symmetrical

plate was demonstrated by tests
folded plates under the action of uniformly distributed loads.
This local buckling was observed to start in an intermediate
zone symmetrically located about the midspan of the siructure.
It is then assumed that the buckling load of the plate is

that of an intermediate plane panel of initially indetermi-



Fig. 1 Element of a folded plate structure
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nate length &.and width b,

If such a panel is subjected to all the in-plane forces
at the same time, the panel may undergo a deformation along
ite transverse edges as shown in Fig. 2.

Setting ok, =d, =, the relationships between the

1 2
orthogonal and the oblique coordinate systems are

X =x' - y' sina
¥ =Yy' cosd
dx = dx!

dy = coso dy'

W W
X - 2 xt
2 W azw
'ox2 'ax'2
DW 1 2w oW
= — ( + gino )
DY cosd oy! > xt
azw 1 ( azw azw azw o )
= —5— + 2 - 8ind + sin"d
) y2 cosd 2 3'2 ax' ay! 31'2
azw ki § azw azw
= ( + Zﬁiﬁ—d)ocoozts
QXY cos o\ oxt ay! 2 x!

For the oblique coordinate system, the equations of

qu-—-l’ qu=l , and N x;}”l can be rewritten as:
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q.._l 1 x 13 y'i X 1 4 2
N_* " = —— ( Aqe + Aqy == = A . = gino + A_.
x P 01 11 . 2% 4 o 21 aé

xlyl y'. 2 yl.
-~ 2 4,5 zi.smo{+_ézl—;§sind~)+—g;(&02

- i x*? xty*
4 A’lﬂ —"-— - A12 -—-* sinel + A22 - e 2 &22 o sind
a. a a a
E'z

i 2
+A22?SM—6\)'..'¢.---.--0 2.7

1 y'a Ifz
q= A e
Ey ﬂBo'i"Blb'fBz 2 s @ * @ e w ® . 2.8
;i By
q-..l xl? t ( xt
N2 =K, + K, ~—— = — sind + K, + K =
xy p T By, = Ay 2+ %3
|2 y" xl‘-
—-K3 —gined ) ——— 4+ { K4 +K_5—---
a bl a
y* y?
el KS msind-) —""'""'2 e & 2 & B8 ® & e & @ @ 2 * 9
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Referring to Fig. 2, the boundary conditions for a panel
which is assumed to be simply supported along its transverse

edges and to be elastically supported along its longitudinal

edges are as followap::

. a
At the transverse edges, x' = i —
2
w=20
, azw azw :
M, =-=2D Yy + = 0
X.' a xlz D yt2



and along the longitudinal edges, at y' = - b,/2,

w = 0,
M.
If the stiffness against rotation is Sy = —d— , then for an
4 6
elastic support against rotation
My' = 4 3, 6.
Taking the positive transverse moment causing a positive
d W
rotation at y' = - b1/2 and noting that & = — , the
Y
boundary condition in this case is
‘ 32W azw 2 W
D o + ¥ 2)-43.0——:0
3 y! d x! 2Y!
and at y' = + b1/2,
w=0,
(azw a2w ‘ oW
and D 5+ Vo ) + 4 S, — = 0.
O 2 x'° 2y

A deflection function w satisfying the above boundary

conditions as presented by Lundquist and Stowell is given by

Swartz.s
|2 ] ]
me y 1 & Ty X
w=38 ( 5 = )+ (1 + ——) cog —— o8 —
2 h1 4 2 b1 a

L] » @ * & L] L] L] L] L] W L L] @ L] L] ] @ [ ] L] 2 @ 10

in which

¥
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B = undetermined constant.

The energy approach is used here to determine the buekl-
ing load, When a deflection field which satisfies only the
boundary conditiomns at the edges of the plate is used to
calculate the energies Tc;and Vc, a possible solution to the
buckling problem will be obtained if Eqn. 2.2 is satisfied.
The solution obtained will be the correct one if the deflec-
tion field also satisfies the equilibrium equation, Egn. 2.1,
for the true bueckled shape. Otherwise, the buckling load
obtained by using the energy approach will be merely an
upper bound.

