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Abstract

In this work we present a study of the geometric, electronic, vibrational and magnetic

properties of several nanostructured systems for which experimental data call for a theo-

retical understanding. In order to investigate the effect of magnetic dipolar interactions on

the magnetization of nanomagnets arranged in finite lattices, we utilize a phenomenological

classical approach, which is based on the Landau-Lifshitz equation. Dipolar interactions

lead to hysteretic behavior of the magnetization curves and established that the external

field sweep rate, sample temperature, and shape anisotropy play a role in determining the

specifics. Our results (derived from a classical approach) for magnets arranged in a square

lattice suggest that stepped hysteresis curves do not have necessarily a quantum origin

(quantum tunneling of the magnetization). We also find that in the square lattice small

changes in the dipolar strength introduce sudden transitions in the magnetic hysteresis. For

the examination of geometric vibrational and electronic structure of systems of interest,

we turn to density functional theory (DFT), which is the leading technique for modeling

nanoscale systems from first principles. We have applied DFT to either address some old

queries of surface science, such as the dynamics of the CO-chemisorbed Cu(001) surface, or

to contribute to the forefront of hydrogen-based economy through the comprehension of the

growth and diffusion of Pt islets on Ru(0001), or to predict the geometric and electronic

properties of materials to-be-created, as in the case of core-shell bimetallic nanoclusters. In

the case of CO on Cu(001), although the bond has been considered to be weak enough so

as to treat the adsorbate and substrate separately, our calculations are able to reproduce

measurements and provide evidence that the dynamics of the molecule is influenced by the

substrate and vice versa, as well as by intermolecular interactions. Taking into account

the adsorbate-substrate interplay, has furthermore clarified issues that were pending for the



clean surface and led to the correct interpretation of some features in the phonon dispersion

of the chemisorbed surface. DFT has also directed us to the conclusion that the catalytic

properties of few-atom Pt islets on Ru nanoclusters are preserved by the low probability of

these islets to diffuse through the edges of the Ru nanoclusters. Moreover, the analysis of

the Ag27Cu7 nanoalloy from ab initio methods has opened a wide panorama in terms of the

geometry, coordination, energetics, and electronic structure of alloyed phases, in general,

that may aid in the assembling on new materials.



THEORETICAL STUDIES OF ELECTRONIC, VIBRATIONAL,

AND MAGNETIC PROPERTIES CHEMISORBED SURFACES

AND NANOALLOYS

by
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Preface

Provided that the mission of condensed matter physics is to understand the phenomena

that emerge when a large number of nuclei and electrons interact with one another, it

becomes understandable that such a discipline embraces an endless range of problems. Along

with the desired comprehension of the world around us, there exists an unavoidable eagerness

to manipulate these constituents to satisfy all sorts of human needs. Proof of the above is the

fact that this year’s physics Nobel Prize was awarded for the technology that is used to read

data on hard disks and which made possible a striking miniaturization of hard disks. What is

more, the 2007 Nobel Prize in chemistry has been awarded to Gerhard Ertl for his lifetime

work in setting the foundation and development of modern surface chemistry. Surface

science has seen its major advances over the last four decades. It involves, for instance,

surface reconstruction, surface vibrations, chemical reactions, and catalysis at interfaces,

hence playing a vital role in many processes, from the nitrogen fixation to fertilize the soil,

to the reduction of pollutants contained in exhaust gases from vehicles and industries, to

the hydrogen-based economy. There is, of course, a huge number of fundamental challenges

inherent to these disciplines. In terms of the applicability of single-molecule-magnets as

prospective memory devices, for example, serious problem arise from the memory loss due

to the relaxation of the magnetization. This occurs mainly as a consequence of the one-body

quantum tunneling of the magnetization but also from pair magnetic dipolar and exchange

interactions which may be controllable. Moreover, energy converters and exhaust catalytic

converters are exposed unavoidably to carbon monoxide molecules that poison their activity.

For that reason, an unceasing search continues in order to find and understand catalysts

that better manipulate, remove, or tolerate carbon monoxide. In the above spirit, the aim of

our work is to combine experimental investigations with our computational studies, in order

to contribute to the effort of disentangling part of these issues. Naturally, the character

of the information that one wants to extract, the scope that one desires to reach, and the
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resources that one can afford, determine the approach to be followed.

The atomistic modeling of matter is an enormously growing field. Its importance not

only has been recognized in academia but also has largely reached industry and, most impor-

tantly, is nowadays pursuing aspects directly related to the human survival such as health

and the environmental problems aforementioned.1–3 Its central purpose is to provide means

to ”reproduce” experiments and isolate phenomena under highly controlled circumstances,

so that real experiments may be understood. We shall see that part of the work presented

here (Chapter 3, 5, and 6), for instance, falls within this category. The rest concerns another

major use (Chapter 4) of the atomic modeling; namely, although most of the existing results

obtained via atomistic modeling have been performed on the basis of experimental evidence,

known materials, and observed phenomena; prediction of material with specific properties is

becoming one of the most important aims and successful applications of this approach. Fur-

thermore, some research quests are such that accomplishing related experiments is extremely

difficult and/or expensive. The comprehension of the structural phases and dynamics of the

interior of the Earth, for instance, stands among these cases since related experiments must

deal with extremely high pressures difficult to reach in the laboratory,4 whereas ”reaching”

high pressures with the atomistic modeling is a trivial task for solids as it only requires to

reduce the corresponding lattice parameter. Modeling is also useful because it allows us to

obtain fast answers as, for example, the crystal structure of a material, which represents a

lengthy task for experimentalists.

It is important to note that modeling is not the same as simulating; simulation of reality -

strictly speaking - is something that atomistic modeling cannot do. Rather, what atomistic

modeling does is to isolate parts of reality, the parts that one considers important, and

perform computations on those. As clearly exemplified in Chapter 5, it means that very

often one has to make judgments of what parts of reality one would like to isolate to establish

a reasonable model of reality. Indeed, the hardest part of computing is to know what to

compute and to use the tools in a clever way.
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The first step to adequately apply a particular modeling technique is to decide on the

proper energetic description to be used in order to know whether the results generated by a

given computation are reliable or even relevant. Typically, people distinguish three classes of

modeling techniques: empirical or phenomenological,5 semiempirical,6 and ab initio or first

principles,7 or sometimes also called quantum mechanical models. Basically, these are three

energy models that provide different approaches to the description of matter and thus must

be used accordingly to the pursued objective. For example, to study the effect of magnetic

dipolar interactions in the magnetization of finite arrays, first principles calculations are still

prohibitively complex. The microscopic nature of the energy dissipation is still not clear

and represents to date the focus of considerable research.8–10 For that reason, in the case of

magnetic dipolar interactions (Chapter 3), we use the phenomenological classical equation

developed by Landau and Lifshitz11 (later modified by Gilbert12), where the magnetization

rate depends on an unknown damping parameter α that must be obtained experimentally

but which provides a means to compare - at least qualitatively - measurements with theo-

retical calculations for different materials under various experimental conditions. Chapter 1

is thus devoted to present the Landau-Lifshitz and Landau-Lifshitz-Gilbert equations. We

remark that rather complex explicit expressions for α for the different system of local spin

moments arising from p − d kinetic-exchange coupling of the itinerant-spin subsystem in

ferromagnetic semiconductor alloys have been given recently and started opening a window

for ab initio calculations.10 However, to date, the damping coefficient α at a particular T

value must be determined experimentally for each system.

The idea of empirical models for total energy calculations, on the other hand, is to

take some form for the energy and fit it to any data one may have (sometimes that set

of data is quantum mechanically computed). First principles studies, in contrast, leave

the fitting aside and solve the Schrödinger equation for whatever problem is confronted.

Yet, one may also use methods in between, semiempirical, which are essentially quantum

mechanical informed but empirical in the parameters. The tight binding method,13 for
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example, fits into this category since we can think of it as parameterized solutions of the

Schrödinger equation, that is, where the overlap integrals between wavefunction are not

computed but are parameterized, saving computational time significantly. In the work

related to the structure, energetics, and vibrational and electronic properties of chemisorbed

surfaces and nanoalloys (Chapters 4 - 6), however, first principles calculations are feasible

and also necessary to attain the desired information. Indeed, in modern computational

material science and material applications, the first principles Density Functional Theory7

(DFT) represents to date the most important and reliable tool to model a vast diversity of

materials and phenomena. The purpose of Chapter 2 is therefore to provide an overview of

the physics involved in DFT.

This dissertation is divided in four major subjects distributed in Chapters 3 - 6. In

Chapter 3, we investigate the effect of interparticle dipolar interactions on three-dimensional

and two dimensional ensembles magnets, each with spin S = 5, arranged in a cubic and

squared lattice, respectively. In the case of the three and two dimensional systems, an array

of 5 × 5 × 4 and 5 × 5 magnets are considered, respectively. We employed the Landau-

Lifshitz equation to solve for the magnetization curves for several values of the damping

constant, the induction sweep rate, the lattice constant, the sample temperature, and the

magnetic anisotropy.14 Chapter 4 presents our ab initio calculations of the structure and

electronic density of states (DOS) of the perfect core-shell Ag27Cu7 nanoalloy. Analysis of

bond-length, average formation energy, heat of formation of Ag27Cu7 and L12 Ag − Cu

alloys are performed to provide an explanation for the relative structural and electronic

stability of the former with respect to the other nanoalloys in the same family,15 which

may render Ag27Cu7 as a building block of novel materials or as a key model leading us

to recognize the ingredients to create materials with specific properties. Analysis of the

DOS of Ag27Cu7, L12 Ag − Cu alloys and related systems provides insight into the effects

of low coordination, contraction/expansion and the presence of foreign atoms on the DOS

of Cu and Ag. Charge density plots of Ag27Cu7 are examined to attest the results drawn
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from energetic and electronic structure considerations. The purpose of Chapter 5 is to

initiate a study of the high carbon-monoxide-tolerance of recently synthesized Pt islets

deposited on Ru(0001) - in the course of their performance as hydrogen-oxidation catalyst

- by carrying out first principles calculations of the geometry and energetics of the Pt

atoms adsorbed on the Ru(0001). We also calculate the energy barriers for diffusion of Pt

monomers and dimers on the facets and through the edges of a superstructure modeling a

Ru to understand the role played by the edges of Ru nanoparticles into the distribution of

Pt atoms over Ru nanoparticles. Finally, in Chapter 6, the density functional perturbation

theory formalism is applied to investigate the dynamics of one of the pioneering systems that

has served to comprehend the coupling between molecules and metallic surfaces, namely,

c(2x2)-CO/Cu(100). Knowledge of the vibrational dynamics of the system is a prerequisite16

to obtain the preexponential factors17 that determine the rate constants of carbon monoxide

for diffusion, desorption, and dissociation, for instance. Such information, in turn, is thus

closely related to the catalytic reactions mentioned above. Our calculated phonon dispersion

is compared with Helium Atom Scattering data. Softening of the surface Rayleigh wave is

addressed regarding the effect of CO on interlayer relaxations, changes in the force constants,

and effects in other surface modes with respect to the clean surface.

xxi



Chapter 1

Theoretical Methods I : Magnetic
Dynamics

1.1 Introduction : The phenomenological theory of

Magnetic Precession Damping

Technological problems of interest for magnetic materials include reducing energy losses due

to damping and developing materials with higher rates of remagnetization for weak driving

fields.12 The latter problem was of particular interest in the 1950’s because at that time

the so-called core-memory device (by Papian and Forrester) - which crystallized the random

access memory (RAM) concept and preceded the RAM chip - was based on the switching

of the magnetization of ferrite cores by electric currents and one of its major drawbacks was

that reading is a destructive process. So every read access must be followed by a re-write

access to retain the information, becoming a limiting factor for the computation rate.12

The rate of remagnetization in a ferromagnet is determined by damping mechanisms.12

Damping of a physical system is accompanied by a deceleration of the macroscopic motion

and a transfer of the kinetic and potential energy associated with macroscopic motion to

kinetic energy of microscopic thermal motion (heat energy).12 For a magnetization field,

this can be through direct transfer of the energy of macroscopic motion to the energy

of microscopic thermal motion in spin waves or by transfer of macroscopic energy of the

magnetization field to other fields to which it is coupled, e.g., coupling of the magnetization
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field to spin waves, eddy currents,1 and lattice vibrations, and the effects of polycrystalline

structure, strains, and crystal defects such as voids, interstitial atoms, and impurity atoms.

12 Within ferromagnets, when the external magnetic field is not strong enough to eliminate

all domain walls,2 the domain structure plays a leading role in the damping and the local

rate of energy loss may vary by large amounts from point to point.12

As of 1955, a number of different damping mechanisms had been studied but (except

for eddy currents in metallic ferromagnets) the dominant mechanisms had not yet been

identified.12 The Landau-Lifshitz phenomenological damping term in common use in 1955

could be used when the damping was small, but encountered problems for large damping.12

In order to identify and understand the dominant damping mechanisms, Gilbert provided a

new approach to the phenomenological theory by Landau-Lifshitz of the magnetic precession

damping, which I will follow in the subsequent sections. Both approaches converge in the

limit of small damping, as we shall see. The work was done in his PhD thesis (unpublished)

in 1956 and reviewed later in 2004.12

By extending to electronic spin systems the Wangsness-Bloch model of nuclear spin

magnetic relaxation by magnetic dipole coupling to a heat bath,18 Fredkin and Ron showed

that the damping term could be derived for large spin values and κ = ~γH/kBT � 1, where

~ and kB are Planck’s constant divided by 2π and Boltzmanns’ constant, respectively, and in

our case H = Bc,eff
i .19 To the extent that electric quadrupole interactions could be neglected,

α varies inversely with T for κ � 1, but depends upon κ otherwise.19 More recently,

a different derivation of the Gilbert damping term was derived from a spin Hamiltonian

containing the interaction between the spin and the radiation field, which is induced by the

precessing magnetization itself.8,9 In that case, no explicit T dependence of α was given.

1An eddy current is that caused within a conductor when it moves across a stationary magnetic field, as
well as when it is stationary and encounters a varying magnetic field. The current creates electromagnets
with magnetic fields that oppose the effect of the applied magnetic field (Lenz’s law). The stronger the
applied magnetic field, the greater the greater the currents developed and the greater the opposing field.

2A domain wall is an interface separating magnetic domains, that is, a region within a material which
has uniform magnetization.
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1.2 Larmor Precession: Undamped and uncoupled mag-

netization in an external magnetic flux density

The starting point to understand magnetization processes is the phenomenological theory of

the Larmor precession, which refers to the precession of the magnetic moment of a particle

about the direction of an undamped and uncoupled magnetization field.3 Classically, if a

current density J(x) is in an external magnetic-flux density B(x), it experiences forces

and torques according to Ampères’s laws. The elementary torque law implies that the total

torque on the current distribution is20

N =
dL

dt
=

∫
x× (J ×B) d3x (1.1)

The angular momentum, L, is defined as L = I · ω, where I is the inertia tensor and

ω = [ωi] is a vector along the axis of rotation. The magnitude of ω is ω = dψ
dt

, where ψ is

the angle between two lines perpendicular to the axis of rotation, one fixed in the volume

containing the localized current distribution and the other fixed in space. If the external

magnetic induction varies slowly over the region of the current, a Taylor series expansion can

be utilized to find the dominant terms in the torque.20 A component of B can be expanded

around a suitable origin,

Bx(x) = Bk(0) + x ·∇Bk(0) + . . . (1.2)

By inserting (1.2) into (1.1), we get an expansion for the torque, where the zeroth-order

term in the expansion contributes. Keeping only this leading term, we have20

N =

∫
x′ × [J ×B(0)] d3x′ (1.3)

Writing out the triple product, we get

N =

∫
[(x′ ·B)J − (x′ · J)B] d3x′ (1.4)

3An uncoupled field is a field for which there is no coupling to other fields, such as the elastic strain field.
An undamped field is a field for which internal energy losses (transfer of energy from macroscopic motion
to microscopic thermal motion) and energy loss by transfer of energy to other fields are neglected.
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The second integral vanishes for a localized steady current distribution.20 Then, accord-

ing to the following relation for each Cartesian component20

B(0) ·
∫

x′Jid
3x′ ≡ −1

2
[B(0)×

∫
(x′ × J) d3x′]i, (1.5)

the first integral can be written as20∫
(x′ ·B)J d3x′ = −1

2
[B(0)×

∫
(x′ × J) d3x′], (1.6)

The leading term in the torque is therefore

N =
dL

dt
= µ×B(0) (1.7)

where µ is the magnetic moment of a magnetic dipole:20

µ =

∫
(x× J) d3x (1.8)

An angular moment is also associated with the current density J(x). The proportionality

constant between the magnetic dipole moment and the angular momentum of J is known

as the gyromagnetic ratio, γ,

µ = γL (1.9)

Combining (1.8) and (1.9), we obtain that

dµ

dt
= γ µ×B, (1.10)

The first identity of Eq.1.1 remains valid in quantum mechanics when L and N are

reinterpreted as operators in a Hilbert space, and can be used for spin systems by replac-

ing the orbital angular momentum operator with the operator for the angular momentum

associated with an electron spin.

The role of spin in the one-electron Dirac’s theory is brought into focus if we evaluate

the time derivative of the four-dimensional analogues of the Pauli spin matrices, σ, for an

electron exposed to a vector potential A but no potential φ .21 Its Hamiltonian is thus given

by21

H = cα · (p +
e

c
A) + βmc2 (1.11)

4



where c is the speed of light; e, m, and p are the charge, mass and momentum of the

electron; and α and β are 4x4 matrices specified in terms of the 2x2 Pauli matrices; which

in the standard representation are expressed as21

α =

(
0 σ
σ 0

)
,

β =

(
1 0
0 1

)
,

By a sequence of algebraic manipulations, it is possible to obtain that21

H
dΣ

dt
+
dΣ

dt
H = −2ecΣ×B (1.12)

where

Σ =

(
σ 0
0 σ

)
,

In the nonrelativistic approximation H ≈ mc2, thus, the equation of motion for the

one-electron spin operator S = ~
2
Σ becomes21

dS

dt
= − e

mc
S ×B (1.13)

A straightforward interpretation of this equation may be given: The time rate of the

intrinsic angular momentum (spin) equals the torque produced by the applied magnetic filed.

