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Interpreting statistics from published

research to answer clinical and management questions
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ABSTRACT: Appropriate statistical analysis is criti-
cal in interpreting results from published literature to
answer clinical and management questions. Internal
validity is an assessment of whether the study design
and statistical analysis are appropriate for the hypoth-
eses and study variables while controlling for bias and
confounding. External validity is an assessment of the
appropriateness of extrapolation of the study results
to other populations. Knowledge about whether
treatment or observation groups are truly different is
unknown, but studies can be broadly categorized as
exploratory or discovery, based on knowledge about
previous research, biology, and study design, and this
categorization affects interpretation. Confidence inter-
vals, P-values, prediction intervals, credible intervals,

and other decision aids are used singly or in combina-
tion to provide evidence for the likelihood of a given
model but can be interpreted only if the study is inter-
nally valid. These decision aids do not test for bias,
study design, or the appropriateness of applying study
results to other populations dissimilar to the popula-
tion tested. The biologic and economic importance of
the magnitude of difference between treatment groups
or observation groups as estimated by the study data
and statistical interpretation is important to consider in
clinical and management decisions. Statistical results
should be interpreted in light of the specific question
and production system addressed, the study design,
and knowledge about pertinent aspects of biology to
appropriately aid decisions.
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INTRODUCTION

Appropriate statistical analysis is critical for
interpreting results from published literature to ad-
dress a specific clinical or management question.
Descriptive statistics are used to summarize study
data; however, describing the data collected from
a group of experimental or observational units in a
study does not allow one to make conclusions be-
yond the study population. Inferential statistics pro-
vide a mechanism to use the study data to evaluate
hypotheses and aid decision-making applied to a
larger, unmeasured population.

In most studies, the outcome of interest differs
numerically between treatment or observation groups,

Funding for this project provided in part by Merial Limited,
Duluth, GA 30096.

2Corresponding author: rlarson@vet.k-state.edu

Received June 7, 2016.

Accepted August 25, 2016.

J. Anim. Sci. 2016.94:4959-4971
do0i:10.2527/jas2016-0706

but the reader is most likely interested in determining
if the observed numerical difference is an accurate de-
scription of the wider population or if the findings oc-
curred by chance. Researchers recognize that one sam-
pling of a few representative animals in a population is
not expected to be the same as another sampling of the
same population and that neither sampling is a perfect
depiction of the entire population; hence, a numerical
difference between treatment groups or observation
groups has some probability of being due to chance.
Inferential statistics uses estimates of the outcome of
interest, estimates of precision (e.g., SE or confidence
interval [CI]), and test statistics to aid the interpreta-
tion of study data in relation to the study hypotheses.
Reading the scientific literature does not require an
intricate understanding of how to perform appropriate
statistics for every potential study design; however, a
basic knowledge of how to assess the internal valid-
ity of studies and interpret statistical results is impor-
tant for making inferences from published research
to guide decision-making in animal and veterinary
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sciences. The objective of this article is to describe the
role of statistics in interpreting research and how to use
statistical evidence to make inferences when answering
clinical and management questions.

TYPES OF VARIABLES

Understanding the type and distribution of each
study variable is important to determine the most ap-
propriate statistical test. Variables fall into 2 main
types, quantitative or qualitative, with multiple dis-
tinctions within those categories. Readers should in-
vestigate the type of variables being evaluated to as-
sess if appropriate analyses were performed.

Quantitative continuous measurements can take on
any numerical value. For example, BW is a continuous
variable because animal weight can be reported in any in-
crement allowed by the precision of the scale used (1 kg,
1 g, 1 mg, etc.). Quantitative discrete measurements such
as litter size or counts of events must be whole numbers.
Quantitative measurements can be made objectively (vs.
subjectively) and the difference between each quantita-
tive measurement increment is exactly the same (e.g., the
weight difference between 1 and 2 kg is exactly the same
as the difference in weight between 21 and 22 kg).

In contrast, descriptions are used for qualitative
variables (dead vs. alive, sick vs. healthy, male vs. fe-
male, BCS, etc.). Sometimes scoring systems such as
clinical illness score (CIS), lameness score, or BCS
are reported as numerals, but, in fact, they are qualita-
tive, not quantitative. Clinical illness scoring systems of
feedlot cattle commonly include a score ranging from 0
to 4 with a score of 0 indicating apparently healthy ani-
mals and a score of 4 representing severely ill animals
(Perino and Apley, 1998). These qualitative outcomes
are not continuous or discrete numbers because each
qualitative descriptive interval is not the same (e.g., the
difference in disease severity between animals with CIS
of 1 vs. 2 is not the same as the difference in disease
severity between animals with CIS of 3 vs. 4). Scoring
systems are commonly ordinal (ordered), as there is a
relationship of severity or amount as the scale increases
or decreases, but these scoring systems are still qualita-
tive because they are being used to provide descriptions,
not measurements. A method to determine whether
scoring systems are qualitative or quantitative in nature
is to determine if the scale could have been assigned
letters instead of numbers and still have the same inter-
pretation. If letters could be assigned to the scale, then
the scoring system is qualitative.

Although reliability and agreement is important for
all data collection methods, when the data is subjective,
it is particularly important that the scoring system be
validated to provide the reader an estimate of both the
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intra- and inter-rater agreement and reliability (Kottner
et al., 2011). In addition, if ordinal data is collected and
then levels within the scoring system are merged to cre-
ate binary classifications for analysis, the justification
for which levels are merged should be clearly stated and
based on demonstrated improvements in reliability or
agreement (Schlageter-Tello et al., 2014). Without a clear
description and validation of the data collection method,
the reader cannot interpret reported associations.

