A PROCEDURE HIERARCHY GENERATOR FOR PASCAL

by

KENNETH D. HARMON

B. A., Pittsburg State University, 1967

A MASTER’S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY
MANHATTAN, KANSAS

1980

Approved by:

7

Ma jor Pro r

S?ec. Coll.
P
2.bb8

K4 TABLE OF CONTENTS

\q80
H37
¢.2
I. INTRODUCTION.:escvcesensocnsnsccasosnsnosnsnsnsccscsal

II. USER INFORMATICN e sensssassesssescnssssasesannsacaceal
Executing the Generator...cccssseserecssssconns?
Reading and UnderstandinNQicececcesvocsnccansnsa?

the Generator Output

III. SYSTEM SPECIFICATIONS. :ccescsscsossencsocsscsassssosssell
System OverviewW..cseoaossncsssesenssasenssessal3
Software StrucCctuUre..cccessssssssacassssssssssasll
OQutput DeSignN.ececescossssecsssannsasssscnscssssesl?
Data Structure..c.ccesvosesesesssacassnsensnassssl?
Routines....onertrssnnsnresssscsncrnnsnsnseeassl
Error Processinge.ccecccesesscscensacssossnnsssaeslD
Future EXtensSioONS..cecesssssescsssesssssacecnselB

IV. BIBLIOGRAPHY-.----------.--.---------.---..-oo.---o31

Ve APPENDICES.:secesescesassccnsossosnssansasssssssancesns
APPENDIX A - Procedure Hierarchy Generator....A=-1
Output Listing
= Output Syntax Diagram......esess+B=1
Output SpecificationS..cccsecesecsC=1
= Implementation Data Structure.,...D=1
= Procedure Hierarchy Generator....E-1
Source Listing

APPENDIX
APPENDIX
APPENDIX
APPENDIX

mMoO0Ow
]

Figure
Figure
Figure
Figure
Figure
Figure

Figure

Table

Ill

ITI.1
III.2
ITI.3
III.4
III.S

III.6

I11.1

IGURES AND TABLES

Sample Non-Graphical DisplaY.iccessecsesossel

Generator Program StrucCtuUY€®..c.cescecessessld
Generator Routines Structur€...cseseessessld
Build Hash Table Routines Structure.......1l6
{Input Routines)

Print Hash Table Routinegs Structure.......l6
(Cutput Routines)

Structure of the Build Hash Table..:ceeees20
Routines

Structure of the Print Hash Table..c:esee.24
Routines

Generator Output FormatS..scescsesceessasssl?

A PROCEDURE HIERARCHY GENERATOR FOR PASCAL

I. INTRODUCTION

This Master s Report presents a software engineering tool
for the generation of the hierarchies of procedures in

sequential PASCAL computer programs.

This tool is a method to non-graphically represent the
structure of PASCAL programs as pertains to their procedure
calling sequence. Consider a program in which the main
routine calls two procedures and each of these two called
procedures calls one common subprocedure and one other
subprocedure. (NOTE. Hereinafter, reference to procedures
which are called by other procedures will be termed
subprocedures.) The structure of this program can be
depicted by several methods. The method implemented by this
tool is one which is relatively easy to automate and one
which conveys essentially as much information to the user as
does other methods, e.g., access graphs. Applying this
method to the sample program described above, the program
structure would appear as in Figure I.l. Note that the
display depicts the <calling structure, not the physical
order of the procedure declarations. With the addition of
other pieces of information to the display, as described

later in this report, this software engineering tool will

2

greatly assist wusers in understanding the structure of

seguential PASCAL programs.

H :
! MAIN :
! PROC3 '
; PROC1 |
H PROCZ
! PROCS H
: PROCY !
' PROC2 |
! END. '
[] ¥

Figure I.l1 Sample Non=-Graphical Display

One of the PASCAL language design goals was that of
simplicity. Programs such as compilers are so large that
ocne cannot understand them all at once. Thus, large
programs must be reasoned about in smaller pieces. Per
Brinch Hansen [BRI77] states that "...it would be ideal if
they (the pieces) were no more than one page of text each so
that they can be comprehended at a glance®. This philosophy
of keeping PASCAL programs simple is achieved, primarily.,
through the extensive use of procedure definitions and
calls, Procedures themselves <c¢an be kept small (i.e., no
more than one page of text) by also invoking calls to
subprocedures, rather than employing straight 1line code.
This sequence of events then can be repeated until such time
that each distinctive portion of a program has been
separated into many small procedures, each of which is

physically small and readily understandable.

A side effect of this technique of structuring programs,
however, is the difficulty it causes individuals who are
attempting to gain a general knowledge of a large program or
are attempting to manually trace execution in a large
program, For example, consider students or analysts
studying PASS]1 of the KSU PAS32 PASCAL compiler. PASSl, a
1600 line program, has on the order of 50 procedure
declarations and 2500 possible calls to those procedures
which are nested to a maximum of nine levels deep. As is
readily apparent, an individual studying PASSl 1listings
would have to maintain extensive handwritten records to keep
track of his current location in each procedure as he
preogressed deeper into and then backed out of the nested
procedures, This administrative overhead detracts greatly
from the substantive effort which can be applied to studying

or seolving an actual problem at hand.

In any discussion of computer programming, reference is
inevitably made to the pattern of control of programs and to
the paths which may be traversed in the course of program
execution {KAR60], To display this structure for PASCAL
programs and to mitigate the difficulties discussed in the
preceding paragraph, a procedure hierarchy generator was
designed and implemented. The generator outputs the
procedure calling sequence of programs under investigation.
The concept for this generator is similiar to the program

graph concept. In recent vyears, applications of graph

theory to computer programs have given fruitful results and
attracted more and more attention [PAI77]. A program graph
is a graph structured model of a program exhibiting the flow
relation or connection among the statements in the program.
Graph theory presents a unified approcach that provides
insight into program structure without regard for the level
of detail under the structure. Graph theory facilitates the
understanding of the operation of large programs. While
graph theory applies to the statement level of a program,
the procedure hierarchy generator functions at the procedure
level of a program. However, hecause of the extensive use
of procedures in PASCAL, the generator provides similiar
benefits to the PASCAL user as program graphs provide to

users of other programming languages.

Another precedent for the procedure hierarchy generator is
IBM’ s technique for graphically displaying program
structure=--Hierarchy plus Input=-Process=0Output (HIPO)
[FRE76). HIPO consists of two basic components: a hierarchy
chart, which shows how each function is divided into
subfunctions; and input-output=process charts, which express
each function in the hierarchy in terms of its input and
output, While HIPO is based on functions and not
specifically on procedures, the primary purpose of both HIPO
and the generator described in this report are similiar~=to

assist the user in understanding large computer programs.

The generator assists users primarily in three major areas.
Users of this software engineering tool are able to:

o Readily ascertain the structure of proograms under
investigation.

o Eliminate the requirement for extensive hand-
written records during manual execution traces
of programs under investigation.

o Additionally, use the ocutput to verify that user
programs being created are actually coded as
designed (as pertains to the procedure inveking
structure).

The above capabilities are provided to users via the output
produced by the generator. The user’s view of this output
is fully described in Part II of this report; output
specifications are contained in Part III. Some of the more
salient features of the generator are:

o Input programs must be free of all compilation
errors to insure 100% reliability of generator
output.

o Output is based on the sequential appearance
of procedure calls in the input program source
code, not on the logical placement of the calls.
That is, the generator ignores all conditional
statements, logic, etc. Hence, the output
depicts sequential calls, not the actual run-
time sequence of calls.

o Procedure parameters are disregarded during
output formulation.

© Procedures must be explicitly called in the
source program to appear in the output.

© The output is composed primarily of data lines
which contain the input pregram line number
where the called procedure was declared, the
input program line number where the procedure
was called, and the called procedure name. The
program structure is depicted via indentation.

Testing of the generator code for logic errors was based on
the use of existing KSUu PASCAL programs and
specially-designed PASCAL programs (written primarily to
test boundary-type conditions) as input to the generator,
The generator output was then hand=checked against the
source code of the test programs, and errors in the
generator logic were corrected as they were discovered.
Existing programs utilized as test programs were the ten
PAS32 compiler modules, the PEDIT program, and the graphics

package.

The procedure hierarchy generator, as a stand-alone software
package, adds a powerful software engineering tool to the
KSU software package library. Users employing this tool can
significantly increase their wunderstanding of large PASCAL
programs and, simultaneously, decrease the time and effort

required to do so.

I1. USER INFORMATION.

Part IT is intended to serve as a user s guide to the
generator and to reading and understanding the generator
cutput. A complete working knowledge of sequential PASCAL
or the INTERDATA B8/32 is not reguired in order to use the

generator or to understand its output.

Executing the Generator

To utilize the generator, the user must have a segquential
PASCAL program in his disk files. The program need not be
error-free in order to be input to the generator; however,
if the program is not error-free through PASS5 of the PAS32
compiler, then the results produced by the generator cannot
be considered 100% reliable., Once the user is signed onto
the INTERDATA 8/32, one command is all that is required to
start generator execution. This command is
"GENPROC inputfilename,outputfilename®

where inputfilename is the name of the source program to be
input and outputfilename is the name of the output file or

device where the generator output is to be written.

Reading and Understanding the Generator QOutput

A. Output Data Lines.

l. General. Appendix A contains the ocutput

created by inputting the generator source code through the
generator itself. Refer +to this appendix during the
following discussion of the output data lines. Appendix A
can also be correlated with the generator source listing at
Appendix E.

2. Examine output 1line 1. 1178 MAIN indicates
that the main routine begins at line 1178. This program
line contains the initjal P"BEGIN" instruction of the main
routine.

3. Examine output lines 1,2. 1112 1179 INITIALIZE
indicates that the main routine, at 1line 1179, calls
procedure INITIALIZE which has been declared at program line
1112,

4, Examine output lines 2,3. 198..,.1129
WRITESTRING indicates that the INITIALIZE procedure, at line
1129, calls a subprocedure WRITESTRING which has been
declared at program line 198.

5. Examine output 1line 11. 355...414 GETCHAR(S8)
indicates that the GETCHAR procedure structure has been
printed previously beginning at output line 8.

6. Examine output 1line 16. 82...399 WRITEI[2]
indicates that the procedure being expanded
(UNBALANCED_ERROR in this instance) makes twoe consecutive
calls to a subprocedure WRITE (no intervening calls to a
different subprocedure).

7. Examine output line 24, 355...500

CGETCHAR[2])(8) indicates that the procedure being expanded

(GETWORD in this instance) makes two consecutive calls to a
subprocedure GETCHAR and that the structure of GETCHAR has
been printed previously beginning at output line 8.

8. Examine output line 108, 1191 END. indicates
that the main routine ends at line 1191. This program line

contains the final "END" instruction of the input program.

B. Warning/Error Messages.

l. WARNING:IF YOUR INPUT PROGRAM HAS COMPILATION
k*kkkxx FRRORS IN PASS1 THROUGH PASS5, THE
¥kawkdr FOLLOWING OUTPUT CANNOT BE CONSIDERED
***&*x** RELIABLE.

Meaning: This message is printed each time the
generateor processes an input program and produces output
data lines. Its purpose is to alert the user to the fact
that even though the generator has executed to a normal
termination, the output produced may be unreliable if the
input program has syntax, Semantic, and/or type errors in
it.

2. *#***¥* PROGRAM CONTAINS NO PROCEDURES, ®%w%#%
Meaning: This message is printed when the

generator processes an input program that does not contain

any procedure declarations. No other output is produced.

3. *¥%** PROGRAM CONTAINS PROCEDURES; HOWEVER, #**¥*
#*x+* MAIN DOES NOT INVOKE ANY OF THEM. L

Meaning: This message 1is printed when the
generator processes an input program that contains procedure
declarations, but the main routine does not call any of

these procedures. This message will be produced even though

10
the procedures themselves may call other subprocedures. No
other output is produced.

4. THE PROGRAM BEING ANALYZED HAS TOO MANY
PROCEDURES FOR THE GENERATOR, AS
CURRENTLY SET UP., CONTACT OPERATIONS TO
REQUEST THAT THIS ARBITRARY LIMIT BE

RAISED.

* % % % %
* % % % »

Meaning: This message is printed when the
generator processes an input program that contains more
procedure declarations than the static hash table (a hash
table is used as the generator implementation data
structure) has slots to store information on each
declaration. No other output is produced. Excessively long
procedure names {(names > 20 characters) reduce the number of
slots available, so the user may shorten his procedure names
and resubmit his program. If this action does not eliminate
the problem, then the physical size of the hash table will
have to be increased by operations personnel.

