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Abstract

With the advent of high-dimensional data, variable selection has become a key step

in survival data analysis. Recently, a general class of model selection criteria for high-

dimensional data, called the generalized information criterion, has been developed. However,

the use of the non-convex penalty functions in the generalized information criterion results in

high-dimensional non-convex optimization problems. While many works have been proposed,

their focus is limited to the application of a convex surrogate approach, which cannot ensure

the convergence to the global optimal model with respect to the generalized information

criterion.

The objective of this dissertation is to develop new solutions to high-dimensional data

challenges of survival analysis. To meet this goal, we develop a powerful framework for

high-dimensional survival data analysis using the notion of statistical mechanics, which is

one of the pillars of modern physics. The proposed methods in this dissertation are widely

applicable to not only model fitting problems but also prediction problems. To investigate the

performance of our proposed methods, simulation study and real data analysis are extensively

implemented.

In Chapter 1, the background, existing obstacles, rationale, and motivation are discussed.

In Chapter 2, we develop a new fast variable selection procedure using the idea of simulated

annealing with some modifications. The proposed method allows for rapidly finding the

global optimal model with respect to the generalized information criterion. In Chapter 3, we

develop a new best predictive model selection method for high-dimensional survival modeling.

The proposed method relies on the idea of the optimal Bayesian predictive model, called the

median probability model. In Chapter 4, we develop a robust variable selection approach to

high-dimensional survival regression models. It is motivated by the “sandwich” estimator

and provides a way for finding the global optimal model when the model is misspecified.
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Chapter 1

Introduction

In life science studies, including health science research, survival data analysis plays a par-

ticularly important role in modeling the relationship between living status and covariates.

Owing to the rapid advances in data processing technologies, high-dimensional data are

receiving increasing attention from data scientists. Under the context of high-dimensional

regression modeling, how to extract valuable information from a large number of covariates

becomes a challenging problem in survival data analysis. For example, genetics data are

frequently employed in cancer prognostic research. While the data provides hundreds of

thousands of measurement results of genetic marks, how to identify important variables that

are closely related to the survival time is technically challenging. To tackle high-dimensional

problems, many methodologies have been proposed. Although these innovations are ben-

eficial in certain ways, they possess significant drawbacks from other viewpoints. In this

chapter, we will discuss the present hurdles and motivation for our dissertation.

1.1 Challenges of high-dimensionality

One of the major goals of high-dimensional survival analysis is to identify relevant covariates

that are closely connected to survival time. In order to determine the best model, various

model selection criteria have been developed using a L0-norm penalty function. For exam-
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ple, the Bayesian information criterion (BIC) (Schwarz et al., 1978) and Akaike information

criterion (AIC) (Akaike, 1974) are the most popular choices for traditional regression setting

where the sample size is much larger than the number of covariates. For high-dimensional

model selection, Chen and Chen (2008) propose a modified version of BIC, called the ex-

tended BIC, to consistently select the true data generating model over large model spaces.

When the number of predictors is relatively small, finding the optimum model can be easily

implemented by the best subset selection algorithm, which finds the best model by evaluat-

ing all possible candidate models using a model selection criterion. However, when we have

high-dimensional data, the best subset selection algorithm can be computationally expensive

and time-consuming. For example, when p = 1000, we need to evaluate 2p ≈ 10301 candidate

models.

To reduce the heavy computational burden in a high-dimensional variable selection prob-

lem, penalized likelihood estimation with a convex surrogate penalty has been proposed in

the literature. For example, Goeman (2010); Tibshirani (1997); Zhang and Lu (2007) develop

penalized likelihood estimation methods for high-dimensional Cox proportional hazards re-

gression with convex penalties such as lasso (Tibshirani, 1996), adaptive lasso (Zou, 2006),

and elastic net (Zou and Hastie, 2005). However, these convex approximation approaches

cannot ensure the convergence to the global optimum of the model selection criterion since

the solution path is generated by only a finite sequence of tuning parameters. In other words,

due to the limited coverage of the tuning parameter values, there is a high chance that the

solution path has missed the global solution.

1.2 Challenges of non-convexity

Another obstacle to finding the best model comes from the non-convexity in the model

selection criterion. The L0-norm penalty function is commonly included in the model selec-

tion criterion, and it has the non-convex property in nature. The non-convexity nature of

the L0-norm part leads to the difficulty of optimization as none of the convex optimization

algorithms provides a feasible solution. We notice that the simulated annealing algorithm
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(Kirkpatrick et al., 1983) is proposed for the global non-convex optimization problem in ther-

modynamics, with a key idea of conducting a stochastic search to avoid the chance to get

stuck in a local optimum. This algorithm utilizes the Metropolis-Hastings sampling method

(Metropolis et al., 1953) for generating a Markov chain with a stationary distribution whose

mode is the same as the global optimum of the target function. Despite the fact that sim-

ulated annealing assures the convergence to the global optimum, the slow convergence rate

and the need to choose the proposal distribution are regarded as major drawbacks. This

has resulted in the application of simulated annealing for high-dimensional variable selec-

tion being impractical on a computational level due to the fact that its computing efficiency

decreases substantially as the number of covariates grows.

1.3 Challenges of predictive model selection

Best predictive model selection is also of great importance for survival regression analysis.

Predicting life expectancy can be challenging but beneficial to many disease studies. The

problem of best predictive model selection has been extensively studied by researchers based

on some parametric models with a relatively small number of covariates. However, in the

high-dimensional data scenario, identifying the best predictive model is theoretically and

computationally challenging. The critical challenge is that choosing the best fitting model

is not the same as finding the best predictive model, since the best fitting model cannot

guarantee the best prediction performance. In addition, the computational cost for high-

dimensional model selection is a pressing challenge. Hence, there is a strong need for the

development of predictive model selection with high-dimensional survival data.

1.4 Problem of model misspecification

For survival analysis, a variety of semi-parametric and parametric models, such as the Cox

proportional hazards model (Cox, 1972) and the accelerated failure time (AFT) model (Wei,

1992), are extensively developed. In spite of the fact that these models are widely used,
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they require some structural assumptions to guarantee some important properties, including

consistency and asymptotic normality. However, in the real world, such model assumptions

can be easily violated, often referred to as the problem of model misspecification. To address

this issue, the robust inference methods for survival analysis have been proposed by using the

idea of “sandwich” estimator, which serves as a proper variance estimator for misspecified

models (Gail et al., 1984; Lagakos et al., 1984; Lagakos, 1988; Morgan et al., 1986; O’neill,

1986; Solomon, 1984; Struthers and Kalbfleisch, 1986). Although the model misspecification

problems have been extensively studied for inference, there has been no attempt to address

model misspecification issues for model selection.

1.5 Motivation and outline of the dissertation

Our motivation stems from our desire to address the challenges that have been mentioned

above. This dissertation covers a wide range of model selection problems for high-dimensional

survival data analysis. In this dissertation, we aim to develop innovative strategies that can

assist us in achieving the following specific objectives. First, we aim to develop a fast algo-

rithm that provides an effective way of finding the global optimum model for the generalized

information criterion. Second, we aim to introduce a new method of best predictive model

selection for high-dimensional survival data. Third, we aim to develop a robust model selec-

tion procedure in the presence of model misspecification. The structure for the remainder of

the dissertation is as follows.

In Chapter 2, we develop a global optimal model selection method for determining the

model that optimizes the generalized model selection criterion. The proposed method is

originally inspired by simulated annealing (Kirkpatrick et al., 1983), which is widely used

for energy optimization in the field of statistical physics. The key idea of our proposed

method is to incorporate Gibbs sampling into the framework of simulated annealing by

utilizing the notion of Boltzmann distribution in statistical mechanics (Gibbs, 1902). The

proposed algorithm enables us to perform a faster and more stable probabilistic search than

the traditional simulated annealing algorithm. The simulation study shows that our proposed
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algorithm works well with high-dimensional survival data. In addition, the proposed method

is applied to blood cancer data.

In Chapter 3, we propose a new way of determining the best predictive model with

high-dimensional survival data. Our proposed method is inspired by the median probability

model, which is originally proposed by Barbieri et al. (2004) for optimal predictive Bayesian

model selection. The key idea of our proposed method is to incorporate the median proba-

bility model into a frequentist framework via the concept of Boltzmann distribution. Simu-

lation study and real data analysis are implemented to demonstrate the performance of our

proposed method.

In Chapter 4, we extend the problem of model selection to a more general scenario, in

which a model misspecification problem occurs, and develop a robust variable selection ap-

proach to high-dimensional survival regression models. The proposed method is motivated

by the so-called “sandwich” estimator, which is a robust variance estimator under a mis-

specified model. The key idea is to use the sandwich estimator to construct a robust model

selection criterion. Using the simulated annealing scheme, we introduce a new algorithm

that finds the global optimal model for the proposed model selection criterion.

In Chapter 5, concluding remarks including extensions and limitations are discussed.
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Chapter 2

Global optimal model selection for

high-dimensional survival analysis

2.1 Introduction

In high-dimensional survival analysis, a primary goal is to identify relevant covariates that

are related to the survival time. Various model selection criteria have been developed using a

L0-norm penalty function. For example, the Bayesian information criterion (BIC) (Schwarz

et al., 1978) and Akaike information criterion (AIC) (Akaike, 1974) are the most popular

choices for classical regression modeling. In a high-dimensional regression setting, Chen and

Chen (2008) propose a modified version of BIC, called the extended BIC, to consistently

select the true data-generating model over large model spaces.

Since the use of L0-norm penalty yields a non-convex optimization problem, finding the

best model, which is the global optimum of the model selection criterion, is computationally

expensive and time-consuming in a high-dimensional data setting in which the number of can-

didate covariates is large. To reduce the heavy computational burden in a high-dimensional

variable selection problem, penalized partial-likelihood estimation with a convex surrogate

penalty has been proposed in the literature. For example, penalized likelihood estimation

methods with convex penalties (e.g. lasso (Tibshirani, 1996), adaptive lasso (Zou, 2006),
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and elastic net (Zou and Hastie, 2005)) are developed for high-dimensional Cox proportional

hazards regression (Goeman, 2010; Tibshirani, 1997; Zhang and Lu, 2007). However, these

approaches do not ensure the convergence to the global optimum of the model selection

criterion since the solution path is generated by only a finite sequence of tuning parameters.

In other words, due to the limited coverage of the tuning parameter values, there is a high

chance that the solution path has missed the global solution to the model selection criterion.

In thermodynamics, Kirkpatrick et al. (1983) proposes a global optimization algorithm,

called simulated annealing. The key idea of simulated annealing is to perform a stochastic

search so that we can avoid the chance of getting stuck in a local optimum. Using the

Metropolis-Hastings sampling (Metropolis et al., 1953), the move of simulated annealing

generates a Markov chain with a stationary distribution whose mode is the same as the global

optimum of the target function. Although simulated annealing assures the convergence to

the global optimum in a non-convex optimization framework, the slow convergence and

the choice of the proposal distribution are major drawbacks. As a result, the application

of simulated annealing for high-dimensional variable selection is computationally infeasible

since its computational efficiency drops dramatically as the number of covariates increases.

In this chapter, we propose a new global optimization method for high-dimensional sur-

vival model selection with a general class of model selection criteria, often referred to as

generalized information criterion (Atkinson, 1980; Kim et al., 2012; Zhang et al., 2010). The

key idea of the proposed method is to incorporate Gibbs sampling into a simulated annealing

framework via the concept of Boltzmann distribution in statistical mechanics. The proposed

method enables us to perform a probabilistic search using the Gibbs sampler, which leads

to the fast and stable convergence to the target distribution (Casella and George, 1992). In

addition, the use of the Gibbs sampler yields that the probability of accepting the move to

a new model always becomes one so that it automatically eliminates the issue of proposal

distribution selection in the traditional simulated annealing algorithm. The Cox propor-

tional hazards model is employed as the assumed model for explanation, which is discussed

in Chapter 2.2. In Chapter 2.3, the penalized likelihood methods, which serve as ways of the

convex surrogate are explained with their drawbacks. The technical details of the proposed
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method are given in Section 2.4. As shown in Section 2.5, our proposed method outper-

forms many existing methods. The real data analysis in Section 2.6 also demonstrates the

applicability of the proposed method to a blood cancer study.

2.2 Basic setup and generalized information criterion

For subject i ∈ {1, . . . , n}, let Ti = min(T ∗
i , Ci) be the observed failure time and xi be the

p-dimensional vector of possible covariates, where T ∗
i is the actual death time of the i-th

individual and Ci is the censoring time. Denote by δi = I{Ti < Ci} the indicator of the

occurrence of the event, where I{·} represents an indicator function.

In survival analysis, the Cox proportional hazards model (Cox, 1972) is a widely used

semiparametric regression model. The Cox model provides a way to examine how the co-

variates are associated with the rate of a particular event happening (e.g., death) at time

t, where the rate is referred to as the hazard rate. Specifically, the Cox model explains the

relationship between the hazard function and the covariates by assuming the form

h(t) = h0(t)× exp(xTβ), (2.1)

where h(t) is the hazard function at time t, h0(t) is the baseline hazard function, which reflects

the underlying hazard for subjects with all covariates equal to 0, x is the p-dimensional vector

of covariates, and β = (β1, . . . , βp)
T is the p-dimensional coefficient vector, which is of our

primary interest.

