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Abstract

The push toward online learning in response to the Covid-19 pandemic has provided an

opportunity to evaluate student behavior and outcomes in asynchronous and synchronous

mathematics courses with an unprecedented population of students. In this study, data is

collected from Canvas tracking student utilization of lecture videos. This data is analyzed

under the lens of principal component analysis and partitioning around medoids to cluster

students into behavioral groups. This data is then compared with grade outcomes to pro-

vide insight into possible behavioral best-practice for asynchronous and synchronous online

learning in Elementary Differential Equations and History of Mathematics courses.
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Chapter 1

Introduction

This paper examines student online behavior and outcomes in an online synchronous History

of Mathematics course and an online asynchronous Elementary Differential Equations course

both of which took place between the 2019-2020 and 2020-2021 academic years at Kansas

State University in the midst of the COVID-19 pandemic.

1.1 Motivation

Mathematics education research is well established at the K-12 and remedial college level.

Research in recent years has delved into higher level mathematics courses at the university

level. This study is interested in Elementary Differential Equations and History of Mathe-

matics courses.

Why might we be interested in these courses? Elementary Differential Equations is an

essential course for most engineering and mathematics majors. This course uses student’s

calculus 1 and calculus 2 knowledge to relate unknown variables with their derivatives. It has

been said that “mathematics [is] the language of science, and differential equations are one of

the most important parts of this language as far as science and engineering are concerned“.

History of Math is a course that gives students a deeper developmental understanding

of the math they have studies with hands-on practice and reading translations of primary
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texts. It is often required for education and mathematics majors. While less popular than

Elementary Differential Equations and far less studied, it serves a group of students set to

teach mathematics to the future generations of math students.

Cognitive learning styles, a complex and widely studied topic in education and psychol-

ogy, play a critical role in a student’s mathematics experience. This is often defined as the

student behavior in organizing and processing information in order to learn2. These cognitive

styles have been re-imagined for mathematics education with early research citing purpose

and process as the defining components of mathematics learning3. Further studies began to

expand these cognitive styles for specific courses. These studies cite that a students ability

to discern what information is important plays a critical role in student calculus success4.

These studies, in conjunction with more recent research, has shifted focus on how to rec-

ognize patterns in student learning behavior in order to better teaching practices and stage

learning interventions for struggling students.

Research looking at online education has primarily focused on video content as gauge for

student success, but recent studies have begun to analyze different aspects of online behavior

in assessing student learning and success. What makes current research different from past

research in online learning is the change in student population. Online courses have been

offered as a flexible alternative to traditional courses for students with other job, family

or course obligations. Students have particular motivations for taking an online courses,

whereas during the COVID-19 pandemic nearly the entire student population was forced to

take courses in an online setting whether they wanted to or not. This gives an additional

opportunity to examine online learning behavior for a large, more general population of

students that is not usually available.

1.2 Limitations

This study is limited to the pool of students from Kansas State University enrolled in 2

mathematics courses. Further, this was during the 2020-2021 academic year in the middle

of the COVID-19 pandemic. These conditions not only limit the population scope, but also
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limit the ability to reproduce conditions of the study.

Further limitations to the study include a lack of direct student input about their behav-

iors; therefore, there are many aspects about these behaviors that we are unable to discern.

For the asynchronous course, we do not have a way of knowing how they watched their

videos. It is reasonable to assume that some students may not pay close attention to the

videos while they are playing, but still show up as having “watched“ the video. Students

that clock-in low view times could reasonably be watching videos in a group on a single

account. They have watched the video, but in our data set it says they have not. These are

just a few of many possible explanations for perceived online behaviors.

Similarly, for the synchronous online course, we do not have any data on the live video

participation. This means that any logged viewings of posted videos are automatically

“review“ and do not say anything about behaviors around lecture viewing or participation.

Other limitations come from the population pool. For the MATH 340 differential equa-

tions course the students have low diversity in terms of general educational background. A

large majority of the students are specifically engineering and mathematics students. Math-

ematics training up until this point have been largely the same, and study habits may not

reflect a wider student body.

1.3 Definitions of Key Terms

The following terms will be used in this thesis to describe different classes, assignments and

actions.

Definition 1 (Synchronous). 5 Synchronous-driven online courses are those in which the

instructor and students meet regularly online in real-time meetings for lectures or other

activities. The course may also be supplemented with other online activities or materials,

but the majority of the student seat time is offered through synchronous meetings.