If a magnetic moment µ is associated with the spin, the torque is µ × B.21 Comparison

with (1.13) shows that in the nonrelativistic approximation the magnetic moment operator

for an electron is21

µ = − e

mc
S = − e

2mc
gsS = γeS (1.14)

where γe is the gyromagnetic ratio of electrons and gs is the electron spin g -factor; which,

except for small radiative corrections, the value gs = 2, is in agreement with the experimental

measurements.21

In brief, one can obtain for electrons an equation parallel to that obtained in classi-

cal electrodynamics for the magnetic dipole moment of a current charge density, with the
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gyromagnetic ratio for an electron spin,

dµ

dt
= γeµ×B. (1.15)

Thereby, from here on, no subscript will be used for the gyromagnetic ratio

1.3 Landau-Lifshitz equation

The first dynamic model for the precessional motion of the magnetization (or magnetic

moment density) was proposed by Landau and Lifshitz in 1935. They suggested that the

external magnetic field of Eq. (1.10) should take into account quantum-mechanical and

anisotropy effects by means of an effective field Beff .22 The applicability of Eq.1.10 is thus

not limited to the torque exerted by an external magnetic field. Any torque on a magnetic

moment, M , can be written in the form of Eq.1.10 if we define an ”effective” magnetic

field,12

Beff = −[i
∂U(M)

∂Mx

+ j
∂U(M)

∂My

+ k
∂U(M)

∂Mz

] ≡ −∂U(M)

∂M
, (1.16)

where U(M) is the potential energy of the system with respect to the work done by rotating

the moment against whatever forces are present. The potential energy for a magnetic

moment M in a magnetic field Beff has the form

U = −M ·Beff . (1.17)

For a discrete set of magnetic moments, M i, where i = 1, 2, ., n, the equations of motion

become
dMi

dt
= γeMi ×Beff . (1.18)

where

Beff
i = −∂U(M 1,M 2, ...,Mn)/∂M i (1.19)

is the effective field acting on the ith moment and U(M 1,M 2, .,Mn) is a generalized po-

tential energy that takes into account all interactions that can exert torque on the individual

moments.12

6



Equations (1.18) and (1.19), interpreted as classical equations for a system of discrete

magnetic moments M i at points ri in space, can be transformed into classical field equations

by introducing a continuous field M(r) and setting M(ri) = M i/∆(ri), where ri is the lo-

cation of a lattice cell within which an electron with an unpaired spin is localized and ∆(ri)

is the volume of a lattice cell.124 It is assumed that the field is smooth on an atomic scale,

i.e., that it does not have any ”wiggles” over distances smaller than a few lattice cells (other

than discontinuities that may occur at crystal boundaries) or the wiggles can be smoothed

out by averaging over several adjacent lattice cells.12 Substituting M(ri) = M i/∆(ri) into

(1.18) and (1.19) and going into the limit ∆(ri)→ 0, discrete arrays of magnetic moments

become magnetization fields, sums become integrals, functions, F (M 1,M 2, ...,Mn), of a

discrete array of magnetic moments M i become functionals, F [M(r)], of the continuous

field M(r),5 and partial derivatives, ∂U(M 1,M 2, .,Mn)/∂M i, become functional deriva-

tives, δF [M(r)]/δM(r), defined by (see Appendix A)

δF [M(r)] =

∫
dr′

δF [M(r)]

δM(r′)
δM(r′), (1.20)

for arbitrary infinitesimal vector field δM(r). This leads to a classical equation of motion

for an undamped magnetization field12

∂M(r, t)

∂t
= γM(r, t)×B(r, t) (1.21)

where

B(r, t) = −δU [M(r, t)]

δM(r′)
(1.22)

4This step assumes a model for which the spins are in a lattice array and that electrons with unpaired
spins can be assigned to localized orbitals in the lattice cells. The generalization of this model to amorphous
solids becomes more complicated, but presents no conceptual problems. The model would not be applicable
to electrons in conduction bands, for which the orbitals cannot be well-localized. However, the electrons
with unpaired spins that contribute to the magnetization fields of ferromagnets are all in narrow energy
bands corresponding to d and f orbitals for which a representation of the wave function for a crystal using
localized orbitals is a good approximation. A rigorous justification of the model would require a general
theory of localized orbitals in solids, which was not available in 1955.12

5A functional F [f(x)] differs from a function f(x) in that a particular value of a function f(x) depends
on a particular value of the numerically valued independent variable x, whereas a particular value of a
functional F [f(x)] depends on the entire set values of the function f(x).
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Figure 1.1: (left) Undamped gyromagnetic precession (right) damped gyromagnetic preces-
sion proposed by Landau and Lifshitz

is the effective field, and U [M(r, t)] is the generalized potential energy of the magnetization

field.12, which may include the energy of interaction with the external field, the demagne-

tizing energy, the exchange energy, the anisotropy energies, and the magnetoelastic energy.

12

Substituting the external field by an effective field preserves the fact that the precessional

dynamics of the magnetization results conservative, whereas, in reality, energy dissipation

takes place within the dynamic magnetization processes. The potential energy of a magnetic

moment (see Eq. 1.17) shows that it tends to orient itself parallel to the field in the position

of lowest potential energy. Landau and Lifshitz introduced dissipation in a phenomenological

way by considering an additional torque that aligns the magnetization in the direction of

the effective field (see Fig.1.1). The additional torque is constructed so that the magnitude

of the magnetization is preserved:

δM

δt
= −γM ×Beff − λ

M
M × (M ×Beff ), (1.23)

where M = |M | and λ is a phenomenological constant characteristic of the material.
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1.4 Landau-Lifshitz-Gilbert equation

Details of the mechanisms for the transfer processes are too complex to be taken into ac-

count explicitly in the field equations. However, we can introduce into the field equations a

phenomenological damping term that contains damping parameters that correspond to the

rate of energy transfer and can be determined experimentally without knowing the details

of the transfer mechanisms. The dependence of experimentally determined damping param-

eters on parameters that characterize different materials can often be used to identify the

different mechanisms and how they might be controlled.12 Damping of a physical system

generates a force in opposition to the macroscopic driving force. When the two forces bal-

ance, the energy gain from the driving force is balanced by the energy loss from the damping

force and a steady state is maintained.12 If the damping force always increases or decreases

as the rates of change of the dynamical variables that characterize the macroscopic motion

increase or decrease, then when the driving force is constant the rates of change of the

dynamical variables will increase or decrease until the driving and damping forces are equal

and a steady-state condition is attained.12 The simplest case, which commonly occurs when

there are many different damping forces and resonance phenomena do not occur, is that the

damping forces, f , is directly proportional to the rates of change of the dynamical variables

of the system.12 For a system of discrete particles at positions {ri}, occupying a volume ∆V ,

and with a magnetic moment M(ri, t)∆V , the dynamical variable is M(ri, t), ψ = x, y, z,

and the damping forces are

f(ri, t) = −η∂M(ri, t)

∂t
, (1.24)

where η is a damping parameter characteristic of the material.

However, for the macroscopic magnetization field in which we are interested, they can

be written as

f(r, t) = −η∂M(r, t)

∂t
(1.25)

A common way of introducing a damping term of this kind into classical equations of
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motion for a physical system is to use a Lagrangian formulation of the equations of motion

for the case when not all the forces acting on the system are derivable from a potential. In

that case Lagrange equations for (1.24) can always be written in the form23

d

dt

( ∂L

∂Ṁ(ri, t)

)
− ∂L

δM(ri, t)
= Qi (1.26)

or, for the macroscopic magnetization field, as

d

dt

( δL

δṀ(r, t)

)
− δL

δM(r, t)
= Q (1.27)

where

L = T [M(r, t),Ṁ(r, t)]− U [M(r, t)] (1.28)

is the Lagrangian containing the potential of the conservative forces, Q represents the forces

in the not arising from a potential, and M(r, t) is the the dynamical variable. Damping

forces as (1.24) may be derived in terms of a function R, known as Rayleigh’s dissipation

function,23 which for a system of discrete particles is defined as

R =
1

2

∑
i

η
(∂M(ri, t)

∂t

)2

, (1.29)

while, for the macroscopic magnetization field in which we are interested, it becomes a

functional(see Appendix A):

R[M ] =
η

2

∫ ∫
dr′dr Ṁ(r, t) · Ṁ(r′, t) =

η

2

( ∫
dr′Ṁ(r′, t)

)( ∫
drṀ(r, t)

)

=
η

2

( ∫
dr′Ṁ(r′, t)

)( ∫
dr′Ṁ(r′, t)

)
(1.30)

where Ṁ(r, t) = ∂M(r,t)
∂t

.

Let us now calculate the differential of R, dR, due to an infinitesimal change δṀ(r′, t)

R[Ṁ + δṀ ] =
η

2

( ∫
dr′[Ṁ(r′, t) + δṀ(r′, t)]

)( ∫
dr′[Ṁ(r′, t) + δṀ(r′, t)]

)
10



=
η

2

( ∫
dr′[Ṁ(r′, t) + δṀ(r′, t)]

)( ∫
dr[Ṁ(r, t) + δṀ(r, t)]

)

=
η

2

∫ ∫
dr′dr

(
Ṁ(r′, t)Ṁ(r, t)+δṀ(r′, t)Ṁ(r, t)+δṀ(r, t)Ṁ(r′, t)+δṀ(r′, t)δṀ(r, t)

)
(1.31)

Keeping only the leading terms in δr′ and δr,

R[Ṁ + δṀ ] = R[Ṁ ] +
η

2

[( ∫ ∫
dr′drδṀ(r′, t)Ṁ(r, t)

)
+

+
( ∫ ∫

dr′drδṀ(r, t)Ṁ(r′, t)
)]
. (1.32)

Interchanging again r′ and r in the second integral, one obtains

dR[Ṁ ] = R[Ṁ + δṀ ]−R[Ṁ ] =
η

2

(
2

∫ ∫
dr′drδṀ(r′, t)Ṁ(r, t)

)
(1.33)

Hence, from (A.12)
δR[Ṁ(r, t)]

δṀ(r′, t)
= ηṀ(r, t) (1.34)

From this result and (1.25), it is clear that

f(Ṁ(r, t)) = −δR[Ṁ(r, t)]

δṀ(r′, t)
(1.35)

The component of the generalized force resulting from the dissipation force is then given

by

Q = f(Ṁ(r, t)) · δṀ(r′, t)

δṀ(r, t)
= −δR[Ṁ(r, t)]

δṀ(r′, t)

δṀ(r′, t)

δṀ(r, t)
= −δR[Ṁ(r, t)]

δṀ(r, t)
(1.36)

The Lagrange equations now become

d

dt

( δL

δṀ(r, t)

)
− δL

δM(r, t)
+
δR[Ṁ(r, t)]

δṀ(r′, t)
= 0 (1.37)
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and R is now a Rayleigh dissipation functional. The parameter η, in fact, quantifies

the average damping throughout the sample. Namely, equation (1.30) implies that the

distribution of energy loss due to damping mechanisms (the distribution of heat energy

generated locally by damping) is uniform. Actually, this is not the case because local

damping can be caused by a variety of nonuniform mechanisms: rapid spin reorientation

in moving domain walls, random size and orientation of crystal grains, crystal defects,

impurities, local strains, etc. A dissipation functional of the form

R[M ] =
1

2

∑
i,j

∫ ∫
dr′dr Ṁ i(r, t) ηij(r, r

′) Ṁ j(r
′, t) (1.38)

would take nonuniform damping into account; however, it is of little use because it is

not possible to calculate or measure the matrix damping function ηij(r, r
′) that replaces the

single damping parameter η.12

Substituting (1.28) into (1.37) in order to separate the kinetic and potential energy

contributions and using (1.34) and (1.22), we obtain

d

dt

δT [M ,Ṁ ]

δṀ
− δT [M ,Ṁ ]

δM
+ [−B(r, t) + ηṀ(r, t)] = 0. (1.39)

At this point, one encounters the problem that the kinetic energy T of a classical La-

grangian for a rotating object depends on dynamical variables that are not defined for

quantum spin operators. Gilbert did not derive an expression for the kinetic energy of a

rotating body in classical mechanics that would correspond to the spin of an elementary par-

ticle in quantum mechanics in a way that made physical sense.12 Instead, he circumvented

by means of the following argument.

If we set η = 0 in (1.39) then it becomes an equation for an undamped magnetization

field, and should, therefore, be equivalent to (1.21).12 We note that the damping term in

(1.39) is an added damping field that can reduce the effective magnetic field and change

the torque exerted on the magnetization field. It is reasonable to argue that, when η 6= 0,

adding this same damping term to the effective field for the equation of motion for an
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undamped magnetization field given by (1.21) gives a valid equation of motion for a damped

magnetization field as follows,

∂M(r, t)

∂t
= γM(r, t)× [B(r, t)− ηṀ(r, t)] = γM ×B − α

M
M × ∂M

∂t
(1.40)

where α = γηM . It is of interest to compare (1.40) with the Landau-Lifshitz equation

(1.23). Equation (1.23) can also be written in the same form as (1.40), by substituting the

equality M × B = γ−1[∂M
∂t

+ ( λ
M

)M ×M × B only in the second term of right side of

(1.23)
∂M(r, t)

∂t
= γ

(
1 +

λ2

γ2

)
[M ×B]− λ

γM

(
M × ∂M

∂t

)
(1.41)

= γ∗[M ×B]− α

M

(
M × ∂M

∂t

)
(1.42)

respectively, where

α =
λ

γ
= ηγM (1.43)

and

γ∗ = γ(1 + α2). (1.44)

We observe that the damping terms in Landau-Lifshitz and Gilbert equations are identi-

cal, the only difference between the two being that as the dimensionless damping parameter

α increases in the Landau-Lifshitz form, the gyromagnetic ratio γ∗ and, hence, the rate

of precession of the spin also increases. The difference between the two equations is small

when α2 � 1. For example, when ferromagnetic interactions are present, α/γ is generally

expected to be � 1.24

13



Chapter 2

Theoretical Methods II: Matter from
first principles

2.1 Introduction

2.1.1 The full quantum-mechanical problem

From the point of view of condensed matter physics, matter presents itself as an ensemble of

particles which may be either in the gas or the condensed phase: solid or liquids. Ensembles

of particles may be homogeneous or heterogeneous, ordered of amorphous. However, in

all cases we can unambiguously describe the system by a number of nuclei and electrons

interacting through Coulomb forces. Formally, we can write the Hamiltonian of such a

system in the following general form:25

Ĥ = −
P∑
I=1

~2

2MI

∇2
I −

N∑
i=1

~2

2m
∇2
i

+
e2

2

P∑
I=1

P∑
J 6=I

ZIZJ
|RI −RJ |

+
e2

2

N∑
i=1

N∑
j 6=i

1

|ri − rj|
− e2

P∑
I=1

N∑
i=1

ZI
|RI − ri|

(2.1)

where {RI}, I = 1, ..., P , is a set of P nuclear coordinates and {ri}, i = 1, ..., N , is a set

of N electron coordinates. ZI and MI are the atomic numbers and masses of the atomic

nucleus, respectively. Since electrons are fermions, the total electronic wave function must

be antisymmetric with respect to exchange of two electrons. Nuclei can be fermions, bosons
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or distinguishable particles, depending on the particular problem under examination. All the

ingredients are perfectly known and, in principle, all the properties Schrödinger equation:

ĤΨn(r,R) = EnΨn(r,R) (2.2)

In practice, however, this problem is almost impossible to treat in a full quantum-

mechanical framework. Only in a few cases a complete analytic solution is available, and

numerical solutions are also limited to a very small number of particles.25

There are several features that contribute to this difficulty. First, the Hamiltonian

in Eq. 2.1 describes a multicomponent many-body system, where each component (each

nuclear species and the electrons) obeys a particular statistics. Second, the complete wave

function cannot be easily factorized because of coulombic correlations. In other words, the

full Schrödinger equation cannot be easily decoupled into a set of independent equations so

that, in general, we have to deal with (3P + 3N) coupled degrees of freedom. The usual

choice is to resort to some sensible approximations. The large majority of the calculations

presented in the literature are based on (i) the adiabatic separation of nuclear and electronic

degrees of freedom (adiabatic approximation) and (ii) the classical treatment of the nuclei.25

2.1.2 The adiabatic or Born-Oppenheimer approximation: De-
coupling the electronic and nuclear problem

This approximation is based on the fact that the timescale associated to the motion of the

nuclei is usually much slower than that associated to electrons. In fact, the small mass of

the electrons as compared to that of the protons (the most unfavorable case) is about 1 in

1836, meaning that their velocity is much larger.1 Unlike in thermodynamics, in quantum

mechanics adiabatic is said of an infinitely slow change in the Hamiltonian of a system. 2

This approximation is then called ”adiabatic” because the nuclear repulsion term of the

1The velocity is proportional to the typical frequency associated to either electrons or nuclei, which in
turn is proportional to m− 1

2

2This definition is closer to the thermodynamic concept of a ”quasistatic process”
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total Hamiltonian, (2.1), suffers an infinitely slow change according to the time-scale of the

electrons and the nuclei can be thus considered fixed particles in the electronic time-frame.

In this spirit, it was proposed in the early times of quantum mechanics that the electrons

can be adequately described as following instantaneously the motion of the nuclei, staying

always in the same stationary state of the electronic Hamiltonian.25 This stationary state

will vary in time because of the coulombic coupling of the two sets of degrees of freedom but

if the electrons were, for example, in the ground state, they will remain there forever. This

means that as the nuclei follow their dynamics, the electrons instantaneously adjust their

wave function according to the nuclear wave function and thus, their degrees of freedom are

decoupled. Under the above conditions, the Born-Oppenheimer approximation comes in the

fact that the full wave function can be factorized in the following way:25

Ψ(R, r, t) = Θm(R, t)Φm(R, r) (2.3)

where the electronic wave function Φm(R, r), normalized for every R, is the mth sta-

tionary state of the electronic Hamiltonian.

2.1.3 The decoupled electronic problem

The electronic Hamiltonian mentioned above,

ĥ = T̂e + Ûee + V̂ne = Ĥ − T̂n − Ûnn, (2.4)

is obtained by considering that the kinetic energy operator, T̂n, vanishes provided that the

nuclear positions {RI} are fixed in the electronic problem under the Born-Oppenheimer

approximation and by dropping the potential nuclear operator, Ûnn, since it becomes a

constant for the same reason. T̂e and Ûee are the kinetic and potential energy operators of

electrons, and V̂ne the electron-nuclear interaction, all explicitly written in (2.1).

The corresponding eigenvalue is noted εm(R):

ĥ Φm(R, r) = εm(R)Φm(R, r)
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In this stationary electronic Schrödinger equation, the nuclear coordinates R enter as

parameters. Also, in principle, m can be any electronic eigenstate. In practice, however,

people conform themselves to obtain the solution for the ground state (m = 0) for the sake

of simplicity and because it is enough to obtain many properties of matter.