Under the right-censored scenario with observations {(Ti,xi, δi), i = 1, ..., n}, the re-

gression parameter β in the Cox model (2.1) can be estimated by constructing the partial

likelihood without imposing a distributional assumption on the data. In a survival analysis

8



framework, the likelihood function is given as

L(β) =

{ ∏
i:δi=1

f(Ti | β)

}
×

{ ∏
i:δi=0

[1− F (Ti | β)]

}

=
n∏

i=1

f(Ti | β)δiS(Ti | β)1−δi ,

=
n∏

i=1

[
f(Ti | β)
S(Ti | β)

]δi
S(Ti, | β),

where f(· | β) is the probability density function for time Ti given parameter β, F (· | β)

is the cumulative density function, and S(· | β) is the survival function. Under the Cox

proportional hazards assumption (2.1), the likelihood function can be expressed as

L(β) =
n∏

i=1

[
f(Ti | β)
S(Ti | β)

]δi
S(Ti, | β)

=
n∏

i=1

[
h(Ti | xi,β)∑

l∈R(Ti)
h(Ti | xl,β)

]δi
 ∑

l∈R(Ti)

h(Ti | xl,β)

δi

S(Ti | β)

=
n∏

i=1

[
h0(Ti) exp(x

T
i β)∑

l∈R(Ti)
h0(Ti) exp(xT

l β)

]δi
 ∑

l∈R(Ti)

h(Ti | xl,β)

δi

S(Ti | β)

=
n∏

i=1

[
exp(xT

i β)∑
l∈R(Ti)

exp(xT
l β)

]δi
 ∑

l∈R(Ti)

h(Ti | xl,β)

δi

S(Ti | β), (2.2)

where R(Ti) is the risk set at time Ti, which represents the number of individuals who

survived at least until time Ti. To complete the specification of the likelihood function, we

need to further assume a parametric form of the baseline hazard function h0(·). However,

without any prior knowledge about the data, it is dangerous to assume a specific form of

the baseline hazard function. As an alternative, Cox (1972) employs a partial likelihood

approach in which the baseline hazard function can be completely unspecified. Note that

the first term in the product in (2.2) contains the most information about β, while the last

two terms have the information about the baseline hazard function. Hence, by treating the

last two terms as a constant with respect to β, the partial likelihood function can be defined
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by

L(β) =
n∏

i=1

[
exp(xT

i β)∑
l∈R(Ti)

exp(xT
l β)

]δi

,

and the corresponding partial log-likelihood function can be derived as

l(β) = logL(β)

=
n∑

i=1

δi

xT

i β − log

 ∑
l∈R(Ti)

exp(xT

l β)


 . (2.3)

Under a low-dimensional regression setting (i.e., p ≪ n), it is well known that the asymp-

totic normality holds for the maximum partial likelihood estimator, which is obtained by

maximizing (2.3). However, when the number of covariates p is large, variable selection is

necessary to eliminate irrelevant covariates from the model so that the useful asymptotic

property can be achieved under the reduced model.

In a high-dimensional Cox regression setting, the best model can be identified by mini-

mizing the penalized partial log-likelihood as follows:

min
β

−2l(β) + pen(β),

where pen(β) is a penalty function which increases as the number of parameters increases.

In the model selection literature, the penalty function is commonly assumed to be a linear

function of L0-norm, that is,

min
β

−2l(β) + λ∥β∥0, (2.4)

where ∥β∥0 =
∑p

j=1 I{βj ̸= 0} denotes the L0-norm and λ is a prespecified tuning parameter

controlling the degrees of penalization. The model selection criterion in (2.4) is often referred

to as generalized information criterion (GIC). According to the choice of λ, GIC reduces to

a well-known model selection criterion. For example, when we set λ = ln(n0), GIC becomes
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BIC for censored survival models (Volinsky and Raftery, 2000), where n0 =
∑n

i=1 δi, which

denotes the total number of uncensored failure events. With λ = 2, GIC reduces to AIC.

Let s = (s1, . . . , sp) represent a reduced Cox model such that βj ̸= 0 if sj = 1 and βj = 0

if sj = 0 for j = 1, . . . , p. Given s, let β(s) be the sub-vector of β corresponding to one

elements in s. Then, the form of GIC in (2.4) can be further generalized as follows:

GIC(s) = −2l(β̂(s)) + pen(|s|), (2.5)

where |s| =
∑p

j=1 sj denotes the number of parameters under model s and β̂(s) is the

maximum partial likelihood estimate of β(s) under model s. Note that, when pen(|s|) = λ|s|,

(2.5) reduces to the original form of GIC in (2.4). Throughout this chapter, GIC refers to

the form of (2.5).

Due to the non-convexity of the penalty function in (2.5), model selection with GIC

should be performed by a brute-force algorithm (i.e., by comparing all possible models).

However, when p is large, finding the best model using a brute-force algorithm, often called

best subset selection in the statistical literature (James et al., 2013), becomes a NP-hard

(non-deterministic polynomial-time hard) problem. For example, when p = 100, we need to

compare 2100 ≈ 1.2730 candidate models.

2.3 Convex surrogate

In recent high-dimensional regression research, sparse estimation with convex penalties has

been extensively studied. For example, using the L1-norm penalty, Tibshirani (1996) pro-

poses the lasso (least absolute shrinkage and selection operator),

min
β

−2l(β) + λ||β||1,

11



where ||β||1 =
∑p

j=1 |β|j and λ ≥ 0. To improve the statistical efficiency of lasso, Zou (2006)

develops the adaptive lasso by using a weighted L1-norm as follows:

min
β

−2l(β) + λ

p∑
j=1

wj|βj|,

where w1, . . . , wp are data-driven weights. For high-dimensional and correlated data, Zou

and Hastie (2005) propose the elastic net,

min
β

−2l(β) + λ1||β||1 + λ2||β||2,

where ||β||2 =
∑p

j=1 β
2
j and λ1 and λ2 are the non-negative tuning parameters. Note that

the elastic net includes the lasso as a special case with λ2 = 0. Since these penalties lead

to not only the convexity of the objective function but also the sparse estimates of β, they

have been considered as a solution to high-dimensional variable selection. However, unlike

GIC, the tuning parameters are unknown in the penalized likelihood estimation framework,

and they must be chosen by a model selection criterion. From this aspect, the penalized

likelihood estimation with GIC tuning parameter selection can be considered as a convex

surrogate of the GIC model selection. This model selection procedure can be summarized

as follows:

� Step 1: Define a sequence of values for tuning parameter λ, Λ. For example, Λ = {λt =

ϵ(t− 1) : t = 1, . . . , T} for small ϵ > 0.

� Step 2: For each value of λ ∈ Λ, compute the sparse estimate of β, say β̂(λ), by

minimizing the penalized likelihood objective function given λ. For example, β̂(λ) =

argminβ −2l(β) + λ||β||1 for lasso.

� Step 3: Let sλ = {(s1, . . . , sp) : sj = I{β̂j(λ) ̸= 0}, j = 1, . . . , p} be the reduced model

given β̂(λ). Compute GIC(sλ) for λ ∈ Λ.

� Step 4: Find the best model by minλ∈ΛGIC(sλ).
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Note that although the above procedure is computationally efficient and fast, there is a

main limitation that the best model is generally a local optimum, not the global optimum,

because the solution path has been generated by a finite sequence of λ-values. In the following

section, we introduce our proposed solution to global optimum model selection with GIC.

2.4 Model selection via stochastic search

In this section, we introduce a new method to find the global optimum model using GIC.

Our proposed method is motivated by the idea of simulated annealing, which is a popular

global optimization algorithm in statistical mechanics.

2.4.1 Simulated annealing

Simulated annealing (SA), originally proposed by Kirkpatrick et al. (1983), is a stochastic

optimization method for finding the global optimum in a non-convex optimization problem.

The technique mimics the process of annealing in metallurgy, which is a technique involving

the heating and cooling of a material to increase the size of its crystals and reduce its defects.

Let E(s) be a energy function at state s. In general, SA is used to find the state that leads

to a global minimum energy.

In statistical thermodynamics, the probability of a physical system being in the state s

with energy E(s) at temperature τ can be described by the Boltzmann distribution (Gibbs,

1902),

pτ (s) ∝ exp

{
−E(s)

κτ

}
(2.6)

where κ is the Boltzmann’s constant, which is usually a known constant in SA. Using the

Boltzmann distribution, SA always converges to the global optimum by performing a stochas-

tic search with annealing. The detailed SA algorithm is given below:

� Step 1: Set an initial state s = s0 and an initial temperature τ = τ0.

� Step 2:
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(a) Draw a new state s∗ from a proposal distribution q(s∗ | s), which represents the

conditional probability of s∗ given the current value of s.

(b) Move to the new state s∗ with probability

min

{
1,

pτ (s
∗)q(s | s∗)

pτ (s)q(s∗ | s)

}
. (2.7)

(c) Repeat step (a) and step (b) until the chain is reached an equilibrium state.

� Step 3: Decrease the temperature by τ = τ−ϵ for small ϵ > 0. If τ ≤ 0, then terminate.

Otherwise, go to Step 2.

In the context of GIC optimization, we can employ SA by replacing the energy function

E(s) with GIC(s). Then, the Boltzmann distribution can be obtained by

pτ (s) ∝ exp

{
−GIC(s)

κτ

}
. (2.8)

For the remainder of this chapter, without loss of generality, we assume κ = 2. It is important

to note that Step 2 in SA comes from the idea of Metropolis-Hastings sampling, which is a

Markov chain Monte Carlo (MCMC) method for sampling from a probability distribution

when direct sampling is difficult. However, the specification of proposal distribution q(· | ·) is

cumbersome in our setting. An even more serious problem is that the acceptance probability

in (2.7) tends to decrease exponentially as the number of covariates, p, increases. As a result,

the probability of moving to a new state can be extremely small in a high-dimensional variable

selection case.

To demonstrate, we perform a simulation study as follows: First, we generate artificial

survival times of 100 subjects, T ∗
1 , . . . , T

∗
100, by T ∗

i = − log(Ui)

exp(xT
i β)

, where Ui
iid∼ Unif(0, 1),

xi
iid∼ Np(0,Σ) with Σ = (σij)p×p and σij = 0.5|i−j|, and β = (0,−0.7,−0.7, 0, . . . , 0)T.

Second, we create censoring time Ci by generating a sample from Exp(0.58), which produces

about 40% censoring rate. Then, given the simulated data, we proceed with the SA algorithm

with τ = 1 and count the acceptance rate of moving to a new state as follows:
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� Step 1: Set s = (0, . . . , 0), τ = 1, and a = 0 (count for a new move).

� Step 2:

(a) Generate s∗ = (s∗1, s
∗
2, ..., s

∗
p) with s∗j

iid∼ Ber(0.5) for j = 1, . . . , p.

(b) Calculate ∆(s, s∗) = exp
{
−GIC(s∗)−GIC(s)

κτ

}
, where GIC is chosen to be EBIC

defined in (2.10).

(c) Generate u ∼ Unif(0, 1).

(d) If ∆(s, s∗) ≥ u, set s = s∗ and a = a+ 1. Otherwise, stay s = s.

� Step 3: Repeat Step 2 for 5000 times.
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Figure 2.1: Changes in the acceptance rate of moving to a new state in SA when the number
of covariates p increases.

Figure 2.1 displays our simulation result. It clearly shows that the acceptance rate of

moving to a new state, α = a/5000, drops dramatically as p increases. In particular, when
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p = 20, there is almost no chance that the current state moves to a new state. In this case,

SA cannot converge to the global optimum even if the iteration number is extremely large.

To address the limitations of SA for high-dimensional variable selection, we propose a new

stochastic search algorithm using the idea of Gibbs sampler. The details are discussed in the

next section.

2.4.2 Proposed method

Motivated by the idea of Gibbs sampling, we propose to generate a candidate model for the

next move in SA by adding a new predictor to or deleting one from the current model. To

this end, let s = (s1, ..., sp)
T ∈ Rp be the current state. For a given j, we define a candidate

model by s∗ = (s∗1, . . . , s
∗
p) such that s∗k = sk if k ̸= j. Then, we can obtain the following

important property.

Lemma 1. Let pτ (·) be the Boltzmann distribution defined in (2.8). Assume that the proposal

distribution, q(s∗ | s), in SA is proportional to pτ (s
∗) with respect to s∗j , that is, q(s

∗ | s) ∝

pτ (s
∗
j) with respect to s∗j . Then, in Step 2 of SA, s∗ is accepted with probability one.

Proof of Lemma 1. Since q(s∗ | s) ∝ pτ (s
∗
j) with respect to s∗j , it can be viewed as q(s∗ |

s) ∝ pτ (s
∗
j | s∗−j), where s−j is obtained by deleting the j-th component of s. Recall that

by the definition of s∗, we have s∗−j = s−j. Then, it follows that q(s∗ | s) = pτ (s
∗
j | s−j) =

pτ (s
∗
j | s∗−j). Similarly, it can be shown that q(s | s∗) = pτ (sj | s∗−j) = pτ (sj | s−j). This

implies that

pτ (s
∗)q(s | s∗)

pτ (s)q(s∗ | s)
=

pτ (s
∗)pτ (sj | s∗−j)

pτ (s)pτ (s∗j | s−j)

=
pτ (s

∗)pτ (sj | s−j)

pτ (s)pτ (s∗j | s∗−j)

=
pτ (s

∗
−j)

pτ (s−j)

= 1,

where the last equality holds from the fact that s−j = s∗−j. This completes our proof.

