/X PROGRAM DEVELOPMENT SYSTEM USING AN ATTRIBUTE GRAMWAB/
w I =

KIRK BARRE‘IT
B.S., Kansas State University, 1982

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements of the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, KS

1985

B3 Table of Contents |
" “Introduction
Cverview of Program Development Systems (PDS' s)! ALL202 995985
2.1 Theory of PDS's '
2.2 Characteristics of PDS's
2.2.1 EKnowledge-Based Approach
Deductive Characteristic
High-Level Language Characteristic
Transformational Approach
Target Preogram Domain Oriented
vs. General Rule Approach
ormation Rules
of Systems
Structure Editor: Cornell Program Synthesizer
General Rule Systems
1 SAFE/TI/GIST
2 PSI/PMB/PECOS
3
4

gF
Ml—-'gﬁ‘ [0, I)

N
L]

MR ON
[3

|00 8]
. e
W
NN D
¢« a
[
s e

2
2
2 Dershowitz and Manna
2 DEDALUS
2.4.3 et Program Domain Systems
3.1 CPs-G
3.2 TRIAD
PDS's and Attribute Grammars
3.1 Definition of an attribute grammar
3.2 Examples
3.2,1 Example 1: Translation Grammar
3.2.2 Example 2: Synthesized Attributes
3.2.3 Example 3: Inherited Attributes
3.3 Attribute Grammar use in a PDS
A Prototype PDS using an Attribute Grammar

4,1 PPDS Overview

2.1 Token Syntax

.2.2 Other Syntax Rules

2.3 Semantic Actions and Symbol Table

4,2.3.1 Symbol Table

4.2.3.2 Semantic Action List
4.2.4 Semantic Rules for External Grammar
4,2.5 Example

4,3 Grammar Converter and Internal
Representation of Grammar
4.3.1 Definition Table and Token Table
4.3,2 Parameter Table, Identifier Table

and Constant Table

4.3.3 Example

4.4 Interpreter
4.4.1 Program List
4.4.2 User Interface

4.5 Limitations and Extensions

Appendlx

Test Grammar

Sample Terminal Session

Program Listings

5.3.1 Converter Listing

5.3.2 Interpreter Listing

U'IU'|U1
u.ll\)l—'

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

List of Figures and Tables

Figure 1: Translation Grammar 16
Figure 2: Translation Grammar Derivation Tree —————- 17
Figure 3: Synthesized Attributes Grammar

Example 19
Figure 4: Synthesized Atrributes Derivation

Tree 20
Figure 5: Completed Synthesized Attributes

Derivation Tree 21
Figure 6: Inherited Attributes Example 22
Figure 7: Inherited Attributes Derivation

Tree - 23
Figure 8: PPDS Configuration 28
Fiqure 9: Symbol Table Structure ' 33
Figure 10: External Grammar Example 39
Figure 1l: Definition Table Structure 41
Figure 12: Token Table Structure 42
Figure 13: Identifier Table Structure 44
Figure 14: Internal Grammar Example 45
Table 1: Fundamental Operations and Structures —--—- 27
Table 2: Grammar Syntax Rules 31-32
Table 3: Semantic Action List 34-36
Table 4: Grammar Semantic Rules 37-38

Table 5: Limitations and Extensions List =======—=- 50

ACKNOWLEDGEMENTS

I would like to acknowledge Dr. William Hankley for
his advice and guidance which were essential to the
completion of this report.

1. Introduction

A topic that concerns many people in the programming world is
the "Software Crisis"— that is the need for and shortage of
quickly-produced, correct, usable software. Software engineering's
main goal has been to develop methods and tools to meet this need.
Over the last ten to fifteen years, new methodologies and tools
have been developed that have expedited the production and improved
the quality of software: Warnier-Orr methodology and diagrams,
specification languages, software life-cycle model and better pro-

gramming languages are examples,

However, programming is still a difficult, complex task.
There are many conceptual levels to be crossed between a formal
specification of a problem and the final compilable program. If a
programming system would allow the programmer to concentrate on
the creative, more difficult and more abstract aspects of program
development and let the more detailed, tedious, concrete aspects be
automated or at least semi-automated, it would be valuable program-—
ming tool. In a such program development system (PDS) (also called
program generators, program transformation systems or autamatic
programming systems), instead of actually entering program code
character by character, the programmer would guide the system (or
be guided by the system) through the program development process,
and the actual code generation would be done by the system. If a
system would produce programs which are generated, monitored,
checked and/or corrected automatically (without any intervention)

by the programmer or semi-automatically (with only a minimum of

-2 -

intervention), it would be a tremendous tool in both expediting the
production and ensuring the quality of software.

This report discusses program development systems. '.th\e most
significant portion of the report is the discussion in section 4 of
the prototype program development system (PPDS) that was
developed. Section 5.2 in the appendix is a hard-copy listing of a
sample terminal session using PPDS, The terminal session shows
user responses to queries about the program to be developed (vari-
able names, operations and structures) and the resultant Pascal
program that was generated, The terminél session shows the useful-
ness of a PDS-- by answering simple queries about the type of pro-
gram, a user can automatically generate a complete, compilable
program, If the reader is solely interested in the approach and
design of PPDS, then section 4 is of primary interest.

Section 2 presents an overview of PDS's in general— theory,
characteristics and a survey of PDS's that have appeared in litera-
ture. Section 3 is a tutorial on attribute grammars. One method
of implementing a PDS is with an attribute grammar and it is the
method PPDS uses, Sections 2 and/or 3 may be skipped if the reader

is already familiar with or uninterested in their content.

- 3 -
2y Overview of Program Development Systems
2.1 Theory of PDS's

The fundamental problem in creating a PDS is to find a way to
incorporate the knowledge of programming syntax, semantics and
pragmatics into the system, Much is known about these areas, but,
especially in pragmatics, most of this knowledge is intuitive and
hard to encapsulate in precise rules or statements that are neces-
sary for computer application. Expressing the knowledge needed in

the three areas to develop programs is a "non~trivial" problem.

First, the knowledge of the syntax is needed to ensure a sy
tactically correct program is generated by the system. For-
tunately, syntax can be precisely defined (for example, by BNF) and
compilers that do have knowledge of the syntax of programming
languages have been around since the late 50's. Structure editors,
which ensure syntactically correct programs, alsc have been
developed' and used. They can be considered primative PBS'.S. Free-
ing the programmer from concentrating on syntactic details (which
are easily overlooked or mistakenly done, yet are also conceptually
simple and essential for a correct program), is a significant

advance,

Next, the system must know the semantics of a language so that
syntactic constructs can be combined in meaningful ways. Although
this information is not as easily specified as the syntax, it is
still fairly easily explained by and to humans, so it is not purely
intuitive. Furthermore, efforts have been made to formally define

—_

semantics through such methods as denotational semantics and attri-

bute grammars.

To really represent a significant "break-through™ in program—
ming, however, (instead of just being a way to speed up traditional
programming), a PDS must also include knowledge of programming
pragmatics, that is, how the programming language constructs are
used to solve real-world problems. As stated, pragmatic knowledge
is highly intuitive and therefore hard to specify in precise, com

plete rules.

The following example illustrates the difference in the
knowledge about syntax, semantics and pragmatics. The syntax of
common programming language constructs such as assignment state-
ments, "IF" statements and "WHILE" loops are easily precisely
defined. The semantics of the three constructs are more abstract,
but still easily understood by humans. When it comes to putting
these constructs together, however, to create a payroll system, for
example, it is very difficult to precisely explain how it is done.