5. THE PROCEDURE BEING ANALYZED HAS TOO MANY

*
SUBPROCEDURE CALLS FOR THE GENERATOR AS L
CURRENTLY SET UP. CONTACT OPERATIONS TO *
REQUEST THAT THIS ARBITRARY LIMIT BE *
RAISED. *

* % % % %

Meaning: This message is printed when the
generator processes an input program that contains more
subprocedure calls within procedures or procedure calls
within the main routine than the static hash table has slots
to store information on each procedure call. If this occurs
within a procedure, the message is printed, and the
generator resumes normal activities at the next logical

point. 1If this occurs within the main routine, the message

11

is printed and no other output is produced. This situation
may be remedied by having operations personnel increase the
number of subprocedure calls allowed per procedure,

6. THE PROCEDURE CURRENTLY BEING EXPANDED HAS A

*
NESTING LEVEL DEEPER THAN 19. THIS EXCEEDS *
*
t 4

* % % *

THE PHYSICAL PAPER PRINTOUT LIMITATIONS.
THE PROCEDURE WILL NOT BE EXPANDED FURTHER.

Meaning: This message is printed when the
generator processes an input program that contains procedure
calls which are so deeply nested that when the structure of
the program is output, the printing, if continued, would run
off the right-hand side of the paper. This situation can
arise because of the technique used to display the structure
of the input program=-=specifically, indentation of
subprocedure calls under the printing of the procedure name
which ies doing the calling.

7. * PROGRAM CONTAINS UNBALANCED QUOTATION MARKS.
* CORRECT AND RESUBMIT FOR PROCESSING. *

Meaning: This message is printed when the
generator processes an input program that contains syntax
errors of the type described in the error message itself.
In addition to dgquotations marks, the errors may involve
unbalanced apostrophes, parentheses, brackets, braces, and

BEGIN=END instructions. The design of the generator is such

that all characters between matching quotation marks,
apostrophes, etc. are skipped over since procedure
declarations and calls cannot occur in these areas. Also,

the input code between matching BEGIN-END instructions is

treated as separate and distinct blocks of code during

12
generator processing. Consegquently, if any of these are
unbalanced, the generator will erronecusly process the
remainder of the input program until an end=-of=-file is
encountered. The generator will then recognize that an
unbalanced situation exists, Processing ceases at this
peint, and the error message is printed. No other output is

produced. The user must correct the problem and then

resubmit his program for processing.

13

ITI. SYSTEM SPECIFICATIONS

Part III describes the general specifications for the
procedure hierarchy generator. All figures in Part III are
patterned after the technique wused by the generator to
display the structure of input programs. Specific line
numbers of the source code are not shown, but these may be

found in Appendix A and/or Appendix E.

System Overview

The procedure hierarchy generator is a stand-alone software
package. The generator is operational on the KSU Interdata
8/32 computer which is housed in the minicomputer laboratory
in Fairchild Hall. Coded in the sequential PASCAL language
(the KSU implementation of sequential PASCAL), the generator
consists of approximately 1200 1lines of code, including
imbedded comments. The code is well=structured, and
extensive use of procedure definitions and calls keeps each
code segment small and easily wunderstandable. These
properties enhance the ability to extend the generator with

additional capabilities, as discussed later in this report.

Software Structure

The generator consists of a set of standard prefix

declarations followed by the main program. The body of the

14
main program, termed "main routine", controls the sequence
of processing. The main routine is preceded by the usual
global constant, type, and variable declarations, and

procedure routines (Figure III.1l).

STANDARD PREFIX

GENERATOR DECLARATIONS

CONSTANT
TYPE
VARIABLE
ROUTINE

MAIN ROUTINE

- mE AR e Be TS e fTefas Te e S .
S e TR eSS s ew TS s cmee TR om e e

Figure III.1 Generator Program Structure

The generator routines can be logically divided into three
functional groups. These groups and their constitutent
routines are listed below.

Initialization Routine.
INITIALIZE

Build Hash Table Routines,
BUILDTABLE
PARSE_FUNCTION
PARSE_PROCEDURE
PARSE_MAIN
ENTERTABLE
HASH_ENTER
APPEND_DETERMINE
HASH_APPEND
ALLOCATE_MORE_SUBPROC
APPENDTABLE

Print Hash Table Routines.
OUTPUT_CONTROL
TRAVERSE_TABLE

15

Hierarchically, then, the top level structure of the

generator is as depicted in Figure III.Z2.

Main Routine,
Initialization Routine,.
Build Hash Table Routines.

Print Hash Table Routines.
END.

B mm e my TEEm- -
s ssemm samm se -

Figure IXII1.2 Generator Routines Structure

Two of the functional groups have extensive 1/0 processing.
The Build Hash Table Routines handle input processing
routines while the Print Hash Table Routines handle output
processing routines as listed below in Figures III.3 and
IT1.4. Both groups alse handle error processing, if

reguired.

e BE e e

Build Hash Table Routines.

END.

GETWORD
GETCHAR
SKIP_COMMENT_APOSTROPHE
GETCHAR
UNBALANCED_ERROR
SKIP_PAREN_BRACKET
GETCHAR
UNBALANCED_ERROR
UNBALANCED_ERROR

e e S SR S ae EE PTE ee e T oo

Figure III.3

Build Hash Table Routines Structure
(Input Routines)

Print Hash Table Routines.
WRITESTRING
HEADER

WRITESTRING
WRITENAME

WRITESTRING
EXCESS_PROCEDURES

WRITESTRING
EXCESS_NESTING

WRITESTRING
WRITEINT

WRITESTRING

END.

T A TE e RS RS TR e TE AA ES o * S e =S

Figure III.4

Print Hash Table Routines Structure
{Output Routines)

16

17

Output Design

Appendix B contains the output syntax diagram for the
generator. Table III.l1 contains a representation of the two
generator output formats. Refer to Appendix C !for a

detailed explanation of each column of output.

TABLE III.l. Generator Output Formats

: Column
i 2 3 4 5 6
iSeqg |Ln No of the |"MAIN"®
No |Main Program or
{BEGIN or END

iInstruction

L}
L]
[}
)
[}
L[}
L]
L}
L} [}
L]
]
L]
[}
[}
L}
(]
L]
]

v
(]
'
"END.",
‘
'
.

1Called Proc

Seq a. 1Called Eptional b. .optional c.
No |Declaration i Proc or
iLine Number iName optional c.

)
L

. SAeS s e TE S m-
- =S A" S cams TEme a-

a. = Calling Statement Line Number (may be indented
according to nested level of procedure)

o
]

®*[* Number of Consecutive Procedure Calls *=]*

n
n

" (" Repetitive Procedure Call Designation ")*"

e LEmte cmem fEm e YTE TS s eE EETS smas TTan wEmeSE s e

- e R e EE e eE R Te A A en T s EmE B -

Data Structure

The data structure used in implementation of the generator
is an array of records (specifically, a hash table). A node
is created for each input program procedure during the parse
of the program source code. Each node consists of: the node

creation sequence number; a procedure name; an index to

18

continuation nodes, if recquired; a flac=-field set when a

procedure is hierarchically expanded for the first time: a

prooram line numbex in which a procedure was declared: and a

count of the number of subprocedures called by a procedure,

if any. If subprocedures are called, then each node will

also have a variable number of sub=-arrays. Each sub=array

consists of: the number of consecutive calls, if any: a
program line number where a subprocedure was called; and an
index which points to the location where the subprocedure
was entered into the hashtable as a procedure. The
generator output is formulated by traversal of the hash
table, using stored hash keys as pointers to the next
hashtable entry slot. Overflow of the procedure name length
(name > 20 characters) and/or the number of subprocedure
calls (calls > 20) is handled via use of the next available

blank storage location in the hash table. See Appendix D

for a lavout of the implementation data structure.

An arbitrarv 201 slots for the hash table has been
established to store information concerning procedure
declarations. This means that an input procram can contain
200 procedure declarations and a main routine if the
following criteria are met:

o procedure names <= 20 characters in lencth.

o auantity of subprocedure calls within procedures
and the main routine <= 20 calls.

For every instance where a procedure name contains 21 to 40

19
characters, the maximum number of procedure declarations is
decreased by one because another slot has to be used to
store the remainder of the procedure name. A 41 to 60
character name will decrease the slots available by two, and

a 61 to 80 character name will decrease the slots available

by 3.

Similiarly, for every instance where a procedure contains 21
to 40 subprocedure calls, the maximum number of procedure
declarations is decreased by one. Forty=one to 60 calls

will decrease the slots by two, etc.

If an input program is so large that the generator cannot
store all the procedure declarations and/or information on
subprocedure calls, adjustment is quite simple., Depending
on the reason for the excessiveness of the program, one of

three actions can be taken:
0 increase the number of characters allowed
per slot per procedure name.

o increase the number of subprocedure calls
allowed per slot per procedure.

© increase the number of hash table slots.

Any or all of these actions can be accomplished by making
trivial changes in the global constant section of the

generator. The generator would then, of course, have to be

recompiled.

20

Routines

The following is a discussion of the processing logic

comprising the functional groups of generator routines.

A. 1Initialization Routine. INITIALIZE is the first
routine invoked by the main routine. INITIALIZE initializes

each global variable to a pre-determined starting value.

B. Build Hash Table Routines.

1. General. The Build Hash Table Routines read
the input program code, character by character; analyze the
code to detect procedure names (declarations) and procedure
calls; and construct and input the hash table entries for
later retrieval and output by the Print Hash Table
Routines. Hierarchically, the structure of the Build Hash

Table Routines is depicted in Figure III.S5.

BUILDTABLE
PARSE_FUNCTION
UNBALANCED_ERROR
PARSE_PROCEDURE; PARSE_MAIN
ENTER_TABLE
HASH_ENTER
EXCESS_PROCEDURES
UNBALANCED_ERROR
APPEND_DETERMINE
HASH_APPEND
ALLOCATE_MORE_SUBPROC
APPEND_ TABLE
END.

S mE E S TE S EE GG TR EE TE Se SEEm e
g e mp ey .S e ST s TS mm owm -

Figure III.5 Structure of the
Build Hash Table Routines

21

The Build Hash Table Routines are initiated by the main

routine through a call t¢ BUILDTABLE.

2. BUILDTABLE Routine. The BUILDTABLE routine
controls parsing of the input program and contreols
construction of the hashtable. When function declarations
are detected, BUILDTABLE transfers control to
PARSE_FUNCTION; when procedure declarations are detected, it
transfers control +to PARSE_PROCEDURE:; and when the main
routine is detected, it transfers control to PARSE_MAIN.
BUILDTABLE itself handles parsing of other portions of the
input program, e.g., global type declarations and global
variable declarations,

3. PARSE_PROCEDURE; PARSE_MAIN Routines, These
routines function similiarly. Their first action is to
cause the procedure name to be entered into the hash table
("MAIN®" in the case of PARSE_MAIN) via a call to ENTERTABLE.
They then parse the 1local code, inveking APPEND_DETERMINE
where a word encountered may be a procedure call.
Termination of the local code is determined bf matching
*BEGIN®™ and "END" instructions. If matching "BEGIN" and
"END" instructions are erroneously not present, the routines
call an error routine (UNBALANCED_ERROR), and processing is
terminated.

4. PARSE_FUNCTION Routine. PARSE_FUNCTION merely
determines when the local code of a function has terminated.

It then returns control to BUILDTABLE. Consequently,

22
procedure calls within functions are not detected.
Termination of the local code is determined by matching
"BEGIN" and "END" instructions. If matching "BEGIN" and
"END" instructions are erronecusly not present, the routine
calls an error routine (UNBALANCED_ERROR), and preocessing is
terminated.

5. ENTERTABLE Routine. ENTERTABLE obtains a hash
key for the procedure name from the HASH_ENTER routine.
With that hash key, it then enters the name into the hash
table along with a2 nodenumber and the program line number of
the procedure declaration.

6. HASH_ENTER Routine. HASH_ENTER computes a hash
key based upon a maximum of the first 20 characters of the
procedure name, If there are insufficient slots left in the
hash table to enter another procedure name, then generator
processing cannot continue. Contrel is then transferred to
the EXCESS_PROCEDURES routine which is discussed under Error
Processing later in this report. If the slot computed has
been previously used, HASH_ENTER recomputes the key until an
unused slot is found.

7. APPEND DETERMINE Routine. APPEND_DETERMINE
first determines if the input word being examined is a
subprocedure call. It obtains a hash key for that word from
the HASH_APPEND routine. It then matches that word with the
word stored in the hash table that has the hash key just
computed. If a match is found, the input word is a

procedure call, and information must be appended to the

23
procedure currently being parsed. APPEND_DETERMINE then
checks to see if an append slot is available. An initial
allocation of 20 append slots exists. If, for example, a
subprocedure call is the 21st for the procedure being
parsed, then a «call is made to the ALLOCATE_MORE_SUBPROC
routine which gives the procedure being parsed another 20
append slots. This allocation process may be repeated as
required. APPEND_DETERMINE then invokes APPENDTABLE.

8. APPENDTABLE Routine, APPENDTABLE determines
whether the subprocedure call is an identical call to the
last call made by the procedure being parsed or not. If it
is an identical call, APPENDTABLE merely increments a
consecutive call counter; if not, then appropriate
information on the call is entered into the append slot,
i.e., the program line number where the call occurred and
the hash key of where that subprocedure itself is located in

the hash table.

C. Print Hash Table Routines.

1. General, The Print Hash Table Routines are
initiated by the main routine through a call to
OUTPUT_CONTROL. The hash table entry for the main routine
of the input program is located, and then the hash table |is
traversed and ocutput via a recursive routine.
Hierarchically, the structure of the Print Hash Table

Routines is depicted in Figure III.6.

