
 

  
 

GENOMIC, EXPRESSION AND FUNCTIONAL ANALYSIS OF GENES FROM LARVAL 
GUT OF THE EUROPEAN CORN BORER, OSTRINIA NUBILALIS (HÜBNER)  

 
 

by 
 
 

CHITVAN KHAJURIA 
 
 

B.S., Punjab Agricultural University, India, 2002 
M.S., Punjab Agricultural University, India, 2004 

 
 
 

AN ABSTRACT OF A DISSERTATION 
 
 

submitted in partial fulfillment of the requirements for the degree 
 
 

DOCTOR OF PHILOSOPHY 
 
 

Department of Entomology  
College of Agriculture 

 
 
 
 
 
 
 

KANSAS STATE UNIVERSITY 
Manhattan, Kansas 

 
 

2010 
 



 

 

Abstract 

Genomic information for lepidopteran insects, particularly agricultural pest species, is 

very limited but urgently needed due to their economic importance and biodiversity. The huge 

economic losses ($ 1-2 billons / year) caused by the European corn borer (Ostrinia nubilalis, 

Hübner, ECB) makes this insect species one of the major pests of corn in the United States and 

western world. Management of ECB by conventional methods is limited but has had a great 

success by transgenic Bt (Bacillus thuringiensis) corn, which targets insect gut. However, the 

widespread use of Bt corn may lead to the development of Bt resistance in ECB. Knowledge of 

genes expressed in the insect gut is considered crucial for understanding basic physiology of 

food digestion, their interactions with Bt toxins and pathogens, and for discovering new targets 

for pest management. 

A large database of 15,000 expressed sequence tags (ESTs) was established from the 

ECB larval gut. To our knowledge, this database represents the largest gut-specific EST database 

from a lepidopteran pest. Analysis of 10 aminopeptidase-like genes between Cry1Ab–resistant 

and –susceptible ECB larvae revealed that aminopeptidase P-like (OnAPP) gene is a strong 

candidate for its role in Bt toxicity and resistance. The RNA interference mediated reduction in 

the transcript level of OnAPP gene in ECB larvae resulted in their reduced susceptibily to 

Cry1Ab. 

 Analysis of the chitinase-like gene (OnCht) revealed its essential role in regulating chitin 

content of peritrophic membrane (PM). Our results suggest that OnCht may influence food 

digestion, nutrient absorption or movement of digestive enzymes through the PM and can be an 

important target for insect management. We also identified and characterized six genes involved 



 

in the innate immune defense response in ECB and showed that the expression of these genes 

were induced when challenged with bacteria. 

In addition to these results, this research generated significant genomic information for 

the development of microarray from the larval gut of ECB. The establishment of the feeding-

based RNA interference technique could potentially help in delivering dsRNA orally to ECB for 

high throughput screening of effective genes to be targeted for insect pest management. 
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Abstract 

Genomic information for lepidopteran insects, particularly agricultural pest species, is 

very limited but urgently needed due to their economic importance and biodiversity. The huge 

economic losses ($ 1-2 billons / year) caused by the European corn borer (Ostrinia nubilalis, 

Hübner, ECB) makes this insect species one of the major pests of corn in the United States and 

western world. Management of ECB by conventional methods is limited but has had a great 

success by transgenic Bt (Bacillus thuringiensis) corn, which targets insect gut. However, the 

widespread use of Bt corn may lead to the development of Bt resistance in ECB. Knowledge of 

genes expressed in the insect gut is considered crucial for understanding basic physiology of 

food digestion, their interactions with Bt toxins and pathogens, and for discovering new targets 

for pest management. 

A large database of 15,000 expressed sequence tags (ESTs) was established from the 

ECB larval gut. To our knowledge, this database represents the largest gut-specific EST database 

from a lepidopteran pest. Analysis of 10 aminopeptidase-like genes between Cry1Ab–resistant 

and –susceptible ECB larvae revealed that aminopeptidase P-like (OnAPP) gene is a strong 

candidate for its role in Bt toxicity and resistance. The RNA interference mediated reduction in 

the transcript level of OnAPP gene in ECB larvae resulted in their reduced susceptibily to 

Cry1Ab. 

 Analysis of the chitinase-like gene (OnCht) revealed its essential role in regulating chitin 

content of peritrophic membrane (PM). Our results suggest that OnCht may influence food 

digestion, nutrient absorption or movement of digestive enzymes through the PM and can be an 

important target for insect management. We also identified and characterized six genes involved 



 

in the innate immune defense response in ECB and showed that the expression of these genes 

were induced when challenged with bacteria. 

In addition to these results, this research generated significant genomic information for 

the development of microarray from the larval gut of ECB. The establishment of the feeding-

based RNA interference technique could potentially help in delivering dsRNA orally to ECB for 

high throughput screening of effective genes to be targeted for insect pest management. 
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CHAPTER 1 - Introduction 

The genomic information on insects has increased tremendously during last several years. 

Lepidoptera, the second most biodiverse group of insect species after Coleoptera, represents 

more than 160,000 species including many of the most devastating pests of crops, forests and 

stored products (Pierce 1995). However, genomic information for lepidopteran insects, 

particularly agricultural pest species is limited but urgently needed due to their economic 

importance and biodiversity. Availability and identification of the DNA sequences for an 

organism is essential for understanding the gene functions and their involvement in various 

biological processes.  

Corn or maize (Zea mays L.) is a widely grown crop in the world with annual production 

of 790 million metric tons in 2007-2008 (Corn Refiners Association 2008) and grown on more 

than 148 million hectares worldwide (USDA, NASS 2007).  The huge economic losses ($ 1-2 

billons -/- year) caused by the European corn borer (Ostrinia nubilalis, Hübner, ECB) makes this 

insect species one of the major pests of corn in the United States and western world (Lauer and 

Wedberg 1999, Hyde et al. 1999). Management of ECB by conventional methods has been 

limited but management by transgenic Bt (Bacillus thuringiensis) corn has been very successful 

(Walker et al. 2000).  The main target for the Bt toxin is the insect midgut, where it is solubilized 

and cleaved by gut protease to produce activated toxin, which then binds with the specific 

receptor to produce toxicity (Gill et al.1992). Due to the widespread use of Bt corn, there are 

concerns regarding the development of Bt resistance in field populations of ECB. Therefore, 

identification and characterization of the genes and their products involved in the toxin-target 
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interactions is fundamental in sustaining the use of transgenic Bt technology in the integrated 

pest management. 

In addition to Bt action and resistance, the knowledge of genes expressed in the insect gut 

is also considered crucial for understanding basic physiology of food digestion, its molecular 

composition, its interaction with pathogens, and for discovering new targets for novel toxins to 

be used in pest management. 

The European corn borer (Ostrinia nubilalis Hübner) 

Distribution, biology, and economic importance of Ostrinia nubilalis 

The European corn borer (ECB, Ostrinia nubilalis Hübner) is widely distributed across 

central and southern Europe, throughout North America, Siberia, northern India, and western 

China (Caffrey and Worthley 1927, Showers 1993). In the United States, ECB was first reported 

in 1917 (Vinal 1917). However, it is thought to have been introduced multiple times to North 

America in shipments of broom corn imported from Italy and Hungry to eastern United States 

and Canada between 1909 to 1914 (Caffrey and Worthley 1927). The life cycle of ECB is 

composed of four developmental stages: egg, larva, pupa, and adult. The ECB larva passes 

through five instars and they are the most important stage that causes major physiological and 

economically damage to corn. The ECB female lays eggs on corn leaves, and young larvae feed 

in the whorl and move to leaf sheath and midribs. It is the third instar which bores into the stalk, 

ear, and shank (Mason et al. 1996). The injury caused by larval feeding and boring disrupts the 

translocation of essential nutrients and water needed for proper plant development (VanDyk 

1996, Witkowski and Wright 1997). Starting in late summer or early autumn and ending late the 

next spring in the Midwest region of the United States, ECB larvae over-winter in the stalks of 

their host plants as diapausing fifth instars (Caffrey and Worthley 1927). The number of 
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generations of ECB in United States increases from one to four from the north to the south and 

there is considerable local adaptation to climate conditions. Most parts of the Corn Belt have two 

generations (Mason et al. 1996). In Kansas, there are two but occasionally three generations per 

year (Showers et al. 1989).  

ECB is a polyphagous insect and can develop on 223 plant species (both monocotyledon 

and dicotyledon) (Lewis 1975). ECB is one of the major damaging pests of corn in the United 

States.  The other crops attacked by ECB include bell pepper (Capsicum annuum), oats (Avena 

sativa), barley (Hordeum vulgare), artichoke (Cynara scolymus), soybean (Glycine max), 

sunflower (Helianthus annuus), and Solanaceous crops. Damaged plants are susceptible to 

breakage, ear drop, and secondary infections by fungus Fusarium species (VanDyk 1996). 

Fusarium species which develop on the larval wounds can produces mycotoxins, such as 

zearalenone, fumonisin, and trichothecium, which are harmful to humans and livestock and as a 

consequence, silage containing contaminated corn can be rendered unusable (Marasas et al. 

1984, Munkvold and Desjardins, 1997). 

Management of ECB  

Conventional control measures 

The conventional methods to manage ECB involve the combination of the resistant 

varieties of corn, insecticide applications, biological control agents, and seasonal cultural 

practices (Showers et al. 1989).  The strategy was to use natural resistance in varieties such as 

DIMBOA, and then use economic thresholds (ET) with insecticides to manage first generation 

larvae (Pilcher and Rice 2001).  Lot of effort has been devoted to develop resistant varieties 

against leaf feeding by first and second generation larvae in the past decades (Showers et al. 

1989). However, these resistant varieties were not able to protect the corn plant from the stalk 
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tunneling by late larvae. Management for second generation larvae was more limited. The typical 

recommendation for management of ECB was the timely application of insecticides, such as 

bifenthrin, carbofuran, or permethrin (Mason et al. 1996).  The main reason for ineffectiveness of 

the insecticide applications was the difficulty in getting proper timing of the spray application to 

obtain an economic benefit (Heinemann et al. 1992). Timing of the insecticide spray was critical, 

so intensive scouting efforts were needed to determine the best time for insecticide applications 

that would kill the early stage larvae before they bore into the stalk (Sloderbeck et al. 1984, 

Mason et al. 1996).  Rice and Ostlie (1997) suggested that growers were reluctant to scout, 

and/or had concerns regarding the use of multiple insecticide applications and this led to the 

difficulty in managing the larvae with insecticides. Other control measures, such as cultural 

control and conservation of natural enemies (such as Orius insidious, Chrysoperla spp, several 

ladybird beetles, Lydella thompsoni, Eriborus terebrans, Simpiesis viridula, Macrocentris 

grandii and Beauveria bassiana) only play a limited role in the management of ECB (Mason et 

al. 1996).    

Transgenic Bt corn  

Bacillus thuringiensis (Bt) is a naturally occurring gram-positive, aerobic, motile, 

endospore forming bacteria (Lacey and Kaya 2000), which has been found worldwide with at 

least 82 different serovars (Lecadet et al. 1999). Bacillus thuringiensis produces crystalline 

inclusions of entomocidal protein protoxins (Pigott and Ellar 2007), which are active on insects 

in the orders of Lepidoptera, Diptera, and Coleoptera (Schnepf et al. 1998). The spores and 

crystals of Bt have been used as a biopesticide for almost 60 years in forestry management, 

agriculture, and vector-born disease control (Schnepf et al. 1998, Federici 2005). However, Bt 

commercial products have several limitations such as degradation with sunlight, being washed 
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away with rain, and it is not penetrating so insects which enters the plants are not affected. The 

importance of Bt toxins in the management of insect pests has increased dramatically with the 

developmental of transgenic plants with the ability to express the Bt toxin proteins (Valaitis et al. 

2001, Shelton et al. 2002). The first genetically engineered crop plants containing a gene from B. 

thuringiensis variety Kurstaki (Berliner) were commercially produced and harvested in the 

United States during 1996 (Hilbeck et al.1998). Transgenic corn expressing Bt toxins have been 

very effective against the ECB. Higgins et al. (1996) reported that during field trials, Bt corn 

hybrids showed more than 99% control of the first generation of the ECB in whorl-stage corn.  

Several Bt commercial corn hybrids are available in North America to control ECB. Agrisure CB 

(Synenta) and YeildGard Corn Borer (Monsanto) both use the Cry1Ab gene whereas Herculex I 

(Pioneer Hi-Bred/DowAgroSciences) uses Cry1F genes for ECB control. Also corn hybrids such 

as HerculexXTRA (Pioneer Hi-Bred/DowAgroSciences), YeildGardPlus (Monsanto), and 

YeildGard VT Triple (Monsanto) contains more than one gene to control both corn borer and 

corn rootworm (Sloderbeck and Whitworth 2009). The acreage under the genetically modified 

(GM) crops has been increasing since 1996, and in 2008, 80 % of the total corn planted in the 

U.S. was GM corn, which includes 18 % for insect resistance (expressing Bt toxin), 40 % with 

stacked genes for both insect and herbicide resistance, and 23% for herbicide resistance (USDA-

NASS 2008).  

Mode of action of Bt toxin 

The mode of action of Bt toxin changes relatively inert crystalline protoxin form into the 

cytotoxic form and involves several steps (Schnepf et al. 1998). After being ingested by the 

insect, Bt crystals were solubilized by gut proteases under alkaline and reducing condition of 

insect midgut (Huber et al. 1981). Gut proteases recognize cleavage sites on the protoxin and 
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cuts it to produce active toxin (Chestukhina et al. 1982, Choma et al. 1990), which then binds to 

specific receptors on the midgut epithelium. Binding of the activated Bt-toxin to midgut-specific 

receptors causes a toxin conformation change, that can allow for the insertion and formation of 

ion channels or pores in the midgut apical membrane, that leads to osmotic imbalance and 

eventually death of the insect (Gill et al. 1992, Schnepf et al. 1998).  

Two models have been proposed to explain the mode of action of Bt toxins with the 

presence or absence of oligomerization of the cry toxin monomers (Pigott and Ellar 2007).  The 

Bravo Model (Bravo et al. 2004) proposes oligomerization steps and suggests that both cadherin-

like protein (Bt-R1) and aminopeptidase N (APN) receptors are essential for Cry1 toxicity. In this 

model, the crystalline toxin is solubilized and protoxin is converted into activated toxin by gut 

proteases. The activated toxin then binds to Bt-R1 to undergo conformational change that 

facilitates cleavage of helix α-1 by membrane bound proteases (Gomez et al. 2002). The 

resultant form of toxin oligomerizes to form tetrameric pre-pores which has increased affinity for 

APN and binds to it.  The oligomeric pre-pore structure is then directed by the APN to detergent-

resistant membranes (DRMs), or lipid rafts, which facilitates membrane insertion to form a lytic 

pore. These pores causes osmotic imbalance within the insect gut and this leads to insect death. 

The second model (Zhang et al. 2005) involves a signaling cascade and challenges that Cry1Ab 

kills cell exclusively by osmotic lysis (Pigott and Ellar 2007). This model proposes that 

monomeric Cry1Ab binds to BT-R1 and initiates an Mg+2
 –dependant signaling pathway that 

promotes cell death. Zhang et al. (2006) suggested that binding of the Cry1Ab with the receptor 

activates the signaling pathway which involves stimulation of G protein, adenylyl cyclase, 

increased cyclic AMP levels, and activation of protein kinase A, which leads to the 

destabilization of the cytoskeleton and ion channels and subsequent cell death. Pigott and Ellar 
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(2007) suggested a caution in assessing the Zhang model, as further work is needed to establish 

the connection between toxicity and the rise in cAMP level. However, all of this work has been 

done using a cell line and it will be interesting to see if the work can be replicated under in vivo 

conditions.                

Resistance mechanisms to Bt toxins 

According to the mode of action for Bt toxin, a target insect could potentially develop 

resistance to Bt protoxins or toxins via one or more changes in the Bt-receptor interaction 

pathway. The two most commonly identified Bt resistance mechanisms are protease-mediated 

and receptor-mediated resistance. 

Changes in the proteolytic activation of Bt toxins  

As discussed above, midgut proteases play an important role in the solubilization and 

activation of Bt protoxins. In some insects, changes in digestive protienases were found to be 

associated with resistance to Bt toxins (Oppert et al. 1994, Oppert et al. 1996, Oppert 1999). P. 

interpunctella display resistance to Bt subsp. entomocidus HD-198 and this resistance is 

associated with the absence of a major gut proteinase that activates Bt protoxins (Oppert et al. 

1997). In Spodoptera littoralis, an increase in protease specific activity was found to be 

associated with an increase in toxin degradation that may account for loss of sensitivity of larvae 

to Cry1c (Keller et al. 1996). In ECB, reduced protease activity in a strain of Dipel-resistant 

larvae was associated with reduced activation of protoxin (Huang et al. 1999, Li et al. 2004). 

However, transgenic Bt corn expresses the Bt toxin as actived trypsin resistant core protein, so 

this mechanism may not be an important resistance mechanism against Bt corn (Li et al. 2004). 
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Receptor mediated Bt resistance 

The activated toxins bind readily to specific receptors on the apical brush border of 

midgut microvillae of susceptible insects (Hofmann et al. 1988). Therefore, receptors on the 

brush border membrane are key factors in determining specificity of Cry toxins. Many receptors 

for cry toxin have been reported in the midguts of lepidopteran insects. A cadherin-like protein 

has been reported from the midgut of ECB (Flanngan et al. 2005), Manduca sexta (Vadlamudi et 

al. 1993), Bombyx mori (Nagamatsu et al. 1999), Pectinophora gossypiella (Morin et al. 2003), 

and Heliothis armigera (Xu et al. 2005), which acts as receptor to a cry toxin. Aminopeptidase N 

has been identified as Cry toxin receptor from M. sexta (Knight et al. 1994), Heliothis virescens 

(Luo et al. 1997), Bombyx mori (Yaoi et al. 1997), H. armigera (Rajagopal et al. 2003), Plutella  

xylostella (Nakanishi et al. 2002), and Lymantria dispar (Valaitis et al. 1997). Glycolipids from 

the midgut of the M. sexta have also been reported to bind with Cry1Aa, Cry1Ab, and Cry1Ac 

(Griffitts et al. 2005). Also, alkaline phosphatases have been reported to act as a Cry1Ac receptor 

in M. sexta (McNall et al. 2003, Sangadala et al. 1994) and H. virescens (English and Readdy 

1989, Jurat-Fuentes and Adang 2004) and as a Cry11Aa receptor in Aedes aegypti (Fernandez et 

al. 2006). Some preliminary results show that Cry toxin can also bind to two new receptors. A 

receptor called BTR-270 which is a 270-kDa glycoconjugate was isolated from L. dispar and 

binds strongly to Cry1Aa, Cry1Ab, and Cry1Ba, weakly to Cry1Ac, and not at all to Cry1Ca, 

Cry2Aa, Cry2Ba, and Cry3Aa (Valaitis et al. 2001).  Another receptor which has a molecular 

mass of 252 kDa and is called as P252 was isolated from B. mori brush border membrane 

vesicles (BBMV) (Hossain et al. 2004). This receptor was able to bind to Cry1Aa, Cry1Ab, and 

Cry1Ac. 
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Alteration of the binding site is the best characterized mechanism of resistance to Cry 

toxins and generally confers high resistance levels (Ferré and VanRie 2002). A decrease in Cry 

toxin binding ability to midgut receptors has also been reported in resistant strains of P.  

xylostella (Ferré et al. 1991, Tabashnik et al. 1994 , Masson et al. 1995, Eschriche et al. 1995 , 

Tang et al. 1996), H. virescens (MacIntosh et al. 1991, Lee et al. 1995), Spodoptera exigua 

(Moar et al. 1995) and Leptinotarsa decemlineata (Loseva et al. 2002). In ECB binding analysis 

indicated that resistance to Cry1Ab and Cry1Ac in a Bt-resistant strain was not associated with a 

loss of toxin binding (Li et al. 2004). Gunning et al. (2005) reported that esterases in the gut of 

H. armigera are responsible for its resistance to transgenic cotton containing a Cry1Ac gene. The 

level of esterases was higher in the gut of the resistant strain than in the susceptible strain. They 

also showed that esterases could bind to Cry1Ac protoxin and activated toxin, and therefore 

could help detoxify Bt toxins. 

Insect functional genomics 

The genomic information for insects has increased tremendously during last several 

years. Whole genomes have been sequenced for several insect species, including the fruit fly 

(Drosophila melanogaster) (Adams et al. 2000), African malaria mosquito (Anopheles gambiae) 

(Holt et al. 2002), yellow fever mosquito (A. aegypti) (Nene et al. 2007), honey bee (Apis 

mellifera) (Weinstock et al. 2006.), silkworm (B. mori) (Mita et al. 2004, Xia et al. 2004), red 

flour beetle (Tribolium castaneum) (Richards et al. 2008), and 11 other Drosophila species 

(Crosby et al. 2007, Lin et al. 2007). Genome sequencing of other insect species, including pea 

aphid (Acyrthosiphon pisum), northern house mosquito (Culex pipiens), three species of 

parasitoid wasp (Nasonia sp.), Hessian fly (Mayetiola destructor), blood sucking bug (Rhodnius 

prolixus), and body louse (Pediculus humanus), are currently in progress (Deng et al. 2006, 
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Grimmelikhuijzen et al. 2007, Sattelle et al. 2007). The red flour beetle is the only agricultural 

insect pest whose whole genome sequence has become available to date.   

Sequencing of the expressed sequence tags (ESTs) has been recognized as an economical 

approach to identify a large number of expressed genes that can be used in gene expression and 

other genomic studies (Gerhold et al. 1996, Dimopoulos et al. 2000, Porcel et al. 2000). Indeed, 

ESTs have been generated from several lepidopteran insects including the silkworm (Mita et al. 

2003), spruce budworm (Choristoneura fumiferana) (Li et al. 2003), cotton bollworm (H. 

armigera) (Dong et al. 2007), diamondback moth (P. xylostella) (Eum et al. 2004), tobacco 

hawkmoth (M. sexta) (Robertson et al. 1999, Zou et al. 2008), and fall armyworm (S. frugiperda) 

(Deng et al. 2006, Negre et al. 2006). 

The advent of transgenic crops shifted the focus for identifying insecticide targets from 

the nervous system to the midgut (Siegfried et al. 2005). The gut of major agricultural insect 

pests can be a target for pesticide development, a source of transgenic resistance (Li et al. 2004) 

and can influence the durability of host plant resistance (Koiwa et al. 2000). Insect gut proteins 

are involved in various functions including food digestion, detoxification, and developmental 

regulation. The high throughput genomic projects focused on characterizing the gene expression 

profiles from the cell or tissues have been expected to uncover the fundamental insights into the 

biological process (Swaroop and Zack 2002). In order to identify cellular pathways and genes 

that are selectively turned on or off in response to extrinsic factors or intrinsic genetic programs, 

it is important to deduce the catalogue of mRNA expressed in the specific cell or tissue types at 

various stages of development, aging and disease (Yu et al. 2003).  

It has been long recognized that the insect gut is an important target for developing new 

strategies for insect pest management. Until now, however, only a few studies have focused on 
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the development of gut-specific EST libraries of lepidopterans as a tool to identify candidate 

genes involved in the toxicity of insecticides and the development of insecticide resistance. Gut-

specific EST libraries were reported for light brown apple moth (Epiphyas postvittana) (6,416 

ESTs) (Simpson et al. 2007), bertha armyworm (Mamestra configurata) (30 serine protease-

related sequences) (Hegedus et al. 2003), and O. nubilalis (1,745 ESTs) (Coates et al. 2008). The 

generation and identification of large numbers of transcriptomes from the insect gut will provide 

the better understanding of its molecular composition and it will provide tools to elucidate the 

various biological processes as well as identify novel targets for insect control. 