Since the syntax and semantics of ;;rogramning are not signifi-
cant barriers to understanding and productivity, it is how well a
PDS can incorporate knowledge about problem solving (for example,
through cataloging previous problems solved, through encoding this
information into a grammar or through a knowledge base of program-
ming rules) that determines how useful, versatile, effective and
powerful the PDS will be.

2.2 Characteristics of PDS's

-5 =

In examing how programming knowledge can be incorporated, Bar-
stow [BA79] identifies four characteristics or, as he calls them,
approaches to automatic programming (or, as I call it, program
development systems). The four characteristics that he lists are

- knowledge-based

- deductive

- high-level language

- transformational
The four characteristics in the 1list are in no way mutually
exclusive, and, in fact, the boundaries between the four are not
distinct, Nor is the list comprehensive: another characteristic,
perhaps an even more significant one, is identified in this report.
This fifth characteristic is whether a "general rule" or "target

program domain" approach is used.

2.2.1 Knowledge-Based Approach

Systems using the first approach, Kknowledge-based systems,
employ a large collection of rules representing knowledge about
programming. The system will apply these rules in the development
of the program. Almost every PDS uses some type of rule base, but
how the rule base is actually implemented varies widely. In PPDS,
programming knowledge is encoded in a rule base in the form of an
attribute grammar (attribute grammars are discussed fully in sec-
tion 3). The situation in which the rule base is separate from the
actual PDS makes the rule base easily extended. PPDS is of this
type. In other PDS's, the rule base is "hard-coded", which makes
it not easily modified., The Cornell Program Synthesizer [TE80], a
structure editor, has a hard-coded rule base.

2.2.2 Deductive Characteristic

If a system has the deductive characteristic, the PDS will try
to "reason" or deduce what needs to be done in a program and what
is the best way to do it., 1In PDS without deductive capabilities,
the user will always initiate action and the system will merely
respond, A deductive system will, however, take a much more active
role in decisions about the development of a program. Of course,
this makes the PDS more powerful and easier to use for a novice
programmer, but requires much more sophistication to be effective.
The DEDALUS (DEDuctive ALgorithm Ur-Synthesizer) system [MA78],
which is described later, has the deductive characteristic; PPDS

does not.

2.2.3 High-Level Language Characteristic

Another characteristic of PDS that Barstow 1lists is "high-
level language". ‘The significance that he sees in this charac-
teristic is not clear, but it seems to mean that the system incor-
porates the use of a high~level programming language or a pseudo—
.code. The input to the system, the starting point of the develop-
ment process, would be written in some form of this language. The
systems which do not have this characteristic would start with an

initial representation such as requirement specifications,

2.2.4 Transformational Approach

The final PDS approach listed is the transformational

-7 -

approach., As the name implies, the attribute indicates that a pro~
gram is developed by transforming more abstract, higher-level
representations into more concrete, lower-level representations
until finally actual compilable code is obtained. Again, almost
all systems employ this approach, but how it's implemented varies
widely. The high-level representation may start as something very
far from code— such as recjuiranent specifications. Obviously,
transforming these into code would reguire much work and sophisti-
cation, To make the transformation easier, a more code-like
representation, such as a high-level pseudo- code or an abstract
program template, may be chosen.

2.2.5 Target Program Domain Oriented vs General Rule Approach

As was mentioned earlier another characteristic or approach
of PDS's which was not included in Barstow's list is whether the
system is "general rule" or "target program domain" oriented., Sys-
tems of the first type contain the transformation rules which are
relevant to any programming task and are "microscopic" (IE, because
changes of small magnitude) so that any general program can be con-
structed from them. The particular domain of the program to be

developed is irrelevant.

On the other hand, a target program domain oriented system's
applicability is limited to certain problem domains, That is, the
system can only develop programs which solve certain types of prob-
lems. In these systems, the transformational approach is still

used, but the transformations are not as primitive or "microscopic"

-8 -

as in the others and therefore, the system is not as versatile,
While, of course, this limits the systems applicability, if the
problem domain it does treat is large or common enough, the system
can still be useful. Also, these systems are probably easier to
use and more apt to develop a satisfactory program than the others,
PPDS, as well as other attribute grammar PDS's, takes the target

program domain approach.

This versatility-efficiency tradecff is found quite often. A
good analogy to illustrate this principle is the use of an adju~
stable wrench versus a socket wrench. Cbviously, the adjustable
'wrench is more versatile: able to tighten nuts of many sizes, How-
ever, adjusting it to the right size is inconvenient and often this
wrench will slip off because it is not quite adjusted correctly.
The socket wrench, on the other hand, fits only one size nut, but
does so0 perfectly. It can be used easily and efficiently. How-
ever, one is needed for every size nut to be used., The "general
rule" systems are 1like the adjustable wrench: wversatile, but
perhaps a bit unwieldy, not quite fitting the problem at hand. The
"target program domain" systems are like the socket wrench: not
very versatile, but very well suited to the task for which they
were made. If this task is common or important enough (eg., almost
all the nuts to be tightened are the same size or development of
many programs in the same general domain is needed), then this can

be a very useful and practical tool.

. 2,3 Transformation Rules

-0 -

Understanding transformation rules is a key to under-
standing PDS's according to Partsch and Steinbruggen [PA83]. They
discuss program transformation systems, a name applicable to PDS's
using the transformational approach. To them, a program transfor-
mation system, which could be used to either greate new programs or
optimize existing ones, is a system which supports a methodology of
program construction by successive application of transformation
rules. ‘These rules govern how one program representation may be
transformed into another. The rules ensure that the transformation
is wvalid, so that the new representation is guaranteed correct.
Depending on the system, the transformation may be selected
autamatically or chosen by the user.

Partsch and Steinbruggen state that the most common goal of a
program transformation system is that of general support of program
modification including optimization of control structures and
selection of data structures. A different goal is that of program
synthesis-— creating a program from an initial nonprogram
representation such as a set of requirement specifications,
mathematical assertions or restricted natural language. It is this
second goal, program synthesis, which is of interest in this

report.
2.4 Survey of Program Development Systems
2.4.1 Structure Editor: Cornell Program Synthesizer

The Cornell Program Synthesizer, CPS, is a syntax editor
developed at Cornell University by Thomas Reps and Tim Tietlebaum.

- 10 -

It was used by students in a introductory programming course to
develop PL/C programs. CPS ensures that a syntactically correct
program is generated by displaying statement templates and verify-
ing the information the user enters into them. This is a crude
form of a PDS because, although CPS guarantees the the program is
syntactically correct, it does not address semantic or pragmatic
correctness at all. More advanced PDS's, including PPDS, do

address semantic and pragmatic correctness.

2.4.2 General Rule Systems

Four transformational PDS's which were cited in the Partsch
and Steinbruggen articleare summarized below. These systems can be
identified as having the general rule characteristic. That is, the
transformation rules the system applies are not dependent on the
domain of the program to be develpped. All these systems are writ-
ten in a version of LISP. None of these systems use an attribute

grammar and are not comparable to PPDS,

2.4.2.1 SAFE/TI/GIST

The SAFE/TI/GIST system was developed at the Information Sci-
ence Institute by a team headed by Robert Balzer. It is written in
INTERLISP and consists of three parts, as the name implies. The
first part, SAFE (Specification Acquisition From Experts) [WI77],
takes an informal description of a problem and its solution in a
natural language and transforms this into a formal set of func-
tional specifications. The next step of the system is the TI

-11 -

(Transformational Implementor) [BA76]. It £first transforms the
functional specifications into algorithmic specifications written
in the language GIST. Finally, the GIST specification is
automatically translated into a programming language.