It is important to recognize that different statisti-
cal tests are used with qualitative and quantitative data.
As an example, a research study could be conducted
to compare the impact of treating cattle for bovine re-
spiratory disease with 2 different antimicrobials (treat-
ments A and B), and the outcomes of interest are ADG,
mortality risk, and CIS. These outcomes represent
different variable types because ADG is a continuous
variable, mortality is binary data that can be only “yes”
or “no” for an individual animal, and CIS is a quali-
tative variable that can assume only a limited number
of ordinal descriptions. Figure 1 provides examples
of each distribution for ADG, mortality risk, and CIS.
Statistical software cannot detect if an entered numeral
is a qualitative description rather than a quantitative
measurement; therefore, statistical packages will run
inappropriate calculations and report inaccurate results
if the researcher does not recognize this common mis-
take. The same statistical methods should not be used to
evaluate both CIS and ADG even if both are recorded
using numerals. Additionally, it is improper to calculate
a mean for qualitative data, such as CIS (for example,
reporting a mean CIS of 1.3 for treatment A and 2.7 for
treatment B). The goal of presenting a summary statis-
tic is to represent the population as a whole. Reporting
a qualitative variable such as CIS as having a mean of
1.3 or 2.7 is nonsensical because these values would not
represent any actual animals, as study subjects could
not receive a score between mutually exclusive catego-
ries. Medians should be presented as a summary sta-
tistic of central tendency for data where nonparametric
tests will be used for inference testing.

Studies of almost any size result in numerical dif-
ferences in the outcomes of interest. The function of
inferential statistics is to quantify the likelihood that if
the treatment or risk factor had no effect, a difference as
great as or greater than that observed in the study would
be due to chance and, by inference, some qualitative
level of confidence that the difference observed was due
to the treatment or risk factor of interest. Expanding on
the preceding bovine respiratory disease treatment ex-
ample, the ADG for cattle receiving treatment A could
have been 1.5 kg/(animal-d), with a morbidity (abnor-
mal CIS) risk of 21%, and a mortality risk of 0.6%; cat-
tle receiving treatment B could have an ADG of 0.5 kg/
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Figure 1. Examples of common outcome variables with normal (ADG; A), binomial or skewed (mortality risk; B), and discrete (clinical illness scores;

C) data distributions.

(animal-d), a morbidity risk of 39%, and a mortality
risk of 1.5%. The raw data supports the hypothesis that
treatment A offers health and performance advantages,
but it is impossible to determine whether the observed
difference in the raw data is most likely associated with
chance or a treatment effect. Although we can safely
conclude that cattle receiving treatment A did, in fact,
have better growth and health performance than cattle
receiving treatment B in the sample population, our
actual clinical question is, “Will cattle receiving treat-
ment A have better growth and health performance than
cattle receiving treatment B in future populations?” Or,
stated another way, “Is the direction and magnitude of
the numerical difference between treatment groups we
observed in the experiment likely just due to chance?”
Traditional null hypothesis inference testing method-
ology will provide the probability (P-value) that if the
model assumptions are true (including, most commonly,
that the treatments were truly not different), differences
as great as or greater than that observed in the study
would occur by chance. Interpreting potential outcome
variable differences is based on understanding the under-
lying variable characteristics. Weight gain in this study
is monitored by a continuous variable with an expected
normal (bell-shaped) distribution in the entire population
(Fig. 1A). In other words, the expected distribution of an-
imals’ weight gain within the study population could be
described by the mean ADG for the group as the center
of the bell-shaped curve and the variation of individual
animal ADG within the population as the width of the
bell-shaped curve as described by the term standard devi-

ation. A normal distribution has outcomes from animals
in the population distributed evenly on both sides of the
mean with approximately 66, 95, and 99% of the popu-
lation being located within 1, 2, and 3 standard devia-
tions of the mean, respectively. Therefore, the statistical
test must evaluate the likelihood that mean observations
as extreme as 0.5 and 1.5 kg/(animal-d) could be drawn
from a single population. In contrast to ADG, mortality
risk assumes a much different distribution and is often
skewed to the right (Fig. 1B; Theurer et al., 2015). Using
a scoring system such as CIS results in discrete, ordinal
outcomes, which may also be skewed (Fig. 1C).

Data distributions of study variables can have very
different appearances that influence which statistical
tests can be applied. Many statistical tests assume that
the study data have a normal (bell-shaped or Gaussian) or
near-normal distribution. If data do not have normal dis-
tribution, either the data should be transformed to obtain
anear-normal distribution or other statistical tests that are
appropriate for skewed distributions must be used (Petrie
and Watson, 2013). When statistical tests are not appro-
priately applied, results can be nonsensical or misleading.

A common error in animal research is to use incor-
rect statistical tests for categorical data such as CIS
or lameness scores, which are not quantitative and do
not have a normal distribution. Appropriate methods
to evaluate skewed, qualitative data compare the prob-
ability of each treatment or observation group having
the observed percentages of animals in each category,
given the assumption that all groups were drawn from
the same population (Davis et al., 2009). Once the
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appropriate tests are selected, the next step is to inter-
pret what the inferential statistics are communicating
relative to a clinical or management question.