Let Tc be the work done by the in-plane forces, vlc be
the strain energy of bending in the plate, and V2c be the
strain energy in the elastic supporting medium., From Eqn. 2.2,

the regquirement for buckling becomes

T =Vl

c + ch @ [ @ L ] [ ] * L] * L] L] . L] L] L] L] 2 [ ] 11

c

where for the orthogononal coordinate system and a rectangular

plate panel
b/2 a/2
q _ W _ dW
Te == — J [ [qu-l (—)° + Nyq-l (—)°
2 ~b/2 -a/? ?X DY

13



b/2 a/2 2 2
g3 W 2°wW
£ iz -afes PEBF
;5 z?w z?w
_v)[(axay) —-—-z-—-—g]}dXdycougtl3
1 a2 |
Yoe = Joltmg ey, (00 4] ax
-a/2
» [ ] L ] ® « [ ® o L [ & L ] 3 L] [ ] - [ ] L] 3 L] 2 L] 14

where My and © are the transverse moment and rotation in the
panel.

Substituting Bgns. 2.7, 2.8, 2.9, and 2,6 for the
oblique case into the expressions of the internal strain
energy of bending and the external energy of all in-~plane

forces obtains: ( They are derived in Appemdix II.)

1121)- A

A
1 21 . 21
T, =~— {F cose ( A + + )
{ a [ 01" 35,  ox2
2 sin%i
+ B. + 4 gins K
COS ok 0 0‘]
b A b
+ B, B n? ind 1 [GGSd.—E; ( —g;———l—sind - —-g~)
a a 4 a 2
sine by B°n? a B,
+ B, + K, - Ky Slnd-——w] + By
2 cosd a 2 b1 COB8d

14
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4
™D b a
v, = B 3[(_“1)2F1+(____)2F5
4 b1 a cos’d a b1

+2(1+2$in2d)F3] s e ® & ® ® ° @ 2 + 16
2

5 T Dae
¥, =B e ¢ o & & & & & 8 ° B 2017
2c 2 b13 cosqg

in which the coefficients F1, FQ, FB’ F4, and F5 are defined
in Appendix II.

For the buckling criteria, Egn. 2.11 gives the critical
load as:

2
- - D b a
1 4,2 V2
g (= )"F, 4+ (~— )°F
08 7ol { a 1 b 5

q,.. =
BE 2 by ac

2 e a
+2(1-+23m%)F +-—-(m_)2}
3 @y
1
2
..p F b A A 2 sine
S 2 [cosa (hyy + 214 21y 2220 5
4 a 12 2 m coSs dh
b b A b
+ 4 sind KO] + B, sind ——l'[ cosk —b ( 2+ —1 ging,
a a 4 a
A sind b
g A O, 32+K4-K3£ainok~—-l]
2 2 cosd a
a B a B
+F3 0 +F4 2 } « & ® @ 2018
b, 2 cosd " b, 2 cosd

1 1

As the plate starts to buckle, the plate undergoes



transverse deformation caused by shear forces which may

affeet the eritical load.

u
Let S be (] s then

Y(a)

20 2V

- JEEIRE, | QU

29 DA 3 o
0 d vz

29, :
and minimizing " gives d‘cr when the plate buckles.
2 U 2V

Y—-—-—U—-—-=0.....-.-...... 2.19
IS A
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CHAPTER IIT
NUMERICAL RESULTS OF BUCKLING ANALYSIS

When the plate is elastically supported, the computer is
very useful for calculating the buckling load because of the
complexity of the equation. However if the plate is simply
supported at both ends, ie. e = 0, Eqn. 2,18 can be simplified.
By assuming pure compression, pure shear and simple supports
on &ll sides, some numerical results for buckling loads are
given in this chapter,

Case 1. Uniaxial compression acting in the x direction

and all sides simply supported,

The coefficients needed for the buckling equation are

Ay =~ N
Ay = Ay =0

Ayp = Ag' + A% == 21
bop = A4y ® Ajg = &yq = 855 = 0

]

b

]
-
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“2 D b2 a2

( +
a2

. ( HX )CI'

h T2 h

+2).0..t0301
b2

This is the equation for ( Nx)cr obtained by Timoshenko .~

Case 2., Uniaxial compression in the y direction and

all sides simply supported.

e=03;&=20

t _ m _ b - -
Ny = Ny = Hy qQh h

BO = = h
B1 = B. = 0
Agi = Agp = Ay = Mg = byy = Ay =D
KO = K1 = K2 = K3 = K4 = K5 =0
Fy =Fz = Fg = 1/2
( N )cr wl D e a?
o.- y =2 ( 2+ 2+2).l..'.3.2
h a™ h a b