RNA interference technology 

The potential function of gene in an organism can be determined by disrupting the gene 

and observing the effect of this loss on the organism (Waterhouse and Helliwell 2002).  One 

method to cause gene disruption is to down-regulate the gene expression. Several techniques has 

been attempted to target specific RNAs for degradation such as use of anti-sense 

oligonucleotides and ribozymes (Bantounas et al. 2004). But the discovery that double-stranded 

RNA (dsRNA) can trigger silencing of the homologous genes has provided a new very 

promising tool for studying gene function (Hannon 2002). This process is called as RNA 

interference in animals (Hannon 2002) and post-transcriptional gene silencing in plants 

(Baulcombe 2004). In animals, RNAi was first discovered in Caenorhabditis elegans, in which 

mRNA or antisense RNA injections had no effect on protein production, but double-stranded 

RNA successfully silenced the targeted gene (Fire et al. 1998). The main steps involved in the 

RNAi mechanism are as follows: 1) dsRNA typically more than 200 bp is delivered into the 

body of organism. Upon entering into the cell, it follows a cellular pathway called RNAi 

pathway. 2) dsRNA is recognized by RNaseIII-like enzyme called dicer and brake down the 
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dsRNA to small 21-23 nucleotide long fragments called as siRNA. This process occurs in the 

presence of ATP (Bernstein et al. 2001).  3) siRNA are then incorporated into the endonuclease 

containing complex called RNA-induced silencing complexes (RISCs). RISC undergo ATP 

dependent process to unwind the double stranded siRNA. 4) siRNA strand guide the RISC to its 

complementary RNA molecule and binds with it (Hammond et al. 2000, Nykanen et al. 2001 5) 

Endonuclease then cleaves the RNA molecule and cleaved RNA fragments are then degraded by 

exonucleases.  In insects, RNAi has been successfully used in D. melanogaster (Misquitta and 

Paterson 1999, Dzitoyeva et al. 2001), Musca domestica (Stauber et al. 2000), B. mori (Dai et al. 

2007), S. litura (Rajagopal et al. 2002), E. postvittana (Turner et al. 2006), A. pisum (Jaubert-

Possamai et al. 2007, Mutti et al. 2006), Blattella germanica (Cruz et al. 2006, Martin et al. 

2006), Periplaneta Americana (Marie et al. 2000), A. albopictus (Caplen et al. 2002), Bemisia 

tabaci (Ghanim et al. 2007), a culture cell line from A.gambiae (Levashina et al. 2001), A. 

mellifera (Amdam et al. 2003), Schistocerca gregaria (Dong and Friedrich 2005),  Rhodnius 

prolixus (Araujo et al. 2006), Diabrotica virgifera (Baum et al. 2007), and Tribolium castaneum 

(Bucher et al. 2002, Tomoyasu et al. 2004). Mostly, the preferred dsRNA delivery method in 

insects is microinjection of in vitro synthesized dsRNA into the insect haemoceol (Dzitoyeva et 

al. 2001) but in some cases oral feeding of dsRNA has also been effective (Turner et al. 2006, 

Araujo et al. 2006, Baum et al. 2007).   

RNAi for pest management 

RNAi technique can be used in developing the transgenic plants which cause the down 

regulation of essential genes in the insect and thus causing insect death (Price and Gatehouse 

2008). Baum et al. (2007) reported a significant level of protection by the transgenic corn which 

is engineered to express dsRNA directed against D. virgifera V-ATPase A gene. Another 
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approach used by Mao et al. (2007) also demonstrated the successful delivery of the dsRNA 

targeted against the cotton bollworm through the transgenic tobacco and Arabidopsis plants. 

Here, the authors first identified a cytochrome P450 (CYP6AE14) gene from the midgut of the 

cotton bollworm, whose expression is related to the gossypol (cotton secondary metabolite) 

tolerance. The transgenic plants expressing dsRNA against CYP6AE14 were developed and 

were fed to cotton bollworm. These insects showed the silencing of the CYP6AE14 gene and 

when transferred to the artificial diet containing gossypol, they became more sensitive to 

gossypol. RNAi technology has the advantage to use wide range of targets that can be exploited 

to suppress the pest population but there is a need to screen and identify the effective target 

genes. Another key to the success of this approach is developing a transgenic plant capable of 

continuous delivery of sufficient amount of intact dsRNA for uptake by insects (Price and 

Gatehouse 2008).   

Role of peritrophic membrane in food digestion  

Peritrophic membrane (PM) consists of chitin and glycoproteins and is an important 

physical barrier between the food bolus and the gut epithelial cells. It is also an attractive target 

for insect pest management strategies (Hegedus et al. 2009). Most insects have PM but it is 

generally absent in the insect orders, Hemiptera, Thysanoptera, and adult Lepidopera (Lehane 

1997). Lepidoteran larvae have type 1 PM, that is 0.5-1.0 µm thick and is formed by midgut 

epithelial cells along the entire length of midgut (Mercer and Day 1952). Type II PM is found in 

the dipteran larvae, some lepidoptera, embiodae, and primitive orders (e.g., Dermaptera and 

Isoptera) and is formed from special tissues called cardia located anterior to the midgut 

(Binnington 1988, Peters et al. 1979, Hegedus et al. 2009). PM protects insect midgut epithelial 

cells from abrasive food particles, digestive enzymes, and pathogens and plays an important role 
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in the digestive process by compartmentalizing the midgut to make nutrient acquisition more 

effective. However, one of the significant mechanisms regarding PM that is still poorly 

understood is how digestive enzymes pass through the PM and reach endoperitrophic space 

(Hegedus et al. 2009). Several mechanisms have been proposed by which digestive enzymes 

secreted from midgut epithelium penetrate the PM to reach the food bolus: 1) secretion of 

digestive enzymes from the epithelial cells in the anterior region of midgut where the PM may 

not be fully formed (Caldeira et al. 2007, Cristofoletti et al. 2001, Neira et al. 2008); 2) special 

pores in the PM to allow the enzymes to pass (Ferreira et al. 1994, Ferreira et al. 1999, Santos 

and Terra 1986); 3) release of enzymes before the PM is formed (Villalon et al. 2003); and 4) 

formation of temparory pores to allow the enzymes movement (Shen and Jacobs-Lorena 2003, 

Toprak et al. 2008). Temperory pore formation has been suggested in A. gambiae, which is 

achevied by gut chitinase enzyme by partially degrading the chitin in the PM (Shen and Jacobs-

Lorena 2003). Understanding the movement of nutrients and enzymes through the PM also has 

implications for insect pest management. For example, certain genes involved in this process 

could be targeted to disrupt the function of PM, thereby decreasing the efficiency of the digestive 

process hindering the movement of enzymes and nutrient uptake.  

Immune defense response  

Insects are continuously exposed to potentially pathogenic microorganisms and 

eukaryotic parasites, but only a few encounters result in infection (Gillespie et al. 1997). Insects 

possess a complex and efficient system of biological defense against pathogens and parasites 

which include: 1) the integument and gut as physical barriers to infection; 2) coordinated 

responses of several subpopulations of hemocytes when these barriers are breached; 3) the 

induced synthesis of antimicrobial peptides and proteins, primarily by the fat body (Gillespie et 
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al. 1997). Innate immune system recognizes microorganisms through a series of pattern 

recognition receptors that are highly conserved in evolution (Hoffmann et al. 1999, Janeway and 

Medzhitov 2002). Components of the insect innate immune system include antimicrobial 

peptides, macrophage-like hemocytes, melanization, wound healing and complement-like 

thioester proteins in the hemolymph (Ip 2006). These insect antimicrobial mechanisms are 

effective against bacteria, parasites and fungi. The induction of the immune related proteins for 

defense requires the host to recognize the invader as non-self (Hashimoto et al. 2007, Schmid-

Hempel 2005). Several families of the proteins are reported to be involved in the recognition of 

the surface characteristics of microbes such as peptidoglycan recognition proteins (PGRPs), 

gram negative binding proteins (GNBPs) or β-1-3 glucan recognition proteins , 

lipoploysaccharides, and mannans (Medzhitov et al. 1997). PGRP genes have been reported from 

D. (Werner et al. 2000, Dziarski and Gupta 2006), M. sexta (Yu et al. 2002), B. mori (Ochiai and 

Ashida 1999), Samia cynthia ricini (Hashimoto et al. 2007, Onoe et al. 2007), Trichoplusia ni 

(Kang et al. 1998), and A. gambiae (Christophides et al. 2002).  GNBP genes have been found in 

B. mori (Ochiai and Ashida 2000), M. sexta (Ma et al. 2000), and P. interpunctella (Fabrick et al. 

2003). After the pathogen infects the insect haemocoel, the defense response causes the synthesis 

of a battery of antifungal/antibacterial peptides (Hetru et al. 1998, Lamberty et al. 1999). Most of 

the antimicrobial peptides, such as lysozyme, are produced in the fat body or haemocytes and 

then released into the haemolymph of insects, which then damages the microbial cell membranes 

(Dimarcq et al. 1998, Lamberty et al. 1999, Lopez et al. 2003). Research in insect immunity can 

be expected to result in improved use of entomopathogens in biological control, in discovery of 

antimicrobial molecules that can be exploited by humans, and in new strategies for management 

of insect vectors of human and animal disease (Gillespie et al. 1997). Identification and 
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expressional analysis of antibacterial genes in O.nubilalis will provide new insights and better 

understanding of the immune defense response in O.nubilalis.  
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Objectives 

General goal of this study was to generate large genomic database from the gut of the 

ECB to be used for better understanding of gut physiology and its interaction with Bt toxins and 

pathogens. The specific objectives of this study were outlined as follows:  

1. Establish and analyze expressed sequence tag (EST) database from the gut of the ECB 

larvae; 

2. Establish feeding-based RNA interference technique to be used for gene functional 

analysis in ECB larvae; 

3. Identify and characterize aminopeptidase-like genes from the ECB larvae and determine 

their involement in Bt toxicity and resistance; 

4. Identify and characterize chitinase-like gene from the gut of ECB larvae and determine 

its involvement in the chitin regulation in the peritrophic membrane; and 

5. Identify and characterize antibacterial response genes from the ECB larvae.   
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CHAPTER 2 - Expressed Sequence Tags from Larval Gut of the 

European Corn Borer (Ostrinia nubilalis):  Exploring Candidate 

Genes Potentially Involved in Bacillus thuringiensis Toxicity and 

Resistance 

BMC Genomics 2009, 10: 286 

Abstract 

Background: Lepidoptera represents more than 160,000 insect species which include some of 

the most devastating pests of crops, forests, and stored products. However, the genomic 

information on lepidopteran insects is very limited. Only a few studies have focused on 

developing expressed sequence tag (EST) libraries from the guts of lepidopteran larvae. 

Knowledge of the genes that are expressed in the insect gut are crucial for understanding basic 

physiology of food digestion, their interactions with Bacillus thuringiensis (Bt) toxins, and for 

discovering new targets for novel toxins for use in pest management. This study analyzed the 

ESTs generated from the larval gut of the European corn borer (ECB, Ostrinia nubilalis), one of 

the most destructive pests of corn in North America and the western world. Our goals were to 

establish an ECB larval gut-specific EST database as a genomic resource for future research and 

to explore candidate genes potentially involved in insect-Bt interactions and Bt resistance in 

ECB. 

Results: We constructed two cDNA libraries from the guts of the fifth-instar larvae of ECB and 

sequenced a total of 15,000 ESTs from these libraries. A total of 12,519 ESTs (83.4%) appeared 

to be high quality with an average length of 656 bp. These ESTs represented 2,895 unique 

sequences, including 1,738 singletons and 1,157 contigs. Among the unique sequences, 62.7% 
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encoded putative proteins that shared significant sequence similarities (E-value ≤ 10-3)with the 

sequences available in GenBank. Our EST analysis revealed 52 candidate genes that potentially 

have roles in Bt toxicity and resistance. These genes encode 18 trypsin-like proteases, 18 

chymotrypsin-like proteases, 13 aminopeptidases, 2 alkaline phosphatases and 1 cadherin-like 

protein. Comparisons of expression profiles of 41 selected candidate genes between Cry1Ab-

susceptible and resistant strains of ECB by RT-PCR showed apparently decreased expressions in 

2 trypsin-like and 2 chymotrypsin-like protease genes, and 1 aminopeptidase genes in the 

resistant strain as compared with the susceptible strain. In contrast, the expression of 3 trypsin- 

like and 3 chymotrypsin-like protease genes, 2 aminopeptidase genes, and 2 alkaline phosphatase 

genes were increased in the resistant strain. Such differential expressions of the candidate genes 

may suggest their involvement in Cry1Ab resistance. Indeed, certain trypsin-like and 

chymotrypsin-like proteases have previously been found to activate or degrade Bt protoxins and 

toxins, whereas several aminopeptidases, cadherin-like proteins and alkaline phosphatases have 

been demonstrated to serve as Bt receptor proteins in other insect species. 

Conclusion: We developed a relatively large EST database consisting of 12,519 high-quality 

sequences from a total of 15,000 cDNAs from the larval gut of ECB. To our knowledge, this 

database represents the largest gut-specific EST database from a lepidopteran pest. Our work 

provides a foundation for future research to develop an ECB gut-specific DNA microarray which 

can be used to analyze the global changes of gene expression in response to Bt protoxins/toxins 

and the genetic difference(s) between Bt- resistant and susceptible strains. Furthermore, we 

identified 52 candidate genes that may potentially be involved in Bt toxicity and resistance. 

Differential expressions of 15 out of the 41 selected candidate genes examined by RT-PCR, 

including 5 genes with apparently decreased expression and 10 with increased expression in 
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Cry1Ab-resistant strain, may help us conclusively identify the candidate genes involved in Bt 

resistance and provide us with new insights into the mechanism of Cry1Ab resistance in ECB. 

Background 

The genomic information on insects has increased tremendously during last several years. 

Whole genomes have been sequenced for several insect species, including the fruit fly 

(Drosophila melanogaster) [1], African malaria mosquito (Anopheles gambiae) [2], yellow fever 

mosquito (Aedes aegypti) [3], honey bee (Apis mellifera) [4], silkworm (Bombyx mori) [5, 6], red 

flour beetle (Tribolium castaneum) [7], and 11 other Drosophila species [8,9]. Genome 

sequencing of other insect species, including pea aphid (Acyrthosiphon pisum), northern house 

mosquito (Culex pipiens), three species of parasitoid wasp (Nasonia sp.), Hessian fly (Mayetiola 

destructor), blood sucking bug (Rhodnius prolixus), and body louse (Pediculus humanus), are 

currently in progress [10-12]. The red flour beetle is the only agricultural insect pest whose 

whole genome sequence has become available to date. Lepidoptera, the second most biodiverse 

group of insect species after Coleoptera, represents more than 160,000 species including many of 

the most devastating pests of crops, forests and stored products [13]. The silkworm was the first 

lepidopteran insect to have its complete genome sequenced [6]. However, genomic information 

for other lepidopterans, particularly agricultural pest species is limited but urgently needed due to 

their economic importance and biodiversity. Sequencing of the expressed sequence tags (ESTs) 

has been recognized as an economical approach to identify a large number of expressed genes 

that can be used in gene expression and other genomic studies [14-16]. Indeed, ESTs have been 

generated from several lepidopteran insects including the silkworm [17], spruce budworm 

(Choristoneura fumiferana) [18], cotton bollworm (Helicoverpa armigera) [19], diamondback 

moth (Plutella xylostella) [20], tobacco hawkmoth (Manduca sexta) [21,22], and fall armyworm 
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(Spodoptera frugiperda) [10,23]. It has been long recognized that the insect gut is an important 

target for developing new strategies for insect pest management. Until now, however, only a few 

studies have focused on the development of gut-specific EST libraries of lepidopterans as a tool 

to identify candidate genes involved in the toxicity of insecticides and the development of 

insecticide resistance. Gut-specific EST libraries were reported for light brown apple moth 

(Epiphyas postvittana) (6,416 ESTs) [24], bertha armyworm (Mamestra configurata) (30 serine 

protease-related sequences) [25], and European corn borer (ECB, Ostrinia nubilalis) (1,745 

ESTs) [26]. ECB is one of the most destructive pests of corn and can cause as much as $1 billion 

of economic loss annually in the United States alone [27,28]. ECB also represents a complex of 

stalk borers, such as the southwestern corn borer (Diatraea grandiosella) and the sugarcane 

borer (Diatraea saccharalis). These stalk borers share similar ecosystem and create similar 

damage to corn plants. Although ECB has been successfully managed using transgenic Bt corn 

hybrids (plants that express insecticidal toxins of Bacillus thuringiensis or Bt), there are 

increasing concerns about the potential development of Bt resistance in ECB because of the 

widespread use of Bt corn [28,29]. Indeed, several ECB colonies have developed resistance to Bt 

toxins under laboratory selection conditions [30,31]. The main target for Bt toxins is the insect 

midgut, where Bt protoxins are activated by gut proteases to produce acti vated Bt toxins. The 

activated toxins then bind to specific receptor(s) to confer toxicity [32]. This means that insect 

resistance to Bt toxins could be conferred by protease-mediated and receptor-mediated 

mechanisms [33-37]. Because Bt toxins and insect gut interactions are determined by many gene 

products in the insect gut, including many proteins/enzymes involved in Bt protoxin activation, 

toxin binding to receptors and toxin degradation, any change in these systems has the potential to 

affect a particular Bt's specificity and efficacy, and could lead to Bt resistance in insects. Our 
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goals are to develop a gut-specific EST database from ECB larvae and explore candidate genes 

that are potentially involved in insect-Bt interactions and Bt resistance. In this paper, we report 

the analysis and annotations of 15,000 ESTs derived from the gut of ECB larvae. We discuss the 

putative identities of the ESTs, their potential biological and molecular functions, and present 

comparative analyses of our ESTs with sequences from other insects. This work provides the 

opportunity for developing an ECB gut-specific microarray that can be used to study insect-Bt 

interactions and genetic basis of Bt resistance in ECB. Furthermore, we revealed 52 candidate 

genes that could be involved in Bt toxicity and resistance. Among the 41 selected candidate 

genes examined by RT-PCR, we found 5 genes with apparently decreased expressions and 10 

with increased expressions in Cry1Ab-resistant strain of ECB as compared with the susceptible 

strain of ECB. Differential expressions of these genes in a Cry1Ab-resistant strain may suggest 

possible involvement of these genes in Cry1Ab resistance, and therefore provides us with new 

insights into the mechanism of Cry1Ab resistance in ECB. This study may serve as a model for 

studying Bt resistance mechanisms and for developing bio-pesticides for all closely related corn 

stalk borers. 

Results and discussion 

Development and analysis of the ECB gut ESTs 

We first used pPCR-XL-TOPO plasmid vector to prepare a cDNA library using total 

RNA purified from the whole guts of fifth-instar larvae of ECB. After we sequenced a total of 

1,152 cDNA clones, we found that the cDNA inserts in the vector were not sufficient long 

(average length: 441 bp). Therefore, we used lambda Uni-ZAP RX vector to prepare a second 

cDNA library using mRNA purified from the guts of fifth-instar larvae of ECB. This library 

provided us with much longer cDNA inserts (average length: 674 bp). Because of this 
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significantly improved quality of the ESTs generated from the lambda library, we used the 

lambda library for our further sequencing of ESTs. Among the 15,000 random cDNA clones 

sequenced, only <8% were from the plasmid library whereas >92% were from the lambda library 

(Table 2.1). Our analysis of the 15,000 sequences resulted in 13,066 readable sequences (i.e., 

87.1% success rate). These sequences were first trimmed for removal of vector sequences and 

then were subjected to filtration to exclude the sequences of <100 bp. Further analysis, using 

Repeat- Masker and Organelle Masker programs [38], removed an additional 547 sequences. 

Thus, the total number of high quality sequences obtained was 12,519 (83.4%) with an average 

length of 656 bp (Table 2.1). These high quality sequences have been deposited in the EST 

database (dbEST) with GenBank accession numbers from GH987145 to GH999663 at the 

National Center for Biotechnology Information (NCBI). Redundancy and assembly analyses of 

the high quality sequences using Sequencher software (Gene Codes Corp., Ann Arbor, MI, USA) 

resulted in 2,895 unique ESTs, including 1,157 contiguous sequences (contigs) that consist of 2 

or more sequences, and 1,738 singletons that represent single sequences. Putative identities of 

the unique sequences were determined by searching the nonredundant database in GenBank 

using BLASTx. Among the 2,895 unique sequences, 1,816 (62.7%) showed significant matches 

at E-values of ≤10-3, whereas the remaining 1,077 (37.3%) did not exhibit meaningful matches 

(Figure 2.1A). The majority of the contigs were assembled from 10 or fewer ESTs (Figure 2.1B). 

On average, however, each contig was assembled from 10.1 sequences due to a few highly 

redundant ESTs. 

Transcript abundance 

The abundance of transcripts for a particular gene of an organism can be estimated from 

the corresponding EST abundance in a cDNA library [39]. The most abundant ESTs in our 
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cDNA libraries were those encoding trypsinlike proteases and chymotrypsin-like proteases 

(Table 2.2). As this cDNA library was constructed from the gut of ECB, the high number of 

transcripts from the digestive enzymes was expected. The most abundant contig was #0038 

which consisted of 525 ESTs, and it included 4% of the total sequences. This contig shared 

maximum sequence similarity with the trypsin-like protease, T25 precursor, characterized 

previously in ECB [40]. Other abundant transcripts were contigs #0026 and #0062. Contig #0026 

included 197 ESTs and encoded a putative chymotrypsin-like protease. Contig #0062 included 

137 ESTs and encoded a putative trypsin-like serine protease. The highly expressed genes in 

ECB larval gut may have important implications for their growth and development. However, 

care must be taken in making general conclusions about the redundancy of EST's because some 

artifacts could also be involved [41]. 

Identification of the ORF and putative secretary proteins 

The 2,895 contigs and singletons were subjected to the ORF predictor software to 

identify the open reading frame (ORF) of the sequences. This was done to identify the novel 

gene candidates, which have clear coding capacity. Among 2,895 unique ESTs, 1,119 (38.7%) 

had ORFs of at least 450 bp. Among 1,119 ORFs, 994 putative protein sequences (88.8%) shared 

sequence similarity (E-value ≤ 10-3) with known proteins in the non-redundant (NR) protein 

database in GenBank, whereas 125 (11.2%) did not share significant similarity with any known 

protein in the same database (Figure 2.2A). Thus, at least 11.2% of the protein-coding genes in 

the gut of ECB are potentially new genes. The remaining 1,553 contigs and singletons (53.6%) 

had an ORF of <450 bp and 223 (7.7%) did not have an ORF. Among the ESTs with ORFs of 

<450 bp, 452 (29.2%) had matches in the NR protein database, whereas 1,011 (70.8%) did not 

have matches. Many sequences did not have ORF of atleast 450 bp because the sequences were 



 46

too short (approximately 650 sequences were less than 450 bp). The lack of the ORFs in other 

sequences can be due to frame shift errors, 5' truncation of cDNA clones and the ESTs that were 

not derived from mRNA [42]. To identify the secretory proteins, putative protein sequences were 

examined to identify potential secretion signal peptide using SignalP software [43]. A total of 

439 (15.2%) putative proteins were predicted to contain signal peptides (Figure 2.2B). Among 

the putative secretory proteins, 298 sequences (67.9%) had matches with known proteins in the 

NR protein database, whereas 141 putative secretory proteins (32.1%) were unique, sharing no 

significant sequence similarity with any known protein. This information is valuable since 

secretory proteins are important components of biological processes in the gut [44,45]. 