16



Now, we define the proposal distribution by

q(s∗ | s) =
exp

{
− 1

κτ
GIC(s∗)

}
I
{
s∗−j = s−j

}
exp

{
− 1

κτ
GIC(s∗j = 1, s∗−j)

}
+ exp

{
− 1

κτ
GIC(s∗j = 0, s∗−j)

} .
In SA, one of the key features is the annealing process, that is, the temperature τ decreases

as the iteration number increases. Unlike SA, in our proposed method, we consider increasing

the temperature for the following reason. Under the given temperature, the selected best

model can be either a global optimum or a local optimum. If the best model is obtained at a

local optimum, increasing the temperature will improve the chance to get out from the local

trap and move forward to the global optimum. If the current best model is attained at the

global optimum, then the best model continuously remains the same as τ increases. Hence,

in this case, we can conclude the convergence to the global optimum.

Given the GIC we want to optimize, our proposed method works in the following way:

� Step 1: Start from an initial state of s = (s1, s2, ..., sp) with an initial temperature

τ = τ0, use ŝ = (ŝ1, · · · , ŝp) to store the best model, set r = 0, which counts the

number of iterations, and set an initial value for k, which controls the maximum

number of covariates selected in the model.

� Step 2: Implement Gibbs sampler to generate a Markov chain and update s by iterating

the following procedure:

– Generate s∗ = (s∗1, s
∗
2, · · · , s∗p) by setting s∗1 = 1− s1 and s∗l = sl for l ̸= 1.

If
∑p

j=1 s
∗
j > k, skip the following and move to update s2, otherwise, calculate

GIC(s∗).

If GIC(s∗) < GIC(ŝ), update ŝ = s∗ and set r = 0, τ = τ0. Otherwise, set

r = r + 1.

Generate a Bernoulli trial with success probability w defined in 2.9. If we obtain

1, update s = s∗, otherwise, stay s = s.

– Generate s∗ = (s∗1, s
∗
2, · · · , s∗p) by setting s∗2 = 1− s2 and s∗l = sl for l ̸= 2.
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If
∑p

j=1 s
∗
j > k, skip the following and move to update s3, otherwise, calculate

GIC(s∗).

If GIC(s∗) < GIC(ŝ), update ŝ = s∗ and set r = 0, τ = τ0. Otherwise, set

r = r + 1.

Generate a Bernoulli trial with success probability w defined in 2.9. If we obtain

1, update s = s∗, otherwise, stay s = s.

...

– Generate s∗ = (s∗1, s
∗
2, · · · , s∗p) by setting s∗p = 1− sp and s∗l = sl for l ̸= p.

If
∑p

j=1 s
∗
j > k, skip the following and move to update s1, otherwise, calculate

GIC(s∗).

If GIC(s∗) < GIC(ŝ), update ŝ = s∗ and set r = 0, τ = τ0. Otherwise, set

r = r + 1.

Generate a Bernoulli trial with success probability w defined in 2.9. If we obtain

1, update s = s∗, otherwise, stay s = s.

The success probability in the Bernoulli trial is defined as

w =
exp{− 1

κτ
GIC(s∗)}

exp{− 1
κτ
GIC(s∗)}+ exp{− 1

κτ
GIC(s)}

. (2.9)

� Step 3: Repeat Step 2 until r > pm (m has a prespecified value).

� Step 4: Repeat Step 2 and 3 with s = ŝ, r = 0 for a sequences of values of τ =

{τ2, τ3, · · · , τmax}, where τt+1 > τt, until τ = τmax. τmax is the maximum temperature

with a prespecified value.

The final model ŝ from the above procedure will be the estimated global optimal model,

with the corresponding estimated value of model selection criterion GIC(ŝ). The proposed

algorithm is summarized in Algorithm 1.
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Algorithm 1 Global optimal model selection

Start from an initial state of s = (s1, s2, ..., sp) with τ = τ0, use ŝ = (ŝ1, ŝ2..., ŝp) to store

the best model, set r = 0, and define k to control the maximum model size. The algorithm

proceeds as follows:

� Step 1: For j = 1, · · · , p, update sj by repeating the following steps until r > pm,

where m is set to control the number of iterations.

(a) Define s∗ by s∗j = 1− sj and s∗ℓ = sℓ for ℓ ̸= j.

(b) If
∑p

i=1 s
∗
i > k, skip Steps (c)–(d) below and jump to the next update for j + 1.

Otherwise, calculate GIC(s∗).

(c) If GIC(s∗) < GIC(ŝ), update ŝ = s∗ and reset r = 0 and τ = τ0. Otherwise, set

r = r + 1.

(d) We update s = s∗ if we obtain 1 from a Bernoulli trial with the success probability

ω =
exp

{
− 1

κτ
GIC(s∗)

}
exp

{
− 1

κτ
GIC(s∗)

}
+ exp

{
− 1

κτ
GIC(s)

} .
Otherwise, stay s = s.

� Step 2: Repeat Step 1 with s = ŝ, r = 0, and τ = τt+1(> τt) until τ = Tmax, where

Tmax is a prespecified maximum temperature.

In Appendix A, we provide a demo R code for implementing Step 1 of the proposed

algorithm when GIC is assumed to be BIC.

2.5 Simulation Study

In this section, we conduct a simulation study to investigate the performance of our proposed

method under the Cox proportional hazards model. For the choice of GIC, we select the
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extended BIC (EBIC), which is the most popular choice for high-dimensional model selection

(Chen and Chen (2012), Luo et al. (2015), Foygel and Drton (2010)):

EBIC(s) = −2l
(
β̂(s)

)
+ log(n0)|s|+ 2γ

(
n

|s|

)
, (2.10)

where γ ∈ [0, 1] is a prespecified tuning parameter and we set γ = 1 so that EBIC always

satisfies model selection consistency even when p > n (Chen and Chen, 2008).

When we implement the proposed method using Algorithm 1, we set s = (0, 0, ..., 0),

k = 15, τ ∈ {1, 4/3} and m = 10 for the initial setting, called ‘proposed method (null)’.

To perform sensitivity analysis in the setting of the initial estimate of s, we also consider

a random estimate of s by randomly choosing six elements of s to be one and setting

the remaining elements to be zero, called ‘proposed method (random)’. For the purpose

of comparison, we employ the following four methods that are commonly used in high-

dimensional variable selection: (1) lasso, (2) SCAD (smoothly clipped absolute deviation,

Fan and Li (2001)), (3) MCP (minimax concave penalty, Zhang (2010)), and (4) elastic net.

The simulation study is conducted by using R, where lasso and elastic net are implemented

by the glmnet package, and MCP and SCAD are implemented by the ncvreg package. For

lasso, SCAD, MCP, and elastic net, we use the convex surrogate approach given in Section

2.3 with a grid of tuning parameters that are generated by the R packages.

We generate survival time T ∗
i and censoring time Ci for i = 1, . . . , n independently as

follows:

� T ∗
i = − log(Ui)

exp(xT
i β)

, where Ui
iid∼ Unif(0, 1), xi

iid∼ Np(0,Σ) with Σ = (σij)p×p and σij =

0.5|i−j|, and β is the p-dimensional vector with β1 = β9 = 0.8, β4 = β12 = −0.7,

β5 = β13 = 0.6, and βj = 0 for j ̸= 1, 4, 5, 9, 12, 13.

� Ci
iid∼ Exp(η), where η = 0.22 (about 25% censoring rate) or η = 0.57 (about 40%

censoring rate).

To consider various high-dimensional data settings, we consider the following 12 scenarios

in the data-generating process:
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(1). n = 200, p = 100, and censor rate= 25% (η = 0.22).

(2). n = 200, p = 1000, and censor rate= 25% (η = 0.22).

(3). n = 200, p = 2000, and censor rate= 25% (η = 0.22).

(4). n = 500, p = 100, and censor rate= 25% (η = 0.22).

(5). n = 500, p = 1000, and censor rate= 25% (η = 0.22).

(6). n = 500, p = 2000, and censor rate= 25% (η = 0.22).

(7). n = 200, p = 100, and censor rate= 40% (η = 0.57).

(8). n = 200, p = 1000, and censor rate= 40% (η = 0.57).

(9). n = 200, p = 2000, and censor rate= 40% (η = 0.57).

(10). n = 500, p = 100, and censor rate= 40% (η = 0.57).

(11). n = 500, p = 1000, and censor rate= 40% (η = 0.57).

(12). n = 500, p = 2000, and censor rate= 40% (η = 0.57).

To evaluate the performance of finding the global optimum model, for each method, we

count the number of cases in which the EBIC evaluated at the optimal model is smaller than

the other methods over 100 Monte Carlo replications. We denote by Fmin the ratio of finding

the smallest EBIC out of the 100 replications. In addition, to access the variable selection

performance, we calculate the false-positive rate (FPR) and the false-negative rate (FNR),

FPR =
FP

TN+FP
and FNR =

FN

TP+FN
,

where TP, FP, TN and FN denote the number of true non-zeros, false non-zeros, true zeros,

and false zeros, respectively.

The simulation result is summarized in Tables 2.1 and 2.2, where Time represents the

average execution time in minutes over 30 replications when a Windows 10 computer with
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an Inter Core i7-8650U processor and 16 GB of memory is used. The result clearly shows

that our proposed method always has the highest frequency of finding the smallest EBIC

compared with other methods for all 12 scenarios. In addition, the proposed method is less

sensitive to the choice of the initial estimate of s. This implies that our proposed method

successfully identifies the global optimal model for the EBIC model selection procedure. It is

also worth noting that the proposed method always achieves the lowest level of FPR and FNR

for all 12 scenarios. This means that the proposed method provides the best performance

in identifying the true model for high-dimensional variable selection. As mentioned earlier,

EBIC possesses model selection consistency, that is, the global optimum model tends to be

the true model with high probability when the sample size is large. Hence, the superiority of

our proposed method in model selection can be regarded as another evidence to demonstrate

that the proposed method successfully finds the global optimal model in terms of EBIC.

2.6 Real data analysis

In this section, we conduct real data analysis with the Diffuse Large B-Cell Lymphoma

(DLBCL) data (Alizadeh et al., 2000; Rosenwald et al., 2002). DLBCL has been known to

be the most common type of non-Hodgkin lymphoma in the United States and worldwide

(https://lymphoma.org/aboutlymphoma/nhl/dlbcl/). The dataset used in this analysis

is publicly available at the R package ROC632. The data contain information about 240

DLBCL patients who were monitored using a Lyphochip cDNA microarray with 7399 gene

expressions. Since 5 observations have survival time equal to 0, we eliminate them and use

the information of the remaining 235 patients for our analysis. In the dataset, the censoring

rate is 0.434.

First, we perform a pre-screening procedure to screen out redundant covariates that are

obviously unrelated to the survival time. For every single covariate, we obtain p-value by

fitting the Cox model with the single covariate and then exclude it from the analysis if the

obtained p-value is greater than 0.05. After the screening procedure, 1163 genes are finally

selected for our analysis. Then, we apply the proposed method and the existing methods
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(lasso, SCAD, MCP and elastic net) as in Section 2.5. Table 2.3 displays our analysis result.

The result shows that our proposed method provides the smallest EBIC (=1307.769). This

implies that the model selected by our proposed method receives the strongest support from

the observed data.

2.7 Concluding remarks

We have proposed a global optimal model selection procedure with GIC using the notion of

statistical mechanics. The superiority of the proposed method in high-dimensional variable

selection has been shown by the simulation study and real data analysis.