RELATIONSHIP BETWEEN INDEPENDENT
AND DEPENDENT VARIABLES

Because many studies in animal and veterinary sci-
ence involve questions about the relationship between 2
or more variables, the statistical technique of regression
analysis is frequently reported. Depending on the type
of dependent variable and whether or not the model
meets certain assumptions, different models (e.g., lin-
ear, logistic, Poisson, Cox, polynomial, ridge, etc.) are
appropriate to analyze different study data (Dugard and
Staines, 2010). Multiple linear regression is a commonly
reported regression analysis, but this model makes sev-
eral important assumptions, and if those assumptions
are not met, the results may not be reliable (Kaps and
Lambertson, 2004). In particular, violations of linearity
or additivity or of independence are extremely serious
and indicate that the linear regression model is not ap-
propriate. Violations of homoscedasticity or normality
of the error distribution can make the model results less
trustworthy. Multiple variable prediction models for
prognosis or diagnosis are particularly relevant to an-
swer clinical or management questions in animal and
veterinary science, and a reporting guideline has been
published to address important aspects of model devel-
opment and validation (Collins et al., 2015).

Internal and External Research Validity

Inferential statistics are not able to differentiate
between bias and meaningful treatment differences,
so experimental design features to control for bias and
confounding must be assured before inferential sta-
tistics are used or interpreted. Internally valid studies
collect data in a repeatable manner while controlling
for bias and confounding through a research design to
remove or control factors that could systematically in-
fluence study outcomes away from the truth. Studies
with high internal validity will generate results influ-
enced only by the study factors of interest, whereas
the outcomes of studies with poor internal validity
could be altered away from the truth due to factors
that are not accounted for in the study design.

Statistical tests do not evaluate whether or not data
are biased; therefore, studies with low internal validity
should not be used for decision-making regardless of the
statistical results (White and Larson, 2015a,b). If incor-
rect experimental design or statistical methods are used,
recognize that the study results can be nonsense at best
and misleading at worst. Unfortunately, readers cannot

White et al.

assume reports in animal science and veterinary journals
are always based on appropriately designed studies and
correctly applied statistical tests (Shott, 2011).

A number of reporting guidelines have been de-
veloped with the primary purpose being to assist au-
thors to write accurate, complete, and clear reports
of their research studies. In addition to their value to
authors, these guidelines also aid readers critically ap-
praise and interpret scientific literature by focusing at-
tention on the aspects of materials and methods and
study results that could indicate increased risk of bias
in the study design, analysis, or reporting. The Equator
(Enhancing the QUAlity and Transparency of health
Research) network website (http://www.equator-net-
work.org; accessed 20 Oct. 2015) provides an up-to-
date source for reporting guidelines for many different
study types (Simera and Altman, 2013).

External validity characterizes the appropriateness
of applying the research results to populations other
than the study population. For example, if a study was
performed using a population of lightweight calves, the
results should be extrapolated only to similar popula-
tions of lightweight calves if the biological system eval-
uated is likely to be different between weight groups.

Confirmatory versus Discovery Hypotheses

Research hypotheses can be placed into 2 broad
categories: confirmatory and discovery. A confirmatory
hypothesis tests a specific relationship that is proposed
during the study design phase and is supported by pre-
vious investigations, whereas discovery hypotheses are
suggested and tested based on the data generated by the
study. Comparing the proportion of animals diagnosed
with a particular disease with a positive clinical response
when given a new therapy to the percentage of animals
given a placebo control treatment that have a positive
clinical response is an example of a confirmatory hy-
pothesis if previous research identified the new therapy
as a potentially effective treatment. In contrast, an exam-
ple of a discovery hypothesis would be to investigate po-
tential associations between multiple laboratory indices
and animal disease status without identifying a specific
association of interest before initiating the study.

Using statistical tests to evaluate multiple discovery
hypotheses suggested by the data must be done cautious-
ly to avoid mistaking chance statistical associations for
biologically meaningful relationships. Many statistical
tests report a P-value representing the probability that if
the treatment or observation groups were truly not differ-
ent, a difference as great as or greater than the one identi-
fied between 2 study variables is due to chance. If there
are no true differences between treatment or observation
groups, the likelihood of incorrectly concluding that that
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a difference exists will increase in proportion with the
number of discovery hypotheses examined.

Consider a study collecting samples from multiple
animals to evaluate the relationship between complete
blood count components with the presence or absence
of infectious respiratory disease. We could use a con-
firmatory hypothesis stated before the study begins and
based on previous research that total white cell count is
associated with the presence of pneumonia (Ellis et al.,
1998; Hanzlicek et al., 2010). If the inferential statistics
support this relationship, our hypothesis is strengthened.
Therefore, we feel more comfortable extrapolating clini-
cal conclusions based on this data to similar populations.

In a contrasting study design, if our study did not
have a specific confirmatory hypothesis but, rather,
started with discovery hypotheses that 1 or more com-
plete blood count components could be associated with
animals having respiratory disease, our interpretation of
the statistical results would be different compared with
interpretation in the confirmatory study. If 20 indepen-
dent blood components were evaluated with a P-value
of <0.05 designated for statistical significance, then it is
likely that even if no true biologic relationship exists be-
tween any of the tested variables and pneumonia status,
at least 1 association with the outcome of interest will
likely have a P-value less than 0.05 due to chance. Our
inferences using the same data and the same significance
level should change, based on the type of hypothesis and
evaluation methods. Methods exist (e.g., Bonferroni cor-
rection, Tukey adjustment, and decreasing significance
level) that allow inferences based on studies exploring
multiple hypotheses and making multiple comparisons
within an individual statistical model and should be used
and reported in these types of studies.

Interpreting statistics should always be done with
a clear understanding of the research hypothesis. A
well-designed and well-conducted study with a single
confirmatory hypothesis can often be used to strongly
influence decision-making, whereas a study with many
discovery hypotheses is best interpreted as a project to
identify potential future confirmatory studies.

INTERPRETING P-VALUES
BELOW THE SIGNIFICANCE LEVEL
(E.G.,P<0.050RP<0.01,ETC.)