2.4.2.2 PSI/PMB/PECOS

Another PDS is the PSI/PMB/PECOS system [GRB2], developed
mostly at Stanford by C. Green and also written in LISP. The
input to the PSI part of the system is a set of specifications
derived by a user-system dialogue. These may be in natural
language or input/output specifications. They are converted into
program fragments and then passed to the Program Model Builder
(PMB). At this stage, the fragments are transformed into an
abstract algorithm in a pseudo-code using a base of 200 pro-
cedural rules. Next, the algorithm is sent to the "Coding Expert"
called PECOS which, using a base of 400 coding rules, produces a

executable LISP program.
2.4.2.3 Dershowitz and Manna

A third, unnamed system was developed by Dershowitz and Manna
also at Stanford [DE77] and also written in LISP. Their system
takes a unique approach: given a specification of a program to be
constructed, the system attempts to find an analogy between this
specification and the specification of a program which has already
been constructed and cataloged. When such a program has been
found, transformations are applied to the already existing program

to produce a new program satisfying the new specifications. This

-12 -

program is then presented to the user for any final touch-ups that
may be needed.

2.4.2.4 DEDALUS

Finally, the DEDALUS system, which was also mentioned in the
"deductive characteristic™ section above, was developed at Stan-
ford, by Manna and Waldinger [MA78]. It is implemented in QLISP and
its input 1is high-level input/output specification in a LISP-like
representation of math-logic notation. ‘The system automatically
and deductively derives a LISP program. The approach used is to
achieve some goal expressed in the specifications by the use of

meaning-preserving transformations until LISP code is produced.

2.4.3 Target Program Domain Systems

Two examples of the target program domain approach are the
Cornell Program Synthesizer Generator (CPS-G) [RE84] and TRIAD

[RABL] .
2 04 03 01 CPS‘G

CPS-G was developed at Cornell by Thomas Reps and Tim
Tietlebaum. The target program domain for this system is struc-
ture editors modeled after the original CPS. Input into this sys-
tem is the definition of the language for which a structure editor
is desired. The definition is an attribute grammar specification
which includes, to quote Reps, "rules defining abstract syntax,
attribution, display format and concrete input syntax." An attri-
bute grammar, which is also employed in the prototype PDS is this

- 13 -
report, is explained in detail later in the report.
2'4 .3'2 mIAD

The other system mentioned, TRIAD, was developed primarily by
J. Ramanathan at Ohio State University. It was used to develop
data processing software for Westinghouse Corporation and was shown
to be capable of developing all of the 180 new programs written by
Westinghouse over a period of 2 years. The basic methodology used
was to provide the programmer with 4 fundamental algorithmic con-
structs from which many different programs in the business data
processing domain could be developed. This system also employs an
attribute grammar, PPDS takes much the same approach to program
development as does the TRIAD system.

The use of an attribute grammar as the basis for a PDS seems
to dictate that the system will be of the "target program domain"
oriented type. This is because the system will be able to comn
struct only the domain of programs defined in the grammar. Of
course, if this domain becomes large enough, almost any program can
be developed, and the distinction between the "general rule" and
the "target program domain®™ approach is then no longer clear.

-14 -

3. PDS's and Attribute Grammars

From the above discussion it is evident that attribute gram-
mars have application in PDS's. Furthermore, PPDS presented in
this paper employs an attribute grammar. For these two reasons, a
section is included here that will first explain what an attribute
grammar is (ie, what makes it different from an usual type of gram-
mar), and then present a series of examples of increasing complex-
ity and also of increasing practical interest starting with a sim-
ple translation grammar. Along the way, the reader should begin to
grasp the idea of the attribute grammar and how it can be useful in
a PDS. The examples will prepare the reader for the discussion of
the prototype PDS and its attribute grammar, which appears later.
If the reader is already familiar with attribute grammars, then
. skipping the section and moving to section 4 will cause no diffi-
culty.

3.1 Definition of an Attribute Grammar

One major problem when working with an attribute grammar is
the notation: it is difficult to construct a notation which is sim-
ple, consistent and meaningful in every case, and there certainly
is not any standard in literature. I have tried to use a notation
which meets the previous criteria, When I felt that a certain
notation might be confusing, I have included an explanation. A
standard BNF grammar definition is used, with a few exceptions.

They are as follows:

-15...

1) a right arrow ("->") is used as a production symbol

instead of "::="

2) semantic actions are enclosed in square brackets ("["
and "]") and are placed in a. production at the point
at which they should be executed

All the <concepts of ™normal®™ (that is, nomattribute)
language grammars such as productions, derivation trees, nontermi-
nal symbols and such also present in an attribute grammar. The
distinction in an attribute grammar is that in addition to the syn-
tactic rules and productions of the grammar, semantic rules and
actions are also present . Semantic actions may range from the
simple outputting of a symbol in a strict translation grammar to
the construction of a code sequence in a PDS. In fact, this paper
will cover these two extreme examples, which will illustrate just

what is meant by a "semantic action".
3.2 Examples
3.2.1 Example 1: Translation Grammar

The following attribute grammar, taken directly from [LE76],
illustrates the use of semantic actions. It translates infix arith-
metic expressions to postfix notation, The semantic actions are
simply the outputting of an appropriate symbol at the appropriate
point in the translation. They are placed in the production at the
point at which they should be "executed". Otherwise, standard BNF

notation is used.

16
1. => + <> [OUTRUT('+")]
2. => <>
3. <> => <I> * <P> [OUTPUT('*")]
4, <T> => <P
5. <P> => ()
6. <P> =-> a [0UTPUT('a')]
7. <P> => b [OUTRUT('b")]
8. <P> => c¢ [0UTPUT('c')]
Figure 1: Translation Grammar Example

In the example, when a certain production is chosen, the
appropriate semantic action is carried along in the derivation of a
string. When the parsing reaches a semantic action , it is exe-
cuted which means to perform the "OUTPUT" function on the parame-
ter, When an entire input string has been parsed, the translated
string will have been output. A leftmost derivation of

(ath) * ¢

= 17 -

would generate the tree

<E>
I
<>
|
| I | I
<> * <E> [CUTBUT("*')]
I l
<P> <T>
_— —
I o I I
() ¢ [QUTRUT('c')]

<T> + T [ouTPUT('+")]

<P> <P>
I I
I I
I I I I
a I b [OUTRUT('b')]
I
(CUTPUT('a’)]

Figqure 2: Translation Grammar Derivation Tree

From the leaf nodes of the tree, it can be seen that the ocutput of
this derivation would be

- 18 -

abt+c*
which is indeed the postfix equivalent of (atb)*c.

3,2.2 Example 2: Synthesized Attributes

Although it is not apparent from the previous example, a basic
idea behind an attribute grammar is that each node of a derivation
tree has a value part associated with it (the value part of most of
the above nodes was null)., It is also a characteristic that the
value parts may be determined from the value parts of other nodes:
that is, the value parts or attributes may be passed up and down
the tree. When the value part of the left-hand side of a produc-
tion is determined from the value parts on the right-hand side, it
is known as a "synthesized attribute". Another example, an expres-
sion evaluator, also taken from [LE76], illustrates the concept.

The notation is more difficult than in the first example. The
same symbol 1is used for semantic actions and the value parts are
represented in subscripts, Two new semantic action have been

introduced, namely assignment and "VALUE".