Comparative analyses of ECB gut ESTs 

The development of EST databases has been recognized as a rapid method of sampling 

an organism's transcriptome and is complementary to a whole genome-sequencing project [46]. 

Indeed, a large number of ESTs have been generated from other model organisms. The 2,895 

contigs and singletons obtained from the larval gut of ECB were compared with the sequences 

from other organisms. The first hits (highest score) of the sequences in the NR database were 

taken into account to determine the most similar organism. The largest number of first hit 

sequences (390; 13.5%) came up with B. mori (Figure 2.3). This can be explained by the fact that 

the genome of B. mori has been sequenced and partially annotated, and that both ECB and B. 

mori are lepidopterans. The second largest number of first hit sequences (290; 10.0%) was with 

T. castaneum, followed by Ae. aegypti (109; 3.8%), Culex pipiens (91; 3.1%), and A. gambiae 

(81; 3.8%). Only 2.5% of the sequences (72) were found to be most similar to predicted protein 

sequences from ECB. This is simply due to the very small number of sequences currently 

available in NCBI database from ECB. In order to compare our ECB gut ESTs with the 1,745 
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ECB ESTs that are already available in NCBI database, we performed BLASTN searches. 

Among our 2,895 contigs and singletons, 1,279 (44.2%) had significant matches at a cutoff E-

value of ≤ 10-3
 whereas 1,616 (55.8%) did not show any significant matches in NCBI database 

using BLASTN search. We compared our ECB ESTs with the ECB ESTs available in NCBI 

dbEST database. We found 475 sequences (16.4%) that had significant matches with E-values 

less than E-150 (Figure 2.4A). Within this category, 88 ESTs (3.0%) had matches with E-values 

less than E-150, 23 (0.8%) had E-values between E-150 and E-100, 131 (4.5%) had E-values of 

E-100 and E-50, 152 (5.2%) had E-values of E-50 and E-20, and 81 (2.7%) had E-values 

between E-20 and E-5 (Figure 2.4B). A total of 2,420 ESTs (83.6%) had no hits with currently 

available midgut ESTs in NCBI database. Because B. mori genome has not been fully annotated, 

we have also compared our ESTs with all available B. mori ESTs using BLASTN. Among the 

2,895 contigs and singletons, 579 (20.0%) had hits with B. mori sequences at E-value ≤ 10-3
 

(Figure 2.4A). The remaining 2,316 ESTs (80.0%) did not show a significant match with the B. 

mori sequences. Among the 579 unique ESTs which had hits in the database, 43 (7.4%) had 

matches with E-value less than E-150, 64 (11.1%) had E-values between E-150 and E-100, 156 

(26.9%) had E-values between E-100 and E-50, 135 (23.3%) had E-values between E-50 and E-

20, and 181 sequences (31.3%) had E-values between E-20 and E-5 (Figure 2.4B). 

Gene ontology 

Blast2GO software was used to obtain the gene ontology (GO) terms for the unique 

sequences by comparing them through the Gene Ontology Consortium [47]. Among the 2,895 

contigs and singletons, 1,815 showed blast hits at Evalue ≤ 10-3
 and 1,119 ESTs of the 1,815 

were mapped. A total of 120 mapped ESTs showed both the GO terms and Enzyme Commission 

(EC) numbers. Figure 2.5 shows the EST functional categories, where the ECB unique ESTs 
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were assigned to putative biological processes, molecular functions, and cellular components. 

Within the biological process category, 24.0% belong to cellular processes, followed by 17.0% 

metabolic processes, 11.0% developmental processes, 11.0% multi-cellular processes, and 8.0% 

each for biological regulation and localization. In the molecular function category, the maximum 

GO terms (40.0%) are included in catalytic activity, followed by binding (31.0%), transporter 

activity (10.0%), and 5.0% each for enzyme regulation activity and structural molecular activity 

(9.0%). In cellular components category, cell part, cell, and organelle had 27.0%, 24.0%, and 

18.0% of the GO terms, respectively. They were followed by organelle part (13.0%), 

macromolecular complex (11.0%), envelope (4.0%), and membrane-enclosed lumen (3.0%). 

Identification of ESTs potentially relevant to the Bt toxicity and resistance 

The mode of Bt action in insects includes the ingestion of Bt protoxins, solubilization of 

Bt protoxins in insect gut, proteolytic activation of protoxins, binding of toxins to Bt receptors, 

membrane integration, pore formation, cell lysis, and insect death [48]. According to this mode 

of action, a target insect could potentially develop resistance to Bt protoxins or toxins via one or 

more changes in the Bt-receptor interaction pathway. Indeed, the two most commonly identified 

Bt resistance mechanisms are protease-mediated and receptor-mediated resistance [49]. Our 

analysis of ESTs derived from the larval gut of ECB revealed a number of genes that are 

potentially involved in Bt toxicity and resistance (Table 2.3). Specifically, we identified 18 ESTs 

putatively encoding trypsin-like proteases and 18 ESTs putatively encoding chymotrypsin-like 

proteases with E-value ranges from 2e-26 to 3e-137 and E-value 3e-27 to 3e-149, respectively. 

Changes in the proteolytic activity of digestive enzymes can alter the toxicity of Bt protoxins or 

toxins through effects on crystal solubilization and/or activation of protoxins, as well as 

degradation of activated toxin [33, 50-56]. A previous study from our lab has shown that Bt 
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resistance in a Dipel-resistant strain of ECB was primarily associated with reduced trypsin-like 

protease activity [35,40]. These trypsin-like proteases were also revealed in our EST analysis. 

Thus, our analysis of the ESTs generated from the guts of ECB larvae revealed many more 

candidate genes that deserve further analysis for their roles in Bt toxicity and resistance in ECB. 

Our EST analysis also revealed 13 ESTs putatively encoding aminopeptidases (E-value 1e-64 to 

1e-116), 1 encoding a cadherin-like protein (E-value 1e-35), and 2 encoding alkaline 

phosphatases (E-value 1e-115 to 1e-131). Aminopeptidase N, cadherin-like proteins, and 

alkaline phosphatases have been found to serve as Bt toxin binding receptors in other insect 

species [57-59]. To verify the function of aminopeptidase N as a receptor for Bt Cry1Ac toxin in 

Spodoptera litura, RNAi technology was used to reduce the expression of aminopeptidase N. 

This resulted in a significant reduction in the susceptibility of the insect to Cry1Ac toxin [60]. 

Gahan et al. [61] showed that in a resistant strain (YHD2) of Heliothis virescens, there was a 

disruption of a cadherin-superfamily gene by a retrotransposon-mediated insertion that resulted 

in high levels of resistance to the Bt toxin Cry1Ac. Fernandez et al. [62] also reported that a GPI 

(glycosylphosphatidyl-inositol)-anchored ALP (alkaline phosphatase) was an important receptor 

molecule involved in Cry11Aa interactions with midgut cells and toxicity to Ae. aegypti larvae. 

These studies demonstrate that aminopeptidases, cadherin- like proteins, and alkaline 

phosphatases can serve as Bt toxin receptors involved in Bt toxicity and resistance. Thus, 

identification of these candidate Bt receptor genes in this study will allow us to further examine 

whether receptor-mediated resistance is involved in Bt resistance in ECB. 
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Comparison of expression profiles between Cry1Ab susceptible and resistant strains of 

ECB 

We performed RT-PCR to compare the expression patterns of the candidate genes 

relevant to Bt toxicity and resistance between Cry1Ab-susceptible and resistant strains of ECB. 

Among 41 selected genes from the 52 candidate genes, which included 15 that putatively code 

for trypsin-like serine proteases, 13 for chymotrypsin-like serine proteases, 10 for 

aminopeptidases, 2 for alkaline phosphatases, and 1 for cadherin-like protein, we found 

apparently decreased expressions in 2 trypsin-like and 2 chymotrypsin-like protease genes, and 1 

aminopeptidase genes in the resistant strain as compared with the susceptible strain (Figure 2.6). 

Among these genes, 2 trypsin-like protease genes (contig [0907] and ECB-30-C08) were 

virtually absent in the resistant strain. In contrast, we found apparently increased expressions in 3 

trypsin-like and 3 chymotrypsin-like protease genes, 2 aminopeptidase genes, and 2 alkaline 

phosphatase genes in the resistant strain. The most noticeable increases were found in 1 trypsin-

like protease (contig [3395]), 3 chymotrypsin-like protease (ECB-V-25_E02, contig [0379], and 

ECB- 23_F02), 1 alkaline phosphatase (contig [5091]), and 1 aminopeptidase (ECB-D12) genes. 

Although RT-PCR is not quantitative, reproducible results of such differential expression 

patterns for these candidate genes in the Cry1Ab-susceptible and resistant strains of ECB may 

imply their potential roles in conferring or contributing to Cry1Ab resistance as well as genetic 

differences between the susceptible and resistant strains of ECB. Indeed, certain trypsin-like and 

chymotrypsin-like proteases have previously been found to activate or degrade Bt protoxins and 

toxins, whereas several aminopeptidases, cadherin-like proteins and alkaline phosphatases have 

been demonstrated to serve as Bt receptor proteins in other insect species. Thus, our results may 

help conclusively identify the candidate genes involved in Cry1Ab resistance and provide us 

with new insights into the mechanism of Cry1Ab resistance in ECB. Nevertheless, further 
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research will be needed to confirm their involvements and to elucidate their roles in Cry1Ab 

resistance in ECB. 

Conclusion 

Our study resulted in a gut-specific EST database containing 12,519 high-quality ESTs 

from a total of 15,000 ESTs sequenced in an agriculturally important lepidopteran pest. To our 

knowledge, this database represents the largest gut-specific EST database from a lepidopteran 

pest. Our analysis using ORF predictor software showed that approximately 11.2% of the protein 

coding genes in our database may be specific to ECB as these sequences have an ORF of at least 

450 bp but did not have significant matches with known sequences in NCBI database. We have 

also identified 52 candidate genes that are relevant to Bt toxicity and resistance. These genes 

encode trypsin-like proteases, chymotrypsin-like proteases, aminopeptidases, cadherin-like 

protein, and alk6aline phosphatases. Furthermore, we showed differential expressions of 15 out 

of the 41 representative candidate genes that were examined by RT-PCR, including 5 genes with 

apparently decreased expressions and 10 with increased expressions in Cry1Ab resistant strain. 

These results may help us further narrow down the candidate genes possibly involved in Cry1Ab 

resistance, and provide us with new insights into the mechanism of Bt resistance in general in 

ECB. We are in the process of developing a microarray using our unique ESTs together with the 

ECB gut-specific sequences which are already available in the GenBank. The microarray 

technology will help us analyze the global change of gene expression in response to Bt 

protoxins/toxins. It will also allow us to analyze any genetic differences between Bt resistant and 

-susceptible strains of ECB. Our genomic information on ECB could also serve as a valuable 

resource for identifying critical/vulnerable genes from the gut of ECB that would make useful 

physiological targets for new toxins that could be developed for use in pest management. 
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Methods 

Insects rearing and dissection 

The KS-SC Bt-susceptible ECB colony was used for generating EST libraries. This 

colony originated from the egg masses collected from the cornfields near St. John, Kansas, in 

1995. The colony has been reared since then on artificial diets in the laboratory at Kansas State 

University according to Huang et al. [63]. The resistant ECB strain originated from a field 

collection of 126 diapausing larvae obtained from non-Bt hybrids in Kandiyohi Co., MN in 

2001. The resistant strain was initiated from 14 larvae that survived exposure to a diagnostic 

Cry1Ab concentration used to identify potential changes in susceptibility to Cry1Ab [64, 65 ]. To 

minimize inbreeding or founder effects, the resistant insects were backcrossed twice with the 

susceptible strain which originated from the same collection. Because the resistance was 

incompletely recessive and involved multiple factors [65], the F1 progeny were randomly mated 

to obtain recombination of resistance factors in the F2 progeny to allow selection of resistant 

genotypes. The insects were then subjected to selection at a Cry1Ab concentration corresponding 

to two- to three-fold the LC50 for the F1 progeny (150 ng/cm2) [66]. This selection event was 

designed to eliminate all the susceptible homozygotes and most of the heterozygotes. The 

resistant survivors from this selection event were then subjected to a second cycle of 

backcrossing, random mating, and selection. After six generations, the Cry1Ab concentration 

used in selections was gradually increased to achieve 750 ng/cm2 at generation F10, a 

concentration that kills virtually all F1 progeny. At generation F17, the resistance to Cry1Ab in 

the re-selected strain was in excess of 800-fold. The guts were dissected from fifth-instar larvae 

in DEPC (diethylpyrocarbonate)-treated distilled water and were stored in TRI reagent TM 

(Molecular Research, Inc., Cincinnati, OH) at -80°C until used. 
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cDNA library construction and sequencing 

Total RNA was isolated from the whole guts of ECB larvae using TRI reagent™. The 

plasmid library was constructed using Creator SMART™ cDNA library construction kit from 

Clontech (Palo Alto, CA) following the manufacturer's protocols with one modification; instead 

of using the original phage vector, PCR fragments were cloned directly into a pPCR-XL-TOPO 

plasmid using a TOPO TA cloning kit (Invitrogen, Carlsbad, CA). The λ-library was constructed 

using ZAP-cDNA synthesis kit and ZAP-cDNA Gigapack III gold cloning kit (Stratagene, La 

Jolla, CA) according to the manufacturer's protocols. Briefly, double stranded cDNA was 

synthesized from poly(A) RNA, sizefractionated through a Sepharose CL-2B gel filtration 

column, and ligated into λ−Uni-ZAP XR vector. The ligated DNA was packaged with the 

Gigapack III gold packaging extract and the library was plated on LB/agar plates. Recombinant 

plasmid within the lambda Uni-ZAP XR vector was in vivo excised using the ExAssist helper 

phage and recircularized to generate subclones in the pBluescript SK phagemid vector. To 

sequence the clones, M13R and M13F primers were used for 5' and 3' sequencing, respectively. 

Plasmid DNA was isolated using Qiagen Bio Robot 3000 and sequenced using an ABI 3700 

DNA analyzer. 

EST analyses and annotations 

The DNA sequences were preprocessed by using the online software EGassembler [38]. 

Specifically, sequence cleaning process was employed to trim the vector and adaptor sequences 

from the ESTs. RepeatMasker process was used to mask the interspersed repeats and low 

complexity regions of the sequences by using Drosophila Repbase repeat library. The sequences 

were further masked by using vector masking against NCBI's vector library and organelle 

masking against mitochondrial library. The preprocessed ESTs were then assembled by using 
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Sequencher software (Gene Codes Corp., Ann Arbor, MI). The ORF regions of the assembled 

ESTs were identified by using the ORF predictor software [67] and secretory proteins were 

identified by looking for signal peptide sequence using SignalP software [43]. Gene ontology 

(GO) annotation was derived using Blast2GO software http://www.blast2go.de/[68]. 

Comparative analysis of ESTs 

The ECB unique ESTs were comparatively analyzed for their sequence similarities 

against other organisms. The organism associated with the EST showing the highest BLAST 

score in GenBank databases was selected. The ECB gut ESTs were also compared with 

sequences from the silkworm and ECB that are currently available in the database by using 

BLASTN with a cutoff E-value of 10-3. 

Expression profiling by RT-PCR 

Forty-one out of the 52 candidate genes were selected for comparing their apparent gene 

expression profiles between the Cry1Ab-susceptible and resistant strains of ECB by using RT-

PCR. These genes were selected solely based on their representations among different gene 

groups from our EST analysis. After total RNA was isolated from four midguts dissected from 

one-day-old fifth-instar larvae of each strain (Cry1Ab-susceptible and resistant strains) of ECB 

by using TRI reagentTM (Sigma, St. Louis, MO), it was treated with TURBO™ DNase 

(Ambion, Austin, TX)to remove any genomic DNA contaminations. Three micrograms of total 

RNA was used for synthesis of first strand cDNA using SuperScript® III First-Strand Synthesis 

System (Invitrogen, Carlsbad, CA). cDNA prepared from total RNA was used as a template for 

RT-PCR. A minimum of two biological replications was used for all the PCR primer pairs. For 

all trypsin-like (except for ECB-30_C08) and chymotrypsin-like serine protease, alkaline 

phosphatase, and RPS3 genes, 25 PCR cycles were used whereas for aminopeptidase and 
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cadherin-like protein, 27 PCR cycles were used. For one trypsin-like serine protease gene (ECB-

30_C08), however, 33 PCR cycles were used as the expression of this gene using fewer cycles 

was not visible on agarose gels. Each PCR was performed for above mentioned number of 

cycles, each consisting of 94°C for 30s, 55°C for 60s, and 72°C for 60s. The sequences of 

forward and reverse PCR primers, and expected size of PCR product for each of 41 candidate 

genes are provided in Table 2.4. 
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Figure 2.1  (A) Distribution of the 2,895 ECB gut-specific contigs and singletons with or without 

match in NCBI database using BLASTx. Sequences were defined as identical or similar cDNA 

sequences when they had E-values ≤ 10-3. (B) Distribution of ECB gut-specific ESTs in each 

contig. 
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Figure 2.2  Open reading frame (ORF), secretory protein, and BLASTx results. (A) The 

proportion of the unique ESTs from ECB gut cDNA library with or without 450 bp of ORF 

region along with their matches in BLASTx using NCBI database. (B) Proportion of the unique 

ESTs with or without signal peptide along with their match in BLASTx using NCBI database. 
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Figure 2.3  Similarity of ECB gut-specific ESTs with other insects. The first hit sequence 

(highest score) was used to determine the most similar organism. 
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Figure 2.4  (A) Percentage of the 2,895 ECB gut-specific unique ESTs which shared matches 

with O. nubilalis and B. mori sequences with E-value ranging from E-150 to E-5 using 

BLASTN. (B) Comparative analyses of the 2,895 ECB gut-specific unique ESTs to B. mori 

sequences and other O. nubilalis sequences available in NCBI database using BLASTN. 
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Figure 2.5  Distribution of the ECB gut-specific unique ESTs annotated at GO level 2. The Y-

axis shows the percentage of the sequences. The x-axis shows 3 areas of annotation and with 

each area the sequences were further divided into subgroups at GO level 2. 
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Figure 2.6  Expression profiles of 41 candidate genes relevant to Bt toxicity and resistance, 

which include 15 trypsin-like serine protease (TP), 13 chymotrypsin-like serine protease (CP), 2 

alkaline phosphatase (AK), 10 aminopeptidase (AP), and 1 cadherin-like protein (CA) genes in 

the midgut of one-day-old fifth-instar larvae in Cry1Ab-susceptible (S) and resistant (R) strains 

of ECB as determined by RT-PCR. The arrows next to the gel pictures indicate the apparently 

decreased (↓) or increased (↑) expression of a particular gene in Cry1Ab-resistant strain as 

compared with the susceptible strain of ECB. The ribosomal protein S3 (RPS3) gene was used as 

a reference gene. At least two biological replications were used for each primer pair.  
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Table 2.1 Summary of the analysis of 15,000 ESTs from the guts of the European corn borer 

larvae 
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Table 2.2 List of 20 largest contigs assembled from 15,000 ESTs from the guts of European corn 

borer larvae 
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Table 2.3 List of genes potentially involved in Bt toxicity and resistance as identified by EST 

analysis from the guts of the European corn borer larvae 
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Table 2.4 Sequences of PCR primers used to compare the gene expression profiles of trypsin-like 

and chymotrypsin-like serine proteases, alkaline phosphatases, aminopeptidases, and cadherin-

like protein by RT-PCR between Cry1Ab-susceptible and resistant strains of European corn 

borer (Ostrinia nubilalis) 

 

Name Forward Primer Reverse Primer Product size 

(bp) 

 

Trypsin-like serine proteases 

Contig[0111] 

Contig[0486] 

Contig[0754] 

Contig[0622] 

Contig[0907] 

Contig[1007] 

Contig[1400] 

Contig[1615] 

Contig[3395] 

Contig[0157] 

Contig[4291] 

Contig[0038] 

ECB-30_C08 

ECB-17_C09 

ECB-C-18_B11 

ACCTGTCCATCATCCGAACC 

ATGGCGTCCTCGTTGGTG 

TGGGACTGTCTACACTATTGAAAG 

CTGGTGGAGTTATTGCCTACG 

GGCTACTCCTGCGGTCAC 

ATGCGTACCTTCATCGTTCTAC 

ACGGAAGGTGGCACTCTC 

ACCAGTTCACCAGGGACAAC 

TGCTGGTGACTCAAACTCAATG 

GCCAGCATTACACCTTCCG 

CTCAACAACCGTGCTATCCTC 

CATCACGGAGAACATGCTTTG 

GATCACCATTTTGGAATTTTCG 

TGTTTCATCGGTACTGTCACTG 

CACAAAGTCCTGGAGGAAGATTC 

TCAGACGACGATCCTCCTTG 

TGGTGCCTCCCACAATGC 

GATGTGACGGGTATGATGCC 

GTGGTTTGCTGGATGGATGG 

CTGGACTGCTGCTGTATTGG 

GCCATCTCAGGGTATTGGTTAATG 

TCTCTTGCGGAGGGATGTAG 

TGATGCTGCCAGGGATGAC 

TGATGACTCGGTTCAAATAGCG 

TCGCAGTTCTCGTAGTAAGAC 

GCAGTGTTAATTACAGTTCCATCG 

CGTTGACACCAGGGAAGAAG 

GAGATACACGGGCGTTGC 

GAGGATCACTCGTCTGTTAAGG 

GTTCACGCCTGTCTGTTGC 

157 

82 

120 

133 

103 

116 

154 

87 

101 

128 

119 

158 

192 

193 

125 

 

Chymotrypsin-like serine proteases 

Contig[0026] 

Contig[0120] 

Contig[0141] 

Contig[0426] 

Contig[0560] 

Contig[1061] 

Contig[1478] 

Contig[2569] 

Contig[4479] 

Contig[0379] 

Contig[4699] 

ECB-23_F02 

ECB-V-25_E02 

GAGGAGGGCACGGACTTC 

TGTGATCCAGCCCATCTCTC 

GCTGGTTCCCTCTACTGGTC 

ACCTGCCTACCAGCGTTTC 

TCAGTGGAACCCGTGGAAC 

TCCTCGCCTGTGGTGTTC 

GCCGCTGGATTTGGAAAGAC 

TGCTTCTGGATTCGGAATGAC 

TTGCGGGATACGGGAAGAC 

CCTACTGAGGATGCGAATAACG 

CGTCCCTCTTGTGACAATGAAG 

TGGTGGAGCCTCTATCATCAG 

ATCACCGCTGCTCATTGC 

TTCCTGTGTTCAAGGTGATGAC 

CAGAAGTGCGTCCGAATCC 

GAGATGGTGTTGGAGAAGGC 

CCGAAGCCTGAAGCAATAGC 

CAGTGCGATTGGTTGGATGG 

GATGGTGGTCACGGTCAAC 

GAGGGTGCTCGGGAATACG 

GGAGATGACTGGAAGAGTAACG 

GGAGATTGACCGAGTGGAGAG 

TGGGTTGGCTGGGTTTGG 

CCAGATCCTGCTGCCATCG 

GATTGCCATTCGTTGGTTGC 

ACTCCTCCGCTGAAGATGG 

106 

95 

79 

112 

94 

156 

135 

85 

75 

96 

92 

129 

92 

 