Statistical tests determine the probability that if
there were truly no difference between treatment or ob-
servation groups, a difference in outcomes as great as or
greater than the one observed in the study could have
been due to chance. The probability is commonly ex-
pressed as a P-value. Although P-values less than 0.05
have traditionally been considered “statistically signifi-
cant,” other significance (o) levels may be selected in
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different situations based on the type of research ques-
tion and the level of certainty desired (Anderson et al.,
1990). In response to criticisms and misunderstandings
surrounding the interpretation of P-values, the American
Statistical Association published a statement that, among
other considerations, strongly stated that “Practices that
reduce data analysis or scientific inference to mechanical
‘bright-line’ rules (such as P < 0.05) for justifying sci-
entific claims or conclusions can lead to erroneous be-
liefs and poor decision-making. A conclusion does not
immediately become ‘true’ on one side of the divide and
‘false’ on the other.” And, “the widespread use of ‘statis-
tical significance’ (generally interpreted as P < 0.05) as
a license for making a claim of a scientific finding (or
implied truth) leads to considerable distortion of the sci-
entific process” (Wasserstein and Lazar, 2016, p. 131).
Importantly, calculations of P-values do not
take into consideration the risk for bias or confound-
ing, meaning that a biased study may very well have
a very low P-value but not provide true information
on the effect of the treatment or risk factor of interest.
Therefore, P-values provide useful information only
in well-designed and well-conducted research studies
and can be misleading if interpreted from studies that
are poorly designed to control for bias and confound-
ing. In addition, P-values do not provide information
about the magnitude of difference or the importance of
an effect because identical P-values calculated from
studies with different sample size do not provide evi-
dence for identical strength of association or strength
of evidence (Gliner et al., 2002; Wagenmakers, 2007).
When interpreting the data from many well-de-
signed and well-conducted studies, using a P-value of
0.05 or less to determine statistical significance results
in a relatively low to moderate likelihood that one will
conclude that a difference between treatments or risk
factors is present when there is truly no difference.
However, it is important to recognize that the P-value
is not a direct estimate of the likelihood that the study
findings are incorrect; rather, the risk of erroneous
conclusions is related to both the P-value and the actu-
al (but unknown) relationship between the variables of
interest and the study outcome. This fact should cause
one to interpret a P-value from a confirmatory study
based on a strongly supported hypothesis very differ-
ently than the same P-value from a discovery study
based on little or no prior supporting evidence.
Interpreting scientific literature to make clinical and
management decisions is somewhat analogous to a clin-
ical interpretation of a diagnostic test. Diagnostic test
accuracy is often expressed in terms of sensitivity (the
ability to correctly identify positive animals) and speci-
ficity (the ability to correctly identify negative animals).
Although these variables are important, the likelihood
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Screening a population of 25,000 cattle with 0.4% prevalence of being

persistently infected (Pl) with Bovine Viral Diarrhea virus (BVDv)
using a test that is 98% sensitive and 99% specific

: Test specificity:
| 24,651 /24,900 = 99%

Positive Predictive Value:

347 Q8 [ 347 = 28.24%
24,653 Megative Predictive Value:
25,000 24 651/ 24 653 = 99.99%

Prevalence:
100/ 25,000 = 0.4%

Screening a population of 25,000 cattle with 10% prevalence of being

persistently infected (P1) with Bovine Viral Diarrhea virus (BVDv)
using a test that is 98% sensitive and 99% specific
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BVDv PI
 Yes No
Test Positive 98 249
Result  negative 2 24,651
100 24,900
Test sensitivity:
98 / 100 = 98%
B.
BVDv PI
Yesg Mo
Test Posiive | 2450 225
Result  negative 50 22,275
2500 | 22,500
Test sensitivity:

; Test specificity:
2,450/2500=98% : 22275/ 22500 = 99%

Positive Predictive Value:

2675 2,450/ 2,675 = 91.59%

22,325 Megative Predictive Value:
= o

25,000 22,2751 22,325 = 99.78%

Prevalence:
2,500/ 25,000 = 10%

Figure 2. Diagnostic test illustration of the influence of the commonness of a characteristic (being persistently infected [PI] with bovine viral diarrhea
virus [BVDV]) on the interpretation of test outcomes when the test characteristics (diagnostic sensitivity and specificity) remain constant. The interpreta-
tion of a positive test result (positive predictive value) is very different when the prevalence of the tested condition is low (A) compared with when the
prevalence of the tested condition is high (B), even though the test characteristics do not change.

of false-positive and false-negative testing classification
errors is strongly influenced by the true prevalence of
the disease in the population. As an example, consider
testing a population of cattle for bovine viral diarrhea vi-
rus (BVDv; Fig. 2). Diagnostic tests with sensitivity and
specificity of 98 and 99%, respectively, are available
(Nickell et al., 2011). The expected prevalence for cattle
persistently infected with BVDv in the general popula-
tion of feeder calves at the time of arrival at a feed yard
is around 0.4% (Fulton et al., 2006). The calculated neg-
ative predictive value of using this test in this population
is nearly 100% whereas the positive predictive value of
using the test in this population is only 28% (Fig. 2A).
In other words, a calf that we identify as test-positive is
truly positive only 28% of the time. Despite high test
specificity (99%), the positive predictive value (or the
assurance that test-positive animals arriving at a feed
yard are truly positive) is relatively low. Conversely, if
we apply the same test in a herd that has been confirmed
to have at least some cattle infected with BVDv and we
expect the herd prevalence to be 10%, our positive pre-
dictive value becomes 92% (Fig. 2B). The sensitivity
and specificity of the diagnostic test did not change, but

our clinical interpretation is influenced by the underly-
ing true prevalence within the population.