2.1.4 The decoupled nuclear problem

Within the Born-Oppenheimer approximation, the lattice-dynamical properties of a sys-

tem are determined by the eigenvalues ε and eigenfunctions Θ(R, t) of the time-dependent

Schrödinger equation26

i~
∂Θ(R, t)

∂t
= [T̂n + E(R)]Θ(R, t), (2.5)

or the stationary version,

[T̂n + E(R)]Θ(R) = εΘ(R). (2.6)

where E(R) = Ûnn + εm(R) is the position-ion-dependent energy of the system, which is

often referred to as the Born-Oppenheimer energy surface. In practice, E(R) is the total

ground-state energy of a system of interacting electrons moving in the field of fixed nuclei,

whose Hamiltonian - which acts onto the electronic variables and depends parametrically

upon R - is simply the electronic Hamiltonian plus the constant term accounting for the

nuclear potential energy, Ûnn. As we shall see layer, the calculation of the equilibrium

geometry and of the vibrational properties of a system thus amounts to computing the first

and second derivatives of the Born- Oppenheimer energy surface, which in turn requires to

solve the electronic problem, presented in the next section.

2.1.5 Range and breakdown of the Born-Oppenheimer approxi-
mation

This approximation does not always hold. Some molecules, for example, may have the nu-

clei moving too fast and/or the electrons moving too slow, in which case the vibration of

the nuclei may couple to the electronic motion, the so-called vibronic coupling, and give
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rise to non-radiative transitions between different electronic eigenstates. That is, radiative

processes lead to the emission of light. The non-radiative simply redistribute the adsorbed

energy among electronic excitations, i.e., the Auger effect, and lattice vibrations, ultimately

converting the adsorbed light into heat. In the Born-Oppenheimer approximation, tran-

sitions can only arise through coupling with an external electromagnetic field and involve

the solution of the time-dependent Schrödinger equation. This has been achieved, espe-

cially in the linear response regime, but also in a non-perturbative framework in the case

of molecules in strong laser fields.25 However, this is not the scope of this section, and

electronic transitions will not be addressed.

2.2 Density Functional Theory: The electronic prob-

lem

2.2.1 Early instructive approaches

Introduction

The first key problem about the structure of matter is to solve the Schrödinger equation for

a system of N interacting electrons in the external coulombic field created by a collection

of atomic nuclei (and may be some other external field). It is a very difficult problem in

many-body theory and, in fact, the exact solution is known only in the case of the uniform

electron gas, for atoms with a small number of electrons and for a few small molecules.

These exact solutions are always numerical. At the analytic level, one always has to resort

to approximations.25 However, the effort of devising schemes to solve this problem remains a

very active field since the early establishment of quantum mechanics because the knowledge

of the electronic ground state of a system gives access to many of its properties, for example,

relative stability of different structures/isomers, equilibrium structural information, mechan-

ical stability and elastic properties, pressure.temperature (P-T) phase diagrams, dielectric

properties, dynamical (molecular or lattice) properties such as vibrational frequencies and

spectral functions, (non-electronic) transport properties such as diffusivity, viscosity, ionic
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conductivity and so forth. Excited electronic states (or the explicit time dependence) also

give access to another wealth of measurable phenomena such as electronic transport and

optical properties.

The Hartree approximation: electrons as distinguishable particles

The first approximation may be considered the one proposed by Hartree.25 Such approxi-

mation artificially sets that electrons are not correlated; that is, regardless of their charge

and fermionic nature, their probability to be at a particular state (spin and position) is not

affected by that of the other electrons. If that were the case, then the many-electron wave

function can be written as a simple product of one-electron wave functions. Each of these

verifies a one-particle Schrödinger equation in an effective potential that takes into account

the interaction with the other electrons in a mean-field way (we omit the dependence of the

orbitals on R and the subscript m and consider only the electronic ground state):25

Φ(R, r) = Πiφi(r) (2.7)

Using the variational principle, one may focus on obtaining the ground state (m = 0)

of the electronic Hamiltonian (2.4).27 Namely, we require ĥ to be stationary with respect

to variations of the complete set of orbitals (2.7) from normality. Expressing the constraint

of normalization,
∫
dr|φi|2= 1, for each φi with a Lagrange multipliers εi, the stationary

condition,
δ

δφ∗i

[
< ĥ > −εi

∫
dr φi φ

∗
i

]
= 0, (2.8)

where < ĥ >=< Φ∗|ĥ|Φ >, leads to the one-electron Hartree equations for each φi(r),28(
− ~2

2m
∇2 + V

(i)
eff (R, r)

)
φi(r) = εiφi(r) (2.9)

where the effective potential on the i-electron is

V
(i)
eff (R, r) = V (R, r) +

∫ N∑
j 6=i

ρj(r
′)

|r − r′|
dr′ (2.10)
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and the electronic density associated with particle j

ρj(r) = |φj(r)|2 (2.11)

The second term in the right-hand side (rhs) of equation (2.10) is the classical elec-

trostatic potential generated by the charge distribution
N∑
j 6=i

ρj(r). Notice that this charge

density does not include the charge associated with particle i, so that the Hartree approxima-

tion is (correctly) self-interaction-free. In this approximation, the energy of the many-body

system is not just the sum of the eigenvalues of equation (2.9) because the formulation in

terms of an effective potential makes the electron-electron interaction to be counted twice.

The correct expression for the energy is

EH =
N∑
n=1

εn −
1

2

N∑
i6=j

∫ ∫
ρi(r)ρj(r

′)

|r − r′|
drdr′ (2.12)

The set of N coupled partial differential equations (2.9) can be solved by minimizing

the energy with respect to a set of variational parameters in a trial wave function or, alter-

natively, by recalculating the electronic densities in equation (2.11) using the solutions of

equation (2.9), then casting them back into the expression for the effective potential (equa-

tion 2.10), and solving again the Schrödinger equation. This procedure can be repeated

several times, until self-consistency in the input and output wave function or potential is

achieved. This procedure is called self-consistent Hartree approximation.

The Hartree-Fock approximation: Pauli’s exclusion principle

A step beyond the Hartree approximation is to include the Fermi correlation among elec-

trons, which so far have been treated as distinguishable particles whereas they obey Pauli

exclusion principle (Fermi statistics for electrons). The Pauli principle requires the wave-

function, Φ(R, r), to be antisymmetric under interchange of any two electrons, which the

Hartree wavefunction (2.7) does not satisfy. An antisymmetric many-electron wavefunction
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can be constructed via a Slater determinant of the one-electron wavefunctions:

Φ(R, r) =
1√
N !

∣∣∣∣∣∣∣∣∣
φ1(r1, σ1) φ1(r2, σ2) . . . φ1(rN , σN)
φ2(r1, σ1) φ2(r2, σ2) . . . φ2(rN , σN)

...
...

. . .
...

φN(r1, σ1) φN(r2, σ2) . . . φ2(rN , σN)

∣∣∣∣∣∣∣∣∣ (2.13)

This wave function introduces particle exchange in an exact manner.25 The approximation

is called Hartree-Fock (HF) or self-consistent field (SCF) approximation and has been for a

long time the way of choice of chemists for calculating the electronic structure of molecules.

In fact, it provides a very reasonable picture for atomic systems and, although many-body

correlations (arising from the fact that, owing to the two-body Coulomb interactions, the

total wave function cannot necessarily be written as an antisymmetrized product of single-

particle wave functions) are completely absent, it also provides a reasonably good description

of inter-atomic bonding.25

Using again the variational principle in reference to the constraint of normalization of

each φi to make ĥ stationary with respect to variations of the complete set of orbitals in

(2.13) leads to the one-electron ground-state Hartree-Fock equations28

(
− ~2

2m
∇2 + V (R, r) +

∫ N∑
σ′,j=1

ρj(r
′, σ′)

|r − r′|
dr′

)
φi(r, σ)

−
N∑
j=1

( ∑
σ′

∫
φ∗j(r

′, σ′)φi(r
′, σ′)

|r − r′|
dr′

)
φj(r, σ) =

N∑
j=1

λijφj(r, σ) (2.14)

Hartree-Fock equations look the same as Hartree equations, except for the fact that the

exchange integrals introduce additional coupling terms in the differential equations and the

self-interaction cancels exactly. Nowadays, the Hartree-Fock approximation is routinely used

as a starting point for more elaborated calculations.25
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2.2.2 The electronic density and correlations

Parallel to the development of the Hartree-Fock approach Thomas and Fermi proposed,

at about the same time as Hartree (1927-1928), that the full electronic density was the

fundamental variable of the many-body problem and derived a differential equation for the

density without resorting to one-electron orbitals.25 The Thomas-Fermi (TF) approximation

was too crude because it did not include exchange and correlation effects and was also

unable to sustain bound states because of the approximation used for the kinetic energy of

the electrons. However, it set up the basis for the later development of density functional

theory (DFT).25

The total ground state energy of an inhomogeneous system composed by N interacting

electrons is given by by the expectation value of the electronic Hamiltonian (2.4)

E =< Φ|T̂e + V̂ne + Ûee|Φ >=< Φ|T̂e|Φ > + < Φ|V̂ne|Φ > + < Φ|Ûee|Φ > (2.15)

where |Φ > is the unknown N -electron ground state wavefunction but for which no

particular form is assumed this time, so that it includes the Fermi and Coulomb correlations.

Let us concentrate now on the electron-electron interaction term, Uee, which is the one that

introduces many-body effects.

Uee =< Φ |Ûee| Φ >=< Φ |1
2

N∑
i=1

N∑
j 6=i

1

|ri − rj|
| Φ >

=
1

2

∫ ∑
σ,σ′

< Φ|Ψ†
σ(r)Ψ†

σ′(r
′)Ψσ′(r′)Ψσ(r)|Φ >

|r − r′|
drdr′ =

∫
ρ2(r, r

′)

|r − r′|
drdr′ (2.16)

where ρ2(r, r
′) is the two-body density matrix expressed in real space, being Ψ and Ψ†

the creation and annihilation operators for electrons, which obey the anti-commutations

relations {Ψσ(r),Ψ†
σ′(r′)} = δσ, σ′δ(r − r′).25 We then introduce the two-body direct corre-
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lation function g(r, r′) in the following way25

ρ2(r, r
′) =

1

2
ρ(r, r)ρ(r′, r′)g(r, r′) (2.17)

where

ρ(r, r′) =
∑
σ

ρσ(r, r
′) (2.18)

is the real-space one-body density matrix whose diagonal elements correspond to the elec-

tronic density: ρ(r) = ρ(r, r).25 Writing explicitly,

ρσ(r, r
′) =< Φ|Ψ†

σ(r)Ψσ(r
′)|Φ >, (2.19)

the electron-electron interaction is expressed as

Uee =
1

2

∫
ρ(r)ρ(r′)

|r − r′|
drdr′ +

1

2

∫
ρ(r)ρ(r′)

|r − r′|
[g(r, r′)− 1]drdr′ (2.20)

The first term is the classical electrostatic interaction energy corresponding to a charge

distribution ρ(r). The second term includes correlation effects of both classical and quantum

origin. Basically, g(r, r′) takes into account the fact that the presence of an electron at r

discourages a second electron to be located at a position r′ very close to r because of the

Coulomb repulsion. In other words, it says that the probability of finding two electrons (two

particles with charges of the same sign, in the general case) is reduced with respect to the

probability of finding them at infinite distance. This is true already at the classical level and

it is further modified at the quantum level. Exchange further diminishes this probability in

the case of electrons having the same spin projection, owing to the Pauli exclusion.25

Within the Hartree-Fock approximation (2.13), g(r, r′) can be derived analytically25

gX(r, r′) = 1−
∑

σ|ρHFσ (r, r′)|2

ρHF (r)ρHF (r′)
(2.21)

and is called the exchange hole since it only accounts for Fermi correlations but not Coulomb

correlations, provided that (2.13) only takes into account Pauli’s exclusion principle. The

calculation of g(r, r′), in general, is a major problem in many-body theory and, up to
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the present, it is an open problem in the general case of an inhomogeneous electron gas.

Nevertheless, the energy of the many-body electronic system can always be written in the

following way:25

E = T + V +
1

2

∫
ρ(r)ρ(r′)

|r − r′|
drdr′ + EXC (2.22)

where

V =
P∑
I=1

< Φ|
N∑
i=i

Vne(ri −RI)|Φ >=
P∑
I=1

∫
ρ(r)Vne(r −RI)dr (2.23)

and

T =< Φ|− ~2

2m

N∑
i=1

∇2
i |Φ >= − ~2

2m

∫
[∇2

rρ(r, r′)]r′=r dr (2.24)

and EXC is the exchange and correlation energy

EXC =
1

2

∫
ρ(r)ρ(r′)

|r − r′|
[g(r, r′)− 1]drdr′ (2.25)

2.2.3 Hohenberg-Kohn theorem

Hohenberg and Kohn29 formulated and proved a theorem that put on solid mathematical

grounds the ideas first proposed by Thomas and Fermi.25

THEOREM: The external potential is univocally determined by the electronic density,

except for a trivial additive constant.

PROOF: We will suppose the opposite to hold, that the potential is not univocally

determined by the density. Then one would be able to find two potentials Vne and V ′
ne such

that their ground state density ρ is the same. Let Ψ and E0 =< Ψ|ĥ|Ψ > be the ground

state and ground state energy of ĥ = T̂e + Ûee + V̂ne, and Ψ′ and E ′
0 =< Ψ′|ĥ′|Ψ′ > the

ground state and ground state energy of ĥ′ = T̂e + Ûee + V̂ ′
ne according to the variational

principle,

E0 < 〈Ψ′|ĥ|Ψ′〉 = 〈Ψ′|ĥ′|Ψ′〉+ 〈Ψ′|ĥ− ĥ′|Ψ′〉 = E ′
0 +

∫
ρ(r)(vne(r)− v′ne(r))dr (2.26)

where we have also used the fact that different Hamiltonians have necessarily different

ground states Ψ 6= Ψ′. This is straightforward to show since the potential is a multiplicative
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operator. Now we can simply reverse the situation of Ψ and Ψ′ ( H and H ′ ) and obtain

E ′
0 < 〈Ψ|ĥ′|Ψ〉 = 〈Ψ|ĥ|Ψ〉+ 〈Ψ|ĥ′ − ĥ|Ψ〉 = E0 −

∫
ρ(r)(vne(r)− v′ne(r))dr (2.27)

Adding these two inequalities leads to an absurd conclusion: that E0 + E ′
0 < E ′

0 + E0

Therefore, there are no vne(r) 6= v′ne(r) that correspond to the same electronic density for

the ground state.

COROLLARY: Since ρ(r) univocally determines vne(r), it also determines the ground

state wave function Ψ.

THEOREM: Let ρ̃(r) be a non-negative density normalized to N . Then E0 < Evne [ρ̃],

for

Evne [ρ̃] = F [ρ̃] +

∫
ρ̃(r)vne(r)dr (2.28)

with

F [ρ̃] = 〈Ψ[ρ̃]|T̂e + Ûee|Ψ[ρ̃]〉 (2.29)

where Ψ[ρ̃] is the ground state of a potential that has ρ̃ as its ground state density.

PROOF: We have

〈Ψ[ρ̃]|ĥ|Ψ[ρ̃]〉 = F [ρ̃] +

∫
ρ̃(r)vne(r)dr = Evne [ρ̃] ≥ Evne [ρ] = E0 = 〈Ψ|ĥ|Ψ〉 (2.30)

The inequality follows from Rayleigh-Ritz’s variational principle for the wave function,

but applied to the electronic density. Therefore, the variational principle says

δ
{
Evne − µ

( ∫
ρ(r)dr −N

)}
= 0 (2.31)

and one obtains

µ =
δEvne [ρ]

δρ
= vne(r) +

F [ρ]

δρ
(2.32)

The knowledge of F [ρ] implies that one has solved the full many-body Schrödinger

equation.25 It has to be remarked that F [ρ] is a universal functional that does not de-

pend explicitly on the external potential. It depends only on the electronic density. In
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the Hohenberg-Kohn formulation, F [ρ] = 〈Ψ|T̂e + Ûee|Ψ〉, where Ψ is the ground state

wavefunction.

In Hohenberg-Kohn theorem the electronic density determines the external potential,

but it is also needed that the density corresponds to some ground state antisymmetric

wavefunction, and this is not always the case. However, DFT can be reformulated in such a

way that this is not necessary, by appealing to the constrained search method.25 By defining

F [ρ] = min
Ψ→ρ
〈Ψ|T̂e + Ûee|Ψ〉} (2.33)

for non-negative densities such that
∫
ρ(r)dr = N and

∫
|∇ρ 1

2 (r)|2dr < ∞, which arise

from an antisymmetric wave function, the search is constrained to the subspace of all the

antisymmetric Ψ that give rise to the same density ρ.

