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Abstract 

 Westside High School (WHS) of Omaha, Nebraska utilizes a novel scheduling system 

called Modular scheduling.  This system offers numerous advantages over the standard school 

day in terms of student learning and faculty development.  Modular Scheduling allows teachers 

to design the structure of their own classes by adjusting the frequency, duration and location of 

each of their daily lessons.  Additionally, teachers are able combine their classes with those of 

other teachers and team-teach.  Modular scheduling also allows for open periods in both 

students‟ and teachers‟ schedules.  During this time, students are able to complete school work or 

seek supplemental instruction with a teacher who is also free.  Teachers are able to use their open 

mods to plan, meet in teams and help students who have fallen behind. 

 Currently, a semester‟s class schedules are constructed over the course of a seven week 

period by a full-time employee using a computer program developed in FORTRAN®.  The 

process is extremely tedious and labor intensive which has led to considerable wasted time, cost 

and frustration. 

 This thesis presents a novel scheduling program called the SMART Scheduler that is able 

to do in seconds what previously took weeks to accomplish.  Once parameters have been input, 

The SMART Scheduler is able to create cohesive class schedules within a modular environment 

in less than 6 seconds.  The research presented describes the steps that were taken in developing 

the SMART Scheduler as well as computational results of its implementation using actual data 

provided by WHS.  The goal of this research is to enable WHS and other schools to efficiently 

and effectively utilize modular scheduling to positively affect student learning.
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Chapter 1 

 

 Introduction 

 

 Scheduling theory broadly refers to the assignment of tasks to a set of resources within a 

range of time.  This concept has been explored throughout most of human existence through 

waging wars, constructing buildings and running businesses.  This thesis presents the Sequential 

Modular Algorithmic Routines for Timetabling, or the SMART Scheduler.  The SMART 

Scheduler is able to schedule classes of a large secondary school within a modular environment 

in less than 6 seconds. 

 A major contributor to initiating the mathematical study of scheduling theory was the 

development of plant shut-down schedules for DuPont in 1957 (Wong 1964).  In 1959, James 

Kelley Jr. and Morgan Walker published a paper on their critical path scheduling algorithm that 

saved the company a projected $1 million.  With the rise of computational power over the 

subsequent 50 years, the ability to solve large scheduling problems has become not only 

possible, but necessary for the success of many modern processes.  

 Current research has focused on developing techniques for solving large stochastic 

scheduling problems with original constraints (Bidot 2009).  For instance, the scheduling of 

nurses in a hospital has been found extremely difficult as the availability and need for nurses 

fluctuates erratically.   For this reason, scheduling procedures and software has been created to 

automate this task (Dowsland 2000).  Scheduling research is also being conducted in 
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manufacturing to save money and optimize operation.  Assembly-line scheduling enables the 

management of the unique abilities of each man or machine to be considered when forecasting 

maximal throughput of a product to satisfy its demand (Goncalves 2005).  For products with 

short life-spans, production and distribution schedules must be considered together to maximize 

efficiency (Geismar 2008).  Still further research within the scheduling theory field is being 

conducted in class and exam scheduling within a school setting (Beligiannis 2008, Lewis 2008, 

Al-Yakoob 2007, Datta 2007) .  These problems receive attention not only for their applicability, 

but also their difficulty to solve.  This thesis focuses on this particular scheduling problem. 

 Scheduling problems are frequently modeled using constraints and an objective function.  

Constraints can be thought of as limitations on the feasibility of solutions.  For instance, if a 

feasible shift schedule for a set of employees requires that every employee work at least 20 hours 

per week, a constraint could be constructed to guarantee all feasible solutions have this trait.  

Constraints are often labeled hard or soft depending on their importance.  A hard constraint is 

used to govern traits of a solution that must be satisfied in every solution, whereas soft 

constraints manage traits that are desirable but not required.  An example of this can be seen in 

the scheduling of flight crews aboard commercial airplanes.  It might be desirable to have two 

flight attendants on each flight where only one is absolutely necessary.  A hard constraint would 

be constructed to insure one flight attendant is scheduled for each flight and a soft constraint 

would be constructed to attempt to schedule two whenever possible.   

 Objective functions measure the quality of a solution.  They also outline the goal of the 

schedule.  Objective functions can be constructed to seek the maximum profit or customer 

satisfaction for an organization.  Other times, objective functions are built to minimize problem-
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specified “costs”.  Costs can be measured in terms of money, time, tardiness and a host of other 

units.   

 The majority of modern day secondary schools in the United States share the same 

general template for scheduling classes.  Each day is divided into distinct time-windows called 

periods.  Each period has the same length of time.   Students attend the same classroom, with the 

same teacher at the same time each day.  Unfortunately, this can lead to wasted class time.  If a 

lesson on a certain day is particularly short, students often sit idly at their desks waiting to move 

on to the next class.  A larger implication of fixed class lengths is that if a student requests two 

classes that are scheduled at the same time, the student is simply out of luck and is forced to drop 

one of their requests.  This is an unfortunate missed opportunity for the student to learn a new 

skill or explore a potential career.  Furthermore, the inability to take requested classes could 

force a student to graduate later than necessary. 

 In most current systems, students have no open, or free periods during the day.  From an 

educational psychology standpoint, this can be damaging as the student is given no time for 

information to soak in before a new topic is presented (Khazzaka 1997).  In addition, if a student 

would like to receive one-on-one attention from their instructor, they must wait until after school.  

The inevitability that some students will not understand a concept as quickly as others forces 

slower working students to be implicitly punished by having to stay at school longer than other 

students and may not be feasible.  From the perspective of a teacher, working with students after 

school is a great opportunity to provide individualized instruction.   However, it does force a 

teacher to give up time dedicated to planning future lessons or leaving school within contracted 

time. 
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 A recent trend in the educational community is to emphasize inter/intra-departmental 

collaboration among faculty (Gajda 2008).  The concepts of standardized curriculum and equal 

education for each student often suggest that every teacher of a class should give similar lessons.  

In increasing numbers, schools are scheduling mandatory times when teachers must create 

lessons together either during or after school hours.  The agreed upon lessons are then delivered 

separately with one teacher and a group of students.  Optimistic educational philosophy says that 

if a group of teachers construct lessons together, creative ideas will be implemented leading to 

increased student performance (Goddard 2007).  However, other research suggests that poorly 

managed collaboration often causes micro-politics and power struggles that result in wasted time 

and frustration (Kelchtermans 2006).  

 Because teaching-styles differ greatly between instructors, a collaboratively created 

lesson often results in a dull “average” of the contributing styles.    This can be attributed to the 

fact that while the lesson was created as a group, it is presented individually and teachers may 

alter or skip agreed-upon sections of the lesson.  Furthermore, some veteran teachers refuse to 

change the way they have delivered a lesson over the course of their career (DePaul 2000).  The 

end product of modern day collaboration is often the same lessons that would be given without 

working together and a waste of the time set aside by administrators (Kelchtermans 2006). 

1.1 Westside High School’s Unique Scheduling System 

 Westside High School of Omaha, Nebraska utilizes a unique system dubbed “Modular 

Scheduling” that resolves several of the difficulties of the standard class schedule.  First of all, 

periods do not have fixed length as some are 40 minutes long while others are 20 minutes long.  

This fluctuation allows lessons to have varying lengths that change each day.  Specifically, each 
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lesson may be 20, 40, 60 or 80 minutes in length.  The advantage of classes having differing 

lengths is that some lessons simply don‟t require as much time as others.  For instance, 

performing a laboratory experiment may require significantly more time than taking a quiz in a 

Spanish class. 

 Modular scheduling allows students to enjoy open periods throughout the day.  During 

open periods, which may be as small as 20 minutes , students are confined to the school building 

but may eat lunch, work on homework, or seek help from teachers who also have that period 

open.  Students may also dedicate time to extra-curricular activities during their open periods 

such as building scenery for a theater performance or decorating for an upcoming pep-rally.  The 

ability to get this work done during the school day frees time outside of school for part-time jobs, 

athletics, clubs and family time. 

 Modular scheduling not only allows classes to have varying lengths, but also to be 

offered at different times each day.  For instance, a student may have Photography class during 

period 2 on Monday, but periods 5 and 6 on Tuesday, and so on.  The reasoning behind this 

change in schedule is that lessons may be slotted for periods that maximize students being able to 

attend the class.  For instance, if several students who request U.S. History also request 

Chemistry and Geometry, it is important to schedule sections of these classes apart from each 

other so that as many students as possible can attend all of them.  Currently, Westside does such 

a good job of satisfying student class requests that their average graduate receives an entire 

semester‟s worth of education greater than that of a graduate from a surrounding high school.  

This is an incredible advantage for their students. 
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 Modular scheduling also allows teachers to fuse their lessons together so that more than 

one group of students (and teachers) can meet in the same room, at the same time and be 

presented the same lesson.  Individuals and groups of teachers often bring multiple classes 

together so that all of their students receive the same lesson at the same time.  Instructors then 

deliver lessons together or in a rotation. This type of grouping usually occurs in an auditorium or 

theater.  If a teacher has written a particularly creative or interactive lesson, other teachers may 

supervise students while the lesson is delivered by its creator.  By fusing classes together, 

students are able to experience multiple teaching styles.  Currently, Westside offers a novel 

classroom experience that is co-taught by the English and Social Science departments.  Students 

of both Literature and United States History are brought together throughout the week for lessons 

that overlap both subjects.   

 Each section of a class offered at Westside has a structure of meetings independent of 

other sections.  In other words, each teacher is given the freedom to design their own class with 

regards to several parameters to be outlined later in this thesis.  A few of the parameters deal 

with the frequency and duration of meetings, time constraints on when these meetings take place, 

and room constraints that govern where each lesson is delivered.  In this way, every educator can 

design the class in which they feel will aid in student learning.  This is a liberty that is unheard of 

in almost every other school system. 

1.2 Motivation 

 The challenge that Westside faces is a lack of technology capable of autonomously 

constructing a schedule of classes within the structure of each class.  Presently, a former math 

teacher requires 7 weeks of full time work to produce a semester‟s class and student schedules.  
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This employee uses a FORTRAN
®
 computer program developed in 1985 that presents class 

structures as giant conflict matrices to be inspected and interpreted.  The current system requires 

not only a waste of time and money, but also a waste of a good mathematics teacher, who would 

better serve students in the classroom. 

 As a former mathematics teacher at Westside High School, I have experienced the 

benefits of modular scheduling firsthand.  During my time at Westside, I enjoyed being able to 

meet with students outside of class and during school hours for homework help or to get them 

caught up on missing work.  I also found the extra one-on-one time rewarding as I was able to 

pursue positive mentoring relationships with students needing direction.  I have seen the rewards 

of modular scheduling in my students learning.  Additionally, as a new teacher, I was able to fuse 

my classes with veteran teachers‟ providing valuable opportunities to learn from them.  Modular 

scheduling permits one-of-a-kind collaboration among teachers leading to better instruction and 

more learning. 

 When I learned about the immense time and effort that is put toward a single schedule, I 

decided to lend my services in the form of research and this thesis.  The SMART Scheduler that 

has been created over the past 2 years through this research is able to do in seconds what 

normally takes Westside weeks to accomplish.  The motivation of this research is to ease the 

burden of modular scheduling at Westside and permit its growth to other schools. 