24

OUTPUT_CONTROL
TRAVERSE_TABLE
END.

Figure II1.6 Structure of the
Print Hash Table Routines

2. OUTPUT_CONTROL Routine. The OUTPUT_CONTROL
routine initially makes sure that the main routine of the
input program has been detected by BUILDTABLE. This is
necegsary because of the possibility that the procedure
declaration just prior to the start of the main routine may
be of the form "PROCEDURE READ (C:CHAR) ;" with no local
code. If this occurs, the "BEGIN..END." of the main routine
will be initially interpreted as local code of the
procedure. Consequently, the hash table entries have to be
adjusted slightly. OUTPUT_CONTROL then outputs the first
line of the printed report which is the line number of the
main routine starting location. TRAVERSE_TABLE is then
called. Upon return, OUTPUT_CONTROL outputs the last line
of the printed report which is the 1line number of the main
routine ending location and returns control to the generator
main routine.

3. TRAVERSE_TABLE Routine, The TRAVERSE_TABLE
routine traverses the hash table using stored hash keys to
navigate. Starting point for the traversal is the hash
table slot created for the main routine of the input

program. Data lines are created for the printed report as

25

the navigation progresses. TRAVERSE_TABLE is a recursive
routine which greatly simplifies the navigation process. At
this point in the processing, two errors can occur. A
procedure may call excessive subprocedures (arbitrary limit
established at 180 calls) or the input program may be
structured so that procedure calls may be nested too deeply
to allow complete depiction on a printout. In the first
case, control is transferred to the EXCESS_PROCEDURES
routine, and, in the second case, control is transferred to
the EXCESS_NESTING routine. These error routines are
discussed under Error Processing later in this report. 1In
both cases, control is transferred back to TRAVERSE_TABLE,

and processing continues.

Error Processing

A. Syntax/Semantic/Type Errors,

The generator is quite robust in that it will
accept any input program and execute to a normal
termination., However, it does not function similiar to a
compiler. If syntax errors exist in the input program, the
generator will not detect these nor will it go to a
resynchronizing point in the input code. For example, if a
program with wunbalanced gquotation marks (delimiter for
comments) is input to the generator, the only output created
upon reaching the end of the input program will be an error

message stating:

26

"INPUT PROGRAM CONTAINS AN UNBALANCED SET OF QUOTATION
MARKS. CORRECT AND RESUBMIT YOUR PROGRAM FOR
PROCESSING".

Similiar error messages will be created for unbalanced sets
of apostrophes, parentheses, brackets, braces, and BEGIN=-END
instructions. Handling of these conditions in this manner
is necessary since the generator cannot determine where a
comment, for example, ends and where the program
instructions are supposed to begin again. A type error will
not cause an error message to be output, but it may
invalidate the output. Consider this partial program:

VAR X : CHAR;

PROCEDURE X (C : CHAR):;

The user has declared a procedure named "X"; however, he has
also declared a global variable "X" as type CHAR. Later, he
assigns the variable "X" the value of "A". As the generator
is parsing this program, it detects the ®"X" in the main
program, finds this name in the hash table, and,
consequently, makes the determination that this is a
procedure call when, in fact, the user meant for it to be
part of an assignment statement. The user is alerted to the

possibility of this occurring through the header message

which states:

27

WARNING : IF YOUR INPUT PROGRAM HAS COMPILATION

R LT ERRORS IN PASS1 THROUGH PASSS5, THE
SRR FOLLOWING OUTPUT CANNOT BE CONSIDERED
A AR E A RELIABLE.

Another example of a syntax error which will not cause an
error message to be output is the following:

PROCEDURE X (C : CHAR):
BEGIN

END:;
BEGIN
X1l(C});
END.
The user has declared a procedure named "X". He wants to
call that procedure in the main routine; however, he
mistakenly keys in "X1" instead of "X". The generator will
check to gsee if "X1" is a procedure name. Upon determining
that it is not, the generator will proceed on to the next

word in the input program, and the procedure call will not

be recognized,

B. Excessive Procedures.

The EXCESS_PROCEDURES routine provides error
messages to the user for both the occurrence of an excessive
number of procedure declarations and the occurrence of an
excessive number of subprocedure calls within a procedure or
within the main routine. If there are excessive procedure
declarations, then generator processing is halted, and a
message is output that the user should contact operations to

request that the number of hash table slots be increased and

28
that no output will be provided, If there are excessive
subprocedure calls, then a message is output to the user
advising him of this, and then processing resumes at the

next logical point.

C. Excessive Nesting.

The EXCESS_NESTING routine provides an error
message to the user during printing of the output whenever
the indentations in the printed report, created by
progressive nesting of procedure calls, would cause physical
printing off the right side of the page. The generator can
output nesting up to 19 levels deep. Negting deeper than 19
levels will not be printed. Output will resume whenever

nesting returns to a level no deeper than 19.

uture Extensions

During the design, c¢oding, and teeting of the generator,
ideas continually surfaced concerning extensions to the
original generator proposal. The generator, as implemented,
does not provide any of the facilities discussed below, but
each has sufficient merit to warrant inclusion in any future

revisions of the generator. z

A. Designation of procedure calls with conditional=~-
type code and looping=type code.

The generator currently outputs procedure calls

identically, regardless of whether the call is in

29

straicht=line code, in conditional-tvpe code (IF THEN ELSE
constructs, CASE statements, etc.), or in looping=-type code
(FOR,..DO, WHILE...DO, etc.). A distinction could be made
between these types of procedure calls to more fully
illustrate the input program structure.
B: User specification of maximum level of

nesting that should be output.

The generator currently outputs all procedure calls
{up to page print=-out limitations). The capability could be
provided to allow the user to specify that procedure calls
only be output to a level of his choice. This would allow
the user to control output quantity in cases where he is
interested in only a portion of the input program

structure.

C. VListing of procedures in the input program which
are not called by any other procedure or the

main routine,

The generator currently outputs only those
procedures which are called. If a procedure is declared but
not called, the wuser is not explicitly notified of this.
The capability could be provided to 1list all such

procedures., This would assist the user during program

development activities.

D. Statistics/information summary.
The generator currently provides no

statistics/information summary, The capability could be

30

provided to output a multitude of statistics/ information,
e.g9., number of procedures in the input program, number of
procedures called, number of procedures not called, maximum

nesting level, most active procedures, etc.

E., Inclusion of the analysis of functions.

The generator currently disregards the local code
of input program functions. This code may contain calls to
procedures. The capability could be provided, perhaps as an
option, to analyze this code and to produce output for
functions that is similiar to output produced for procedures

and the main routine.

31

IV. BIBLIOGRAPHY

[BRI77]

[FRE76]

[KARG60]

[PAI77]

Brinch Hansen, Per, "The Architecture of Concurrent
Programs®, Prentice-Hall, Inc., 1977.

Freeman, Peter, and Wasserman, Anthony I.,
"Tutorial on Software Design Technigues®,
IEEE Cataloa No. 76CH1145-2C, 1976, pp.
181-188.

Karp, R.M., "A Note on the Application of Graph
Theory to Digital Computer Programming", Inform.
Contr., Vol. 3, 1960, pp. 179-190.

Paige, Michael R., ®"On Partitioning Program
Graphs”, IEEE Transactions on Software
Engineering®”, Vol. SE-3, No. 6, Nov 1977,
pp. 386=393,

Vool bW

PROCEDURE HIERARCHY GENERATOR OUTPUT LISTING

SEQUENTIAL PASCAL PROCEDURE HIERARCHY GENERATOR

WARNING

L2 2 2 2 2 8 4
L2 R B 4 8 8 J
L2 8 2 & 224

1178 MAIN

1112 1179
198
82
82

906 1180
461
355
8l
404
358
375
198
82
198
82
355
355
404
427
355
375
355
355
868
461
375
765
461
725
668
251
198
82
198
82
198
82
198
82
198

¢ IF YOUR INPUT PROGRAM HAS COMPILATION
ERRORS IN PASS1 THROUGH PASSS5, THE
FOLLOWING OUTPUT CANNOT BE CONSIDERED

(8)

UNBALANCED_ERROR
388 WRITESTRING [7] (3)

398 WRITESTRING (3)
399 WRITE [2]

(8}

483 SKIP_COMMENT_APOSTROPHE (10)
488 SKIP_PAREN_BRACKET_BRACE [3]

GETCHAR (8)

UNBALANCED_ ERROR (12)

[2] (8)
8)

7)

RELIABLE.
INITIALIZE
1129 WRITESTRING
212 WRITE
1130 WRITE
BUILDTABLE
922 GETWORD
478 GETCHAR
371 READ
479 SKIP_COMMENT_APOSTROPHE
414 GETCHAR
419
397 WRITE
423 GETCHAR
482 GETCHAR (8)
438
443
448 GETCHAR
500 GETCHAR [2]
924 PARSE_FUNCTION
879 GETWORD [2]
901 UNBALANCED_ERROR (12)
930 PARSE_PROCEDURE

777 GETWORD (7)
788 ENTERTABLE
HASH_ENTER

719 EXCESS_PROCEDURES

740

APPENDIX A

261
264
266
269
270
271
272
273
275

WRITESTRING([3] (3)
WRITE
WRITESTRING3
WRITE
WRITESTRING (3)
WRITE
WRITESTRING (3)
WRITE
WRITESTRING[2] (3)

42 B2 277 WRITE [2]

43 461 792 GETWORD [23] (7)

44 617 819 APPEND_DETERMINE

45 581 630 HASH_APPEND

46 557 638 ALLOCATE_MORE_SUBPROC
47 528 639 APPENDTABLE

48 557 655 ALLOCATE_MORE_SUBPROC
49 528 656 APPENDTABLE

50 375 826 UNBALANCED_ERROR (12)
51 831 937 PARSE_MAIN

52 725 843 ENTERTABLE (30)

53 461 848 GETWORD { 7)

54 617 857 APPEND_DETERMINE { 44)
55 375 863 UNBALANCED_ERROR (12)
56 1063 1185 OUTPUT_CONTROL

57 302 1074 HEADER

58 82 308 WRITE

59 198 309 WRITESTRING (3)

60 82 310 WRITE

61 198 311 WRITESTRING (3)

62 82 312 WRITE

63 198 313 WRITESTRING (3)

64 82 314 WRITE

65 198 315 WRITESTRING (3)

66 82 316 WRITE [2]

67 668 1082 HASH_ENTER (31)

68 218 1097 WRITEINT [2]

69 82 238 WRITE [5]

70 198 1099 WRITESTRING (3)

71 82 1100 WRITE

72 947 1101 TRAVERSE_TABLE

73 251 983 EXCESS_PROCEDURES (32)
74 218 993 WRITEINT [2] (68)

75 198 996 WRITESTRING (3)

76 218 998 WRITEINT (68)

77 173 999 WRITENAME [2]

78 82 191 WRITE

79 198 1013 WRITESTRING (3)

80 218 1016 WRITEINT (68)

81 198 1017 WRITESTRING [2] (3)
B2 218 1029 WRITEINT (68)

83 198 1030 WRITESTRING (3)

84 82 1031 WRITE

85 198 1035 WRITESTRING (3)

86 82 1036 WRITE

87 198 1044 WRITESTRING (3)

88 82 1045 WRITE

89 947 1047 TRAVERSE_TABLE (72)

90 283 1050 EXCESS_NESTING

91 198 291 WRITESTRING (3)
92 82 292 WRITE

93 198 293 WRITESTRING (3)
94 82 294 WRITE

95 198 295 WRITESTRING (3)

A=2

96
97
98
99
100
101
102
103
104
105
106
107
los

82
198
82
218
198
82
321
198
82
198
82
82
1191

1186

1189
END.

1104
1107
1108

296 WRITE

297 WRITESTRING

298 WRITE

WRITEINT [2] (68)

WRITESTRING (3)
WRITE

TRAILER [2]

331
332
333
336
WRITE

WRITESTRING (3)
WRITE
WRITESTRING [2]
WRITE [2]

(

3)

(

3)

OUTPUT SYNTAX DIAGRAM

we==> Ln No gf====> "END,"=ceccc==>
Last END

Inst in

Main Routine

== "h"

===> Called=e===ccccacccaaa>

Proc Dcl
Ln No

A
]
]

cersccocescssseeaeacasss) Seqnn

: No

<="MAIN" <==Ln No of <==-
1st BEGIN
Inst in
Main Routine

e EE AL tTE e T AS B L, T ce T ae e e

[o g

:(-----——-------------------------—-------——---—--

===> Calling==-=> Called=~===cccecccccccanaaccaccacaacy!
Statement Proc :
Ln No Name

: (oamcaecversacesoeanesm oo -

===>"["«=> No Of ==>"]"<===>"("cw> Repetitive ==>")"a->
Consec Proc Call
Proc Calls Designation

= s mmm=m -

maEs ee Tt ca e smwT m-

L]
[]
L]
[}
1
L}
[}
[}
]
[}
)
L]
(]
1
1
]
]
[
1
1
L]
L}
J
1)
[}
[}
1
)
¢
L}
L]
1
[}
)
]
[}
]
L]
]
L]
]
1
L]
[}
(]

(s e E e e me S - e e e D D S S e e N AR S A SR e .