In a similar manner, the true (but not precisely
known) relationship between the variables of interest
and the study outcome impacts how we should interpret
our statistical results. Similar to limited certainty about
true disease prevalence in a given situation, we lack a
precise estimate of how many of our studies are testing
factors with a true difference in outcomes. However,
we can place studies into broad categories such as dis-
covery studies, where we expect that a low percentage
of time there is truly a difference between observation
groups or treatments (i.e., the null hypothesis is often
true), and confirmatory work, where, based on previ-
ous studies, we expect a greater likelihood of finding
a true biologic difference between observation groups
or treatments. Providing an estimate of the percentage
of studies that would truly result in differences if all
knowledge was known allows us to generate calcula-
tions similar to the positive and negative predictive val-
ues. Although we might expect a relatively low risk of
incorrect study interpretations (or times when we con-
clude there is truly a difference between treatment or
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observation groups yet one does not exist) using a sig-
nificance level of 0.05, it is important to recognize that
most discovery studies are investigating observation
group or treatment populations that are truly not dif-
ferent. Therefore, if novel treatments or risk factors in-
vestigated in discovery studies are truly different from
controls only 10% of the time, we would expect, when
using a significance level of 0.05, to classify differenc-
es as “statistically significant” that approximately 38%
of those conclusions could be in error (Fig. 3A).
Occasionally in discovery studies, the significance
level is raised as high as a P-value of 0.10 to allow
greater exploration of possible associations; however,
if a P-value of 0.10 is applied to the example in Fig.
3A, the risk of error in studies identified with a sta-
tistically significant difference between treatment or
observation groups could be as high as 53%. Or, in
other words, of all discovery studies that identified a
statistically significant difference at P < 0.10, approxi-
mately half of those conclusions would be in error as
no true difference exists. Therefore, a supposedly strin-
gent significance level of 0.05 may not be strict enough
in true discovery work (Sterne and Smith, 2001). This
limitation to simplistic interpretations of a specific
P-value being classified as “statistically significant”
and, therefore, being considered to support rejection of
the null hypothesis of no effect may help explain recent
findings that illustrated that many (47/53; 89%) recent
landmark publications in global cancer research could
not be replicated in subsequent work (Cull et al., 2012).
Not all studies are conducted in pure discovery
mode with the associated high risk of investigating
risk factors or treatments not different from controls.
In confirmatory research studies, if hypotheses that
risk factors or treatments result in outcomes different
from controls were correct 40% of the time, the risk
of concluding that a difference exists when none truly
does using a significance level of P < 0.05 is much
lower than the same level applied to discovery stud-
ies (8%; Fig. 3B). If the hypotheses that treatment or
observation groups are different were correct most of
the time (>60%) in an area of study, the likelihood
of incorrectly concluding a difference exists using
a significance level of P < 0.05 is low (<4%); how-
ever, research on topics already well characterized is
rarely valuable for advancing scientific knowledge.
Therefore, our assumption is that most research is
performed on hypotheses where the true association
is unknown and the likelihood of true differences be-
tween treatments or observation groups is relatively
low; if P-values are incorrectly interpreted as an es-
timate of the risk of Type I error (i.e., based on the
statistical analysis, concluding a difference between
treatment or observation groups exists when there is
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truly no difference), the role of chance differences will
be underestimated. Because one does not know the ac-
tual frequency that study variables result in true out-
come differences, using a conservative significance
level (P < 0.05, P < 0.01, or P < 0.001) provides a
more rigorous statistical test and improves robustness
of findings compared with accepting P-values > 0.05
as being statistically significant. Knowledge of the bi-
ology and expected outcomes in an area of scientific
investigation is needed to appropriately evaluate and
interpret results (Sterne and Smith, 2001).

INTERPRETING P-VALUES
ABOVE THE SIGNIFICANCE LEVEL
(E.G.,P>0.050R P>0.01, ETC.)

An inference test that returns a P-value greater than
the selected significance level indicates there is not
enough evidence to attribute the observed difference
to the treatment or observation groups in the study;
chance may have produced an as-great or greater ob-
served difference (Greenland et al., 2016). Regardless
of the magnitude of the P-value or the numerical dif-
ference between treatment or observation groups eval-
uated, a P-value above the selected significance level
(e.g., P > 0.05) does not mean that the treatment or
observation groups are equivalent (Greenland et al.,
2016). Inferences concerning an outcome difference
between treatment or observation groups with a calcu-
lated P-value of 0.15 should not be different from com-
parisons with a P-value of 0.95 based on the P-values
alone because both values lead to the conclusion there
is little evidence of a difference among the study
groups. For almost all studies, the hypothesis centers
around testing whether differences between treat-
ment observation groups can be inferred to be due to
the treatment rather than chance. If the statistical tests
used in the study fail to remove chance as a reasonable
explanation for observed differences (e.g., P-value >
0.05 or P-value > 0.01 depending on the a priori des-
ignated significance level), we do not know whether
the study did not have sufficient replicates to identify a
true difference or whether there is truly no effect of the
treatment or observation group. A P-value above the
significance level does not distinguish between these
2 explanations and no further conclusions should be
drawn from the data. Post hoc power analysis methods
can be used to determine the ability to detect a certain
magnitude of difference between treatment or obser-
vation groups based on observed outcomes; however,
the use of post hoc power analysis may be misleading
and is generally discouraged (Smith and Bates, 1992;
Goodman and Berlin, 1994).
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A TOTAL POPULATION OF
' DISCOVERY EXPERIMENTS (N = 100)

Research output where 10%
of trials have treatment
groups that are truly
different (grey blocks).

Trials where true status is a treatment
difference denoted by grey blocks.