Case 3, Pure shear is assumed,

If e and &® are not zero, the coefficients are



o=
Ky =K, =Kg =K, =K =0
Agy = Agy = Aqq = Ayp = A0 = A= 0

E1, F3, and F5 can not be simplified in this case. Knowing

that b, = b/cosd, the critical shear force is obtained from

Egn, 2.18.
. 2
{Ng)w“ T D ( h)z 1
= .2 . 2
h b" h sin2d a cos ol
a 5 cos%ﬁ 2 e
+ ( ) (F5+——'§J+2(1

which agrees with the equation given by E. Z. Stowell.8

In the case of pure shear, an equation to calculate 4
when the plate buckleés is obtained by E. Z. Stowella by
minimizing Egn. 3.3 with respect to &. Such an equation is

Cﬂﬁﬁ:/%'ﬁ”csz_“_cz’- s 5 ® ° & ® & o = 3 e 4

in which




3 _b =42
50, -2 { =)
33 = — 5
. 2
402+Gl(T')
3 (-2 )°
g, =
4 a 2
4Cy+ 0 ()
and
2 e
F_o +
5 n
G, =
1
5
2 F
c, = 2
|

I1f we further assume that both ends of the plate are
simply supported and a = b for the square plate, then the

coefficients to calculate ‘*cr are

e = 0

Py =F; = F; = 1/2
glml

c, = 2

Cs = 1/9

[
i
i
)
.
W

20



Egn. 3.4 gives
cog o = 0,838

o
Sor = 33

Putting Aoy into BEqn. 3.3 determines the critical shear forces
as

(N,.). w2 D 1

5 5 + (0.838)° + 2
h 5° h 0.914  (0.838)

i
Q
H

i

+ 4 (0.545)2

ﬂ2 b

B

h

Case 4, The longitudinal and shearing in-plane forces
act in combination. Assume ﬂk = mxy = - h, a = b, and both
ends of the plate are simply supported. The coefficients

needed for the bueckling equation are

A01 = - 2 h

Bop = 449 = A4g = By m Ay = 0
K@ = = h

K1 = K2 Eo2 K3 = K4 = K5 = 0

BO = B1 = B2 = 0

By = 33 z‘ES = 1/2

With these coefficients, Eqn. 2.18 becomes

21



HZI)( 1 1 1 8ina
- € + + w2
_ 2 hz 2 eos% 2 coazak caszak ;
q__ = e @ 3 » 5
e h sind
—_— 2+ 4 )
8 coSch

The partial derivatives of the numerator and the deno-

minator of the right side of Egqn. 3.5 are

U “2 D sin o 1

a2 B2 A

COS "eh cos 26\

+3)

2V h 1

L
.

?d 2 cos“e

From Egqn. 2.19, an equation to solve for d'c:r_‘ is

g8ind sinda s :En?d 8 ingak 1
=+ 3 + 2 g 4 5T T T
cos o acosd cog cO8 "o 2 cog o
1
e '—T i 0r5 = 0
cos el

Solving the above equation numerically gives

d . = 19.62

Substituting - into Egqn. 3.5 yields

22
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2

B = 2.938 ng

For a panel acted upom by constant shearing and longitu-
dinal stresses T, and d%a the requirement for buckling is

7,8

ya

determined from an interaction formula.

Xycr xer

Applying the numerical results previously obtained, Egn. 3.6
becomes
2.938 > 2.938
)

+
5815 4

= 0,99

which shows that the buckling load obtained by using Eqn. 2.18

is quite satisfactory.
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A computer program was written for the IBM 360-50
computer to apply this analysis to particular models of
folded plate structures. The two types of models used here
are shown in Fig. 3,

The following data are to be read in :

1. The number of plates.

2+ The number of stiffeners.

3. The number of lengitudinal data points.

4. Span length of the structure between the end diaph-
ragms .

5. Toung's modulus of material,

6., Poisson's ratio of material,

T« Width of each plate.

8. Thickness of each plate.

9, The maximum number of panels.

10, The number of deflection wvalues in the plate trans-
verse direction.

11, 1 3=, qu=1, and Nx;ﬂ at all data points.

12, The transverse moments and deflections at all data
points due to a unit load acting over the entire
structure,

Phe buckling results for the models are listed in Table

1 and are compared with the results obtained from (1) the
analysis of Swartz and Guralniek,a (2) an analysis without
considering the effect of shearing forces, and (3) experi-

mental model tests,10
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0.041

a., Type 1

0841

b. Type 2

% No stiffener in the plates.
Plate length = 54"

Poisson's ratio = 0.333

Fig. 3 The Cross Section of %the Models



Table 1.