Definition 2 (Asynchronous). 5 Asynchronous-driven online courses are those in which

students are rarely if ever, required to meet in a synchronous setting and instead complete

asynchronous learning activities and engagement on their own time. Some synchronous
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online office hours or group meetings may be included in this type of course, but the majority

of materials will be available to students through the Canvas course site.

Definition 3 (Lecture). 6 A lecture is the traditional method of instruction in which students

are taught a subject by a member of the faculty. Typically instruction delivered via lecture

tends to be more instructor centered than discussion oriented.

Definition 4 (Recitation). 6 Laboratory instruction is the application of methods and prin-

ciples to student-oriented practice, often in a hands-on way. This designation is primarily

used in science and engineering. The laboratory time is separate from the lecture although

it is often associated with a lecture component.

Definition 5 (Labs). 6 A recitation is an interactive meeting that combines formal pre-

sentation, review and interaction between the students and a faculty member. It is usually

combined with a lecture as the primary component. Recitation sessions often review the

lecture content, expand on the concepts and usually allow for question and answer time.

Definition 6 (Coverage). In regard to student watching behaviors, coverage tells us how

much a of a video a student has watched in terms of the percentage watched.

Definition 7 (Watched). Did a student click play on a video.

Definition 8 (Reviewed). A student watched a video again at least one day after originally

watching the video.

1.4 Background

1.4.1 Literature Review

There have been several recent papers outlining instruction and online instruction of differ-

ential equations. These studies focus on class structure and student outcome as opposed to

student behavior and outcome. A 2021 paper at the University of Montreal found that over

the COVID pandemic their online sections of differential equations actually out-performed
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their in-person sections7. However, they offer little information on the details of the structure

of the course.

When it comes to student outcomes in terms of active and passive learning, studies

have generally supported active learning when considering student satisfaction; however,

these studies have primarily been done for in-person instruction. A 2009 empirical study on

active versus passive learning looked specifically at student outcomes when comparing the

teaching/learning styles as opposed to student satisfaction.8 They found, in agreement with

a majority of published research on the subject, that the two styles do not significantly affect

student outcomes.

Technological advances and increased access to internet has edged virtual education into

mainstream over the past decade. The COVID-19 pandemic thrust virtual education as the

main source of education for millions of students mid-year without preparation. From this,

many studies have come out in an attempt to assess student learning and outcomes to better

serve students in a virtual setting.

Students in asynchronous courses are forced to rely on strong self-regulated learning

behaviors. As defined by the US Department of Education’s Literacy Information and Com-

munication System, self-regulated learning is “one’s ability to understand and control one’s

learning environment.9. Self regulating abilities include goal setting, self monitoring, self-

instruction, and self-reinforcement”. These skills, which may not be fully developed in

students at certain levels, are at the heart of asynchronous online learning where a teachers

in-class guidance is limited. Online instruction brings the challenge of student engagement

being hard to assess and enforce. However, it does bring a unique opportunity for data anal-

ysis. Student online activity, specifically online activity in online learning platforms creates

a lot of data.

Video watching data can tell us how long a student watched a video, how many times

they pressed pause, play, if they sped up a video or even if they skipped around. Recent

studies have looked into this data on video engagement as an outcome predictor. We call

this “click-based” data, meaning data created from a student clicking different buttons in an

online platform. Several recent studies have look at click-based performance prediction. On a
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large scale, this 2021 study assessed online open-learning courses EdX and Coursera.10 These

are courses open to a huge online audience that are not connected to a specific institution.

Because of this, students come from a wide set of backgrounds and ages. This study worked

to create a model for tracking student click activity to provide a quantifiable way to assign

a level of student participation in a given online environment.

This idea has been put to use in other studies. One recent 2021 study looked to answer

questions on how video engagement, using a click-based model, could cluster student behav-

iors and predict outcomes. They classified video click-based engagement as “manipulating”

behaviors as pausing, fast-forwarding, and rewinding.8 They then used principal component

analysis and clustering using partitioning around medoids to analyze the data finding that

the important behavioral patterns included rates of “pause” and “play” and peer-to-peer

interactions using “view comment” and “comment” options on videos. The clustering put

the students into two groups with distinguishing factor being the social interaction aspect

of PC2. In particular, the first cluster contained “active learners” where the second cluster

contained “passive learners”. The first cluster performed better on exams than the second,

which somewhat contradicts previous studies comparing active and passive learners.