1.3 Contributions 

 In collaboration with Westside High School, this thesis presents several tools for 

implementing a progressive system for the modularized scheduling of classes and students in a 

high school environment. This system is utilizes a computer program called the Sequential 



8 

Modular Algorithmic Routines for Timetabling, or SMART Scheduler.   The SMART Scheduler 

contains algorithms that produce feasible modularized schedules in less than 6 seconds. In 

experimentation, the program was able to schedule 208 classes comprised of 3,036 individual 

meetings in 5.1 seconds.   

These algorithms involved have been written in the c language to be used by schools who 

desire to implement this modular scheduling system.  In addition, a website and database has 

been created to help students, faculty and parents access schedules from anywhere.  The website 

also permits administration to alter each class‟s structure, teacher/student information, and 

students‟ class requests.  To our knowledge, this is the first class scheduling computer system 

capable of scheduling modular classes in this modularized environment. 

1.4 Outline  

 Chapter 2 is a literature review of research involving scheduling theory.  In addition to 

the history of scheduling theory, several approaches and their corresponding techniques are 

described.  These techniques often involve variations of exact and heuristical methods.   

 Chapter 3 begins with an in-depth description of the modular scheduling system with 

emphasis on the parameters that may be changed in constructing a class.  Then, a procedure for 

scheduling classes with respect to their parameters and a body of students‟ requests is given.   

Finally, computational results of the system are presented using data provided by Westside High 

School. 

 Chapter 4 contains the tools of an interactive website that presents scheduling data to 

students, faculty and parents.  The website gives usability to the schedules produced by the 
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SMART Scheduler by allowing people to view and sometimes modify the schedules of others.  

Furthermore, the website contains new means of managing profile and class-structure data from 

semester to semester. 

 Chapter 5 is a summary of this thesis‟ contributions and a conclusion.  Potential research 

endeavors for the future is presented.  They will focus on ways to improve the SMART 

Scheduler and modular scheduling as a whole.  
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Chapter 2  

Background Information 

 This chapter provides a literature review of significant research in scheduling theory.  

The first section introduces scheduling theory history and briefly models two classic problems 

both qualitatively and mathematically.  The next section describes the Timetabling Problem in 

depth.  This section also explores popular solution techniques that have been applied specifically 

to class scheduling problems. The third section summarizes the chapter. 

2.1 Classic Scheduling Problems 

 Scheduling theory has been divided into several distinct, however related categories. 

Each category is often understood through the explanation of one of its most generalized 

problems.  The problems that most closely relate to the purpose of this thesis are The Job Shop 

Problem, The Vehicle Routing Problem and The Timetabling Problem.    Solutions to each of 

these classic optimization problems are efficient schedules that manage the utilization of 

resources performing specific tasks in a way that all tasks are completed while optimizing some 

objective function.   

 Supply Chain Management often use scheduling theory in the manufacturing of products. 

The value of efficient manufacturing has led to the creation and study of the Job Shop Problem 

(Garey 1976); a generalized problem that attempts to schedule resources, be it man or machine, 

in a way that minimizes the time required to complete all jobs.  
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 The inputs of the Job Shop Problem are a finite set of jobs                and a finite 

set of processes       
     

       
    to be completed for each     .  Since individual jobs 

require unique processes in varied orders, let        
     

       
     be the machines or 

stations where    is performed to complete   .  This is the order in which a product arrives at a 

station or machine.  Let    

   represent the time required to complete the q
th

 process of job ji.   

From the inputs described above, a model can be built by letting      
 be the starting time 

of the q
th

 process of job ji.  Additionally, let z be the total time required to complete all jobs.   A 

model is then: 

         

               
        

        
                  

                         
      

                      

                    
      

                              

                  
                                              

 

   The first set of constraints insures that each job cannot be started until the previous job 

has had time to complete.  The second constraint set makes sure that process    cannot contribute 

to another job before completing its current job.   The third constraint assures that the total time 

to finish each job is at least the cumulative time required for each process within the job.   The 

fourth and final constraint guarantees that each job has a non-negative starting time.  The 

objective function seeks to minimize the amount of time required to complete all jobs.   

 While this is a general formulation, several variations of the Job Shop Problem have been 

developed for differing types of manufacturing.  Some formulations seek to maximize 
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production throughput [Hanen 1994] while others seek to minimize the time required to 

complete all jobs [Della Croche 1995].  Solutions to each formulation have been found highly 

valuable in industry [Xia 2005,Colorni 1994, Fortemps 1997].  Because each manufacturing 

system presents unique challenges, algorithms have been developed for manufacturing chains 

with both single and parallel machines [Carlier 1989, Hurink 1993], fixed and flexible routes 

[Dai 2001, Chen 1999], and deterministic and stochastic flow times [Graham 1977, Lin 1997]. 

 The Vehicle Routing Problem (VRP) is a classic scheduling problem in which a finite 

fleet of                 vehicles must visit n customers before the day is over. Let   

                 be this set of stops with    representing the depot. Each vehicle vk has a 

capacity, denoted           and each stop si has a demand            An originating location (or 

depot) s0 is known at which all vehicles must start and finish routes.  It is also necessary to know 

the distance (or cost) between each of the stops and from each stop to the depot. This is notated 

by dist                 .  The goal of VRP is to identify the optimal routes for each vehicle to 

take so that each stop is visited at a minimal cumulative cost.   

Formally, the generalized vehicle routing problem can be modeled in the following 

manner.  Let     
  be a binary variable that equals 1 if vehicle    makes stop    directly after stop 

   and 0 if not. 
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 The first constraint insures each stop is made exactly once by only one vehicle.  The 

second constraint forces each vehicle to begin its route at the depot while the third constraint 

insures each vehicle ends its route there.  The fourth constraint guarantees that the vehicle 

delivering to stop sj has the capacity to meet that stop‟s demand.  The final constraint restricts     

to binary values. 

  The objective function seeks to minimize the overall distance that the fleet must travel.  

Variations of these problems utilize objective functions that minimize costs in terms of the 

financial implications, time expended, or customer dissatisfaction.  Each VRP model contains 

additional constraints regarding the unique demands and limitations of the fleet or cargo.  

Applications of vehicle routing problems can be found in identifying optimal locations of 

distribution centers [Cambell 1994], package delivery routes [Tan 1984], and international 

trading [Fagerholt 2004].     

 The VRP can also be modeled utilizing graph theory.  Let G=(S,E) be a graph composed 

of n+k  distinct vertices.  Let vertices  s1, s2 ,…, sn denote stops that must be visited and sn+1, 

sn+2, ,…, sn+k represent a single depot at which all vehicles originate.    The edge {i,j} represents 

that a vehicles travels from customer or depot i to j.  A successful solution x to the Traveling 

Salesman Problem [Clark 1991] on this graph provides an optimal solution to the VRP.  Let 

vehicle      be assigned the part of the tour between vertices sn+i and sn+i+1. In this way, all 

stops are made and all vehicles‟ routes begin and end at the depot. 
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2.2 The Timetabling Problem 

 The Timetabling Problem (TTP) is a combinatorial optimization problem consisting of 

scheduling a limited number of resources within pre-defined time windows.  A successful time 

table assigns blocks of time such that every resource can complete its assigned tasks without 

disrupting other resources.  The development of methodology to solve a unique variation of TTP 

is the concentration of this thesis. 

TTP‟s inputs begin with a set of activities to be completed within a specified window of 

time.  A set of resources is available to complete these activities but each resource is subject to 

availability constraints.  Sets of hard and soft dependency relationships are established between 

activities. In this way, some activities cannot occur at the same time and some must be 

completed before others can begin.  Each activity requires the same amount of time and is 

therefore scheduled within a set of fixed time windows.  

 Because of the broad nature of TTP, several variations have been constructed to fit 

unique situations.  The scheduling of personnel in a work-environment is one classic example.  

In this instance, employees are needed to complete work but cost the company money on an 

hourly basis.  One tries to find a schedule of employees that insures all necessary work is 

completed at minimal cost.  Because demand is unforeseen in some businesses such as 

restaurants, schedules are often created that knowingly place more employees than necessary on 

a shift.  It is then up to a manager to decide when employees are to be released. 

 A classical example of TTP can be found in the scheduling of school classes.  First 

presented at the IFIP Congress (Gotlieb 1962), the Class-Scheduling Problem outlines a model 

that seeks to find a schedule of classes, teachers, and students that minimizes conflicts.  Types of 
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conflicts come from teachers‟ availabilities, students‟ class requests, and the number of hours 

required per week for each class. Further restrictions can incorporate lesson-specific classrooms 

(i.e. Labs, Gymnasiums, etc.) in which certain meetings must be held.  

 Another example of Time Tabling can be found in the scheduling of tournaments 

(Easton, Nemhauser, Trick 2003).  Often times, round robin tournament schedules are created so 

that teams play a set of opponents with a balanced load of home and away games.  Constraints 

can be added to force teams to play a specified number of other teams from within or outside of 

their conference.  Further constraints can be added to ensure television time for certain games.  

 All of the preceding examples of TTPs follow the same structure. Let T= {t1, t2, …,tm}  be 

a finite set of tasks to be completed.  Tasks can further be broken down into individual processes.  

Let        
    

      
   be the set of processes required to complete task ti and  

H= {h1, h2, …,hp} be a finite set of available hours in which each task must be completed.  Let R 

= {r1, r2, …, rn} be a set of resources and Aj represent the hours in which rj is available.  

Formally, let ajk = 1       if resource j is available during hour k; and 0 if not.    

 Next, let   
  signify the set of hours in which process   

  is available to be performed.  

Thus, ciqk = 1 if process   
  is available during hour k and 0 if not.  This is particularly valuable 

when external forces affect the availability of materials, support, etc. Let S = {s1, s2,…,sz} be the 

set of locations or sites where processes are performed.  Let       
    

     
   be the set of 

availabilities of “participants” (i.e. students, passengers, audience members, etc.) who desire to 

take part in task   .   

Objective functions for TTPs often try to minimize the time necessary for all tasks to be 

completed.  Other objective functions seek to minimize scheduling conflicts so that a maximum 
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number of participants   
  are able to attend          . In this case, Let f(i,q,j,k,l) represent 

the cost of assigning the q
th

 process of task ti to resource rj  during hour hk at site sl. 

 To model this problem, let      
 

 be a binary variable with a value of 1 if the q
th

 process 

of ti is performed by rj  during hour hk at site sl and 0 if not. An integer program is then: 

                       
  

     
    

 

       

 

            
              

                                         

                 
                

      

                       

            
    

      

                
             

                                   

                    

      

             
       

                                         

      

      

            
                                                                   

 The first constraint forces each task to be performed at a time in which both the resource 

and the process of a task are available.  The second constraint insures that all dij hours required 

for rj to perform ti are allocated.  The third constraint insures that no more than one resource be 

assigned to a task at the same time. The fourth constraint requires that one resource be assigned 

to no more than one task at a given time. The final constraint restricts the values of       
 

 to 

binary values.  The objective function minimizes the overall cost of the schedule.  

2.3 Approaches to the Timetabling Problem 

 The TTP is NP-Complete (Even 1975). The majority of the literature approaches the TTP 

from two chief perspectives, utilizing either exact or heuristic methods.  Exact methods are 
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composed of algorithms often rooted in linear/integer programming that seek global optima.  

While finding and proving an absolute superior solution is desirable, the computation time can 

be so high that such algorithms become impractical for many real world scheduling problems.  

Heuristic approaches, on the other hand, search for good feasible solutions (Qu 2009, 

Rossi Doria 2003).  Because many problems have exponentially many feasible solutions, 

heuristic algorithms find solutions that are not proven to be optimal.  