-19_

1., <5> => [r <~ g; QUTRUT(r)]

q

2, <E> = <E>+LT> [p<g+r]

P q r

3. - <M [p<d]

P d

4, <> => < % P> [p<—g*r]

P g r

5. <> => <P [p<~ gl

p q

6. <> => () [p<aql

r q

7. <P> => ¢ [p <~ VALUE(c)] "c" is a constant

Figure 3: Synthesized Attributes Grammar Example

- 20 -

The derivation is shown in two steps. In the first, the value
parts are represented in the tree with symbols. In the completed
derivation tree, all the value parts have been calculated.

example (349) * (2+41)
<S>
|
|

|
<E> [OUTPUT(r)]

O
S,
A
= —
v
—_

)
H———
v
+
€
v

]
a1

m—m@...._e._
& ——
o

Figure 4: Synthesized Attributes Derivation Tree

- 2] -

The complete tree:

<8>
|
|
I |
<E> [OUTPUT(516)]
| 516
I
LT
| 516
|
I [
TS * B>
I 12 | 43
[
<P> | | |
[12 (<E>)
[| 43
<E> |
| 12 | | |
| <BE> + <T>
l | | | 2 | 4
<E> + <T> <T> P>
| 3 | 9 | 2 | 41
I | | |
T <P> <P> 41
| 3 | 9 | 2
I | |
<> 9 2
| 3
|
3

Figure 5: Completed Synthesized Attributes Derivation Tree
The example should give the reader an idea of how the attributes
(or value parts) can be passed up the tree., The 3 and 9 and the 2
and 41 leaf nodes are passed up the tree until they reach the first
operator. The four operands are combined into two new value
parts and then they continue their ascent up the tree. Finally,
the value 516 reaches the top and it is output.

3.2.3 Example 3: Inherited Attributes

In contrast to synthesized attributes (those passed up the
tree) are inherited attributes, which are passed down the

22

derivation tree. That is, the attributes of a right-hand side are
inherited from the left-hand side. aAn appropriate example for this
is the construction of a symbol table from

a declaration statement. In this example, the symbol table looks
like

SYM type value
[

1

2

-

—— s . et ey S

I
I
I
I
31
I
I
. |

and the grammar is

1. <dcl> -> type <> [Pl <~ p; <var-list>
t p tl, t2 <~ t; t2
SYM(pl) .type <~ tl]
2, <var-list> -> , <> [tl, t2 <= t; <var-list>
t P pl<-p; t2

SYM(pl) .type <- tl]
3. <var-list> => empty
t
4, <type> => REAL [t <~ REAL] | INTEGER [t <- INTEGER]
t

5. <v> =>1 [p < POS(let) 1 ("let™ is a letter)
P

(the function POS(let) returns position of "let" in the alphabet)

Figure 6: Inherited Attributes Example

The derivation tree, complete with semantic actions, of "REAL
A,B,C" is

<dcl>
l ! 1 e l I
<type> > [S¥M(1) .type <— REAL] <var-list>
% REAL ! 1 { REAL
REAL A ; I—
I | |
¥ <v> [SYM(2) .type <- REAL] <var-list>
| 2 | REAL
| |
B |
I I | !
’ <v> [SM(3).type <~ REAL] <var-list>
l 3 }REAL
C empty

Figure 7: Inherited Attributes Derivation Tree

The attributes REAL & POS(a) (which is 1) were first passed
up the tree to <type> and <vd>. REAL was then assigned to the type
field of location 1 in the symbol table and then it was passed down
the tree being associated with <var-list>. 1In this subtree, POS({b)
(which is 2) was passed up to <v>, REAL was again assigned to the
type field in the symbol table, this time to location 2 and passed
on down the <var-list> subtree, Similar action was repeated in
this subtree until finally the derivation terminated. The reader
should be able to visualize how the symbol table would appear at
each step in the derivation.

3.3 Attribute Grammar use in FPDS's

After looking at three preliminary examples, the real topic of

interest can be addressed: how can an attributed grammar be used

- 24 -

to generate programs in a PDS? It has long been recognized that
many programs contain many of the same fundamental code constructs.
In fact, "don't re-invent the wheel™ has become a programming
cliche, One way this idea can be applied to a PDS is to identify
and encode these fundamental constructs into a grammar. Since
every case where these constructs will be used is a little bit dif-
ferent, to be truly useful, there must be some way to parameterize
the grammar. This can be done through semantic actions. They can
be used to prompt the user for input, such as identifier names,
array indexes, and the operation desired, to store this informa-
tion and to recall it when needed in the grammar. The PDS can then
produce a complete, correct, compilable program by parsing the

grammar.
There are two primary advantages of this approach:

- The programmer will not have to rewrite the fundamental
code constructs for each new application. Instead they
can be encoded into a grammar and parameterized via
semantic actions. Using the PDS, the programmer will
then have to simply enter the appropriate parameters.

- By encoding correct syntax into the grammar, the
programmer will not have to be concerned with
syntactic details (which are tedious and error prone,
yet quite critical). The PDS will autamatically
generate a syntactically correct program.

With these two goals in mind, the challenge becomes to

1) develop a clear, powerful grammar notation in which
to encode the fundamental code constructs,

2) develop a set of semantic actions which are complete
and easy to use, but also easy to implement,

3) write a program which will parse or interpret this
grammar and execute the semantic actions and also
conveniently display the program as it is developed,

.—25_

4) finally, with these tasks done, to build a library
of grammars which will generate a large number of
fundamental code constructs.

The first three goals were the focus of the the development of
the prototype PDS. The fourth was not, although one such grammar
was developed for use in the demonstration of PPDS.

- 26 -
4, A Prototype PDS using an Attribute Grammar
4.1 PPDS Overview
4.1.1 Design Approach

The prototype PDS, PPDS, was designed and implemented employ-
ing an attribute grammar. It was aimed at a user audience of stu-
dent programmers in a course on standard algorithms and data struc-
tures similar to CMPSC 300 "Algorithmic Processes" at KSU.

Although in its implemented state it is just a prototype, it incor-
porates and illustrates the fundamental principles of a PDS.
Furthermore, the task of extending its capabilities to a point of
genuine utility would primarily be one of continuing farther in the
direction already begun rather than one of heading in a completely
new direction. That is, what is mainly needed for the extension is

more "brute force™ to cover more cases.

The general design methodology used in PPDS was similar to the
one used in the TRIAD system: both PDS's use attribute grammars
and they both are target program domain oriented. As in the TRIAD
system, fundamental code constructs for developing programs in
specific target domains were identified and encoded into an attri-
bute grammar. The system generates compilable code by applying the
productions in this grammar and through interaction with the user.
The grammar is parameterized via the semantic actions in it and so,
by accepting input from the user, the program may be tailored to
the specific case at hand.

Peterson, in [PE83], observed that beginning programming

-27 -

classes repeatedly write programs using the same collection of
operations on the same collection of structures. A FDS which would
guery a user as to what kind of operations and on what type of
structures, and would then automatically generate a correct program
would be a quite useful tool in such classes to demonstrate pro-
gramming style and how different operations are implemented with

different structure.

The operations and structures which Peterson identifies are

OPERATIONS STRUCTURES

Create Structure Arrays

Examine Structure l-dimensional,
Assignment 2-dimensional, etc.
Reduction Linked List
Selection Trees
plus others plus others

Table 1: Fundamental Operations and Structures
PPDS is not capable of developing programs containing all of
the operations and structures in Peterson's list. This list does,
however, form the basis of what structures and operations PPDS can

handle.

In the survey of systems, the Cornell Program Synthesizer, a
structure editor was mentioned. It ensures that a syntactically
correct program is written by presenting the user with statement
templates and then allowing only syntactically valid information to
be entered into the templates. PPDS extends this idea by present-
ing the user with program or procedure templates and prampting the
user for semantically and pragmatically valid input. ©PPDS then
updates the template according to this input.