RUN 100 TRIALS

P-value of significance £ 0.05 (X) =
therefore, numerical differences
between treatments in 5% of trials with
no true treatment difference reach the
incorrect conclusion of being
statistically significantly different.

I EIES

Trials identifying a significant difference
between treatments denoted by X.

INTERPRET RESULTS

Of trials with statistical differences
between treatments (P<0.05); 5/13 (38%)
are incorrect (interpretation of statistics
identifies a treatment difference when no
true difference exists).

Of trials with no statistical difference
I between treatments (P>0.05); 2/87
(2%) are incorrect (interpretation of
statistics did not identify a difference,
but a difference truly exists).

B TOTAL POPULATION OF
: CONFIRMATORY EXPERIMENTS (

Research output where 40%
of trials have treatment
groups that are truly different
(grey blocks) .

Trials where true status is a treatment
difference denoted by grey blocks.

RUN 100 TRIALS

P-value of significance = 0.05 (X - X
therefore, numerical differences X
between treatments in 5% of trials with X
no true treatment difference reach the
incorrect conclusion of being
statistically significantly different.

Trials identifying a significant difference
between treatments denoted by X.

INTERPRET RESULTS

Of trials with no statistical difference
between treatments (P=0.05); 8/62
(13%) are incorrect (interpretation of
statistics did not identify a difference,
but a difference truly exists).

Of trials with statistical differences
between treatments (P<0.05); 3/28 (8%)
are incorrect (interpretation of statistics
identifies a treatment difference when no
true difference exists).

Figure 3. Depiction of studies (n = 100) to evaluate the expected results of discovery (A; 10% of trials have treatment or observation groups that are truly
different) or confirmatory studies (B; 40% of trials have treatment or observation groups that are truly different) where trials identifying treatment or observa-
tion group differences are denoted with an “X” and the true state of the natural world is denoted by no difference between observation groups or treatments
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Interpreting P-Values in Light of Sample Size

Statistical results should be interpreted in light of
the overall study design and the sample size. Increasing
the number of replicates in each treatment or observa-
tion group improves the accuracy of the estimate of the
study outcomes, but the amount of replication within
each study group is a compromise between improving
accuracy of the estimate of the effect and the constrain-
ing cost and effort (Voisinet et al., 1997a). The power
of a study to find a difference can be influenced by the
study design, the type of outcome variable being mea-
sured (quantitative vs. qualitative), and the number of
replicates (sample size; Voisinet et al., 1997b). Small
sample sizes may overestimate population variability
and thus make it challenging to identify true differences
of small magnitude; therefore, when small studies show
no statistically significant differences, the findings
should not be overinterpreted because in reality, little
additional information has been gained from the study.

Conversely, when a small study shows a significant
finding, the magnitude of effect between treatment or
observation groups is either truly large or, by chance, is
uncharacteristically large in the specific study population.
In other words, if 2 treatments or risk factors are truly
different but the true magnitude of difference is small, an
underpowered study will find a statistically significant
difference only when the numerical estimates for each
treatment or observation group were obtained from the
opposite tails of the population distributions. The magni-
tude of effect exhibited in studies with small sample size
that report statistically significant differences is likely
greater than the true magnitude exhibited between treat-
ment or observation groups in the larger population. In
addition, a statistically significant difference identified
with a small sample size may also challenge the appro-
priateness of extrapolating study results to other popula-
tions. The same number of animals (or other experimental
units) used in the study may markedly differ from other
samples that could be taken from the larger population,
which may inhibit the ability to extrapolate results to a
larger population (McGrath, 1987). If a study performed
with 6 animals finds a significant difference among treat-
ments, the findings are likely real but at the high end of
the range of possible results obtained by sampling the
population. In addition, it may be unlikely these 6 ani-
mals accurately represent all of the variability present in
the whole population; therefore, the study may need to
be repeated to improve the precision of the estimate and
the external validity of the findings.

Interpreting Confidence Intervals

In addition to or in place of calculating P-values
for a hypothesis test, CI can also be calculated to ex-
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press the degree of uncertainty associated with the
study outcome. Whereas a P-value only provides in-
formation about how incompatible the study data are
with the null hypothesis (given that the study design and
statistical methods are appropriate), a CI provides that
information as well as information about the expected
magnitude of the effect. Commonly reported CI are 90,
95, and 99%. For a 90% CI, if sampling from a pop-
ulation was repeated 100 times, the CI calculated for
each sample population would contain the true popula-
tion parameter of interest (e.g., mean, median, relative
risk, odds ratio, proportion, etc.) 90 times and the true
population parameter would fall outside the CI for each
sample population 10 times. The CI provides a range of
estimates that the study suggests contains the true popu-
lation parameter; however, the CI does not indicate the
probability of the true population parameter within the
interval identified from the study data (Trafimow and
Marks, 2015; Greenland et al., 2016).

Selection of the CI to report is related to the desired
precision and confidence of the estimate, in that greater
confidence can be achieved with wider, less precise CI
whereas, in contrast, narrower CI provide a more pre-
cise estimate with less confidence that the population
parameter lies within the CI. The 95% CI will have a
greater width than the 90% CI, and the difference in
width of the 2 intervals is due to the probability that
the true population value will lie within the CI calcu-
lated from multiple samplings of the same population.
Using a 90% Cl increases the hazard of concluding that
a numerical difference identified from a study sample
reflects a true difference in the population parameter
when, in fact, no difference is present (increased risk of
Type I error) compared with using a 95% CI. A 99% CI
results in the least risk of making a Type I error but the
greatest risk of failing to reject the null hypothesis of
no difference between treatment or observation groups
based on the statistical analysis when a difference truly
exists (increased risk of Type II error).