Aminopeptidases 

 

Contig[0722] GCACCCCATTCATTGTTCGC GTATCTGGACGAGCCTGGAC 126 
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Contig[1364] 

Contig[1907] 

Contig[4362] 

Contig[4298] 

Contig[4292] 

Contig[4529] 

ECB-G02 

ECB-D07 

ECB-D12 

TCTGTAGTCTGGTTCACATTATCC 

AATTCCAAACCTGGGCGTAC 

ATCTGAAAAGCACCAACAGTCTTC 

ACCCTAACAGTAAGACAGTTTGAC 

AAGTCGTAAAGAGTAAACTGAGAG 

CTTCAACAGCCCACTGGAGAG 

CGACTGGTTCAGGTATTGGTTC 

CGCCGTGACCGTAACTGG 

TGTATTGGCGGAGTCTGATTC 

ACTCACCTCCGCTGTATCC 

GTTGTTCATGGCACTGTTGAC 

CTCTCGCCCTGATCGTCTTATG 

TGGCACTACAAGCAAGTAACG 

GCCAGATCCAGCATGAAGTG 

ACGCAAGACATATTAGGTAACAGC 

AGGGTGATGCTTCAGACTACG 

GTCGTCGCTAACAGAGAAGAG 

CCAGTCGTCATTGAGGAACC 

84 

89 

156 

197 

112 

85 

137 

195 

93 

 

Alkaline phosphatases 

 

Contig[5091] 

Contig[2328] 

ACTCGCTCATCGTGGTCAC 

CGGATTATCTGCTGGGTTTATTTG 

GTCGTCCTCCGTCGTCAC 

AGTGTGGGCTCGGTAACG 

200 

79 

 

Cadherin-like protein 

 

ECB-B09 GGTCATCAGCACGAAGAG CAAGCATAGATACTAAGAACTGG 176 
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CHAPTER 3 - Identification of a Novel Aminopeptidase-like Gene 

that appear to be involved in Bt Toxicity and Resistance in 

European Corn Borer 

Abstract 

Studies to understand the Bt resistance mechanism in European corn borer (ECB, 

Ostrinia nubilalis) suggest that resistance may be due to changes in the midgut-specific Bt toxin 

receptor. In this study we identified and characterized 10 aminopeptidase-like genes in relation to 

Cry1Ab toxicity and resistance. The expression analysis for 10 aminopeptidase-like genes 

revealed that most of these genes were expressed predominantly in the larval midgut. No 

difference was found in the expression of these genes between Cry1Ab resistant and susceptible 

strains, which suggest that altered expression of these genes is unlikely to be responsible for 

resistance in these ECB strains. However, we found changes in two amino acids of the amino 

acid sequence of aminopeptidase-P like gene (OnAPP), Glu305 changed to Lys305 and Arg307 

changed to Leu307 in two Cry1Ab resistant strains as compared with three Cry1Ab-susceptible 

strains. OnAPP is 701 amino acids long and has putative signal peptide at N-terminal, a 

predicted glycosylphosphatidyl-inositol (GPI)-anchor signal at the C-terminal, three predicted N-

glycosylation sites at residues N178, N278 and N417, and an O-glycosylation site at residue 

T653. Using feeding based-RNA interference assay, we achieved 38 % reduction in the level of 

OnAPP transcript as compared with the control after 8 days. Furthermore, a Bt bioassay using 

insects fed diet containing OnAPP dsRNA resulted in reduced susceptibility to Cry1Ab by 25% 

as compared with larvae fed GFP dsRNA. These results strongly suggest that OnAPP gene may 

be involved in conferring Bt toxicity and resistance in two ECB strains.  
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Introduction 

The insecticidal properties of the Bacillus thuringiensis (Bt) toxins have been extensively 

exploited for the insect pest control. The spores and crystals of Bt have been used as 

biopesticides for almost 60 years in the areas of forestry, agriculture, and vector-born disease 

control (Schnepf et al. 1998, Federici 2005). The importance of the Bt toxins in the management 

of the insect pests have increased dramatically by the development of transgenic plants with the 

ability of expressing the Bt toxin protein (Valaitis et al. 2001, Shelton et al. 2002). But there are 

concerns that wide-spread use of transgenic crops expressing Bt toxins may lead to the 

development of resistance in field populations of insects and shorten the life of Bt technology. 

Therefore, identification of the genes involved in the toxin interactions will be fundamental to 

developing effective resistance management stragies that will be useful in sustaining the 

transgenic Bt technology in integrated pest management. 

The mode of action for Bt toxin in which the relatively inert crystalline protoxin form is 

changed into the cytotoxic form involves several steps (Schnepf et al. 1998). Two models have 

been proposed to explain the mode of action of Bt toxin. In both models the initial steps are 

identical, including solubilization of protoxin, activation of the soluble protoxin by the gut 

proteases into a Cry monomeric toxin, and binding of the toxin to the cadherin receptor (Soberon 

et al. 2009). The pore formation model (Bravo et al. 2004) suggests that cadherin causes toxin 

oligomerization and the oligomeric cry toxin then binds to the GPI-anchored receptors which 

help with toxin insertion into the membrane, making pores, which lead to osmotic imbalance 

within the insect gut and eventually death (Gill et al. 1992, Schnepf et al. 1998). In contrast, the 

signal transduction model (Zhang et al. 2005) proposes that monomeric Cry1Ab binds to 

cadherin and initiates an Mg+2
 –dependant signaling pathway that promotes cell death. In 

addition to cadherin, there are many other cry toxin receptors that have been reported such as 
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GPI-aminopeptidase N, GPI-alkaline phosphatase, GPI-ADAM metalloprotease, glycolipids, 

glyco-conjugate, V-ATP synthase subunit, and actin ( Krishnamoorthy et al. 2007, Valaitis et al. 

2001, Ochoa-Campuzano et al. 2007, Pigot and Ellar 2007).    

A number of insect species have developed resistance to Cry toxins when selected under 

laboratory conditions (Ferré and van Rie 2002). Two known mechanisms of Bt resistance have 

been identified in insects as proteinase-mediated and receptor-mediated resistance (Oppert et 

al.1997). However, the most common mechanism of Cry toxin resistance reported so far involves 

mutations that affect the assembly of cadherin receptor molecules (Ferré and van Rie 2002). The 

mutations in the cadherin gene have been shown to be genetically linked to Cry1A resistance in 

Heliothis virescens, Pectinophora gossypiella, and Helicoverpa armigera (Gahan et al. 2001, 

Morin et al. 2003, Soberon et al. 2007). In Spodoptera litura, reducing the expression of the 

aminopeptidase N gene with dsRNA resulted in reduced susceptibility to Cry1Ca toxin, 

suggesting it is involved in the toxicity (Rajagopal et al. 2002).  

The European corn borer (ECB, Ostrinia nubilalis Hübner) is one of the most damaging 

pests of corn in United States and the western world. Transgenic corn expressing Bt toxins has 

been very successful in managing the ECB. Resistance to Cry toxins in ECB has developed 

under laboratory selection conditions (Siqueira et al. 2006, Siqueira et al. 2004, Bolin et al. 1999, 

Chaufaux et al. 2001). The resistance mechanism in the Dipel-resistant ECB has been linked to 

reduced proteases in the resistant strain as compare to the susceptible strain (Li et al. 2004, Li et 

al. 2005). In another study, comparison of the midgut protease between Cry1Ab resistant and 

susceptible strains showed no consistent difference (Siqueira et al. 2004) and they suggested that 

the resistance mechanism may involve modified midgut receptors (Siqueira et al. 2006). The 

difference in susceptibility to Cry1A toxins in the Europe-R ECB strain (Cry1Ab resistant) has 
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been linked to an altered receptor binding which is suggested by the reduced concentration of 

cadherin receptors in resistant strain as compared to susceptible strains (Siqueira et al. 2006). But 

in the same study, the other Cry1Ab resistant ECB strain (RSTT-R) did not show a similar 

mechanism and the authors suggest that some other factors may have more important 

contributions to resistance in this strain (Siqueira et al. 2006).  

During the analysis of the expressed sequence tags (EST) from the gut of the European 

corn borer, we identified 10 cDNAs putatively encoding for aminopeptidase-like proteins which 

are reported to be receptors of Cry toxins. The major objective of this study was to explore the 

involvement of these genes in Bt toxicity or resistance in ECB. Our results show that a cDNA 

which encodes aminopeptidase P-like protein appears to be involved in Cry1Ab toxicity and 

resistance in ECB.  

Results 

cDNA sequence analysis 

We searched our gut-specific ECB EST database, which consisted of 15,000 ESTs, for 

aminopeptidase-like genes (Khajuria et al. 2009). Ten ESTs shared similarity to known 

aminopeptidases. Nine of the ESTs (OnAPN1 to OnAPN9) showed similarity with 

aminopeptidase-N (APN) like genes and one EST (OnAPP) showed similarity to 

aminopeptidase-P (APP) like gene (Table 3.1). Previous analysis of our  EST database identified 

13 ESTs with similarity to aminopeptidase-like genes but our further analysis from the 3’prime 

end sequencing shortlisted the number to 10 (Khajuria et al. 2009). Among the APN ESTs, four 

sequences showed 94-98% identies with ECB sequences already deposited in the NCBI database 

by Coates et al. (2008a), which suggests that these may be same sequences (Table 3.1). These 

clones have insert size ranging from 679 - 2143 bp. ESTs putatively encoding APN have percent 
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identity of 65 - 99% with other APN. The OnAPP cDNA showed the highest identity (42%) with 

APP from Tribolium casteneum. All the clones had partial cDNAs except for OnAPP, so further 

sequence analysis was performed for this gene only. According to Hidden Markov models, the 

signal peptide cleavage site was predicted to occur after Gly-19. Further analysis of the OnAPP 

gene revealed that this gene was possibly a membrane bound protein as glycosylphosphatidyl-

inositol (GPI)-anchor signal was predicted at the C terminal end of this sequence (Figure 3.1). 

OnAPP also had three potential N-glycosylation sites at residues N178, N278 and N417 and one 

O-glycosylation site at residue T653. The predicted molecular mass of the active OnAPP protein 

was 72.7 kDa and it had a pI of 4.82. 

Tissue and developmetal-stage specific expression   

The mRNA level was assessed for all 10 aminopeptidase-like genes in six different 

tissues of the Bt susceptible 1-day old fifth instar larvae using real-time quantitative PCR (qPCR) 

(Figure 3.2). No detectable expression was observed in the fatbodies and salivary glands for all 

10 genes. The expression of these genes was predominantly observed in the midgut tissues 

except for OnAPN4 and OnAPN6. OnAPN4 had highest expression in Malphigian tubules and 

OnAPN6 had high expression in hindgut. Very low transcript levels were observed in the foregut 

for most genes except OnAPN1, OnAPN4 and OnAPN6 genes where there was no detectable 

expression. In addition to OnAPN4, three other genes, OnAPN6, OnAPN7, and OnAPN8, have 

detectable expression in Malphigian tubules. We also assessed the expression of OnAPP in the 

different parts of the midgut and found that it expressed equally in the anterior and posterior 

midgut but it expressed significantly lower in the center (Figure 3.3). 

The expression of all 10 aminopeptidase-like genes from the ECB was also assessed by 

RT-PCR in different developmental stages including eggs, five larval instars, and pupae (Figure 
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3.4). Most of the stages had high expression in larval stages except for the OnAPN6 which was 

predominantly expressed in eggs and had low intensity bands in the first-, third-, and fourth-

instar larvae. In addition, transcripts of the OnAPP, OnAPN2, OnAPN4, and OnAPN5 were 

detected in pupae, even though band intensity for OnAPN2, OnAPN4, and OnAPN5 was lower 

than for the larval stage. OnAPP has expression in all the developmental stages with the highest 

expression in the first- and fifth-instar larvae and pupae. The expression of this gene increases 

from egg to first instar, then decreases in the second instar and remained low until pupation. 

OnAPN1 has the highest expression in the first and second instars and its transcript was detected 

in eggs, third- and fourth-instar larvae. Transcripts of OnAPN2, OnAPN5 and OnAPN4 were 

detected in all developmental stages whereas transcripts of OnAPN3, OnAPN7, OnAPN8 and 

OnAPN9 were only detected in the larval stage.    

Expression profiles between resistant and susceptible ECB 

To identify the aminopeptidase-like genes which may have a potential role in the Bt 

toxicity and resistance, we analysed the expression of these genes using two pairs of Cry1Ab 

resistance and susceptible ECB strains (Figure 3.5). Our analysis showed that except for OnAPP, 

all other genes had no difference in the transcript levels for Cry1Ab resistant and susceptible 

strains of ECB. OnAPP had no or very low expression in the resistant strains compared with the 

susceptible strains. In order to make sure that the expression difference was not due to the 

mutations in the gene, we sequenced a region of the gene containing the primer sequences from 

both strains. We found that 8 out of 21 nucleotides in the forward primer sequence differed 

between the resistant larvae as compared with the susceptible larvae (Figure 3.6). This 

difference, however, was consistent across the two pairs of resistant strains and susceptible 

strains. Furthermore, the translated amino acid sequence of this region had two amino acids that 
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differed between resistant and susceptible ECB larvae (Figure 3.6). At position 305, the glutamic 

acid residue (E) has changed to lysine (K) and at position 307, the arginine residue (R) has 

changed to leucine (L) in resistant larvae as compared with the susceptible larvae.   

RNA interference 

To gain a better understanding of the role of the OnAPP gene in Bt toxicity in ECB 

larvae, we developed a feeding-based RNA interference (RNAi) technique to silence the 

expression of the OnAPP gene. Immediately after the development of larvae into the second 

instar, they were fed on an artificial diet mixed with OnAPP dsRNA. The dsRNA for green 

fluorescent protein (GFP) gene was used as control. After 4, 6 and 8 days, larvae were dissected 

to obtain midguts. Four midguts were pooled to assess the mRNA level in larvae fed the diets 

containing OnAPP dsRNA or GFP dsRNA. The transcript level for the OnAPP gene was 

reduced by 32.5 %, 26.6%, and 38.2 % after 4, 6, and 8 days, respectively, as compared with the 

larvae fed GFP dsRNA. This indicates that there was a statistically significant reduction of 

OnAPP mRNA levels in OnAPP dsRNA-fed larvae (Figure 3.7A). In order to determine how the 

dsRNA feeding affects the OnAPP mRNA in the individual larvae, we performed the same 

experiment again and after 8 days the midguts were dissected from individual larvae and OnAPP 

transcript level were determined. We found that expression of the OnAPP gene was reduced 

from 18.8 – 64.7 % in OnAPP dsRNA treated larvae as compared with GFP dsRNA treated 

larvae (Figure 3.7B). Futhermore, we exposed larvae fed artificial diet containing OnAPP 

dsRNA, GFP dsRNA, and water to the artificial diet containing Cry1Ab toxin for 7 days (6C). 

We found that mortality of larvae fed OnAPP dsRNA decreased by 23 and 25%, as compared 

with the larvae fed GFP dsRNA and water, respectively (Figure 3.7C).     
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Discussion 

The genetic basis of insect resistance to Bt toxins has been suggested to be multigenic. 

Insects can develop resistance due to defective solubilization, deficient proteolytic activation, 

over-proteolysis (i.e. degradation of toxin), sequestration of toxin molecules by non-functional 

binding sites, defects in functional binding sites, defective pore formation and enhanced cellular 

repair (Griffitts and Aroian 2005). In several studies, altered binding sites have been associated 

with high resistance levels in insects. In ECB, there may be more than one independent 

resistance mechanism (Coates et al. 2008b). In Dipel-resistant ECB strain, the resistance 

mechanism has been associated with the reduced protease level in resistant larvae as compared 

with the susceptible larvae (Li et al. 2004). However, Cry1Ab resistant and susceptible strains of 

ECB had no consistent differences in activities of midgut proteases (Siqueira et al. 2004), but 

they showed that there was a reduction in the cadherin receptors in the resistance strain (Europe-

R) as compared with the susceptible strain (Siqueira et al. 2006). Similar results were not found 

for the other Cry1Ab resistant strain (RSTT-R) in the same study. This evidence suggest that 

resistance in ECB could be due to changes in the midgut receptors which affect its binding with 

the Cry toxin (Siqueira et al. 2006). A recent study in ECB found no association between ECB 

Cry1Ab resistance with segregation of APN1, bre5 (Onb3GalT5), and cadherin allels in a 

Cry1Ab resistant ECB colony (Coates et al. 2008b). These reports suggest that there may be 

other proteins that play important roles in ECB resistance.  In other insects several Cry toxin 

receptors have been reported such as cadherin, GPI anchored amiopetidase N, GPI anchored 

alkaline phosphatase, GPI-ADAM metalloprotease, glycolipids, glyco-conjugate, V-ATP 

synthase subunit, and actin (Soberon et al. 2009).  

In this study, we identified and analyzed 10 aminopeptidase-like genes in Cry1Ab 

resistant and susceptible strains and found that aminopeptidase P-like gene was most likely 
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involved in Bt toxicity and resistance in ECB. Gene expression analysis for 10 aminopeptidase-

like genes revealed that most of these genes were expressed predominantly in the midgut tissues 

except OnAPN4 and OnAPN6, which expressed predominantly in the Malphigian tubules and 

hindgut, respectively. No expression was detected for any gene in fatbodies and salivary glands. 

These results are consistent with expression analysis of the four aminopeptidase N genes in 

Trichopluisa ni (Wang et al. 2005) and Helicoverpa armigera (Angelucci et al. 2008) where all 

four genes expressed predominantly in midgut tissues. In T. ni, however, two of the APN genes 

(APN1 and APN2) were also detected in Malphigian tubules and no expression was detected in 

fatbodies and salivary glands (Wang et al. 2005). In Achaea janata and Spodoptera litura, novel 

GPI anchored aminopeptidase N like genes were detected in the fatbodies with no expression in 

midgut tissues (Budatha et al. 2007a, Budatha et al. 2007b). We did not find any expression of 

aminopeptidase in the fatbodies. This may be because our cDNA library was constructed from 

the gut of the ECB. The aminopeptidase N genes in the midgut would have roles in the peptide 

digestion with various N-terminal residues (Hua et al. 1998, Bozic et al. 2003, Emmerling et al. 

2001), but its role in the Malphigian tubules and fat bodies was unclear. It is suggested that 

fatbody APN may play a significant role in metamorphosis (Budatha et al. 2007a) whereas APN 

expression in Malphigian tubules may have a role in the hydrolysis of peptides in the lumen of 

Malphigian tubules (Wang et al. 2005). ECB aminopeptidase-like genes were predominantely 

expressed in larval stages except for OnAPN6 which had the highest expression in eggs, 

suggesting it may have an important role during this stage of ECB. The OnAPP gene was highly 

expressed in pupae as well as in the first and fifth instars. This was also similar to a cytosolic 

APP from Drosophila melanogaster, where APP protein can be detected in the larval stage and 

its signal increases in pupae (Kulkarni et al. 2002).  
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Our gene expression analysis in Cry1Ab-resistant and -susceptible strains revealed that 

there were no differences in the expression of aminopeptidase-like genes between resistant and 

susceptible strains. Similar results for two resistant strains (RSTT-R and KS-R) and two 

susceptible (Europe-S and KS-S) strains strongly suggest that altered expression of these genes is 

unlikely to be responsible for resistance, but the possibility of the mutations in the sequences of 

these genes in resistant larvae deserve further investigation. Indeed, we found several nucleotide 

changes in the region from 912 to 930 bp of the OnAPP gene and these changes in the nucleotide 

sequence were similar in the two resistant strains and they lead to changes in two amino acids, 

Glu305 to Lys305 and Arg307 to Leu307. Mutation in the APN gene in H. armigera has been 

reported to be associated with to Cry1Ac resistance in that species (Zhang et al. 2009). The 

APN-1 gene was absent in Cry1Ca resistant S. exigua larvae, and this suggested that this gene 

may be involved in Cry1Ca toxicity (Herrero et al. 2005). We did not find any report where 

APP-like genes had been implicated in the Bt toxicity and resistance. Instead, to our knowledge 

this is the first report where APP-like gene from an insect with predicted GPI-anchor signal 

peptide at the C-terminal has been identified. We found only one report from D. melonogaster 

where cytosylic form of APP had been characterized (Kulkarni et al. 2002). We also searched the 

NCBI database to find any APP with potential GPI anchor signal from insects but no results 

showed up. APP is a metalloprotease that releases the N-terminal amino acid residue from 

peptides with a penultimate proline residue (Ryan et al. 1994).  APP has been biochemically 

characterized from bacteria (Yaron and Mlynar 1968, Mars and Monnets 1995), nematodes 

(Laurent et al. 2001), D. melonogaster (Kulkarni et al. 2002), plants (Hauser et al. 2001) and 

mammals (Simmons et al. 1992, Hooper et al 1990). The enzyme is active at high pH (8–9) and 

requires metal ions (typically Mn2+) for optimal catalytic activity (Yaron and Mlynar 1968, 
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Yoshimoto et al. 1988). Membrane-bound forms of APP (mAPP) were first purified to 

homogeneity from porcine kidney following cleavage of its glycosylphosphatidylinositol (GPI) 

anchor by bacterial phospholipase C (Orawski et al. 1987). This purified mAPP was found to 

contain zinc but complete chemical sequencing of the protein and isolation of its cDNA revealed 

the absence of any typical zinc binding motifs found in other zinc metallopeptidases (Hyde et al. 

1996). So, residues important in binding the zinc ion and in catalysis have been identified 

through molecular modelling and site-directed mutagenesis (Cottrell et al. 2000). While the 

physiological role of APP in insects is unclear, mammalian APP is involved in the protein 

turnover of collagen and the regulation of biologically active peptides, such as substance P and 

bradykinin (Cunningham and O’Connor 1997, Turner et al. 1997, Yaron and Naider 1993).  Cry 

proteins have the ability to bind with receptors that are anchored to the membrane via a GPI 

moiety, which facilitates membrane insertion and pore formation (Soberon et al. 2009), but 

weather GPI anchored APP in ECB is a receptor of the Cry1Ab toxin will deserve further 

investigation.  

We also silenced the expression of the OnAPP gene in susceptible ECB larvae by feeding 

OnAPP dsRNA to the insects and achieved 38 % reduction in the OnAPP transcript after 8 days. 

But our expression data using individual midguts revealed that there was a lot of variation among 

individuals regarding the reduction of OnAPP transcript following the dsRNA treatment. This 

variation may be due to the difference in the ability of individuals to take up dsRNA or may be 

due to the ability of individual insects to degrade the dsRNA in the midgut. Our Bt bioassay 

using insects fed OnAPP and GFP dsRNA resulted in reduced susceptibility of the fed larvae to 

Cry1Ab by 23-25 %. These data suggest that OnAPP gene may have role in Cry1Ab toxicity in 

the ECB, but further experiments are needed to find the precise nature of this mechanism. The 
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low reduction in the percent susceptibility in OnAPP dsRNA treated insects can be due to the 

small reduction of OnAPP transcript following dsRNA treatment and high variation of OnAPP 

transcript level among individuals. This also suggests that the OnAPP gene may not be solely 

responsible for resistance in the ECB and there are still other factors that may also be involved. 