Comparison of Different Methods

of Analysis with Experimental Results,

q -
er . 10 6
B
Analysis |Analysis Analysis Experimental]
of without with resultslo
6,8 P , e
Swartz ' |effect of ny effect of ny
hype 1 0.110 0.0524 0.0520 0.0441
bype 2| 0.454 | 0.210 0.210 0.0894

E = Young's Modulus

26
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The critical loads obtained in Table 1 first occured at
the center of the longitudinal span, where the shear forces
are very small or zero. The shear forces in the Type 1 model
and the Type 2 model seem to have had no effect on the buck-
ling loads, 1In fact, the shear forces did affect the buckling
loads for panels off the center of the span, but this effect
was not great enough to control the critical buckling load.
Although the results obtained in this analysis are much lower
than the results given by the method of Swartz and Guralnick,
the critical value of the buckling load for the Type 2 model
is more than twice as great as the value obtained by the
experimental test, Further study of the buckling problem of
folded plates is greatly encouraged.
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CHAPTER IV

CONCLUSTIONS

An analysis of folded plate structures to predict loads
at which loecal elements of plates will buckle has been pre-
sented, A plate element is divided longitudinally and trans-
versely into panels. Fach panel is assumed to be simply
supported along its transverse edges and to be elastically
supported with regard to rotation along its longitudinal
edges., The deflections along all edges are assumed to be
zero, 1f such a panel is subjected to all the in-~plane forces
at the same time, the panel may undergo a deformation along
its transverse edges. Assuming the panel may buckle as it de-
forms transversely, an obligue coordinate system is employed
throughout this analysis which makes usecof the energy
approach,

The following conclusions may be drawn from this study:

1. 1If the shear forces are small compared with the
other forces, they will not affect the buckling load. This
may bhe seen from the examples wherein the plate buckled first
at the center of the span. If the shear forces are large
compared with the other forces, they will affect the buckling
load and the plate may initiate buckling off the center of
the span. For the latter case, the analysis without consi-

dering the effects of shearing forces will result in mislea~



dingly high values for the buckling loads.

2., Since this analysis is concerned with all in-plane
forces acting on the plates at the same time, any case of
the possibility of local buckling of folded plate structures
can be approximately predicted from this analysis, This can
be seen from those numerical results obtained in Chapter III
by assuming the cases of pure compression, pure shear and
simple supports on all sides of the plates, and also can be
seen from the buckling results obtained by applying this
analysis to the models of folded plate structures and assu-
ming all in-plane forces acting on the plates at the same
time,

3+ For the cases of pure compression, pure shear and
simple supports on all sides of the plates, the buckling
results obtained from this analysis agree with the results
obtained from other analyse&.s’g The buckling results ob-
tained for the models of folded plate structures are lower

than those obtained from the analysis of Swartz and Guralniek6

and higher than those obtained from experimental test$.10
However, it is very hard to calculate the critical values of
loads without using a computer if the plates are assumed to
be elastically supported along the longitudinal edges.

4. There still are many factors that affect the buckling
gtrenghth which should be considered in addition to those used
i# this study. Further research for the buckling of folded

plates is needed.

29
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NOTATION

Aoge L4990 4595

Boos Aqyps Apy + + o « o . . Coefficients of N =1

B e o ¢ 5 o s s s ss & s o Undetermined constant of w

Bgs Bys» B, + « + » + o« o Coefficients of Nyq=1

E b’

D e s e e 4 e o s e s e 59 plate constant
12 (1 =-v©)

E e + s +« e s o » o « o » Young's modulus

F1, Fz, F3, F4, F5 e ¢« « o Buckling coefficients

Kg» Kq» Ky K5, Ky Kg o . o Coefficients of ngﬂ

Mk, o » o o« » 2 s o« v s« o o The plate longitudinal moment_

My, e« o s« » s » s+ ¢« ¢« o o« o The plate transverse moment

Ny « e e e e oo s s+ o+« Longitudinal in-plane forces/unit
length

Hy e o o s o s o » s & o o« Transverse in-plane forces/unit
length

ny e« s » o o ¢ s o s o s « Shearing in-plane forces/unit
length

N 3= N q=1 N'q=1 e o o « N N__ due to unit uniform

x? HY’ Xy
vertical live load

Sy ¢t + o o o o ¢ s o + o o Plate stiffness against rotation
» e« o« o ¢« s« o s« s o o« o The work done by external forces
v e+ + o ¢ « 2 o s s + « o The strain energy of bending in

the plate
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The strain energy in the el-
astic supporting medium
Panel length

Panel width

“Width of the plate panel

after transverse deformation
D

Uniform vertical live load

Thickness of the plate
Deflection function
Directions of orthogonal
coordinate system