Synchronous learning offers much of the traditional structure of classroom learning with

a set schedule and assignment timeline. A 2021 study looked at student behavior specifically

in synchronous online behavior by assessing participation levels to gauge student engagement

over the course of the semester.11 This study focused on college students from a variety of

majors and primarily analyzed student participation by the attendance log. The results did

not compare against student outcomes but did find trends of decreased participation as the

semester progressed. They also found that participation patterns did vary depending on

what time of the day the course took place.

1.4.2 Research Questions

I pose the following questions:

1. Can we identify patterns in student behavior by their online utilization of lecture
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videos?

2. Are there specific behavioral patterns from students who succeed vs. do not succeed

in the course?

1.4.3 Course Description MATH 570

History of Mathematics

MATH 570 is History of Mathematics: “A survey of the development of mathematics from

ancient to modern times.”12 This course is a 3 credit course with a MATH 220 Calculus I

prerequisite. It is typically taken during the spring semester. It is a requirement for students

majoring in secondary education with an endorsement in mathematics. It is also a popular

elective option for general mathematics majors and students looking to receive a Primary

Text Certificate.

The course was organized online through Canvas using modules. Modules were organized

by topic in the chronological order they appeared in lectures and included pdf documents

for readings and homework, links for lecture recordings and participation quizzes.

The data used in this study was taken from the spring 2021 semester. The course was run

synchronously with zoom lectures. Prior to lectures, reading assignments would be assigned

and a small quiz would be opened for a limited time as a mark of participation. These quizzes

opened on Canvas, and lecture participation was not required to take them. Lecture videos

were posted and made available for viewing for the rest of the semester following its original

broadcast. Lecture videos from past semesters were also made available. This course does

not have recitations or labs guided by a graduate student. This course also did not have an

assigned textbook, but primary text excerpts were provided to students through Canvas.

7



Assignment Type Description
Written Homework 12 assignments. Roughly, one assignment per week
Exams 1 midterms and 1 final
Quizzes Due at the beginning of each class, usually required short

readings
Papers 3 over the course of the semester based on conceptual de-

velopment of mathematics with note historical and cultural
influences

Table 1.1: MATH 570 Graded Assignments

1.4.4 Course Description MATH 340

Elementary Differential Equations

MATH 340 is Elementary Differential Equations: “Elementary techniques for solving ordi-

nary differential equations and applications to solutions of problems in science and engineer-

ing.”13 This course is a 4 credit course with MATH 220 Calculus I and MATH 221 Calculus

II prerequisites; however, many students take the course after completing MATH 222 Vector

Calculus. It is a requirement for most engineering track students, mathematics majors and

a popular elective for students with a mathematics minor.

The data used in this study was taken from the fall 2020 semester. The course ran

asynchronously with asynchronous, synchronous and in-person options for recitations and

labs. Lectures were posted asynchronously on Monday and Wednesday. Recitations ran on

Thursdays during a 50 minute class period lead by a graduate student with the purpose

of re-enforcing lecture topics by actively practicing lecture topics in practice problems and

homework problems. Labs ran on Tuesdays for another 50 minute class period lead by

a graduate student with the purpose of putting a visual or real world application to the

mathematical concepts being learned.

The course was organized online through Canvas using modules. Modules were organized

by topic in the chronological order they appeared in lectures and included links for lecture

videos, PDF’s for lecture notes and assignments.

In addition to lecture videos, students were given two open-source textbook options

which have some differences in topic coverage: Notes on Diffy Qs - Differential Equations
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Assignment Type Description
Written Homework Due once a week with either an in-person, synchronous or

asynchronous recitation
Online Homework Due once a week with either an in-person, synchronous or

asynchronous recitation
Exams 3 midterms and one final
Quizzes Due within a few days of lecture videos being posted
Labs Due once a week with either an in-person, synchronous or

asynchronous lab.

Table 1.2: MATH 340 Graded Assignments

for Engineers by Jiri Lebl, Elementary Differential Equations by Andrew Bennett.

Notes on Diffy Qs Elementary Differential Equations
1st Order Equations 1st Order Linear Equations
Higher Order Linear ODE’s Higher Order Linear Equations
Fourier Series and PDE’s Laplace Transforms
More on Eigenvalue Problems Series Solutions
The Laplace Transform
Power Series Methods
Nonlinear Systems

Table 1.3: MATH 340 Chapters by Textbook
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Chapter 2

Methodology

2.1 Dataset Description

Data was collected automatically through the learning management system Canvas which

included extensive data on student canvas activity.