Our results strongly suggest that OnAPP gene is a good candidate for further study to elucidate 

the Bt toxicity and the mechanism of resistance in ECB.  

Materials and Methods 

Insects rearing  

The European corn borers used in this study for tissue and developmental stage 

expression and also for RNAi study were purchased as eggs and larvae (Lee French 

Laboratories, Lumberton, MN). Information regarding Cry1Ab resistant and susceptible ECB 

strains can be obtained from the research papers by Khajuria et al. (2009) and Siqueira et al. 

(2006).  

cDNA sequence analysis 

A gut-specific EST library was established from RNA isolated from fifth-instar ECB 

larvae as previously described and 15,000 clones were sequenced (Khajuria et al. 2009). The 

EST database consisting of 2,895 unique ESTs was searched for the genes encoding 

aminopeptidase-like genes. Ten clones from our EST library were identified, nine similar to 

aminopeptidase N and one similar to aminopeptidase P like genes. These clones were again 

sequenced from both ends using M13R and M13F primers in order to determine that these genes 

were unique. Signal P software was used to predict signal peptide (Bendtsen et al. 2004). The 

software ClustalW (Larkin et al. 2007) was used for multiple alignments and PredGPI was used 

to predict GPI anchor signal (Pierleoni et al. 2008). N-glycosylation sites were predicted by 
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NetNGlyc 1.0 (http://www.cbs.dtu.dk/services/NetNGlyc/) and O-glycosylation sites were 

predicted by NetOGlyc 3.1 (http://www.cbs.dtu.dk/services/NetOGlyc/) (Julenius et al. 2005). 

Tissue and developmental stage expression profiles 

The feeding larvae of Cry1Ab susceptible colony (from Lee French Laboratories, 

Lumberton, MN.) were used in this analysis. Tissues were dissected in DEPC-treated water from 

one-day-old fifth-instar ECB larvae.  Total RNA was isolated from different tissues (pooled from 

four animals) and different ECB developmental stages (pooled from four animals) using TRI 

reagentTM (Sigma, St. Louis, MO) and treated with TURBO™ DNase (Ambion, Austin, TX) to 

remove any genomic DNA contamination.  One microgram of total RNA was used for synthesis 

of first strand cDNA using SuperScript® III First-Strand Synthesis System (Invitrogen, 

Carlsbad, CA). cDNA prepared from total RNA was used as a template for real-time qPCR or 

RT-PCR. The qPCR analysis was performed using SYBR green kit (Bio-Rad) and Bio-Rad 

iCycler iQs real-time PCR detection system at the Kansas State University Gene Expression 

Facility. qPCR cycling parameters included 95°C for 5 min, 40 cycles each consisting of 95°C 

for 30 sec, 55°C for 0.15 sec, and 72°C for 0.45 sec, followed by 95°C for 1 min and 55°C for 1 

min. At the end of each quantitative PCR experiment, a melt curve was generated to rule out the 

possibility of primer-dimer formation. The relative expression analysis for qPCR was performed 

using ECB RPS3 gene as an internal reference. For RT-PCR, 27 cycles were used for all genes 

including RPS3 gene, each cycle consisting of 94°C for 30s, 55°C for 60s, and 72°C for 60s. For 

qPCR analysis there were three biological replications, each with two technical replications. 

Primers for the genes were designed using Beacon Designer software (version 7). Primer 

sequences for the aminopeptidase-like genes are given in Table 3.2. 
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Expression profiles between Cry1Ab resistant and susceptible larvae 

Transcript level for all 10 aminopeptidase-like genes were assessed in the midgut tissues 

from fifth instar larvae from each strain (Cry1Ab-susceptible and -resistant strains). Total RNA 

was isolated from four midguts pooled together using TRI reagentTM (Sigma, St. Louis, MO), 

and treated with TURBO™ DNase (Ambion, Austin, TX) to remove any genomic DNA 

contaminations. First strand cDNA preparation, and qPCR analysis were performed as described 

above. For qPCR analysis there were three biological replications, each with two technical 

replications. 

RNA interference 

dsRNA was prepared using the plasmid DNA as template by in vitro transcription for 

RNAi. The primers were designed using Beacon Designer software (version 7). T7 primer 

sequence was placed in front of both forward and reverse primers. The primer sequence to 

generate dsRNA for OnAPP gene were 5’- TAATACGACTCACTATAGGGTTTGGTCCT 

CACAGCACTTG and for 3’- TAATACGACTCACTATAGGGTTCACTGTGCCACTCG 

TCTC with product size of 333 bp. Similarly, for GFP, the primers used were 5’- TAATA 

CGACTCACTATAGGCCATTCTTTTGTTTGTCTGC and 3’- TAATACGACTCACT 

ATAGGGGCCAACACTTGTCAC with product size of 309 bps. The dsRNA was transcribed 

using the above gene specific primers and the AmpliScribe™ T7-Flash™ Kit (Epicentre 

Technologies, Madison, WI) according to the manufacturer’s protocol. The dsRNAs were 

purified by phenol/chloroform extraction followed by ammonium acetate precipitation. 

Immediately after the development of larvae into second instar, they were individually fed the 

dsRNA mixed with fresh artificial ECB diet (Bio-serve). Three doses, each consisting of 10 µg 

of OnAPP dsRNA in 2 µl of water on day 0, 2, and 4 were added to the diet of each larva for a 
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total of 30 µg dsRNA /larva.  The control larvae received the same amount of GFP dsRNA. After 

day six, larvae were transferred to normal artificial diet. Transcript levels of OnAPP in the 

midgut tissues of the larvae fed OnAPP and GFP dsRNA were determined on day 4, 6 and 8 by 

qPCR. Total RNA isolation, first strand cDNA preparation, and qPCR analysis were performed 

as described above. Three biological replications, each with two technical replications, were used 

for qPCR analysis. 

To perform Cry1Ab bioassay, the RNAi experiment was performed as above and on day 

6, larvae were exposed to Cry1Ab toxin at 2µg/ ml of diet and allowed to feed for 7 days. The 

mortality of the larvae was recorded on 7th day after Bt treatment.  Fifty larvae were used for 

each treatment and three independent experiments were performed for bioassay. 

Statistical analysis 

The gene expression and mortality analysis were subjected to one-way analysis of 

variance (ANOVA). Fisher’s least significant difference (LSD) multiple comparisons were then 

used to separate the means among the treatments. All the statistical analyses were performed 

using ProStat software (Poly Software International Inc., Pearl River, NY). 
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1    GCCGCCCGAAATGTGTTGTGCTTAATTTTCGCGTTGTCAGTAAATGCAGTCCTTGGCCATATTCCCTACAACGAGTACAACTTAGCAGAGCCAGACGCTGCA  

      A  A  R  N  V  L  C  L  I  F  A  L  S  V  N  A  V  L  G  H  I  P  Y  N  E  Y  N  L  A  E  P  D  A  A  

103  CAATACTATGTGTCCAGTTCCTACCCCAGAAATACCAACGACAACAGCTTGGAGAGGCTGACAGCGGTGCGCAGTGTCCTTCAGGAGAACGGGGTCGACGCC   

      Q  Y  Y  V  S  S  S  Y  P  R  N  T  N  D  N  S  L  E  R  L  T  A  V  R  S  V  L  Q  E  N  G  V  D  A  

205  TACATAGTGCCTACAGCTGATGCTCACAATTCGGCCTACATAGCCCCATCGGACGCCCGCCGCGAGTGGCTATCAGGCCTTCGGGGGTCGTCGGGCACTGTC   

      Y  I  V  P  T  A  D  A  H  N  S  A  Y  I  A  P  S  D  A  R  R  E  W  L  S  G  L  R  G  S  S  G  T  V  

307  CTGGTGACAAACAGCTTGGCTCTGGTCTGGACTGACAGCCGATACTTCACGCAGTTCGAGAATGAGGTCAATTTGGAGCACTTCACCTTGATGAGGCAAGGC    

      L  V  T  N  S  L  A  L  V  W  T  D  S  R  Y  F  T  Q  F  E  N  E  V  N  L  E  H  F  T  L  M  R  Q  G  

409  ATTGACGAATCAATCCAAACATGGCTCGTGCAAAATATGGGCCCATATTCAGTTGTGGGGGTGGATCCTACCACATACACGCGGACTGCTTGGAACACATTG   

      I  D  E  S  I  Q  T  W  L  V  Q  N  M  G  P  Y  S  V  V  G  V  D  P  T  T  Y  T  R  T  A  W  N  T  L  

511  GAGAGTGCTCTCACAGCGGTCAACGTCACTCTTCAAGCAACACCCGACAACTTAATTGACATCGCCCGGGAACGAATCGACGACCCCGCGCCTGGTCGACCT    

      E  S  A  L  T  A  V  N  V  T  L  Q  A  T  P  D  N  L  I  D  I  A  R  E  R  I  D  D  P  A  P  G  R  P  

613  AACGAGCCGTTGATGCCACTGGAAATTACTTTTACTGGTAGACAATCAAGTGAAAAACTGGCTGAGTTGAGGGAGCAGCTGTCTTCAAGAGGAGTGTCTGCT    

      N  E  P  L  M  P  L  E  I  T  F  T  G  R  Q  S  S  E  K  L  A  E  L  R  E  Q  L  S  S  R  G  V  S  A  

715  TTGGTCCTCACAGCACTTGATGACGTGGCATACACGCTGAATCTTCGAGGATCGGACATCCCATACAATCCAGTCTTCTTCTCATATTTGATACTGCGGTCT    

      L  V  L  T  A  L  D  D  V  A  Y  T  L  N  L  R  G  S  D  I  P  Y  N  P  V  F  F  S  Y  L  I  L  R  S  

817  GACTTAACGGCACCAAACAACACAATACTGTTCTGGGGCAATGGAGATCTGTCATCACACATCATAGAGCATTTGGCGTCAGAAGGAACGCAGCTTGAAGTT    

      D  L  T  A  P  N  N  T  I  L  F  W  G  N  G  D  L  S  S  H  I  I  E  H  L  A  S  E  G  T  Q  L  E  V  

919  CGTCCTTATGAGCACATTTTCAGCTATCTGGGAGATATGTCGAATGAACTACCTATAGGCAGTACGGTTTGGTTGTCCCAGGATGGGAGCCATGCGGTTTAT   

      R  P  Y  E  H  I  F  S  Y  L  G  D  M  S  N  E  L  P  I  G  S  T  V  W  L  S  Q  D  G  S  H  A  V  Y  

1021 TCAGCTGTAGAGACGAGTGGCACAGTGAATATATTGGCAACACTAAATTCGCCGGTAGTTATGATGAAATGTATCAAAAACGAAGTGGAATTGAGGGGATTT    

      S  A  V  E  T  S  G  T  V  N  I  L  A  T  L  N  S  P  V  V  M  M  K  C  I  K  N  E  V  E  L  R  G  F  

1123 CGGTCAGCACACATAAAAGACGGCATCGCAGCTGTCAGAGGGTTCCGCTGGTTGGAGGAGCAGGTGGCCTCAGGAGTTGAAGTCACGGAGATGGATCTCTCT    

      R  S  A  H  I  K  D  G  I  A  A  V  R  G  F  R  W  L  E  E  Q  V  A  S  G  V  E  V  T  E  M  D  L  S  

1225 GACAAACTTGCAGAGTTAAGGGGAAATGAGACGGACAACTACGGCCCCTCTTTCTCTACCATCGCGGGCGCTGGAGAGAATGGGCCCATGATTCACTATTCT    

      D  K  L  A  E  L  R  G  N  E  T  D  N  Y  G  P  S  F  S  T  I  A  G  A  G  E  N  G  P  M  I  H  Y  S  

1327 CCATCGAGAGAGGGTCCTCAGAGAGTCATCACGAAGGACGATATGGTGCTGGTGGACTCTGGTGGACAATACAAGGACGGCACTACAGACCTCACTCGCACG    

      P  S  R  E  G  P  Q  R  V  I  T  K  D  D  M  V  L  V  D  S  G  G  Q  Y  K  D  G  T  T  D  L  T  R  T  

1429 CGGCACATGAGCGGGTCACCTACTCCCGAGCAACGCCGCGCGTTCACACTAGTCATGAAGGGCCAGATTCAACTGGCCACCACCGTGTTCCCACGAGGCACT   

      R  H  M  S  G  S  P  T  P  E  Q  R  R  A  F  T  L  V  M  K  G  Q  I  Q  L  A  T  T  V  F  P  R  G  T  

1531 GTTGGCCACACTCTAGAGTCCTTCGCTCGTAAATACCTCTGGGACGTGGGTCTAACCTACGGCCACGGCACGGGACACGGCCTGGGACACTTCCTCAACGTC    

      V  G  H  T  L  E  S  F  A  R  K  Y  L  W  D  V  G  L  T  Y  G  H  G  T  G  H  G  L  G  H  F  L  N  V  

1633 CACGAAGGCCCCTCGTGGATACTCAGCGGACCCATCGCTACGGACCCTGGAATATCTGCCGCTATGATCTTCAGCAATGAACCTGGGTACTACGAGGTGGGC    

      H  E  G  P  S  W  I  L  S  G  P  I  A  T  D  P  G  I  S  A  A  M  I  F  S  N  E  P  G  Y  Y  E  V  G  

1735 CAGTACGGTATAAGGCACGAAGACGTGGTGGAAGTTATCGTGGTGGACAAAAACGCTGACCATCCCATGGCTGAAGGAATGGTGGGCGACTTCGGCGGTCTT    

      Q  Y  G  I  R  H  E  D  V  V  E  V  I  V  V  D  K  N  A  D  H  P  M  A  E  G  M  V  G  D  F  G  G  L  

1837 GGAGCCCTAGGGTTCTACACGATCTCGCTGGTGCCGCATCAGACCGCGTGTTTGGATGTCAACCTGCTGACTGACTTTGAGATAAAATACCTAGACGACTAC   

      G  A  L  G  F  Y  T  I  S  L  V  P  H  Q  T  A  C  L  D  V  N  L  L  T  D  F  E  I  K  Y  L  D  D  Y  

1939 CACGCGCGAGTGCTGGCAACCCTGGGTCCGATTCTGCAGGAGCGCAACCTTTTGGAAGACTACGCCTGGCTCGAAAAGGAATGCGCTCCGATACGTAGCGCT    

      H  A  R  V  L  A  T  L  G  P  I  L  Q  E  R  N  L  L  E  D  Y  A  W  L  E  K  E  C  A  P  I  R  S  A  

2041 GCTGTTCGGACGACGATGCCCGTATTGATGGTCGCTTTTGTTAGCCTCTGGTCTTATGTAAATTGAAGTTTTTAGTGTTATAAATAAGTTAAAATGAAAAAA   

      A  V  R  T  T  M  P  V  L  M  V  A  F  V  S  L  W  S  Y  V  N  *  S  F  *  C  Y  K  *  V  K  M  K  K  

2043 AAAAAAAAA                                                                                                

      K  K  K  

 

Figure 3.1  Sequence analysis of aminopeptidase P-like (OnAPP) gene from the Europeans corn 

borer larvae. The putative N-terminal signal peptide is double underlined. The GPI-anchored 

signal peptide is dot-underlined and the possible cleavage site of anchor moiety is indicated by 

arrow. The predicted O-glycosylated residue is boxed and the putative N-glycosylation sites are 

dash-underlined. 
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Figure 3.2 Expression profiles of 10 aminopeptidase-like genes in larval tissues of Cry1Ab-

susceptible European corn borer strain. Gene expression were determined in foregut (FG), 

midgut (MG), hindgut (HG), Malphigian tubules (MT), fatbodies (FB), and salivary glands (SG) 

by Real-time PCR. The ribosomal protein S3 (RPS3) gene was used as a reference gene to 

calculate the relative expression levels. Standard error represented as error bars were determined 

from three biological replications and two technical replications. Different letters within a figure 

represent significant difference at P value ≤ 0.05. 
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Figure 3.3 Expression level of aminopeptidase P-like (OnAPP) gene in the anterior midgut 

(AM), middle midgut (MM), and posterior midgut (PM) of the European corn borer larvae. 

Standard error represented as error bars were determined from three biological replications and 

two technical replications.  Different letters within a figure represent significant difference at P 

value ≤ 0.05. 
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Figure 3.4 Expression profiles of 10 aminopeptidase-like genes in seven developmental stages of 

Cry1Ab-susceptible European corn borer: egg (EG), first instar (L1), second instar (L2), third 

instar (L3), fourth instar (L4), fifth instar (L5) larvae, and pupae (PU). The ribosomal S3 protein 

(RPS3) gene was used as a reference gene.  
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Figure 3.5 Expression profiles of 10 aminopeptidase-like genes in Cry1Ab resistant and 

susceptible strains of European corn borer larvae. Expression data was generated from two pairs 

of resistance and susceptible strains from (A) Iowa (RSTT-R and Europe-S) and (B) Nebraska 

(KS-R and KS-S). Bars represent relative expression for a particular gene between resistant and 

susceptible ECB strains and were constructed by using real-time PCR. There were three 

biological replications and two technical replications. Asterik (*) indicates the significant 

difference at p value < 0.01. Gel picture for RT-PCR for the OnAPP gene is given on the upper 

left corner. RPS3 gene was used as reference gene. 
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Amino acid sequences

Nucleotide sequences

Forward primer sequence  

 

Figure 3.6 Comparisions of nucleotide and amino acid sequences between two resistant strains 

(resistant Nebraska: KS-R and resistant Iowa: RSTT-R) and three susceptible strains (susceptible 

Nebraska: KS-S, susceptible Iowa: Europe-S, and susceptible Kansas: Lee-S) of European corn 

borer.     
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Figure 3.7 The expression of OnAPP gene in OnAPP dsRNA and GFP dsRNA treated larvae. 

(A) The expression of OnAPP gene in OnAPP dsRNA and GFP dsRNA treated larvae after 4, 6, 

and 8 days. (B) Expression of OnAPP was determined from individual midgut after 8 days of 

dsRNA feeding. (C) Percent mortality in OnAPP dsRNA, GFP dsRNA, and water treated larvae. 

Each bar represents mean ± standard error (n=3).  Different letters represent significant 

difference with p value ≤ 0.05.   
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Table 3.1  Aminopeptidase-like genes identified from ECB gut EST database 
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Table 3.2 PCR primer sequences used for gene expression comparison  

 
Name Forward primer Reverse primer Product 

size (bp) 

OnAPP CTTGAAGTTCGTCCTTATGAG CACTGTGCCACTCGTCTC 138 

OnAPN1 ACCCTAACAGTAAGACAGTTTGAC TGGCACTACAAGCAAGTAACG 197 

OnAPN2 TCTGTAGTCTGGTTCACATTATCC ACTCACCTCCGCTGTATCC 84 

OnAPN3 CTTCAACAGCCCACTGGAGAG ACGCAAGACATATTAGGTAACAGC 85 

OnAPN4 ATCTGAAAAGCACCAACAGTCTTC CTCTCGCCCTGATCGTCTTATG 156 

OnAPN5 TGTATTGGCGGAGTCTGATTC CCAGTCGTCATTGAGGAACC 93 

OnAPN6 GCACCCCATTCATTGTTCGC GTATCTGGACGAGCCTGGAC 126 

OnAPN7 AATTCCAAACCTGGGCGTAC GTTGTTCATGGCACTGTTGAC 89 

OnAPN8 AAGTCGTAAAGAGTAAACTGAGAG GCCAGATCCAGCATGAAGTG 112 

OnAPN9 CGCCGTGACCGTAACTGG GTCGTCGCTAACAGAGAAGAG 93 
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CHAPTER 4 - A New Gut-Specific Chitinase Gene Essential for 

Regulation of Chitin Content of Peritrophic Membrane and Growth 

of European Corn Borer Larvae  

Abstract   

Chitinases belong to a large family of hydrolytic enzymes that break down glycosidic 

bonds in chitin. Gut-specific chitinases of insects have been hypothesized to control chitin 

turnover and porosity of peritrophic membrane (PM) in the gut, and therefore playing a crucial 

role in food digestion and nutrient absorption in insects.  We identified a cDNA putatively 

encoding a unique chitinase (OnCht) in European corn borer (Ostrinia nubilalis). The OnCht 

gene was predominately expressed in larval midgut with no detectable expression either in eggs, 

pupae, or other larval tissues examined. We observed a significant increase in expression of 

OnCht associated with a decrease in expression of a gut-specific chitin synthase (OnCHS-B) 

gene in the larvae fed artificial diet. However, vice-versa was true only when larvae were not 

provided any food. Furthermore, there was a negative relationship between the OnCht gene 

expression and chitin contents in the midgut, suggesting that OnCht plays a crucial role in 

regulating chitin content of PM. By using a feeding-based RNAi technique, we were able to 

reduce the OnCht transcript levels by about 60% in the larvae. Consequently, these larvae 

showed significantly increased chitin content (26%) in the PM but reduced larval body weight 

(54 %) as compared with the larvae fed diet containing GFP dsRNA. Thus, for the first time, our 

studies provide strong evidence that OnCht plays an essential role in regulating chitin content of 

PM and affecting larval growth, presumably by influencing food digestion, nutrient absorption or 

movement of digestive enzymes through the PM.  
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Introduction 

Chitin, a linear polymer of β-(1,4)-N-acetyl-D-glucosamine (GlcNAc), is an important 

structural component of the insect cuticle, cuticular lining of the foregut, hindgut, trachea, and 

the peritrophic membrane (PM) that lines the lumen of the midgut (1-2). For insects to grow and 

change from one developmental stage to another, chitin in the cuticle and the PM needs to be 

digested and replaced with new chitin (3). Chitin synthase genes (CHS-A and CHS-B, also 

known as CHS-1 and CHS-2, respectively) are responsible for the synthesis of chitin in insects 

(4-6). CHS-A is responsible for chitin synthesis in the cuticle and CHS-B is responsible for 

chitin synthesis in the midgut cells which secrete the PM (4). Sequences of chitin synthases 

genes have been reported from several insects including dipteran insects such as Lucilia cuprina 

(6), Anopheles gambiae, Aedes aegypti (7) and Drosophila melanogaster (8), the lepidopteran 

Manduca sexta (9-10) and the coleopteran Tribolium castaneum (11). On the other hand, insect 

chitinases, which belong to the family 18 glycosyl hydrolases, are responsible for the 

degradation of chitin in the cuticle and PM (12). It was previously thought that there was only 

one chitinase-like gene in most insects (13). But now several fully annotated insect genomes are 

available and it has become clear that chitinases are encoded by a rather diverse family of genes 

and can be classified into five or more groups. There are currently a total of 22, 17, and 20 

chitinase or chitinase-like genes in Tribolium castenuem, Drosophila melanogaster, and 

Anopheles gambiae, respectively (Zhang et al. unpublished).   