Within a selected CI (e.g., 95%), a wide CI com-
municates that there is a great deal of uncertainty asso-
ciated with the sample-estimated outcome of interest.
When used to infer whether or not a statistically signif-
icant difference is present, if the CI for the difference
between treatment or observation groups excludes
zero, the study data are considered to be incompat-
ible with the null hypothesis. Another way CI provide
more information than P-values is when a comparison
fails to reach the significance threshold; a CI provides
a plausible magnitude of treatment effect, whereas
a P-value that is larger than the chosen significance
level (e.g., P> 0.05) does not provide any information
beyond the study failing to reject the null hypothesis.



4968

White et al.

Table 1. Glossary of commonly used statistical and research design terms

Term Practical definition Why it is important to researchers

Bias Any factor that could systematically influence the study outcome  If study results are biased, inferences should not be made from
away from the truth. the study.

Blinding Ensuring that no one involved in describing or measuring study ~ Blinding is one of the most effective mechanisms to prevent bias

Confidence interval
(€D

Confounding

Experimental or obser-
vational unit

External validity

Internal validity
Interaction

Least squares mean

Multivariable analysis

Null hypothesis

Numerical differences

variables, care of the animals, or analysis of the data has knowl-
edge of treatment exposure.

An estimation of the proportion of sample population intervals
that would contain the true population a specified percent of the
time. For a 95% CI, if a population was sampled 100 times, the
95% CI from each sample population would encompass the true
population parameter 95% of the time. The larger the sample size,
the more precision there is in the outcome estimated resulting in
a smaller CI.

A specific type of bias when a factor other than the treatment or
observation factor of interest is associated with the study outcome
but this factor is not evenly distributed between treatment or ob-
servation groups.

The smallest independent physical unit that is assigned to a treat-
ment (experimental study) or observed (observational study), and
each experimental or observational unit must be able to receive a
different treatment.

The ability for study results to accurately be generalized to other
populations.

The study design is appropriate for the hypotheses and study vari-
ables while controlling for potential issues related to bias.

The effect of one variable on the outcome of interest is modified
by the effect of another variable.

The result of a statistical analysis to approximate the solution in
a model fitting the outcome and adjusting for other variables in
the model.

A statistical analysis that incorporates the relationship of more
than 1 variable when evaluating the outcome of interest.

The starting assumption for most research; the assumption that
there is no difference among treatment or observation groups.

The outcomes (e.g., mean, median, relative risk, odds ratio, pro-
portion, etc.) of 2 treatment or observation groups differ, but the
difference could be due to chance, bias, or true treatment or ob-
servation group differences.

in outcome assessment and is essential when subjective variables
are the primary outcomes.

Similar to the P-value, a CI provides information about the un-
certainty surrounding an estimate of the numerical difference in
an outcome of interest between sampled treatment or observation
groups as a reflection of the true difference between populations.
In contrast to a P-value, a CI also provides information about the
probable magnitude of effect, which is helpful when considering
the clinical relevance of the results.

When confounding is present (or possible) and not controlled,
distinguishing treatment effects from the effect of the potential
confounder is impossible, leading to an inability to draw firm
conclusions from the research.

The experimental or observational unit for each hypothesis must
be correctly identified by the investigator to ensure that the study
has adequate sample size (e.g., power) and that the statistics tests
were properly performed. Livestock studies often have hierarchi-
cal data with animals nested within pens nested within buildings
nested within farms or with repeated measurements of the same
units being taken over time. These types of hierarchical data
structures makes selection of the correct experimental or observa-
tion unit and the appropriate statistical test more challenging and
may result in different experimental or observational units being
appropriate for different hypothesis in the same study.

Research may be internally valid yet performed in a population
much different from the population of clinical interest; therefore,
extrapolating study results may not be possible.

If the study is not internally valid, conclusions based on results
should not be made.

Interactions are relatively common in biologic studies, and if
present, they can influence interpretation of study outcomes.

Least squares means are calculated from a model that adjusts the
estimated mean based on variables included in the model. This
adjustment should result in a more accurate estimate of the popu-
lation mean than a simple arithmetic mean of the sample data.

Biologic systems are complex, and often, experimental or ob-
servational units are not completely independent. Multivariable
analyses allow for evaluation of effects while adjusting for poten-
tial variables that may be confounding, resulting in more accurate
estimate of effects.

Because the initial assumption is no difference between treatment
or observation groups, if the statistical tests fail to identify a dif-
ference, no real conclusions should be drawn from the findings
(one can say only that the treatments were not statistically dif-
ferent at the magnitude observed with this study sample size).
Failure to disprove the null hypothesis does not indicate that treat-
ment or observation groups are the same, only that they did not
statistically differ in this study.

Study findings may be described as numerically different but the
difference could be due solely to chance and biological variabil-
ity. If a statistical difference was not identified in the presence of
numerical differences between treatment or observation groups,
this means either the sample size was too small to detect a true
population difference of small magnitude or no difference exists.
Conclusions should not be based on numerical differences alone.

Continued
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Term

Practical definition

Why it is important to researchers

P-value

Pseudoreplication

Randomization

Sample size

Statistically significant

Type I error

Type II error

The result of a statistical test that reports the probability of an out-
come difference as great as or greater than that described by the
study data being incompatible with a specific model for the data
(the model typically assumes that study populations are truly not
different as well as making other assumptions).

The error of treating multiple observations from the same experi-
mental or observational unit as replications of independent ex-
perimental or observational units.

A common process of assigning experimental units to treatment
groups used to prevent inadvertent bias based on selection cri-
teria.

The number of experimental or observational units for each treat-
ment or observation factor group within the study.