Report Data Definition
Total Views The total number of times the presentation was watched
First Watched Date the presentation was first viewed
Last Watched Date the presentation was last viewed
IP address IP address of the computer used to view the presentation
User Username used to view the presentation
Live Views The number of times the presentation was watched live
On-Demand Views The number of times the presentation was watched on de-

mand
Time Watched The total amount of time (hh:mm:ss) the user spent watching

the presentation
Peak Connections The highest number of concurrent views for the presentation
Trends An intensity graph that highlights which parts of the presen-

tation were viewed most
Platforms Graphical data showing the top web browsers and operating

systems used to view the presentation
Coverage The amount of the presentation watched by a user

Table 2.1: Mediasite data collection table

We focused on data around lecture videos, namely which videos were being watched, for
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how long, for how many times and when. Our main data set for each course was examining

how much each student viewed each video in terms of percent watched as seen in Table 2.2.

Video ID
Student ID V1 · · · Vn

S1 98% · · · 100%
S2 100% · · · 61%
...

...
...

Sm 16% · · · 0%

Table 2.2: Student Coverage Table Format

2.2 Mathematics Background

2.2.1 Dimension Reduction

Dimensionality causes issues for data analytics not only computationally, but visually. We

cannot geometrically represent data in dimensions beyond 3, and it is easy to show that data

analysis can change meaning as dimensions are reduced.

Take an Orange and a Plum. We might wonder about their ratio of edible portions to

non-edible portions. An orange has a peel and a plum has a pit which reduce the overall

ratio of edible portions on each. We can calculate this by hand easily by considering the

volume of the fruit in ratio with the volume with the peel or pit. The question is what

happens if we reduce the dimensional lens we use to view the fruit? In the 3D case the plum

and orange are both a unit sphere, but have the following differences: The orange has a peel

thickness of 0.15, the plum has a pit radius of 0.5. Our volumes work out to tell us that the

plum has 87.5 percent edible parts while the orange has only 34.3 percent edible parts.

When we reduce this down to 2D we find we have different fruit to not-fruit ratios by

area. In this case we have a plum that is 75 percent edible portion by area and for the orange

we have 49 percent edible portion by area.

Now in the one dimensional line case of this problem we have a 50/50 ratio of edible to

non-edible parts for the plum by distance and a 70/30 ratio of edible to non-edible parts

11



(a) Plum (b) Orange

Figure 2.1: 3D Plum and Orange

(a) Plum (b) Orange

Figure 2.2: 2D Plum and Orange

for the orange by distance. Note that these are small dimensional examples as we cannot

geometrically visualize beyond 3 dimensions. This problem in a higher dimensional context

will push data to the edges of the ball telling us that an orange is all peel and a plum is all

fruit. This is obviously an issue, and especially for clustering when we are trying to pick out

features.

It is easy to see now that information can tell us different things about characteristics

depending on the dimensional lens we view it through. This phenomenon was originally

described by Richard Bellman as “ The Curse of Dimensionality”. That is the phenomenon

where things happening in high dimensions are not always happening in lower dimensions.14
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(a) Plum (b) Orange

Figure 2.3: 1D Plum and Orange

Utilizing dimension reduction we can begin to recast our view of educational data into

a space that can hopefully tell us something new about our data characteristics. Our space

for MATH 570 is R36 ×R175, and our space for MATH 340 is R206 ×R129. Both of these are

high dimensional spaces that are good candidates for dimension reduction. We will do this

using principal component analysis.

Principal components are a collection of points in a real coordinate space that are a

sequence of p unit vectors, where the i-th vector is the direction of a line that best fits the

data while being orthogonal to the first i-1 vectors. Principal Component Analysis (PCA)

is a multivariate technique in which a number of related variables are transformed into a

smaller set of uncorrelated variables.15 The following are the steps in computing the principal

components of a given matrix.

The first step is to standardize the data. This allows the data to be manipulated on the

same scale. We do this by computing a z-score.

zi =
xi,j − x̄ij

σi,j

where xi is the value for the i-th data point in the j-th column, x̄i is the mean value for the

j-th column and σij is the standard deviation for the j-th column.

The second step is to compute the covariance matrix. Covariance provides a measure of

the strength of the correlation between two or more sets of random variables. The covariance
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for two random variates X and Y , with sample size N and respective means x̄ and ȳ can be

written as

cov(X, Y ) =
N∑
i=1

(xi − x̄)(yi − ȳ)

N

This step gives us a look at the relationship between the students data. This matrix is a

r× r symmetric matrix where r is the number of dimensions and the entries are covarances

associated with all possible pairs of initial variables.

S =



s21 s12 · · · s1r

s12 s22 · · · s2p
...