While we have restricted our attention to the Cox model in this chapter, the proposed

method can be easily adapted to different parametric and semi-parametric survival models

by replacing the partial likelihood with the likelihood or pseudo-likelihood functions. In

addition, various choices of GIC can be considered in the proposed framework. For recent

developments in model selection criterion that belongs to GIC, see Kim et al. (2016) and

references therein.
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Table 2.1: Simulation result with censoring rate=25%

(n, p) Method Fmin FPR FNR Time (mins)
(200,100) Proposed method (null) 0.97 0.0022 (0.0006) 0.0050 (0.0037) 0.6997 (0.0353)

Proposed method (random) 0.98 0.0023 (0.0006) 0.0050 (0.0037) 0.7301 (0.0341)
LASSO 0.17 0.0182 (0.0016) 0.0867 (0.0163) 0.0123 (0.0001)
SCAD 0.25 0.0147 (0.0015) 0.0650 (0.0148) 0.0066 (0.0001)
MCP 0.61 0.0067 (0.0009) 0.0333 (0.0113) 0.0071 (0.0001)

Elastic Net 0.08 0.0197 (0.0018) 0.1517 (0.0212) 0.0130 (0.0001)
(200,1000) Proposed method (null) 0.84 0.0025 (0.0007) 0.1167 (0.0235) 7.4433 (0.4144)

Proposed method (random) 0.87 0.0030 (0.0007) 0.0900 (0.0193) 8.2580 (0.4954)
LASSO 0.05 0.0039 (0.0008) 0.5300 (0.0193) 0.0488 (0.0011)
SCAD 0.05 0.0048 (0.0010) 0.5183 (0.0204) 0.0662 (0.0016)
MCP 0.13 0.0111 (0.0016) 0.3167 (0.0293) 0.0434 (0.0010)

Elastic Net 0.05 0.0033 (0.0008) 0.5767 (0.0160) 0.0587 (0.0016)
(200,2000) Proposed method (null) 0.85 0.0011 (0.0003) 0.2133 (0.0288) 14.7546 (0.9356)

Proposed method (random) 0.86 0.0014 (0.0004) 0.1650 (0.0261) 15.1516 (0.7879)
LASSO 0.13 0.0016 (0.0005) 0.6217 (0.0148) 0.0226 (0.0001)
SCAD 0.14 0.0021 (0.0006) 0.6150 (0.0162) 0.0296 (0.0002)
MCP 0.15 0.0108 (0.0017) 0.4400 (0.0279) 0.0172 (0.0002)

Elastic Net 0.12 0.0013 (0.0004) 0.6350 (0.0120) 0.0266 (0.0001)
(500,100) Proposed method (null) 1.00 0.0013 (0.0005) 0.0000 (0.0000) 1.3108 (0.0821)

Proposed method (random) 1.00 0.0013 (0.0005) 0.0000 (0.0000) 1.3460 (0.0904)
LASSO 0.87 0.0015 (0.0005) 0.0000 (0.0000) 0.0448 (0.0004)
SCAD 0.96 0.0011 (0.0004) 0.0000 (0.0000) 0.0299 (0.0004)
MCP 0.99 0.0010 (0.0003) 0.0000 (0.0000) 0.0305 (0.0004)

Elastic Net 0.63 0.0049 (0.0008) 0.0000 (0.0000) 0.0456 (0.0004)
(500,1000) Proposed method (null) 1.00 0.0011 (0.0003) 0.0000 (0.0000) 12.1821 (0.5317)

Proposed method (random) 1.00 0.0011 (0.0003) 0.0000 (0.0000) 12.4426 (0.5394)
LASSO 0.68 0.0040 (0.0008) 0.0017 (0.0017) 0.1033 (0.0026)
SCAD 0.87 0.0018 (0.0005) 0.0000 (0.0000) 0.1783 (0.0040)
MCP 0.99 0.0012 (0.0004) 0.0000 (0.0000) 0.1291 (0.0033)

Elastic Net 0.51 0.0094 (0.0012) 0.0033 (0.0023) 0.1222 (0.0034)
(500,2000) Proposed method (null) 1.00 0.0014 (0.0004) 0.0000 (0.0000) 28.1613 (1.6829)

Proposed method (random) 1.00 0.0014 (0.0004) 0.0000 (0.0000) 29.5035 (1.2440)
LASSO 0.57 0.0064 (0.0011) 0.0100 (0.0052) 0.1151 (0.0004)
SCAD 0.70 0.0050 (0.0010) 0.0017 (0.0017) 0.1149 (0.0007)
MCP 0.96 0.0019 (0.0004) 0.0000 (0.0000) 0.0726 (0.0002)

Elastic Net 0.32 0.0129 (0.0015) 0.0017 (0.0065) 0.1320 (0.0004)
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Table 2.2: Simulation result with censoring rate=40%

(n, p) Method Fmin FPR FNR Time (mins)
(200,100) Proposed method (null) 0.95 0.0018 (0.0005) 0.0383 (0.0120) 0.8466 (0.0416)

Proposed method (random) 0.98 0.0022 (0.0006) 0.0350 (0.0104) 0.8786 (0.0455)
LASSO 0.08 0.0139 (0.0015) 0.2183 (0.0232) 0.0210 (0.0005)
SCAD 0.16 0.0171 (0.0018) 0.1367 (0.0212) 0.0121 (0.0003)
MCP 0.40 0.0104 (0.0013) 0.0683 (0.0148) 0.0128 (0.0003)

Elastic Net 0.06 0.0143 (0.0017) 0.3000 (0.0248) 0.0224 (0.0005)
(200,1000) Proposed method (null) 0.79 0.0035 (0.0008) 0.2417 (0.0292) 7.2024 (0.4769)

Proposed method (random) 0.81 0.0040 (0.0010) 0.2333 (0.0284) 8.1090 (0.5236)
LASSO 0.18 0.0020 (0.0005) 0.6317 (0.0145) 0.0461 (0.0013)
SCAD 0.18 0.0027 (0.0007) 0.6200 (0.0158) 0.0538 (0.0008)
MCP 0.19 0.0078 (0.0013) 0.4633 (0.0275) 0.0354 (0.0006)

Elastic Net 0.18 0.0015 (0.0004) 0.6483 (0.0123) 0.0519 (0.0007)
(200,2000) Proposed method (null) 0.76 0.0025 (0.0006) 0.3800 (0.0304) 13.0769 (1.0701)

Proposed method (random) 0.89 0.0029 (0.0007) 0.2717 (0.0289) 14.4596 (0.9596)
LASSO 0.23 0.0017 (0.0004) 0.6633 (0.0103) 0.0232 (0.0001)
SCAD 0.24 0.0018 (0.0004) 0.6600 (0.0108) 0.0275 (0.0002)
MCP 0.24 0.0049 (0.0011) 0.5917 (0.0196) 0.0161 (0.0002)

Elastic Net 0.23 0.0011 (0.0003) 0.6683 (0.0102) 0.0275 (0.0001)
(500,100) Proposed method (null) 1.00 0.0013 (0.0004) 0.0000 (0.0000) 1.0255 (0.0462)

Proposed method (random) 1.00 0.0013 (0.0004) 0.0000 (0.0000) 1.1192 (0.0519)
LASSO 0.78 0.0033 (0.0006) 0.0000 (0.0000) 0.0448 (0.0007)
SCAD 0.96 0.0015 (0.0004) 0.0000 (0.0000) 0.0237 (0.0004)
MCP 1.00 0.0013 (0.0004) 0.0000 (0.0000) 0.0247 (0.0004)

Elastic Net 0.58 0.0069 (0.0011) 0.0000 (0.0000) 0.0457 (0.0007)
(500,1000) Proposed method (null) 1.00 0.0017 (0.0004) 0.0000 (0.0000) 12.6398 (0.5068)

Proposed method (random) 1.00 0.0017 (0.0004) 0.0000 (0.0000) 13.6700 (0.6852)
LASSO 0.46 0.0079 (0.0010) 0.0015 (0.0075) 0.0151 (0.0023)
SCAD 0.62 0.0061 (0.0010) 0.0017 (0.0017) 0.1572 (0.0033)
MCP 0.97 0.0020 (0.0005) 0.0000 (0.0000) 0.1128 (0.0027)

Elastic Net 0.36 0.0121 (0.0013) 0.0267 (0.0088) 0.1264 (0.0032)
(500,2000) Proposed method (null) 0.99 0.0013 (0.0006) 0.0000 (0.0000) 24.3697 (0.8678)

Proposed method (random) 0.98 0.0015 (0.0007) 0.0000 (0.0000) 26.6497 (1.4551)
LASSO 0.30 0.0135 (0.0014) 0.0250 (0.0080) 0.1195 (0.0005)
SCAD 0.43 0.0115 (0.0015) 0.0167 (0.0060) 0.1054 (0.0006)
MCP 0.82 0.0040 (0.0008) 0.0017 (0.0017) 0.0663 (0.0005)

Elastic Net 0.13 0.0163 (0.0017) 0.0583 (0.0120) 0.1388 (0.0007)

25



Table 2.3: Real data analysis result with DLBCL data.

Index set of selected genes EBIC
Our method {260,663,1127,1162} 1307.769

Lasso { 705 } 1322.035
SCAD { 705 } 1322.035
MCP { 260,705,867 } 1318.424

Elastic net { 705 } 1322.035
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Chapter 3

Best predictive model selection for

high-dimensional survival data

3.1 Introduction

In survival analysis, prediction is critical in many fields, including life health science research

challenges and disease investigations. Predicting life expectancy can be a complicated but

essential topic. With the popularity of high-dimensional data, how to find the optimal model

that delivers the best prediction performance has attracted increasing attention, as only a

small proportion of the covariates are truly related to the response.

For the purpose of survival model analysis, numerous survival regression models with a

wide variety of distributions have been thoroughly investigated. One of the most commonly

used parametric models is called the accelerated failure time (AFT) model (Wei, 1992).

It provides a widely utilized approach for estimating the effects of the covariates on the

response, where the effect of a covariate is to accelerate or decelerate the survival time

by some constant. For the goal of making predictions, a variety of measurements can be

employed, such as the mean time to failure (MTTF), median survival time, and minimum

prediction error survival time (MPET). They provide different ways of generating predictions

from various perspectives, each with its own set of characteristics. With the AFT model,
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once the effects of the covariates have been estimated, the values can be plugged into the

prediction measurement for generating predictions.

When implementing model selection with high-dimensional survival data, a frequent ap-

proach is to define an appropriate model selection criterion that quantifies the best model.

Then the best model can be found with various methodologies. A variety of model selection

criteria can be employed, for example, the Bayesian information criterion (BIC) (Schwarz

et al., 1978), Akaike information criterion(AIC) (Akaike, 1974), and extended BIC (Chen

and Chen, 2008). All of these criteria can be referred to as the generalized information

criterion (GIC) (Atkinson, 1980; Kim et al., 2012; Zhang et al., 2010). The model that

optimizes the model selection criterion is the best fitting model. However, finding the best

fitting model is not the same as finding the best predictive model, because the best fitting

model cannot guarantee the best prediction performance. The penalized likelihood estima-

tion method (e.g. lasso Tibshirani (1996), adaptive lasso Zou (2006), and SCAD Fan and

Li (2001)) also serves as a way of implementing model selection for the high-dimensional

survival data. These approaches work by cross-validation to find the best tuning parameters

in making predictions, which can be considered as a convex surrogate. However, due to the

limitation of the coverage for the solution path of the tuning parameters, these methods still

can not guarantee the selection of the best predictive model.

In the context of the Bayesian framework, the idea of the median probability model is

proposed by Barbieri et al. (2004) for optimal predictive Bayesian model selection. Motivated

by the idea of the median probability model, we propose a new way for finding the best

predictive model with high-dimensional survival data. The key idea is to incorporate the

median probability model into the frequentist framework via the concept of Boltzmann

distribution. The resulted algorithm brings the idea from the Bayesian framework to the

frequentist framework. The proposed method enables us to generate a sequence of candidate

models using the Gibbs sampler, from which the best predictive model can be defined.

In the parametric survival regression model, with the estimated values of the covariates,

prediction can be calculated respectively. For model specification, the accelerate failure time

(AFT) model with Weibull distribution is employed for the explanation, which is discussed
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in Chapter 3.2. In Chapter 3.3, the idea of the median probability model is introduced. The

details of our proposed method are explained in Chapter 3.4. To evaluate the performance of

the proposed method, simulation study and real data analysis are demonstrated in Chapter

3.5 and Chapter 3.6.

3.2 Model setup

3.2.1 Accelerated failure time (AFT) model

For time-to-event data with n independent observations, assume that the ith individual’s

actual death time is T ∗
i , the corresponding observed failure time can be expressed as Ti =

min(T ∗
i , Ci), where Ci is the censoring time for the ith individual, with the censoring indicator

denoted by δi = I{T ∗
i ≤ Ci}, and I{·} is the indicator function.

In survival analysis, revealing the relationship between the response and various covari-

ates is of considerable interest to many disease studies. Making predictions is also the primary

aim for a large number of research questions in this field. Among various parametric models,

the accelerated failure time (AFT) model (Wei, 1992) is one of the most commonly utilized

models. This model makes the assumption that the effects of the variables will cause the

lifetime to accelerate or decelerate by a constant amount. It demonstrates the connection

between the covariates x and the log of survival time Y = log T as follows:

Yi = log Ti = xT

i β + σϵi, (3.1)

where i = 1, · · · , n, β = (β1, ..., βp)
T is the p−dimensional coefficient vector, which is of our

primal interest. σϵi is the error term, in which σ is called the scale parameter and ϵi is the

random disturbance term, usually assumed to be independent identically distributed with

some density function f(ϵ). The model (3.1) defines a broad class of models, and depending

on the distribution we specify for ϵi, we will obtain different models with different properties.

For the purpose of explanation, the AFT model in (3.1) can be alternatively stated in a
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different way:

Ti = exp(xT

i β) exp(σϵi)

= eηiT0,

where T0 = exp(σϵi) and ηi = xT
i β for i = 1, · · · , n. This type of expression clearly shows

that the effects of the covariates act multiplicatively on time (e.g., when eηi = 0.5, the subject

effectively ages at twice the normal speed).

In the context of right-censored scenario with independent observations {(Ti,xi, δi), i =

1, ..., n}, the regression parameter β in model (3.1) can be estimated by maximum likelihood

estimation, in which the likelihood function is defined as

L(β) =
∏
i:δi=1

[f(Ti,xi|β)]×
∏
i:δi=0

[1− F (Ti,xi|β)]

=
n∏

i=1

[f(Ti,xi|β)]δi × [S(Ti,xi|β)]1−δi

=
n∏

i=1

[
f(Ti,xi|β)
S(Ti,xi|β)

]δi
× S(Ti,xi|β)

=
n∏

i=1

[h(Ti,xi|β)]δi × [S(Ti,xi|β)],

(3.2)

where f(· | β) is the probability density function, F (· | β) is the cumulative distribution

function, S(· | β) gives the survival function, and h(· | β) denotes the hazard function. The

hazard function, also known as the instantaneous failure rate, is always of importance in

survival data analysis because it shows the risk of an event occurring at any given point

in time. A flexible hazard function is one of the characteristics of some of the regularly

used distributions. One of the distributions, called Weibull distribution, will be examined in

greater detail in the next section.
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3.2.2 Weibull distribution under AFT model

In survival analysis, different types of data distributions provide various properties on the

hazard function. Some of the widely used distributions, such as the exponential distribution,

or the Gompertz distribution, lead to a constant or monotone increasing hazard function.