Genes encoding chitinase and chitinase-like proteins have been characterized in several 

insect species, including Manduca sexta (14), Bombyx mori, Hyphantria cunea (15), Spodoptera 

litura (16), Spodoptera frugiperda (5), Choristoneura fumiferana (17),  Aedes aegypti (18), 

Anopheles gambiae (19),  Glossina morsitans (20), Lutzomyia longipalpis (21), Chironomus 

tentans (22), Phaedon cochleariae (23), Tenebrio molitor  (24-25),  and Apriona germari  (26). 
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Structurally, chitinases can vary in their domain organization with varying arrangements of 

catalytic domains, chitin binding domains (ChBD), and serine/threonine-rich O-glycosylated 

linker interdomains (3).  In addition to enzymatically characterized  molting associated chitinases 

which have all the three domains, it has also been reported that there are other naturally 

occurring chitinases with only single catalytic domains that are also enzymatically active (20, 22, 

23, 26).  Among all the chitinase groups, group IV is most diverse and their genes are predicted 

to be expressed in fatbodies and/or midgut (3). Chitinases that are expressed in the gut 

presumably are responsible for digesting the chitin in the PM and have been reported in several 

insects, including A. gambiae (19), L. longipalpis (21), P. cochleariae (23), T. molitor (25), and 

T. castaneum (3).  

Peritrophic membrane consists of chitin and glycoproteins and is an important physical 

barrier between the food bolus and gut epithelial cells. Lepidoteran larvae and many other insects 

have type 1 PM, that is 0.5-1.0 µm thick and is formed by midgut epithelial cells along the entire 

length of midgut (27). Type II PM is found in the dipteran larvae, some Lepidoptera, Embiodae, 

and primitive orders (e.g., Dermaptera and Isoptera) and is formed from special tissues called 

cardia located anterior to the midgut (28). There are many possible functions of the PM in insect 

midgut such as protecting the midgut epithelial cells from the abrasive food particles, digestive 

enzymes, and pathogens. PM also plays an important role in the digestive process by 

compartmentalizing the midgut to make nutrient acquisition more effective and allowing the 

reuse of hydrolytic enzymes (28).  

The most significant unresolved mechanism regarding PM is how digestive enzymes and 

nutrients pass through the PM (28). Several mechanisms have been proposed by which digestive 

enzymes secreted from midgut epithelium penetrate the PM to reach the food bolus (29-37). A 
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few studies have suggested a role for gut chitinases in controlling the porosity of chitin-

containing PM (19, 38). In A. gambiae, researchers proposed that the gut chitinase which is 

secreted into the blood meal by midgut epithelial cells may mediate the partial degradation of the 

chitin in the PM to increase its porosity (19, 28). Other suggested mechanisms include the 

release of enzymes before the PM is formed, allowing enzymes to pass through incompletely 

formed PM, and presence of special pores for enzyme movement (28). Understanding the 

movement of nutrients and enzymes through the PM also has implications for insect pest 

management. For example, certain genes involved in this process could be targeted to disrupt the 

function of PM, thereby decreasing the efficiency of the digestive process hindering the 

movement of enzymes and nutrient uptake.  

In this paper, we report a unique gut-specific chitinase-like gene (OnCht) from the larvae 

of European corn borer (ECB, Ostrinia nubilalis), one of the most destructive pests of corn in 

North America and the western world.  For the first time we provide strong evidence that OnCht 

plays an important role in regulating the chitin content of PM and subsequently affecting the 

growth and development of ECB larvae.  

Results 

Identification and Characterization of OnCht.   

A cDNA sequence encoding a chitinase was identified from our expressed sequence tag 

(EST) library. The EST library was constructed from RNA isolated from the guts of fifth-instar 

ECB larvae and a total of 15,000 clones were sequenced (39). The identified deduced amino acid 

sequence showed significant similarities to other insect chitinases and chitinase-like proteins in 

the GenBank and was, therefore, named “OnCht”. Because our ESTs were sequenced only from 

the 5’ prime end, this clone was further isolated and sequenced again from both ends to obtain 
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the full length sequence. OnCht had an insert size of 1404 base-pairs (bp) with an open reading 

frame of 407 amino acid residues. The polyadenylation signal (AATAAA) was found 13 bp 

upstream of the poly (A) tract.  

The deduced amino acid sequence was used to predict the signal peptide sequence using 

signal P software (40). According to Hidden Markov models, the signal peptide cleavage site 

was predicted to occur after Ala-18 (Figure 4.1). The predicted molecular mass of the active 

OnCht protein was 43.32 kDa and it had a pI of 4.38.  The deduced OnCht protein sequence had 

high contents of leucine (9.1%), alanine (8.4%) and asparagine (8.1%).  It had one catalytic 

domain extending from residue 22 to residue 368 and it did not have any chitin binding domain 

or serine/therionine rich linker regions as reported in several other chitinases. It had three 

predicted putative N-glycosylation sites, at residues N152, N273 and N313, and all the four 

highly conserved regions or signature motifs for insect chitinases (18). The conserved region I 

has the consensus sequence of KXXXXXGGW, where X is a non-specified amino acid. The 

conserved region II is known to be located in or near the catalytic site of the enzyme and has the 

consensus sequence of FDGXDLDWEYP. Glutamic acid (E) in this sequence is predicted to be 

the putative proton donor in catalytic mechanisms (41-43). Consensus sequences for conserved 

regions III and IV are MXYDXXG and GXXXWXXDXDD, respectively (Figure 4.1).  

The deduced amino acid sequence of OnCht had a high level of amino acid sequence 

identities with other insect chitinases in GenBank. It has identities of 40.0, 39.1, and 37.5% with 

chitinase or chitinase-like proteins from A. aegypti (XP_001663099), Lutzomyia longipalpis 

(AAN71763) and D. melanogaster (NP_611542), respectively; all three are dipteran species. 

Phylogenetic tree was constructed by using the chitinase or chitinase-like protein sequences from 

O. nubilalis and several other insects (Figure 4.2). OnCht belongs to group IV chitinases which 
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includes many members that are expressed in insect fatbodies or gut tissues and appear to be 

induced in the larval or adult gut in response to feeding (3).  

Tissue and Developmental Stage-specific Expression of OnCht.   

The expression of OnCht gene in different ECB larval tissues was determined by real-

time quantitative PCR (qPCR).  The predominant expression of OnCht was in the larval midgut, 

with very little expression (≤3%) in the foregut and no detectable expression in the hindgut, 

fatbodies, salivary glands and carcass (Figure 4.3A). Within the midgut, there were significant 

differences in the mRNA levels in the anterior (75.8%), middle (23.9%), and posterior (0.3 %) 

parts of the midgut (P<0.05) (Figure 4.3B).  

The expression of OnCht in ECB was also assessed by RT-PCR and qPCR in different 

developmental stages. Transcripts for OnCht were found in all the five larval instars, but no 

detectable expression was found in eggs, pupae, or adults (Figure 4.3C). During the larval stages, 

OnCht mRNA level was similar among the instars except for the third instar where the 

expression was significantly lower than that of other instars (P<0.05).  

Feeding-Mediated Changes in Expression of OnCht and OnCHS-B.   

We took advantage of an OnCHS-B cDNA partial sequence identified from our EST 

library to design primers for qPCR analysis of its expression along with OnCht in the larval 

midgut. When the larvae were maintained with food for 24 h, the expression in the midgut was 

4.4-fold higher for OnCht  but 2.5-fold lower for OnCHS-B (Figure 4.4) than for larvae 

maintained with no food (P<0.05). However, when the larvae maintained with food were 

transferred to a container with no food for another 24-h period, transcript levels decreased by 

1.8-fold for OnCht , but increased by 1.8-fold for OnCHS-B (Figure 4.4) (P<0.05).  In contrast, 

when the larvae that were maintained with no food were transferred to a container with food for 
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the next 24 h, their midgut OnCht transcript levels increased by 2.3-fold , but OnCHS-B 

transcript levels decreased by 2.3-fold (P<0.05) (Figure 4.4). The changes in expression of these 

two gut-specific genes in response to food suggest that OnCht expression is induced by larval 

feeding, presumably to reduce chitin contents in the PM (increasing its porosity). On the other 

hand, when no food is supplied, the chitin content increased, presumably due to increased chitin 

synthesis by OnCHS-B and/or decreased chitin degradation by OnCht.   

Changes in Chitin Content in Relation to Insect Feeding 

 The chitin content of the PM and the whole midgut was measured directly for larvae 

maintained with or without food for 0, 12, 24, 36, and 48 h (Figure 4.5). The chitin content 

relative to midgut weight was 0.18, 0.14 and 0.33 µg/mg for larvae maintained with food for 0, 

12 and 24 h, respectively. There were no significant differences among the chitin contents during 

these feeding periods (P>0.05) (Figure 4.5A). However, when the larvae that had been 

maintained with food for 24 h and then were maintained with no food for 12 and 24 h, their 

chitin contents increased by 3.1- and 3.4-fold, respectively (P<0.05) (Figure 4.5A).  When 

another group of larvae was transferred from containers with food and maintained with no food 

for 12 and 24 h, chitin contents increased by 2.3- and 5.2-fold, respectively (P<0.05) (Figure 

4.5B). When these larvae were transferred to a container with food, their midgut chitin contents 

decreased by 12- and 7.2-fold after 12 and 24 hr, respectively (P<0.05) (Figure 4.5B). In 

contrast, when the larvae were maintained continuously with food, their midgut chitin contents 

remained consistently low (Figure 4.5C).  

To validate that our analysis of chitin contents based on the midgut weight was not biased 

due to the different sizes of larvae under the feeding and starvation conditions, we further 

calculated the same data for the chitin contents based on per larval midgut (Figure 4.6). This 
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analysis showed a similar pattern of the chitin contents between the fed and unfed larvae, 

indicating that even though the body sizes of the starved larvae was relatively smaller than those 

of the fed larvae, the chitin content of the starved larvae was still higher than that of fed larvae. 

Then we separated the PM from the surrounding midgut and determined the chitin 

contents for the PM and the rest of the midgut tissue, separately.  This was done to verify 

whether or not the dramatic changes in chitin contents of the midgut were due to changes in 

chitin content of the PM. Indeed, the chitin content of the PM for larvae maintained with no food 

was 3.4-fold higher than the chitin content of the PM of larvae maintained with food after 24 h 

(P<0.05) (Figure 4.7). In contrast, there was no significant difference in the chitin content for the 

midgut tissue for the two treatments (P>0.05). The low levels of chitin found in the midgut after 

the removal of the PM probably reflected the presence of tracheae on midgut. Furthermore, the 

diet on which larvae were reared was tested for chitin, and none was found (data not shown).     

Effect of RNA Interference for OnCht on Larval Growth 

 To gain a better understanding of the function of OnCht gene and its role in regulating 

the chitin content of the PM of ECB larvae, we developed a feeding-based RNA interference 

(RNAi) technique to silence the expression of the OnCht gene. Immediately after hatching from 

eggs, the larvae were fed an artificial diet mixed with OnCht dsRNA. The dsRNA for green 

fluorescent protein (GFP) gene was used as a control. After 6 and 8 days, larvae were dissected 

to obtain midguts and assess the mRNA level in the larvae fed the two diets containing OnCht 

dsRNA or GFP dsRNA. The transcript level of OnCht gene in larvae was reduced by 63% and 

64 % after 6 and 8 days, respectively, as compared with larvae fed the GFP dsRNA containing 

diet (P<0.05) indicating statistically significant reductions of OnCht mRNA levels in OnCht 

dsRNA-fed larvae (Figure 4.8A). When we compared the chitin contents of larvae fed OnCht or 
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GFP dsRNAs, the chitin contents increased by 26% in OnCht dsRNA-fed larvae as compared 

with GFP dsRNA-fed larvae (P < 0.05)  (Figure 4.8B). We did not find significant differences 

between the chitin contents of midgut tissues (free of PM) isolated from OnCht- and GFP-

dsRNA treated larvae.  

The body weight of the larvae fed OnCht dsRNA and GFP dsRNA was also determined 

after 10 days. We found a 54% decrease in body weight for larvae fed the diet containing OnCht 

dsRNA as compared with those fed the same diet containing GFP dsRNA (Figure 4.8C & D).  

Discussion 

Chitinases are large and diverse enzymes and have received much attention from 

researchers in recent years due to their important biochemical functions in chitin metabolism. 

They are also potential targets for novel insect-specific pesticides for use in insect pest 

management (44). However, very little is known about the specific physiological functions of 

these enzymes in insect growth and development. Merzendorfer and Zimoch (45) suggested that 

insect gut-specific chitinases play a role in degrading the chitin present in the PM during 

molting. On the other hand, Shen and Jacobs-Lorena (19), Hegedus et al. (28), and You et al. 

(38) proposed that insect gut chitinases may help increase the porosity of the PM to facilitate the 

digestion process. Despite the great interest in understanding the physiological functions of these 

diverse chitinases, the regulatory function of chitin in the PM has been poorly studied in insects.  

In this study, we identified and characterized a chitinase-like gene (OnCht) in the ECB 

and demonstrated for the first time, that OnCht, possibly along with OnCHS-B, play important 

roles in the regulation of chitin contents of the PM of the larval midgut. Because the expression 

of OnCht was only detected during larval feeding stages, and >97% of OnCht expression was 

found in the midgut (predominantly in the anterior midgut), we propose that this gene is designed 
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for larval midgut-specific expression in ECB.  Low levels of expression of this gene were 

detected in the foregut but this could be due to contamination with anterior midgut tissue which 

may have occurred during the gut separations. The development- and tissue-specific expression 

patterns of OnCht in feeding ECB larvae support our proposal that this midgut-specific chitinase 

may be involved in chitin regulation for facilitating food digestion.  In other insect species, more 

than one gut-specific chitinase-like gene has been identified.  In T. castaneum, for example, 

several chitinase-like genes were found to be expressed at high levels in the larval gut (3). There 

may be other chitinase genes in the ECB larvae, which may be expressed during the insect 

molting. The presence of transcripts for only a single chitinase gene in our EST library and its 

high expression level in the anterior midgut (75.8 %) suggest that OnCht may play an important 

role in regulating PM chitin content and assembly in the anterior part of the midgut. 

The chitin contents of the PM of insects usually accounts for approximately 3 to 13 % of 

their weight (46), but in some cases it can be significantly higher, as reported for M. sexta, where 

chitin contents were as high as 40 % of the dry weight of PM (47). However, it is unknown why 

there are such large variations in chitin contents of the PM among the insect species.  In order to 

test our hypothesis that PM chitin contents are regulated during feeding, (presumably to alter the 

porosity of the PM to facilitate food digestion) we examined changes in transcript levels of 

OnCht and OnCHS-B in 1-day-old fifth-instar ECB larvae feeding on artificial diet. Our results 

suggest that expression of the OnCht and OnCHS-B genes are affected by feeding. When larvae 

were not provided food, the OnCht gene expression decreases significantly and OnCHS-B 

expression increases significantly relative to larvae maintained on food. These changes occur 

rapidly and reversibly. Similar functions of gut-specific chitinases were also suggested by other 

researchers for other insects (19, 28, 38). For example, the expression of gut-specific chitinase 
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genes in response to feeding has been reported in blood-feeding insects including A. gambiae 

(19) and L. longipalpis (21).  In L. longipalpis, the expression of a midgut-specific chitinase gene 

was only found after blood feeding and reached peak expression at approximately 72 h post-

blood meal.  

Our studies clearly showed a negative correlation between OnCht gene expression and 

chitin content as well as a positive correlation between OnCHS-B gene expression and chitin 

content of the PM. Chitin contents increased significantly when larvae were maintained with no 

food as compared with larvae maintained on food for the same period of time.  As expected, the 

chitin contents decreased dramatically when the starved larvae were allowed to feed. The 

relationship between chitin content in the PM of ECB and expression of OnCht and OnCHS-B 

genes under fed and starvation conditions suggests that these genes play important roles in the 

regulation of chitin contents in the PM. 

 The regulatory role of OnCht in altering chitin content of the PM of the larval 

midgut was further supported by our RNAi work. By using a feeding-based RNAi technique, we 

were able to reduce the OnCht transcript levels by 63-64% in larvae fed a diet containing OnCht 

dsRNA as compared with those of larvae fed a diet containing GFP dsRNA. Such a suppression 

of the OnCht transcript level in the larvae fed OnCht dsRNA resulted in a significant increase of 

chitin content (26%) in PM, suggesting that OnCht is involved in the regulation of the midgut 

chitin in ECB larvae, probably through a reduced rate of degradation of the chitin by this 

enzyme.  Interestingly, the growth and development of these larvae were affected and there was 

a reduction in larval body weight (54 %) as compared with larvae fed GFP dsRNA, which is 

most likely due to defective food assimilation.  The decreased porosity of the PM and/or loss of 

compartmentalization may hinder the digestion process of the larvae.  Thus, our studies provided 



 121

strong evidence for the first time that OnCht plays an essential role in regulating chitin content of 

PM and affecting larval growth, presumably by influencing food digestion, nutrient absorption or 

movement of digestive enzymes through the PM.  

Materials and Methods 

European Corn Borer 

 The European corn borers used in this study were purchased as eggs and larvae from Lee 

French Laboratories, Lumberton, MN. 

cDNA Sequence Analysis 

  A gut-specific EST library was established from RNA isolated from fifth-instar ECB 

larvae as previously described and 15,000 clones were sequenced (39). The EST database 

consisting of 2,895 unique ESTs was searched for the genes encoding chitinase and chitinase-

like proteins and chitin synthase. Two clones from our EST library were identified, one similar 

to chitinase and another similar to chitin synthase B genes.  These clones were again sequenced 

from both ends using M13R and M13F primers to obtain the sequences of the full length inserts. 

We found that the chitinase-like cDNA was full length but the chitin synthase cDNA was a 

partial clone consisting of only 506 bp. Signal P software was used to predict signal peptide (35). 

The software ClustalW (48) and MEGA4 (49) were used for multiple alignments and to 

construct a phylogenetic tree, respectively.  Smart software (50) was used to predict domains in 

the amino acid sequences.  

Tissue and Developmental Stage Expression Profiles 

  Tissues were dissected in DEPC-treated water from one-day-old fifth-instar ECB larvae.  

Total RNA was isolated from different tissues (pooled from four animals) and different ECB 
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developmental stages (pooled from four animals) by using TRI reagentTM (Sigma, St. Louis, 

MO). Only feeding larvae were used in this analysis. Total RNA was treated with TURBO™ 

DNase (Ambion, Austin, TX) to remove any genomic DNA contaminations.  One microgram of 

total RNA was used for synthesis of first strand cDNA using SuperScript® III First-Strand 

Synthesis System (Invitrogen, Carlsbad, CA). cDNA prepared from total RNA was used as a 

template for real-time qPCR or RT-PCR. The qPCR analysis was performed using SYBR green 

kit (Bio-Rad) and Bio-Rad iCycler iQs real-time PCR detection system at the Kansas State 

University Gene Expression Facility. qPCR cycling parameters included 95°C for 5 min, 40 

cycles each consisting of 95°C for 30 sec, 55°C for 0.15 sec, and 72°C for 0.45 sec, followed by 

95°C for 1 min and 55°C for 1 min. At the end of each quantitative PCR experiment, a melt 

curve was generated to rule out the possibility of primer-dimer formation. The relative 

expression analysis for qPCR was performed by using the ECB RPS3 gene as an internal 

reference. For RT-PCR, 27 cycles were used for both OnCht and RPS3 gene, each cycle 

consisting of 94°C for 30s, 55°C for 60s, and 72°C for 60s. Three biological replications, each 

with two technical replications, were used for qPCR analysis and one biological replication was 

used for RT-PCR analysis. Primers for the genes were designed by using Beacon Designer 

software (version 7). The primers for OnCht are: 5’-TGCTATATTCTCCAGAACGAGTC (F) 

and 3’-GCCGTGGAAGTCATCAGTC (R) with product size of 195 bp; primers for OnCHS-B: 

5’-GCCTGTTCCGTTGTCTATGC (F) and 3’-TCTCAATCTTCTCCATGCTATGTG (R) with 

product size of 93 bp. 

Gene Expression Profiles under Feeding and Starvation Conditions 

 We divided 1-day-old fifth-instar larvae into two sets. The larvae in the first set were 

maintained with food (artificial diets) for 24 h and then with no food for next 24 h, whereas the 
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larvae in the second set were maintained with no food for 24 h and then with food for the next 24 

h. The midguts from half the larvae were dissected after 24 h and the other half were dissected 

after 48 h. First strand cDNA was prepared as above and expression levels for OnCht and 

OnCHS-B were assessed using qPCR. Three biological replications (n = 4), each with two 

technical replications, were used in this analysis.   

Chitin Content Assay 

 Chitin contents of the midgut (including PM), PM only or midgut only were determined 

using the method described by Zhang and Zhu (51). The larvae were divided into two sets as 

described above. The larvae were maintained with and without food. Zero hour referred to the 

start of the experiment. Due to differences in the size of insects which were maintained with food 

versus no food or due to the dsRNA treatment, we calculated chitin contents based on the wet 

weight of midgut tissue. For the samples where the whole midgut was used to assess the chitin 

contents, we dissected 10 extra larvae from each group to get midgut tissues and used its mean 

weight for normalization. For samples where midgut tissues and PM were separated, we used the 

same weight of midgut tissues for normalization of chitin contents in different samples. We also 

assessed the chitin content in 10 mg of artificial diet. Two or three independent biological 

replications, each with two-three technical replications, were used for each treatment.  

RNA Interference 

  dsRNA was prepared using plasmid DNA as template by in vitro transcription for 

RNAi. The primers were designed using Beacon Designer software (version 7) and T7 primer 

sequence was placed in front of both forward and reverse primers. The primer sequence to 

generate dsRNA for OnCht gene were 5’- 

TAATACGACTCACTATAGGCGGAGGATGGAGCGAAG and for 3’- 
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TAATACGACTCACTATAGGACTCTCGCCTTCACTTAT with product size of 404 bp. 

Similarly, for GFP, the primers used were 5’- 

TAATACGACTCACTATAGGCCATTCTTTTGTTTGTCTGC and 3’- 

TAATACGACTCACTATAGGGGCCAACACTTGTCAC with product size of 309 bps. The 

dsRNA was transcribed by using the above gene specific primers and the AmpliScribe™ T7-

Flash™ Kit (Epicentre Technologies, Madison, WI) according to the manufacturer’s protocol. 

The dsRNAs were purified by phenol/chloroform extraction followed by ammonium acetate 

precipitation. Immediately after hatching, larvae were individually fed the dsRNA mixed with 

fresh artificial diet (Bio-serve). Three doses, each consisting of 10 µg of OnCht dsRNA in 2 µl of 

water on day 0, 2, and 4 were added to the diet of each larva for a total of 30 µg dsRNA /larva .  

The control larvae received the same amount of GFP dsRNA. After day six, larvae were 

transferred to normal diet.  Transcript levels of OnCht in the midgut tissues of the larvae fed 

OnCht and GFP dsRNA were determined on day 6 and 8 by qPCR. Total RNA isolation, first 

strand cDNA preparation, and qPCR analysis were performed as described above. On day 10, the 

chitin contents of the midgut tissues and PM of larvae fed OnCht and GFP dsRNA were also 

determined as described above.  

Statistical analysis 

The gene expression and chitin content analyses were subjected to one-way analysis of 

variance (ANOVA). Fisher’s least significant difference (LSD) multiple comparisons were then 

used to separate the means among the treatments. All the statistical analyses were performed 

using ProStat software (Poly Software International Inc., Pearl River, NY). 
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Figure 4.1  Multiple alignments of the amino acid sequences of Ostrinia nubilalis chitinase 

(OnCht) and other insect chitinases using CLUSTALW. The predicted signal peptides for all the 

sequences are marked by an underline at the start of each sequence. The catalytic domain of 

OnCht is shown in a rectangular box. The four conserved regions of insect chitinases are 

indicated by the underline. Fully conserved residues are indicated by a black background. 

