

Background

- Pollinator ecology requires monitoring of flowers and recording the \bullet number and kind of insect or animal which visit them
- Traditional methods for monitoring visitors require many hours of tedious review or live monitoring Resource-intensive, often leading to backlogs & delays
- **Computer Vision (CV):** A field of study solving visual problems & streamlining workloads through deep learning algorithms
- **Object detectors:** CV networks that can detect and localize specific entities within a larger image.
 - Lower-cost, less time-consuming than traditional methods.
- **Application:** Deployment in the field for real-time monitoring or review of old datasets

Figure 3: Precision and loss among the best YOLOv5m & YOLOv5s models Precision measures the number of correct predictions in a sample and loss measures the number of errors.

Computer Vision for Pollinator Ecology

Connor Foley, Dr. Brian Spiesman Kansas State Department of Entomology

Figure 1: Applications for CV. Data from 2021 was fed to an object detector to identify pollinators within the images. CV networks may also run on smart cameras in the field.

Results

Hyperparameter impact

- Early stopping important for minimizing loss
- YOLOv5m models not statistically different in performance from YOLOv5s
- No difference between learning rate optimizers
- No training improvement from weighted image selection

Confusion Matrices

SingleClass YOLOv5 Small

MultiClass YOLOv5 Small

SingleClass YOLOv5 Med

MultiClass YOLOv5 Med

Materials & Methods

Dataset

- 10,000 images from the iNaturalist Research-grade Database
- Eight taxa commonly found on flowers represented as classes:
 - Bees, Lepidoptera (Butterflies and moths), flies, Wasps, Beetles, Bugs (Hemiptera), Ants, Spiders
- Consistent & accurate manual annotation of images to provide good training data
- Variable situations, hundreds of species represented for model fitness
- Examples per class weighted according to frequency observation and importance as pollinators

Model

- YOLOv5 architecture: Convoluted neural network for object detection
 - **YOLOv5s**: smaller, easier to fit in the field, less accurate
 - **YOLOv5m**: larger, more accurate

Training

- Images input at 448x448 pixels in size
- Batch size 32, 350 epochs training time
 - Several models of YOLOv5m & YOLOv5s tested with different hyperparameters
 - Learning Rate Optimizers: AdamW & SGD
 - Weighted image selection: Class frequency taken into account
 - demonstrated

Conclusions

- performance

 - model sizes across all trials
- class detectors.
 - class standards

This research was funded by the United States Department of Agriculture-National Institute of Food and Agriculture (USDA-NIFA) under the AFRI Education and Workforce Development grant no. 2019-67032-29071.

Early stopping: Model training stopped after 15 more epochs if no improvement

Single-Class Training: Multiple classes merged into one category used for training

• Application of YOLOv5 object detectors is useful for pollinator ecology high precision means majority of visits detected • No difference was found between the larger and smaller models in terms of

• Similar precision and loss results between small and medium

• Single-class detectors were able to perform significantly better than multi-

More work needed to improve multi-class detection to single-

Acknowledgement