- 28 -
4,1.2 PPDS Description

The system consists of two components: the converter and the
interpreter. (see Figqure 8 below) The system was written in Turbo
Pascal on an IBM-PC compatible micro-computer. Each component is

about 1200 lines of code.

Figure 8: PPDS CONFIGURATION

extarnal
grannay = | CONUERTER [(1200 lines)

internal

granmar

i THTERPRETER |) Pscal

(1258 lines)

Briefly, a user must first load a grammar defining the domain
of programs to be generated.. The grammar is converted to an inter-
nal representation by the converter, the first component of the
.system, and written out to a disk file, To start actual program
development, the interpreter, the second component of the PDS, is
run. It loads the internal grammar file and presents the user with
a series of partially developed program templates that are expanded
into more complete ones. The user will be queried to enter infor-

mation such as identifier names and operations desired. To present

PrograH

- 29 =

the templates, the system traces through the productions in the
grammar expanding the templates according to the productions, like
a parser. When a production is expanded, its right hand side is
grafted into its place in the partially developed program. Seman—
tic actions in the grammar call for input from the user or
referencing a symbol table, The symbol table is where the FPDS
keeps track of all user defined identifiers, The PDS also monitors
the values of variables in the grammar. A sample terminal session

and the code for PPDS are presented in the appendix.

The two components of FPDS, the external grammar, the semantic
actions, the symbol table and the internal grammar, are described

below.
4,2 External Grammar

The heart of the PDS is the grammar. It determines how power-
ful and versatile the system is. The grammar is entered to the
system in a standard BNF-like text form: a series of productions
with the left-hand sides (LHS's) being expanded into a series of
tokens on the right-hand sides (RHS's). It is then converted into
an internal linked representation for use by the PDS by the com—
ponent in the system called the "grammar converter". The exter-

nal grammar syntax is explained below.

The external grammar is composed of tokens of several dif-
ferent classes. The majority of tokens are simply terminals or
nor—terminals like one would find in any ordinary grammar. In

addition, there are semantic actions which do not correspond to any

..30-

physical symbols in an input or output stream but rather specify an
action to be executed. Also, there are two pre~defined reserved
word operators 'begin' and 'end' in the grammar which delimit a
scope. These are necessary because there can be overloading of
names in the grammar, Static scoping rules apply, but there can be
no nested scopes: everything is either global or local one level
deep.

For all tokens except semantic actions, the token is sur-
rounded by angle brackets '<' and '>'; semantic actions are
enclosed in square brackets '[' and ']'. Tokens are composed of a
number of fields, separated by commas. The first field identifies
the type of token.

The grammar structure is described in detail below and an

example is presented in Figure 10 on page 39.

4.2.1 Token Syntax

The syntax for the metasymbols of the grammar is explained
below., Symbols which are underlined are literal strings, the oth-
ers are pattern placeholders with the following meanings:

integer -- -a one-digit unsigned (positive) or
negative integer according to Pascal
syntax

string — any sequence of characters except a single
guote

identifier - a identifier according to Pascal syntax,
limited to lower case letters, first 15
characters significant

- 3] -

<const, 'string'>
constant token: the value is enclosed in quotes in
the second field.

<nt, identifier>
non-terminal: the second field gives the name of
the non-terminal.

<inv, identifier>
"invisible®™ token: token will not be displayed on the
screen, They are used as place holders in the
partially developed program in case a return to a
point in the middle is needed to further expand the
program. As with the regular nom-terminals, the
second field gives the name.

<id, identifier>
identifier token: the second field gives the name of
the identifier. Identifiers are most often used as
variables to hold information relevant to the program
being developed, such as user input. A variable is
not explicitly declared. Rather, it is declared
implicitly when used and also typed by the context
in which it was used. This means the grammar
developer must be very careful to use names and types
correctly. The two types of variables are integer
and string,

{cr, integer>
carriage return in the grammar: the comma and integer
field are optional and denotes how many spaces to
increased (unsigned integer) or decrease (negative
increase) the level of indentation in the next line.
4.2.2 Other Syntax Rules
- The token on the left-hand side of a production is
always a non-terminal, so the type field should be left
off of these tokens,

- Comments in the grammar are preceded by a double
asterisk and terminated by the end of a line.

- a production is terminated by a semi-colon.,

- any number of spaces or blank lines can be
placed between tokens

- the entire grammar is terminated by an exclamation point
- strings must be 15 characters or less
- 'begin' and 'end' must appear between productions

— 32 e
- any blank spaces that are desired must be included as
constants in the grammar

Table 2: Grammar Syntax Rules
4,2.3 Semantic Actions and Symbol Table

In addition to the tokens listed above, there are also seman—
tic actions. They are represented in the grammar enclosed in
square brackets '[' and ']', with their parameter list enclosed in
parentheses '(' and ')'. Legal types for parameters are the same
as for the other grammar metasymbols, as described above.

A list of each semantic action and its function appears below
in section 4_.2.3. When appearing in the grammar, semantic action
names must appear in all upper case letters. Many of the semantic
actions operate on the symbol table that is kept by PPDS. So,
the structure called SYM TBL must be explained before dealing with
the functions of the semantic actions. The symbol table data

structure is explained below.
4,2.3.1 The Symbol Table

In the table are stored the attributes of all identifiers
entered by the user during the program development session. The
symbol table is accessed by the semantic actions. Various semantic
actions call for information to be accessed from the symbol table
(eg, SEARCH and REF) or stored into the table (eg, STORE and
ENTER). The semantic action 1list in the section below gives a

complete description of how each one interacts with the table.

The table is necessary to store the attributes of identifier

- 33 -

in case the attributes are needed later in the program. For exam—
ple, the index range name is stored in the symbol table entry for
an array identifier. ©Perhaps 1later in the program the array is
used in a FOR loop. The lower and upper bound of the index range
of the array would be retrieved from the symbol table and used as
the initial and final values on the FOR loop. The format of the

symbol table is given below:

type

SYM_TBI_REC is record
NAME: IDENTIFIER
CLASS: IDENTIFIER

case CLASS of

'label’,
'stdtype': "null"
'var': VAR_TYPE: IDENTIFIER
'subrange': LB: integer
UB: integer
'array': INDEX_RANGE, NAME: IDENTIFIER
ELEM_TYPE: IDENTIFIER
'list': "if the class is list then the

name field holds the record name"
DATA FIELD NAME: IDENTIFIER

DATA TYPE: IDENTIFIER

PTR_FIELD NAME: IDENTIFIER

PTR_TYPE: IDENTIFIER

iptrts OBJECT_TYPE: IDENTIFIER
endcase
endrecord

TYPE_SYM TBL is array [l to ?] of SYM TBI_REC

Figure 9: Symbol Table Structure

This is the "conceptual” symbol table, The actual one imple-
mented has indexes stored instead of names stored in several of the

fields. For example, instead of storing the name of the index

- 34 -

range of an array, the table stores the index in the symbol table
of the index range. 'J;he standard types "integer", "real" and
"char" are loaded into the first three positions in the symbol
table, all with their class set equal to "stdtype". Fram the
declaration, the reader can see that based on the "CLASS" of an
identifier, certain other information is stored. For example, if
an identifier is the name of an array, the symbol table will store
the name of the index range and the name of the element type for
the array.
4,2,3,2 Semantic Action List
The list describes each semantic action by telling
- whether a parameter it is an input or an output parameter
or both an input and output parameter.
~ the type of each parameter, that is, whether it is a
string constant, an integer constant or a variable, If
it is a variable, the the type of variable is specified.