Directions of obligue coor-
dinate system

The angle between orthogonal
and oblique coordinate of the
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Rotation of the plate panel

Poisason's ratior



APPENDIX T

. . g=1 =1 : q=1
THE DERIVATIONS OF Nx 8 Ny , AND ny

For the derivations of N %7, qu“1, and MX§=1 in this
appendix, a unit uniformly distributed lead ( g=1 ) acting
over the entire structure of folded plate is assumed through-
out.

a. The derivation of N %7,
x;_and HXE
forces at the top and the bottom of the nth edge of the

As shown in Fig, 4a, N are the longitudinal
panels respectively. If the variation of‘ﬁx is linear in the
plate transverse direction, then the Nx at any point can be

represented as:

% b
¥+ w
— K p 4 b t
Hx—- 5 +b(H-x"Nx)-to-t A .1
in which N_° and N_” are the longitudinal forces at the top

edge and bottom edge in the transverse direction at that
PQint .
Referring to Fig, 4b, the variation of Ex is parabolic

in the longitudinal direction. It then can be assumed that

- 2 .
Kxhao+a-1x+32x e ® ©® & ® @ & ® & @ 8 @ A, 2
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_‘__a/2 vlﬁ' 3/2__4& o - R ——— %
w2’ b Ny x3
T B w 7
b/2 ,
HOTH H
4
N b b
x1 Nyo Hy3
¥
y

Fig., 4a The Variation of Hx in Y Direction

Fig. 4b The Variation of N, in X Direction



For the boundary conditions at x

a a2
N = 8, = ——— G, o e——
x1 0 5 1 A 2
it x = a/2, N, = N_,, that is
a a2
N = 8, + —— + —
x2 0 - 84 L 2
and atx:}af2, szmil‘j’
3 a 9~a2
Bew =84 + — &, + —— 3,
x3 (9] P 1 4 2

SOl‘Ving Eqnﬁ. A3 9 .&04, and .5

&
-
]

_tx1 T 2 Neop + ﬁxE

2 &

3 8. +6N_, =N

- a/2, N, =

°

x1?

]

@

L

that is

A o 3

A . 4

A .5



. N, =2 ng_f Ny
2 2
Egqn. A.2 becomes
X x2
N, = o A, ——— A ee—
x = gt &y N 2 7
In particular,
2
4 t t % t X
B S m A o fy e N
% 0 1 Ay 2
b b b * b x°
B*e a P d® i 9y
X 0 1 & 2 a2
where
£ % t
a b 2N OV, - Ny
0 8
% t 4
A1 - sz - Nx1
t

t x1
A =
2 2
b b b
0 8
b _ . b b
A7 = Nypw = Ny
b b b
= Nyw =28 + Nx3
2 - 2

Substituting Egn. A.6 and Eqn. A.7 into Eqn. A.1 gives

1
t
o+ AO

b t b X
+ A7+ Ay ) — + ( A,

AL T

t
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2
+ A0 ) ~§% ] & —E- [ A - agt e (a7 -t ~§~
2
(a0 - a%) —fg ]
&
Setting
boy = ko' + ho°
bop = A" = kg
by = 4" a0
by = 4" - 4"
By = by + &0
b %

Ayp =-hg™ = 4y

and noting that the expression of Hx is for the case of g=1,

we then have

g=1 1 ( X o x2 )

m_+* = o——— (A + —

x o 01 A 8 5 21 _;5
g



%, The derivation of Nyqzl.

t
yn‘,

transverse forces at y = - b/2, 0, and b/2 respectively.

m b

4s shown in Fig. 5, N Nyn.’ and Nyn are the plate

The variation of Hy is constant in the lomgitudinal direction;
that is

t.
Ny © =

1
=
n
b=

. b _ :
Vg1~ = Nyp = Ny

w M m_ oW
Hyl = N = K

In the plate transverse direction, a parabolic variation of

Ky is assumed.