In reality, however, populations with an unchanging or constantly growing hazard function

are rare. Then the Weibull distribution (Fréchet, 1927; Rosin, 1933; Weibull et al., 1951) is

proposed, which provides more flexibilities for the hazard function.

Weibull distribution, also referred to as the type III extreme value distribution, is a

form of distribution that is frequently employed for survival data analysis. This distribution

includes the exponential distribution as the special case, and can be uniquely determined by

three parameters, the location parameter α ∈ R, the scale parameter ρ > 0, and the shape

parameter γ ∈ R. Depending on the value we specify for γ, the Weibull distribution can

provide a wide range of flexibilities, including monotone growing, decreasing, and constant

hazard functions. As a rule of thumb, the location parameter α ∈ R is usually assumed to

be zero, which simplifies the Weibull distribution to a two-parameter distribution.

If a random variable T follows the Weibull distribution, T ∼ W (ρ, γ), the probability

density function of T is defined as

f(t) =
γ

ρ

(
t

ρ

)γ−1

exp

[
−
(
t

ρ

)γ]
,

where ρ > 0, and γ > 0. The corresponding cumulative distribution function, survival

function, and hazard function can be derived as

F (t) = 1− exp

[
−
(
t

ρ

)γ]
,

S(t) = 1− F (t) = exp

[
−
(
t

ρ

)γ]
,

h(t) =
f(t)

S(t)
=

γ

ρ

(
t

ρ

)γ−1

.

From the hazard function h(t), it can be shown that γ > 1 provides a monotone increasing
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hazard function, γ = 1 leads the hazard function to be a constant, and γ < 1 makes the

hazard function consistently decreasing.

Another well-known distribution for survival analysis is called the Gumbel distribution

(Gumbel, 1935), also known as the type I extreme value distribution, which is expressed as

the log of the Weibull distribution. If we assume w = log T , where T ∼ W (ρ, γ), then we

get w ∼ G(µ, σ). The log transformation of T transforms the support from {T ≥ 0} to

{−∞ < w < ∞}, and the probability density function of w can be derived as

f(w) =
1

σ
exp

[(
−w − µ

σ

)
− exp

(
−w − µ

σ

)]
, (3.3)

where µ = log ρ ∈ (−∞,∞), σ = 1
γ
∈ (0,∞). The corresponding cumulative distribution

function, survival function and hazard function can be derived as follows:

F (w) = 1− exp

[
− exp

(
w − µ

σ

)]
,

S(w) = exp

[
− exp

(
w − µ

σ

)]
,

h(w) =
f(w)

S(w)
=

1

σ
exp

(
w − µ

σ

)
.

For the AFT model we specify in (3.1), which can be alternatively presented as

Yi = log(Ti) = β0 + β1xi1 + ...βpxip + σϵi = xT

i β + σϵi,

where i = 1, 2, .., n. If we assume ϵi follows the standard Gumbel distribution, ϵi
iid∼ G(0, 1),

with the probability density function defined as

f(ϵ) = exp[− (ϵ+ exp(−ϵ))],
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it leads the corresponding probability density function of Ti to be

f(t) =
1/σ

exp(xT
i β)

[
t

exp(xT
i β)

] 1
σ
−1

exp

[
−
(

t

exp(xT
i β)

) 1
σ

]
.

Referring to the probability density function in (3.3), the above probability density func-

tion indicates that the survival time Ti follows a Weibull distribution with parameters

ρ = exp(xT
i β) and γ = 1

σ
, which can be denoted by Ti

iid∼ W (exp(xT
i β),

1
σ
). And the

corresponding cumulative distribution function, survival function, and hazard function for

Ti can be derived as

F (t) = 1− exp

[
−
(

t

exp(xT
i β)

) 1
σ

]
,

S(t) = 1− F (t) = exp

[
−
(

t

exp(xT
i β)

) 1
σ

]
,

h(t) =
f(t)

S(t)
=

1/σ

exp(xT
i β)

[
t

exp(xT
i β)

] 1
σ
−1

.

Once the distribution of the data is specified, the values of the parameters (β, σ) under

the Weibull AFT model can be estimated. A typical common strategy is the maximum

likelihood estimation.

With n independent observations t1, t2, ...tn under the AFT model, we assume ϵi
iid∼

G(0, 1), the likelihood function in (3.2) can be derived as

L(β, σ|T , δ) =
n∏

i=1

{f(ti)}δi{S(ti)}1−δi

=
n∏

i=1

{h(ti)}δiS(ti)

=
n∏

i=1

{
1/σ

exp(xT
i β)

[
t

exp(xT
i β)

] 1
σ
−1
}δi

exp

[
−
(

t

exp(xT
i β)

) 1
σ

]
.

To maximize the likelihood function, a straightforward approach is to take the log of the

likelihood function and maximize the corresponding log-likelihood function, which can be
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obtained as follows:

l(β, σ|T , δ) = logL(β, σ|T , δ)

= log
n∏

i=1

{
1/σ

exp(xT
i β)

[
ti

exp(xT
i β)

] 1
σ
−1
}δi

exp

[
−
(

ti
exp(xT

i β)

) 1
σ

]

=
n∑

i=1

δi log

{
1/σ

exp(xT
i β)

[
ti

exp(xT
i β)

] 1
σ
−1
}

−
n∑

i=1

(
ti

exp(xT
i β)

) 1
σ

= log
1

σ

n∑
i=1

δi −
n∑

i=1

δi(x
T

i β) +

(
1

σ
− 1

) n∑
i=1

δi(log ti − xT

i β)

−
n∑

i=1

(
ti

exp(xT
i β)

) 1
σ

= log
1

σ

n∑
i=1

δi +

(
1

σ
− 1

) n∑
i=1

δi(log ti)−
1

σ

n∑
i=1

δi(x
T

i β)−
n∑

i=1

(
ti

exp(xT
i β)

) 1
σ

.

Different numerical approaches (e.g., the Newton-Raphson method Newton (1736)) can

be applied to the optimization procedure with the detailed form of the log-likelihood function.

Then the maximum likelihood estimation of the parameters (β̂, σ̂) can be obtained.

3.2.3 Prediction under the Weibull AFT model

When it comes to generating predictions in the context of AFT models, statisticians have

several options. The mean time to failure (MTTF) (Ho and Silva, 2006), median survival

time, and minimum prediction error survival time (MPET) (Henderson et al., 2001) are

widely used ways of making predictions. In this chapter, we choose to use the mean time

to failure (MTTF) as the objective of the prediction, and the logic can be extended to any

other measurements.

Under the assumption of the AFT regression model with Weibull distribution, predicting
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the MTTF can be derived as follows (Liu, 2018):

E(Y ) = E(log(T ))

=

∫ ∞

−∞
yf(y)dy

=

∫ ∞

−∞
y
1

σ
exp

(
y − xTβ

σ

)
exp

[
− exp

(
y − xTβ

σ

)]
dy

=
1

σ

∫ ∞

0

(σ log z + xTβ)z exp(−z)d(σ log z + xTβ)

=

∫ ∞

0

(σ log z + xTβ) exp(−z)dz

=

∫ ∞

0

σ
∂

∂α
[zα exp(−z)]α=0 + xTβ

= σ
∂

∂α

[∫ ∞

0

zα exp(−z)

]
α=0

+ xTβ

= σΓ(α)′α=1 + xTβ,

(3.4)

where z = exp(y−xTβ
σ

), and Γ(α)′α=1 is the negative of the Euler-Mascheroni Constant

(≈ −0.57721 Euler (1740)). It provides the log of the anticipated survival time for each

individual.

To obtain the mean time to failure (MTTF) of the ith individual, the first step is to get

the estimation of the parameters (β̂, σ̂). Then, by (3.4), the prediction for the ith individual

can be calculated as

E(Ti) = exp
[
σ̂Γ(α)′α=1 + xTβ̂

]
.

In addition to making point prediction, we can also construct the confidence interval for

the mean time between failures (MTTF) with the Delta method. With the estimated values

of the parameters (β̂, σ̂), the standard error of MTTF can be calculated as

SE =


 ∂E(Ti)

∂β̂

∂E(Ti)
∂σ̂

T

Σ(β̂,σ̂)

 ∂E(Ti)

∂β̂

∂E(Ti)
∂σ̂


1
2

.

where Σ(β̂,σ̂) is the variance-covariance matrix of (β̂, σ̂). And the (1−α)% confidence interval

35



is defined as

E(Ti)− z1−α
2
SE < Ti < E(Ti) + z1−α

2
SE,

where α controls the type I error, and z represents the quantile of the standard normal

distribution.

3.3 Best predictive model selection

For survival data analysis, the problem of best predictive model selection has been extensively

studied based on parametric models with a relatively small number of covariates. However,

for high-dimensional survival data, identifying the best predictive model is still theoretically

and computationally challenging. In Chapter 2, we propose a method for finding the global

optimal model that optimizes the model selection criterion. The selected model is known to

be the best fitting model. However, finding the best fitting model is not the same as finding

the best predictive model, as the best fitting model cannot guarantee the best predictive

performance. A recent literature proposes the idea of optimal Bayesian predictive model

selection, which gives the definition of the median probability model. Motivated by the idea

of the median probability model, we propose a new algorithm for finding the best predictive

model under the frequentist framework.

3.3.1 Median probability model

The idea of the median probability model, originally proposed by Barbieri et al. (2004),

is a popular and efficient method for finding the optimal predictive model among normal

linear models from the Bayesian perspective. Under the Bayesian framework, it is generally

assumed that the model with the highest posterior likelihood is the best predictive model.

However, the conclusion can be held only under very strict conditions: only if two models

are being entertained (Berger, 1997) or in the variable selection problem for linear models

having orthogonal design matrices (Clyde, 1999; Clyde and George, 2000, 1999). However,

these conditions can be easily violated. Then the idea of the median probability model is
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proposed, which is defined as the model consisting of those variables with overall posterior

probability greater than or equal to 1/2. This idea provides a way of finding the model that

delivers the best predictive performance under a generalized condition.

The posterior model probabilities P (s|T ) is determined by some Markov chain Monte

Carlo (MCMC) schemes under the Bayesian framework, and the posterior inclusion proba-

bility for each variable j is defined as

pj =
∑

s∈S:sj=1

P (s|T ), (3.5)

where S is a set of candidate models, s is any sub-model with model index s = (s1, s2, ..., sp),

si being either 1 or 0 as covariate xi is in or out of the model. This gives the overall posterior

probability that variable j is in the model.

If it exists, the median probability model s∗ is defined to be the model consisting of

those variables whose posterior inclusion probability is greater than or equal to 1/2. The

corresponding s∗ can be formally defined by

s∗j =


1, if pj ≥

1

2
,

0, othewise.

(3.6)

This model selection procedure can be summarized as follows:

� Step 1: Set an initial candidate model s = s0.

� Step 2: Draw a new candidate model s∗ from a proposal distribution q(s∗ | s), which

represents the conditional probability of s∗ given the current status of s.

� Step 3: Repeat step 2 for certain times until we get a big enough set of candidate

models S, then calculate the posterior inclusion probability for each variable from

(3.5).

� Step 4: The median probability model is given by (3.6), which provide the index of

predictors included in the model.
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3.3.2 Boltzmann distribution connects Bayesian and frequentist

approach

The idea of the median probability model is proposed under the Bayesian framework, and

how to specify the proposal distribution can be tricky without any prior information. By

applying the idea of statistical mechanics, we propose to treat the Boltzmann distribution

as the posterior distribution. Then we bring the idea from the Bayesian framework to the

frequentist framework.

The idea of the Boltzmann distribution (Boltzmann, 1868; Gibbs, 1902) comes from

system energy optimization. It gives the probability that a system being in a certain state

as a function of that state’s energy and the temperature of the system. The distribution can

be expressed as

p(s) ∝ exp

{
−E(s)

κτ

}
,

where p(s) is the probability of the system being in state s, s = (s1, s2, ..., sp) indicates a

candidate model, it gives the indices of the covariates included in the model. sj ∈ {0, 1} for

j = 1, 2, ..., p, with sj = 1 representing the jth covariate included in the model, otherwise

excluded. E(s) is the energy of that state, κ is the Boltzmann’s constant and τ is the

temperature.

In order to incorporate the idea of Boltzmann distribution with model selection, we can

replace the energy function E(s) by a model selection criterion, which is also referred to as

the generalized information criterion GIC(s). Optimizing GIC(s) is one of the principles

that guide the choice of optimum model under the context high-dimensional survival data.

By treating the Boltzmann distribution as the posterior distribution corresponding to the

candidate model s, the Markov chain Monte Carlo (MCMC) method can be employed for

generating candidate models. Given the GIC(s) we specify, the corresponding Boltzmann

distribution can be expressed as

bτ (s) ∝ exp

{
−GIC(s)

κτ

}
.
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A general form the the GIC(s) can be expressed as

GIC(s) = −2l(β(s)) + penλ(|s|),

where |s| =
∑p

i=1 sj gives the total number of covariates in the model, l(β(s)) is the log-

likelihood of the model s, and penλ(|s|) is the penalty function, which increases when the

number of covariates selected in the model increases. λ is the tuning parameter, which

controls the degrees of penalization.