- its function, including interaction with the user or
the symbol table,

Table 3: Semantic Action List
1 ID GET(out ID: string var)
- prompts user to enter an string value (ie, the name
of an identifier) to assign to the variable "ID"

- reads the string user enters
(no syntax checking is performed presently)

- ID <— user input

- 35 =

2 INT _GET(out N: string var)
- prompts user to enter an integer value to assign
to variable "N"
- reads the integer user enters
(the value is read as a string; presently no syntax
checking is done)
- N <— user input

3 ENTER(in INDEX: integer var, in ID NAME: string var,
in CLASS: string)

- enters a new identifier into symbol table
- SYM_TBL[INDEX] .NAME <— ID _NAME
- SYM TBL[INDEX].CLASS <— C(LASS
4 STORE(in INDEX: integer var, in FIELD NAME: string,
in VALUE: string var)

- stores information into a specific field of an
existing entry

- SYM_TBL[INDEX] .FIELD NAME <— VALUE
5 REF(out VAR: string var, in INDEX: integer var,
in FIELD NAME: string)
- references a value in a field in the symbol table
- VAR <—— SYM_TBL[INDEX].FIELD NAME
6 COMPARE(in VAR: string var, in VALUE: string)
- if VAR = VALUE

then continue with this production
else skip to next production

- 36 -

7 CHOOSE(out SELECTION: string var, in CHOICE_COUNT: integer,
in CHOICE : string ... CHOICE : string)
1 choice_count

- this semantic action can have a variable number of
parameters. CHOICE_COUNT indicates how many choices
there are in the choice list.

- CHOICE ««+ CHOICE is a list of

1 choice_count
strings which are the choices

- displays CHOICE through CHOICE

1 choice_count
and prampts user to select a choice

- accepts choice entered by user

= SELECTION <— the number of user's choice
8 SEARCH (out INDEX: integer var, in FIELD NAME: string,
in VALUE: string)
- INDEX <— X such that SYM TBL(X].FIELD NAME = VALUE
-~ SEARCH find the first and only the first entry in the
symbol table that meets the conditions. It may be
necessary to have a SEARCH that accepts multi-conditions

and/or creates a list of all indexes that satisfy the
condition(s).

9 ASSIGN (out VAR: integer or string var,
in VALUE: integer or string)

- VAR <— VALUE
- types should match, but no type checking is done

10 COPY (in SOURCE_VAR: integer or string var,
out TARGET _VAR: integer or string var)

= TARGET _VAR <— SCOURCE_VAR
- types should match, but no type checking is done

- 37 -

11 INC (in/out VAR: integer var)

- VAR <— VAR + 1
12 DEC (in/out VAR: integer var)

- VAR <— VAR -1

Table 3: Semantic Action List
If invalid parameters are given in a semantic action, the con-

verter will not detect it. However, when a user tries to run the
interperter, it will not work correctly. So, the grammar developer
must supply the correct parameters.

4,2.4 Semantic Rules for the External Grammar

Besides the purely syntactic rules about the grammar, there
are also semantic rules which must be followed in order to produce
a correct, working grammar. A list of these rules follows:

= No "complex type definitions" are allowed. What is meant
by this is that a type definition cannot appear inside
a type definition. Only type names can appear within type
definition. For example, instead of designing a grammar
to produce

<id_name> = array[<1b>..<ub>] of <elem_type>
one should design the grammar to produce:

type
<{range_name> = <lb>,.<ub>

<id_name> = array[<range_name>] of <elem_type>

- No type definitions are allowed in the "var” section, only
type names., These two rules are included solely to make
the implementation of the converter and interpreter easier,
the number of semantic action small and the symbol table

simple,

- The grammar can accept only 1 array type and/or list type.
This is due to the limitations in the SEARCH semantic action
as explained earlier.

- All variables in the grammar are implicitly declared

- 38 -
and typed. Great care must be taken in typing variable
names S0 no mistakes are made.
= Alternative productions can only appear if a COMPARE

semantic action was included as the first token in the

previous production. The alternative must be specified as

separate production, but omitting the non-terminal token

on the LHS of the alternative productions. Furthermore,

an alternative must always follow a production with a COMPARE

in it,

Table 4: Grammar Semantic Rules

The person who designs the grammar must be very careful to do
so correctly. The dangers with the state variables have already
been mentioned. The same care must be taken with semantic actions.
If used improperly, a semantic action may access a nomr-existent,
"undefined or incorrect entry in the symbol table. ‘These errors
would go undetected by the converter, but would cause an error if a
user tried to run the interpreter. Essentially, the converter is
like a programming language compiler. It can check the syntax, but
a successful conversion/compilation hardly guarantees the
grammar/program 1is correct. A small example grammar is included

below to help resolve any confusing points,

- 390 -

4.2.5 Example
The example is a portion of the grammar that was used to
develop PPDS. It generates the program header and part of the de—
claration section for a Pascal program. Later in the report, the
internal representation of the same grammar is given. The example
illustrates the grammar syntax and the use of semantic actions.
<pgm> —> <const,'program'> <nt, pogm_id> <const, ';'> <cr,3>
<nt,decls> <er>
<nt,body> <cr>;

<pam_id> —> [ID_GET(pgm_id)] [ASSIGN(last, 1)]
[ENTER(last,pgm_id, 'label')] <id,pgm_id>;
<inv,more_types> <cr,-3>
<const,'var'> <ecr> <nt,vars>
{inv,more_vars> <cr>
<nt, procs> <inv, more_procs> <Cr>;

<types> —> [CHOOSE(structure type, 2, 'array', 'list')]

<select_type> —> [COMPARE(structure_type,'array’)]
<nt,array_type>;

—> [COMPARE(structure_type,'list')]
<nt,list_type>;

—> 3

<vars> =—> <const,' '>;
<procs> —> <const,' '>;
<ody> —> <const,' '>;
<array_type> —> ;
<list_type> —> ;
!
Figure 10: External Grammar Example

4.3 Grammar Converter and Internal Representation of Grammar

Before the PDS can process the grammar, the external represen

tation must be converted to an internal form which is much easier

- 40 -

to work with., The conversion is performed by a component in the
system called, not surprisingly, the grammar converter, It parses
the external grammar and converts it to the internal representa-
tion: a linked structure in the form of a collection of tables. The

representation for the grammar is taken largely fram [CO71].

The conversion need only be done when the grammar is first
loaded or changed somehow., As long as the grammar remains
unchanged, the PDS will operate without having to perform the
conversion. The error checking the converter does is minimal. If
an error is found in the input grammar, no fix-up is taken: the
parser just stops and issues a message telling what the error was
and where in the grammar the error was found. The algorithm for the
converter is not tremendously complicated; it is a simple parsing
algorithm, It has a length of about 1200 1lines of code. For
specific details about the converter logic, refer to the program
listing in the appendix.