2.3.1 Exact Methods 

 Algorithms utilizing exact methods are used to find provably optimal solutions.  The 

majority of these require exponential time to find a solution but some (i.e. Interior Point method) 

can find solutions in polynomial time given good circumstances.  Two exact methods used to 

solve TTP that are relevant to this thesis involve graph theory and integer programs.   

 Graph colorings (Clark 1991) are applied as a way of grouping non-adjacent vertices and 

edges in a graph.  Let G=(V,E) be a graph.  A vertex coloring of G assigns a color to each vertex 

of G so that no two adjacent vertices have the same color.  The chromatic number χ(G) is the 

minimum number of colors required to color G. It is important to note that determining χ(G) is 

NP-Complete (Sánchez-Arroyoa 1989).  

  It has been shown that a successful coloring of a special type of graph provides a 

necessary and sufficient condition for the existence of a feasible time table.  This was done for 

the class-scheduling TTP by denoting vertex      
 

 as the q
th

 meeting of class      taught by 

teacher      during hour      in room     .  Let rij be the number of meetings that tj must 

teach ci.  In essence, each vertex in G represents an assignment of a meeting, a class and a 
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teacher to a specific hour and location. The edge set of G represents conflicts between nodes.  In 

particular, edge e = {     
       

 }    if and only if the assignment of the q
th

 meeting of class ci 

with teacher tj in hour hk to room sl and the r
th

 meeting of class cm with tn to hour ho in room sp  

would cause one of the following conflicts: 

1.  A teacher is assigned to teach a class outside of either the class‟s or teacher‟s 

availabilities. 

2. Two meetings are assigned to the same room at the same time. 

3. Teacher meets more than one class at the same time. 

When coloring such a graph, each color represents an hour in which a meeting can take 

place without conflict.  Coloring the graph identifies χ(G), the minimum number of hours 

necessary to schedule all meetings successfully.  If a successful χ(G)-coloration of this  graph 

exists, a feasible schedule can be made to the corresponding TTP where each color represents a 

specific period in which the class‟ meeting takes place.  An interesting result is that χ(G) ≤ k for 

some     if and only if a feasible solution exists for a corresponding TTP using at most k 

time-windows.  In addition, there exists a one-to-one correspondence between the number of 

χ(G)-colorations and the number of feasible time tables that can be created (Neufeld, 1974).  

A χ(G)-coloration and various scheduling problems can be solved using integer programs 

(IPs).  IPs can be applied to identify the schedule that maximizes the number of participants that 

can be included.  Integer Programming is an extension of linear programming with the additional 

restriction that all variables must be confined to integer values.  For most practical applications, 
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these values are also required to be greater than or equal to zero.  Integer programs are modeled 

as an objective function and a set of constraints as illustrated below.   

        

s.t.   
       for j=1, 2,…,m 

       

Constructing an IP to solve a school‟s classes or exams can be done in the following 

manner.  Let C be a set of classes, T be a set of identical teachers with identical availabilities, H 

be a set of hours, and S be a set of identical rooms.   Let       be a binary variable that equals one 

if class      is taught by      during hour      in room      and 0 if not.  Additionally, 

let      
    

 be a binary variable with a value of one if               and 0 if not. Let 

    signify the number of times that teacher      must teach class       during the week.   

Lastly, let      
    

 be the “price” or cost of              .   These costs can be adjusted so 

that some assignments are more/less favorable than others.  Specifically,      
    

   for a 

suitably large M if the assignment forces infeasibility.  An IP is then: 
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 The first constraints insure all classes meet the correct number of times throughout the 

week.  The second constraints make sure that no more than one resource be assigned to a certain 

task in the same hour.  The third constraint restricts teachers to perform no more than one task in 

a given hour.  The fourth and fifth constraints ensure that      
    

 equals one if and only if both 

      and       are equal to one.  The final two constraints restrict the values of      
    

 and       

to binary values.  The objective function then seeks to minimize the cumulative cost of 

assignments.  This model could be solved using branch and bound but it is unlikely to terminate 

in a reasonable amount of time. 

 Akkoyunlu (1999) produced an alternate method which models a simpler TTP as an 

integer program.  Let C be a set of classes and P be a set of periods in a school day.  The model 

denotes      as a binary variable that takes the value 1 when class a is scheduled to be completed 

during period i and 0 otherwise. Let        be a binary variable signifying lesson a being taught 

in period i and lesson b being taught in period j.   Let                    be the set of binary 

variables where           if and only if lesson a being assigned to period i is compatible 

with lesson b being assigned to period j and 0 otherwise.  That is, each class is assigned no more 

than one period and every class is scheduled.   Now,       
 represents the cost of assigning lesson 

a to period i and lesson b to period j.   Costs of infeasible assignments, such as       
 which 

would schedule class a during both periods i and j, are set to infinity.  Costs are then divided into 
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two distinct categories:           
       

    and           
       

   .   Finally, let W be a 

suitably large constant.  Akkoyunlu „s model utilizes constraints similar to the model above but 

the objective function is slightly different: 

                  

       

                                  

    

 

 The first term adds together large negative costs that occur when class a is scheduled 

during period i.  The second term adds a negative cost for every period class b is assigned to 

other than j.  The third term adds all positive costs of assigning classes a and b to periods i and j 

respectively. 

2.3.2 Non-exact Methods 

 While exact methods are ideal for identifying global optima, they typically require 

exponential computational effort.  For large problems, vast amounts of memory are required and 

sometimes can take too long to solve.  Because of these problems‟ computational intractability, 

non-exact methods have been created that search for good, but not provably optimal solutions.  

These methods often require less computational power and are called metaheuristics, most of 

which utilize some sort of a solution‟s neighborhood. 

2.3.2-1 Neighborhoods. 

 Given a solution x to some problem Π, the neighborhood of x, N(x) is the set of solutions 

sufficiently close to x.  Most heuristics start with a feasible solution to a problem and 

systematically search its neighborhood for another solution that improves an objective function.  
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The details of a neighborhood are user-specified but the following example illustrates the 

concept by encoding bit-strings similar to those stored in computers.   

 Suppose an employer needs to schedule a set E of three employees during an 8-hour work 

day. Let H = {h1, h2,…, h8}. It is required that at least one person is working in the shop at any 

given time and the objective is to minimize cost.  The schedule                 can be 

expressed as a set of three binary 8-tuples where a 1 signifies that the employee is working 

during a particular hour and a 0 otherwise.  Also, let ci be the hourly wage of employee i.  An IP 

model is 

          

      

 

                  

       

 

                      

 

 Consider the problem assuming c1=4, c2=3, and c3 =3 and let a starting solution allocate 

employee 1 during the first 4 hours, employee 2 during hours 4, 5 and 6, and employee 3 during 

hours 6, 7 and 8.  This is encoded as x = [x1,x2,x3]=[(1,1,1,1,0,0,0,0), (0,0,0,1,1,1,0,0), 

(0,0,0,0,0,1,1,1)].  The Total Cost (TC) =34.  This is a feasible solution because it satisfies the 

sole constraint which requires someone to be in the shop at all times. 

 Define the neighborhood of a solution, N(x), to be the set of solutions that differ from x 

by exactly one bit.  It is important to note that not all members of      are feasible.  For 

example, y = [(0,1,1,1,0,0,0,0),  (0,0,0,1,1,1,0,0), (0,0,0,0,0,1,1,1)] leaves the store empty in hour 

1.   Clearly y’ =[(1,1,1,0,0,0,0,0), (0,0,0,1,1,1,0,0), (0,0,0,0,0,1,1,1)]  is an element of     .  

Furthermore, |N(x)|≤ 24 because some are of its potential neighbors are infeasible.   
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 A natural step in many heuristics is to find the best neighbor.  Clearly y‟ is a best 

neighbor with cost 30.  A neighbor of y‟ is z’ = [(1,1,1,0,0,0,0,0), (0,0,0,1,1,1,0,0), 

(0,0,0,0,0,0,1,1)] which eliminates the overlap during hour 6.  The total cost of z’ is 27.  The 

solution z‟ represents a local optimal solution because every candidate neighboring solution is 

either infeasible or has a total cost higher than z‟.   

 Observe that the solution z‟‟ = [(1,1,0,0,0,0,0,0), (0,0,1,1,1,1,0,0), (0,0,0,0,0,0,1,1)]  is 

feasible and has a total cost of 26.  This solution has a better value than z‟ hence z‟ is not a 

global optimal solution.  A global optimal solution in this case is solution z* = [(0,0,0,0,0,0,0,0), 

(1,1,1,1,0,0,0,0), (0,0,0,0,1,1,1,1)]  with a cost of 24. 

2.3.2-2   Metaheuristics 

 A meta-heuristic is an algorithm that searches for a “best” solution to a problem by 

identifying a candidate solution and trying to improve upon it with regard to the optimization of 

an objective function.  This improvement can be done in a number of ways from searching 

neighborhoods of candidate solutions to modifying the candidate itself.    

 A popular metaheuristic is the Hill-Climbing Algorithm in which neighbors of a feasible 

solution are selected as candidate solutions only if they improve the objective function.  Once, no 

such solution exists, the algorithm terminates.  The limitation of such an algorithm is that it often 

gets stuck at local optima.  Three common metaheuristics discussed in this section are Tabu 

Search, Genetic and Simulated Annealing algorithms. 
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2.3.2-2A Tabu Search  

 Tabu Search (TS) algorithms have been used in numerous types of optimization problems 

across several branches of research. Its applications have been found in the job-shop problem 

(Nowicki 1996, Dell‟Amico 1993), vehicle routing (Gendreau 1994, Taillard 1997), and athletic 

team season and tournament schedules (Burke 2003, Hamiez 2001, Gaspero 2007).  

 Briefly, the TS algorithm begins with an initial feasible solution x є X, a well-defined 

neighborhood of x and a tabu list T=Φ.  Typically, a random neighbor, x’єN(x), is chosen. If the 

operation to move from x to x’ is not in T, then x’ becomes the new solution and the inverse of 

this operation is added to T.  If T becomes large, its oldest entry is removed.  Similar to most 

metaheuristics, TS records and maintains the best current solution.  The goal of the tabu list is to 

avoid becoming trapped at local minima by frequently selecting neighbors that worsen the 

objective function.  The tabu list is useful as it prevents TS from cycling between fewer than |T| 

solutions. Thus, a tabu search algorithm avoids trapping itself and should eventually find a near 

optimal solution. 

Disadvantages of TS involve storing the tabu list as it can require a large amount of a 

computer‟s memory.  Additionally, TS makes the move irrelevant of the objective function.  

Thus, the best reported solution may not be of utmost quality if the algorithm is given too few 

iterations to complete a thorough search.       

 A variety of researchers have used TS in timetabling problems.  Gaspero (2001) utilized 

the TS algorithm to schedule university exams. His objective function introduces costs assigned 

to each variable depending on whether all constraints pertaining to that variable are at a 

particular iteration.  High costs are assigned randomly within a specified range to variables 
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whose constraints are not being satisfied, where low costs are assigned to those whose 

constraints are met.  In this way, a solution is a feasible schedule that minimizes the cumulative 

cost. 

 Gaspero‟s neighborhood is then created for each course.  Two solutions are neighbors if 

they differ for the period assigned to a single course.  From here, “moves” can be denoted by 

(course number, old period, new period).  Gaspero defines the inverse operation of the move 

(x,h1,h2) to be anything of the form (x,_,_).  In that way, once an exam has been moved, it cannot 

be moved again while it is in the tabu list.   