The results of a statistical test to compare results. The specific
definition of the threshold of “significance” may vary among re-
searchers, but significance () levels of P < 0.05 and P <0.01 are
commonly used.

Based on the statistical analysis, concluding that a difference
among treatment or observation groups exists when there is truly
no difference.

Based on the statistical analysis, failing to reject the null hypoth-
esis of no difference between treatment or observation groups
when a difference truly exists.

The P-value is used to determine statistical significance but can
be interpreted only if the study is internally valid and the inter-
preter has knowledge about the study design and the topic being
investigated. A P-value does not test for bias, study design, or the
appropriateness of applying study results to other populations dis-
similar to the population tested. In addition, it does not measure
the probability that the hypothesis is true or the probability the
data were produced by chance.

Taking multiple samples from a single experimental or observa-
tional unit and treating them as independent samples can lead to
the danger of concluding that a difference exists when that may
not be true.

Randomization is the primary mechanism to mitigate the danger
of selection bias and confounding. Randomization attempts to
prevent a factor outside the study criteria being present in unequal
distributions among the treatment groups.

Adequate sample size is based on the outcome of interest, the
expected variability of the outcome, and the expected magnitude
of effect of the treatment or observation factor on the outcome.
Without adequate sample size, studies could be referred to as un-
derpowered and are unlikely to identify true differences.

Denoting statistical significance describes the probability of ob-
serving a difference as large as or larger than that identified in
the study with the current sample size if there were truly no dif-
ferences between treatment or observation groups (see P-value).
This designation does not differentiate between studies with and
without true differences between study groups, nor does a statisti-
cally significant difference indicate a finding that is necessarily
biologically meaningful, and findings should be interpreted ac-
cordingly. The o selected to be considered statistically significant
should be influenced by the number of comparisons being made,
the type of hypothesis (confirmatory vs. discovery) being tested,
and expert knowledge of the study subject.

Even when treatment or observation groups do not truly differ,
individual studies will identify statistical differences among treat-
ment or observation groups. The frequency with which this error
occurs compared with true parameter differences is based on the
significance (o) level or the CI selected and the underlying prob-
ability that the treatment or observation groups are truly different
(discovery vs. confirmatory research).

Even when treatment or observation groups truly differ|, indi-
vidual studies can fail to identify statistical differences among
study groups. The frequency with which this error occurs is
based on the power of the study (influenced by sample size and
the selected beta or CI).

Biological versus Statistical Significance

The reader of a scientific paper must determine
how much difference between treatment or observa-
tion groups is meaningful enough to support appli-
cation of the findings to specific animal populations.
The magnitude of the difference between treatment or
observation groups that reach the a priori test of be-
ing statistically significantly different is influenced by
sample size (number of replicates in each treatment or
observation group) and the inherent variability within
the outcome being measured. Typically, when a small
study identifies a statistically significant difference,
the difference is relatively large, whereas a very large

study can detect small numerical differences between
treatment or observation groups.

Statistical tests do not provide information about the
importance of numerical differences between treatment
or observation groups. The reader must determine if the
amount of difference between treatment or observation
groups is biologically meaningful and represents a logi-
cal finding. A project evaluating physiological changes
before and after bacterial respiratory disease challenge
in cattle reported several statistical differences in the he-
matologic profile (Hanzlicek et al., 2010). In the study,
there were significantly fewer leukocytes before chal-
lenge (9.58 x 103 cells/uL) compared with the day after
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challenge (12.57 x 103 cells/uL; Hanzlicek et al., 2010).
The findings were statistically significant, yet both find-
ings are located in the middle of the normal laboratory
reference range for leukocytes (7.0 to 14.0 x 103 cells/
uL). These results represent a logical biological process
(increased white blood cells following induced bacterial
respiratory disease) and a statistical difference was iden-
tified; however, a difference of this magnitude is not bio-
logically meaningful if the clinical objective is to identify
a measure that could be used to rapidly diagnose respira-
tory disease. Care should be taken to interpret not just
if there is a difference between treatment or observation
groups but whether or not the difference would influence
a clinical or management decision (Gliner et al., 2002).
The interpretation of numerical differences between
treatments is not always easy, nor is it intuitive. There
are instances when the temptation is to modify ones
interpretation to reflect inherent biases, allowing nu-
merical differences that do not reach a priori established
significance levels or CI tests of statistical significance
to unduly influence clinical or management decisions.
Knowledge about previous research is needed to deter-
mine whether a specific study design was discovery or
confirmatory. If previous research supports the null hy-
pothesis of no difference between study treatment or ob-
servation groups, then a numerical difference in a well-
powered study that does not reach the significance level
may add evidence of no effect. However, if no previous
research has been performed comparing the study treat-
ment or observation groups, then an initial study most
likely serves a discovery role and additional research is
needed to appropriately evaluate outcomes. Although
inferential statistics can give a qualitative indication of
whether or not the study observations are incompatible
with the null hypothesis (below the significance level), if
the null hypothesis of no treatment or observation group
effect cannot be rejected, numerical differences alone
should not be used to drive clinical and management de-
cisions without information about study design, biology,
and previous research (Wasserstein and Lazar, 2016).

SUMMARY AND CONCLUSIONS

A basic understanding of statistical principles is
useful when interpreting studies to enhance decision-
making. Statistics provide a framework to transfer in-
formation from relatively small, well-designed research
studies into information that can be applied to broader
populations to support clinical and management deci-
sions. Table 1 provides a glossary of common statistical
terms encountered in animal research as well as these
terms’ practical importance for readers. It is important
to realize that statistical results should be interpreted in
light of a specific clinical or management question as

White et al.

well as content-specific expertise and knowledge about
biology and study design to best use inferential statis-
tics to support clinical and management decisions.
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