APPENDIX B

OUTPUT SPECIFICATIONS

Column 1 = Sequence numbers,

1. Purpose = ordering of the procedure calls.
= output table entry point for
subsequent referrals to repetitive
procedure calling segquences,

2. Value

1..9999.

3. Format maximum of four numeric characters,

right=-justified.

Column 2 = Called Procedure Declaration Line
Numbers.

l, Purpose = to denote the line number to which
execution flow has been transferred
by a procedure call.

2. Value - program line number of the declaration
statement of the called procedure.

3. Format = maximum of five numeric characters,
right=-justified.

Column 3 = Calling Statement Line Numbers.
l. Purpose = to denote the line number of the
statement from which execution

flow has been transferred.

2, Value - program line number of the statement
which is invoking a procedure call.

3. Format = maximum of five numeric characters,
left-justified.

Column 4 = Called Procedure Names,
l. Purpose = to denote the name of the procedure
to which execution flow has been
transferred.

2, Value = name of the procedure being invoked.

3. Format = standard PASCAL procedure naming
syntax, left=justified.

APPENDIX C

Column 5 = Consecutive Procedure Calls,

1. Purpose = to decrease output guantity and to
increase ocutput readability and
efficiency. If a procedure is
called twice consecutively, for
example, there is no viable
reason to hierarchically expand
each call and output the structure
twice,

2. Value = number of consecutive procedure calls
made to the called procedure currently
being analyzed.

3. Format - maximum of two numeric characters,
enclosed in brackets,
Example - [23].

Column 6 = Repetitive Procedure Calls,

l. Purpose - to decrease output quantity and
increase output readability and
efficiency. Once the hierarchy
of calls within procedures has been
initially determined and output,
there is no viable reason to re-
determine the structure for each
subsequent call and to output the
structure more than once. All that
is required is a reference (a
sequence number) to the pertinent
structure in the display printed
previously.

2. Value = a sequence number previously
generated during a hierarchical
expansion of a procedure call.

3. Format <~ maximum of three numeric characters,
encleosed in parentheses,
Example - (20); by referring to the
sequence number in parentheses, the
user can determine the hierarchy of
the procedure currently being
examined.

IMPLEMENTATION DATA STRUCTURE

iRepet=-

1 [} :
Proc |No of |No of |LnNo of)
Link,itive D¢l |Subproci Consec;Subproc) Subproc
Key (Ind ‘Ln Noi,Calls ,Calls ,Call +Key
L] 3
1
:

Node | Proc

No |Name

]

9999 ,20(X)

999

-]
L
0
o

999 999

T mm s -
T
-em s ee we
. mp e =-

Y-]
Y-
o

999 } 9999

Translation Key =

Node ¢ Node creation segquence number.
No
Proc : Procedure name.
Name
Link : Index to continuation nodes.
Key
Repet- : Repetitive procedure expansion indicator.
itive
Ind
Proc : Procedure declaration line number.
Dcl
Ln No
Subproc : Number of subprocedure calls.
calls
No of : Number of consecutive subprocedure calls.
Consec
Calls
LnNo of : Program line number where subprocedure was
Subproc called.
Call
Subproec : Index to subprocedure declaration node,
Key
9 : Numeric character.
X : Alphanumeric character.

APPENDIX D

—m Emm em e cs e s

PROCEDURE HIERARCHY GENERATOR SOURCE LISTING

APPENDIX E

DN NE NN

"PER BRINCH HANSEN

INFORMATION SCIENCE
CALIFORNIA INSTITUTE OF TECHNOLOGY

UTILITY PROGRAMS FOR
THE SOLO SYSTERM

18 MAY 1975"

nEunnRBuNNEN
4 PREFIX =
HRARBHABRNER"

CONST NL = *(:10%)": FF = *(z212¢)*: CR = *"(2132}1"*;
EM = *(:232)°%:

CONST PAGELENGTH = 512%
TYPE PAGE = ARRAY (.1..PAGELENGTH.) OF CHAR:

CONST LINELENGTH = 1323
TYPE LINE = ARRAY (.1..LINELENGTH.] OF CHAR1

CONST IDLENGTH = 123
TYPE IDENTIFIER = ARRAY (.1..I0LENGTH.)} OF CHAR:

TYPE FILE = 1.,.21

TYPE FILEKIND = (EMPTY. SCRATCH« ASCII« SEQCODE. CONCODL):

TYPE FILEATTR = RECORD
KIND: FILEKINDI
ADDR: INTEGER:
PROTECTED: BOOLEAN:
NOTUSED: ARRAY (.1..5.,) OF INTEGER
END:

YYPE IQOEVICE =
(TYPEDEVICE. DISKDEVICE. TAPEDEVICE. PRINTDEVICE. CARUDEVICE):

TYPE IOQOPERATION = (INPUT, OUTPUT. MOVEs CONTROL):
TYPE I0ARG = (WRITEEOF+ REWIND+ UPSPACE+ BACKSPACE):
TYPE IORESULT =
(COMPLETE. INTERVENTION, TRANSMISSION: FAILURE.
ENOFILE. ENODMEDIUM, STARTMEDIUMID;
TYPE IOPARAM = RECORD
OPERATION: IQOPERATION:
STATUS: I1ORESULTH

£=2

S4
55
56
57
58
59
60
61
62
63
6%
65
66
67
68
69
70
71
72
73
T4
75
76
77
78
79
ag

82
a3
as
as
Bé&
a7
aa
a3
90
91
92
93
%
93
96
97
98
99
100
101
102
103
104
105
1086
107

ARG: IQARG
END3

TYPE TASKKIND = (INPUTTASK., JOBTASK. QUTPUTTASK):

TYPE ARGTAG =
(NILTYPE. BOOLTYPE. INTTYPE, IDTYPEs+ PTRTYPE):

TYPE POINTER = IVBOOLEANI

TYPE ARGTYPE = RECORD
CASE TAG: ARGTAG OF
NILTYPE:, BOOLTYPE: (BOOL: BOOLEAN):
INTTYPE: LINT: INTEGER):S
IDTYPE: (1D: IDENTIFIERIS
PTRTYPE: (PTR: FOINTER)
END3

CONST MAXARG = 103
TYPE ARGLIST = ARRAY {.1..MAXARG.) OF ARGTYPE:

TYPE ARGSEQ = (INP. OUTI:

TYPE PROGRESULT =
(TERMINATED: OVERFLOW, POINTERERROR, RANGEERROR. VARIANTERROR,
HEAPLIMITs STACKLIMIT, CODELIMIT, TIMELIMIT, CALLERROR):

PROCEQOURE READ{VAR C: CHAH)}
PROCEDURE WRITE(C: CHARI:

PROCEDURE OPENtF: FILE: ID: IDENTIFIER: VAR FOUND:! BOOLEANI:
PROCEDURE CLOSEC(F: FILE);:

PROCEDURE GET(F: FILE: P: INTEGER: VAR BLOCK: UNIV PAGE):
PROCEDURE PUTIF: FILE; P: INTEGER: VAR BLOCK: UNIV PAGE):
FUNCTION LENGTHIF: FILE}: INTEGER:

PROCEDURE MARK(VAR TOP! INTEGER):
PROCEOURE RELEASE(TOP: INTEGER):

PROCEOURE IDENTIFY(HEADER: LINE):
PROCEDURE ACCEPTIVAR C! CHAR);
PROCEDURE OISPLAY(C: CHARI:

PROGRAM GEN3

LA R 2 A R RS L R R R R It et et el Rt R e A R N S P e R]

® GENERATOR CONSTANT, TYPE:. AND VARIABLE DECLARATIONS .
LR B g ey e Ly I e P T T ey

CONST
MAXWORDLENGTH = 203
MAXSTRINGLENGTH = 60:

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
12%
125
126
127
128
129
130
131
132
133
138
135
136
137
138
139
180
151
182
143
144
145
146
187
148
189
150
151
152
153
154
155
156
157
158
159
160
16l

MAXUNIQUEPROCEDURLCS = 200:
HASHMAX1 = 201:
MAXPROCCDURECALLS = 201
MAXCALLS1 = 21:

SPAN = 2T¢

MAXWORDTYPE = 43
END_STRING = "{:i0:)":
QUOTEMARK = *(:342)*3
APOSTROPHE t{2392)°;
LEFT_PAREN (40"
RIGHT_PAREN = "(:81:}%;
LEFT_BRACKET = *(:91:)";:
RIGHT_.BRACKET = *(:93:)*;
LEFT.BRACE = '(:123:)"'3
RIGHT.BRACE = *(:125:)*}

DESIN. = 'BEGIN !
END. = *END '
FUNCTION. = 'FUNCTION '
PROCEOURE. = 'PROCEDURE '3
MAIN. = *MAIN b |
VAR. = VAR '
FORMARO. = 'FORWARD '3
TYPE. = "TYPE '3
CONST. = *ConNsST '3
CASE. = *CASE b2t)
EXTERN. = *EXTERN '3

TYPE

LINES = ARRAYC1,,MAXSTRINGLENGTH] OF CHAR:
WORDINDEX = 1. .MAXWORDLENGTH:
WORD = ARRAYCWORDINDEX] OF CHAR:
WORDTYPE = ARRAYL1..MAXWORDTYPE] OF WORD:
HASHKEY = 0..MAXUNIQUEPROCEDURES?:
SUBPROC = ARRAYL1..MAXPROCEUURECALLS] OF
RECORD
SUBPROC.CONSECALLS : SHORTINTEGER:
SUBPROC.LIMENO : SHORTINTEGER:
SUBPROC_HASHKEY : SHORTINTEGER
END3 s
HASH_TABLE = ARRAYCHASHKEYJ] OF
RECORD
NODENUMBER : SHORTINTEGER:
PROCHNAME : WORD:
LINK_KEY ! SHORTINTEGEH:
REPETITIVE ¢ SHORTINTEGCR:
PROC_LINENQ : SHORTINTEGER:
NO_SUBPROC.CALLS : SHORTINTEGER:
NESTED : SUBPROC
END?

VAR

NULL+ ENTER.COUNT. CURRENTLINE : SHORTINTEGER:
EXCESS.CALL.FLAGs MAIN_FLAG: JUSTIFYs CALLFLAG.
PROCEDURECFLAGs HALT.FLAG : BOULEANS

E-4

162 HOLD.LINK_KEY» HOLD_HASHKEY : HASHKEY:

163 LETTERS+ NUMBERS. LETTERS.NUMBERS : SET OF CHAR:

les CURRENTCHAR : CHAR:

165 HASHTABLE : HASH_TABLE:

166 CURRENTWORD, CONSEC.COMPARE : WORDTYPE:

167

168 N"EFXEERAER AL IERB XN AL LR A CI SR BT R XX XN BB R XXX XFBIEE R AR R AR E R AR BR LK TR & 4
169 * GENERATOR PROCEDURE DECLARATIONS *
170 L2 R RS EREE 2 E TSRS RL SR E R R R R R R R E 2R R AR 22 23RN RI SRR SRR T N RN
171

172 HEEXEAARALEA AR AR CIE LRIV ER XS T AR EREARF SRS ISR IR AR ARSI EF SR H R A PR T kN S b * D P A SR b e b b pan
173 PROCEDURE WRITENAME (C : WORD: SPACER ! SHORTINTEGER}:

174 "PURPOSE : WRITES A PROCEDURE NAME TO LOGICAL UNIT 2 "
175 "GLOBAL VARIABLES REFERENCED : NONE. "
178 "CALLING MODULES : TRAVERSE.TABLE "
177

178 VAR

179 I : WORDINDEX:

180 PR_COUNT_CHAR : SHORTINTEGER:

131 BEGIN

182 I = 13

183 PR_COUNT_CHAR := SPACER * & + 183

184 WHILE I <= MAXWORDLENGTH DO

185 s BEGIN

186 IF CLIJ <> * ¢

187 THEN

188 BEGIN

189 PR_COUNT_.CHAR := PR_COUNT.CHAR + 1:

190 IF PR_COUNT_.CHAR ¢ 133

191 THEN WRITE {CCID)

192 END:

193 I :=1+1

19% END

195 END}

196

137 TEEEEEIRR R I TR E RN RS LR TN RSN E R PR RN PR IR I DR AR I RN PRI RV ER N KRR A RS RN A E VPR F RS AR A SRS PO
198 PROCEDURE WRITESTRING (TEXT : LINES);

199 "PURPOSE : WRITES A CHARACTER STRING TO LOGICAL UNIT 2 -
200 "GLOBAL VARIABLES REFERENCED : NONE. ”
201 "CALLING MODULES ! EXCESS.NESTING / OUTPUT.CONTROLS -
202 " EXCESS.PROCEDURES / HEADER / .
203 | TRAVERSE.TABLE / TRAILER F "
204 " UNBALANCED-ERROR 4/ INITIALIZE /s Ly
205