 His search technique begins with an initial feasible solution created from a greedy 

algorithm.  Then, lists are created that contain exams whose current times violate either hard or 

soft constraints.  After each move, the lists are updated.  Any exam not on one of these lists is 

never analyzed.  His algorithm was able to schedule exams under various conditions, the most 

difficult of which being 138 exams in only 13 time slots across a large number of rooms.  In 

most cases, the solutions were found within 20,000 iterations and 5 minutes CPU time. 

 Costa (1994) utilized TS search routines in the scheduling of high school courses. His 

approach differs from Gaspero‟s in several places.  First, the creation of an initial solution is 

much more systematic.  Courses scheduled first are the ones having the smallest number of 

available periods. In other words, Costa began by scheduling the classes that are hardest to 

schedule. A hierarchical set of “overlap degree values was created so that classes that carry 

higher overlap restrictions are scheduled first.   

 Costa defined the neighborhood N(T) of a feasible time table T as another feasible time 

table T’ where T and T’ differ from each other by one meeting of one class being assigned to a 
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different period.  Two tabu lists, T1 and T2 are generated every time a lecture is moved.  If lecture 

x is moved from period p1 to p2, x is added to T1, and the ordered pair (x,p1) is added to T2.  Then, 

for | T1| iterations of the TS, x is not allowed to be moved into p1 again.  The result of his research 

is the successful schedule of 375 courses in a Swiss high school.  The time table produced was 

“as good, if not better” than a time table that was produced by hand.  His algorithm required 41 

minutes of CPU time and 20521 iterations.  Equally impressive is that one experiment yielded an 

overlap-free time table produced in only 969 iterations. 

2.3.2-2B   Genetic Algorithms 

Genetic Algorithms(GAs)  have been found very useful in the construction of time tables.  

At its essence, a genetic algorithm simulates the evolution of a population. However, instead of 

requiring thousands of years, these algorithms require thousands of iterations on a computer. 

Mirroring the theory of natural selection, solutions generated at later stages of the algorithm are 

evolved and generally better than their predecessors.  Genetic algorithms are interesting in that 

they permit the manipulation of feasible solutions with less emphasis placed on the search of an 

entire neighborhood.  Applications of GAs can be found in almost all fields that focus on 

optimization [Busacca 2001, Mares 1996, Linkens 1995, Haidar 1998, Jagielskaa 1999] . Several 

researchers have been able to implement similar methodology to machine learning (Goldberg 

1988), and the Job Shop Problem (Davis 1985).  GAs have also been applied to electromagnetic 

optimization (Rahmat-Samii 1999) and surface wave inversion [Yamanaka 1996].  In the 

financial sector, GAs have been applied to bankruptcy prediction modeling (Shin 2002).   

GAs use special genetic operators such as cross over and mutation that create the next 

generation of candidate solutions from a parent set where each solution usually consists of a 

sequence of 1‟s and 0‟s.    These operators mimic patterns seen in nature where the breeding of a 
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population produces children who carry similar traits to their parents. Furthermore, children 

inherit both beneficial and harmful combinations of their parents‟ traits. GAs utilize an operator 

dubbed cross over to carry out this phenomena on a set of solutions.  In nature, some children 

develop traits distinct from any of their parents.  This phenomenon is called “mutation” and 

occurs at a seemingly random frequency. 

Cross over selects two parent solutions from a pool and creates two children, each having 

characteristics from both parents.  Determining which characteristics are shared is algorithm-

specific, but in general a “cross-over point” is selected and divisions of parent solutions are made 

based upon it.  The following diagram serves as a good illustration: 

 

Figure 2.1 Cross Over (source: Wikipedia, accessed: 6-24-2011) 

As seen above, the parents‟ code was divided into two parts: A and B.  Child 1 receives 

part A from parent 1 and part B from parent 2.  Child 2 receives part A from parent 2 and Part B 

from parent 1.  In this way, both children share traits of their parents but are still independent 

from one another. 

Using encoded bit-strings, an example of cross over can be given.  Let parent 

p1=(1,0,1,1,0,0)  and parent p2=(0,0,1,1,1,1).  Let the cross over point be the fourth bit in each 

string.  In other words, each parent is divided into two groups: bits 1-4, and bits 5-6.  The 

children of these two parents are c1=(1,0,1,1,1,1)  and c2=(0,0,1,1,0,0) . 

Mutation operators are employed to create diversity in solutions from one generation to 

another.  Single-point mutation assigns a random variable to each bit of a parent solution.  Then, 

http://en.wikipedia.org/wiki/File:SinglePointCrossover.png
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based upon pre-defined probabilities, a bit is changed if a randomly-generated value of its 

corresponding variable meets certain criteria.  Often times, the criteria are changed iteratively.  

Both cross over and mutation can create solutions worse than their parents.  It is for this reason, 

that an objective function is necessary. 

GAs use objective functions that measure the “fitness” (i.e. quality) of solutions.  Again, 

the term “fitness” comes from “survival of the fittest” and describes the adaptability of a 

solution.  These fitness functions are always problem-specific, but when applied to scheduling 

usually revolve around the number of conflicts generated by a certain schedule. Many children 

are created at each iteration and only the fittest survive to breed in the next generation. 

Colorni applied a GA to the Timetabling Problem in 1990.  The goal of his research was 

to schedule a section of classes in a high school environment.  Given 10 classes, 20 teachers and 

a set of weekly teaching hours, solutions were constructed as 5-tuples appearing as (H,T,A,R,f) 

where: 

1.                 is a finite set of hours in a school-day. 

2.                is a finite set of teachers. 

3. A is a set of lessons to be taught. 

4. R is an m x n matrix where       signifies teacher i teaching lesson j. 

5. f is the value of the tuple‟s fitness which is to be maximized.   

In this case, f depends upon four variables:        and  .  The variable   refers to the 

number of times a particular solution involves more than one teacher in the same class.  This is 

minimized through the implementation of a separate parameter.  The variable   represents a set 

of didactic goals and preferences.  For instance, should Algebra meet once per day for 5 days, or 

5 times in one day?  Then variable   is a set of organizational goals.  An example of this would 
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be always keeping a pool of teachers available in case substitutions need to be made.  Lastly,   is 

a set of personal goals.  These are generally not as important as the other goals but should be 

satisfied if at all possible.  An example of this might be giving certain teachers a “light load” on 

particular days. 

Colorni‟s algorithm only considers feasible solutions.  That is, every class is matched 

with exactly one teacher in one room at one time.  Interestingly, the teachers; movements are 

largely controlled by a variation of the Traveling Salesman Problem.  Each       represents a 

gene or trait that can be altered. These genes undergo cross over, mutation, and filtering 

operators throughout several iterations.  Each iteration creates child solutions that are feasible 

and distinct from one another.  At the conclusion of each iteration, the best group of solutions is 

chosen to be bred during the next iteration.  The algorithm is terminated after a user-specified 

number of iterations has been completed.  It was found that the algorithm always converges to a 

positive cost because of the way in which teachers‟ needs conflict with one another. 

2.3.2-2C Simulated Annealing 

 Simulated Annealing is another popular metaheuristic.  The term “annealing” refers to 

the effect of cooling atoms.  When atoms are at high temperatures, their movements are erratic 

and seemingly random.  While they cool, they begin slowing down and moving more 

purposefully until they “stop”.  Annealing has been used since the middle ages when blacksmiths 

cooled newly-molded swords by setting them in burning embers.  As the embers died out, the 

sword cools in a way that makes it much stronger than if it had been cooled rapidly.  This idea 

has been applied to optimization problems through the creation of simulated annealing 

algorithms. 
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One of the most exciting things about simulated annealing is its versatility across 

multiple fields of study and sectors of industry in the form of a general optimization technique.  

The methodology of annealing has also been applied to the Traveling Salesman Problem 

(Allwright 1989).  Computer chip designers have utilized annealing in the development of the 

Versatile Placement and Routing algorithms (Betz 1997) which find near-optimal placement of 

components to save cost.  Further application can be found in manufacturing through the 

scheduling of assembly machines to maximize throughput of product (Ben-Arieh 1992) and 

factory layout design (Souilah 1995).  

 Simulated annealing algorithms are based upon a neighborhood search similar to that of a 

tabu search.  Initially, a solution x is randomly generated.  Then the neighborhood N(x) is 

searched and a neighbor x’ is selected.  The quality of x’ is measured by an objective function.  

The solution x‟ can be kept as the current candidate solution or thrown out.  This decision is 

based upon the quality of x’ and the present value of a probability p, which represents cooling of 

atoms. 

 The probability p is initially assigned a high value; usually between .95 and .99.  It  

represents the likelihood that a move in a problem is accepted if it worsens the value of the 

objective function.  After each iteration of the algorithm,  p is lessened by a factor or “cooling 

rate” r so that the probability of accepting a bad move becomes less and less likely as the 

algorithm progresses.  This cooling rate insures that the probability of making several bad moves 

in a row during the later stages of the algorithm is extremely rare but still occurs.    Thus, 

simulated annealing algorithms avoid becoming stuck at local optima. 
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 In regards to the Timetabling Problem, simulated annealing has been utilized in the 

production of sequential and parallel algorithms to manipulate time tables into feasible schedules 

(Abramson, 1991).  Initially, tasks and resources are assigned randomly and in an impractical 

manner.  The time slots in which resources are assigned to tasks are then moved and the change 

in a cost function is recorded.  Abramson applied Simulated Annealing to TTP by first 

establishing a feasible solution in which tuples called elements consisting of a body of students, a 

room, a teacher and a particular lecture are randomly assigned throughout a time table.  A cost 

function is established based upon the number of “class clashes” that are found.  A class clash is 

defined as the scheduling of one of the elements in a way that forces teachers or students to be in 

2 different places at once.  Another type of clash would be not scheduling an element that needs 

scheduled in order to meet the requirements of that class.  Note here that students do not play a 

role in the cost function. 

 Once the initial solution is constructed, a sequential simulated annealing algorithm 

randomly chooses a time-window or period Pi.  An element Ek is then randomly chosen that is 

currently scheduled within that period and moved to another period Pj, also chosen at random.  

This move has a corresponding impact upon the cost function so the change in cost must be 

calculated using two components: the from cost and the to cost.  The from cost refers to the 

bettering or worsening of the time table through the removal of Ek from Pi.  The to cost then, 

refers to the change in cost through the insertion of Et into Pj.  This move is then accepted or 

rejected based upon the change in the cost function and the value of a random unif(0,1) number.   

 Costs are further broken down into class costs, teacher costs, and room costs.  Each refers 

to the over / under assignment of each within a period.  For instance, if the removal of an 

element Ek from Pi results in the number of occurrences its teacher Tk in Pi decreases however 
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remains greater than 0, the cost function is lessened by 1.  Similarly, room costs and class costs 

are calculated based on the number of their occurrences within a period.  This algorithm differs 

from classical simulated annealing in that elements are shifting positions and not being swapped 

with other elements.  Because of this, each period can have a different number of elements 

assigned. 

 Abramson tested this method with varying numbers of rooms, teachers, and classes.  

when only 11 elements require scheduling, his algorithm finds a 0 cost solution in only 11 

seconds.  Furthermore, scheduling 600 elements with ample teacher and room options required 

only about 5 minutes.  The most difficult schedule attempted contained 37 teachers, 24 rooms, 

101 classes all totaling 757 elements.  A 0 cost solution was found after 14 hours.  From his 

results, it seems the greatest indicator of ease-to-solve is the number of teachers available for 

teaching as one experiment lessened the number of teachers from 30 to 20 and saw a change in 

the time to solve jump from 296 seconds to 5548 seconds.  A parallel algorithm was also created 

in which multiple elements can be moved at the same time.  This speeds up completion of the 

algorithm immensely as more processors are added. 