Various forms of GIC(s) can be utilized as the model selection criterion. Among all possi-

ble choices, the extended Bayesian information criteria (EBIC) proposed by Chen and Chen

(2008) provides the benefit of model selection consistency with high-dimensional survival

data. It is thus utilized as the model selection criterion for the remainder of this chapter.

The EBIC is defined as

EBICγ(s) = −2l
(
β̂(s)

)
+ log(n0) |s|+ 2γ log

(
p

|s|

)
, (3.7)

where β(s) denotes the sub-vector of β with indices contained in s, β̂(s) is the maximum

likelihood estimator of β(s), |s| =
∑p

i=1 sj gives the number of covariates included in the

model,
(
p
|s|

)
provides the number of all possible models with |s| indices, and γ is a tuning

parameter between 0 and 1.

In addition to employing the EBIC(s) as the model selection guidance, another intriguing

and beneficial component relies on the tuning parameter γ. Instead of treating γ as a fixed

number, we treat it as a random variable and provide a way of generating and updating

it based on its posterior distribution. As it is shown in the simulation study, under our

proposed framework, treating γ as a random variable improves the prediction performance.

The details are discussed in section 3.3.3.
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3.3.3 Proposed algorithm

Combining the strength of the median probability model and the Boltzmann distribution, we

propose a new best predictive model selection method under the frequentist framework. The

proposed method employs the idea of EBICγ(s) (3.7) as the guidance of model selection. As

it has been shown in Chen and Chen (2008), assume that p = O(nK) for some constant K,

if γ > 1− 1
2K

, then, under the asymptotic identifiability condition, the probability that any

model other than the true model will be selected tends to zero, which means the consistency

property can be held. So we set the range for the tuning parameter as γ > 1 − 1
2K

, where

K = log p
logn

.

Also, motivated by the idea of Gibbs sampling, we propose a way of generating a can-

didate model based on the current model by simply adding or removing one new predictor.

Let s = (s1, ..., sp)
T ∈ Rp be the current model. For a given j, we define a candidate model

by s∗ = (s∗1, . . . , s
∗
p) such that s∗k = sk if k ̸= j, and s∗j = 1− sj.

Utilizing the Boltzmann distribution, given a value of the tuning parameter γ , the

posterior distribution of a model s can be derived as

p(s|γ) ∝ exp

{
−EBIC(s)

2τ

}
I(|s| ≤ kn)

∝ exp

{
−
−2l(β(s)) + log(n0)||β(s)||0 + 2γ log

(
p
|s|

)
2τ

}
I(|s| ≤ kn)

∝ exp

{
−
γ log

(
p
|s|

)
τ

}
I(|s| ≤ kn)

∝
(

p

|s|

)−γ

I(|s| ≤ kn)

= m(s),

where kn represents the maximum number of covariates selected in the model, which controls

the model complexity.

Also, note that
∑kn

|k|=1m(k) = ∞, it gives the fact that the posterior distribution of s is

improper. In order to make it a proper posterior distribution, we make the transformation

40



as follows:

p(s|γ) ∝ m(s)∑kn
|k|=1m(k)

∝ m(s)∑kn
|k|=1

(
p
|k|

)(
p
|k|

)−γ

∝

(
p
|s|

)−γ∑kn
|k|=1

(
p
|k|

)1−γ I(|s| ≤ kn).

For the posterior distribution of γ, in order to make it aligned with the principle of

consistency, we set it as γ > 1− 1
2K

with a uniform distribution, where K = log p
logn

. Then the

posterior distribution of γ can be derived via the Bayes’ theorem as follows:

p(γ|s) ∝p(s|γ)p(γ)

∝ 1∑kn
|k|=1

(
p
|k|

)1−γ
/
(
p
|s|

)−γ I(|s| ≤ kn)I(1− logn
2 log p

,∞)(γ).

With all the information above, our proposed method can be summarized with the fol-

lowing procedure:

� Step 1: Start from an initial state of a candidate model s(0) = (s
(0)
1 , s

(0)
2 , ..., s

(0)
p ) with a

initial value of γ = γ0, set an initial value for kn, which controls the maximum number

of covariates selected in the model.

� Step 2: Given γ, implement the Gibbs sampler to generate a new state s(i) based on

the current state s(i−1) with the following rules:

– Generate s(i) =
(
s
(i)
1 , s

(i)
2 , · · · , s(i)p

)
by setting s

(i)
1 = 1− s

(i−1)
1 and s

(i)
l = s

(i−1)
l for

l ̸= 1.

If
∑p

j=1 s
(i)
j > kn, skip the following and move to generate s

(i)
2 . Otherwise, calcu-

late EBIC(s(i)) and EBIC(s(i−1)).

Generate a Bernoulli trial with success probability w defined in (3.8). If we obtain

1, keep s
(i)
1 = s

(i)
1 , otherwise, update s

(i)
1 = s

(i−1)
1 .
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– Generate s(i) =
(
s
(i)
1 , s

(i)
2 , · · · , s(i)p

)
by setting s

(i)
2 = 1− s

(i−1)
2 and s

(i)
l = s

(i−1)
l for

l ̸= 2.

If
∑p

j=1 s
(i)
j > kn, skip the following and move to generate s

(i)
3 . Otherwise, calcu-

late EBIC(s(i)) and EBIC(s(i−1)).

Generate a Bernoulli trial with success probability w defined in (3.8). If we obtain

1, keep s
(i)
2 = s

(i)
2 , otherwise, update s

(i)
2 = s

(i−1)
2 .

...

– Generate s(i) =
(
s
(i)
1 , s

(i)
2 , · · · , s(i)p

)
by setting s

(i)
p = 1− s

(i−1)
p and s

(i)
l = s

(i−1)
l for

l ̸= p.

If
∑p

j=1 s
(i)
j > kn, skip the following and move to generate s

(i+1)
1 . Otherwise,

calculate EBIC(s(i)) and EBIC(s(i−1)).

Generate a Bernoulli trial with success probability w defined in (3.8). If we obtain

1, keep s
(i)
p = s

(i)
p , otherwise, update s

(i)
p = s

(i−1)
p .

The success probability in the Bernoulli trial is defined as

w =
exp{− 1

κτ
EBIC(s(i))}

exp{− 1
κτ
EBIC(s(i))}+ exp{− 1

κτ
EBIC(s(i−1))}

. (3.8)

� Step 3: Given s(i), generate a new sample of γ via the grid method as follows:

– Define a sequence of values for γ = (γ1, γ2, ...γg).

– Calculate the probability for each γj via the posterior probability as follows:

p(γj|s(i)) ∝
1∑kn

|k|=1

(
p
|k|

)1−γj/
(

p
|s(i)|

)−γj
I(|s(i)| ≤ kn)I(1− logn

2 log p
,∞)(γj).

– Randomly pick up a value γ∗ ∈ (γ1, γ2, ...γg) with the success probability of wj

for each γj

wj =
p(γj|s(i))∑g
j=1 p(γj|s(i))

,
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update γ = γ∗.

� Step 4: Repeat Step 2 and 3 for R times after some burning period (throw away a cer-

tain number of the initially generated samples), and obtain the R samples (s(1), ...s(R)).

Calculate the fraction of times each variable is selected in the R samples:

pj =

∑R
i=1 I(s

(i)
j = 1)

R
.

� Step 5: The best predictive model s∗ is defined as the one containing the covariates

with pi ≥ 1/2.

s∗j =


1, if pj ≥

1

2
,

0, othewise.

Denote s = (s1..., sp)
T ∈ Rp and sj ∈ {0, 1} for j = 1, 2, ..., p. The details of the proposed

algorithm works as follows:
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Algorithm 2 Best predictive model selection

Start from an initial state of s(0) = (s
(0)
1 , s

(0)
2 , ..., s

(0)
p ), and an initial value of γ = γ0, set the

upper bound for the number of covariates as kn, the algorithm works as the following steps:

� Step 1: For j = 1, 2, ..., p, generate a new candidate model s(i) based on the current
candidate model s(i−1) as follows:

(a) Define s(i) by s
(i)
j = 1− s

(i−1)
j and s

(i)
l = s

(i−1)
l for l ̸= j.

(b) If
∑p

j=1 s
(i)
j > kn, skip Step (c) and move to s

(i)
j+1.

Otherwise, calculate EBIC(s(i)) and EBIC(s(i−1))

(c) We keep s
(i)
j = s

(i)
j if we obtain 1 from a Bernoulli trial with the success probability:

w =
exp

{
− 1

κτ
EBIC(s(i))

}
exp

{
− 1

κτ
EBIC(s(i))

}
+ exp

{
− 1

κτ
EBIC(s(i−1))

} .
Otherwise , update s

(i)
j = s

(i−1)
j

� Step 2: Given s(i), define a sequence of values for γ = (γ1, γ2, ...γg) and pick up a
sample γ∗ ∈ (γ1, γ2, ...γg) with the success probability

wγj =
p(γj|s(i))∑g
j=1 p(γj|s(i))

,

p(γj|s(i)) ∝
1∑kn

|k|=1

(
p
|k|

)1−γj/
(

p
|s(i)|

)−γj
I(|s(i)| ≤ kn)I(1− logn

2 log p
,∞)(γj),

update γ = γ∗

� Step 3: Repeat Step 1 and 2 for R times after some burning period and obtain R
samples (s(1), ...s(R)). Calculate the proportion for each of the element equals 1:

pj =

∑R
i=1 I(s

(i)
j = 1)

R
.

� Step 3: The best model (s∗) is the one containing the covariates with pi ≥ 1/2.

s∗j =

1, if pj ≥
1

2
,

0, othewise.
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3.4 Simulation study

In this section, we conduct the simulation study to investigate the predictive performance

of our proposed method under the accelerate failure time (AFT) model.

When we implement our proposed method in Algorithm 2, we set s0 = (0, 0, ..., 0),

R = 200, τ = 1, κ = 2 and kn = n
3/4
0 (n0 gives the number of uncensored observations in the

survival data) for our initial setting, called “Proposed method”. The first 20% generated

samples are thrown away as the burning period. To investigate the benefit of treating γ as

a random variable, we also consider fixing γ as one, called “Proposed method (γ = 1)”.

To compare the performance, we consider the following three popular methods which are

commonly employed in high-dimensional variable selection: (1) lasso (Tibshirani, 1996), (2)

SCAD (Fan and Li, 2001), (3) MCP (Zhang, 2010). The simulation study is conducted by

R, where lasso, SCAD and MCP are conducted by the cv.nvcsurv function in the ncvreg

package, under which the 10-fold cross-validation is employed for finding the best tuning

parameter to determine the selected model.

The simulation data are separately generated for two parts, one for the training data and

another for the testing data. For training data, the survival time T ∗
i and censoring time Ci

for i = 1, · · · , n independent individuals are generated as follows:

� xi
iid∼ Np(0,Σ) with Σ = (σij)p×p and σij = 0.5|i−j|.

� β: the p-dimensional coefficient vector with values: β1 = β9 = 1.4, β4 = β12 = −1.3,

β5 = β13 = 1.2 and βj = 0 for j ̸= 1, 4, 5, 9, 12, 13.

� T ∗
i = − log(Ui)× exp(xT

i β), where Ui
iid∼ Unif(0, 1).

� Ci
iid∼ Exp(η), where η=0.22 (for about 25% censoring rate), or η=(0.47,0.46,0.45) (for

about 40% censoring rate).

For the testing data, the survival time T ∗∗
i for i = 1, · · · , n independent individuals are

generated as follows:

� x∗∗
i

iid∼ Np(0,Σ) with Σ = (σij)p×p and σij = 0.5|i−j|.
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� β: β1 = β9 = 1.4, β4 = β12 = −1.3, β5 = β13 = 1.2 and βj = 0 for j ̸= 1, 4, 5, 9, 12, 13.

� T ∗∗
i = − log(Ui)× exp(x∗∗T

i β), where Ui
iid∼ Unif(0, 1).

To consider various high-dimensional data settings, we implement the following six sce-

narios in the data generating process:

Training data:

(1) n = 200, p = 100, censor rate= 25% censoring time C ∼ exp(0.12).

(2) n = 300, p = 100, censor rate= 40% censoring time C ∼ exp(0.47).

(3) n = 200, p = 500, censor rate= 25% censoring time C ∼ exp(0.12).

(4) n = 300, p = 500, censor rate= 40% censoring time C ∼ exp(0.46).

(5) n = 200, p = 1000, censor rate= 25% censoring time C ∼ exp(0.12).

(6) n = 300, p = 1000, censor rate= 40% censoring time C ∼ exp(0.45).

Testing data:

(1) n∗ = 100, p = 100.

(2) n∗ = 100, p = 100.

(3) n∗ = 100, p = 500.

(4) n∗ = 100, p = 500.

(5) n∗ = 100, p = 1000.

(6) n∗ = 100, p = 1000.

To evaluate the performance of prediction, we calculate the mean squared prediction error

(MSPE) for each method over 100 Monte Carlo replications, where the MSPE is calculated

as:

MSPE =

∑100
i=1

∑n∗

j=1(ŷij − yij)
2

100× n∗ ,

where ŷij = log(T̂ij) is the log of the predicted survival time for the jth individual from the

ith testing dataset, and yij = log(Tij) is the log of the observed survival time.

In addition, to access the model identification performance, we calculate the false-positive

rate (FPR) and false-negative rate (FNR),

FPR =
FP

TN+FP
, FNR =

FN

TP+FN
,
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where TP, FP, TN and FN denote the number of true non-zeros, false non-zeros, true zeros,

and false zeros respectively.