...
...

s1r s2r · · · s2r


where s2i is the variance and the covariance is

sij =
n
∑

xikxjk −
∑

xik

∑
xjk

[n(n− 1)]

where the index k goes over the entire sample n.

The third step is to compute the eigenvectors and eigenvalues of the covariance matrix

S. Since S is a r × r matrix we will have r eigenvalues λ1, λ2, · · · , λr which are obtained

using the discriminant

|S − λI| = 0.

The corresponding eigenvectors v1, v2, · · · , vr are found by solving

(S − λiI)vi = 0.

The fourth step is to order the eigenvectors by their eigenvalues in descending order. We

then need to decide how many vectors to keep as the lower the eigenvalues the lower the

significance. Our feature vector will be the eigenvectors we decide to keep.
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The last step is to recast the data along the principal components axes by multiplying the

transpose of the feature vector of our chosen eigenvectors by the transpose of our standardized

original data set.15

This process is particularly taxing computationally. This complexity can be measured

by something we call big-O notation which gives an upper-bound on a function. Consider a

function f(n) that is non-negative for all n ≥ 0. We say that f(n) is “big-O” of g(n) if for

every n0 ≥ 0 and constant c > 0 such that f(n) < cg(n) for every n ≥ n0. We can write this

in set notation as

O(g(n)) = {f(n)|∃c > 0 and n0 s.t. ∀n ≥ n0, 0 ≤ f(n) ≤ cg(n)}

In measuring the computational complexity of PCA we will consider it in two parts: Com-

puting the covariance matrix and the eigenvalue decomposition. The covariance matrix

computation is O(p2n), and eigenvalue decomposition computation is O(p3). Together for

PCA these come out to O(p2n + p3). We are able to speed-up this process by substituting

in singular value decomposition in place of eigenvalue decomposition.

The singular value decomposition (SVD) of a matrix A with n rows and m columns is

A = UΣV ′

where U is a n × r matrix, Σ is a diagonal matrix with r singular values and V ′ a r × m

matrix.

A =


u11 · · · u1r

...
...

um1 · · · umr



σ1 · · · 0

...
. . .

...

0 · · · σr



v11 · · · v1n
...

...

vr1 · · · vrn


The SVD of a matrix is such a useful tool because it exists for all matrices, and it is

unique so long as the singular values are unique. This gives SVD the additional reputation

of being more accurate than other methods. The applications are wide, but for our purposes

SVD serves mainly as a tool to decrease the computational complexity and increase the
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accuracy of finding principal components. This is important to note as the PCA function

in the statistical program R uses SVD in its computation of principal components. The

computational complexity for SVD is O(min{pn2, p2n}) which is preferable over eigenvalue

decomposition O(p3).

We are able to make this swap because the eigenvalues obtained through SVD are the

same eigenvalues of the covariance matrix S obtained for PCA. They are related through

the singular values σi of the diagonal matrix Σ in the SVD of our data matrix. SVD can be

computed as follows:

Given an n × m matrix A, to find the SVD you first need to find the transpose of A

denoted AT . You then find AAT and compute the characteristic polynomial det(AAT − λI)

to find the singular values σ1, σ2, · · · , σi for i = 1, 2, · · · , n. You then compute the right

singular vectors vi by plugging in each of the singular values and row reducing to unit-length

vectors. To compute the left singular vectors ui you can use the equation ui =
1
σ
Avi.

This method, while functional for computing by hand, is taxing for large matrices.

R, using the LAPACK package, uses the following algorithm if the matrix is square:

1. Reduce the matrix A to bi-diagonal form A = U1BV ∗
1 where U1 and V1 are unitary

matrices.

2. Transform B to diagonal form Σ using two sequences of unitary matrices: B =

UkΣ[V k]∗.

3. Combine the first two steps to approximate A as A = U1U
kΣ[V k]∗V ∗

1 where U = U1U
k

and V ∗ = [V k]∗V ∗
1 .

If the matrix is not square with more rows than columns, it does QR factorization and

then performs the above SVD algorithm on R. The SVD of A is then A = (QU)ΣV ∗. If the

matrix is not square with more columns than rows, it does LQ factorization and perfoms

the SVD algorithm on L. The SVD of A is then A = UΣ(V ∗Q).16

16



2.2.2 Clustering

Clustering algorithms allow us to analyze our data by comparing data points and grouping

them by similarity or closeness. One of the most basic clustering algorithms is K-means

clustering. This is an iterative 2-step algorithm:

1. To obtain k clusters, arbitrarily choose k centroids and assign each data point to a

cluster.