 The weaknesses of Abramson‟s technique can be found in the rigidness of its inputs.  The 

user must input a room for a particular element which cannot be changed, even if an identical 

room is free nearby.  Also, this technique requires a static, uniform time-constraint be placed on 

each element.  In other words, every lecture of every class must take exactly 1 period to 

complete. Thirdly, this technique does not permit multiple classes to be scheduled in the same 

room in the case that teachers would like to combine classes.  Lastly, this technique does not 

view one type of clash as more important than another type of clash.  Basically, a teacher being 

over extended is equally important as a class being scheduled too few lectures.  The lack of a 
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hierarchy of class clashes is important because most scheduling heuristics separate constraints 

into hard (vital) or soft(desirable) categories. 

2.4 Summary 

 This section has discussed several popular and current approaches to scheduling theory 

and the TTP specifically.  Each approach seeks to assign tasks to a set of resources in a way that 

minimizes cost while insuring all tasks are completed.  Exact methods such as linear/integer 

programming have been effective in scheduling small sets of tasks but require impractical 

computation time for real world problems.  For large instances, metaheuristics such as tabu 

search, genetic algorithms and simulated annealing have had greater success in constructing 

quality time tables in less time.   

The next section presents a uniquely flexible system for scheduling classes in a large high 

school setting.  This system permits teachers to design the structures of their own classes with 

regards to frequency, duration and location of their lessons.  The freedom to design each class 

individually is highly valuable as it gives educators another tool in their effort to maximize 

student learning.  Of course, such a progressive system produces unique challenges.  It is for this 

reason that the next section describes a set of algorithms to schedule classes in an effective 

manner. 
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Chapter 3 

 

The SMART Scheduler 

 

 This chapter presents this thesis‟ primary advancement, the SMART Scheduler.  The 

SMART Scheduler is a computer program capable of scheduling large numbers of classes within 

the modular environment currently being used at Westside High School.  This chapter describes 

modular scheduling both qualitatively and mathematically.   This is followed by an explanation 

of the routines developed for the SMART Scheduler.   

 The chapter is broken into three sections.  The first section gives a qualitative description 

of a modular class scheduling system.  The second section contains a mathematical model of the 

system.  The third section describes the steps taken to construct a computer program to schedule 

classes within this system for Westside High School.  The final section gives some 

computational results.   

 As previously mentioned, Westside High School of Omaha, Nebraska utilizes a unique 

system for scheduling their classes.  This system permits each teacher to construct the weekly 

structure of their classes.  Each teacher controls the frequency and duration of each lesson within 

an allocated number of minutes per week.  The freedom to design the structure of a class is 

almost unheard of in the education community. WHS‟s system allows their average graduate to 

attain a full semester‟s education greater than graduates of surrounding high schools (Hutchins 
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2009).  The advantages of the system can also be seen in the amount of one-on-one time students 

experience with their teachers outside of the classroom during mutually open periods.   

 Currently, WHS employs one of their former mathematics teachers to schedule their 

classes.  A semester‟s schedule requires more than 7 weeks of full-time work to construct using a 

program developed in FORTRAN
®
.  Clearly, this is a heavy burden to the scheduler but also a 

huge cost to the school.  As technology progresses, it has become less and less practical to 

schedule classes in this way.   

 This thesis develops a mathematical model of WHS‟s unique modular scheduling system 

and constructs a heuristic that schedules their classes in significantly less time and cost.  A 

scheduling program written in c and an interactive website utilizing HTML and PHP languages 

as well as SQL-queries to a database are contributions of this research.  First, a detailed 

explanation of modular scheduling is necessary. 

3.1  Qualitative Description of Modular Scheduling 

Each day of the week is broken into 14 time windows called mods. These are similar to 

the fixed “periods” of other high schools.  A unique feature of this scheduling system, however, 

is that mods do not all have the same length.  Mods 1, 2, 3, 12, 13 and 14 are each 40 minutes 

while mods 4, 5, 6, 7, 8, 9, 10, 11 are 20 minutes.  This is a necessity when considering that 

lessons at Westside do not all have the same duration.  Furthermore, some students use 20, 40 or 

60 minutes each day for lunch because their schedules are able to reflect this individual need. 

 Initially, every class offered is allocated a certain number of minutes that teachers can 

spend in shaping their class.  This number usually corresponds to the number of credit hours that 
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the class is worth.  Then, decisions regarding several aspects of the weekly structure are made.  

Each teacher‟s section is independent of other sections. A section of a class first breaks the week 

into phases.  Each phase contains a set of activities in which all students must participate before 

they have completed that phase.  The teacher is allowed up to seven phases.  The structure of 

each phase is independent of other phases with a unique set of control parameters.  The control 

parameters are as follows: 

 Number of groups – The pool of students belonging to a teacher are divided into 

a number of groups.  For instance, suppose an Algebra teacher has 120 students.  

A phase containing 4 groups would ideally split the students into 4 groups with 30 

students in each group. 

 Number of meetings – Each phase contains a specified number of lessons that 

each student must attend before the phase is complete. 

 Duration – The duration of each meeting is assigned a length of time.  This can 

be 20, 40, 60 or 80 minutes. 

 Class Type – The class type of each phase is a large group, a small group or a 

lab.   

 Large groups are instances where all of a teacher‟s (or group of teachers‟) 

students meet at the same time.  These meetings require special rooms (i.e. 

auditoriums) to handle the influx of students.   

 Small groups denote meetings where a teacher‟s students are broken into 

multiple groups.  Each meeting of a small group takes place in a non-specialized 

classroom where the student population does not exceed 30. 

 Labs are meetings that require a classroom with specialized equipment.  
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Instances of lab meetings are visits to computer labs, science labs, and industrial 

technology rooms. 

 Specified and Alternate Rooms – If multiple rooms of a certain type are 

available, a teacher might request a specific room for each of the meetings in a 

phase.  The structure also allows for alternate rooms to be assigned in case the 

specified room is not available. 

 Tie Type – Each phase is assigned a tie type which governs the rules of student 

grouping and re-grouping within and between phases.  There are three different 

tie types: Section-tied, Teacher-tied and Neither-tied.   

 Section-tied classes are the most restrictive in that they require the exact 

same group of students to meet together for each of a phase‟s meetings.  Most 

high schools use this type of scheduling approach in which students become 

familiar with the same 20-30 students every day. 

 Teacher-tied classes are less restrictive in that they permit students to 

attend any of their phase‟s groups for each meeting as long as it taught by the 

same teacher.  This is a unique feature of Westside‟s approach to scheduling.  

Classes using this type of tie assign students to a meeting of a particular meeting 

without regard to the group they were in for a different meeting.  In this way, a 

pool of students is divided differently for each meeting. 

 Neither-tied classes are less restrictive still.  A phase that is neither-tied 

permits students to see any group of any teacher of that class.  These types of 

meetings are usually reserved for regular assessments where the teacher 
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administering an assessment is not as important as the student being able to 

attend. 

 Day / Mod Constraints – A phase may be assigned day and mod constraints as a 

way of restricting when meetings of a phase may be scheduled during the week.  

For instance, if a phase contains 3 meetings, a teacher may restrict these meetings 

to be held no sooner than Wednesday Mod 6 and no later than Friday Mod 4.  

Furthermore, day constraints can be specified in a way that wraps the weekend.  

In other words, a teacher may request that five meetings of a phase meet between 

Thursday and the following Wednesday.  This is important in sequencing classes 

considering that students may attend a particular lesson in different groups on 

different days. 

 Teachers may also specify less important parameters such as whether they want a 

particular phase to take place on a single day with no meetings of others phases taking place on 

that day.  For instance, a teacher may request that a lab phase be the only thing scheduled on its 

day.   A teacher may also request that a particular phase be the sequencing point where all other 

phases are scheduled afterward allowing wrapping of the weekend.  Lastly, a teacher may allow 

each of their students to “miss a mod” from a week‟s lessons.  This is utilized when a class is 

especially hard to fit into all of its students‟ schedules such as band, orchestra and theater classes 

that take students from all grades and skill levels.  Students of these classes are allowed to miss 

one 40 minute meeting during the week without being counted absent. 

Another unique feature of modular scheduling permits multiple classes to meet in the same 

room at the same time.  This ability to fuse classes together allows the collaboration of multiple 

teachers to impact how lessons are delivered because they are often “team-taught”.  For example, 
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a set of Physics teachers may desire to set aside one meeting of each week in which all of their 

students meet in a large group at the same time.  This large group would most likely meet in a 

large auditorium where lessons are delivered by one teacher or a group.  An advantage of this 

type of meeting is that students experience an environment similar to that which they will see 

again in college. 

Fusing is also used as a way of collaborating across departments.  For example, two 

chemistry teachers may team-up and create a curriculum that intertwines both of their teaching 

styles.  They are also able to supervise several classes at one time during hands-on activites.  

3.2  A Mathematical Model for Modular Scheduling 

This section focuses on the development of a mathematical model to describe modular 

scheduling.  This model is developed using techniques that lend themselves to heuristics such as 

the ones described in chapter 2.  An original approach to finding a solution to this problem is 

presented later in this chapter. 

 Recall for input, let                be a set of classes,                 be a set of 

teachers and                be a set of rooms.    Let D be the set of days and N be the set of 

mods.  Let    and    be the teacher‟s first and last mods in school for each day for each     .  

Let   
      

     
       

   be a set of phases belonging to     ,     .  Each phase    
    

  

has several attributes to consider.  Let     
  denote the number of groups,     

  denote the number 

of meetings and    
  denote the duration of each meeting.  Let    

  denote the class type (Large 

Group, Small Group, Lab) and    
  denote the tie type (Section-tied, Teacher-Tied, and Neither-

Tied.  To govern when a meeting is scheduled, let    
  denote the first day and    

  denote the first 
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mod of day    
   on which the first lesson of phase k may be taught.  Also, let    

   denote the last 

day and    
   denote the last mod on day    

  in which a lesson may be taught. 

Furthermore, let    
       

      
    

     
 

   be the set of groups in the k
th

 phase of 

teacher      section of class     .  Let                        
       

   be the set of 

meetings belonging to the l
th

 group within the k
th

 phase of teacher      section of class     . Let  

   
     denote the desired room of the school in which the lesson is to be scheduled.  

To form an integer programming model, it is assumed that each class must be scheduled 

in the desired room.  Let       
   take on a value of 1 if meeting        is occurring during day d 

during mod e and a 0 otherwise. Let       
   take on a value of 1 if meeting        is begins on day 

d during mod e and a 0 otherwise.  

The problem can then be modeled as: 

            
  

                       

 

s.t.   

        
  

                       
    

      
     

                                             (1) 
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 The first set of constraints insures that every meeting has a beginning time and thus is 

scheduled.  The second set of constraints forces a meeting to be held for the entire duration once 

a beginning time has been established.  The third and fourth constraints insure that all meetings 

will be held within their corresponding phase‟s day and mod constraints.  The fifth and sixth 

constraints restrict meetings to be held during times within the teacher‟s daily availability.  The 

seventh constraint insures that a teacher cannot be involved in more than one meeting at a time.  