Table 3.1: Simulation result with censoring rate=25%

(n, p) Method MSPE FPR FNR

(200,100) Proposed method 1.6727 (0.0326) 0.0023 (0.0005) 0.0000 (0.0000)

Proposed method(γ = 1) 1.6784 (0.0325) 0.0029 (0.0006) 0.0000 (0.0000)

LASSO 2.1605 (0.0414) 0.2566 (0.0064) 0.0000 (0.0000)

SCAD 1.7283 (0.0340) 0.0178 (0.0022) 0.0000 (0.0000)

MCP 1.6969 (0.0339) 0.0090 (0.0014) 0.0000 (0.0000)

(200,500) Proposed method 1.6724 (0.0318) 0.0022 (0.0005) 0.0000 (0.0000)

Proposed method(γ = 1) 1.6776 (0.0323) 0.0029 (0.0006) 0.0000 (0.0000)

LASSO 2.7039 (0.0556) 0.3397 (0.0057) 0.0000 (0.0000)

SCAD 1.8293 (0.0362) 0.0416 (0.0039) 0.0000 (0.0000)

MCP 1.7259 (0.0344) 0.0122 (0.0021) 0.0000 (0.0000)

(200,1000) Proposed method 1.6730 (0.0313) 0.0026 (0.0005) 0.0000 (0.0000)

Proposed method(γ = 1) 1.6775 (0.0312) 0.0030 (0.0006) 0.0000 (0.0000)

LASSO 2.9797 (0.0531) 0.3757 (0.0053) 0.0000 (0.0000)

SCAD 1.8768 (0.0365) 0.0617 (0.0043) 0.0000 (0.0000)

MCP 1.7302 (0.0341) 0.0140 (0.0022) 0.0000 (0.0000)
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Table 3.2: Simulation result with censoring rate=40%

(n, p) Method MSPE FPR FNR

(300,100) Proposed method 1.6564 (0.0304) 0.0007 (0.0003) 0.0000 (0.0000)

Proposed method(γ = 1) 1.6602 (0.0305) 0.0012 (0.0003) 0.0000 (0.0000)

LASSO 2.0389 (0.0378) 0.2793 (0.0076) 0.0000 (0.0000)

SCAD 1.6890 (0.0319) 0.0140 (0.0028) 0.0000 (0.0000)

MCP 1.6719 (0.0316) 0.0049 (0.0013) 0.0000 (0.0000)

(300,500) Proposed method 1.6553 (0.0309) 0.0015 (0.0004) 0.0000 (0.0000)

Proposed method(γ = 1) 1.6587 (0.0310) 0.0018 (0.0047) 0.0000 (0.0000)

LASSO 2.5785 (0.0464) 0.3581 (0.0070) 0.0000 (0.0000)

SCAD 1.7502 (0.0330) 0.0276 (0.0048) 0.0000 (0.0000)

MCP 1.6873 (0.0313) 0.0086 (0.0023) 0.0000 (0.0000)

(300,1000) Proposed method 1.6533 (0.0302) 0.0018 (0.0005) 0.0000 (0.0000)

Proposed method(γ = 1) 1.6638 (0.0304) 0.0023 (0.0006) 0.0000 (0.0000)

LASSO 2.7310 (0.0482) 0.4072 (0.0062) 0.0000 (0.0000)

SCAD 1.7849 (0.0347) 0.0395 (0.0058) 0.0000 (0.0000)

MCP 1.7002 (0.0314) 0.0124 (0.0026) 0.0000 (0.0000)

The simulation result is summarized in Tables 3.1 and 3.2. From the result above, we can

find that our proposed method always gives the smallest value of MSPE among all the six

scenarios, which means the proposed method performs best in prediction among all methods.

Also, treating γ in the EBIC as a random variable gives a smaller value of MSPE than fixing

γ as 1, which implies the posterior distribution we assigned to γ provides efficiency in best

predictive model selection.

For model identification, all of the methods get 0 for FPR, which means they all have the

ability to identify the true-positive (non-zero) predictors. However, for FNR, our proposed

method always provides the smallest value, which means the proposed method is able to select
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the model with the smallest number of redundant predictors. Also, treating γ in EBIC as a

random variable gives a smaller value of FPR than fixing it as 1, which implies the posterior

distribution we assigned to γ provides efficiency in improving model identification. Among

other methods, MCP gives the smallest value of FPR, while lasso provides the largest value,

which implies that it tends to select too many redundant variables.

The distribution of γ in EBIC is shown in 3.1. As can be seen in the histogram, the

majority of the values of γ are generated inside a certain range of (1.0, 1.2). Despite the

fact that the generated values are quite close to one, considering γ as a random variable

still provides the advantages of improving the prediction precision and model identification

accuracy.

In summary, compared with lasso, SCAD, and MCP, our proposed method performs best

both in the performance of prediction and model identification. Also, treating γ in EBIC

as a random variable gives better results than fixing it as 1, which implies the posterior

distribution we assigned to γ provides benefits for high-dimensional survival model selection.

3.5 Real data application

In this section, we conduct the real data analysis with the Veteran’s Administration lung

cancer trial data (Kalbfleisch and Prentice, 2011). The dataset is publicly available and can

be accessed from the R package ncvreg.

The original data contains information about 137 patients with eight covariates: stime

(survival or follow-up time in days), status (dead or censored), treat (treatment: standard

or test), age (patient’s age in years), Karn (Karnofsky score of patient’s performance on a

scale of 0 to 100), diag.time (times since diagnosis in months at entry to trial), cell (one of

four cell types), and prior (prior therapy or not).

In order to meet the high-dimensional setting, we generate 800 fake variables, each of

the fake variables is generated based on bootstrapping from one of the eight variables in

the original dataset. In this way, we have a total number of 808 covariates. Among the

137 patients, 128 of them have observed survival times, while the remaining nine patients’
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survival times are censored, and the censoring rate is 6.57%.

When implementing the algorithm, we randomly split the data into two parts. The

training data contains 80% of the randomly selected observed individuals and 80% of the

randomly selected censored individuals, while the testing data contains the remaining 20%

observed individuals. We repeat the random splitting 100 times, each time we apply our

method and compare it with lasso, SCAD, and MCP in terms of MSPE. For each of the

replications in our proposed method, we run the Gibbs sampling 300 times and throw away

the first 100 generated samples as the burning period.

Table 3.3: Real data analysis with Veteran’s Administration lung cancer trial data

MSPE Average # of covariates selected
Proposed 1.6132 (0.0498) 1.07
LASSO 1.8439 (0.0609) 11.17
SCAD 1.8331 (0.0595) 8.51
MCP 1.7464 (0.0611) 3.72

The comparison result is shown in Table 3.3. Compared with other methods, it is worth

noticing that, on average, our proposed method provides the smallest value of the MSPE,

which means it finds the model with the smallest prediction error. Hence, we can conclude

that our proposed method performs best for the best predictive model selection.

3.6 Concluding remarks

We propose the best predictive model selection method by incorporating the idea of the me-

dian probability model with the Boltzmann distribution. The algorithm translated the initial

notion from a Bayesian framework to a new idea of the frequentist framework. It provides

a way of selecting the model with the best prediction performance for high-dimensional sur-

vival data. The superiority of the proposed method has been demonstrated by the simulation

study and real data analysis.

While we focus our attention on the AFT model with Weibull distribution in this chapter,
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the proposed method can be easily adapted to different parametric survival models with

different types of data distribution. In addition, various choices of GIC can be taken into

account in our proposed framework.
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Figure 3.1: The distribution of γ when treating it as a random variable in EBIC under
different sample sizes (n), number of covariates (p), and censoring rates.
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Chapter 4

Robust variable selection approach to

survival regression models

4.1 Introduction

In survival analysis, model selection has attracted growing attention from data scientists. In

particular, with the advent of high-dimensional data, variable selection has become a critical

step in overcoming the curse of dimensionality. Some of the semi-parametric and parametric

models, like the Cox proportional hazards model (Cox, 1972) and the accelerated failure

time (AFT) model (Wei, 1992), are widely utilized for survival data analysis. Despite the

fact that these models are popular in survival analysis, they have some strict assumptions to

reveal the relationship between the response and the covariates to guarantee some important

properties, like the identifiability and consistency of the model selection results. However, in

the real-life world, these assumptions can be violated (Gail et al., 1984; Lagakos et al., 1984;

Lagakos, 1988; Morgan et al., 1986; O’neill, 1986; Solomon, 1984; Struthers and Kalbfleisch,

1986). In this chapter, we will develop a robust model selection method in the presence of

misspecification problems.

In a parametric survival modeling context, the robust covariance matrix estimator, called

the “sandwich” variance estimator, has been extensively studied (Gail et al., 1988; Huber,
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1967; Kent, 1982; Royall, 1986; White, 1982). The “sandwich” estimator is known to be

a proper variance estimator even when the model is misspecified. Borrowing the idea of

the sandwich estimator, we develop a pseudo log-likelihood estimator, which will be used

for developing a robust model selection criterion. However, finding the best model for the

proposed model selection criterion is challenging since it can be used only for pairwise model

comparison. Using the notion of simulated annealing (Kirkpatrick et al., 1983), we develop

a probabilistic search algorithm for finding the global optimum model with respect to the

proposed model selection criterion.

The rest of this chapter is organized as follows. Model misspecification and robust in-

ference are discussed in Chapter 4.2. In Chapter 4.3, we propose a robust model selection

criterion for pairwise comparison. In Chapter 4.4, we extend the proposed idea to high-

dimensional survival model selection problems. In Chapter 4.5, future works are discussed.

4.2 Model misspecification investigation

The problem of model misspecification occurs in many scenarios with real data since some

structural assumptions can be easily violated. For example, the Cox proportional hazards

model assumes the following relationship between failure time t and covariates vector x:

h(t) = h0(t)× exp(xTβ), (4.1)

where h0(t) is the unspecified baseline hazard function, and β = (β1, . . . , βp)
T is the p-

dimensional coefficient vector, which is of our primary interest. Under the Cox proportional

hazards model (4.1) with the right-censored scenario, estimation of β can be obtained by

maximizing the partial likelihood function (Cox, 1975),

L(β) =
n∏

i=1

[
exp(xT

i β)∑
l∈R(Ti)

exp(xT
l β)

]δi

,
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where R(Ti) is the risk set at time Ti, which represents the number of individuals who

survived at least until time Ti. Then the corresponding partial log-likelihood function is

given as

l(β) =
n∑

i=1

δi

xT

i β − log

 ∑
l∈R(Ti)

exp(xT

l β)


 .

If the assumption (4.1) is true, then the maximum partial likelihood estimator β̂ can have

the asymptotic normality as follows (Andersen and Gill, 1982) :

√
n(β̂ − β)

d→ N(0, V ), (4.2)

where V can be consistently estimated by Â(β̂)−1 such that

Â(β̂) = − 1

n

∂2l(β)

∂β2

∣∣∣∣
β=β̂

.

However, when the assumption (4.1) is violated, Â(β̂)−1 will not be a consistent estimator of

V (Gail et al., 1984; Lagakos et al., 1984; Lagakos, 1988; Morgan et al., 1986; O’neill, 1986;

Solomon, 1984; Struthers and Kalbfleisch, 1986).

Another example comes from a widely used parametric model, the so-called accelerated

failure time (AFT) model. The AFT model is defined by

Yi = log Ti = xT

i β + σϵi, i = 1, . . . , n,

where σ is the scale parameter, and ϵi is the random disturbance term, usually assumed to

be independent and identically distributed with some density function f(ϵ). For survival
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data, the likelihood function is obtained as

L(β) =

{ ∏
i:δi=1

f(Ti | β)

}
×

{ ∏
i:δi=0

[1− F (Ti | β)]

}

=
n∏

i=1

f(Ti | β)δiS(Ti | β)1−δi ,

=
n∏

i=1

[
f(Ti | β)
S(Ti | β)

]δi
S(Ti, | β),

where δi = I{Ti < Ci} is the censoring indicator for individuals i = 1, · · · , n, f(· | β) is

the probability density function, F (· | β) represents the cumulative distribution function,

S(· | β) is the survival function, and h(· | β) denotes the hazard function. By assuming the

Weibull distribution for the AFT model, we have

L(β, σ|T , δ) =
n∏

i=1

{
1/σ

exp(xT
i β)

[
t

exp(xT
i β)

] 1
σ
−1
}δi

exp

[
−
(

t

exp(xT
i β)

) 1
σ

]
.

Then, the log-likelihood function is

l(β, σ|T , δ) = log
1

σ

n∑
i=1

δi +

(
1

σ
− 1

) n∑
i=1

δi(log ti)

− 1

σ

n∑
i=1

δi(x
T

i β)−
n∑

i=1

(
ti

exp(xT
i β)

) 1
σ

.

Let β̂ be the maximum likelihood estimator of β under the AFT model. Then, valid inference

can be made by using the asymptotic distribution of β̂. However, when the AFT model is

misspecified, making a valid inference is difficult since the variance-covariance matrix of β̂

cannot be properly estimated (Hattori, 2012; Ishii et al., 2021).