2. Compute the new centroids of each cluster.

This is repeated until clusters are optimized. This happens when the clusters are no longer

changing with each iteration.

Figure 2.4: Standard K-Means clustering visualization by Vance Faber1

The trouble with K-means clustering is that the use of computed centrioids can be vulner-

able to extreme data. A similar, but more robust algorithm is partitioning around medoids

(PAM).

To obtain k clusters, k representative objects are selected and the remaining objects

are assigned to a cluster based on their closeness to the representative object. Therefore

a tight cluster tells us there are strong similarities in this cluster while a loose cluster will

tell you that there are weaker similarities. These distance measures are minimized to give

the “tightest” set of clusters possible. This closeness distance is measured using Euclidean

distance.

d(i, j) =
√

(xi1 − xj1)2 + (xi2 − xj2)2 + · · ·+ (xir − xjr)2

17



This is an algorithm in two phases: BUILD and SWAP. In the BUILD phase we are

finding the k representative objects in the data.17

1. Consider an object i which has not yet been selected

2. Consider a non-selected object j and calculate the difference between its dissimilarity

Dj with he most similar previously selected object and its dissimilarity d(i, j) with

object i

3. If this difference is positive, object j will contribute to the decision to select object i.

Therefore we calculate Ci,j = max(Dj − d(j, i), 0)

4. Calculate the total gain obtained by selecting object i:
∑

j Cji

5. Choose the not yet selected object i which maximizes maxi
∑

j Cji

Once k objects have been found we begin the SWAP phase.

1. Consider a non-selected object j and calculate its contribution Cjih to the swap:

(a) If j is more distant from both i and h than from one of the other representative

objects, Cjih is zero

(b) If j is not further from i than from any other selected representative object

(d(j, i) = Dj), then two situations need to be considered:

i. j is closer to h than to the second closest representative object d(j, h) < Ej

where Ej is the dissimilarity between j and the second most similar repre-

sentative object. In this case the contribution of the object j is the swap

between objects i and h is Cjih = d(j, h)− d(j, i)

ii. j is at least as distance from h than from the second closest representative

object d(j, h) ≥ Ej. In this case the contribution of the object j to the swap

is Cjih = Ej −Dj

(c) j is more distant from object i than from at least one of the other representa-

tive objects but closer to h than to any representative object. In this case the

contribution of j to the swap is Cjih − d(j, h)−Dj
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2. Calculate the total result of a swap by adding the contributions Cjih : Tih =
∑

j Cjih

3. Select the pair (i, h) which minimizes mini,h Tih

4. If the minimum Tih is negative, the swap is carried out and the algorithm returns to

step 1. If the minimum is positive or 0, the value of the objective cannot be decreased

by carrying out a swap and the algorithm stops.

This function returns a representative for each cluster along with their principal compo-

nent values in addition to a cluster vector which gives the cluster assignment for each data

point. From this we can start to parse what behaviors these components represent and how

these cluster together to give us possible student behavioral profiles.

For both PAM and K-means clustering we need to tell the algorithm how many clusters

we want. This step is crucial, and I chose to solve this problem using hierarchical clustering.

Hierarchical clustering using the hclust function in R uses a bottom-up, agglomerative,

method of clustering. All objects start as their own cluster being distinct from every other

object. The program then joins these clusters by similarity, iteratively, until all objects

are assigned to one encompassing cluster. The complete-linkage method is used along with

Euclidean distance.

Complete-linkage method uses the farthest distance between members of a cluster to

calculate distance. That is, mathematically we have D(X, Y ) = maxx∈X,y∈Y d(x, y) where X

and Y are the two clusters, x and y are the members of each cluster and the distance d(x, y)

is the Euclidean distance. All distances between members are calculated and the maximum

distance is used.

The hclust algorithm is as follows: Starting with a distance matrix D that has distances

D(i, j).

1. The first cluster level is represented by L(0) = 0 and the sequence number is m = 0

2. Out of the current clusters, find a cluster pair X and Y according to d(X, Y ) =

minD(i, j)
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Figure 2.5: Hierarchical clustering process visualized as a Dendrogram

3. Move onto the next sequence number m=m+1 and merge clusters X and Y into a

single cluster to form the next set of clusters.