The eighth constraint permits rooms to host no more than one meeting at a time.  The ninth and 

tenth constraints restrict the variables that govern when a meeting is taking place to binary 

values.  Finally, the objective function seeks to maximize the total number of meetings 

scheduled. 
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 While the model presented above covers the majority of parameters that are considered in 

creating a modular schedule, there are several aspects that were not covered.  Things such as 

sequencing classes across weekends, fusing classes together and scheduling labs in adequately 

equipped rooms were not mentioned.  This is partially a result of the complexity of describing 

such parameters mathematically but also due to the fact that this model is not what was used to 

solve the problem.  Given that there are 70 mods per week and over 3,000 meetings to schedule, 

the IP described above would require over 420,000 variables making a solution computationally 

intractable.  The size of this problem is well beyond the technological limitations of the average 

secondary school.  Therefore, another system for scheduling classes within the modular 

environment is necessary. 

3.3  A Computer Program to Schedule Classes within a Modularized 

Environment 

  It is difficult to find a cohesive class schedule that satisfies all teachers‟ structure 

requests as they often conflict with each other.  For this reason, a candidate class schedule must 

be constructed and meet faculty approval before students can be scheduled.  This section outlines 

an approach to scheduling modularized classes with regards to teacher and room usage.  The 

general philosophy for the scheduler is to start with the most highly constrained (i.e. most 

difficult to schedule) classes or sets of classes and work toward the easiest.  Not all of the 8,000 

lines of code that lie within the SMART Scheduler are explained but all important routines will 

be covered in depth. 
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 When scheduling class meetings, the goal is to find a teacher, room and a time that is 

compatible with other meetings taking place.  That is, no un-fused classes will meet in the same 

room at the same time nor require a teacher to be in two distinct places at once.  Furthermore, the 

parameters of modular scheduling require unique inputs in order to prioritize classes to be 

scheduled.  Once inputs are described, the routines that the SMART Scheduler utilizes are 

discussed. 

3.3.1 Inputs 

The first set of routines reads-in all of the data necessary to schedule classes in the form of 

Excel files.  The first file to be addressed catalogs all of the school‟s teachers.  Each teacher‟s 

Identification number, name, and department is stored to the computer‟s temporary memory.  

Because some teachers are part-time and others work at multiple schools, it is important that 

each teacher‟s unique availability is stored as well.  This availability is stored as preferred 

starting and ending mods. 

The second data gathering routine stores information about the rooms in the school.  Each 

room has a capacity, a primary department, a secondary department, and a room “type”.  The 

room types can be one of: small group, large group, or lab. 

Data concerning the student population and their class requests is stored next.  This 

information consists of each student‟s identification number, name, projected year of graduation 

and class requests stored as class I.D. numbers. 

Lastly, data concerning classes is stored. General information such as a class‟s name, 

department and desired students-per-meeting is stored first.  Then, the SMART Scheduler begins 
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storing class structures on a phase by phase basis.  This data contains the important phase 

attributes described in section 3.1 as well as requested class fuses. 

3.3.2 Improved Prioritizing of Classes 

In order to make a balanced schedule, the number of students to expect per teacher and per 

group in a teacher‟s class is calculated.  Students cannot be randomly assigned a teacher as it 

would affect the balancing of classes.  In other words, it is unfair to assign 50 students to one 

teacher and 150 to another.  The SMART Scheduler is able to remedy this.  Each teacher is 

assigned a number of sections for each of their classes.  The number of sections is used to 

determine the correct proportion of students that should be assigned to that teacher.  

Mathematically this can be calculated by letting      represent the desired number of students 

assigned to teacher      in class     .  Also, let   
  be the number sections of class      

assigned to teacher     .  Lastly, remember that    represents the set of students requesting 

class i. 

     
  

     
       

   
 

       

            

For example, suppose teacher    has 3 sections,    has 2 sections and    has 1 section of 

Algebra.  Thus, 6 sections of Algebra are being offered total.  Also, suppose that 240 students 

have requested Algebra for the following semester.  The SMART Scheduler would assign 

     

 
      students to    , 

     

 
     to   , and  

     

 
     to   . 

Now, it is possible to calculate the desired number of students per group within a particular 

phase of a teacher‟s class.  Let        denote the desired number of students per group of the k
th
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phase of class i belonging to teacher j.  Also, remember that    
  is the number of groups teacher j 

has divided their students into for phase k of class i.  The number of groups is calculated by: 

       
    

   
 

                
    

  

An instance of this could be illustrated expanding the example given above.  Suppose 120 

students are assigned to    .  Also, suppose    has designed phase 1 to divide their students into 4 

groups.  Each meeting would then contain 
   

 
    students. 

Once the number of students per teacher and students per group are calculated, the SMART 

Scheduler determines the window size of each phase.  A phase‟s window size refers to the 

number of 20-minute intervals that have been allocated to complete all meetings.  Let    
  be the 

window size of the k
th

 phase of class i belonging to teacher j.   Also, let    be the number of 20 

minute intervals contained in mod m.  Note that there are 20 such intervals in a day.   Remember 

from the model that    
  is the first day and    

  is the first mod on    
   that a meeting from phase 

k may be scheduled.  Also,     
  denotes the last day and    

  is the last mod on    
  that a meeting 

from phase k may be scheduled.   Because the sequencing of classes can be done across the 

weekend, there are three cases to consider.    

The first case addresses instances when the first day of phase k is less than the last.  Here, the 

class is not wrapping a weekend.  An example would be if the first scheduable day of a phase is 

Monday (day 0) and the last is Friday (day 4).  If    
  <    

  a phase‟s window size is calculated 

by 

   
         

   
  

        
     

          
   

 

  . 
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  The calculation is made by first adding the number of 20 minute intervals that are 

schedulable on the first day.  The number of 20 minute intervals is then calculated for the 

number of days between    
  and    

 .  Lastly, the number of 20 minute intervals is added for the 

last day. 

The second case addresses instances when all meetings of a phase are held on the same day.  

If    
  =    

  a phase‟s window size is calculated by    
       

   
 

   
  

.  The number of 20 minute 

intervals is summed from the first schedulable mod to the last one on day    
 . 

The last possibility requires wrapping across a weekend.  An example of this would be a 

phase with a first schedulable day of Thursday and a last day being the following Tuesday.  

Here,    
    (Thursday) and    

    (Tuesday).  If    
  >    

 , a phase‟s window size is 

calculated by 

   
         

   
  

          
          

          
   

 

  . 

This calculation is made by first summing all schedulable mods on day    
  starting with mod 

   
 .  Next, the number of 20 minute intervals from day    

    until Friday (day 4) is added.  

Then, the number of 20 minute intervals from Monday until day    
  is added.  Finally, the 

number of schedulable mods on day    
  is added. 

Next, let    
  be the number of 20 minute intervals that is required to complete all meetings of 

the k
th

 phase of class i belonging to teacher j.  This can be calculated by: 
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Finally, the ratio 
   

 

   
  is calculated and stored as the phase‟s constrained time window.  This 

ratio serves as the standard measure of how constrained a phase is.  This provides guidelines so 

that the highest constrained classes are scheduled first. 

 

3.3.3 Main Routines 

Three routines are used widely throughout the scheduling of classes.  The first, denoted 

AvailableRoom( )  identifies the compatibility of assigning a class to a particular location at a 

specific time .  The second, AvailableTeacher( ) identifies the compatibility of assigning a 

teacher to a class at a specific time.  The third, BuildWindow( ), calculates the window of time in 

which a meeting must take place so that all meetings of the class are spaced in a reasonable way. 

When deciding where a class should meet, it is important to consider several attributes of 

both the class and the room.   AvailableRoom( ) initializes with an input class meeting and a 

potential day and starting mod for the meeting.  First, the routine identifies whether or not the 

class could feasibly be scheduled beginning with the starting mod provided.  If a meeting is 60 

minutes for instance, it may not begin during mod 1 because both mods 1 and 2 are 40 minutes in 

length.  Therefore, mod 1 would be rejected as a candidate starting mod.  However, mod 3 would 

be a compatible starting time for a 60 minute meeting as mod 3 is 40 minutes and mod 4 is 20 

minutes long.  

 Secondly, the capacity of the room and the projected students-per-meeting must be 

compared.  The starting mod is rejected if students are not able to fit into the room.  The status of 

the room during a particular time is investigated next.  If scheduling the given meeting at the 
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potential time would force two classes to meet in the same place at the same time, the starting 

mod is rejected. 

Once a room has been identified as a potential location for a class, the availability of the 

class‟s corresponding teacher is inspected.  AvailableTeacher( ) is initialized with a given 

teacher‟s I.D. number, a class meeting and a candidate starting mod.  If the teacher is not 

working at the school during one of the mods that would be affected by scheduling the class 

during the candidate starting mod, the starting mod is rejected.   

Next, AvailableTeacher( ) identifies whether a teacher is busy with another activity during 

the mods that are taken up by scheduling the meeting for the starting mod.  The starting mod is 

rejected if the teacher is busy.  It is important for every teacher to be given a 40 minutes window 

of time to serve as lunch time.  Since the cafeteria is only open during certain times, 

AvailableTeacher( ) ensures every teacher has a lunch break. 

Lastly, the routine BuildWindow() establishes a desirable time frame for every meeting by 

considering the day/mod constraints, number of groups and additional meetings of a phase.  The 

goal is to assign a “preferred” start day and mod as well as a preferred end day and mod in which 

the meeting must be scheduled to keep meetings balanced across the time-window of the phase.  

BuildWindow() initializes with a single meeting i of a class belonging to a certain teacher.  First, 

a search is made for the nearest meeting scheduled before i and the nearest meeting scheduled 

after i to act as the boundaries of the current meeting.  If no such meetings have been scheduled, 

The SMART Scheduler uses the phase‟s day/mod constraints as boundaries for that end of the 

time-window.  This is called the meetings gap and represents the number of days in which some 

meetings must be scheduled.  Once the meeting gap is found, there are three possible scenarios: 
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the number of days in the meeting gap is less than, equal to, or greater than the number of 

meetings needing to be scheduled within it.  

If the meeting gap is less than the number of meetings remaining to be scheduled, each 

meeting will occur on a different day and at least one day won‟t have a meeting. For example, if 

the meeting gap is 3 and only 2 meetings remain to be scheduled during that time, one day would 

not contain a meeting. 

If meeting gap is equal to the number of meetings that must take place, each meeting will 

take place on a different day and every day will have a meeting.  This is the standard case when a 

class is broken into 5 meetings, each taking place on a different day. 

Lastly, if the meeting gap is greater than the number of meetings, at least two meetings will 

have to be held on the same day.  The start mod of meeting i depends on when previous meetings 

have been scheduled.  If a meeting was scheduled in the morning, meeting i’s time window will 

begin in the afternoon of the same day.  However, if the closest previous meeting was scheduled 

in the afternoon, meeting i‟s time window will begin mod 1 of the next day and be limited to the 

first 7 mods. 

 

3.3.4 A Sequential Approach to Scheduling Classes 

 

Once relevant data has been saved and preliminary calculations have been made, The 

SMART Scheduler is ready to begin scheduling classes.  Since teachers are permitted to request 

specific windows of time for each of the phases of their class, these windows can be as small as a 

single 20 minute mod.  Such a restricted window can present difficulties if scheduling has 

commenced and another class has been scheduled in that spot.  For that reason, the SMART 
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Scheduler begins by scheduling the most constrained meetings first.  The level of restriction is 

measured by the phase‟s constrained time window, which was calculated in the program‟s 

initialization phase.   