As illustrated above, the validity of the likelihood function (or the partial likelihood

function) hinges on the correct specification of the model. To make the robust inference, the

use of the sandwich estimator has been extensively studied (Gail et al., 1988; Huber, 1967;

Kent, 1982; Royall, 1986; White, 1982). Assume θ is the parameter of interest. Let θ̂ be the
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maximum likelihood estimator of θ with respect to the log-likelihood function l(θ). Then,

under some mild regularity conditions, it has been shown that V in (4.2) can be consistently

estimated by the sandwich estimator,

V̂ (θ̂) = Â−1(θ̂)B̂(θ̂)Â−1(θ̂),

where

B̂(θ) =
1

n

∂l(θ)

∂θ
.

As a result, the variance-covariance matrix of θ̂ can be properly estimated by V̂ (θ̂)/n even

with a misspecified log-likelihood function. This motivates us to develop a robust pseudo

log-likelihood estimator based on the sandwich estimator. More details are given in the

following section.

4.3 Robust model selection criterion

As discussed in Chapter 2.2, the following generalized information criterion (GIC) plays an

important role in model selection with high-dimensional survival data:

GIC(s) = −2l(β̂(s)) + pen(|s|),

where s = (s1, . . . , sp) represents a candidate model such that βj ̸= 0 if sj = 1 and βj = 0

if sj = 0 for j = 1, . . . , p, |s| =
∑p

j=1 sj, β(s) denotes the sub-vector of β corresponding to

sj = 1 (j = 1, . . . , p), and β̂(s) is the maximum likelihood estimation of β(s) under model

s.

In GIC, the log-likelihood, l(β̂(s)), depends on the model assumption. In other words,

model selection using GIC can suffer from the problem of model misspecification. To address

this issue, using the sandwich estimator, we propose a robust pseudo log-likelihood under
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the full model as follows:

−2l̃(β) = (β̂ − β)TΣ̂−1(β̂ − β),

where β̂ is the maximum likelihood estimator of β under the full model and Σ̂ is the sandwich

estimator of var(β̂) under the full model. Let β̃(s) be the p×1 vector which consists of β̂(s)

and zeros accordingly. Then, the robust pseudo log-likelihood under model s is obtained as

−2l̃(β̃(s)) = (β̂ − β̃(s))TΣ̂−1(β̂ − β̃(s)).

Hence, we define the robust model selection criterion, called pseudo-GIC by

pseudo-GIC(s) = −2l̃(β̃(s)) + pen(|s|). (4.3)

One of the limitations of the proposed idea is that the dimension of the full model must

be much lower than the sample size. However, in the high-dimensional data setting, the

full model size is large, even larger than the sample size. In this case, the proposed idea is

infeasible. To address this issue, we modify our idea for pairwise model comparison.

4.3.1 Robust pairwise model comparison

Assume we have two candidate models, s1 and s2, such that s1 is nested in s2 (i.e., s1 ⊂ s2).

Then, by treating s2 as the full model, a modified pseudo log-likelihood can be defined by

−2l̃(β(s2)) = (β̂(s2)− β(s2))
TΣ̂−1

s2
(β̂(s2)− β(s2)),

where β̂(s2) is the maximum likelihood estimator of β(s2) and Σ̂s2 is the sandwich estimator

of var(β̂(s2)). Let β̃s2(s1) be |s2| × 1 vector, which consists of β̂(s1) and zeros accordingly.

Hence, the pseudo log-likelihood evaluated at β̃s2(s1) is given as

−2l̃(β̃s2(s1)) = (β̂(s2)− β̃s2(s1))
TΣ̂−1

s2
(β̂(s2)− β̃s2(s1)).
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Hence, the difference of pseudo log-likelihood between s1 and s2 can be defined by

∆s1s2 =2l̃(β̂(s2))− 2l̃(β̃s2(s1))

=0 + (β̂(s2)− β̃s2(s1))
TΣ̂−1

s2
(β̂(s2)− β̃s2(s1))

=(β̂(s2)− β̃s2(s1))
TΣ̂−1

s2
(β̂(s2)− β̃s2(s1)).

As a result, pairwise model comparison can be performed by using the following model

selection criterion:

δs1s2 = ∆s1s2 + pen(|s1|)− pen(|s2|)

= (β̂(s2)− β̃s2(s1))
TΣ̂−1

s2
(β̂(s2)− β̃s2(s1)) + pen(|s1|)− pen(|s2|).

If δs1s2 < 0, model s1 is better than s2. Otherwise, s2 should be preferred than s1.

Now, we consider a more general case. Assume that we have two candidate models,

s1 and s2, such that s1 ̸⊂ s2 and s1 ̸⊃ s2. In this case, the full model can be defined

by s∗ = s1 ∪ s2 such that s∗j = 1 if s1j = 1 or s2j = 1. Then, the difference of pseudo

log-likelihood between s1 and s2 can be expressed as

∆̃s1s2 = ∆s1s∗ −∆s2s∗

= (β̂(s∗)− β̃s∗(s1))
TΣ̂−1

s∗ (β̂(s
∗)− β̃s∗(s1))

−(β̂(s∗)− β̃s∗(s2))
TΣ̂−1

s∗ (β̂(s
∗)− β̃s∗(s2)),

where β̂(s∗) is the maximum likelihood estimator of β(s∗) and Σ̂s∗ is the sandwich estimator

of var(β̂(s∗)). Hence, pairwise model comparison can be performed by the following model

selection criterion:

δ̃s1s2 =∆̃s1s2 + pen(|s1|)− pen(|s2|).

If δs1s2 < 0, s1 is preferred than s2. Otherwise, s2 is preferred. The proposed model selection
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criterion includes many existing model selection criteria as a special case. For example,

suppose that we consider the extended Bayesian information criterion (EBIC) (Chen and

Chen, 2008), which is one of the most popular model selection criteria for high-dimensional

data:

EBICγ(s) = −2l(β̂(s)) + |s| log(n0) + 2γ log

(
p

|s|

)
,

where γ is a tuning parameter between 0 and 1. Then, the proposed model selection criterion

for pairwise comparison reduces to

δ̃EBICs1s2 = ∆̃s1s2 + pen(|s1|)− pen(|s2|)

= (β̂(s∗)− β̃s∗(s1))
TΣ̂−1

s∗ (β̂(s
∗)− β̃s∗(s1))

−(β̂(s∗)− β̃s∗(s2))
TΣ̂−1

s∗ (β̂(s
∗)− β̃s∗(s2))

+(|s1| − |s2|) log(n0) + 2γ log

{(
p

|s1|

)
/

(
p

|s2|

)}
.

4.3.2 Limitation of pairwise comparison

The proposed model selection criterion provides a robust method for pairwise model com-

parison. Keep in mind that our main objective is to identify the global optimal model among

multiple candidate models. Unfortunately, due to the non-convexity of the model selection

criterion, this pairwise comparison approach can not be directly used for the purpose of

multiple model comparisons.

As discussed in Chapter 2, the stochastic optimization approach can be employed to

identify the global optimum model in a non-convex optimization problem. Specifically, we

repeatably implement the pairwise comparison procedure within the proposed simulated

annealing algorithm. More details are given in the following section.
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4.4 Robust global optimal model selection

To extend our proposed idea to multiple model comparisons, we borrow the idea of simulated

annealing (SA) from Chapter 2.4.1. Let ŝ = (ŝ1, ŝ2, ..., ŝp) indicate the global best model,

that is, ŝ satisfies δ̃ŝ,s < 0 for every candidate model s. However, when there are many

candidate models, it is computationally infeasible to consider all possible combinations of

pairs. To address this issue, we propose the following stochastic search procedure:

� Step 1: Start from an initial state of s = (s1, s2, ..., sp) with an initial temperature

τ = τ0, use ŝ = (ŝ1, · · · , ŝp) to store the best model, set r = 0, which counts the

number of iterations, and set an initial value for k, which controls the maximum

number of covariates selected in the model.

� Step 2: Iterate the following steps for j = 1, . . . , p:

– Generate s∗ = (s∗1, s
∗
2, · · · , s∗p) by setting s∗j = 1− sj and s∗ℓ = sℓ for ℓ ̸= j.

– If
∑p

j=1 s
∗
j > k, move to the next iteration; otherwise, calculate δss∗ and proceed

the following steps:

(i) If δss∗ > 0, calculate δ̃s∗ŝ:

If δ̃s∗ŝ < 0, update ŝ = s∗ and set r = 0, τ = τ0. Otherwise, set r = r + 1.

(ii) If δss∗ ≤ 0, calculate δ̃sŝ:

If δ̃sŝ < 0, update ŝ = s and set r = 0, τ = τ0. Otherwise, set r = r + 1.

– Generate z ∼ Ber(ω), where

ω =
1

1 + exp[− δss∗
κτ

]
.

If z = 1, update s = s∗. Otherwise, stay s = s.

� Step 3: Repeat Step 2 until r > pm (m has a prespecified value).
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� Step 4: Repeat Step 2 and 3 with s = ŝ, r = 0 for a sequences of values of τ =

{τ2, τ3, · · · , τmax}, where τt+1 > τt, until τ = τmax, where τmax is the maximum temper-

ature with a prespecified value.

Note that the final model ŝ from the proposed algorithm will converge to the global optimum

model as r → ∞. Also, note that the temperature τ is introduced to improve the chance of

jumping out from the local trap.

4.5 Future work and discussion

In this chapter, we have developed a robust model selection criterion for addressing model

misspecification problems. An important feature is that the proposed framework includes

many model selection criteria as a special case. In addition, the proposed algorithm has

wide applicability to high-dimensional model comparison. While traditional model selection

procedures require the structural assumption for the data to construct the log-likelihood

function, the proposed model comparison method only requires the regression coefficient

estimate and its variance estimator. It is important to note that the performance of the

proposed idea has not been fully investigated yet. Hence, simulation study and real data

analysis are required for future work.
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Chapter 5

Concluding remarks

In this dissertation, we have proposed distinct strategies for addressing high-dimensional

survival model selection problems. The proposed methods provide various ways for deter-

mining the optimum model archiving one of the properties: (1) the global optimal model

that optimizes the model selection criterion, (2) the best model that guarantees the best

prediction performance, (3) the global optimal model when a model is misspecified. The

contributions, extensions, as well as limitations of our proposed methods can be summarized

in the following aspects.

5.1 Contributions

We have developed innovative strategies for high-dimensional survival model selection. The

proposed methods are motivated by statistical mechanics, which comes from the field of

physics. Our key idea is to incorporate the notion of Bayesian inference into a model selection

framework via the Boltzmann distribution. The Boltzmann distribution is used to define

the probability distribution associated with the model selection criterion in the simulated

annealing scheme that performs global optimization via stochastic search algorithms. The

proposed framework serves as a bridge between Bayesian model selection and frequentist

model selection by leveraging the idea of statistical mechanics. When compared to other
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popular methods, the proposed methods provide outstanding performance. The simulation

study and real data analysis have shown that the improvement is significant.

5.2 Extensions

While we have restricted our attention to the Cox proportional hazards model and the

accelerate failure time model, the proposed methods perform well under various survival

data models. The proposed ideas can also be adapted to a wide range of models, including

non-parametric models, semi-parametric models, and parametric models with various types

of data. As a result, a broader range of statistical applications can be encompassed within

our proposed framework. For example, our proposed idea can be implemented to solve the

problem of high-dimensional data model selection for linear regression or generalized linear

regression.

5.3 Limitations

As shown in the simulation studies, our proposed methods perform well for selecting the

best model for model fitting and prediction. Although model selection has been our primary

focus of this dissertation, in practice, computational efficiency is also an important issue to

be taken into consideration. The simulation result shows that our proposed method requires

more time for implementation than the existing methods. This high computation cost can

be considered as the major drawback of our proposed method. As we are dealing with high-

dimensional survival data, it is important to improve computational efficiency. Various ways

of adjustments could help us to speed up the computation. For example, we can speed up the

R implementation by modifying our R codes with high-performance computation packages

(e.g. Rcpp). At this moment, we will leave the improvement of computation efficiency for

future work.
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Appendix A

R code

1 ### y: survival time

2 ### status: censoring indicator

3 ### x: covariates with dimension n by p

4 ### tau: temperature

5 ### k: upper bound controls the # of covariates in the model

6 n0 <- sum(status)

7 BIC <-function(s)

8 {

9 if(sum(s) == 0)){

10 fit0 <- coxph(Surv(y, status!=0) ~ 1);

11 return(-2*fit0$loglik)

12 }else{

13 fit <- coxph(Surv(time , status) ~ x[,s]);

14 return(-2*fit$loglik [2]+ log(n0)* length(fit$coef))

15 }

16 }

17 s <- rep(0,ncol(x))
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18 best.s <- s

19 best.BIC <- BIC(s)

20 r <- 1

21 while(r < m*p)

22 {

23 s.prev <- s

24 for (j in 1:ncol(x))

25 {

26 if( length(which(s==1)) < k ) {

27 s.1 <- s

28 s.1[j] <- 1

29 s.0 <- s

30 s.0[j] <- 0

31 BIC1 <- BIC(which(s.1!=0))

32 BIC0 <- BIC(which(s.0!=0))

33 BIC.min <- min(BIC1 ,BIC0)

34 s.min <- ifelse(BIC1 > BIC0 , s.0, s.1)

35 if( best.BIC > BIC.min ){

36 r <- 1

37 best.s <- s.min

38 best.BIC <- BIC.min

39 }else{

40 r <- r+1

41 }

42 w <- exp(-BIC1/tau+BIC0/tau)

43 prob <- w/(1+w)

44 s[j] <- rbinom(1, 1, prob=prob)
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45

46 }else { next }

47 }
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