_ - S S i
m& = bﬁ + by ¥+ h2 ¥y A . 9

Applying the boundary conditions:

=0 = B
at y=0, HE Hy
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T | L 4 & & 4 t N
Nyl Ny2 y
l m™
N
1 e X b J Z
; 1
b b
N ‘ 1 1 N H b
vyl y2 <
 — v
Fig, 5 The Variation of Ny
v [ Tt
Xyl xy2 t
- e B e Xy
4 -
1 m
N .
/ l N b Xy “
Y \_u
— e fm e i - N b
b b Xy
it} 1
L R y

Fige 6 The Variation of NX
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gives
_ m
by = N,
b .t
N _P. N
b z_.I...__...I,m
1 b
o (nP+n%) an®
b, = - A | - 2y
2 e b
Letting
- I
By = N,
b t
B, = N - N
15 Yy ¥
B,=2 (NP+N°)-4n "
2 y ¥ y

and substituting into Egqn. A.Q gives

2

9=1 > .5, 2 1
H_g =BQ+B1T+ 2"‘"-;"2' » ® @ @ e & & e » A-lo

ce The derivation of HX§=1
: i m b

xyn °? ny.n. » and nyn_
shear forces at y = = b/2, 0, and b/2 of nth edge of the

As shown in Fig. 6, N are the

panels. If the variation of ny is linear in the longitudi-
t b
N m, and,ﬂxy between

xy ' Xy
the edge 1 and the edge 2 are related to N L o Xy1b

nal direction of the plate, any N

xy1 * ny1 s N

¥
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o t : m _ ; b
nyz » Byyp » 80d Nyoo® as
X
S - t
Exy = ki 4 k2 ~;—
b b p ¥
ny, kl B kz. -*;—'
x
m_ . nm m _
Hiy' z= kl + k2 uf—
a
in which
t t
klt _ Mg *t U
2
t _ % %
R2 - Eﬁyz "nyl
b b
K = Neye * Tyyn
=
b b b
k, = Exg2 = ngl
m m
e? o H:zx2 o ng;
1 2

Again, the variation of N

transverse direction,

Applying boundary conditions

: - - m

Xy

is parabelic in the plate
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at y = b/2, ny = ny
at y = - b/2, W = mxyt
gives
m
Co = Nyy
b %
Ny = Ny
c, = L —EI
b
2 (n_P+u_ %) 4w T
p = xg@ s ““g%x

Substituting Eqn. A.11 and the coefficients GO’ 61, and Gz

inte Egn. A.12 gives

89 ok +x —f?-+ (K, + Ky —f—") 2
3 L £ a b
+ (K, + Kp — ) _{f « %6 & e uw e w s a3
st s — )
in whiech
Ky = k"
Ky = k"
K, = k,° - k,*
Ky = k,° - k,®
Ky =2 (k" + K, -2x")



APPENDIX II

DETATILS OF BUCKLING ANALYSIS

The expressions for the total internal strain energy
of bending for a panel of the plate, ¥1e + ?20’ and the
total external energy of all in-plane forces, ﬁc, are deve-
loped in this appendix. The general expressions are Edns,
2,12, 2.13, and 2.14.

A function w whiech satisfies the boundary conditions

given in Chapter 11 is Eqn. 2.10:

T e 3'2 1 e oyt % x!
WmB[ ( 5 = )+(1+---—-)coa—-]cma---
2 h1 4 2 b1 a
# @ & & & & & & H» =& e & 8 @ & & S ¢ & 2‘10
in which
4 S, b
g = 0 "1
D
E 1’
D= 5
12 (1 +Vve )

Poisson's ratio

<
il

B = undetermined constant.
From Egqn., 2.10, the following expressions are obtained:

2w B n e y'2 1
? x' a 2 b1 4
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e ny' T x!
+ —— ) co8 —— ] sin ——
2 b1 a
32w B ﬂ2 T e y'z 1
- o a 2 b.1
e -n-y'l vﬂ-xl:
4+ —— ) co8 — ] cos —
2 b1 a
=-— [ —5 vy - — (1 +— ) sin —]sin—
2x" a y! a b b 2 b a
1 1 1
I w e i e i3t T x!
— =B [—p ¥y =— (1+— ) sin— ] cos —
]
2y b, b, 2 b, a
azw e Tl2 e ny! n x'
_ = B [ 5 = 5 (1 + —— ) cog — ] cos ——
py¥y! b1 b1 2 b1 a

Determining T

Ld - L ] L L ] L4 L) - - » L L] @ [ 3 ‘&u L ] 14'

Eqn. 2.12 is rewritten as:

0’
o b/2 a/2 o P 5
-— T = f ﬁxq ( — )¢ dx day
9 X

4 ~b/2 ~a/2

b/2 a/2 2 W
+ oY —=)Yaay

-b/2 -a/f2 2 J



b/2  a/2 _, oW oW
+ [ ) Nﬁ% —— —— 4% 4dY ... A .15
-b/2 -a/2 LR L
From Eqns. 2.7 and 2.6
b/2 a/? 3 %
j f qu=1 ( — )% ax dy
-b/2 -a/? a &
h1/2 a/2 o 2w
- f J’ N, (— )° cosa dx' dy!'
1
b, /2 " -a/2 L
b1/2 a/2 cosdo x v y! )
= f J. 5 [ (AO1 +A11—a—-—A11—a—'Slnd
-b1/2 ~af?
A ! 2 A wilL i A N i ]
+ o . sino + - gind
21 a2 21 a2 21 a§
2 W 5 cosd b1‘/2 a/2
X (= )¢ dx' dy' + ' j f ¥t A
d x! b 02
1 -b1/2 -a/2
x! xt2 x'y!
+ A —_— - A — gine + A — - 2 A gind
12 a 1.2 - 22 a2 22 a2
yt# 27 (2 ¥ )2
+ A,, —= sin® —— dx® dF* 4w » w » A . 16
22 72 ] > %!

Substituting Eqn. A.14 into Eqn., A.16 and integrating yields

j b/2 a/l2
J g 9=1 2% oo
-b/2  _aj2 \ 2 X )" ax dy
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B2 w? b, e e 4@(1-—-;?")
4 a 120 n
2
(14 %) A A
+ £ ] (4gq + £l 3 —212 )
2 12 2 W
2 2
n e e 48
+ B°n2cosa sina { — )2 [ +e (1+—) ( e
a 2360 2 n
1 A b
2 21 1 :
—e— )+ (14— ) (— = —; )] —— wind
L 2 2 4 2 a
A
""""""']"2') " @& @ ® & e ¥ e ® & & &4 & » e ® s @ A01?
2
From Egns. 2.8 and 2,6
b/2 a/2 i 2w
j I N ( = ) dx dy
J d ¥
~b/2 -a/?
b2 AR R 2 W
= | [ w4 — + sind — )%cosck dx'dy!
iy _ cos "o 2 y‘ .
b,/2 -a/2
= - JE +B1——-+Bz--——2)(—-—)dx'dy'
; ]
cosd ”“b1/3 .y b, b, 37
2 sind b1/2 a/2 ¥y
+ f ( B, + B, —
cosdch 0 1 b
e "b.]/E —3/2 1
= 2 W 2 W
+ B, = —5 ) (— ) ( — ) ax' ay’

1 2 x! 2!
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sind
+ f [ Be 4 B, o
CO8 0 1 b
-b1/2 -a/2 1
y‘z oW 5
+BE """""""'"2 ) (‘—— ) dxt dy' ¢ e « & & a A . 18
b 9 x!

Substituting Egn. A.14 into Egn., 4,18 and integrating gives
b/2  a/2

4 3w
J ] w¥(—)axay
-b/2 -a/2 97
1 B2 a _ 1o e°
i { B, [ ~h® (11—
COSd 2 b1 120
S+ 5 )8 B2 W & e 24
+ & ] + B, [  {1+—) { -3
2 2 b, 80 2
e 1 1
=3 )4 (1 +— )2 (— 4+ —5 )]
24 4™
sin®  B°m? b, [“2 e 4e (1+-F)
¥ B -
cos o 2 0 g 120 °
(14292 B2x2 b g2
+ ]+ BZ [ - +e(1
2 2 a 3360
e 48 e 1 1
2
+ ) ( - J+ (1 4+ — )% (— = —,)
2 nt  n? 2 24 4 M2 J

From Eqns, 2.6 and 2,9



b/2 a/2 g dVW oW

/ f 2 N — — ax gy

-b/2 -a/? Bx uy
]{:’1/2 a/2 1 AW dwW AW,

- f f 2 qu-““ —— e o GANR [ — ) ] dxrdy’
b,/ -afe . ¥F e > '

L3 L & L] L [ 3 L L - L] [ ] - L] L ] L L] L2 - L L ® -A- L] 20

b/?2 a/2 _, aw 3w
f / 2 ng“ — e dx dy
-b/2 -a/2 LR
5 5 b, o e’ 4&‘-(1+—-§-—- (1 +—-§—2
= B"N" sind [ - 5 Kq
a 120 n 2
2.2
b ne e 8
+ B2 sina —1 | + 8 §1 + === [ ssmp- wsg) [
a 3360 2 m
e , 1 1 b,
& ¥= - 2)](K4—-K3sind.——-}..l\.21
2 24 4 W o
Letting
e’ de (145 ) (1+-5)°
Ii'? - - 5 +
120 Lt 2
Tl'zez e 48 5 e 2 1
F, = +e (1t —) (—g=-—3)+ (14+—)" (—
3360 2 n 4 2 24
1
- — )
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e de(1+-5) (1+-5)°
P, = = - ‘ L &
3 12 n2 2
e euz# )+ ( 832(1
F, ==+ e 1 + — ———— + 1 + — —
4 8o 2 "ﬂg 24
1
+-—-—
4 T2