The SMART Scheduler begins by scheduling phases with a constrained time window equal 

to 1.  This is equivalent to starting with phases that have been allocated exactly the number of 

mods required to fit all meetings of the phase.  The program applies the SchedulePhase( ) 

function in a way that the first slot mutually available between the teacher and the desired room 

of a class is chosen as the starting mod and the class is scheduled.  If a phase has multiple groups 

or meetings but has been given just enough time to schedule each, the result is usually a set of 

consecutive mods in which the teacher and room is busy.  Teachers at Westside have requested 

that they be scheduled no more than 4 mods consecutively in order to give teachers time to 

prepare.  However, the program ignores this requirement if several meetings must take place in a 

small amount of time.  Thus, this is a soft constraint. 

After all phases with a constrained time window equal to 1 have been scheduled, the SMART 

Scheduler iteratively moves to the unscheduled phases with constrained time window less than 

or equal to 1.1, 1.2, and so on up until 1.3.  When classes were scheduled that had constrained 

time windows more than 1.3, it was observed that classes became unnecessarily clustered and 

teachers overused.  An example would be 4, 40 minute meetings that must take place between 

and including mods 2 and 9 of the same day.  These meetings will require 8, 20 minute intervals 

to complete and have been allocated 10.  Thus the constrained time window of this phase would 

be 
  

 
       and would be scheduled along with other phases having constrained time 

windows between 1.2 and 1.3. 
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Next, the SMART Scheduler schedules classes that contain phases that require all meetings 

of a phase to complete on the same day.  This is another instance of highly constrained classes 

needing to be addressed in the early stages of scheduling.  Usually phases of this type require the 

same room and teacher for large sections of the day.  The program searches for phases marked 

with the “all in one day” attribute and schedules them next. 

The next section of the SMART Scheduler addresses a unique characteristic of the system.  

This is the ability to sequence classes across weekends.  For example, a teacher may wish to 

have a large group on Wednesday of each week and then meet with their students 3 more times 

between Wednesdays.  Let phase 1 govern the large group and phase 2 control the set of small 

groups.  The program considers this instance by scheduling the Wednesday large group first and 

then adjusting the day constraints of the other phases accordingly.  To address wrapping across 

the weekend, the SMART Scheduler lets days 0-4 correspond to Monday-Friday of the first 

week while days 5-9 correspond to Monday-Friday of the following week.  The Wednesday 

large group in the example would be scheduled on day 2 and adjust the day constraints of phase 

2 to between days 3 and 6.  When phase 2 is eventually scheduled, SchedulePhase( ) subtracts 5 

from any starting and ending day of the phase‟s time window greater than 5.  In other words, the 

adjusted day constraints are addressed modulo 5.  Phase 2 of our example would have day 

constraints forcing the 3 meetings to occur between day 3 (Thursday) and day 1 (Tuesday). 

In strategizing the scheduling of classes, it was agreed upon that the location and time of as 

many meetings as possible should be meaningful to the cohesiveness of the schedule.  Randomly 

assigning meetings can be useful in creating a rudimentary class schedule but fails to satisfy 

students‟ class requests.  
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 Let R be an n x n matrix where       denotes the number of students who requested class i 

who also requested class j.  The matrix R is utilized to construct swim lanes so that classes that 

are often requested together are scheduled so as not to overlap.  Briefly, this is done by selecting 

a class i.  Then searching row i of matrix R for the top 4 values.  Each column j where one of 

these values corresponds to a class j with a large number of students requesting both class i and j.  

The program then schedules all meetings of one group from each phase for all 5 classes 

sequentially.  Each time a class is scheduled, the program stores the days and mods that were 

used and blocks the other classes from scheduling during them.  In this way, a group from every 

phase of every class is scheduled away from a group of each of its most mutually requested 

classes.  This gives students a much higher chance of finding a group from each phase of each of 

their requested classes that works in their schedule.   

 Once classes with high numbers of mutual requests have been scheduled, the SMART 

Scheduler begins scheduling classes according to a restricted greedy algorithm.  Unscheduled 

meetings of each class are scheduled by constructing arrays of all mutually free mods among the 

desired room and teacher.  The program then selects one of these available times at random and 

schedules the class.  The restriction occurs when the SMART Scheduler attempts to schedule a 

teacher for their 6
th

 20-minute increment of the day.  Scheduling meetings of a class equally 

across the full time window allotted helps balance the class load put onto a teacher.  By forcing 

the program to search for open slots across the full time window and not simply choosing the 

first available, we help ensure the full time window is used well. 

The next several routines help schedule any meetings that haven‟t been addressed and clean 

up any haphazard assignments.  A secondary greedy algorithm is implemented next that does not 
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consider the load of a teacher on a given day.  If a slot is found within a phase‟s time window in 

which the meeting can be scheduled in the desired room, it is scheduled.   

At this point in the program, teacher and room schedules become dense and available mods 

are hard to find.  A routine was created to help open new slots for classes to be scheduled.  This 

is done by first picking an unscheduled meeting and a slot that fits into the teacher‟s schedule.  

The desired room is inspected during this time and if another class is using it, the SMART 

Scheduler tries to find another time in which the conflicting class could meet.  If one exists, the 

conflicting class is moved and the slot becomes available for the unscheduled class.   

Some rooms are requested so frequently that it is impossible to schedule all classes in them.  

At this point, the program begins searching for other rooms within a class‟s department that 

satisfy the class‟s needs and capacity requirements.  If a room is found open during an open mod 

of the teacher, the meeting scheduled.   

As is the case in several schools, rooms are shared by departments.  With schools becoming 

more and more crowded, buildings are becoming so small that teachers from different 

departments often share rooms.  The SMART Scheduler‟s final attempt to schedule meetings 

involves searching all rooms that have been approved for multi-departmental use for open mods 

that fit into a teacher‟s schedule.  If any such mutually open slots are found, class meetings are 

scheduled accordingly. 

The final routine of the class scheduler acts as an error corrector.  It is desirable that meetings 

are taught in a sequential order.  That is, all meeting 1s are completed before any meeting 2s are 

taught.  The SMART Scheduler utilizes a sequencer that exchanges searches for and exchanges 

meetings that are out of order.  Once a meeting i+1 of a phase is found to be scheduled before an 
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instance of a meeting i, the SMART Scheduler exchanges the scheduled times of meeting i+1 

with the last instance of meeting i.  This way all groups of meeting i are completed before a 

teacher encounters meeting i+1.  

If meetings of classes are left unscheduled after all routines have terminated, the program 

was unable to find a feasible time or location for them.  This could be the result of the overuse of 

a room or teacher.  It might also be caused from infeasible parameters such as nonsensical 

day/mod constraints or phases with more than 5 meetings each requiring its own day.  To 

schedule these meetings, the user will need to identify the cause of each unscheduled meeting by 

investigating the class‟ structure and the output schedules of the assigned rooms and teachers.  If 

mistakes are found, the user needs only to correct them and rerun the program.   

3.4  Computational Results 

 Westside High School was gracious enough to provide scheduling data from the most 

recent semester, Spring 2011.   The data governs parameters for 203 classes, 196 teachers, and 

108 rooms.  The classes were broken into 653 phases containing 1,366 groups and 3,036 

meetings to schedule.  In addition, there are 15,282 class requests from 2007 students that are 

addressed in designing swim lanes.  The SMART Scheduler was able to schedule 98.12% of the 

meetings in 5.1 seconds.   

 The run time of the SMART Scheduler is very satisfactory given the enormous amount of 

data that is being input and the complexity of parameters. Recall in section 2.3.2-2C that 

Abramson‟s program was able to schedule 770 meetings in 14 hours.  Granted, Abramson was 

using available technology in 1991.  However, recall the Abramson‟s method was simulated 

annealing which requires a neighborhood search of multiple solutions.  The SMART Scheduler, 
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on the other hand, does not rely upon a neighborhood search but instead attempts to make a 

quality schedule the first time. 

 Consider as well that previous class schedules have been implemented in class scheduling 

systems that require a class to meet at same time each day.  Thus, when one meeting of a class is 

scheduled, all are scheduled for the same time every day of the week.  A school that offers 208 

classes only needs to schedule 208 meetings to complete a schedule.  Modular scheduling treats 

each meeting individually. Therefore, scheduling 208 classes that make up 3,036 meetings is the 

same as scheduling 3,036 classes; a much greater accomplishment. 
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Chapter 4 

 

An Interactive Website 

 

 This chapter describes the extensive effort that went into the development of an 

interactive website to aid students, counselors and administrators access scheduling information.  

This website transforms the SMART Scheduler from a research topic to a useful tool that can 

replace the current method that WHS uses to schedule their classes.  Furthermore, it can be 

easily modified for other schools who desire to implement modular scheduling. 

 The website also provides capabilities for counselors to input their students‟ class 

requests.  Furthermore, administrators are able to add, delete and modify the inputs of the 

scheduling program.   The website is especially valuable because Westside has been deemed a 

“one-to-one” school under a federal grant.  The grant provides laptop computers to all students 

and faculty for use in school or at home.  This added internet accessibility enables students to 

check for changes in their schedules at any time.  Additionally, parents/guardians are able to 

access their children‟s schedules from home. 

 After schedules are created by the program, they are uploaded to a mysql® database that 

is accessed by the website.  The website has been partitioned into four password-protected 

areas: students, teachers, counselors and administrators.  Each partition contains capabilities 

unique for the type of user.   
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4.1  Student Website Capabilities 

 

 When the student section of the website is accessed, the user is taken to a page containing 

the student‟s schedule, as shown in Figure 4.1.  Having regular access to one‟s schedule is 

important as classes and assignment times change from day to day.  Most schools permit teachers 

to request that students meet with students before/after school but a combination of Westside‟s 

modular scheduling and access to this website makes it easy for teachers and students to meet 

during the school day.  Students are assigned to certain locations for multiple reasons.  Most 

commonly, a student is assigned to a teacher‟s desk during a mutually open mod.  At this time, 

the student catches up on missing work or engages in one-on-one instruction with the teacher.   

Counselors and Administrators may assign students to activities taking place outside of school.  

These activities range from supplemental instruction at the Westside Career Center to job 

training programs taking place throughout the city.  Being able to check one‟s own schedule as it 

changes prepares students to deal with fluctuating schedules in the real world as they attend 

college or start careers. 

Students are also able to view teachers‟ schedules.  After entering the identification 

number of a teacher, they are taken to a page presenting that teacher‟s schedule.  Students are not 

able to see the names of students assigned to that teacher as it would violate confidentiality 

agreements and cause potential problems.  If the student does not know the teacher‟s I.D. number 

off hand, they can click the “find teacher information” button.  This prompts a window to open 

in which the student can enter all or part of a teacher‟s last name.  The page displays the names, 

ID numbers and email addresses of all teachers whose last name contains what the student had 

entered. 
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Figure 4.1 – A Sample Student’s Schedule 

 

4.2  Teacher Website Capabilities 

 The teachers‟ section of the website contains functionality similar to that of the students 

with some unique additions.  First of all, teachers can look up their own schedules in the same 

manner as students.  Once the teacher enters his/her ID number and clicks the “lookup” button, 

they are taken to a page containing their schedule.  In addition to a listing of the teacher‟s class 
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schedule, they can also view a list of students assigned to them in each mod.  This helps the 

teacher be aware of who is to be expected during open mods.   