If F [ρ] is known, then DFT allows us to determine the electronic ground state density and

energy exactly. The density determines univocally the potential, and this in turn determines

univocally the many-body wave functions, ground and excited states, provided that the full

many-body Schrödinger equation is solved. For the ground state, such a scheme was devised

by Kohn and Sham and will be discussed in subsection (2.2.4). For excited states there are a

few extensions and generalizations of Kohn-Sham (KS) theory, but only very recently these

are beginning to be used with some degree of success.25

2.2.4 Kohn-Sham equations

We have seen that the interaction potential Uee = 〈Φ|Ûee|Φ〉 can be expressed in terms

of the charge density, ρ(r), by separating the electrostatic (classical Coulomb energy) and

the Fermi and Coulomb correlation contributions.25 The biggest difficulty is to deal with

Coulomb correlations since the explicit form of the correlation function, g(r, r′), is in gen-

eral unknown for inhomogeneous electron distributions. Although this issue is quite under

control for many systems of interest,25 the expression of the kinetic energy 〈Ψ|T̂e|Ψ〉 in terms

of the electronic density is not known. The main problem with it is that the kinetic operator
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is inherently non-local, though short-ranged.25

In 1965, Kohn and Sham30 proposed the idea of replacing the kinetic energy of the in-

teracting electrons with that of an equivalent non-interacting system, because the latter can

be easily calculated. The density matrix ρ(r, r′) that derives from the (interacting) ground

state is the sum of the spin-up and spin-down density matrices, ρ(r, r′) =
∑

s ρs(r, r
′) (for

s = 1, 2). The latter can be written as

ρs(r, r
′) =

∞∑
i=1

ni,sφi,s(r)φ∗i,s(r
′) (2.34)

where {φi,s(r)} are the natural spin orbitals and {ni,s} are the occupation numbers of these

orbitals, originally proposed by Löwdin in a 1955.31 The kinetic energy can be written

exactly as

Te =
2∑
s=1

∞∑
i=1

ni, s〈φi, s|−
∇2

2
|φi, s〉 (2.35)

In the following, it is assumed that the equivalent noninteracting system, that is, a

system of non-interacting fermions whose ground state density coincides with that of the

interacting system, does exist and is called the non-interacting reference system of density

ρ(r), which is described by the Hamiltonian

ĤR =
N∑
i=1

(
− ∇

2
i

2
+ vR(ri)

)
(2.36)

where the potential vR(r) is such that the ground state density of ĤR equals ρ(r) and the

ground state energy equals the energy of the interacting system. This Hamiltonian has

no electron-electron interactions and, thus, its eigenstates can be expressed in the form of

Slater determinants

Ψs(r) =
1√
N !
SD[φ1,s(r1)φ2,s(r2) . . . φNs,s(rNs) (2.37)

where the occupation numbers have been chosen to be 1 for ileqNs(s = 1, 2) and 0 for

i > Ns. This means that the density is written as25

ρ(r) =
2∑
s=1

N2∑
i=1

|φi,s(ri)|2 (2.38)
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while the kinetic term is

TR[ρ] =
2∑
s=1

Ns∑
i=1

〈φI,s|−
∇2

2
|φI,s〉 (2.39)

The single-particle orbitals {φi,s(r)} are the Ns lowest eigenfunctions of ĥR = −(∇2/2)+

vR(r), that is, {
− ∇

2

2
+ vR(r)

}
φi,s(r) = εi,sφi,s(r) (2.40)

Using TR[ρ], the universal density functional can be rewritten in the following form:25

F [ρ] = TR[ρ] +
1

2

∫ ∫
ρ(r)ρ(r′)

|r − r′|
drdr′ + EXC [ρ] (2.41)

where this equation defines the exchange and correlation energy as a functional of the

density. The fact that TR[ρ] is the kinetic energy of the noninteracting reference system

implies that the correlation piece of the true kinetic energy has been ignored and has to be

taken into account somewhere else. In practice, this is done by redefining the correlation

energy functional in such a way as to include kinetic correlations. Upon substitution of this

expression for F in the total energy functional Ev[ρ] = F [ρ] +
∫
ρ(r)v(r)dr, the latter is

usually renamed the KS functional:

EKS[ρ] = TR[ρ] +

∫
ρ(r)v(r)dr +

1

2

∫ ∫
ρ(r)ρ(r′)

|r − r′|
drdr′ + EXC [ρ] (2.42)

In this way the density functional is expressed in terms of the N = N↑ +N↓ orbitals (KS

orbitals), which minimize the kinetic energy under the fixed density constraint. In principle,

these orbitals are a mathematical object constructed in order to render the problem more

tractable and do not have a sense by themselves, but only in terms of the density. In prac-

tice, however, it is customary to consider them as single-particle physical eigenstates. It is

usual to hear that the KS orbitals are meaningless and cannot be identified as single-particle

eigenstates, especially in the context of electronic excitations. A rigorous treatment, how-

ever, shows that KS eigenvalues differences are a well-defined approximation to excitation

energies.25
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Minimizing the KS functional over all densities that integrate to N particles via the

introduction of a Lagrange multiplier µR, it is shown that KS orbitals satisfy equation

(2.40),

N =

∫
ρ̃(r)dr (2.43)

δ{E[ρ̃(r)] + µ(N −
∫
ρ̃(r)dr} = 0 ⇒ (2.44)

δE[ρ̃(r)]− µδ
∫
ρ̃(r)dr = 0 ⇒ (2.45)

∫
δρ̃(r)

{δTR[ρ̃]

δρ̃(r)
+ v(r) +

∫
ρ̃(r′)

|r − r′|
dr′ +

δEXC [ρ̃]

δρ̃(r)
− µR

}
dr = 0 (2.46)

For the minimizing (i.e., correct) density ρ,

δTR[ρ]

δρ(r)
+ v(r) +

∫
ρ(r′)

|r − r′|
dr′ +

δEXC [ρ]

δρ(r)
= µR (2.47)

The functional derivative δTR[ρ]
δρ(r)

can be quickly found by considering the non-interacting

Hamiltonian ĤR Eq.(2.36). Its ground state energy is E0. Considering the following func-

tional,

EvR
[ρ̃] = TR[ρ̃] +

∫
ρ̃(r)vR(r)dr (2.48)

Then, clearly EvR
[ρ̃] ≥ E0, and only for the correct density ρ we will have EvR

[ρ] = E0.

Hence, the functional derivative of EvR
[ρ̃] must vanish for the correct density leading to

δTR[ρ]

δρ(r)
+ vR(r) = µR (2.49)

where µR is the chemical potential for the non-interacting system.

By comparison of (2.47) and (2.49), the effective potential vR or veff is given by

veff = v(r) +

∫
ρ(r′)

|r − r′|
dr′ + µXC [ρ](r) (2.50)
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The exchange-correlation potential µXC [ρ](r) defined above is simply the functional

derivative of the exchange-correlation energy δEXC [ρ]
δρ(r)

. Notice the similitude between the KS

and Hartree equations (equation 2.9). According to (2.49), the equations of the interacting

electrons under the external potential v(r) take the form of non-interacting electrons moving

in an effective potential veff (r). Thus, the KS orbitals must obey a set of equations as

(2.9), the Kohn-Sham equations shown in (2.40) The solution of the KS equations has to be

obtained by an iterative procedure. That is, one makes an initial guess (from scratch) for

the KS orbitals to build an initial ρ0(r) which, in turn, is used to obtain the corresponding

v0
eff (and total energy E0

KS). The equations are solved and a new set of KS orbitals is

obtained to give place to a new ρ1(r), v1
eff , and E1

KS. The procedure is repeated until two

consecutive ρi(r) and ρi+1(r) give rise to Ei
KS and Ei+1

KS that differ by less than certain

desired and p-reestablished threshold value.

In the same way as Hartree and HF equations, until (2.49) is satisfied. As in these

methods, the total energy cannot be written simply as the sum of the eigenvalues εi,s, but

double counted terms have to be subtracted:25

EKS[ρ] =
Ns∑
i=1

2∑
s=1

εi,s −
1

2

∫ ∫
ρ(r)ρ(r′)

|r − r′|
drdr′ +

{
EXC [ρ]−

∫
ρ(r)µXC [ρ](r)dr

}
(2.51)

The main difference between the KS and Hartree equations is that the effective potential

now includes exchange and correlation. Therefore, the computational cost is of the same

order as Hartree, but much less than HF, which includes the exact non-local exchange. Now

let us make some observations:

1. The correlation functional has to be modified to account for the missing part in

the kinetic energy TR[ρ], which corresponds to a non-interacting system. The exchange

functional remains unchanged.

2. Nothing ensures that the non-interacting reference system will always exist. In fact,

there are examples like the carbon dimer C2, which do not satisfy this requirement. In that

case, a linear combination of Slater determinants that include single-particle eigenstates

φi,s(r) with i > Ns can be considered. This is equivalent to extending the domain of defini-
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tion of the occupation numbers ni,s from the integer values 0 and 1 to a continuum between

0 and 1 to include excited single-particle states in the density.25 Although there is nothing

wrong, in principle, with minimizing the functional constructed with fractional occupation

numbers, the minimization with respect to them is not justified.25 The introduction of ex-

cited single-particle states does not mean that the system is in a true excited state. This

is only an artefact of the representation. The true wave function is the correlated ground

state.

3. The density of the non-interacting reference system is equal to that of the true

interacting system. Up to here, the theory is exact. No approximation has been introduced

into the electronic problem. All the ignorance about the many-fermion problem has been

displaced to the EXC [ρ] term, while the remaining terms in the energy are well known.

2.2.5 Exchange and correlation

If the exact expression for the kinetic energy including Coulomb correlation effects, T [ρ] =

〈Ψ[ρ] | T̂ |Ψ[ρ]〉 (with Ψ[ρ] being the interacting ground state of the external potential that

has ρ as the ground state density), were known, then one could use the original definition

of the exchange-correlation energy that does not contain kinetic contributions:

E0
XC [ρ] =

1

2

∫ ∫
ρ(r)ρ(r′)

|r − r′|
[g(r, r′)− 1]drdr′ (2.52)

Then, provided that the ground state total energy is the same for the interacting and non-

interacting system, the kinetic energy of the non-interacting system can be redefined in the

following way:

EXC [ρ] = E0
XC [ρ] + T [ρ]− TR[ρ]

It can be shown that the kinetic contribution to the correlation energy (the kinetic

contribution to exchange is just Pauli’s principle, which is already contained in TR[ρ] and

in the density when adding up the contributions of the N lowest eigenstates) can be taken

into account by averaging the pair correlation function g(r, r′) over the strength of the
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electron-electron interaction, that is,

EXC [ρ] =
1

2

∫ ∫
ρ(r)ρ(r′)

|r − r′|
[g̃(r, r′)− 1]drdr′ (2.53)

where

g̃(r, r′) =

∫ 1

0

gλ(r, r
′)dλ (2.54)

and gλ(r, r
′) is the pair correlation function corresponding to the Hamiltonian Ĥ = T̂ +

V̂ + λÛee. If the Fermi and Coulomb correlation are (artificially) separated, we can use

Eq.(2.21) and write

g̃(r, r′) = 1−
∑

σ|ρσ(r, r′)|2

ρ(r)ρ(r′)
+ g̃C(r, r′) (2.55)

with ρσ(r, r
′) the spin-up and spin-down components of the one-body density matrix, which

in general is a non-diagonal operator. For the homogeneous electron gas, the expression for

the density matrix is well known, so that the exchange contribution to g̃(r, r′) assumes an

analytic closed form25

gX(r, r′) = gX(|r − r′|) = 1− 9

2

(j1(kF (|r − r′|)
kF |r − r′|

)2

(2.56)

where j1(x) = [sin(x) − xcos(x)]/x2 is the first-order spherical Bessel function. The same

function within the Hartree approximation is the constant function 1, because the approxi-

mation completely neglects both, exchange and correlation, so that one electron is insensitive

to the location of the other electron. Within the HF approximation, the exchange is treated

exactly, but the correlation is ignored. Therefore, the HF pair distribution only reveals the

fact that the electrons with like spins do not like to be at the same place, and hence the HF

pair correlation function is given by formula tending to the limit 1/2 for r → 0.

One then can define the exchange-correlation hole ρ̃XC(r, r′) in the following form:

EXC [ρ] =
1

2

∫ ∫
ρ(r)ρ̃XC(r, r′)

|r − r′|
drdr′ (2.57)

where ρ̃XC(r, r′) = ρ(r′)[g̃(r, r′)− 1]
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Then, ẼXC [ρ] can be written as the interaction between the electronic charge distribution

and the charge distribution that has been displaced by exchange and correlation effects, that

is, by the fact that the presence of an electron at r reduces the probability for a second

electron to be at r′, in the vicinity of r. Actually, ρ̃XC(r, r′) is the exchange-correlation hole

averaged over the strength of the interaction, which takes into account kinetic correlations.25

The properties of g̃(r, r′) and ρ̃XC(r, r′),

1. g̃(r, r′) = g̃(r′, r) (symmetry)

2.
∫
g̃(r, r′)ρ(r′)dr′ = N − 1 (normalization)

3.
∫
ρ̃XC(r, r′)dr′ = −1,

mean that the exchange-correlation hole contains exactly one displaced electron. This

sum rule is very important and it has to be verified by any approximation.25

2.2.6 The local density approximation

It was proposed by Kohn and Sham,30 but the philosophy was already present in Thomas-

Fermi theory.25,28 The main idea is to consider general inhomogeneous electronic systems

as locally homogeneous, and then to use the exchange-correlation hole corresponding to

the homogeneous electron gas for which there are very good approximations and also exact

numerical results. This means that (see Eq. 2.57)

ρ̃LDAXC (r, r′) = ρ(r)(g̃h[|r − r′|, ρ(r)]− 1) (2.58)

with g̃h[|r−r′|, ρ(r)] the pair correlation function of the homogeneous gas, which depends

only on the distance between r and r′, evaluated at the density ρh, which locally equals

ρ(r). Within this approximation, the exchange-correlation energy density is defined as

εLDAXC [ρ] =
1

2

∫
ρ̃LDAXC (r, r′)

|r − r′|
dr′ (2.59)

and the exchange-correlation energy becomes

ELDA
XC [ρ] =

∫
ρ(r)εLDAXC [ρ]dr (2.60)
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In general, the exchange-correlation energy density is not a local functional of ρ. From its

very definition it is clear that it has to be a non-local object, because it reflects the fact

that the probability of finding an electron at r depends on the presence of other electrons

in the surroundings, through the exchange-correlation hole.

The exact expression would indicate to take ρ(r′) instead of ρ(r). However, this would

render ELDA
XC [ρ] a non-local object that would depend on the densities at r and r′, while

the idea is to parameterize it with the homogeneous gas, which is characterized by only one

density, and not two.

For the exchange energy density, the form deduced by Dirac is adopted:25

εX [ρ] = −3

4

( 3

π

)1/3

ρ1/3 = −3

4

( 9

4π2

)1/3 1

rs
= −0.458

rs
au (2.61)

where ρ−1 = 4πr3
s and rs is the radius of the sphere that, on average, contains one

electron. For the correlation, a widely used approximation is Perdew and Zunger’s param-

eterization32 of Ceperley and Alder quantum Monte Carlo results, which are essentially

exact,25

εC [ρ] =

{
A ln rs +B + C rs ln rs +Drs, rz ≤ 1
γ/(1 + β1

√
rs + β2rs), rs > 1

For low densities, Perdew and Zunger have fitted a different (Padé) approximation to the

Monte Carlo results.25 Interestingly, the second derivative of the above εC [ρ] is discontinuous

at rs = 1. Another popular parameterization is that of Hedin and Lundqvist.33

The LDA has been applied successfully for many systems of interest, especially those

where the electronic density is quite uniform such as bulk metals, but also for less uniform

systems as semiconductors and ionic crystals. There are a number of features of the LDA

that are rather general and well established by now.25 In Chapter 6 we will witness some of

them.

1. It favors more homogeneous systems.

34



2. It overbinds molecules and solids.

3. For ”good” systems (covalent, ionic and metallic bonds), geometries are good, bond

lengths, bond angles and phonon frequencies are within a few percent, while dielectric

properties are overestimated by about 10 %

4. For ”bad” systems (weakly bound), bond lengths are too short (overbinding).

5. In finite systems, the XC potential does not decay as -e2/r in the vacuum region,

thus affecting the dissociation limit and ionization energies. This is a consequence of the

fact that LDA fails to cancel the self-interaction included in the Hartree term of the energy,

which is one of the most severe limitations of these approximations.

And, as we will see, LDA fails25

1. In atomic systems, where the density has large variations, and also the self-interaction

is important.

2. In weak molecular bonds, for example, hydrogen bonds, because in the bonding region

the density is very small and the binding is dominated by inhomogeneities.

3. In van der Waals (closed-shell) systems, because there the binding is due to dynamical

charge-charge correlations between two separated fragments, and this is an inherently non-

local interaction.

4. In metallic surfaces, because the XC potential decays exponentially, while it should

follow a power law (image potential).

5. The energy band gap in semiconductors turns out to be very small. The reason is that

when one electron is removed from the ground state, the exchange hole becomes screened,

and this is absent in the LDA. On the other hand, HF also has the same limitation, but the

band gap turns out to be too large.

There is not a unique and obvious way of improving the LDA.25 The most popular

approach has been to introduce semi-locally the inhomogeneities of the density, by expanding

EXC [ρ] as a series in terms of the density and its gradients. This approach, known as

generalized gradient approximation (GGA), has been quite successful in improving over
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some features of the LDA, though there are many other cases in which LDA renders better

results.25,34

2.2.7 Generalized gradient approximation

The exchange-correlation energy has a gradient expansion of the type

EXC [ρ] =

∫
AXC [ρ]ρ(r)4/3dr + CXC [ρ]|∇ρ(r)|2/ρ(r)4/3dr + . . . (2.62)

which is asymptotically valid for densities that vary slowly in space. The LDA retains

only the leading term of equation (2.62). A straightforward evaluation of this expansion is

ill-behaved, in the sense that it is not monotonically convergent, and it exhibits singularities

that cancel out only when an infinite number of terms is re-summed.25 In fact, the first-order

correction worsens the results and the second-order correction is plagued with divergences.25

The largest error of this approximation actually arises from the gradient contribution to the

correlation term. Provided that the problem of the correlation term can be cured in some

way, as the real space cut-off method proposed by Langreth and Mehl,35 the biggest problem

remains with the exchange energy.

The gradient expansion has to be carried out very carefully in order to retain all the

relevant contributions to the desired order.25 GGA expansions easily violate one or more

of the exact conditions required for the exchange and the correlation holes. For instance,

the normalization condition, the negativity of the exchange density (see above) and the

self-interaction cancellation (the diagonal of the exchange density matrix has to be minus a

half of the density). Perdew has shown that imposing these conditions to functionals that

originally do not verify them results in a remarkable improvement of the quality of exchange

energies.25

The basic idea of GGA is to express the exchange-correlation energy in the following

form:25

EXC [ρ] =

∫
εXC [ρ(r)]ρ(r)dr +

∫
FXC [ρ(r),∇ρ(r)]dr (2.63)
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where the function FXC is required to satisfy a number of conditions for the exchange-

correlation hole, such as sum rules, long-range decay and so on.25 This cannot be done by

considering directly the bare gradient expansion (2.62). What is needed from the functional

is a form that mimics a re-summation to infinite order, and this is the main idea of the GGA,

for which there is not a unique recipe,25 and so not all the formal properties can be enforced

at the same time, which differentiates one functional from another.25 In Chapters 4 - 6, we

use either one of the next two expressions:

1. Perdew-Wang ’91 (PW91) exchange functional.36

εX = εLDAX

(1 + a1s sinh
−1(a2s) + (a3 + a4e

−100s2)s2

1 + a1s sinh−1(a2s) + a5s4

)
where a1 = 0.19645, a2 = 7.7956, a3 = 0.2743, a4 = −0.1508, and a5 = 0.004.

Perdew-Wang ’91 (PW91) correlation functional.36

εC = εLDAC + ρH[ρ, s, t]

with

H[ρ, s, t] =
β

2α
ln

(
1 +

2α

β

t2 + At4

1 + At2 + A2t4

)
+ Cc0[Cc(ρ)− Cc1]t2e−100s2

and

A =
2α

β

[
e−2αεC [ρ]/β2 − 1

]−1

where α = 0.09, β = 0.0667263212, Cc0 = 15.7559, Cc1 = 0.003521, t = |∇ρ(r)|/(2ksρ) for

ks = (4kF/π)1/2, and ρεC [ρ] = εLDAC [ρ].

2. Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional.(37)

First, the enhancement factor FXC over the local exchange is defined:

EXC [ρ] =

∫
ρ(r)εLDAX [ρ(r)]FXC(ρ, ζ, s)dr

where ρ is the local density, ζ is the relative spin polarization and s = |∇ρ(r)|/(2kFρ) is

the dimensionless gradient,25,36

FX(s) = 1 + κ− κ

1 + µs2/κ
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where µ = β(π2/3) = 0.21951 and β = 0.066725 is related to the second-order gradient

expansion.25,36 The correlation energy is written

The correlation functional is25,37

EGGA
C =

∫
ρ(r)[εLDAC (ρ, ζ) +H[ρ, s, t]]dr

with

H[ρ, s, t] =
(e2
a0

)
γφ3ln

{
1 +

βγ2

t
[

1 + At2

1 + At2 + A2t4

where t = |∇ρ(r)|/(2ksρ) is a dimensionless density gradient, ks = (4kF/πa0)
1/2 is the TF

screening wave number and φ(ζ) = [(1 + ζ)2/3 + (1 − ζ)2/3]/2 is a spin-scaling factor. The

quantity β is the same as for the exchange term, β = 0.066725, and γ = (1 − ln2)/π2 =

0.031091. The function A has the following form:

A =
β

γ

[
e−ε

LDA
C [ρ]/(γφ3e2/a0) − 1

]−1

So defined, the correlation correction term H tends to the correct second-order gradi-

ent expansion in the slowly varying (high-density) limit, (t → 0),25 approaches minus the

uniform electron gas correlation −εLDAC for rapidly varying densities (t→∞),25 thus mak-

ing the correlation energy to vanish, and cancels the logarithmic singularity of εLDAC in the

high-density limit, thus forcing the correlation energy to scale to a constant under uniform

scaling of the density. This GGA retains the correct features of LDA and combines them

with the inhomogeneity features that are supposed to be the most energetically important.

It sacrifices, in turn, the correct second-order gradient coefficients in the slowly varying

limit, and the correct non-uniform scaling of the exchange energy in the rapidly varying

density region.25,37 GGA-PBE is very satisfactory from both the theoretical point of view,

because it verifies many of the exact conditions for the XC hole and it does not contain any

fitting parameters, and the applied point of view, as we will find in Chapter 6.

The general trends of GGA, concerning improvements over the LDA, are the following:25

1. They improve binding energies and also atomic energies.
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2. They improve bond lengths and angles.

3. They improve energetics, geometries and dynamical properties of water, ice and water

clusters.

4. Semiconductors are marginally better described within the LDA than in GGA, except

for the binding energies.

5. For 4d-5d transition metals, the improvement of the GGA over LDA is not clear and

will depend on how well the LDA does in the particular case. We have observed38 with

Hedin-Lundqvist-LDA that bulk Ag and the Ag(001) are well described by both LDA and

GGA, while the CO adsorption site and binding energy trend is quite different, as in the

case of Cu(001).

6. Lattice constants of noble metals (Cu, Ag, Au, Pt) are overestimated. The LDA values

are very close to experiment, and thus any modification can only worsen them. However,

we will see in Chapter 6 that the lattice dynamics of bulk Cu (and Ag)38, as well as that of

the (001) clean and CO-chemisorbed surfaces are described better by GGA than by LDA.

7. There is some improvement for the gap problem (and consequently for the dielectric

constant), but it is not substantial because this feature is related to the description of the

screening of the exchange hole when one electron is removed, and this feature is usually not

fully taken into account by GGA.

8. They do not satisfy the known asymptotic behavior, for example, for isolated atoms:

(a) vXC(r) ∼ −e2/r for r → ∞, while vLDA,GGAXC (r) vanish exponentially. (b) vXC(r) →

const. for r → 0, while vLDAXC (r)→ const., but vGGAXC (r)→ −∞.

There seems, then, to exist a limit in the accuracy that GGA can reach. The main

aspect responsible for this is the exchange term, whose non-locality is not fully taken into

account. A particularly problematic issue is that GGA functionals still do not compensate

the self-interaction completely.25
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2.3 Handling of the infinite electronic- and ionic- sys-

tem: Periodicity

In the preceding section, we have seen that we can get around the electronic problem by

solving as many one-particle KS-equations (see Eq. 2.40)as the number of electrons in the

studied system (for magnetic system this amount is duplicated since wave functions with spin

up and spin down a treated separately). However, this problem becomes computationally

impossible since bulk and surface materials are composed of practically an infinite number

of electrons moving in the static of potential of an infinite number of nuclei. Two difficulties

must be overcome:7 a wave function must be calculated for each of the infinite number of

electrons in the system and, since each electronic wave function extends over the entire solid,

the basis set required to expand (plane waves, for example) each KS-orbital is infinite. Both

problems can be surmounted by performing calculation o periodic systems and applying

Bloch.s theorem to the KS-orbitals.

2.3.1 Bloch’s theorem

In a perfect crystal, the nuclei are arranged in a regular periodic array described by a set

of Bravais lattice vectors {Ri}. In an infinite system, the external potential and the charge

density at a certain point r are thus invariant under translation by any of these lattice

vectors {Ri}. Therefore, the effective KS-potential in Eq. 2.40 (for the sake of clarity we

will drop the subscript R in the KS-potential, and the spin and orbital number indices, s

and i, respectively, in the KS-orbitals), rewritten here as,

ĥKS(r)φ(r) =
{
− ∇

2

2
+ v(r)

}
φ(r) = εφ(r) (2.64)

is also periodic; that is,

v(r + Ri) = v(r) ∀Ri (2.65)

The translation operator T̂Ri
for each lattice vector Ri acts in the following manner on
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any position-dependent function f(r):28

T̂Ri
f(r) = f(r + Ri) (2.66)

and is then periodic as the KS-potential and the Hamiltonian, ĥKS(r + Ri) = ĥKS(r), for

which T̂Ri
and ĥKS commute.28 Translation operators commute with each other as well, so

T̂Ri
T̂Rj

= T̂Ri+Rj
(2.67)

Therefore the eigenfunctions of T̂Ri
must be also eigenfunctions of ĥKS(r).

Consider thus that c(Ri) are the eigenvalues of T̂Ri
, then

T̂Ri
φ(r) = φ(r + Ri) = c(Ri)φ(r) (2.68)

and, from (2.67), we obtain that

T̂Ri
T̂Rj

φ(r) = T̂Ri+Rj
φ(r) = c(Ri)c(Rj)φ(r) = c(Ri + Rj)φ(r) (2.69)

Since φ(r) is normalized to the same value as φ(r + Ri), T̂Ri
must be unitary and

|c(Ri)|2= 1. Then, we can expand the translation operator21

T̂ξφ(x) = φ(x− ξ) = φ(x)− ξ

1!
φ′(x) +

ξ2

2!
φ′′(x)± · · · = exp

(
− ξ ∂

∂x
φ(x)

)
⇒

T̂ξφ(x) = exp(−iξk̂)φ(x) where k̂ =
1

i

∂

∂x
(2.70)

and is proportional to the momentum operator px. Then, since displacements in three

dimensions commute and may be carried out equivalently in any order, (2.70) is generalized

to

T̂Ri
φ(r) = eik̂·Riφ(r) = eik·Riφ(r) (2.71)

leading us to Bloch’s theorem,

T̂Ri
φ(r) = φ(r + Ri) = eik·Riφ(r) (2.72)

The eigenvalues of T̂Ri
, eik·Ri , are ”good” quantum numbers since T̂Ri

commutes with

ĥKS(r). We can then label with the indices k and n to those which are simultaneously

eigenfunctions of T̂Ri
and ĥKS(r), respectively.
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2.3.2 The Plane-waves description of KS-orbitals

The KS orbitals are not periodic, however, it turns out that the function uk(r) = e−ik·rφn,k(r),

has the periodicity of the lattice:

uk(r + Ri) = e−ik·[r+Ri]φn,k(r + Ri) = e−ik·[r+Ri]eik·Riφn,k(r) = e−ik·rφn,k(r) = uk(r),

(2.73)

which means that uk(r) can be expanded in a Fourier series over the reciprocal lattice

vectors {Gj} (where Gj ·Ri = 2πm, and m is an integer)

uk(r) =
∑
{Gj}

C(k,Gj) e
iGj ·r (2.74)

and φn,k(r), according with (2.74), can thus expanded in terms of discrete plane-waves,

φn,k(r,k) =
∑
{Gj}

c(k+Gj) e
i(k+Gj)·r (2.75)

KS-orbitals can also be expanded in a mixed set of plane waves and localized wavefunc-

tions (see Chapter 6), which becomes useful to describe the localized parts of valence states.

The plane wave expansion, however, has many advantages because the basis is orthonormal,

is easy to integrate and does not depend on the positions of the nucleus. By inserting the

expression for φn,k in (2.75) in the KS equations (2.64) and multiplying from the left by

ei(k+Gi)·r and integrating using the orthogonality of the plane waves,∫
V

e−iGi·reiGj ·rdr = δij,

a set of equations for the coefficients ck+Gj
is obtained:

1

2
|k + Gj|2ck+Gj

+
∑
Gi

VGj ,Gi
ck+Gi

= E(k)ck+Gj
(2.76)

where

VGj ,Gi
=

∫
V

v(r)ei(Gj−Gi)rdr

In principle, an infinite plane-wave basis set is required to expand the electronic wave

functions. However, the coefficients ck+Gj
for the plane waves with small kinetic energy
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(1/2)|k+Gj|2 are typically more important than those with large kinetic energy.7 Thus the

plane-wave basis set can be truncated to include only plane waves that have kinetic energies

less than some particular cutoff energy, Ecut:

1

2
|k + Gj|2 < Ecut

In practice, several millions of plane waves are required for metallic systems and total

energy convergence test must be performed to obtain reliable results. The situation worsens

for metals with semi-core states which are more localized than the valence band states and

require much more plane waves and the mixed-basis approach becomes more convenient.

2.3.3 The problem of an infinite number of k-points: k-point sam-
pling

Electronic states are allowed only at a set of k-points determined by the boundary conditions

that apply to the bulk solid.7. The density of allowed k points is proportional to the volume

of the solid. The infinite number of electrons in the solid are thus accounted for an infinite

number of k-points, and only a finite number of electronic states are occupied at each

k-point. The introduction of (2.75) reduces then the problem of calculating an infinite

number of KS wave functions to one of calculating a finite number of KS wave functions at

an infinite number of k-points in the first Brillouin zone.7,28 That is, once the coefficients

ck+Gj
in (2.76) are calculated, the KS-orbitals at a particular k point may be obtained. The

charge density, however, comprehends the integration over the first Brillouin zone (BZ),7,28

ρ(r) =

NBZ
e∑
m

∫
BZ

|φm,n,k(r,k)|2dk

where m runs over the number of electrons in the BZ.

Since the effective potential is calculated iteratively from ρ, the occupied states at each

k-point contribute to the potential in the bulk solid so that, in principle, an infinite number

of calculations are needed to compute it. However, the KS-wavefunctions at k-points that

are very close together are almost identical.7 Hence it is possible to represent the electronic
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wave functions over a region of k space by the wave functions at a single k point. Therefore,

the electronic states at only a finite number of k points are required to calculate the elec-

tronic potential and hence to determine the total energy of the system. Several methods39

have been devised to obtain accurate approximations to the electronic potential and the

contribution to the total energy from material with filled electronic bands at special sets of

k-points in the Brillouin zone.7,28 The electronic potential and the total energy are more

difficult to calculate if the system is metallic because a dense set of k-points is required to

define the Fermi surface precisely.7 To overcome the problem of partially filled bands, the

Fermi level smearing technique is used.40 This allows fractional occupation numbers (sub-

stitutes the Heaviside function Θ by a smooth function, see below).41 In this case, the error

induced by the inadequacy of the k-point sampling is reduced by using a denser k-point

mesh, for which reason convergence tests must be performed for the k-point mesh and the

smearing parameter in each particular problem. The charge density (for non-spin polarized

calculations) is therefore calculated as follows,

ρ(r) = 2
∑
m,n,k

wkΘ(εF − εn,k)|φn,k|2 (2.77)

where the wk function is the weight of the value k on the calculation of ρ and the Heaviside

function assures that the energy of the KS-orbitals is below the Fermi level.40
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Chapter 3

Effect of dipolar interactions on the
magnetization of square and cubic
arrays of nanomagnets

3.1 Introduction

The need of smaller memory storage devices,42–55 the interest in developing quantum com-

puting,56 and the hope for understanding the relationship between the macroscopic and

microscopic magnetic behaviors has led intense research into the properties of nanoscale

magnets.42–73 Many issues still remain unclear and serious problems must be overcome in

order for them to be technologically useful. Prominent among these is the loss of memory

during magnetic relaxation.

Ferromagnetic nanodots are complex systems consisting of up to hundreds of magnetic

atoms within a single dot.46,52,53 In this case, interparticle interactions along with anisotropy

effects dominate the dynamics of the systems, and control the magnetization processes.49

Moreover, since interdot exchange interactions are negligibly small, the dynamics of the

ferromagnetic nanodot arrangements are strongly influenced by dipolar interdot interactions.

54,55

Single molecule magnets (SMM’s) consist of clusters of only a few magnetic ions, and are

thus among the smallest and simplest nanomagnets, but are also well-characterized systems

exhibiting magnetic hysteresis.68 In SMM’s, the one-body tunnel picture of the magnetiza-
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tion mostly explains this phenomenon in the sense that the sequence of discrete steps in

those curves provides evidence for resonant coherent quantum tunneling.69–71 Nevertheless,

this one-body tunnel model neglects intermolecular interactions, and is not always sufficient

to explain the measured tunnel transitions.72,73 A close examination of the magnetization

curves reveals fine structures which cannot be explained by that model. Wernsdorfer et al.

suggest that these additional steps are due to collective quantum processes, called spin-spin

cross relaxation (SSCR), involving pairs of SMM’s which are coupled by dipolar and/or ex-

change interactions.72,73 If dipolar and/or exchange interactions cooperate in the relaxation

process, then one might hope to be able to better control such loss of magnetic memory.

Analyzing the relaxation of the magnetization is difficult for both SMM’s and ferromag-

netic nanodots. Besides dipolar interactions, many other factors may be involved in such

processes. Geometric features, such as the shape and volume of the magnets, as well as the

type of lattice on which they are placed, can directly influence the anisotropy barriers and

the easy axis directions. In the case of SMM’s, a quantum treatment has to be considered

to show that resonant tunneling of the magnetization results in the discrete steps appearing

in the low temperature T magnetization curves. Although in many SMM’s the intercluster

exchange interactions are negligible, as for ferromagnetic nanodots, in other SMM’s, such

interactions are comparable in strength to the dipolar interactions.73 Besides the quadratic

Heisenberg and quadratic anisotropic intramolecular exchange interactions, some SMM’s are

thought to contain intramolecular interactions of the Dzyaloshinskii-Moriya type.74 Addi-

tional higher order, anisotropic spin exchange interactions further complicate the problem.

Therefore, by studying models that deal with each one of these factors separately, one hopes

to simplify the problem, to build up gradually a more realistic system, and at the same time,

to elucidate how each of these factors contributes to the magnetization process.

With regard to SMM’s, there have been recent approaches to the quantum dynamics

of the low-T relaxation.58,75–80 Prokof’ev and Stamp assumed a single relaxation mode,75

in which the dipolar and hyperfine fields are frozen unless an SMM flips its spin. Then
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by assuming the effective field around each SMM is that of randomly placed dipoles, they

obtained an expression for the low-T decrease proportional to tp of the magnetization of each

SMM from its fully magnetized state,75,81,82 where p ≈ 0.5 − 0.7, but p might be as large

as 0.7.75–78. This procedure was restricted to very small deviations of the magnetization

from its saturated value, so it is not useful for studying the central portion of the hysteresis

curves, for which the magnetization can be small. Moreover, as first argued for ferromagnets

by Anderson,24 the spin-spin and spin-lattice relaxation times can be very different, so that

such simple behavior is not expected. In fact, experiments on SMM’s have shown that

an exponential relaxation of the magnetization is consistent with the data,79,80 so that as

a minimum, one requires two distinct relaxation times for SMM’s, which could be very

different from one another.24

The most commonly studied models of spin dynamics containing two distinct relaxation

parameters are the Landau-Lifshitz (LL) equation and the Landau-Lifshitz-Gilbert (LLG)

equations (see Chapter 1).11,12,83 Early studies of square planar lattices of 9 to 36 ferro-

magnetic dots were made by Stamps and Camley.84 In addition, Zhang and Fredkin (ZF)

studied the LL model to obtain the zero-field time decay of the easy-axis magnetization

of a three-dimensional (3D) cubic lattice of 12×12 × 12 Stoner-Wohlfarth particles inter-

acting with each other via dipole-dipole interactions.55 Since the size (or radius) of the

Stoner-Wohlfarth particles was taken to be much less than the lattice constant, they could

be treated as point-like magnetic moments, the classical analogue of SMM’s. Using the LL

equation, Kayali and Saslow (KS) recently also investigated the hysteresis curves at T = 0

for N × N two-dimensional (2D) square arrays with 2 ≤ N ≤ 14 at a variety of applied

magnetic field H and angles θ relative to the (100) edge of the square array. These curves

exhibited hysteresis areas AN , which KS showed to depend upon θ and N . They included

anisotropy effects via an effective field proportional to the z-component of each dot’s dipole

moment. In order to study the magnetization of ferromagnetic dots, KS used an extremely

large value for the damping coefficient, α/γ = 0.6, a huge sweep rate, ∆B
∆t
∼ 3000 T/s, and a
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small maximum external induction Bmax = 2µ0Ms. Subsequently, Takagaki and Ploog (TP)

also studied two-dimensional square arrays of ferromagnetic nanomagnets (or magnetic nan-

odots) at T = 0 with dipolar interdot interactions, but used the fourth-order Runge-Kutta

procedure to iterate the LLG equation.85 TP usually chose the iteration time interval to

be much larger than in the second-order method used by KS, allowing TP to study larger

values of N . In some cases, the same θ and N values were studied by both KS and TP,

but the results presented were not identical. Not only were the AN values different in the

two calculations, the number of magnetization steps in the M(H) hysteresis loops were also

different, especially for N = 5, as noted by TP.85

In our studies of nanomagnet arrays, we used values of α/γ that varied from these

values to values 12 orders of magnitude smaller. Depending upon the α values, we also

varied the sweep rate ∆B
∆t

from those values to the the much smaller ∼ 10−3 T/s, and varied

Bmax from much larger values (2 T), comparable to those reported in SMM experiments,

64,67 to those used by KS. Similarly, the lattice constants reported in the present work

are in accordance with the near neighbor separation in the most extensively studied SMM

crystals. We studied only the effects of the interparticle dipole-dipole interactions upon the

magnetization curves for an ensemble of Nc = 25 2D square crystals and Nc = 100 3D cubic

crystals each containing N = 5× 5 and N = 5× 5× 4 nanomagnets, respectively, all with

the same magnetic moment. As in the ZF model of Stoner-Wohlfarth particles, we take the

lattice parameter to be much greater than the nanomagnet size or radius. The strength of

the dipole interactions is primarily determined by the lattice constant, a. We also consider

that the damping coefficient α can also depend upon T .18,19 The magnetic moment M c
i of

the ith nanomagnet within the cth crystal of our ensemble obeys

dM c
i

dt
≡ γM c

i ×Bc,eff
i − α

Ms

M c
i ×

(
M c

i ×Bc,eff
i

)
, (3.1)

Bc,eff
i = B +

(
Bc
i

)
dip
, (3.2)
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where γ is the gyromagnetic ratio, Ms = γS is the magnetic moment of an individual

nanomagnet, and (Bc
i)dip is the contribution to the effective magnetic induction Bc,eff

i at

the ith nanomagnet within the cth crystal arising from dipole-dipole interactions between

it and the other nanomagnets within the same crystal,

(
Bc
i

)
dip

=
µ0

4π

∑
j

′ 3(M c
j · rij)rij − r2

ijM
c
j

r5
ij

, (3.3)

where the prime indicates that the j = i term is omitted.