and adding Egns. A.17, A.19, and A.21 gives the total

external energy Tc as

2.2
aQ B°H® b A A
B, = e {'F1 oS—— [ coseh ( Ay, + Bl mglz )
2 4 a 12 n
2 sin%
+ B, + 4 gind K
coS o 0 0]
b b A b ﬁ
+ B, Bzﬂ251n¢ 1 [ cosa 1 (20 1 gipa - 12 )
a a 4 a
: gine b1 32H2 a BO
+ =———— B, + K, ~ K5 sind — ] + Fy
2 cosd a z2 h1 cosd
21 o 3,
+ B, F oo vowrrmannaaw & o0

2 b1 cosd

To determine the total initial strain energy of bending,

Vjc can be rewritten as

D b, /2 a/2 2

2 cosd _bi/z —a/2 ? X'
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(2 2] —p+ 2 ( 2 vl ) (0 (2
+ ( — ) + 2 1 =V + an“o
2 x'? cos "o ax' ay!

> azw 32w 4 sino azw azw
+2(t.and.+v)—2—2+ 5 2

2x'" 2y" cos o dx' oyt 2 x!

'02W
+"_""‘2)}dX'dy' * s e & o s & 8+ + & ® @ A . 23
oYy

Substituting Eqn. A.14 into Egn. A.23 and integrating yields

4 2
V,, =B (=) e” ( + - )
Te 4 b, acos":{ a [ 120 8 2
1 4 1 1
te(—=-—5)+— ]+ (— )2 [ (—-—5)
2 ne 2] , [ n?
1 4 1
+e(-——-——2)+—]+2(1+25in2d.) [ez(—-
2 2 24
1 4
-— )t e (—+ —x )+ —
n2 2 ne 2 ]}
4
n D b a
= B2 - [(—-—1»)2F1+(—)2F5
4b1acosa. a b.,

+2(1+280%A) Fz] oot 00 v o, A2

in whieh
1 1
2 1 4 1
8 m 2 m 2



Assume My and © to vary in a similar manner with x and

?2W
let My = 4 SQ 6 at the boundaries, Noting that 6 = ——, Egn.
[ ]
2.14 becomes
1 a/2 P W
_ . 2
Voo = > I {4’50 [ ( 5 )y=b/2]
-a/2 I
oW 2
t 45 [(—=genpp ]’y o
2 SO af2 W ) ER o
cosd  "_, /o 2 ¥y! 2 x' 1
2w 2 W ) : 2 -
— o @ind ——— S N
+[(ay* sind — y,_z_b1/2] } dx 25

Substituting Eqn. A.14 into Egn. 4.25 and integrating gives

2
o T Dae

2 h13 easj

v2e:= B

* L L 3 * L] L] L] * L] Ld L L] O-Awtzs
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An energy approach for the buckling analysis of single
cell folded plate structures composed of rectangular thin
plates with rigid joints and subjected to uniformly distri-
buted loads has been developed., The assumptions made for the
variations of all in-plane forces of the folded plate are
based upon numerous numerical results obtained from many di-
fferent stress analyses., This buckling analysis is concerned
with the problem of loecal buckling of individual plate ele-
ments of the structure and treats the case of all in-plane
forces acting at the same time, The equations of the external
energy of all in-plane forces and of the internal strain ener-
gy of bending are given by Timoshenko, A deflection function
which satisfies all necessary boundary conditions of a panel
taken from the plate element is given by Iundquist and
Stowell.

Numerical results obtained from considering the cases of
pure compression, pure shear on simply supported plate ele-
ments are obtained by this buckling analysis. For those cases
the results obtained in this report agree with the results ob-
tained by other buckling analyses. A computer program was
written to apply this analysis to models of folded plate
structures. The buckling results for two types of models
obtained from this analysis were compared with the results
obtained from (1) the analysis of Swartz and Guralnick,

(2) an analysis without considering the effect of shearing

forces, and (3) experimental model tests. The values of



critical loads obtained from this analysis are lower than
those obtained from the analysis of Swartz and Guralnick,
nearly the same as those obtained from the analysis without
considering the effect of shearing forces, and higher than
those obtained from experimental model tests.