Percent identities of all sequence with OnCht are given at end of each sequence. GenBank 

accession numbers and abbreviations of organism names are shown. The sequences used in this 

analysis were from Aedes aegypti (Aa); Drosophila melanogaster (Dm); Anopheles gambiae 

(Agm); Tribolium castaneum (Tc); Lutzomyia longipalpis (Ll) ; Apriona germari (Ag); and 

Locusta migratoria (Lm). 
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Figure 4.2  Neighbor-joining phylogenetic tree constructed from the full length amino acid 

sequences of 55 chitinase-like proteins from nine insects including Ostrinia nubilalis (OnCht). 

Chitinase groups are formed as described by Zhu et al. (3). GenBank accession numbers along 

with abbreviations of organism name are shown. Sequences used in the construction of the tree 

were from Bombyx mori (Bm); Helicoverpa armigera (Ha); Spodoptera litura (Sl); Aedes 

aegypti (Aa); Drosophila melanogaster (Dm); Ostrinia furnacalis (Of); Tribolium castaneum 

(Tc); Phaedon cochleariae (Pc), and Apriona germari (Ag). 
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Figure 4.3  Expression of midgut-specific chitinase (OnCht) gene in different larval tissues, 

different parts of the midgut, and during different developmental stages by real-time PCR or RT-

PCR. (A) Gene expression was determined in foregut (FG), midgut (MG), hindgut (HG), 

fatbodies (FB), salivary glands (SG), and carcass (CA). (B) Percent of OnCht transcripts in the 

anterior midgut (AM), middle midgut (MM), and posterior midgut (PM) compared to total 

transcripts for this gene. (C) Gene expression was studied for different developmental stages 

including egg (EG), first instar (L1), third instar (L3), fifth instar (L5) larvae, pupae (PU), and 

adults (AD). Gel picture from RT-PCR analysis showing expression of OnCht from second (L2) 

and fourth (L4) larval instar, in addition to other developmental stages is shown. Standard error 

bars were determined from three independent biological replications (n=4), with two technical 

replications each. Different letters within a figure represent significant difference at P value ≤ 

0.05.  
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Figure 4.4  Relative expression of chitinase (OnCht) and chitin synthase-B  (OnCHS-B) genes in 

the midgut of fifth-instar European corn borer larvae under food or no food conditions. Larvae in 

set 1 (empty bars) were fed for 24 h and then maintained with no food for next 24 h, whereas 

larvae in set 2 (filled bars) were maintained with no food for 24 h and then fed for next 24 h. 

mRNA level was assessed for both genes by qPCR after 24 and 48 h. Standard error bars were 

determined from three independent biological replications, with two technical replications each. 

Different letters with in a figure represent significant difference at P value ≤ 0.05. 
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Figure 4.5  Chitin contents of midguts of fifth-instar European corn borer larvae relative to 

midgut weight under food or no food (background shaded) conditions. (A) Larvae were 

maintained on food for 24 h and with no food for next 24 h. (B) Larvae were maintained with no 

food for 24 h and allowed to feed for the next 24 h. (C) Larvae were maintained on food 

continuously. Zero (0) h refers to time at the start of the experiment when larvae were allowed to 

feed. Standard error bars were determined from three biological independent replications, with 

three technical replications each. Different letters within a figure represent significant difference 

at P value ≤ 0.05. 
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Figure 4.6 Chitin contents of midguts of fifth-instar European corn borer larvae under food or no 

food (background shaded) conditions. (A) Larvae were maintained on food for 24 h and with no 

food for next 24 h. (B) Larvae were maintained with no food for 24 h and allowed to feed for 

next 24 h. (C) Larvae were maintained on food continuously. Zero (0) h refers to the time at the 

start of the experiment when larvae were allowed to feed. Standard error represented as error 

bars were determined from three biological independent replications, each consisting of three 

technical replications. Different letters within a graph represent significant difference at P value 

≤ 0.05.  
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Figure 4.7  Chitin contents of peritrophic membrane (PM) and midgut tissues (MG) from the 

fifth-instar European corn borer larvae maintained under food and no food conditions. One set of 

larvae was maintained on food for 24 h and the other set with no food for the same period of 

time. Standard error bars were determined from three independent biological replications, with 

three technical replications each. Different letters represents significant difference at P value ≤ 

0.05.  
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Figure 4.8  RNA interference of Oncht and its effect on midgut chitin contents and growth in 

European corn borer larvae. (A) Expression of midgut-specific chitinase gene (OnCht) in the 

European corn borer larvae after treatment with OnCht dsRNA and green fluorescent protein 

(GFP) dsRNA. Expression level of OnCht was determined by qPCR. Standard error bars were 

determined from 3 independent biological replications, with two technical replications each. (B) 

Chitin contents of the peritrophic membrane (PM) and midgut tissues (MG) from the European 

corn borer larvae treated with dsRNA for OnCht and GFP. Standard error bars were determined 

from three independent biological replications, with three technical replications each. (C) Mean 

body weight of the larvae treated with OnCht dsRNA and GFP dsRNA after 10 days of first 

dsRNA treatment. Each value represents mean ± standard error (n=27-30).  (D) Picture of 

experimental larvae showing reduced body size in OnCht dsRNA treated larvae as compared 

with GFP dsRNA treated larvae. Different letters within a figure indicate significant difference 

with P value ≤ 0.05.   
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CHAPTER 5 - Characterization of Six Antibacterial Response 

Genes and Their Expression Responses to Bacterial Challenge in 

European Corn Borer 

Abstract 

We identified and characterized six antibacterial response genes from ECB larvae, 

including four peptidoglycan recognition proteins (PGRPs), one β-1-3 glucanse-1 (βglu-1), and 

one lysozyme. Tissue-specific analysis showed that all of these genes except for lysozyme had 

high mRNA levels in midgut tissues. All genes also showed expression in larval stage of ECB. 

None or low expression for these genes was detected in egg, pupa and adult. The expression of 

all six antibacterial response genes in fatbodies was up-regulated when ECB larvae were 

challenged with Gram-positive bacteria (Enterobacter aerogenes), however only PGRP-C and 

lysozymes were induced when challended with gram-negative bacteria (Micrococcus luteus). 

This study provides insight into the expressional pattern of antibacterial genes in ECB larvae and 

will lead to better understanding of the immune defense response in ECB.  
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Introduction 

Innate immune response in insects is the main defense mechanism against microbial 

infection (Royet et al. 2005). The first step in the defense cascade of the host is to recognize the 

invading organism as non-self (Schmid-Hempel 2005) and then these follows induction of 

several immune related proteins in the body of the organism (Hashimoto et al. 2007).  Several 

families of the proteins have been identified, which are involved in the recognition of the surface 

characteristics of microbes such as peptidoglycan recognition proteins (PGRPs), gram negative 

binding proteins (GNBPs) or β-1-3 glucan recognition proteins (βGRP), lipoploysaccharides 

(LPS), and mannans (Medzhitov et al. 1997). Once the pathogen has been recognized defense 

responses can be direct where a pattern recognition protein (PRR) mediates the killing of the 

microbe through encapsulation and phygocytosis or indirect where PRR triggers the activation of 

the serine protease cascades and intracellular immune signaling pathways leading to the 

induction of antimicrobial peptides such as lysozymes (Ferrandon et al. 2007, Warr et al. 2008). 

In Drosophila melanogaster, two immune signaling pathways have been characterized: 1) Toll 

pathway; 2) immunodeficiency (IMD) pathway. The activation of the Toll pathway is triggered 

predominantly by fungal and Gram-positive bacteria whereas the IMD pathway is activated 

mainly by Gram-negative bacteria (Hoffmann et al. 1996, Hoffmann and Reichhart 2002).  

PGRPs molecules are conserved among insects and mammals (Kang et al. 1998). The 

first PGRP was discovered in the silkworm where it is present in the haemolymph and cuticle 

and binds with peptidoglycan (PGN) and Gram-positive bacteria. This recognition leads to the 

formation of melanin following the activation of prophenoloxidase (Yoshida et al. 1996). 

Subsequently, several additional PGRP genes have been found in insects. In D. melanogaster up 

to 19 different PGRP proteins has been in identified and are classified into short (S) and long (L) 

transcripts (Werner et al. 2000, Dziarski and Gupta 2006).   PGRP genes have been characterized 
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in several other insect species including Manduca sexta (Yu et al. 2002), Bombyx mori (Ochiai 

and Ashida 1999), Samia cynthia ricini (Hashimoto et al. 2007, Onoe et al. 2007), Trichoplusia 

ni (kang et al. 1998), and Anopheles gambiae (Christophides et al. 2002).   Structurally, PGRP 

has approximately 165 amino acids long carboxy-terminal type 2 amidase domain, also called 

the PGRP domain (Kim et al. 2003), and it is homologous to the bacteriophage and bacterial type 

2 amidases (Kang et al. 1998, Werner et al. 2000, Liu et al. 2001, Dziarski 2004). The two 

closely spaced conserved cysteine residues that form a disulfide bond and are located in the 

middle of the PGRP domain and are considered crucial for PGRP functions and structures 

(Dziarski and Gupta 2006). In Drosophila PGRP-SA gene, the mutation in one of the conserved 

cysteine leads to the failure in activation of Toll pathway and to induce protective response 

against Gram-positive bacteria (Michel et al. 2001). However, a similar mutation in the human 

PGLYRP-2 leads to failure in its amidase activity (Wang et al. 2003).  

The GNBP and βGRP proteins that are homologous were first reported from silkworm 

(Lee et al. 1996, Ochiai and Ashida 1988) and are involved in the recognition of the β-1-3 glucan 

presumably with two distinct glucan binding domains, N-terminal glucan recognition domain 

and C-terminal glucanse-like domain (Hoffmann 2003, Ochiai and Ashida 2000, Pauchet et al. 

2009, Fabrick et al. 2004). The βGRPs has been identified from several insects including B. mori 

(Ochiai and Ashida 2000), M. sexta (Ma et al. 2000), and Plodia interpunctella (Fabrick et al. 

2003) and has been reported to bind with β-1-3 glucan through N-terminal domain which is 

sufficient to activate the defense cascade (Ochiai and Ashida 2000, Fabrick et al. 2003, Ma et al. 

2000). However, the C-terminal domain of B. mori βGRP does not have glucanase-like activity 

nor has affinity for β-1-3 glucan (Ochiai and Ashida 2000). Pauchet et al (2009) recently 

reported a new family of gut-specific genes from several lepidopteran species which have 
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glucanase-like activity and were named β-1-3 glucanse-1(βglu-1). These new proteins are related 

to but distinct from previously reported family of GNBP/ βGRP proteins found in lepidopterans.  

After the pathogen infects the insect haemocoel the defense response causes the synthesis 

of a battery of antifungal/antibacterial peptides (Hetru et al. 1998, Lamberty et al. 1999). Most of 

the antimicrobial peptides are produced in the fat bodies or haemocytes and are released into the 

haemolymph of insects (Dimarcq et al. 1998, Lamberty et al. 1999, Lopez et al. 2003). 

Lysozymes are the widespread antimicrobial peptides and are integral part of the defense 

mechanism against bacteria and fungi (Dunn 1986, Fiolka et al. 2005). They are also the first 

anti-microbial factors to be isolated from the insect hemolymph (Powning and Davidson 1976). 

Lysozymes causes the lysis of bacterial cell wall by hydrolyzing the 1, 4-b-linkage between N-

acetylmuramic acid and N-acetylglucosamine of the peptidoglycans which are present in the cell 

wall (Grunclova et al. 2003). In addition to the role of lysozymes in immune defense, they are 

also reported to have digestive role especially in insects that ingest large number of bacteria from 

decomposing matter, e.g. Musca domestica, Anastrepha fraterculus and D. melanogaster (Lemos 

and Terra 1991, Regel et al. 1998, Ursic-Bedoya et al. 2005)  

Several studies on the antibacterial response genes in insects have been reported but this 

information is still limited in lepidopteran species. During analysis of the expressed sequence 

tags (EST) from the gut of the European corn borer (ECB, Ostrinia nubilalis), we identified 

clones that putatively encoded four PGRP genes, one GNBP gene and one lysozyme gene. In this 

study, we characterized the cDNA sequences from these genes, and studied the expression 

patterns of mRNA levels for the antibacterial response genes in different tissues and 

developmental stages. We have also assessed the transcript levels for these genes in the larvae 



 144

challenged with Gram-positive and –negative bacteria and discussed their role in antibacterial 

defense. 

Results 

Sequence analysis 

We searched for immune related genes in our gut-specific ECB expressed sequence tag 

(EST) database which consisted of 15,000 ESTs (Khajuria et al. 2009). We found six clones, of 

which four showed high homology to PGRPs, one to βglu-1, and one to lysozyme. Because our 

cDNA libraries were only sequenced from the 5’-end, these clones were isolated and sequenced 

again from both ends to get the full length sequences.  The insert sizes of 640, 649, 1254, 1931, 

1312, 917 base pairs (bp), with open reading frame of 187, 196, 218, 231, 235, 120 amino acids 

were found in the clones  named PGRP-A, -B, -C, -D,  βglu-1, and lysozyme, respectively.  All 

of these deduced amino acid sequences possess signal peptides except for PGRP-C (Figure 5.1 

and Figure 5.2).  The signal peptides were 18, 19, 18, 20, and 17 residue long in PGRP-A, -B, -

D, βglu-1, and lysozyme, respectively.  The active regions of PGRP-A, -B, -C, -D, βglu-1, and 

lysozyme are predicted to be 19.07, 19.37, 24.43, 24.30, 40.40, 13.56 kDa for molecular masses 

and 4.7, 5.59, 5.68, 5.61, 4.17, 8.95 for isoelectric points, respectively (Expasy ProtParam). 

Multiple alignments and phylogenetic analysis 

The multiple alignments analysis showed that ECB PGRP amino acid sequences had 

significant similarities with PGRP sequences from other insects.  PGRP-A had highest percent 

identity (40%) with PGRP-SC2 from D. melanogaster, and had percent identities ranging of 29.5 

- 36.0% with those of other lepidopteran insects. The ECB PGRP-B had highest identity (59.8%) 

with PGRP-B protein from the S.cynthia ricini. It has 28.4 - 45.5% identities with PGRP 

sequences from other lepidopteran insects and 36.6 % identity with PGRP-LB sequence from D. 
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melanogaster. The ECB PGRP-C and -D sequences had highest sequence identities of 55.6% 

and 60.3% with PGRP-D sequence from S.cynthia ricini, respectively, followed by 22.8 - 44.3% 

and 25.7 - 41.8% identities with sequences from other lepideopteran insects.  Also ECB PGRP-C 

and -D had 39.3 and 38.5% identities with PGRP-LB sequence from D. melanogaster, 

respectively.  All ECB PGRPs had 26.7 - 65.1% identities and were predicted to have amidase-

like activity as they all have all the five conserved residues required for amidase activity. The 

phylogenetic tree was constructed by using all ECB PGRPs together with PGRP sequences from 

several insect species and found that ECB PGRP-B, -C, and –D, along with S.cynthia ricini 

PGRP genes, form a distinct cluster away from the PGRP genes from other lepidopteran insect 

species (Figure 5.3). The ECB βglu-1 gene had highest percent identity of 82.7% with similar 

sequence from Helicoverpa armigera, followed by 61.5 - 80.8% identities with sequences from 

other lepidopteran species. It also has percent identity of 57.9% with GNBP3 sequence from A. 

gambiae, 56.0% with GNBP from A. aegypti, and 54.6% and 51.6% with βGRP sequence from 

Tribolium casteneum and Culex quinquefasciatus, respectively (Figure 5.4). Phylogenetic 

analysis for this gene has already been reported by Pauchet et al. (2009) where they found that it 

could be grouped with other βglu-1 midgut-specific genes but was different from groups which 

were haemolymph specific. The ECB lysozyme also found to share high identities with other 

similar genes from several insects, with highest percent identity (65.0%) with a similar gene 

from M. sexta. It had 52.1 - 63.8% identities with other lepidopteran insects (Figure 5.2). 

Phylogentic analysis of ECB lysozyme showed that it forms cluster with lysozymes from other 

lepidopteran species (Figure 5.5).  
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Transcriptional pattern of ECB antibacterial response genes in larval tissues 

The mRNA level was evaluated for all six antibacterial response genes in the tissues of 

the naive 1-day-old fifth-instar ECB larvae using RT-PCR. All the six genes had lowest 

expression or no expression in the salivary glands. PGRP-B gene expressed in all the tissues 

examined except in salivary gland. PGRP-A showed expression in midgut only whereas PGRP-C 

showed expression in epidermis, fatbodies, and midgut. PGRP-D and lysozyme showed 

expression in all the tissues where as βglu-1 predominanlty expressed in the midgut tissues 

(Figure 5.6A). Furthermore, by using real-time PCR we found similar results. PGRP-A, -C, and 

βglu-1 had significantly low or no expression in the fatbodies as compared with expression in the 

midgut. PGRP-B and -D showed no difference in the mRNA transcript level between fat bodies 

and midgut tissues. Also ECB lysozyme had signicantly high expression in fatbodies when 

compared with midgut (Figure 5.6B). 

Transcriptional patterns of the ECB antibacterial response genes during development 

The mRNA level was evaluated for all six antibacterial response genes in all the 

developmental stages of ECB. All of the six genes showed expression in the larval stage of ECB 

and had low or no detectable expression in eggs, pupae, or adults. PGRP-A and –B showed very 

similar expression pattern with expression in all larval instars except fifth instar. Also, no 

detectable expression for these genes was found in the eggs, pupae, and adults. PGRP-C showed 

expression in all larval instars (except for first instar) and adults. PGRP-D showed expression in 

all the developmental stages examined except for fourth instar larvae and adult whereas βglu-1 

had no detectable expression in eggs. ECB lysozyme also showed expression in all the stages 

except for adult (Figure 5.7).  
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Expression profiles of the ECB antibacterial response genes during bacterial challenge 

Real-time PCR was used to compare the expression profiles of the six antibacterial 

response genes in fatbodies of the fifth-instar ECB larvae, at various time points, after larvae 

were injected with Enterobacter aerogenes (Gram-negative bacteria) and Micrococcus luteus 

(Gram-positive bacteria) (Figure 5.8). We found that all the six genes were induced after E. 

aerogenes challenge; however, not all genes showed induced expression when challenged with 

M.luteus when compared with the control. All the genes except for PGRP-C showed highest 

induction after 12 hr of challenge with E. aerogenes. The PGRP-C showed highest expression 

within 6 hrs of E. aerogenes infection and remains similar after 12 hrs also. The expressions of 

most of these genes decreased after 24 hrs and are not significantly different from control. 

However, PGRP-C and lysozmes had significantly higher expression after 24 hrs of E. aerogenes 

challenge when compared with control.  In case of M. luteus challenge, there was no significant 

induction of the PGRP-B, - A, -D, and βglu-1 genes when compared with the control. However, 

PGRP-C and lysozyme were induced after 6 and 12 hrs of challenge with M. luteus, respectively 

(Figure 5.6).  

Discussion 

We characterized six antibacterial response genes from the ECB larvae, including four 

PGRPs, one βglu-1, and one lysozyme. All the four PGRP genes, except for PGRP-C, were 

predicted to have a signal peptide sequence of 18 to 19 bp (Figure 5.1, 5.2, 5.4). ECB PGRP-B,-

C, and -D formed a group along with PGRP genes from D. melanogaster  (PGRP-LB), A. 

agyepti (ABF18154.1), A. gambiae (XP_321943.2), and S.cynthia ricini (Figure 5.3). ECB 

PGRP-B, -C, and -D showed higher homology with each other (41.5-65.0 % identity) and lower 

homology with ECB PGRP-A (25.0-30.7 % identity) and PGRP genes from other lepidopteran 
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insect species. These results are similar to those of the PGRP genes from S. cynthia ricini where 

PGRP-B, -C, -D have 31.4 -39.0 % identities with PGRP-A and other lepidopteran insects 

(Hashimoto et al. 2007). The five conserved amino acid residues required for amidase activity in 

PGRP genes are present in the ECB PGRP-B, -C, -D. In PGRP-A, however, third conserved 

residue His is replaced by Ala and at the position of the fifth conserved residue, Cys is replaced 

by Ser (Figure 5.1). The latter replacement has been linked to the receptor type PGRPs and 

considered a strong feature that the protein does not have amidase activity but is a receptor type 

PGRP (Onoe et al. 2007, Mellroth et al. 2003). We also characterized the β-1-3 glucanse-1gene, 

its full length sequence was found in our cDNA library, but while searching the GenBank we 

found that this sequence was already deposited in the NCBI database (accession no. 

ACI32836.1) (Pauchet et al. 2009). ECB βglu-1 gene has a signal peptide of 17 residues and 

possesses the GH16 (glycosyl hydrolase family 16) active site. This gene is distinctly different 

from the other classes of the βGRPs found in lepidopterans that have additional C-terminal 

domain but do not have glucanase-like activity. However, their functional differnces have not 

been known (Pauchet et al. 2009, Hoffmann 2003, Ochiai and Ashida 2000). ECB lysozyme 

shares high identity (52.1 - 65.0 %) with lysozyme from other lepidopteran insect species and 

they also clustered together in phylogenetic analysis (Figure 5.5). ECB lysozyme has 20 bp long 

signal peptide sequence and have the two active site residues (Glu and Asp) (Figure 5.2).  In 

general, during phylogentic analysis, the lysozyme sequences tend to cluster according to their 

function (immune or digestive) or possible location of tissues where they express (fatbodies / 

haemocytes or digestive track) (Ursic-Bedoya and Lowenberger 2007).  The ECB lysozyme 

which predominantly expresses in the fat bodies, tends to be closely related to the lysozyme 

sequences which have immune related role (Rhodnius prolixus-B, lepodopteran species) as 
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compared with lysozymes which are found in the digestive tract (D. melanogaster-X, R. 

prolixus-A, Triatoma brasiliensis, T. infestans) (Daffre et al. 1994, Ursic-Bedoya and 

Lowenberger 2007, Kollien et al. 2003, Araujo et al. 2006).  

Analysis of tissue-specific expression in the current study revealed that all of the ECB 

antibacterial response genes except for lysozyme had high mRNA levels in midgut tissues and all 

genes had low or no detectable expression in the salivary glands. ECB PGRP-B, -C, -D, and 

lysozyme were expressed in several tissues whereas PGRP-A and βglu-1 was expressed mainly 

in the midgut.  The Drosophila PGRP-SC1,-SC2, and -LB which have amidase activity are 

expressed in the gut of the naive larvae (Werner et al. 2000). The expression of these genes in the 

larval gut has been suggested to prevent the over-activation of the IMD pathway following the 

bacterial ingestion (Bischoff et al. 2004). Similarly, PGRP-B gene in S. cynthia ricini is 

expressed only in the gut of naive larvae and is induced in the fatbodies after injection of PGN 

(Hashimoto et al. 2007). PGRP-B shows strong expression in the epidermis which is similar to 

expression of PGRP genes from lepidopteran species and PGRP-SA gene in D. melanogaster 

(Werner et al. 2000, Ochiai and Ashida 1999, Marcu et al. 1998). Epidermis is the barrier to the 

infections and may have its own antibacterial defense response (Werner et al. 2000). ECB βglu-1 

gene expresses predominantly in the gut tissues which is similar to βglu-1 genes from other 

lepidopteran insect species which have glucanase activity but their exact role in the defense 

response or digestion has yet to be established (Pauchet et al. 2009). The ECB lysozyme is 

expressed in all the tissue assessed with high mRNA level in the epidermis, fatbodies, and 

haemolymph. This expression pattern is similar to the lysozymes C-1 and C-7 in A. gambiae, 

which also shows expression in tissues such as fat bodies, midgut, and salivary glands (Li et al. 
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2005). Lysozyme has been reported to have digestive role in addition to its role in antimicrobial 

defense (Lemos and Terra 1991, Regel et al. 1998, Ursic- Bedoya et al. 2005).  