The internal structure that the converter generates has five
distinct data structures: the definition table, the token table,
the semantic action parameter table, the identifier table and
string constant table, The structures of the internal grammar are
described in detail below and an illustration of the internal
representation of the external grammar in section 4.3.3 in

presented in Figure 14 on page 45,
4,3.1 Definition Table and Token Table

First, there is a definition table with entries consisting of

-41_

a norr-terminal name (essentially the LHS of a production) and an
index into the token table corresponding to the first token in the
nor-terminal's RHS. Also in the definition table is a integer
field indicating the scope of the nom—terminal (0 for global or 1
for local).
Its structure is shown in the following ficure.

type IDENTIFIER is string[l10]

DEF_REC is record

SCOPE : integer

NAME : IDENTIFIER

RHS NDX : integer
endrecord

DEF_TBL is array[l to MAX NUM NTS] of DEF_REC
Figure 1l: Definition Table Structure

The token table, which, as stated, is essentially the RHS of a

production, is another array of records. Its structure is

- 42 -

type TOK_REC is record
|
TOK_TYPE: string[4]

case TOK_TYPE of

| Yer's INDENT : integer
liml'
'const': NAME : integer

rid': ID TBL_INDEX : integer
'nt': DEF_TBL_NDX : integer

|

I

| 'sa': SA_NAME : string[6]
I PARAM TBIL, NDX: integer
I

I case SA_NAME

I | "COMPARE': ALT: integer
[I

| | otherwise: "null®

I endcase

e

I
|
I
|
|
I
I
|
I
I
|
I
|
|
|
I
I
|
I
!
I
|
| SUCC: integer
|
endrecord
TOR_TBL is array[l to MAX NUM TOKENS] of TOK_REC
Figure 12: Token Table Structure

The first field is the token'type. The types are the same as
the ones listed in the discussion of the external grammar, with the
addition of 'sa' for semantic actions. While some of the fields
are self-explanatory, others need more explanation., The ID TBI, NDX
field is an index into the identifier table (described below) of a
particular grammar variable, The field DEF_TBL_NDX points to the
entry for the nonterminal in the definition table. The field
PARAM TBI,_NDX, for semantic actions, is an index to the start of
the parameters for this semantic action into the PARAM TBL,
described below. Furthermore, if the token is a COMPARE semantic

action, a field which is a index into TOK_TBL to the first token of

- 43 -

an alternative production is included, The field SUCC in the token
is an index to the next token in the production. The last token in

the production has a zero value for SUCC.
4.3.2 Parameter Table, Identifier Table and Constant Table

Since ;:he semantic actions can have long and variable number
parameters, it was decided to put them in their own separate struc-
ture, the parameter table, rather than include them as fields in
the token table, From examination of the explanation of the seman—
tic actions given earlier, it is evident that all parameters are
one of four types: string constant, integer constant, string vari-
able or integer variable, 1In this implementation, the parameter
table is simply an array of integers, For a parameter which is a
variable or string constant, the entry in the parameter table is
simply an index into another table (the identifier table or the
constant table, respectfully-—both are described below) where the
actual name and/or value of the variable or string is contained.
Finally, for integer parameters, the value is stored right in the
parameter table. Since the number of parameters is known for each
one of the semantic actions (the number is either fixed or can be
calculated in the case of CHOOSE), it is not necessary to insert a
delimiter to indicate the the end of the parameters for each seman—
tic action. Instead, the PDS will know exactly how many parameters

are need for each one,

The other data structures involved in the internal grammar
representation are the constant table and the identifier table,

where string constants and grammar variables semantic action

- 44 -

parameters are stored. The structure for the identifier table is
type ID REC is record
NAME : IDENTIFIER
VAL_TYPE: string[l]
case VAL_TYPE of
'S': SVAL : string[15]
'I': IVAL : integer
endcase
endrecord
Figqure 13: Identifier Table Structure
The VAL_TYPE field tells whether the entry is an integer state
variable ('I') or string state variable ('S'). Based on the
VAL_TYPE, a state variable, another field of the appropriate type
is included for the value of the variable. However, in the comn-

verter stage, no values are assigned to any variables,

String constant semantic action parameters are stored in a
separate table called the constant table., This has a simple struc-
ture:

CONST_TBL is array[l to ?] of IDENTIFIER

4,3.3 Example

To aid the reader in understanding the internal representation
of the grammar an example is included. Ficure 14 is a partial

internal representation of the external grammar given in Figure 10.

definition

tahle

INTERMAL GRAMMAR STRUCILRE
token table

scope naine phs index fupe fialds suce

1] B |pow | w— | | const|progvan \ 2
2, 8 |pogn_id | 9 2 |nt |pga_id 2 'J 3
3| 8 |dcls l3:h 3 const|; 4
4! 8 (hody 33 dlepr |3]

: 3{nt |dcls 3 b

' constant table & {cn 7
name 7 nt |hody 8

1] lakel ‘ gler |8 8
2| array 9|sa | In.cm 1 18

¥y disk 18sa [ASSIGH | 2 e |U
IdE?tlflEP table vl '11 s DN 48 |1
id nane tgpe value \ 17 (ig |pew_id K
pan_id §

13 | const|fype 14

LS ‘ 1ler |3 / 15

stoug_tupe| § ' —“‘—“’/,
paranter tahle W
{273 4 § 7 8 9...
1] 2 (1 2 11113 2| 2 “—'-"’//

Figure 14:

Internal Grammar Example

- 46 -
4.4 Interpreter

Once the converter has translated the grammar into the inter-
nal form of the five tables, the other main component of the sys-
tem, the interpreter, can operate. The interpreter is also about
1200 lines of code. The function of the interpreter is to parse
through the grammar and generate a complete, compilable program.
The basic method used is to build the program by, beginning with
the start symbol, replacing nomterminals with their right-hand
sides. When all productions have been completed, the program is
complete. The logic behind the process is explained in more detail

below.

The first task of the interpreter is to load the 5 tables pro-
duced by the converter: the definition table, the token table, the
parameter table, constant table and the identifier table, The
interpreter uses the tables to parse the grammar. Also, it creates
two more data structures of its own: the program list and the sym
bol table. The symbol table was described earlier; the program

list is is discussed later.

When the 5 tables have been loaded, the parsing can begin.
The interpreter begins with the start symbol, which is found as the
first entry into the definition table. The start symbol is copied
from the table and becomes the first node in the program list,

which is explained in the next section.

4,4,1 Program List

The program list is a doubly linked list, each node being a

- 47 -

token. At any time, the contents of the list is the current state
of the program that is being developed., After the list is initial-
ized to the start symbol, as the interpreter parses the grammar,
the list grows and is refined until finally, when the parsing is

complete, the program list is a complete program.

The list grows and is refined by the interpreter performing a
sequential node by node transversal of the list., Based on the type
of token in the current node, different action is taken:

IF the current token is a nonterminal,

THEN the RHS of the non-terminal is copied from the token
table and grafted into the program list to replace
the non-terminal node, The first token in the RHS
then becomes the current node and the transversal
continues,

IF the current token is an identifier,

THEN the value of the identifier is retrieved from the
identifier table and is inserted into the program
list as a constant token to replace the identifier
node.

IF the current token is a semantic action,

THEN a routine is called to perform the semantic action.
Depending on which semantic action it is, it may
prampt the user for some input or somehow access the

symbol table,

IF the current token is a carriage return

THEN The current level of indentation is increased/decreased
by the number of spaces specified in the token

IF the current token is a constant or invisible,
THEN nothing is done. The interpreter merely moves ahead to
the next node.
When the interpreter finally reaches the end of the program
list, if the grammar was designed correctly, all non-terminals,
identifiers and semantic actions should be removed. The remaining

tokens should all be carriage returns, constants or invisible

- 48 -

(which merely serve as place holders). This final version of the
list is the complete, compilable program which was desired. The
sample terminal session in the appendix should give the reader of
how the program list develops.

4.4,2 User Interface

Besides the logic and structures, another important feature of
the interpreter 1is the user interface. Basically, what the user
will see on the CRT screen is the program list, It appears as a
series of partially developed program templates which will become
more developed and refined as the interpreter progresses through
the program list. Periodically, the user will be prompted to enter
information (such as identifier names and range bounds) or select a
choice from a menu list. In this way, the user guides the system
to develop a program' that satisfies the specific requirements of
the case at hand.