4. Update the distance matrix D with the distances between the new clusters. The

distance between the new cluster k and the old is d(X, Y ) = max d(k,X), d(k, Y )

5. If all objects are in one cluster, STOP. Else, repeat steps 2-5.

This method can be helpful for getting an initial idea on how many clusters are appro-

priate for the data. Graphing this data gives you a visual aid in seeing the cluster options

at different levels. The more isolate a cluster looks, the more likely it will be a good cluster

for further analysis. I use this as a basis for how many clusters I should use when moving

onto the next step in using PAM.

20



Chapter 3

Discussion and Further Research

3.1 Results: MATH 570

(a) MATH 570 PCA Explained Variance (b) MATH 570 dendrogram

Figure 3.1: MATH 570 Pre-processing

The PCA using the prcomp() function showed that the explained variance was largely

projected onto the first two principal components as seen in figure 3.1(a). Using hierarchical

clustering, the program chose 3 clusters as the optimal choice of k for PAM as seen in figure

3.1(b). In the figure, the grey segmented boxes map out the optimal clusters.

The principal components represent different features of student video usage. Principal

component 1 (PC1) represents how much students watched posted videos with a negative
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(a) before PAM (b) after PAM

Figure 3.2: MATH 570 Clustering Results

value indicating lots of video usage and a positive value indicating less video usage.

Principal component 2 (PC2) represents that type of video a student watched. This

comes down to video weights. Some videos are given negative weight, and students who

watched a lot of those videos will appear on the negative end of PC2. Other videos have

positive weights, and students who watched a lot of those videos will appear on the positive

end of PC2. We define videos with a positive weight as Type A videos and videos with

a negative weight as Type B videos. To better understand the differences in these videos,

we have the following table matching the titles of the 10 most extreme positive weight and

negative weight videos.

The visual distinction on PC2 is made even more clear if we re-run our PCA and PAM

on non-normalized data. This changes the distance measure between points. What we end

up with is a version that is scaled out. Note that PCA assigns sign arbitrarily, so in this

re-run of the data the videos weights switch sign.

With this new view we get three distinct groups. Cluster 1 is students who watched a

lot of videos. Cluster 2 Students who did not watch a lot but what they did watch was more

B type videos. Cluster 3 is Students who did not watch a lot but what they did watch was

more A type videos.

Breaking these into outcome categories, high performing students either watched a lot
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Figure 3.3: Top 10 Type A and Type B Videos

Figure 3.4: PAM on non-normalized data

of videos or did not watch many videos but focused on Type A videos. Lesser performing

students, in general, did not watch many videos, but the videos they did watch were either

Type A or Type B. Most of the students watching type A in this category were B students

while most of the students watching B videos were students more significantly struggling in

the course.
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(a) A students (b) Other Students (BCDF)

Figure 3.5: MATH 570 Results by Grade Outcome

3.2 Results: MATH 340

The PCA showed that the explained variance was overwhelmingly projected onto the first

component as seen in figure 3.6(a) with less than 10 percent being projected onto the second

component. Using hierarchical clustering, the program chose 4 clusters as the optimal choice

of k for PAM as seen in figure 3.6(b).

(a) MATH 340 PCA Explained Variance (b) MATH 340 Dendrogram

Figure 3.6: MATH 340 Pre-PAM

Plotting the data using the first two principal components, the data takes on a parabolic

shape as seen in figure 3.7(a) with a best fit line of a flat horizontal line. This indicates

components that are heavily dependent, which is likely because of the strong variance on
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(a) before PAM (b) after PAM

Figure 3.7: MATH 340 Clustering Results

PC1.

Based on analysis of the student watch data, PC1 measures the amount a student watched

over the semester. Students with a negative PC1 value watched more over the semester while

students with a positive value watched less. Clusters 2 and 3 both have students who watched

more over the semester whereas clusters 1 and 4 have more students who watched less over

the course of the semester.

PC2 measures when in the semester they watched the most videos. A negative value on

PC2 shows students who are watching a more consistent amount either consistently a lot or

consistently very little. A positive PC2 value shows students who were watching more in the

beginning of the semester and then drop off toward the end.

Plotting the views per video over the course of the semester gives us further insight into

these results. Consider Figure 3.7 above, the trend over the course of the semester is a steady

decline in views. This trend could be strong enough to shape the data like we saw in Figure

3.6.

Looking at video reviews rather than views we can re-sort our data for A students and

other boarder-line students. Consider the data shown in Figure 3.8. This shows the top 10

most reviewed videos for A students next to the to 10 most reviewed videos for B students.