3.2 Model system and calculation details

In the present work we consider two ensembles each of Nc = 5 × 5 = 25 (square) of

N = 5 × 5 × 4 = 100 (cubic) crystals (or configurations). Each nanomagnet has a ground

state spin S = 5, which interact with one another only via dipolar interactions. Except

when a strong anisotropy field is present, we assume that there is no long-range order in

the T regime of interest, so that in the absence of an external magnetic field, the magne-

tization of each nanomagnet crystal is essentially zero. We note that long-range ordering

was claimed to exist in the cubic system with Ising spin anisotropy.76,86 In our studies only

with a strong anisotropy field HA, hysteresis curves exhibiting a substantial zero-field mag-

netization were obtained for the applied magnetic induction B ||HA after the system had

been fully magnetized by B. Therefore, each of the Nc system configurations c = 1, . . . , Nc

is constructed to have a starting total magnetic moment M c ≈ 0 at B = 0. The hysteresis

curves are obtained for each configuration, and these are then averaged over the Nc config-

urations. One then obtains the magnetization
−→
M(B) curves, where

−→
M = 〈M c〉c/V is the

configuration averaged magnetization, V is the crystal volume, and B = |B|.

3.2.1 Ensemble of random spin configurations

In order to proceed, we first find a large number Nc of random spin configurations c of

N = 25, 100 spins, such that for each configuration, M c/Ms ≈ 0 at B = 0 and as T →∞,
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where the total magnetic moment

M c(t,B) =
N∑
i=1

M c
i(t,B). (3.4)

At the start of the iteration, we take t = 0, B = 0, and T → ∞ in the absence of the

dipole-dipole (or any other inter-spin) interactions for configuration c. Then we select those

configurations for which |M c|/Ms ≤ 0.1, which we deem sufficiently close to M c ≈ 0. Our

resulting magnetization curves are based upon the average over Nc configurations, each one

containing N = 25, 100 similarly chosen nanomagnets.

We reiterate that N is the number of nanomagnets in each configuration, and Nc is the

number of configurations studied. Although we have chosen both of these numbers to be 100

for the cubic system in order to obtain reliable statistics, N and Nc have completely different

meanings. Finding many (Nc) configurations, each of which has an almost vanishing initial

magnetization consumes a significant amount of computer time, especially if the number

N of nanomagnets per configuration is not very large. However, choosing a rather small

number N of nanomagnets reduces the time required to calculate the dipolar field at each

nanomagnet due to all of its neighbors, which must be calculated at each integration time

step of the LL equation, offsetting the large amount of computer time required to set up Nc

initially nearly-nonmagnetic configurations.

3.2.2 Evolution of the magnetization versus field curves

In this model one increases the external magnetic induction B in discrete steps ∆B, until

B = Bmax, where Bmax = |Bmax| has to be large enough to align every nanomagnet in

its direction. How large Bmax has to be generally depends upon T , the field sweep rate

∆B
∆t
≡ |∆B|

∆t
, the lattice parameter a, and the crystal structure.68 In addition, the steps |∆B|

must be small enough to give rise to numerically smooth M(B) curves. We therefore set

|∆B| = Bmax/NB, where the number of steps NB � 1 should be on the order of 103. After

each magnetic step, one allows each of the nanomagnets to relax for a fixed amount of time
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∆t, which is chosen to be sufficiently small that the nanomagnets do not reach equilibrium.

Otherwise, in the absence of a sufficiently strong anisotropy field, no hysteresis would result.

First, we choose one of our configurations c (e. g., c = 1) and set the moments of the

nanomagnets equal to their values in this initially nonmagnetic configuration, {M c=1
i (t =

0,B = 0)}i=1,...,N . That is, just after we turn on the magnetic induction in the x direc-

tion by the amount B = ∆B, the nanomagnets have not yet precessed from their initial

configuration. Then, we calculate the effective magnetic induction Bc=1,eff
i at each of the

i = 1, . . . , N nanomagnets for c = 1. To do so, we must calculate the dipolar induction in

Eq. (3) due to the presence of all the other nanomagnets.

Then, we let each of the nanomagnets evolve in the presence of its effective magnetic

induction for a chosen fixed time interval ∆t. To do this accurately, we break ∆t up into Nt

intervals dt = ∆t/Nt. Obviously, this is extremely time consuming, because it is necessary

to recalculate the effective induction at each nanomagnet after each time-integration step of

width dt. Once the whole set of moments {M 1
i (t = ∆t,B = ∆B)}i=1,...,N is obtained, we

proceed to calculate the configuration magnetic moment, M c=1(∆t,∆B), for this choice of

fixed sweep rate, ∆B/∆t, from

M c(t,B) =

∑N
i=1 M c

i(t,B) exp[−βHc
i (t,B)]∑N

i=1 exp[−βHc
i (t,B)]

, (3.5)

Hc
i (t,B) = −Bc,eff

i (t,B) ·M c
i(t,B), (3.6)

by setting c = 1, t = ∆t and B = ∆B, where Bc,eff
i (t,B) is given from Eqs. (3.2) and

(3.3), β = 1/kBT , and kB is Boltzmann’s constant. Since
(
Bc
i

)
dip

as given by Eq. (3.3) in

Bc,eff
i (t,B) contains a self-fieldless single sum, there is no site overcounting in Eq. (3.6).

We are interested in M c(B, ∆B
∆t

). In this non-equilibrium situation, the M c
i , Bc,eff

i and

hence Hc
i for each nanomagnet change after each time step dt at which they are evaluated,

but the statistical weighting in Eqs. (3.5) and (3.6) is only evaluated at the end of each fixed

interval ∆t, which has a one-to-one correspondence with ∆B. Thus, this single-configuration

average can be directly compared to those in different configurations after the same number
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of intervals. Moreover, since ∆t = ∆B
(

∆B
∆t

)−1
, M c(t,B) for our purpose can be written as

M c(
B

∆B/∆t
,B), which is effectively a function of B and ∆B

∆t
.

Next, we increase the external magnetic induction by another equal step ∆B, and let

the nanomagnets precess during another equal time interval, ∆t, under the action of the

new effective induction. We continued increasing B in this equal step fashion a total of

NB times, until B = Bmax. At this point, the incremental induction direction is reversed,

setting B = Bmax−∆B for the same time interval ∆t, repeating the procedure 2NB times,

until B = −Bmax. After that, we reverse the incremental induction direction once again,

setting B = −Bmax + ∆B for the same time interval ∆t, etc., and continue NB times

until B = 0 is reached, or until the configuration magnetization hysteretic loop (if it exists)

is closed. Then, one repeats the entire procedure above described for each of the other

Nc − 1 configurations c = 2, . . . , Nc, keeping the time intervals ∆t and the subintervals dt

constant for each step in each configuration. Once all of the calculations for each of the Nc

configuration are finished, we average the results over the Nc configurations, obtaining,

〈M c

( B

∆B/∆t
,B

)
〉c =

1

Nc

Nc∑
c=1

M c

( B

∆B/∆t
,B

)
. (3.7)

Then, the magnetization
−→
M is easily calculated. Having tabulated

−→
M for every external

magnetic induction step with fixed ∆B
∆t

, T , a, Ms, α, and Bmax, we generate the magnetiza-

tion curveM(B) for this set of parameters.

3.2.3 Variation of parameters

Unlike the parameters such as Bmax and dt, which are details of the theoretical calculation,

other parameters can in principle be varied in experiments in a variety of materials. Using

the same initial dipole configurations we repeat the whole procedure with different values

of α, ∆B
∆t

, T , and a. The only parameters that can be experimentally varied in studies

on a particular sample are ∆B
∆t

and T , since the other parameters are fixed. Nevertheless,

the possibility of setting the nanomagnets further apart by varying the composition of the
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non-magnetic ligand groups in SMM’s, for example, justifies the study of the variation of

a. Also, given that the damping term appearing in the LL equation is phenomenological,

and that in most cases α should be determined experimentally, we have also examined its

variation. We note that α is expected to depend inversely upon T , unless T is sufficiently

low that thermal processes no longer dominate the relaxation.55 We keep Ms fixed.

3.2.4 Integration of the LL equation for one nanomagnet

The magnetic moment of each nanomagnet is obtained by numerically integrating the LL

equation. The time-evolution of one nanomagnet must be determined synchronously with

all its neighbors in order to calculate the dipolar induction acting on each of them at a given

time. To solve the LL equation for the ith nanomagnet in the cth crystal, we first rotate

its coordinates at each time integration step such that Bc,eff
i (t) || ẑ(t). We then solve the

resulting differential equations for either the coordinate spherical angles θ(t), φ(t), or the

components of M c
i(t), as shown in Appendix B. The quantity relevant to each spherical

angle or component of M c
i(t) is

∫ t

t0
dτ |Bc,eff

i (τ)|, which explicitly involves the past history

of |Bc,eff
i (t)|. In order to decrease the computation time, we approximate this integral for

small time integration steps dt = t− t0 � t0,∫ t

t0

dτ |Bc,eff
i (τ)| ≈ |Bc,eff

i (t0)|dt. (3.8)

In order to assure numerical accuracy of our results for the greatly different experimental

parameters studied, we had to make appropriate choices for the numerical parameters used

in the calculations, as discussed in the Appendix B. Generally, calculations with slow sweep

rates require correspondingly small α/γ values. For the calculations leading to the results

presented in Figs. 3.1, 3.2, and 3.6- 3.9, we take the numerical parameters dt = 1 × 10−4

s, Bmax = 2.0 T, Nt = 1000, and NB = 500, 1000 and 4000, respectively, for the different

sweep rates studied. For the calculations presented in Figs. 3-5, we take dt = 6 × 10−12 s,

Bmax = 22.5 mT, Nt = 1000, and NB = 1250.
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3.3 Results and discussion: Cubic array

3.3.1 Effect of damping and maximum induction values on the
hysteresis

We first neglect any anisotropy effects. In Fig. 3.1, we plotted the average over Nc = 100

configurations of the normalized magnetization at the lattice constant a= 1.5 nm, sweep rate

∆B
∆t

= 0.005 T/s, and temperature T = 0.7 K for four small damping rates α/γ = 3× 10−n,

where n = 10, 11, 12, and 13. These results appear respectively from left to right (right

to left) in the upper (lower) part of Fig. 1. The magnetization curves show hysteresis

for all four of these α values. For the smallest α value we studied, α/γ = 3.0 × 10−13,

the hysteresis only occurs for external induction magnitudes exceeding 3.0 T, observed by

setting Bmax above that value, which is well beyond the domain pictured in Fig. 3.1. We

also note that in Fig. 3.1, the central regions for |〈M〉/(NMs)| < 0.8 are non-hysteretic. For

each of these four parameter value choices, the initial curve describing the first increase of

the average magnetization from essentially 0 to its saturation value is indistinguishable from

subsequent similar curves obtained after completing the full hysteresis paths. Hence, in this

case, the main consequence of the choice of Nc = 100 configurations is the improvement in

the statistics, reducing the noise that remains most evident in the curves corresponding to

the smallest α values.

From the inset to Fig. 3.1, we see that although the height (in < M > /(NMs)) of

the hysteretic region decreases with decreasing α, the width (in B) of the hysteretic region

increases faster with decreasing α, so that the overall area of the hysteretic region increases

with decreasing α. From a computational standpoint, for the parameter values studied

in Fig. 3.1, the smaller the value of α, the larger the required value of Bmax to produce

hysteresis. We also noticed that in these magnetization curves, the hysteresis sets in at the

point of an abrupt change in slope in the initial curve, which describes the first increase

of the average magnetization from 0 to its saturation value. Moreover, we conclude that

Bmax must be chosen to guarantee that the system reaches saturation at B ≤ Bmax, because
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Figure 3.1: Magnetization curves for Nc = 100, a = 1.5 nm, ∆B
∆t

= 0.005 From left to right
for M > 0, α/γ = 3 × 10−10 (dashed), 3 × 10−11 (thin dark grey), 3 × 10−12 (light grey),
3 × 10−13 (thick black). The inset highlights the hysteretic region of the first three of these
curves.

of the different nature of the hysteresis present in each curve. For example, in Fig. 3.1

the hysteresis can occur only after saturation, but with smaller a values, if the system has

not saturated by B = Bmax, then the magnetization will keep increasing for a number of

subsequent ∆B steps, even though the direction of ∆B (but not of B) has been reversed.

3.3.2 Effect of temperature on the hysteresis

Temperature-independent α

We first investigate the role of temperature that arises only from the statistics, Eq. (3.5),

and present our results for a T -independent α in Fig. 3.2. In this figure, we have replotted

the inset of Fig. 3.1, excluding the curve for α/γ = 3 × 10−13, for which the hysteresis

occurred for B too large to display on the same plot. Otherwise, the parameters are the

same as in Fig. 3.1, except that we have compared our results (grey curves) for T = 0.7 K

shown in Fig. 3.1 with those (black curves and circles) for T = 0.1 K. Since the evolution of
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Figure 3.2: Shown is the upper hysteretic region of the normalized magnetization curves
at T = 0.7 K (grey) and T = 0.1 K (black, circles). The T -independent damping constants
α/γ are 3× 10−12 (a), 3× 10−11 (b), and 3× 10−10 (c). The other parameters are the same
as in Fig. 1.

the magnetization with B in this model is independent of T , we note from Fig. 3.2 that the

departures of the magnetization curves from the points of saturation are the same at both T

values, so that the widths (in B) of the hysteretic regions are nearly the same. However, the

height in < M > /(NMs) of each hysteretic region decreases strongly with decreasing T , so

that the overall area of each hysteretic region decreases with decreasing T . This particular

result is in strong contrast to the existing experimental results on SMM’s. Nevertheless, our

results are reasonable from the point of view of the LL equation and the way T enters our

calculation.

We remark that in Fig. 3.2, T only enters into the equations of motion when the average

magnetic moment is evaluated from Eq. (3.5). As for the Brillouin function that describes

the magnetization of a paramagnet in the absence of the dipole interactions, the initial slope

of the magnetization at low B increases as T is lowered. This increases the alignment of

the moment of each nanomagnet at decreasing T , so that the effect of the effective field is
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is enhanced.

Temperature-dependent α

We now consider the effect of the temperature dependence of the damping constant α upon

the magnetic hysteresis, focussing upon the case of correspondingly fixed very high sweep

and damping rates. We assume that our choice of spin value, S = 5 for each nanomagnet,

satisfies S � 1. In this limit, Fredkin and Ron showed that the damping of the nuclear spin

precession by magnetic dipole coupling to a heat bath, as derived under the assumption of

spin-orbit factorization by Wangsness and Bloch, could be readily extended to the spins in

magnetic systems.18,19 For S � 1, they found

α(T )/γ ≈ T0

T
, (3.9)

where T0 = 2~Φ1
11(1 − e−κ)S2/kBκ,

19 and Φ1
11 is a rate constant (with units of s−1), the

expression for which is a complicated orbital integral arising from the interaction of the

local spin with its surrounding molecular electronic orbitals in second-order perturbation

theory,18 and κ = ~γBeff/(kBT ). For κ � 1, T0 → 2~Φ1
11S

2/kB, which can be taken to

be independent of T and Beff , so that α ∝ T−1, but for κ � 1, α ∝ 1/Beff , which would

completely change its effect. Here we only consider the case κ � 1, for which Eq. (3.9)

holds for constant T0. We note that, as in Figs. 3.1 and 3.2, T also affects the results for

the magnetization from the statistics, Eq. (3.5).

In Fig. 3.3, we have shown our results, averaged over Nc = 100 configurations, of the

normalized magnetization as a function of B in mT, for a = 1.5 nm, ∆B
∆t

= 3000 T/s,

α(T )/γ = T0/T , T0 = 0.3K, and T = 5 K. For the calculations presented in this figure,

we used the numerical parameters dt = 6 × 10−12 s, Bmax = 22.5 mT, Nt = 1000, and

NB = 1250. Note that although a has the same value as in Figs. 3.1 and 3.2 , the sweep and

damping (α(T )/γ = 0.06) rates are six and at least eight orders of magnitude larger than

in those figures, respectively. For these parameters, there are three regions of hysteresis in

the pictured magnetization curve. The left inset is an enlargement of the upper hysteretic
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Figure 3.3: The magnetization curves for Nc = 100 at T = 5 K, a = 1.5 nm, and
∆B
∆t

= 3000 T/s with Bmax = 22.5 mT and α(T )/γ = T0/T for ~gµBBeff/(kBT ) � 1 and
T0 = 0.3 K are shown.19 Left inset: details of the upper portion of the curve. Right inset:
details of the central hysteretic portion of the curve shown, along with the central portion
of the corresponding curve at T = 0.25 K. The thin curves beginning near to the origin
represent the magnetization onsets.

region, the mirror image of which occurs in the lower region of the pictured magnetization

curve. In contrast to the behavior shown in Figs. 3.1 and 3.2 at the top of the upper

hysteretic region, the magnetization does not rise abruptly to its saturation value, but first

goes through an extended non-hysteretic region. In addition, there is a central hysteretic

region, an enlargement of which is shown in the right inset, along with an enlargement of

the same central hysteretic region obtained at T = 0.25 K with the same set of parameters.