 Teachers at WHS often participate in extra supervisions during the school day.  Examples 

of supervisions might be monitoring a study center or cafeteria.  Other supervisions include 

spending time with students who have special instructional needs.  The website permits teacher‟s 

to input their own supervision schedules.  Once supervisions are entered, they appear on the 

teacher‟s schedule when students or other faculty access it.   

 Teachers can also look up the schedules of students using the “Student Schedules” page. 

The teacher needs only to enter the I.D. number of the student of interest and click “lookup”.   

The teacher is able to view the class and assignment schedule of the student.  It is from  this page 

that teachers may assign students to specific locations during open mods which is illustrated in 

Figure4.2.  On the right side of the student‟s schedule there is an area containing three text fields 

and a slew of checkboxes.  The textbox containing the student‟s ID number is prefilled and 

cannot be changed without first looking up another student‟s schedule.  The next text box is for 

the teacher‟s I.D. number.  The final text field is for the location that the student should report to 

during their assignment.  The checkboxes below are for the teacher to designate which mods the 

student is to be assigned.  When the teacher is satisfied, they simply click the “Submit Assigned 

Mods” button and the assignment is added to the student‟s and the teacher‟s schedules.  A 

message for each assignment appears in the middle of the screen.  If there were no conflicts with 

the student‟s schedule, the assignment is approved.  Otherwise, a message appears telling the 

teacher that the student is already busy during that mod. 
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Figure 4.2  Teachers Assign Mods to Students 

 

 Teachers are also able to release students from assigned mods.  In the top-right area of 

the page containing the student‟s schedule, the teacher finds two text fields.  After entering the 

student‟s and the teacher‟s I.D. numbers, the teacher clicks the “Release Student” button.  At this 

point, the database deletes records corresponding to all assignments concerning the student and 

the teacher.  If the teacher wishes to reassign the student for a different mod, they can do so in 

the same manner as the original assignment. 
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4.3  Counselor Website Capabilities 

 

 Counselors have more privileges still.  While they are able to look up student schedules 

and assign students in the same way that teachers can, counselors may also view the master class 

schedule and enrollment information for each class.  The master class schedule contains the 

times and locations for every lesson in the school.  From here, counselors can track the sequence 

of lessons in a given week.  The enrollment section permits counselors to find the attendance list 

for each lesson. 

The website offers a new way for counselors to submit the class requests of their students 

as shown in Figure 4.3.  Previously, counselors sifted through a catalogue of 300 classes to pick 

the ones best suited for a student.  This requires manual calculations of credit hours and the mods 

per week for the student to enroll in the class.  Additionally, counselors had to know which 

classes were being offered in first, second and summer terms.   

The “Student Sign-up” section of the website allows counselors to firs tenter a student‟s 

I.D. number and then select classes from columns corresponding to the first and second semester 

of the school year.  Each column contains drop-down menus.  The first six drop downs menus in 

each column are prefilled with classes belonging to specific departments.  These departments 

were chosen by counselors because they contain the majority of core courses that students take 

almost every semester.  The remaining drop-down menus in each column contain a list of every 

class offered at Westside.  They are alphabetically ordered by department name, sub-ordered by 

class name and appear only in the drop down menus belonging to the semester of the class. The 

number of credit hours and mods required per week of the classes that the student is requesting is 

updated and displayed with each selection.  
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  When the counselor is finished with the student‟s class requests, they push the “Send 

Requests” button.  This button takes the counselor to a confirmation page where each of the class 

requests are listed.  If a mistake is found, the counselor can click the “Back to Class Requests” 

button return to the requests page.  If the requests are found to be satisfactory, the counselor 

clicks the “Submit Class Requests” button.  This submits the class requests to the database and 

sends a schedule confirmation email to the student.  The email can then be shared with parents at 

home.  If a student‟s class requests should change, the counselor can simply go to the “Edit Class 

Requests” section of the page to modify them. 

 

Figure 4.3 – Students’ Class Requests 

 

 Counselors are also responsible for adding and dropping classes from a students‟ 

schedule.  The counselor can click the “Add/Drop Classes” button on the left toolbar.  If the 

counselor wishes to remove a student from one of their classes, the counselor simply enters the 

student‟s ID number and the ID number for the class and clicks “Remove Class from Student‟s 
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Schedule”.  Once the button is clicked, all instances of the class are removed from the student‟s 

schedule. 

 To add a class to a student‟s schedule, the counselor enters the student‟s I.D. number and 

selects the class they wish to add from a drop-down menu.  They are taken to a page where they 

can select a specific teacher and view the structure of their class as shown in Figure 4.4.  The 

counselor makes selections regarding the phases, groups and meetings in which to enroll a 

student .  If a particular meeting does not fit into the student‟s schedule, the counselor is alerted.  

Before the website, all class additions are done by searching each section of a class schedule by 

hand for a set of meetings that satisfy the class structure and work for the student.  This is 

aggravating for counselors.  The website makes this process quicker and much easier. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 – Student Sign-up 
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4.4  Administrator Capabilities 

 

 Administrators have the most privileges when it comes to the website.  The main page of 

the administrators‟ section contains functionality to lookup student, teacher, class and room 

schedules, in addition to viewing enrollment information.  Like counselors, administrators are 

also able to add and remove classes from a student‟s schedule.  The majority of the additional 

functionality in the administrator‟s section pertains to the control of profile data.  This 

information is vital for scheduling as it contains personnel availabilities as well as class structure 

information.  Specifically, administrators control data regarding students, teachers, rooms and 

classes. 

 The ability to add, edit and remove students from the database is utilized when a student 

transfers to/from Westside after a semester has already begun.  To add a student, the 

administrator selects the “Edit Students” button from the toolbar, and clicks “Add a Student”.  A 

set of textboxes containing relevant information such as name, I.D. number and counselor is 

presented so that information can be entered. The administrator simply clicks the “Add Student” 

button and the data is inserted into the database. 

Conversely, if a student is to be deleted from the database, the admin clicks the “Delete a 

Student” button, enters the student‟s ID number and clicks the “Delete Student” button.  Once 

this button is clicked, the student is deleted from the database along with their schedule and 

enrollment information. 

Editing students‟ information is easy as well.  The administrator may enter a student‟s 

I.D. number in the “Edit a Student” section of the website.  Once the submit button is clicked, the 
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database is queried for profile information and displays its results.  The administrator can change 

any field and when the update button is clicked, the information is changed in the database. 

 Adding, editing and removing teachers is similar to adding, editing and removing 

students.  From the “Edit Teachers” section of the website, data such as name, I.D. number, 

department and availability can be modified.   

 Profile information for rooms may also be altered from the website.  Although new 

rooms do not appear out of nowhere, the capacity, room type (lecture, lab, etc.) and 

corresponding department may change from time to time.  In this case, the administrator may 

add, edit and remove room data from the database. 

 Editing class information is the most intensive responsibility of the administrator.  When 

adding or editing a class, the administrator is prompted by a page containing a large form as 

illustrated in Figure 4.5.  At the top of the form, the administrator inputs general information 

about a class including name, I.D. number, department, credits, etc.  Below, the administrator 

enters specific information for each section of the class.  Each row corresponds to a specific 

teacher.  The administrator decides upon the number of sections assigned and the main room in 

which the class meets.  To the right, the administrator finds dropdown menus and textboxes that 

help shape the structure of each section of the class.  The page starts in Phase 1 by default.  

Administrators choose the number of groups of, number of meetings, durations of each meeting, 

as well as room and day/mod constraints. 

 Once the first phase of a class is entered, the admin clicks the “Add Class/Phase” button 

and the class information is sent to the database.  The administrator has the option to add another 

phase to the class or to go back and add another class.  The administrator can also delete classes 

in the same manner as deleting students and teachers.   
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 A major benefit of this section of the website is the ability to save class structures from 

semester to semester.  Previously, an administrator would manually collect structure data from 

teachers in the form of paper forms to be filled out.  This led to disorganization, wasted paper 

and forced an administrator to input data repetitiously every semester. The website requires 

about two work days to input class structures the first time.  Structures from the previous 

semester are stored in a mysql® database for retrieval in future semesters.  Administrators will 

need to make only minor changes from one semester to the next which requires one work day. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 – Input Class Structures 
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4.5 Summary 

 

 In summary, this section introduces a website so that students, teachers, counselors and 

administrators can interact with the inputs and outputs of the scheduling program described in 

chapter 3.  This website allows students and faculty to view each other schedules as well as add 

supervisions and assigned mods.  In addition, counselors are able to process students‟ class 

requests in an organized and aesthetically pleasing manner.  Finally, administrators are able to 

edit inputs of the program quickly and precisely.   

 Overall, the website acts as a valuable complement to the scheduling program described 

in Chapter 3.  It acts as an organizational tool to plan one‟s day by allowing unprecedented 

access to student and faculty schedules.  Users are able to find when/where they are supposed to 

be at any time by simply logging into their account.  Furthermore, teachers are made aware of 

students‟ availabilities for supplemental instruction and homework help.  Finally, the data 

management features of the website will save administrators large amounts of wasted time when 

modifying student/teacher profiles and class structure information. 
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Chapter 5 

Conclusion 

 Westside High School utilizes a novel class scheduling system called modular 

scheduling.  Modular scheduling gives schools the ability to affect student learning in a new 

way, by giving teachers the freedom to design the structure of their classes.  Teachers are also 

able to fuse their classes together and team-teach in a way that was previously impossible.  

Furthermore, teachers will be able to supplement classroom instruction with individual attention 

to failing students during their open periods. 

 The Modular scheduling gives students the ability to get extra help from teachers without 

missing after school activities.  In addition, students will learn to be flexible with their schedules 

as they change day to day.  Time management is learned implicitly as students plan out their 

week‟s work ahead of time.  These skills will hopefully result in responsible, knowledgeable 

students who are ready for the real world. 

 The drawback of modular scheduling is the laborious, time-intensive process of creating 

cohesive class schedules.  This thesis presented the SMART Scheduler, an efficient computer 

program that schedules classes within a modular environment.  Running the SMART Scheduler 

requires about two work days to input the necessary data and 5.1 seconds to schedule 3,036 

lessons.  This is only 5.7% of the seven weeks that is currently required to make a semester‟s 

schedule at WHS.  Furthermore, updating class structures from semester to semester does not 
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require fresh data to be input.  The accompanying database saves data from one semester to 

another, enabling following semesters‟ schedules to be made in less than a day. 

5.1 Future Research 

 Future research will be able to improve the SMART Scheduler through the efficient 

scheduling of student schedules using the SMART Scheduler‟s class schedules.  This will be 

necessary before the can be considered a complete package.  Once students‟ schedules can be 

constructed, the SMART Scheduler will be available for use by other schools who desire to 

implement modular scheduling. 

 Improvements can be made to the class scheduler by balancing teachers‟ daily work-

loads.  Currently, the program will over assign a teacher on certain days if the class is found to 

be highly constrained by its day/mod constraints.  An example would be a class that requires 8 

40-minute meetings be scheduled in a 2 day period. The SMART Scheduler will automatically 

overload the first day to avoid not having enough time. 

 It would also be interesting to integrate one of the metaheuristics discussed in chapter 2.  

Originally, this approach was considered for the SMART Scheduler but was decided against 

based upon the difficulty of constructing a single class schedule, let alone entire neighborhoods.  

A metaheuristic would most likely increase computation time but might produce higher quality 

schedules. 

 Further improvements such as better website interface can also be made.  In the long-

term, the SMART Scheduler will need to be re-constructed using a modern language of the day.  
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It would be preferable if this language was entirely web-based as it would allow administrators 

to schedule classes remotely. 
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