These have a lot of overlap, so going further we look at if each of these videos were
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Figure 3.8: MATH 340 Total Views Per Video

Figure 3.9: General Top Reviews by Student Outcome Group

watched more by one group or the other. To do this we break down the class into two

groups: A students and BCDF students. With each of these, we take their review data

for each video and create a linear model predicting how much the students are expected to

review a particular video. This model comes out as seen in Figure 3.9 below.

Using these linear models we can find z scores for each of the videos for each student

group by finding z = x−e
s

where x is our actual data point for how much the video was

reviewed by students in the group, e is our expected number of reviews based off the linear

model and s is the standard deviation. To combine these z-scores together, we can then
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(a) A video reviews (b) BCDF video reviews

Figure 3.10: Expected Video Reviews

find the differential by finding the difference of the z-score for each video in the A student

group and subtracting the z-score for each video in the BCDF student group. This gives

us one weighted value for each video which describes whether A student or BCDF students

watched more with positive weight telling us A students watched more, negative weight

telling us BCDF watched more and values around zero telling us they watched about the

same amount.

Figure 3.11: Weighted Video Reviews

Plotting these we can see a conic shape. The videos are more polarized between the

student groups toward the beginning of the semester and start to even out toward a weight

of zero as the semester progresses. Results of this are shown in figure 3.11.
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Figure 3.12: Top 10 Most Reviewed by Student Outcome Group

3.3 Discussion

3.3.1 Question 1

Can we identify patterns in student behavior by their online utilization of lecture videos?

The online behavior for students in MATH 570 History of Math was their viewing habits

of posed recordings of synchronous lecture videos. These views were either reviews or initial

viewings for students who did not attend the synchronous lecture. The patterns found were:

How much students watched and what type of video, A Type or B Type students watched.

For MATH 340 Elementary Differential Equations the viewing habits of posted lecture

videos were: How much students watched and when they watched. It seems the strong linear

decline in video watching over the course of the semester was such a strong factor that it

overpowered all other features from the data. This could be accounted for by the overall

homogeneity of the class which is overwhelmingly engineering students. These students have

the same level of background and reasonably might have very similar behaviors in their math

classes.

3.3.2 Question 2

Are there specific behavioral patterns from students who succeed vs. do not succeed in the

course?
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Defining features for students in MATH 570 were how much they watched and what they

were watching. High achieving students were generally working really hard reviewing a lot

of the videos or reviewing less, but picking specific types of videos. We called this video type

A type videos, which were videos focused on explaining topics. Borderline and struggling

students tended not to review a lot of videos, and the videos they did review were B type

videos. These videos are ones explaining how to do particular problems. These patterns

suggest that students who are only reviewing videos to complete homework are less likely to

succeed than students who are reviewing videos to learn a concept.

There were no defining features for MATH 340 students beside some students working

really hard watching all the videos did well. However, there were also plenty of successful

students who never watched lecture videos. The lecture videos, in general, were not required

for the course. Two separate textbooks were also made available, so students who preferred

to work from a book could do so without needing the lectures. Students, of course, also had

access to the web in which topics in Elementary Differential Equations are easy to find.

This lead us toward a new question: viewing this through the same lens we looked at

MATH 570, how are MATH 340 students reviewing videos?

Like the general watching trend, we had students who reviewed a lot of videos and some

that reviewed very few. In addition, as we would expect, reviews also decreased over the

course of the semester. However, looking separately at reviews for A students versus Other

students we were able to find a linear model for predicting how much we would expect an

A student or Other students to review a particular video. We used this model to calculate

z-values for each video and then the differential between A students and Other students.

Comparing the videos most watched by A students versus Other students it became

apparent that struggling students are reviewing videos on the basics within the first few

weeks the most whereas students doing well are watching videos on more complex topics or

optional videos like extra credit.
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3.3.3 Future Research

The data for this thesis is limited to students at Kansas State University in two specific

mathematics courses. Building on these findings, mining data from other student popula-

tions in mathematics courses could show other interesting results. Since online learning hit

universities around the world at about the same time, there is an abundance of potential

educational data.

Reproduction of this thesis will prove difficult as the conditions of this data are unique to

the COVID-19 situation. We have never, and might not ever again, see this many students

learning online. However, online learning will not be going anywhere. These flexible modali-

ties are still a popular option, and more can be learned even as the student population taking

them change. Using these data mining techniques along with student survey participation

could further insight into why students are making particular behavioral choices.

Another promising direction would be to focus on how we can use these data mining

techniques to detect students struggling in an online setting early in the semester. The

results from the Elementary Differential Equations class, in regard to video reviews, seem to

point in this direction. The student perspective could be examined with access to student

surveys and corrective student actions could be explored.
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