We note that at T = 5 K, the onset magnetization averaged over Nc = 100 configurations,

pictured by the thin curve in the lower portion of the right inset, does not coincide with

the thick curve corresponding to the central hysteresis loop region obtained subsequently to

the attainment of the saturation value by the magnetization. In addition, we note that the

thick central hysteresis loop exhibits reproducible oscillations with B-independent frequency

f at T = 5K, which oscillations have disappeared at the lower T = 0.25 K value, for which

α(T )/γ = 1.2, pictured in the upper portion of the right inset.
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In order to investigate further the differences between the starting magnetization curves

and the curves obtained subsequent to saturation, in Fig. 3.4, we have shown the corre-

sponding central hysteresis loop portion of the magnetization obtained for two individual

configurations, using the same experimental and numerical parameters as in Fig. 3.3, except

that T = 10 K, for which α(T )/γ = 0.03. As in Fig. 3.3, T enters both through the statistical

averaging and through the damping, α(T ). In Fig. 3.4, the solid and open circles correspond

to the starting magnetizations of the two configurations, and the coincident thick black and

thin light grey curves correspond to the central hysteresis loop region of their respective

magnetization curves obtained after saturation. Note that after the initial noisy regions,

the starting magnetizations for these two configurations exhibit comparably large amplitude

oscillations at the frequency f/2, the phases of which are very different. However, after the

attainment of the saturation magnetization, these large amplitude oscillations are absent,

and replaced by smaller amplitude oscillations at the frequency f , which are similar to the

oscillations present in our results obtained at T = 5 K shown in the lower curves in the right

inset of Fig. 3.3. We note that in the first oscillation present on both sides of the central

post-saturation hysteresis loops obtained with these parameters at T = 5 and 10 K show

additional small amplitude, higher frequency oscillations, which may be higher harmonics

of f . In addition, the amplitudes of the fifth and sixth oscillations are larger at 10 K in 3.4

than at 5K in the lower right inset of Fig. 3.3.

We remark that the large amplitude oscillations present in the starting magnetizations

shown in Fig. 3.4 are absent in Fig. 3.3. This occurs due to the randomness of the oscillation

phases, which is averaged out in the Nc = 100 configurations studied in Fig. 3.3.

From Fig. 3.4, we therefore conclude that our starting configurations that were chosen to

have |M |/Ms ≤ 0.1, appropriate for SMM’s, lead to starting magnetization curves that are

very different from those that start at the saturation magnetization, but are subsequently

identical. That is, after the attainment of saturation, all configurations are identical.
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Figure 3.4: The central loop and starting magnetization curves for two separate configura-
tions, each with Nc = 1 (open and filled circles) at T = 10 K, a = 1.5 nm, and ∆B

∆t
= 3000

T/s with α(T )/γ = T0/T for ~gµBBeff/kBT � 1 and T0 = 0.3 K are shown.19 The thin grey
and thick black curves represent the identical behaviors of the central hysteretic loop portion
of the magnetization for the same two configurations obtained after saturation. The arrows
indicate the direction of the magnetization hysteresis. Here Bmax = 22.5 mT. See text.

3.3.3 External field directed towards the crystal corners with α(T )

We now consider the 3D case of the external magnetic induction directed from the crystal

center to one of its corners, B = B(x̂+ ŷ)/
√

2, the (110) direction. In Fig. 3.5, we show the

resulting central hysteresis region obtained from our calculations for Nc = 50, N = 5×5×4,

T = 10 K, a = 1.5 nm, and ∆B
∆t

= 3000 T/s with α(T )/γ = 0.03. In this case, it is sufficient

to set Bmax = 22.5 mT, which leads to full saturation. We note that for this field direction,

a small (-6 mT< B <6 mT) hysteresis region appears on either side of the origin, which is

rather central to the full magnetization curve, but vanishes over a small region close to the

origin. There are also tiny hysteresis regions near to saturation that appear as dots in the

inset depicting the full magnetization curve.

The nearly central hysteretic regions shown in Fig. 3.5 exhibit reproducible jumps at

specific B values, similar to those observed at low T in SMM’s. However, we note that

in this figure, we have taken T = 10 K, and have used a classical spin model. We also
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Figure 3.5: The central loops (solid curves) of the magnetization curve for Nc = 50,
N = 5× 5× 4 = 100, with B along the [110] direction [B||(x̂ + ŷ)/

√
2] at T = 10 K, with

a = 1.5 nm, Bmax = 22.5 mT, and ∆B
∆t

= 3000 T/s with α(T )/γ = T0/T , and T0 = 0.3 K.
The dashed curve is the starting magnetization curve. The arrows indicate the direction of
the hysteresis. Inset: the full magnetization curve. See text.

note that we have used a rather small sample (N = 100) with a fast sweep rate and a large

damping coefficient in our calculations, and caution that such behavior might not be present

in large single crystals, especially with much slower sweep rates. Nevertheless, this figure

demonstrates that steps in the magnetization do not necessarily have a quantum origin, and

that the sample shape can lead to unusual hysteresis effects.

3.3.4 Effect of sweep rate on the hysteresis

Fig. 3.6 shows the curves obtained for different induction sweep rates at a fixed, small

damping rate (using the same numerical parameters as in Fig. 3.1), it is clear that stronger

hysteresis is found for higher sweep rates, in agreement with experiments on a variety of

nanomagnets, including SMM’s. This shows that the reversibility of the process depends

on how close to equilibrium the sweep rate allows the nanomagnet spins to reach. That is,

although for different sweep rates the external induction is increased by the same amount
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Figure 3.6: Hysteretic region ofM(B) at 0.7 K, α/γ = 3×10−12, and a = 1.5 nm, for the
sweep rates ∆B

∆t
= 0.04 T/s (thin black), 0.02 T/s (dark grey), and 0.005 T/s (thick light

grey). The inset shows the entire curves.

∆B, at higher sweep rates, the time ∆t allowed for the nanomagnets to evolve towards

equilibrium is less. This makes the process less reversible and the hysteresis loops larger.

We also note that at the much higher sweep and damping rates studied in Figs. 3.3 and

3.4, the magnetization also exhibits a central hysteretic region, which exhibits oscillations

at T values not too low and/or damping constants not too large.

3.3.5 Effect of lattice constant on the hysteresis

In Fig. 3.7, we show hysteresis curves for two different values of the lattice constant a,

obtained using the same numerical parameters as in Fig. 3.1 For weaker dipole-dipole in-

teractions (larger a), the rise in the magnetization is steeper with increasing B, and the

rapid decrease in the magnetization from its saturation value upon decreasing B occurs at a

smaller value of |B|. Furthermore, we shall see that dipolar interactions do not promote hys-

teresis in these systems, but suppress it. Actually, the same conclusion was found recently

for magnetic nanoparticles in the framework of the generalized mean-field approximation.87
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Figure 3.7: Magnetization curves for lattice constants a = 1.5 nm (grey) and a = 2.5 nm
(black). ∆B

∆t
= 0.04 T/s, α = 3× 10−12γ, T = 0.7 K.

This peculiar hysteresis is easily understood by analyzing the LL equation. If the nano-

magnet magnetization M c
i is parallel to its local magnetic induction Bc,eff

i , dM c
i/dt = 0, as

it will remain thereafter, so that M c
i has reached equilibrium. The only chance the system

has to decrease its magnetization from its saturation value is through the combined weak

dipolar induction, which strengthens with decreasing lattice parameter a. The dipolar in-

duction can oppose the system from remaining completely magnetized, since it has small,

but non-vanishing components. Therefore, even when B reaches its maximum (finite) am-

plitude Bmax and the misalignments of each M c
i with B are negligible, dynamic equilibrium

will not generally have been attained due to the limited time allowed for relaxation before

the next change in B. There will remain a slight deviation between the directions of the

Bc,eff
i and the M c

i due to the presence of the Bc,dip
i , which is especially important when B

decreases from Bmax.

Of course, it is harder to decreaseM at the very beginning of the induction cycle. This
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is precisely the cause of the hysteretic behavior, given that changes in M c
i are proportional

to |M c
i ×Bc,eff

i |, which nearly vanishes when the direction of the incremental induction has

just been reversed. We conclude then that the smaller the lattice parameter (the stronger

the dipolar induction), the greater the deviation of M c
i from the direction of Beff

i . Hence,

the easier it is to decreaseM, making the magnetization curve less hysteretic. This is shown

in Fig. ref4.7, in which the magnetization curves resemble those obtained for Mn4 SMM’s.

72 Those data show an abrupt decrease in M at nearly zero external induction that is not

evident in the magnetization curves of other SMM’s.69

It is important to note that the curves in Figs. 3.1 and 3.7 do not show the strong

hysteresis observed experimentally in most SMM’s, which is especially large in the central

region of the M(B) curves. We remind the reader of our intent to focus upon the effects

of the dipole-dipole interactions, whereas the most important features of SMM’s involved

in their low-T relaxation of the magnetization are generally thought to be their quantum

structure and magnetic anisotropy. Nevertheless, for this entirely classical and magnetically

isotropic system, we are indeed finding hysteretic curves. In addition, the sweep rates in

Figs. 3.1, 3.2, 3.6, and 3.7 are comparable to those used in experimental SMM studies. At

much larger sweep rates, such as were studied in Figs. 3.3- 3.5, an hysteretic central region

was found. However, the sizes and T dependencies of these hysteretic regions were still

respectively much smaller and qualitatively different than observed in SMM’s.

3.3.6 Effect of spin anisotropy upon the hysteresis

It is straightforward to generalize our model to include some of the effects of magnetic spin

anisotropy. Here we assume the nanomagnets contain sufficiently many spins that their

quantum nature can be neglected. We note that SMM’s at low T values behave as quantum

entities, because of the small number of spins in each nanomagnet. In those systems, most

workers have assumed the in addition to the isotropic Heisenberg and Zeeman interactions,

the magnetic anisotropy terms could also be written in terms of components of the global spin
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operator S, with the overall dominant terms often written as −DS2
z−E(S2

x−S2
y).

88 However,

portions sufficiently large for model comparison of the low-T magnetization curves of two

Fe2 SMM dimers have been studied experimentally.89,90 In neither antiferromagnetic dimer

case was any evidence for either of those types of spin anisotropy present.91 In contrast,

in one of those cases, strong evidence for a substantial amount of local, single-ion spin

anisotropy, in which the individual spins within a dimer align relative to the dimer axis, is

present in the data.89,91 In addition, the global anisotropy in the ferromagnetic SMM Mn6

is extremely weak.92 Since the precise quantum nature of more complicated SMM’s appears

therefore to be poorly understood, we shall investigate the quantum features of the magnetic

hysteresis curves in SMM’s, including some effects of local spin anisotropy, in a subsequent

publication.93

We therefore restrict our investigations of the role of magnetic anisotropy upon the mag-

netization curves of arrays of nanomagnets to the simplest classical model of spin anisotropy,

Bc,eff
i = B + Bc

i,dip + µ0HA, (3.10)

where we take B = Bx̂ and studied the cases HA = HAx̂ and HA = HAẑ. This is the 3D

analogue of the model studied by KS.94 In this model, the magnetic anisotropy of each of

the nanomagnets points in the same direction, and in our finite sized crystal consisting of

5 × 5 × 4 nanomagnets on a cubic lattice, our chosen direction is one of the most general

ones. We first performed two studies of the magnetic hysteresis in this model, for which

the anisotropy field HA is directed respectively along (100), ||B, and (001), ⊥ B, and our

results are shown in Figs. 3.8-3.9, respectively. For both anisotropy field directions, we take

Nc = 100, N = 5× 5× 4 = 100, α/γ = 3× 10−12, a = 1.5 nm, ∆B
∆t

= 0.04 T/s, T = 0.7 K,

and Bmax = 2.0 T. The sweep rates used in Figs. 3.8-3.9 are slightly faster than those used in

SMM experiments but much slower than those used in the calculations of KS. Since a = 1.5

nm in these curves, these curves also represent the strongest realistic dipolar interaction we

studied.

In Fig. 3.8, we show the portions of the parallel magnetization curves with B||HA||x̂,
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Figure 3.8: Parallel 3D magnetization curves including different anisotropy field HA =
HAx̂ strengths, with the external induction B||HA. µ0HA = 0 (thin black), 0.2 T (dark
grey), and 1.0 T (thick dashed), respectively. For each curve, Nc = 100, N = 5×5×4 = 100,
α/γ = 3× 10−12, a = 1.5 nm, ∆B

∆t
= 0.04 T/s, T = 0.7 K, and Bmax = 2.0 T.

that exhibit the resulting regions of magnetic hysteresis for three HA values. For the µ0HA =

0, 0.2, and 1.0 T values shown, all three curves are hysteretic, but the two lower HA values do

not lead to a central hysteresis region. Nevertheless, the largest anisotropy value, HA = 1.0

T, leads to a strong central hysteresis. We remark that the trends shown in Fig. 3.7 are rather

different from those obtained for a single magnetic particle with magnetic anisotropy.46

In Fig. 3.9, we show the portions of the 3D perpendicular magnetization curves exhibiting

the resulting regions of magnetic hysteresis for the five anisotropy fields µ0HA = 0, 1 mT,

12 mT, 0.5 T, and 1.0 T, with the magnetic induction B||x̂ ⊥ HA||ẑ. In each case,

hysteresis occurs near to magnetic saturation, but is absent in the central region for small

magnetic induction. At µ0HA = 1.0 T, this is distinctly different from the large central

hysteretic region observed for parallel anisotropy. Note that the slope dM/dB at small B

is non-monotonic with increasing HA, as it has a minimum at curve (c), corresponding to

µ0HA = 12 mT.
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Figure 3.9: Upper region of the 3D perpendicular magnetization curves with the external
induction B = Bx̂ ⊥ HA = HAẑ, for different values of HA. Curves (a)-(e) correspond
to µ0HA = 0, 1 × 10−3, 1.2 × 10−2, 0.5, 1.0 T, respectively. The other parameters are the
same as in Fig. 7. The arrows indicate the directions of the field sweeps.

Thus, we conclude that it is possible to obtain a central hysteresis region using this

classical model of dipolar interactions with constant spin anisotropy. However, our results

suggest that such central hysteresis regions only arise for the magnetic induction parallel

to the spin anisotropy direction, and for sufficiently strong anisotropy fields, HA ≥ Hmin
A ,

where 1.0 T> µ0H
min
A > 0.2 T.

3.4 Results and discussion: Square array

3.4.1 Introduction

To estimate the importance of the dipolar induction (especially when it becomes compa-

rable to the external induction), the anisotropy and the sweep rate, we have95 successfully

reproduced one of the 2D calculations of KS.94 The KS calculation we chose to reproduce

was pictured in their Fig. 2(i), which was for θ = 45◦ and is shown here as the left panel

of Fig. 3.10. We chose a and ∆B/∆t values consistent with those of KS, and since KS had
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mentioned an anisotropy field in their Hamiltonian, but did not list any anisotropy param-

eters used in their calculations, we also varied the strength of the anisotropy field HA. We

obtained remarkably good agreement with their results of Fig. 2(i) with ∆B/∆t ≈ 3000

T/s, a = 1.5 nm, and µ0HA ≤ 0.75 mT. Then, we changed some parameters to see how the

results depend on the anisotropy strength, sweep rate, and lattice parameter.

Our calculations for a cubic lattice consisting of four 25-particle layers differ from those

of KS in many ways.94 They used a 2D square lattices of cylindrical nanodots (here, we take

their 5 × 5 lattice with external induction aligned along an array’s diagonal), included a

shape-dependent anisotropy field perpendicular to the lattice, performed their calculations

at T = 0, used a much larger damping constant than we generally did for 3D systems, and

did not average their results over an ensemble of 2D samples, because such systems do not

show variations in the resulting hysteresis loops for different initial states. Nevertheless, we

both integrated the LL equation using the Runge-Kutta algorithm, and surprisingly, KS’s

system turned out to be very sensitive to the dipolar field strength. The effective induction

they considered can be written as

Bc,eff
i = B + Bc

i,dip + µ0HAẑ. (3.11)

For lattice constant a = 1.5 nm, spin S = 5, and V/a3 = 0.5, where V is the volume

of the nanomagnet, the saturation magnetization is Ms ≈ 55 Oe. Then, they took the

dimensionless dt = 5 × 10−3, which implies a real time interval dt = 5.17 × 10−12 s. If

the system evolves during 700 time steps dt for some fixed value of B, then B is changed

every ∆t ≈ 3.62 × 10−9 s. On the other hand, KS chose a maximum external induction

Bmax = 2µ0Ms ≈ 1.1 × 10−2 T. In addition, they took fixed induction steps of magnitude

∆B = 2 × 10−3µ0Ms ≈ 1.1 × 10−5 T. Therefore, we estimate their resulting sweep rate to

be ∆B
∆t
≈ 3× 103 T/s, as in our 3D results shown in Figs. 3.3, 3.4.

In the absence of any specific information, we then had to induce the value of the

anisotropy field that KS used to obtain their figure. Fortunately, as discussed in the follow-

ing, the results are rather insensitive to it, unless HA becomes comparable to Bmax/µ0. In
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Figure 3.10: (left) Hysteresis loop M(B) in units of Ms, for a weakly coupled array of
5 × 5 ferromagnetic nanodots in a square lattice on the xy plane, from Fig. 2(i) of KS.
The external induction is applied along the array diagonal (45◦ from the x axis).94. (right)
Our results calculated for Nc = 1 with 5 × 5 nanomagnets on a square lattice, α/γ = 0.6,
T = 0K, ∆B

∆t
= 3000 T/s, µ0HA = 7.5× 10−4 T, B = B(x̂ + ŷ)/

√
2.

the right panel of Fig. 3.10, our 2D calculation with µ0HA = 0.75 mT are shown, and by

comparing that figure with Fig. 2(i) of KS pictured in the left panel of Fig. 3.10, we see

that the agreement is remarkably good.

Later, Takagaki and Ploog (TP) used a fourth-order Runge-Kutta procedure to integrate

the LL equations with N×N 2D nanomagnet lattices with magnetic anisotropy and dipole-

dipole interactions.85 They used a fixed time interval dt = 0.1~/(γMs), 20 times as fast

as that used by KS,94 and let the nanomagnets to interact until no further changes in the

nanomagnet spin configurations were obtained. Some of their results appeared to differ

qualitatively from the second-order Runge-Kutta results obtained for the same systems

by Kayali and Saslow, both in the hysteresis area AN and in the number of steps of the

magnetization hysteresis loops. Since the numerical iteration techniques in those two papers
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were different, one might first think that the differences could have arisen from inaccuracies

in one or the other of the techniques. We had varied our iteration time interval (up to two

orders of magnitude smaller) in other calculations to check our own accuracy, the excellent

agreement between our results and those of KS provided strong evidence that those N = 5

KS results were also sufficiently accurate. In order to determine the source or sources of

the apparent differences between the KS and TP results which were most prominent in a

different N = 5 calculation, we varied the lattice parameter a, which was unspecified by TP,

in order to determine if different a choices could account for their different results. We also

reduced our iteration time interval dt by two orders of magnitude, in order to guarantee our

own accuracy.