The expression patterns of all six antibacterial response genes were assessed in all 

developmental stages. Large changes in the expression of antibacterial response genes occurred 

during the ECB development. PGRP-D and lysozyme become active in early stages of the 

development as their expression was detected in the egg and may play a role in initial recognition 

and defending eggs from microbial infection. No or Low mRNA level of PGRP genes was found 

in pupae and adults. βglu-1 was detected at low level in both pupa and adult where as PGRP-D 

was found in pupa and PGRP-C was found in the ECB adult.  

The expression of all six antibacterial response genes in fatbodies was up-regulated when 

ECB larvae were challenged with Gram-positive bacteria (E. aerogenes), however PGRP-C and 

lysozymes were induced when challended with Gram-negative bacteria (M. luteus). All genes 

were up-regulated within 6 hrs after challenged with E. aerogenes, with maximum expression 

after 12 hrs and lowest or no expression after 24 hrs. Several studies have reported the up-

regulation of PGRP genes when insects were exposured to bacteria or purified bacterial PGN 

(Kang et al. 1998, Ochiai and Ashida 1999, Werner et al. 2000, Dimopoulos et al. 2002, 

Christophides et al. 2002). The response of all six ECB genes was stronger with Gram-negative 

bacteria as compared with the Gram-positive bacteria. This response may be due to specificity of 

the type of the PGN, as Gram-negative bacteria have DAP-type PGN and most Gram-positive 

bacteria have Lys-type PGN (Dziarski and Gupta 2006). It has been reported that different 

stimuli lead to differential induction of the PGRP gene expression, suggesting the specificity of 

induction and effector function of different PGRPs (Christophides et al. 2002, Dimopoulos et al. 

2002). Also, βglu-1 gene from H. armigera shows differential expression when exposed to 
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different stimuli (Pauchet et al. 2009). In addition to these genes, lysozymes which are usually 

considered a Gram-positive antibacterial factor are also effective against Gram-negative bacteria 

and fungi for e.g. arthropod c-type lysozymes (Li et al. 2005). This is the first study to 

characterize the antibacterial response genes in the ECB larvae. This study may lead to better 

understanding of the immune defense response in ECB. 

Materials and Methods 

Insects  

The European corn borer used in this study was purchased as eggs and larvae from Lee 

French Laboratories, Lumberton, MN. 

cDNA sequence analysis 

Two cDNA libraries from the gut of fifth instar ECB larvae were constructed using: 1) 

Creator SMARTTM cDNA library construction kit from Clontech (Palo Alto, CA), and; 2) ZAP-

cDNA synthesis kit and ZAP-cDNA Gigapack III gold cloning kit following manufacturers 

instructions. Total of 15,000 ESTs from these libraries were sequenced from 5’end (Khajuria et 

al. 2009). cDNA libraries were analysed and searched for immune defense response genes. Six 

clones were found having putative identity to PGRPs, βglu-1, lysozyme.  These clones were 

again sequenced from both ends using M13R and M13 F primers to obtain full length of the 

inserts. Signal P software was used to predict signal peptide (Bendtsen et al. 2004). ClustalW 

(Larkin et al. 2007, Thompson et al. 1994) and MEGA4 softwares (Tamura et al. 2007) were 

used for multiple alignments and to construct phylogenetic tree, respectively.   
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Tissue and developmental stage expression profiles 

Total RNA was isolated from different tissues and different ECB developmental stage 

using TRI reagentTM (Sigma, St. Louis, MO). Tissues were dissected in DEPC-treated water 

from one-day-old fifth instar ECB larvae and pooled from four larvae. Total RNA was treated 

with TURBO™ DNase (Ambion, Austin, TX) to remove any genomic DNA contaminations.  

One microgram of total RNA was used for synthesis of first strand cDNA using SuperScript® III 

First-Strand Synthesis System (Invitrogen, Carlsbad, CA). cDNA prepared from total RNA was 

used as a template for real time PCR or RT-PCR. Two biological replications and two technical 

replications were used for real time PCR analysis and one biological replication was used for 

RT-PCR analysis. Realtime PCR included 95°C for 5 min, 40 cycles each consisting of 95°C for 

30 sec, 55°C for 0.15 sec, and 72°C for 0.45 sec, followed by 95°C for 1 min and 55°C for 1 

min. RPS3 genes was used as reference gene. For RT-PCR, 28 cycles were used for all genes 

including RPS3, each cycle consisting of 94°C for 30s, 55°C for 60s, and 72°C for 60s. Primers 

for these genes were designed by using Beacon Designer software (version 7) and their 

sequences are given in Table 5.1. 

Bacterial challenge and expression profiles 

Bacteria were streaked on the LB plate to get a pure colony and kept at 37° C overnight. 

The single colony was picked and grown in the LB-media overnight in the shaking incubator at 

37° C and 200 rpm. Next day the bacterial solution was centrifuged at 4 C and 3000 rpm to get 

the pellet. The pellet was washed twice in the 0.15 M phosphate saline buffer (PBS) and 

centrifuged as above after each wash. The final pellet was dissolved in the 0.15 M PBS buffer. 

The OD value was adjusted to get OD = 0.4. The same procedure was performed for both kinds 

of bacteria (E. aerogenes and M. luteus). For injections, one-day-old fifth instar larvae were 
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anesthetized on ice for 30 minutes and then 5 ul of the bacteria+PBS solution was injected into 

the haemolymph of larvae. For control larvae, 5 ul of 0.15 M PBS buffer was injected.  

Seperated syringes were used for each treatment. After injections larvae were allowed to feed on 

the the artificial diet at 26° C. The fat bodies were dissected in DEPC-water after 6, 12, 24 hrs of 

injections. The RNA isolation, first-strand cDNA synthesis, and real-time PCR were performed 

as above.  

Statistical analysis 

The gene expression analysis in tissues and developmental stages were subjected to one-

way analysis of variance (ANOVA). The expression analysis due bacterial exposure was 

subjected to two-way analysis of variance (ANOVA). Fisher’s least significant difference (LSD) 

multiple comparisons were then used to separate the means among the treatments. All the 

statistical analyses were performed using ProStat software (Poly Software International Inc., 

Pearl River, NY). 
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Figure 5.1  Multiple alignments of the amino acid sequences of Ostrinia nubilalis PGRPs and 

other insect PGRPs using CLUSTALW.  Predicted signal peptide sequences are underlined. 

Positions of five residues required for the amidase activity are marked by asterik (*).  No signal 

peptide was predicted for O. nubilalis-C and Drosophila-LB. Fully conserved residues are 

indicated by blue background. Sequences from the following insects were used in this analysis: 

Samia cynthia ricini-D (GenBank accession: BAF74637.1); S. cynthia ricini-B (BAF03520.1); S. 

cynthia ricini-A (BAF03522.1); S.cynthia ricini-C (BAF03521.1); Bombyx mori 

(NP_001036836.1); Drosophila melanogaster- SA (NP_572727.1); D. melanogaster- LB 

(AAN13506.1); D. melanogaster-SB2 (CAD89150.1); D. melanogaster-SB1 (CAD89135.1); D. 

melanogaster-SC2 (CAD89178.1); D. melanogaster-SC1A (CAD89162.1); D. melanogaster-SD 

(CAD89197.1); M. sexta-1A(AAO21509.1); Trichoplusia ni (AAC31820.1). 
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Figure 5.2  Multiple alignments of the amino acid sequences of Ostrinia nubilalis lysozyme and 

other insect lysozymes using CLUSTALW. The predicted cleavage site for signal peptide for all 

the sequences is marked by filled triangle  () above the alignement. The position of two 

catalytic residues, Glu and Asp are indicated by asterik (*). The eight conserved cysteine (C) 

residues involved in disulfide bridges are indicated by open triangle () above the alignments. 

Fully conserved residues are indicated by blue background. The sequences used in this analysis 

were: Heliothis virescens (GenBank accession: AAD00078.1), Spodoptera litura (ACI16106.1), 

Samia cynthia ricini (BAB20806.1), Manduca sexta  (AAB31190.2), Bombyx mori  

(NP_001037448.1), Trichoplusia ni  (ABV68862.1), Ornithodoros moubata (AF425264.1), 

Triatoma brasiliensis (AAU04569.1), Triatoma infestans (AY253830),Rhodnius prolixus A 

(EU250274), Rhodnius prolixus B (EU250275), Drosophila melanogaster (NP_476828.1), 

Helicoverpa armigera (ABF51015.1), Anopheles stephensi (BAC82382.1), Aedes aegypti P 

(XP_001647756.1).  
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Figure 5.3  Neighbor-joining phylogenic tree constructed from 25 full length amino acid 

sequences of peptidoglycan recognition proteins (PGRPs) including a four sequences from 

Ostrinia nubilalis. Bootstrap percentage values are shown on the branches. GenBank accession 

numbers along with short names are shown for all the sequences. Sequences from the following 

insects were used in construction of the tree:  Bombyx mori (Bm);  Helicoverpa armigera (Ha); 

Heliothis virescens (Hv); Manduca sexta (Ms); Trichoplusia ni (Tn); Samia cynthia ricini (Scr); 

Galleria mellonella (Gm); Hyphantria cunea (Hc);  Aedes aegypti(Aa); Drosophila 

melanogaster (Dm); Anopheles gambiae (Ag); Apis mellifera (Am).    
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Figure 5.4  Multiple alignments of the amino acid sequences of Ostrinia nubilalis β-1-3 

glucanse-1 gene with similar genes from other insects using CLUSTALW. The predicted signal 

peptide sequences for all the sequences are underline. The predicted active site for GH16 is 

indicated by the solid line above the alignment (Pauchet et al. 2009). Fully conserved residues 

are indicated by blue background. The sequences used in this analysis are: β-1-3 glucanse-1 from 

Helicoverpa armigera (GeneBank accsession no.ABU98621.1), Spodoptera littoralis 

(ACI32818.1), Spodoptera frugiperda (ABR28478.2), Pieris rapae (ACI32824.1), Tribolium 

castaneum (XP_970010.1); GNBP from Nasutitermes pluvialis (AAZ08500.1), Nasutitermes 

dixoni (AAZ08494.1), Anopheles gambiae (XP_312116.3), Aedes aegypti (XP_001659796.1); 

βGRP from Culex quinquefasciatus (XP_001845281.1).   
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Figure 5.5  Neighbor-joining phylogenic tree constructed from 33 full length lysozyme 

sequences including a sequence from Ostrinia nubilalis (Lysozyme_On). Bootstrap percentage 

values are shown on the branches. GenBank accession numbers along with abbreviations for 

organism name are shown for all the sequences. Sequences from the following insects were used 

in construction of the tree:  Bombyx mori (Bm);  Helicoverpa armigera (Ha); Spodoptera litura 

(Sl); Heliothis virescens (Hv); Manduca sexta (Ms); Trichoplusia ni (Tn); Samia cynthia ricini 

(Scr); Galleria mellonella (Gm); Hyphantria cunea (Hc);  Aedes aegypti(Aa); Drosophila 

melanogaster (Dm); Anopheles gambiae (Ag); Musca Domestica (Md); Anopheles stephensi 

(As); Ornithodoros moubata (Om); Triatoma brasiliensis (Tb); Rhodnius prolixus (Rp); 

Triatoma infestans (Ti). 
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Figure 5.6  Expression patterns of six antibacterial response genes in the larval tissues of naive 

European corn borer. (A) Gene expression were determined in epidermis (EP), fatbodies (FB), 

haemolymph (HM), midgut (MG), salivary glands (SG) by RT PCR. The ribosomal S3 (RPS3) 

gene was used as a reference gene. (B) Gene expression determined by using realtime PCR in 

fatbodies and midgut. Ribosomal protein S3 (RPS3) gene was used as a reference gene to 

calculate the relative expression. Standard errors of the mean were determined from two 

biological replications and two technical replications. Different letters for the same gene 

represent significant difference at P value ≤ 0.05. 
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Figure 5.7  Expression pattern of of six antibacterial response genes in different developmental 

stages of naive European corn borer. Gene expressions were studied in all developmental stages 

including egg, first-, second-, third-, fourth-, and fifth-instar larvae, pupa, and adult. Ribosomal 

protein S3 (RPS3) gene was used as a reference gene to calculate the relative expression. 

Standard errors of the means were determined from two biological replications and two technical 

replications. Different letters for the same gene represent significant difference at P value ≤ 0.05. 
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Figure 5.8  Expression profiles of four PGRPs, one βglu-1, and one lysozyme genes in fatbodies 

of fifth-instar larvae of European corn borer when exposed to Gram negative bacteria, 

Enterobacter aerogenes (E.A); Gram positive bacteria, Micrococcus luteus (M.L); and 

phosphate buffer saline (PBS) alone as control (CT). Relative gene expressions were determined 

after 6, 12, and 24 hrs of bacteria exposure. Ribosomal protein S3 (RPS3) gene was used as a 

reference gene to calculate the relative expression. Standard errors of the mean were determined 

from two biological replications and two technical replications. Different letters for represent 

significant difference at P value ≤ 0.05. 
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Table 5.1 Sequences of PCR primers used to profile gene expressions of six antibacterial 

response genes in European corn borer 

Name Forward primer Reverse primer Product size (bp) 
 

 PGRP B TTGCCGTCGGAAACTCAAC AGTGTAGTCGGGCCTGATG 84 

 PGRP A GTGAGTCTACTGAACAATCTACG GATGGACCGCTGGTTGTAG  162 

 PGRP C AAGACCTGCTAGACCTGAAAG ATAATCATCATAAGTTGCATT CCC 77 

 PGRP D ACATACAACTTTCCTTTCGTGAC GTACTGGAGTGTGTAGAGG TAAG 82 

 Lysozyme AAGATTAGCAGTCGTTGTGTTG GCACTCTCATTCTCCACC AG 156 

β-1-3 glucanse-1 CCAGTGGTCGTCTGAACATC AGGAGTCTACGGTG CGAAG 141 
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CHAPTER 6 - Summary 

In the recent years, a large amount of genomic information has been generated from 

various insect species and accumulated in public databases. However, such information is still 

limited on lepidopteran species, particularly agricultural pest species. There is an urgent need for 

genomic information on lepidopteran species due to their economic importance and biodiversity. 

The success of Bt (Bacillus thuringiensis) toxins in managing the insect pests has encouraged 

scientists to better understand molecular composition of insect gut and to identify new targets for 

novel toxins that can be used in insect pest management.  My dissertation addresses the questions 

on the genomics of the larval gut of the European corn borer (ECB, Ostrinia nubilalis). The ECB 

is one of the major pests of corn in United States and western world. Knowledge of genes 

expressed in the ECB gut will lead to a better understanding of basic physiology of food 

digestion and their interactions with Bt toxins and pathogens. It may also lead to the discovery of 

new targets for which novel toxins can be designed for ECB pest management. 

In Chapter 2, we established a large database of 15,000 ESTs from the gut of the fifth-

instar larvae of ECB, which represents 2,895 unique sequences, including 1,738 singletons and 

1,157 contigs. Analysis of unique sequences using BLASTx search revealed that 62.7% of them 

have significant matchs (E-value ≤10-3) with the sequences available in GenBank. To our 

knowledge, this database represents the largest gut-specific EST database from a lepidopteran 

pest and it will provide crucial information on the physiology of the larval gut of the ECB. In 

depth analysis of these ESTs revealed 52 candidate genes with potential roles in Bt toxicity and 

in Bt resistance. Furthermore, we showed differential expressions of 15 out of the 41 

representative candidate genes between Cry1Ab-resistant and –susceptible strains of ECB. These 

results help us further narrow down the list of candidate genes that could be involved in Cry1Ab 
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resistance. These results will provide researchers with new insights into mechanisms of Bt 

resistance in ECB.  

We have also used all the unique sequences identified in this study to develop ECB gut-

specific microarray. This microarray can be used to analyze changes or differences in gene 

expression on a global basis between Cry1Ab-resistant and –susceptible strains of ECB as well 

in response to Bt protoxins/toxins. This will also allow us to analyze genetic differences that 

occur between Bt resistant and -susceptible strains of ECB. Our genomic information from the 

ECB could also serve as a valuable resource for identifying critical/vulnerable genes from the gut 

of ECB that would be useful physiological targets for new toxins that could be developed for use 

in pest management. 

In Chapter 3, we analyzed aminopeptidase-like genes in Cry1Ab-resistant and –

susceptible ECB strains and explored their role in Cry1Ab toxicity and resistance. It is well 

known that ECB can be effectively managed by using transgenic Bt corn. However, widespread 

use of transgenic Bt corn is expected to lead to the development of Bt resistance in the ECB. 

Indeed, several laboratory colonies of ECB have already developed resistance when exposed to 

Bt toxins.  The mode of action of Bt toxin involves several steps and insects can develop 

resistance by changing the genes or their products at any of these steps. In ECB, two independent 

resistance mechanisms have been reported to occur: reduced protease level and modified 

cadherin receptors. However, studies on Cry1Ab ECB resistant strains have led to suggestions 

that resistance due to changes in the midgut-specific Bt toxin receptors may also involve other 

receptors in addition to the cadherin. The Bravo model of Bt toxicity in insects suggests that Cry 

toxins need two receptors to kill the insects, cadherin and GPI-anchored aminopeptidase N. 

Therefore, we identified and analyzed the aminopeptidase-like genes in Cry1Ab resistant and 
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susceptible ECB strains. The expression analysis for 10 aminopeptidase-like genes revealed that 

most of these genes expressed predominantly in the midgut tissues of all larval stages of ECB. 

There were no differences in the expression of these genes between Cry1Ab resistant and 

susceptible strains. This suggests that altered expression of these genes is unlikely to be 

responsible for resistance. However, there remains a possibility that there could be mutations in 

the nucleotide sequences of these genes that differed for resistant and susceptible larvae so this 

needed further investigation. Interestingly, we found several nucleotide differences in the region 

from 912 to 930 bp of the aminopeptidase-P like (OnAPP) gene. The change in the nucleotide 

sequence was similar for the two resistant strains we were studying: the changes lead to changes 

in two amino acids, Glu305 was changed to Lys305 and Arg307 was changes to Leu307. We have not 

found any reports where OnAPP-like genes were implicated in Bt toxicity or resistance. This 

appears to be first report of an APP-like gene from insects with a predicted GPI-anchor signal 

peptide at the C-terminal being identified as being associated with Bt toxicity and Bt resistance. 

To gain better understanding of the role of OnAPP, we developed a feeding-based RNA 

interference for OnAPP for ECB larvae and achieved 38% reduction in the OnAPP transcript 

after 8 days. Furthermore, Bt bioassay using insects fed OnAPP and GFP dsRNA resulted in 

reduced susceptibility to Cry1Ab by 25% in OnAPP dsRNA fed larvae as compare to the control. 

Therefore, presence of the mutations in resistant larvae, presence of the GPI anchor, and reduced 

susceptibility of OnAPP dsRNA treated larvae, stronlgy suggest that this gene is a strong 

candidate for its role in the Cry1Ab toxicity and resistance in ECB. 

In Chapter 4, we described a study on the functional analysis of a gut-specific chitinase-

like gene from ECB larvae and showed that this gene was involved in chitin regulation in its 

peritrophic membrane (PM). Chitinases are large and diverse enzymes and have received much 
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attention from researchers in recent years due to their important biochemical functions in chitin 

metabolism. Chitinases are suggested to be involved in the degradation of chitin in the 

peritrophic membrane (PM) and cuticle. They are also potential targets for novel insect-specific 

pesticides for use in insect pest management. Therefore, we identified and analyzed the gut-

specific chitinase-like gene (OnCht) in ECB. The sequence analysis of OnCht showed that this 

gene have all four conserved regions with one catalytic domain and no chitin binding domain. 

The expression of OnCht was only detected during larval feeding stages, and more than 97% of 

OnCht expression was found in the midgut. Within the midgut, OnCht has highest expression 

level in the anterior midgut (75.8 %) which suggests that OnCht may play an important role in 

regulating PM chitin content and assembly in the anterior part of the midgut. Furthermore, our 

results showed that transcript levels of OnCht and chitin synthase B (OnCHS-B) were affected by 

feeding. When larvae were not provided food, the OnCht gene expression decreased significantly 

and OnCHS-B expression increased significantly relative to larvae maintained on food. These 

changes occur rapidly and reversibly.  Interestingly, we also found a negative correlation 

between OnCht gene expression and chitin content as well as a positive correlation between 

OnCHS-B gene expression and chitin content of the PM. Chitin contents increased significantly 

when larvae were maintained with no food as compared with the larvae maintained on food for 

the same period of time.  As expected, the chitin contents decreased dramatically, when the 

starved larvae were allowed to feed. By using a feeding-based RNAi technique, we were able to 

reduce the OnCht transcript levels by 63-64% in the larvae fed a diet containing OnCht dsRNA 

as compared with the larvae fed a diet containing GFP dsRNA. Such a suppression of the OnCht 

transcript level in larvae fed OnCht dsRNA resulted in a significant increase of chitin content 

(26%) in the PM. This suggests that OnCht was involved in the regulation of the PM chitin in 
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ECB larvae, probably through a reduced rate of degradation of the chitin by this enzyme.  More 

interestingly, the growth and development of these larvae were were reduced by 54% compared 

with larvae fed GFP dsRNA. This was most likely due to defective food assimilation.  The 

decreased porosity of the PM and/or loss of compartmentalization may hinder the digestion. 

Thus, these results provided strong evidence for the first time that OnCht plays an essential role 

in regulating chitin content of the PM and that this affects larval growth, presumably by 

influencing food digestion, nutrient absorption or movement of digestive enzymes through the 

PM.  

In Chapter 5, we identified and characterized six antibacterial response genes from the 

ECB larvae, including four peptidoglycan recognition proteins (PGRPs), one β-1-3 glucanse-1 

(βglu-1), and one lysozyme. Tissue-specific analysis showed that all of the ECB antibacterial 

response genes except lysozyme have high mRNA levels in the gut tissues. This may be because 

gut is constantly being exposed to the microorganisms while feeding. All these genes showed 

expression during the ECB larval stage. None or low mRNA expression for these genes was 

detected in egg, pupa and adult. To obtain better evidence that these genes are really involved in 

the immune defense response, we challenged ECB larvae with Gram-positive bacteria 

(Enterobacter aerogenes) and –negative bacteria (Micrococcus luteus). The expression of all six 

antibacterial response genes in fatbodies was up-regulated when ECB larvae were challenged 

with Gram-positive bacteria (E. aerogenes), however only PGRP-C and lysozymes were induced 

when challended with gram-negative bacteria (M. luteus). This difference in response may be 

due to specificity of the peptidoglycan (PGN), as Gram-negative bacteria have DAP-type PGN 

and most Gram-positive bacteria have Lys-type PGN. This is the first study to characterize 
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antibacterial response genes in the ECB larvae, which may lead to better understanding of the 

immune defense response in ECB. 

These findings have several significant implications. In addition to these results, the 

establishment of the feeding-based RNA interference technique could potentially help us in 

delivering dsRNA orally to the ECB larvae for high throughput screening of effective genes to 

be targeted for insect pest management. 

 

 

 

 