The initial template is simply the start symbol. Each time
the interpreter replaces a nomterminal in the program list with
its RHS or replaces an identifier with its value, the screen is
redrawn with the updated version of the program list, Not all
nodes in the list are displayed: only nonr-terminals, identifiers,
constants and carriage returns. Semantic actions and invisible

tokens are not displayed on the screen.

The display routine is written so that the current token is
always displayed in lower brightness in the middle of the screen,

It is kept in the middle by traversing the program list in reverse

— g -

starting with the current token and counting the number of carriage
returns encountered. When the number reaches 12 (half the total
number of lines displayable on the screen), the spot lS marked as
the point at which to begin the display. If there are less than 12
carriage returns before the current token, enough blank lines are

written to ensure the current token is centered in the screen.

A desirable feature in the user interface would be the ability
to scroll up and down through the displayed form of the program
list. Although it is desirable, the present version of the inter-
preter does not allow it. Once a certain point in the program list

has been past, there is no way to return to that point.

Although not part of the display routine, the execution of
certain semantic actions is part of the user interface. When the
interpreter encounters a "CHOOSE", "ID_GET", or "INT_GET" semantic
action, the user is prompted for some type of input. The prompts
occur at the bottom of the screen, For exactly how the user is
prompted, refer to the section in the interpreter program listing
dealing with the semantic actions. For exactly what the user is
prompted for and what is done with the user input, refer to section
4,2,3 on semantic actions. One important note about the user
interface is that no verification of the input is performed, What-

ever the user enters is accepted.
4.5 Limitations and Extensions

Because PPDS was meant to merely be a demonstration of the

idea of using an attribute grammar in a PDS and was not meant to be

- 50 -

commercial quality, it contains many limitations and lacks many
desirable features. Many of these have been pointed out in previ-
ous sections, In this section, all of the limitations and desir-
able extensions are collected and presented together.

= no verification of user input in "CHOOSE",

"ID GET" and "INT_GET"

m implicit declaration and typing of variables
in the grammar

- "SEARCH" only finds the first occurance of a given value
in the symbol table. This means the grammar can develop
programs with at most 1 structure of each type.

- a return to an earlier point in the grammar marked by a
"inv"® token is not implemented

o= the user can not scroll up and down through the
displayed version of the program list

- there is very limited syntactical error checking
and absolutely no semantic error checking of the grammar
done by the converter or the interpreter

- there may be useful or even essential semantic actions
which are not included

- there is no way for a grammar developer to create his
own semantic actions

- there is no way to chain together different grammars

Table 4: Limitations and Extensions List

BIBLIOGRAFHY
Primary References

1. [BA79] Barstow, D. R. "An Experiment in Knowledged-Based
Automatic Programming”, Aritficial Intelligence, vol 12
(August 1979), pp. 73-119. .

2. [CO71] Cohen and Gottlieb. "Table Driven Parsing"
Computing Surveys, vol 2., number 1 (March, 1970),
pp. 65 - 81, 1971.

3. [LE76] Lewis, P, M. II; Rosenkrantz, D. J.; Stearns, R. E.;
Compiler Design Theory; Addison-Wesley Publishing Co.

4, [PA83] Partsch, H. and Stienbruggen, R. "Program
Transformation Systems", Computing Surveys, vol. 15,
no. 3 (September 1983), pp. 99-236.

5. [PE83] Peterson, Gerald. "Using Generalized Programs in
the Teaching of Computer Science", ACM SIGSCE Bulletin,
vol. 15, number 1 (February, 1983), pp. 187 - 191.

6. [RABl] Ramanathan, J.; "Modeling of Problem Domains for
Driving Program Development Systems", ACM Proceedings
on Programming Landuages (1981).

Additional References

1. [BA76] Balzer, R., Goldman, N. and Wile, D. "On the
Transformational Implementation Approach to Programming”,
Proceedings of 2nd Internatiocnal Conference on Software
Engineering (San Francisco, 10/13-15, 1976). IEEE
Press, New York, pp. 337-344,

2. [DE77] Dershowitz, N. and Manna, Z. "The Evolution of
Programs: Automatic Program Modification" IEEE Transactions
on Software Engineering, SE-3, number 6 (1977) pp. 377-385.

3. [GR82] Green, C., et. al. "Research on Knowledge-Based
Programming and Algorithm Design", 1981 Rep. Kes. U. 8l.2,
FKestrel Institute, Palo Alto, CA.

4. [MA78] Manna, 2. and Waldinger, R. "DEDALUS--The DEDuctive
AlLgorithm Ur-Synthesizer", Proceedings of National Com—
puter Conference (Anaheim, CA June 5-8, 1978), vol 47,

Pp. 683-690,

5. [RE84] Reps, Thomas and Tietlebaum, Tim. "The Synthesizer
Generator", ACM SIGPLAN Notices, May, 1984, pp. 42-48,

6. [TE80] Teitelbaum, Tim and Reps, Thomas. "The Cornell
Program Synthesizer: A Syntax-Directed Programming
Envirorment", Department of Computer Science, Cornell
University, Ithica, NY, 1980.

7. [WI77] Wile, D., Balzer, R., and Goldman, N. "Autamated
Derivation of Program Control Structures from Natural
Language Program Descriptions” in Proceedings of Symposium
on Artificial Intelligence and Programming Languages
(Rochester, NY, 8/15-17, 1977). SIGPLAN Notices (ACHM),
vol. 12, no. 8 (Aug 77) pp. 77-84.

5. Appendix
NCTE: The following sections:

5.1 Test Grammar
5.2 Sample Terminal Session
5.3 Program Listings
| 5.3.1 Converter Listing
5.3.2 Interpreter Listing
are not included in this copy because of their length.

These sections can be obtained through the Department
of Computer Science, KSU.

A PRCGH%M- DEVELOPMENT SYSTEM USING AN ATTRIBUTE GRAMMAR

by

KIRK BARRETT
B.S., Kansas State University, 1982

AN ABSTRACT OF A MASTER'S REFORT

submitted in partial fulfillment of the

requirements of the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, KS

1985

ABSTRACT

This report discusses the use of automated program development
systems (PDS's) to produce high-level language programs. A proto-
type PDS, designed and implemented to develop standard algorithm
Pascal programs is also included. A working definition for a PDS
is an envirorment in which a user can develop correct, compilable
programs without entering code character by character.,

PDS are based on the principle that knowledge about program-—
ming can somehow be expressed in some machinable form to apply the
knowledge to generate programs. A fundamental difficulty is that
programming knowledge is highly intuitive and therefore not easily
machinable,

To be truly useful, a PDS should apply knowledge to all three .
areas of programming: syntax, semantics and pragmatics. Such a
PDS will free the programmer from the tedious and error prone, yet
critical, job of producing a syntactically correct program. It will
automatically ensure that syntactic constructs are combined in ways
which are semantically valid, and rapidly produce correct programs
which solve real, useful problems without complete, full-cycle,
unassisted development by the programmer,

Several PDS's which have appeared in literature are discussed
in the report and are grouped into two semi-distinct categories:
general rule and target program domain systems. The former can
develop programs independently of the domain of the program, while
the latter can only develcop programs within a certain domain.

Some PDS's are based on the observation about programming
that programs are composed of a relatively amall number of funda-
mental structures and operations. In the prototype PDS, PFDS,
knowledge about fundamental structures and operations is encoded
into an attribute grammar. An attribute grammar is a language
whose productions contain semantic actions. Here, the productions
generate code syntax and the semantic actions are symbol table
operations and prompts for user input. By interpreting this gram-
mar, the PDS produces correct, compilable Pascal programs. The
code for PPDS, an example grammar and a sample terminal session are
included in the appendix.

A430-60
CD-53