206 VAR

207 I ! SHORTINTEGER:

208 BEGIN

209 I := 13

210 WHILE TEXTCI1] <> END.STRING DO

211 BEGIN

212 WRITE (TEXTCID):

213 1 = I+1

214 END

215 END:

216

217 L L L L N N N PN TR
218 PROCEDURE WRITEINT (Ns DIGITS : INTEGER):

219 "PURPOSE : WRITES INTEGERS TO LOGICAL UNIT 2 "
220 "GLOBAL VARIABLES REFERENCED : JUSTIFY "
221 MCALLING MODULES : TRAVERSE.TABLE/ OUTPUT.CONTROL/ "
222

223 VAR

224 REMs DIGs I ¢ 1..56%

225 NUM ¢ ARRAYCL1..61 OF CHAR?

226 BEGIN

227 REM = N

228 . DIe = 13

229 REPEAT

230 NUMCDIG] 3= CHRUABSI(REM) MOD 10 + ORDI'0")):

231 REM := REM DIV 103

232 016 = SUCCIDIG) [

233 UNTIL REM = 03

234 IF NOT JUSTIFY

238 THEN

236 FOR I := DIGITS DOWNTO 1 DO

237 IF I >= DIG

238 THEN WRITE (* *)

239 ELSE WRITE (NUMLID)

230 ELSE

251 BEGIN

242 WRITE (* *)3

243 FOR 1 = DIG - 1 DOWNTO 1 DO

2445 WRITE (NUMCID):

248 FOR I := DIG6 TO DIGITS DO

246 WRITE (* *)

247 END

258 END3

249

250 LR AR A2 R 2R A4 AR R R bR Rt Pl R i e R e e e N T PR
251 PROCEDURE EXCESS.PROCEDURES:

252 "PURPOSE : OUTPUT USER MESSAGE IF THE PROGRAM BEING PARSED "
253 ! HAS TOO MANY PROCEDURES FOR THE HASHTABLE 10 STORC "
254 » OR THE PROCEDURE BEING PARSED HAS TOQ MANY s
2335 " SUBPROCEDURES FOR THE HASHTABLE TO STORE . "
256 "GLOBAL VARIABLES REFERENCED : HALT_FLAG "
257 "CALLING MODULES : TRAVERSE.TABLE / HASII_ENTER 7 i
258

259 BEGIN

260 IF HALT_FLAG

261 THEN WRITESTRING (* THE PROGRAM{:0:}?%)

262 ELSE WRITESTRING (°* THE PROCEDUREL:O:)*13

263 WRITESTRING (* BEING ANALYZED HAS TOO MANY(:20:21');

264 WRITE (NL)I

265 IF HALT_FLAG

266 THEN WRITESTRING 1* PROCEDURES(:01)*)

287 ELSE WRITESTRING (°* SURPROCCDURE CALLS(:0:)');

268 WRITESTRING (* FOR THE GEMNERATVOR. AS{ID:)%):

289 WRITE (NL):

E-6

270 WRITESTRING (* CURRENTLY SET UP, CONTACT OPERATIOHS TODU(IO:)*):

271 WRITE (NL)3

272 #RITESTRING (* REQUEST THAT THIS ARBITRARY LIMIT HE RAISED.(in:)*1:

273 WRITE (ML)

274 IF HALT.FLAG

275 THEN WRITESTRING (° NO SENERATOR OUTPUT CAN HE PRUVIDED.(Iuz)')

276 ELSE WRITESTRING (* THIS PROCEDURE WILL NOT BE ANALYZED FURTHE ', (z03}"1;

277 WRITE (ML) -

278 IF HALT_FLAG

279 THEN WRITE (EM)

280 ENO

281

282 WA A E 2R el L R e I Ny T N Ny R NS N A
283 PROCEDURE EXCESS_NESTING:

284% "PURPOSE ! OUTPUT USER MESSAGE THAT THE PROCEDURE REING PARSEN "

285 " HAS A NESTING LEVEL 50 DEEP THAT IT CANNOT OL "

286 il OISPLAYED ON A PRINTED PAGE "

287 "GLOBAL VARIADLES REFERENCED ! NONE. i

288 "CALLING MODULES @ TRAVERSE_TAOLE/ "

2a3

2990 BEGIN

291 WRITESTRING(®* THE PROCEDURE CURRENTLY BEING EXPAMDED HAS At:uil*):

292 WRITE(NL):

293 WRITESTRING(® NESTING LEVEL DEEPER THAM 19, THIS EXCEEDS(:0:)%):

2938 HRITE(NL)

295 ARTTESTRINGI®* THE PHYSICAL PAPER PRINTOUT LIMITATIONS., THE(:0:)")1:

296 WRITE(NL):

297 JRITESTRING(® PROCEDURE CALLS WILL NOT BE EXPAMDED FURTHER.(:u:)*):

298 WRITEI(NL)

299 END:

300

301 XXX ES R IR R EN IR RRERT R AR R KRN RS RE N AN L AP KR AP SRV RN TP RS R b E R da vk ot ddon kgt
Joz2 PROCEDURE HEADER:

303 "PURPOSE : WRITES JUT A HEADER MESSAGE PRIOR TD OUTPUTTING DATA #

354 "6LOOAL VARIAHLES REFERENCED : HNONE, =

305 "CALLING MODULES : OUTPUT=COMTROL/ H

3ae

3a7 BEGIN

108 WRITE (NLD:

309 WRITESTRING 1(°* WARNING ! IF YOUR INFUT PROGRAM HAS COMPILATIGR(:O0:I)®3;
310 WRITE (NL):

311 WRITESTRING 1°* *eddned EHRORS I PASS1 THROUGH PASS9y FHELINI))
312 WRITEI(NL):

313 WRITESTRING (°* LA S E I AL FOLLOWIMG QUTPUT CANNOT At CONSLIGLRLUCIDII® LS
314 WRITE{NL):

315 HRITESTRING (° FEETRES RELIAGLE.{:i0:17):

316 ARITEANL) !

317 WRITE{NL)

318 END;

319

X20 L R R R R L R Y N N R T RS S e
321 PROCEDURE TRAILER;

322 "PURPOSE ! WRITES OUT A TRAILER MESSAGE SUDSEGUEHMT TO 2

323 - OUTPUTTING DATAs IF REQUIRED "

E=-7

324 "GLOBDAL VARIABLES REFERENCED ! PROCEDUREFLAG/ "

328 "CALLING HMODULES & MalIN/ "

326

327 BEGIN

328 IF PROCEOQOUREFLAG

329 THEN

330 BEGIN

331 WRITESTRIHNG {°*®2*x% PROGRAM CONTAINS PROCELUURES: HOWIVEIl. weseail0I)*):
332 WRITE (NL)3

333 WRITESTRING (°* MAIN DOES NODT IWVOKE ANY OF THEP.(ZGI)T)

334 END

335 ELSE WRITESTHING ("ex2ax PROGRAM CONTAINS NO PROCEJURES,. sxess(:0:)1'}):
336 WRITE (NL);

337 dRITE LEM)

338 END:

339

k-1 11 HEsAE R E SRR A ERTARARERANEASSRRE BRI PR NIES PFSECR M PN ERP E P UL RR S I RU A R PR R b kLB 6D F o v ana el
3ul FUNCTION EOF : BOOLEAN:

3s2

u3 BEGIN

34y EOF := CURRENTCHAR = EM

345 END}

346

au7 L i R R F R R L R F R S R Y RS Y R P T RSN AN N L A
348 FUNCTION EOLM : BOOLEAN:

349

350 BEGIN

351 EOLN is CURRENTCHAR = ML

352 END 3

353

354 LR 2 R R R R R A A R e R R e R R R b R e R R s R Y R N N R
355 PROCEDURE GETCHAR:

356 "PURPOSE ! READS A SINGLE CHARACTER FROM THE INPUT FILC b

357 “GLOBAL VARIABLES REFERENCED : CURRENTCHAR/ CURRENTLINE/ ™

358 "CALLING MODULES ¢ SKIP.COMMENT_APOSTROPHE / GLTWURD / a

359 b SKIP_PAREMN.BHACKET.BRACE / "

360

361 BEGIN

3a2 IF EOF

363 THEN CURRENTCHAR = EM

364 ELSE

365 IF EQLN

366 THEN

367 BEGIN

368 CURRENTCHAR 3= ' ';

369 CURRENTLINE != CURRCNTLINE + 1

370 END

371 ELSE READ (CURRENTCHAR)

312 END3

373

37y B e LR e R R N R R N RS e A
3718 PROCEDURE UNBALANCEOD.ERROR (CHARL1 § CHARI:

376 HPURPOSE @ PRINTS OUT AN ERROR MESSABE TO USLCH IF THE Lapul L

377 " PROGRAM COMTAINS ANY UNDALANCED QUOTATION NAKHIKS. "

E=8

ir’a " APOSTROPHESs PARENTHESES: DBRACKETS. UHACES: UR L
379 - BEGIH-END INSTRUCTIONS. "
380 " KEEPS THE GENLRATOR FROM CRASHING AS A HESULT OF "
a1l " 1/0 ERRORS. "
3a2 “GLONAL VARIABLES REFERENCED 3 MNONE. "
383 ACALLING MODULES : SKIP_COMMENT_APOSTROPHE / PARSE_IIAIN / "
3as | " PARSE _PROCEDURE / PARSE_FUNCTION/ "
385 " SKIP=-PAREN_BRACKET_URACE/ H
386

387 BEGIN

388 WRITESTRING ¢ *INPUT PROGRAM CONTAINS AN UNBALANCED SET OF(:n:)*):
389 CASE CHAR1 OF

390 QUOTEMARK : WRITESTRING (* QUATATION MARKS.(:0:)"1:

391 APOSTROPHE : WRITESTRIMNG (' APOSTHOPHES.(:0:1*):

392 LEFT.PAREN ! WRITESTRING (' PARENTHESIS.(:0:)'):

393 LEFT_BRACKET ! WRITESTRING (* BRACKLETS.(:D2)°);:

394 LEFT_BRACE ! WRITESTRING (' BRACES.(:0:)*)3

395 ENO_STRING : WRITESTRING (* BEGIN~ENDS.(:0:)7")

396 EMD:

397 WRITE {NL):

394 WRITESTRING ('CORRECT AND RESUUMIT YOUR PROGRAM FON PROCCSSIMNG,(IGI')}
399 WRITE INL):

400 WRITE (EM)

401 END3

402

#03 LR E R R R R L b E R s R R E R R R R e R N T R R R A N N N
404 PROCEDURE SKIP.COMMENT_APQOSTRQPHE (CHARL1 ! CHAR):

40S WPYRPOSE : SKIPS OVER CHARACTERS ENCLOSED IN QUUTEMARKS "
406 " AND APOSTROPHES "
407 "GLOBAL VARIABLES REFERENCED : CURRENTCHAR/ "
408 "CALLING MODULES : GETWORD/ o
409

410 BEGIN

411 IF CURRENTCHAR <> CHAR1

412 THEN

413 REPEAT

414 GETCHAR:

%15 IF EOF

416 THEN

417 UEGIN

418 HALT_FLAG := TRUE:

419 UNBALANCED.ERROR {CHAK1)

420 END

421 UNTIL (CURRENTCHAR = CHAR1) OR (EOF1:

422 IF NOT HALT-FLAG

423 THEN SETCHAR

424 END:

425

426 L R s E e R IR P s s A Y R R NI R R E R R N R R F R N P R R R R N R R R R R N A R PR R R N AR N E Y R A NN NN RS E N
427 PROCEDURE SKIP_PAREN_BHACHKET_ARACE (CHARl. CHAR2 : CHIARD:

w28 “PURPOSE : SKIPS OVER CHARACTEARS ENCLOSED IN PARENTHESIS. "
429 " BRACKETS. AND HBRACES i
430 "GLCBAL VARIABLES RLCFERENCEUD : CURRLNTCHAR/ .
431 "CALLING MODULES : GETWORD/ "

E=9

B32

433 VAR
434 I ! SHORTINTEGER:

435 BEGIN

436 I 2= 1:

437 REPEAT

438 GETCHAR:

439 IF EOF

440 THEN

L1} BEGIN

442 HALT_FLAG != TRUE:

443 UNBALANCED.ERROR (CHARL)

B4y END:

445 IF CURRENTCHAR = APOSTROPHE

446 THEN

847 BEGIN

448 GETCHAR:

w4y WHILE (CURRENTCHAR <> APOSTROPHE) AND NOT (EOF] 20

%50 GETCHAR

51 END3

452 IF CURRENTCHAR = CHAR1

453 THEN I 2= I + 1

454 ELSE

455 IF CURRENTCHAR = CHAR2

4586 THEN I = I - 1

457 UNTIL (I = 0) OR (HALT_FLAG)

458 END 3

459

463 LE S RS 2 R 23R P 2 E 2R s A2 2R 22 R L2 PR R RSt 22 R AR R NS R AR R AR E A A E R PR Y A R R A AR R N A A RN
461 PROCEDURE GETWORD:

462 "PURPOSL : READS A SINGLE WORD FROM THE INPUT FILE L
hel "GLONAL VARIABLES REFERENCED : CURRENTCHAR/ LETTERS / "
héh e NUMBERS / LETTERS_NUMUJERS/ "
465 " CURRENTNORD/ o
466 "CALLING MODULES I PARSE.PROCEDURES PARSE.MAIN/ "
467 " PARSE_FUNCTION / BUILDTABLE/ L
468

469 VAR

470 INDEXs ALANKINOEX : 0..MAXWORDLENGTH:

471 - Is X : SHORTINTEGER:

472 CHAR1+ CHARZ2 : CHIAR:

473 BEGIN

474 LETTERS_NUMBERS != LETTERS = NUMBERS:

475 WHILE NOT (EOF OR (CURREMNTCIIAR IM LETTERS_NUMBERS)) OO

476 CASE CURRENTCHAR OF

4717 QUOTEMARK : BEGIN

478 GETCHAR:

479 SKIP.COMMENT _APOSTROPHE |GQUOTEMARK

%80 END

481 APOSTROPHE @ REGIN

482 GETCIIAR;

483 SKIP_COMMENT_APDSTROPHE (APOSTROPHED:

484 ENGE

48S LEFT_PAREN ! HEGIN

486 CHAR1 := LEFT.PAREN:

4a7 CHARZ 1= RIGHT_PAREN:

488 SHIP_PAREN_ARACKET_DRACE (CHAFY1s ClIAKZ2)

489 ENG -
490 LEFT.BRACKET : PEGIN

491 CHAR1 := LEFT.ORACKET:

492 CHARZ2 = RIGHT.UORACKET:

493 SKIP.PAREN.BRACKE T-BRACE (CHAR1s CHAKZ}:

494 ENC

495 LEFT_BRACE ! BEGIN

496 CHAR1 = LEFT.BRACE:

497 CHAR2 = RIGHT_BRACE:

498 SKIP_PAREN_BRACKET_BRACE (CHAR1. CHAN2):

499 END:

500 ELSE ! GETCHAR

501 END:

sg2 I i= Dt

503 WHILE CURRENTCHAR IN LETTCRS_NUMBERS 00

S04 BEGIN

5905 LETTERS-NUMUBERS := LETTERS + NUMDERS:

506 INDEX 3= D3

507 I =1 + 13

S08 WHILE (CURRENTCHAR IN LETTERS_NUMBERS) AND

509 {INDEX <> MAXWORDLENGTH) 0O

510 BEGIN

511 INDEX := INDEX + 1:

512 CURRENTWORDC I INDEX] := CURRENTCHAR:

513 GETCHAR

514 END s

515 IF INDEX ¢ MAXWORDLENGTH

516 THEN

517 FOR BLANKINDEX := INODEX + 1 TO MAXWORDLEWGTH DO

518 CURRENTWORDC I +BLANKINDEX] = * ¢

517 END;

520 IF I < MAXWOROTYPE

521 THEN

522 FOR X 3= 1 + 1 TO MAXWORDTYPE DO

523 FOR BLANKINDEX 2= 1 TO MAXWCORDLENGTH DO

32% CURRENTWORDC X +ALANKINDEX] = * *

525 END:

526

527 eSS R EREER R R AT R IR E SR A R RS ERER R PR R EU R R U RN AR S A C TR P AR RS R A S P v b BN A kb R Eh R u b e kb b ab bt roahanh
528 PROCEDURE APPENUTABLE (APPEND._KEY : HASHKEY: VAR CALLCOUNT :

529 SHCORTINTEGER: EXCESS.KEY : HASHKEY?!:

530 "PURPOSE ! APPEND INFORMATION ON SUGPROCEDURES CALLED BY "
531 " THE PROCEDURE BEING PARSELU "
532 "GLOBAL VARIABLES HEFERENCED : CURRENTWORD / CURRENTCHAR/ 18
533 " HASHTABLE / CUNRENTLINES "
534 [4 NWOLD_LINK_KEY/ H
335 “CALLING MOODULES : APPEND.DETERMINE/ "
536

537 BEGIN

338 IF CURRENTWORDL1] <> CONSEC.COMPARELC11]

539 THEN

E-11

5490 BELGIN

541 CALLCOUNT = CALLCOUNT + 1;

542 WITH HASHTABLECEXCESS_KLYJ.NESTEDLCALLCOURTI DO

543 BEGIN

54y SUBPROC_LINEND := CURRENTLINE:

545 SUBPROC_HASHKLY = APPEND_KETY

545 END3

547 WITH HASHTARLECHOLD_HASHKEY] DO

548 NO_SUBPROC.CALLS := NO_SUBPROC.CALLS + 1:

549 CONSEC.COMPARE := CURRCNTWORD

550 - END

551 ELSE

552 WITH HASHTAMLELEXCLSS_KEYJ.NESTEDCCALLCOUNTI DO

553 SUBPROC_CONSECALLS := SUDPROC.CONSECALLS + 3

554 END:

555

556 e FEe TR RN R RARER PR LR R E PR PP R A RN EXRFE LA EER RSB IPRS BB F IS S KB e S AR R RAT RSB D e T EI bR DS W
357 PROCEDURE ALLOCATE.MORE_SUBPROC (VAK CALLCOUNT ! SIIORTINTLGER:

558 VAR EXCESS.KEY ! HASHKEY!:

559 "PURPOSL ! OBTAIN AN ADDITIONAL HASHTABLE ENTRY POINT FOR n
560 " MORE SUBPROCEUURE CALL INFORMATION "
561 "GLOBAL VARIABLES REFERENCED ? HOLD.LINK_KEY/ NULL/ "
562 " HASHTABLE / "
563 MCALLING MODULES : APPLNO_DETERMINE/ L
S5e4

565 BEGIN

966 CALLCOUNT = 0:

567 1F HOLD.LINK_KLY = MAXUNIQUEPROCEPDURES

Sed THEN EXCESS.KEY =

569 ELSE FXCESS_KEY != HOLD_LINK_KEY + 1:

S70 WHILE HASHTABLELEXCESS.KEYJ.NODENUMBER <> NULL DO

571 IF EXCESS-KEY = MAXUNIQUEFROCEDURES

572 THEN EXCESS_KEY :=

573 ELSE EXCESS.KMEY = EXCESS.KEY + 1%

ST WITH HASHTABLECEXCESS.KCY] DO

575 NODENUMBER = NODENUMGER =1:

576 HASHTABLECHOLD_LINK_KEYJ.LINK_KEY := EXCESS.KLY;

3717 HOLD.LINK_KEY != EXCESS.KEY

378 END3

579

530 NS v 20N ERRRT IR RFELIREER RS PASRIBEFRERETESINEFSICERS IR PRSI R F S A S kSR F P RGPt en kb oo™
SR1 PROCEDURE HASH_oAPPEND (VAR KEY ¢ HASHKEY: VAR SCARCH @ BOOLCAN:

582 VAR FOUND : BOOLEAN)S

563 "PURPOSE ! DETERMINE THE HASHKEY FORTTHE SUBPROLEUURE "
S84 n CALLED BY THE PROCEDURE BEING PARSLD L
$85 "GLOBAL VARIABLES REFERCNCED : CURRENTWORD/ HASHTAWLE/ ¥
586 "CALLING MODULES I APPERD.DETERMINE/ "
587

588 VAR :

589 CHAR._INDEX : WORDINDEX:

520 BEGIN

591 KLY := 1i

592 FOR CHAR_INDEX := 1 TO MAXWORDLEWGTH DO

593 IF CURRENTWORDC1.CHAR_INDEX] <> * *

£=-12

594 THEN KEY := KEY *= (ORDICURRENTWORDC1.CHAR_INDEXI} MOO SPAnu)

595 MOD HASHMAXI:

596 IF HASHTABLELKEYJ,.NODENUMBER = NULL

597 THE

598 BEGIN

599 SEARCIH iz FALSE:

600 FOUND := FALSE

601 END

602 ELSC

603 IF HASHTABLECKEYJ.PROCNAME = CURRENTWORDC1]

ey THEN

605 BEGIN

606 FOUND := TRUE?

607 SEARCH := FALSE

608 END

609 ELSE

610 HEGIN

611 SEARCH := TRUE:

612 FOUND = FALSE

613 END

(3L} END;

615

6le LE RS R R R 2 SR R d S 23R 2 2 222 23 2 2 R A2 R R 232 a2 2 A R R R A2 2 S RN T RE R NS R S AR R RS A N RN
&17 PROCEDURE APPEND_DCTERMINE (VAR CALLCOUNT : SHORTINTLGFR):

618 "PURPOSE * DETERMINE 1IF THE CURRENTWORD IS A PROCEDURE "
&19 n CALL WHICH SHOULD BE APPENDED TO THE PROCEDURE .
620 " BEING PARSED "
621 "GLORAL VARIABLES REFERENCEQ : HOLD_LIMNK.KEY / CURREMTWORD/ o
622 " CUNSEC.COMPARE S n
625 “CALLING MODULES : PARSE.PROCEDURE/ PARSE_MAIN/ "
624

625 VAR

626 EXCESS-KEY: APPEND-KEY : HASHKEY:

627 SCARCH. FOUNDy DONE 3 DOOLEANG

€28 BEGIN

629 EXCESS_KEY = HOLD_LINK_KEY;

&30 HASH_APPEND (APPEND_XEY., SEARCH. FOUNDI:

631 IF FOUND

632 THEN

633 BEGIN

&34 1IF CALLCOUNT = MAXPROCCDURECALLS

635 THEN

636 IF CURRENTWORDC1] <> CONSEC.COMPARCC1]

637 THEN

638 ALLOCATE _MORE.SUBPROC (CALLCOUNT. EXCESS_KEY):

&332 APPENDTABLE {APPEND_KEYs CALLCTOUNTs ERXRCESS_KEY)

640 END

e41 CLSE

eu2 IF SEARCH

643 THEN

(437 BEGIN

45 APPECNUD_KEY 3= 0:

46 DONE = FALSE:

647 REPLAT

648 IF CURRENTWORDL1] = HASHTABLLLAPPENU_KEY J.PROCNAME

649 THEN

650 BEGIN

651 IF CALLCOUNT = MAXPROCLCDURECALLS

652 THEN

653 IF CURRENTWORDLL1J <» CONSEC_COMPAREL1)

654 THEN

655 ALLOCATE.MORE.SUBPRUCICALLCOUNY 4EXCESSLkLY) S
656 APPENDTABLE (APPEND_KLY. CALLCOUNT. CXCESS.KLY)S
657 OONE := TRUE

658 END

659 ELSE

660 IF APPEND_KEY = MAXUNIQUEPROCEDURES

:1-31 THEN DONE := TRUE

662 ELSE APPEND._KEY 2= APPEND_KLY + 1

663 UNTIL DONE

664 END

665 END:

666

66T LA XTI E 2 AR A 2R Rt iRt R AR 22 R 2R R IR R R S AR R SR NI R R R PR E R AR AR A RN R N
668 PROCEDURE HASH_ENTER (VAR KEY : HASHKEY);

669 “PUHPOSE : DETERMINE THE HASHKEY FOR THE PROCEDURE BEING "
670 " PARSED “
671 "GLOBAL VARIABLES REFERENCED : CURRENTWORD/ ENTER.COUNT/ -
672 ol HASHTABLE 7 WALI.FLAG /

£73 " HULL /! "
674 WCALLING MODULES X ENTERTADLE/ DUTPUT_CONTROL/ "
6T

676 VAR

677 1+ HEED.SLOT : 1..MAXWORDTYPE:

670 CHAR_INDEX I WORDINDEX:

679 BEGIN

680 IF ENTER_CCUNT < MAXUNIGQUEPROCEDURES - (MAXWORDTYPE - 1)

681 THEN

682 BEGIN

683 KEY = 13

1.2 NECD.SLOT := 1%

e85 FOR CHAR.INDEX = 1 TO MAXWORDLENGTH 0O

686 1F CURREMNTWORDL 1 CHAR_INDEXJ <> * *

687 THEN KEY = KLY * (ORDICURRCNTWORDLC1.CHAR_INOEXI} MO SPaf}
658 MO0 HASHMAXLS

689 FOR I = 2 TO MAXWORDTYPE DO

690 IFf CURHENTWORDL1+1] <> * *

691 THEN NEED.SLOT := 1

692 ELSE 1 = MAXWORDTYPE:

693 IF CURRENTWORDL1]) <> HASHTABLECKEYJ.PROCNAME

&9h THEN

&95 CASE HEED.SLOT UF

696 1 ! WHILE ({HASHTABLELKEYJ.NDOENUMBER <> nULL AWl

697 {CURRENTWORDL 1] <> HASHTARBLELKEYI.PHOCKANT) BO
698 KLY := (KEY + 1) HOD HASHMAX1:

699 2 ¢ WHILE (({HASHTABLELKEY J.NODENUMBER <> WNULL) On

706 (HASHTABLELKEY + 1J1.NOULCNUMIBER <> fULL Y ARl
701l {CURRENTWORDI 1] <> HASHTABLELKEYJ.PRuChiai £ 1) DO

E-1%

702 KEY = {KEY + 1) MOD HASIIMAXL:

703 3 2 WHILE ({(HASHTADLECKEY J.NODENURDLR <> NULL) Oit
704 CHASHTABLELKEY + 13,NOCEHUMBER <> THILL) O
703 (HASHTABLELKEY + 23.NODENURRER <> HULLI) Ahb
706 (CURRCNTWOHRDL 1D <> HASHTABLLCCREY JLPROCHAME)} DB
707 KEY 3= (KEY + 1) MOD HASHMAX1:

708 4 : WHILE ({(MNASHTABLECKEYJ.NOJENUMUBER <> WNULLT ur

709 ({HASHTABLECKEY ¢ 1J_NODENUMBER <> NULL) R
710 (HASHTABLECKEY + 2J) NODCNUMBER <> NULL) Oh
Ti1 (HASHTAHLECKLY + 31 .NODENUNBER <> NULL)P AND
T12 (CURRENTWORDL 11 <> HASHTADLELKEY J.PRUCKNANDL)} DO
713 KEY 2= (KEY + 1) MOU HASHMAX1

714 END

715 END

Tie ELSE

T17 BEGINH

718 HALT_FLAG := TRUL!

719 EXCLSS_PROCEDURES

720 END;

721 ENTER_COUNT := ENTER.COUNT + NEEU.SLOT

722 ENDY

723

TZQ LR EE S R 2R £ 2 o F 1 2 23 232 222 L2 R 2 AN 2 2 R R R R R A P e SR SRR Y R R AN R S A
725 PROCEDURE ENTCRTABLE (VAR CURRENTHODLE § SHORTINTEGLR):

726 *PURPOSE : TO ENTER PROCEDURL INFORMATION INTO THE HASHTABLLC o4
77 “GLOBAL VARIABLES REFERENCED : HOLU_LINK_KEY/ HOLU_MASHKEY/ "
728 L HALT.FLAG / HASHTABLE 7 L
729 “ HULL / CURRENYWORD / n
T30 " CURRENTLINE 7/ "
731 “CALLING MODULES : PARSE_PROCEDURE/ PARSE_MAIN/ "
732

733 VAR

Tiu NEXT_HASHKEY, HASU_KEY ! HASHKEY:

73% I ! 1..MAXWORDTYPE:

736 BEGIN

737 IF NOT HALT_FLAG

738 THEN

737 nEGIN

T40 HASH_ENTER (IIASHL.KEY);

741 WITH HASHTABLELHASH_KEY] DO

T42 NEGIN

T43 IF NWODENUMBER = HULL

Thy THEN NODENUMELR = CURREWNTNODE

T45 ELSE CURRENTNODE = CURRENTNOUE = 1:

746 PROCNAME := CURRENTWURDL1J:

747 PROC._LINERD iz CURRCNTLINE

TuB END:

749 NEXT_HASHKEY 2= HASH_KEY:

75C FOR I := 2 TD MAXWORDTYPE DO

751 IF CURRENTWORDLIs11 <> " ¢

752 THEN

753 BEGIR

754 REXT_HASHEEY := NEXT_HASHKEY ¢ 13

755 HASHTABLEINCXT_HASHKEY I, PHOCNANE = CURREMTLOROLL DS

£-15

756 HASHTAQLELNEXT _HASUHKEY J.NODENUMBER = 0

757 END

758 ELSE I := MAXWORDTYPL:

759 HOLO_HASHKEY := HASH_KEY!

760 HOLOLLINK_KEY Iz HASH.KEY

761 END

762 END 3

Ta3

T64 LRI s SR 22 F L IR LR 2t R 2L ER R R R R R A il R P R P e R R S R RS PR R S S R RS S NS R
765 PROCEDURE PARSE_PROCEDURL (VAR CURRENTHODE @ SHORTINTEGLR:

T66 VAR GETHEXTWORD : BOOLCAN):

767 "PURPOSE : TO PARSE A PROCEDURE. EXAMINING IT FOR "
Teb 2 SUBPROCEDURE CALLS "
Te2 “GLOBAL VARIABLES REFERENCED : CURRENTWORD/ CONSEC_COMPARE/ "
770 " HALT.FLAG / "
771 “CALLING MODULES : BUILDTABLE/ -
772

773 VAR

T74 CALLCOUNT. STACK : SHORTINTEGER:

775 BEGIN

776 GETNEXTWORD := FRUE:

777 GETHWORD ¢

778 IF (CURRENTWORD[1.11 <> "H*} OR

719 ECURRENTHWORDL 123 <> '0%) OR

780 {CURRENTWORDC1+33 <> 'T*) OR

781 {CURRENTWORDC 1443 <> "U*) OR

782 {CURRENTHMORDL1,5] <> *S") OR

783 (CURRENTWORDL 1+6] <> 'E*) OR

784 {CURRENTWORDL1.7] <> 'D*)

785 THEN

786 BEGIN

787 CURRENTNODE := CURRENTNODE + 13

T88 ENTERYABLE (CURRENTNOGLE)

789 LND:

790 CALLCOUNT := 03 _

T91 CONSEC.COMPAREL 1] := *DUMMYDUMMYDUMMYDUMMY®$:

792 GETWORD:

793 IF (CURRENTWURDL13 = PROCEDURE.) OR

794 (CURRENTWORDL1] = FUNCTION.)

795 THEN GETNEXTWORD := FALSE

796 ELSE

797 IF (CURRENTWORDL11] <> FORWARD_) AND

798 ICURRCHTWORDL1] <> EXTERN.)

793 * THEN

800 IF (CURRENTWORDL1] = VAR.) DR

a01 (CURRENTWORDL1] = BEGIN.) OR

8o2 {CURRENTWORDEY] = TYPE.) OR

803 ICURRENTWORDL 1] = CONST.)

BOY THEN

a05 BEGIN

806 STACK := 1%

BD7 WHILE (CURREMTWOROL12 <> BEGIN_) AUD 1OT {EOF) .G
aos GETWORD:

809 REPEAT

E=J&

810 GETWARO:

811 IF ICURRENTWORDL1] = pEGIN-} OR
812 (CURHENTWOROL 1) = CASL.)
813 THEN STACK := STACK + 1
B1d ELSC
815 IF CURRENTWORDC1]) = CHND.
Ble THEN STACK := STACK = 1
817 ELSE
818 IF NOT HALT.FLAG
819 TUCN APPEND_DEYERMINE [CALLCOUNT)
azo UNTIL (STACK = 0) OR (EQOF)
821 END:
az2 1F EOF
Bz3 THEN
a2y BEGIN
8z5 HALT.FLAG := TRUL:
826 UNBALANCED.ERROR (END.STRING)
827 END
-34:} END:
Bz9
830 HESESERFEFRTELIZRESREERFRRRRF I RAS AN S ETREOTF P TR R RS ER AT SRS EFHI AU FIFREBR T4 ARG e
831 PROCEDURE PARSE.MAIN (VAR CURRENTNODE : SHORTINTEGCRI:
832 nPURPQOSE ¢ 170 PARSE THE MAIN PROGRAM, EXAMINING IT FOR "
833 o PROCEDURE CALLS "
A3y "GLOBAL VARIABLLS REFERENCED [CURRENTWORD/ CONSEC.COMPARE/ "
835 " HALT.FLAG / A
836 *CALLING MODULES : BUILDTABLE/ -
B3?
B3B8 VAR
839 CALLCOUNT. STACK : SHORTINTEGCR:
840 BEGIN
841 CURRENTWORDL 1] := MAIN_:
a4z CURRENTNODE := CURRENTHODE + 13
au3 ENTERTABLE (CURRENTNODE)
84y CALLCOUNT t= 0:
aus COUSEC_COMPARET 1Y = MALN_:
846 STACK 2= 1%
Bu7? REPEAT
848 GETWORD
849 IF (CURRENTWORDL11 = BEGIN_) OR
850 (CURRENTWORDL1] = CASE-!}
. 851 THEN STACK = STACK 4 1
852 ELSE
853 IF CURRENTWORDLC1]) = END_
854 THEN STACK = STACK = 1
855 CLSE
856 1F HOT HALT.FLAG
857 THEN APPEND_DETCHRMINE (CALLCOUMTI
858 UNTIL (STACK = 0} OR (LOF)3
ase If EOF
860 THEN
a6l BEGIN
862 HALT_FLAG := TRUE:
863 UNBALANCED._ERROR (END_STRIMG)

=17

BbY END

B6S END:

B6E

867 LE ST EAR TR 2 R 2 2t i3 2 22 32 2 R T AR a2 2 R 2 2RI R R R s R LR ARSI R E RS R AR R R L R R R R E R A A R A R N
713 PROCEOURE PARSELFUNCTION (VAR GETNCXTWORD : BOOLEAN}:

B&9 UPURPOSE ¢ TO PARSE A FUNCTION. EXARINING IT TQ DETERMIME 2
870 H WHERE THE FUNCTION TERMINATES 4
B71 "GLORBAL VARIABLES REFERENCED : CURRENTWUORD/ "
872 "CALLING MODULES ! BUILDTABLE/ h
873

874 VAR

875 CALLCOUNTs STACK ! SHORTINTEGER:

876 BEGIN

877 CALLCOUNT := 03

BT8 REPEAT

879 GETWORD

BBO UNTIL ((CURRENTWORDL1] = PHOCEDURE.) OR

881 (CURRENTWORDL11 = REGIN.) OR (EOF)):

8a2 IF CURRENTWORULC1] = BEGIN-

883 THEN

ays REGIN

8gs STACK := 13

866 REPEAT

BA7 GETWORD:

2.1) 1IF (CURRENTWORDL1] = BEGIN.) OR

%1 {CURRENTWORDL1J = CASE.)

B90 THEN STACK = S5TACK + 1

a9l ELZE

B92 IF CURRENTWORDL1]) = END.

893 THEN STACK i= STACK = 1

a9 UNTIL (STACK = D) OR (EOF!};

a95 ENG

8% ELSE SETNEXTWORD := FALSES

897 IF EOF

893 THEN

899 BEGIN

900 HALT.FLAG := TRUE:

501 UNBALANCED.ERROR (CHD.STRING)

302 ENRD

303 END:

904

905 Mt Rt 2SR XL RS ER AR NP S PSR AENFIF RSN LR AL INE RS EFRRARRR SN TA N KA TR 4 ATV S FIRINFI S4B FD VI 40980
906 PROCEDURE BUILDTABLE!:

207 "PURPOSE : TO CUNTROL THE PARSING OF PROCEDURES. FUNCTIONS. " ¥
948 o AND THE MAIN PROGRAM "
09 "GLOBAL VARIABLES REFERENCED : CURRENVTWORD/ PROCEDUREFLAG/ -
910 i HALT_FLAG /7 MAIN.FLAG 7/ o
911 "CALLING MGDULES : MAIN/ "
912

913 VAR

914 GETHEXTWORD ! DOOOLLCAN;

915 CURRENRTNODE : SHORTINTEGER:

Sle BEGIN

9217 CURRENTNODE = 03

918
219
9290

922
923
924
225
926
927

311
932
933
934
9315
936
537
938
939
o400
94l
9y 2
942
4y
945
Y44
9y7
ELY:]
949
250
951
952
953
954
953
958
957
9548
959
960
961

363
64
985
966
967
968
9569
870
971

GETNEXTWORD := TRUC:
WHILE NOT EOF Ano NOT HALT.FLAG DO
BLGIN
IF GETNEXTWORD
THEN GETWORD:
JF CURRENTWORDL1J = FUNCTION.
THEN PARSE_FUNCTION (GETNLXTWORD)

ELSE
IF CURRENTWORDL1J = PROCEDURE.
THEN
BEGIN
PROCEDUREFLAG := TRUL:
PARSE_PPOCEDURE (CURRENTNODE+ GETNEXTWORD)
END
ELSE
IF CURRENTWORDC1] = BEGIN.
THEN
HEGIN
MAIN_FLAG := TRUEL:
PAHSE.MAIN (CURREMNTNODE)
END

END
END 1

L L T R T R
PHOCEDURE TRAVERSE_TARLE(IIASH_KEY : HASHKLY: VAR ST@uQ @ SHORTINTEGCI:
VAR SPACER ! SHORTINTEGER): FORW&ARU:

MRS EN P F NS NI R R R TN AR AT P ENAI T PRI N A BN RN DA NI VR PPV E R R AT AR SR E PRI F A RO IO N T AR
PROCEDURE TRAVERSE_TAHBLE;:
“PURPOSE ¢ T0 TRAVERSE THE HASHTABLE. QUTPUTTING THL »

i INFORMATION BUILT BY BUILDTABLE #
“GLODBAL VARIABLLCS REFERENCED : EXCESS_CALL.FLAG/ CALLFLAG/ "
L) HASHTABLL / JUSTIFY / ”"

"CALLING MODULES : OUTPUT_CONTROL/ TRAVERSE_TAnNLE (RECURSIVL)/ »

VAR
As Lo Xo Yo Z ¢ SHORTINTEGER:
XUASHKLY, NEXT_HASHKEY LONG_NAME.KEY : HASHKEY;
REPCTITIVE.FLAG : BOOLELAN;

BEGIN
W1TiH HASHTABLELCHASH_KEY] DO
BEGIN
IF NO_SUDPROC.CALLS > 0
THEN
OEGIN
XHASHKEY := HASNH_KEY:
A =z 0:

CALLFLAG := TRUE:
FOR ¥ != 1 Tu NO.SURPROC.CALLS DO

BEGIN
EXCESS_CALL.FLAG := FALSE:
A = A + 1%

IF tX = MAXCALLS1) OR (X = MAXCALLS1 » 2 - 1) Gk

£-1?

972
73
974
975
976
577
g7E
979
gs80
s81
982
9683
284
285
986
9487
988
989
990
991
992
993
994
995
996
997
990
999
1000
1001
1002
1003
1004
1005
1006
1007
lous
1009
1014
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1028
la2s

{X = MAXCALLSY = 3 - 2) OR (X = MANCALLS] =* &% = 3} OR
{X = MAXCALLS1 * 5 = 4) OR (X = MAXCALLS1 * 6 - 5} Qi
{X = MAXCALLS1 » 7 - &) OR (X = MAXCALLSl = 8 = 7}
THEN
BEGIN
XHASHKEY = HASHTABLELXHASHKCYJ.LINK_KEY:
A =1
CND:
IF X = MAXCALLS1 * 9 - 8
THEN
BEGIN

EXCESS_PROCEDURES:
X := NO.SUBPROC.CALLS + 11
EXCESS.CALL_FLAG = TRUE
END;
IF NOT EXCESS.CALL.FLAG
THEN
BEGIN
SEQNDO = SEGQNO + 1%
NEXT_HASHKEY 2= HASHTABLELXHASHKEY JL.HWESTEDLA J.SUBPROC_HASHRKEY:
JUSTIFY I= FALSE:
WRITEINT [(SEQNO4)3
WRITEINT (HASHTABLECNEXT_HASHKEY J.PROC.LINENO.6):
FOR ¥ := 1 TO SPACCR DO
WRITESTRING (' (80 I B
JUSTIFY i= TRUL:
WRITEINT (HASHTADLEL XHASHKEY JoNESTEDCAJ.SUBPHOC_LINCHNOU+b 3
WRITENAME (HASHTABLECHEXT.HASHKEY J.PROCHAME« SPACER)
LONG-NAMC.KEY := NEXT_HASHKLY}:
IF LONG.NAME.KEY <= MAXUNIQUEPROCEDURES =- (MAXWORUTYPE = 1}
THEN
FOR I i= 2 TO AAXWORDTYPE DO
BEGIN
LOWNG_NAME_KEY 2= LONG_NAME_REY + 1:
IF tHASHTABLELLONG.NAME.KEY J.NODENUNBIR = 0)
THEN WRITENAME (HASHTADLETLONG HAML._KEYJ.PROCNANME +SPACER])
ELSE] := MAXWOHRDTYPE
END3
IF HASHTADLEL XHASHKEY J,NESTEDCAJ.SUUBPROC_CONSLCALLS > 0
THEN
BEGIN
WRITESTRING {* Ctzoz)"}s
JUSTIFY i= FALSE:
Z = HASHTABLEC XHASHKEYJ.NCSTCDLAJ,SUBPROC_CUNSECALLL + 13
HWRITEIMNT (Ze«2):
WRITESTRING (*J(z:0313%)
END3
REPETITIVELFLAG := TRUE:
IF HASHTABLLINEXT.HASHKEYJ.RCPETITIVE > D
THEN
BEGIN
REPETITIVF _FLAG := FALSE:
IF HASHTADLELWEXT_HASHKEYJ1.NND_SURPROC_CALLS » U
THEN

E=-20

it2e BEGIN

1a27 JUSTIFY 2= FALSE:

1028 WRITESTRING (* ((203)*):

1029 WRITCINT (HASHTABLELHNEXT_HASHKLY I REPLTITIVL 31
1030 WRITESTRING (*"){:02)%):

1031 WRITE (NL)

1932 END

1033 ELSE

1034 BEGIN

1635 HRITESTRING (* (:D2)°):

1036 WRITLC (NL)

1037 END.

1038 END:

1039 IF REPETITIVELFLAG

10u0D THEN

10%1 BEGIN

1042 HASHTABLELNEXT.HASHKEY J.RCPETITIVE := SLONO:

1043 SPACER := SPACER + 1:

1044 WRITESTRING (* (zD%)%)%

1045 WRITE (NL):

1046 IF SPACER < 20

1047 THEN TRAVERSE.TABLEANEXT.tASHKEY. SEQHD. SPACER)
1048 ELSE

1049 BLGIN

1050 EXCESS_HESTING:

1251 X $= NO.SUBPROC.CALLS + 1

1052 SPACER := SPACER - 1}

1053 END

1054 END

1055 END

1656 END

1057 END:

1058 SPACER = SPACER - 1

1089 END

1060 END3

1061

1062 BEF XX EE RPN RRRERXXFEFERXEIRRS R TR R A AP FEFETRR N AR TR AR R AN SN A XS L AT A A EL SRS $F LSBT 0 N
lued PROCEDURE OUTPUT_CONTROL:

1064 BPURPOSE ¢ TO CONTROL THE PRINTING DF THE OUTPUT f
1065 "GLOBAL VARIABLES REFERENCED : HOLD.HASHKEY,s CURRENTWORD/ B
1066 - HASHTABLE / MALHN.FLAG / "
1067 » JUSTIFY / "
1068 “CALLING MODULES @ MAIN/S "
1069

1079 VAR

1071 X+ SCGNO, SPACER : SHORTINTEGER:

1072 HASH.KEY @ HASHKEY:

1073 BEGIN

1074 HEADER

1075 SEQNO := 1:

1076 SPACER := D%

1077 IF NOT MAINLFLAG

1078 THERN

1079 BEGIN

E=-21

1080 CURRENTWORDC1] = HASHTABLELHOLD-HASHKEY J.PROCNANME:

1081 HASHTABLECHOLO.MASHKEY 1. PROCNAME = MAINL:

1082 HASH.ENTER (HASH_KLY):

1083 WITH HASHTABLECHASH_KEY] DO

1084 DEGIN

1085 NODENUMBER := NULL - 13

1086 PROCNAME 1= CURRENTWORDLC11:

1087 PROC_LINENO i= HASHTABLECHOLD.HASHKELY1,PROC_LINENQ

1083 END

1089 WITH HASHTABLELHOLO.HASHKEY] DO

14030 BEGIN

1091 PROC_LINENG 1z PROCLLINEND + 1%

i092 FOR X := 1 TO NO_SUBPROC.CALLS DO

1093 IF NESTEDLX]1.SUBPROCL.HASHKEY = HOLO_HASHKLY

1094 THEN NESTEDCX1.SUBPROC_HASHKEY = JIASH.KEY

1095 END

1098 END;

1097 WRITEINT (SEGNO.4)§

1038 WRITEINT (HASHTYABLECHOLD-HASHKEY1,PROC_LINENO.&};

1093 WRITESTRING (* MAINL:O:)')3

1100 WRITC (NLY:

1101 THAVERSE.TAUBLE (HOLD_HASHKEY . .SEQNO« SPACER):

1102 SEQGNO := SEQNO + 1%

1103 JUSTIFY &= FALSE:

1104 WRITCINT (SEQNOW4)¢

11065 CURRENTLINE = CURRENTLINE - 1%

11de WRITEINT (CURRENTLINE.&)G

1107 WHITESTRING (* END.(:02)")3

1108 WHRITE (WL}

1109 ENJG

1110

1111 L R e i R A R R e R I I e R R IR R P E RN A R
1112 PROCEDURE INITIALIZE:

1113 "PURPOSE : 7O IHRITIALIZE THE GLOBAL VARIABLES AND .
1114 » ALL HASHTABLE SLOTS »
1115 "GLOBAL VARJIABLES REFERENCED : EXCESS.CALL.FLAG/ CURRENTCHAR/ +
1116 " LEYTERS_NUMBERS / CURRENTLINEZ "
1117 - HOLD.L INK.KEY / CURRENTWORD Y/ -
1118 i HOLD.HASH_KEY / HASHTABLE 7 "
1119 " PROCEDUREFLAG / ENTERCOUNT / "
1120 |4 CONSEC.COMPARE / NULL /! =
1121 " CALLFLAG S MAIN_FLAG 7/ o
1122 " HUMNBERS / LETTERS 4 "
1123 o HALT_FLAG / JUSTIFY / "
1124 “CALLING MODULES : MAIN/ "
112%

112e VAR

1127 X+ Y 7 SHORTINTEGER;

1128 BEGIN

1129 WRITESTRING (* SEQUENTIAL PaSCAL PROCEDURE MIERARCHY GLHERATORCIOUZI")S
1130 WRITE (ML}

1131 NULL == 32767:

1132 CURRENTLINE := 1:

1133 ENTER_COUNT := 0:

1134 MOLU_LINK_XEY := D3

1135 HOLD-HASHKEY 3= 03

113z CURRLHNTCHAR = * %

1137 PROLEDUREFLAG := FALSE:

1138 HALT_FLAG 3= FALSE:

1139 MAIN_FLAG == FALSE:

11ud CALLFLAG := FALSL:

1iul EXCESS.caALL-FLAG = FALSE:

1142 JUSTIFY := FALSE:

11“5 L[TfERS s t!Ar.OBI'ICI'IDII‘IEI.'F‘"GI'!“I.III.IJ.‘lkl'OLI'l‘1l'!“0.
1144 A AR LAY RIS SRS ANRS AR AR AN T A RS STLE LTI 4
11458 MUMBERS 2= L0ttt et 20303 %4 g ¥ (* 6" 74" 79%];
1146 LETTERS_NUMBERS = C1i

1147 FOR % := 0 TO MAXUNIQUEPROCEDURES DO
1148 WITH HASHTABLECX] DO

1149 BEGIN

1150 HODENUMBER = NULLS

1151 FOR ¥ := 1 TO MAXWORDLENGTH DO
1152 PROCNAMEL YD iz * '3

1153 LINK.KEY &= 0%

1154 REPETITIVE = D3

1155 PROC.LINEND == 0

1156 NO_SUBPROC.CALLS := 03

1157 FOR Y i= 1 TO MAXPROCEDURECALLS DO
1158 BEGIN

1159 NESTEDCY). SUBPROC_CONSECALLS = 0:
1150 NESTEDCYJ.SUBPROC.LINEND := 03
11s1 NESTEDLYJ.SUBPRUC .HASHKEY := 0
1162 END

1163 ExD3

1164 FOR ¥ := 1 TO MAXWORDTYPE DO

1165 FOR Y := 1 TO MAXWORDLENGTH DO

11686 BEGIN

1167 CURRENTWORDLX«Y¥] := ' *:

1168 CONSEC_COMPARELX.Y]) 1= ' ¢

1169 END

1170 END

1171

1172 RREFEIERSRRNN

1173 LE .

1174 #e MAIN =2

1175 .y .

1176 EER LSRR EREFIE L

1177

1178 BEGIN

1172 INITIALYIZE S

1180 BUILDTABLE:

1181 IF NOT HALT_FLAG

1182 THEN

1183 BEGIN

1184 IF PROCEDUREFLAG

1185 THEN QUTPUT_CONTROL

1186 CLSE TRAILCR:

1187 IF PROCEJUREFLAG AMD HOT CALLFLAG

£E-23

1188
1189
1190
1131

END.

END

THEN TRAILER

ELSE WRITE

tEM)

A PROCEDURE HIERARCHY GENERATOR FOR PASCAL

by

KENNETH D. HARMON

B, A., Pittsburg State University, 1967

AN ABSTRACT OF A MASTER’S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1980

A PROCEDURE HIERARCHY GENERATOR FOR PASCAL

This Master”s Report presents a software engineering tool
for the generation of the hierarchies of procedures in

sequential PASCAL computer programs.

Programming in the PASCAL 1language is characterized by

extensive use of physically small preocedures. This
structuring technigue serves to keep each procedure
relatively simple and wunderstandable, However, a side

effect of this technique is the difficulty it causes
individuals who are attempting to gain a general knowledge
of a large program or are attempting to manually trace
execution in a large program. The pieces of large PASCAL
programs may be easily understood, but when the pieces are
combined to create a large program, the overall result can

be guite complicated and interleaved.

To lessen the impact of this design characteristic, a

procedure hierarchy generator has been designed and
implemented. The generator functions as a stand-alone
software package. Primarily, it is designed to output a

hierarchical display of the procedure invoking structure of
PASCAL programs. Users of this generator will be able to:

o Readily ascertain the structure of programs under
investigation.

2

o Eliminate the requirement for extensive hand-written

records during manual execution traces of programs
under investigation.

© Additionally, use the output to verify that user

programs being created are actually coded as designed

(as pertains to the procedure invoking
structure).

The procedure hierarchy generator adds a powerful software
engineering toocl to the KSU software package library. Users
employing this tool can significantly increase their
understanding of large PASCAL programs and, simultaneously,

decrease the time and effort required to do so.