However, another possible source of the differences could be that both KS and TP used

apparently incompatible definitions of magnetic moment and magnetization, which is defined

to be the magnetic moment density,20 or magnetic moment per unit volume (area) in a three

(two)-dimensional array. KS plotted the array magnetization M(H) with both M and H

in units of Ms. However, KS defined Ms to be both the nanodot saturation magnetization

and the magnitude of the nanodot magnetic moment.94 On the other hand, TP denoted MH

as the magnetization per lattice site, and plotted it in units of Ms, which they also denoted

as the magnitude of the nanodot magnetic moment.85 However, TP plotted the magnitude

of the magnetic field H in the different units of Ms/a
3
TP ,85 where aTP is the TP lattice

constant. These units used by TP are confusing and appear to be incompatible. Clearly,

the magnetic field and the magnetization per volume do not have the same units.

Despite the dual character of Mj in the KS work, in their Eq. (3), Mj clearly represents

the saturation magnetization of the jth nanodot.94 Then, MjV
KS
dot is that nanodot’s magnetic

moment, where V KS
dot = πdR2

d for a cylindrical nanodot of height d and radius Rd. The

distance between the jth and ith nanodots is aKSrij, where rij is dimensionless. Then, for an

arbitrary nanodot magnetization, the strength of the dipolar interaction is hKS
dip = V KS

dot /a
3
KS.

SC had earlier presented this description without incurring any ambiguity between the
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nanodot magnetization and magnetic moment.84 However, TP claimed their nanodots were

circular with an infinitely small radius.85 Such nanodots have an unphysically divergent

magnetization in the usual sense,84 although the precise nanodot dimensions are irrelevant

in TP’s description of the dipolar interaction strength in terms of aTP and Ms. Note that

once hdip is fixed, volume per se is irrelevant in the KS and TP calculations.

Here we show that the different KS and TP results are not due to inaccuracies

in either calculation or to different magnetic induction sweep rates ∆B/∆t, but

arise from different hdip choices, as TP effectively took hTPdip = V TP
dot /a

3
TP = 1 = 2hKSdip

in their Eq.(3).85 By taking the effective nanodot volume Vdot to be the same in each

calculation, V TP
dot = V KS

dot , we accurately reproduce both the KS and TP N = 5 results using

a values consistent with their different hdip choices, aTP/aKS = (hKS
dip/h

TP
dip)

1/3 = 2−1/3.

3.4.2 Anisotropy field dependence of the hysteresis

We first investigated the effects of changing the strength of the anisotropy fields, and pre-

sented our results in Fig. 3.11. The most important issue about the results shown in Fig. 3.11

is the fact that the curve obtained by KS (the left panel of Fig. 3.10) is basically independent

of the anisotropy field HA for sufficiently small HA. That is, there are no essential differ-

ences between that curve reproduced in the right panel of Fig. 10 with µ0HA = 7.5 mT, and

the one with HA = 0. Strong deviations from these essentially identical curves appear for

µ0HA ≥ 4 mT, however. Since identical behavior is obtained without any anisotropy, this

implies that all hysteretic features (including the stepped magnetization and demagnetiza-

tion) are due to the dipolar interaction. HA becomes important only when it is comparable

to Bmax/µ0 and tends to close the hysteresis loops, starting from the lower and upper loops.

We note that by comparing Fig. 3.11 with Fig. 3.9, the details of the hysteresis obtained with

HA = 0 for B along the (110) direction are different in 3D and 2D samples. The hysteresis

is much larger in the 2D case pictured in Fig. 11, and has a large loop in the central region

that does not vanish at the origin, plus large loops that extend up to saturation. In the 3D
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Figure 3.11: Hysteresis loops for various strengths of HA for 5 × 5 nanomagnets on a
square lattice with Nc = 1. S = 5, T = 0 K, a = 1.5 nm, ∆B

∆t
= 3000 T/s, α/γ = 0.6, B =

B(x̂ + ŷ)/
√

2. The thin grey and thick black curves with µ0HA = 0, 0.75 mT, respectively,
are nearly indistinguishable. The small grey circles and dashed curves correspond to µ0HA =
4.0, 5.5 mT, respectively. The inset shows the entire magnetization loops

case constructed from four 2D planes each equivalent to that used in the calculation shown

in Fig. 11, the magnitude of the hysteresis is reduced and its details have been greatly

altered.

3.4.3 Induction sweep rate dependence of the hysteresis

In Fig. 3.12, we show our results for a single configuration of a square 2D lattice with

N = 5×5 for different sweep rates, keeping the other parameters fixed at µ0HA = 0.75 mT,

α/γ = 0.6, a = 1.5 nm, S = 5, T = 0, and B = B(x̂+ ŷ)/
√

2. From Fig. 3.12, we note that

the hysteresis is nearly independent of induction sweep rate over the range 300 to 6000 T/s,

distinctly different from the strong dependence found in 3D systems shown in Fig. 3.5
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Figure 3.12: Hysteresis loops for different induction sweep rates with 5 × 5 nanomagnets
on a square lattice with Nc = 1. S = 5, T = 0 K, a = 1.5 nm, µ0HA = 0.75 mT, α/γ = 0.6.
The dashed grey, thick black, and light solid grey curves correspond to ∆B

∆t
= 300, 1500, 6000

T/s, respectively. The inset shows the entire curves. B = B(x̂ + ŷ)/
√

2.

Results for θ = 0◦: Induction sweep rate dependence and accuracy check of the
usage of the second-order Runge-Kutta integration method

Major differences appeared between the KS and TP results for the N = 5 square lattice

calculations with θ = 0◦, which were Fig. 1(h) of KS and Fig. 7(d) of TP, shown here

as Fig. 3.13 (a) and the dashed curve in Fig. 3.16 (a), respectively. Although nominally

calculated for the same parameters N and θ, these hysteresis curves exhibit respectively

four and three vertical steps on increasing and decreasing B. In Fig. 3.13, we compare the

KS results [Fig. 3.13 (a)] from their Fig. 1(h) with our results [Fig. 3.13 (b)] for a = 1.5

nm, ∆B/∆t = 3000 T/s, evaluated using dt = 5.17 × 10−12 s (thick black curve) and

dt = 5.17× 10−14 s (thin white curve). As can readily be seen, these curves reproduce every

feature of their curve, including the four vertical steps each upon increasing and decreasing

B, and there are no problems with the iteration accuracy.

In our previous results for two-dimensional arrays, we found that the hysteresis was

nearly independent of the magnetic induction sweep rate ∆B/∆t, provided that hdip ∝ a−3
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Figure 3.13: (a): M(H) hysteresis pattern from Fig. 1(h) of KS.94 M and H are given
in units of Ms, and θ = 0◦; (b): Our M/Msat versus B results with θ = 0◦ for a = 1.5 nm.
The thin white and thick black curves were both evaluated with ∆B/∆t = 3000 T/s using
dt = 5.17×10−14 s and dt = 5.17×10−12 s, respectively. The thick grey curve was evaluated
with dt = 5.17× 10−12 s and and ∆B/∆t = 7000 T/s.
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was sufficiently large. Nevertheless, to check the case under study, we increased the sweep

rate from ∆B/∆t = 3000 T/s to 7000 T/s, using dt = 5.17 × 10−12 s, and presented the

results as the thick grey curve in Fig. 3.13 (b). As expected, the curves with ∆B/∆t =

3000, 7000 T/s are nearly identical, so that the sweep rate does not affect the magnetic

hysteresis significantly, and is unlikely to account for the differences in the KS and TP

results.

3.4.4 Lattice parameter dependence of the hysteresis

In Fig. 3.14, we have illustrated the effect of the lattice constant a upon the hysteresis.

In this figure, we kept the other parameters fixed at S = 5, T = 0, ∆B
∆t

= 3000 T/s,

µ0HA = 0.75 mT, α/γ = 0.6, and B = B(x̂ + ŷ)/
√

2. As a is varied from 2.0 to 1.25 nm,

the upper portions of the hysteresis curves appear from left to right, respectively. From

Fig. 13, it is readily seen that the magnetization curves are very sensitive to a and hence

to the strength of the dipolar interaction, which is proportional to a−3. Our results for

a=2.5 nm exhibit a smaller hysteresis shifted further to the left, and all indications of steps

have disappeared. Although not shown in Fig. 3.14, as a is increased further to 3.0 nm, the

hysteresis almost disappears entirely. We deduce that stronger dipolar interactions (smaller

a) result in larger hysteresis loops and may increase the width of additional steps.

We then infer that contrary to the conclusion found for the 3D systems (based upon

much smaller damping coefficients and much slower sweep rates), the dipolar interactions

promote a hysteretic behavior in this 2D system.

Results for θ = 5◦ and 0◦ (N = 5): lattice parameter dependence in KS and TP
calculations

We have showed that with decreasing a values (thus increasing hdip) in two-dimensional

arrays the area AN of magnetic hysteresis increases, the hysteresis loops shift away from

the central loop, and additional magnetization steps can also occur. Assuming both TP

and KS plotted M and H in comparable units, we note that in comparing their N = 5,
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Figure 3.14: Hysteresis loops for lattice parameters a = 2.5 nm (solid black), a = 2.0
nm (dashed black), a = 1.5 nm (solid grey), and a = 1.25 nm (dot-dashed black), for
5 × 5 nanomagnets on a square lattice with Nc = 1. S = 5, T = 0 K, ∆B

∆t
= 3000 T/s,

µ0HA = 7.5× 10−4 T, α/γ = 0.6. The inset shows the entire curves. B = B(x̂ + ŷ)/
√

2.

θ = 0◦ results, the KS M(H) curve reached saturation at smaller M values than did the

TP curve. This suggests that TP and KS scaled M differently. Since we had already

checked one N = 5 curve of KS for accuracy, we first investigated further whether AN

might depend upon a in one of the N = 5 square arrays studied by either KS or TP.

Since the N = 5 region of magnetic hysteresis is mostly localized around the origin in Fig.

2(g) of KS, we chose that case for study. In Fig. 3.15, we compare our results [Fig. 3.15

(b)] for the magnetization M/Msat of a two-dimensional array with N = 5 and θ = 5◦

obtained for different a values with those [Fig. 3.15 (a)] presented in Fig. 2(g) by KS. In

our calculations, the array saturation magnetization Msat = Ms/(da
2) is different from the

nanodot magnetization Ms/Vdot. Figure 1 demonstrates that an excellent reproduction of

the KS θ = 5◦ results is obtained using ∆B/∆t = 3000 T/s and a = 1.5 nm, the same

values that fit their θ = 45◦ results.14 Furthermore, it is evident in Fig. 3.15 (b) that smaller

a values lead to substantially larger hysteresis areas, consistent with our previous findings.
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14 We also checked the iteration accuracy for this figure by decreasing the iteration time

interval dt a factor of 100, without any change in our results. Our results and those of KS

provided strong evidence that those N = 5 KS results were also sufficiently accurate. On

the other hand, we have seen that the induction sweep rate, which is unspecified in TP

paper, seems not be explain the the apparent differences between the KS and TP results (in

the N = 5 calculation).

In order to determine the source or sources of these, we varied the lattice parameter a,

which was unspecified by TP, to reproduce the different TP results for N = 5 and θ = 0◦

keeping the sweep rate fixed at ∆B/∆t = 3000 T/s, and varying a. A comparison of their

Fig. 7(d) and our best fit to their results is presented in Fig. 3.16. The relevant TP results

are shown as the dashed curve in Fig. 3.16 (a). Our best fit to that curve was obtained

with a = 1.2 nm, and is pictured in Fig. 3.16 (b). Here we checked the accuracy of the

TP calculation using our high accuracy time interval, dt = 5.17 × 10−14 s. We obtained

excellent agreement with the TP results, even with the three vertical steps on increasing

and decreasing B. The different values of the lattice constant a used to fit the TP and

KS curves, 1.2 nm and 1.5 nm, respectively, can account quantitatively for the strong,

qualitative differences in the KS and TP hysteresis curves.

3.4.5 Abrupt change in the number of steps of the hysterisis loops
with the lattice constant

In comparing Figs.Fig. 3.13 (b) and Fig. 3.16 (b), we see that there is a remarkable difference

in the results obtained with only a 25% variation in a, as the number of steps changed by

unity on both increasing and decreasing the field. Although we previously observed a smooth

increase in step number with decreasing a for θ = 45◦, we wondered whether this decrease in

step number with decreasing a for θ = 0◦, nominally opposite behavior to that for θ = 45◦,

might occur abruptly or smoothly. Hence, we performed additional calculations with a

values in the range 1.2 nm < a < 1.5 nm to answer this question. Our results are pictured

in Fig. 3.17. From these curves, it is evident that the qualitative change is abrupt, with
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Figure 3.15: (a): M(H) hysteresis pattern from Fig. 2(g) of KS.94 M and H are given in
units of Ms, and θ = 5◦; (b): Our M/Msat versus B results with θ = 5◦ for the a values listed
and ∆B/∆t = 3000 T/s. The thin black curve (inside the thick grey curve) was evaluated
with dt = 5.17× 10−14 s. All other curves were evaluated with dt = 5.17× 10−12 s.
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Figure 3.16: (a): M(H) hysteresis pattern (dashed) from Fig. 7(d) of TP.85 M and H
are given in units of Ms and Ms/a

3, and θ = 0◦. (b): Our M/Msat versus B results with
θ = 0◦ for a = 1.2 nm, ∆B/∆t = 3000 T/s, and dt = 5.17× 10−14 s.
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Figure 3.17: (a): M/Msat versus B for θ = 0◦, N = 5, ∆B/∆t = 3000T/s, dt =
5/17 × 10−14s, and a values ranging from 1.2 nm to 1.5 nm. (b): Upper portion of the
M/Msat versus B curve for θ = 0◦, N = 5, ∆B/∆t = 3000T/s, dt = 5/17× 10−14s, and a
values ranging from 1.30 nm to 1.40 nm.

the extra step appearing at a = a∗, where 1.35 nm < a∗ < 1.375 nm. By comparing the

Fig. 3.17 (a) curves for a = 1.2 nm and a = 1.5 nm, it appears that smaller a values lead to

larger hysteresis areas. However, from Fig. 3.17 (b), we note that as a is decreased through

a∗, there is a dramatic decrease in the hysteresis area. Hence, the variation of the hysteresis

area, AN , as a function of the lattice parameter is non-monotonic - as it is with respect

to the variation of the size of the array -94 but may show an abrupt increase upon a small

variation of the dipolar interaction strength, as shown in Fig. 3.18.

3.5 Summary

We first found Nc = 100 sample configurations with an overall magnetization close to 0.

We then solved the Landau-Lifshitz equation for a 3D cubic lattice of N = 5× 5× 4 nano-

magnets, subject to dipole-dipole interactions and spin anisotropy. These results should be
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Figure 3.18: Area of the magnetization hysteresis loops, AN=5, versus the lattice parameter,
a, of the 5× 5 square array for θ = 0◦, ∆B/∆t = 3000T/s, dt = 5/17× 10−14 s.

relevant for an array of Stoner-Wolfarth nanomagnets, and to some extent, single molecule

magnets, although the quantum nature of the latter has so far been neglected. In the ab-

sence of spin anisotropy, we varied the magnetic induction sweep rate ∆B
∆t

, the damping

constant α, the lattice constant a, and the temperature T . We also considered the effects

of a T -dependent damping constant of the form α(T )/γ = T0/T suggested by Fredkin and

Ron. For slow sweep rates and small α relevant for experimental studies on single molecule

magnets, magnetic hysteresis appears in the regions of the magnetization curves near to

saturation, the area and onset magnetic induction strength of which increases with decreas-

ing α and increasing sweep rate. With decreasing T , the onset magnetization magnitude

of the hysteretic regions near to saturation decreases. With decreasing a corresponding

to increased dipole-dipole interaction strengths, the onset of the hysteresis regions near to

saturation appears at increasing magnetic induction magnitude.

At much larger sweep rates and damping constants, the magnetization curves attain

saturation at much smaller applied magnetic induction strengths. The hysteretic regions

just below saturation have moved somewhat below saturation, and a new central hysteretic

region appears. As one follows the magnetization curve for a single configuration, the
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starting curve exhibits oscillations at a rather constant (magnetic induction independent)

frequency f/2, but the phase of the magnetization oscillations is a random function of the

configuration. After the attainment of magnetic saturation, this central hysteretic region

exhibits oscillations at f , twice that frequency, possibly with weak higher harmonics, for T

not too low, which are independent of the configuration.

When the applied magnetic induction is in the (110) direction (from the sample center

to one of its corners), magnetic hysteresis exhibiting steps and jumps appears within the

central region, but vanishes at and very near to the origin. Although these step-like features

are suggestive of the behavior seen in single molecule magnets, they are present at rather

high T values, as they arise from the classical sample shape effects.

In the presence of the magnetic anisotropy field HA, an applied magnetic induction

parallel to the anisotropy axis leads to a large central hysteresis region, provided that the

magnitude of the spin anisotropy is sufficiently large. For the applied magnetic induction

perpendicular to the magnetic anisotropy, no central hysteresis region is present, although a

small amount of hysteresis near to saturation persists for sufficiently small spin anisotropy

strength, and the slope of the magnetization curve at the origin is non-monotonic, exhibiting

a maximum at a particular small value of the spin anisotropy strength. These effects for

the spin anisotropy are qualitatively in agreement with those in many types of arrays of

nanomagnets, including single molecule magnets.

We studied the simplified 5×5 2D square lattice with a perpendicular spin anisotropy field

HA using the same procedure, and for a particular set of parameters, obtained quantitative

agreement with a hysteresis curve obtained for that system by Kayali and Saslow.94 We

showed that their hysteresis curve is basically independent of HA until µ0HA is on the order

of the external induction. We also demonstrated that the magnetic hysteresis does not

depend significantly upon the magnetic induction sweep rate, as opposed to the dependence

we found in our 3D system. In addition, we found that the magnetization of the 2D system

is very sensitive to variations in the lattice parameter a. Indeed, we have accounted for the

82



qualitative differences present in the calculations by Kayali and Saslow and by Takagaki and

Ploog of the magnetization curves for square, 5 × 5 magnetic nanodot arrays with dipole-

dipole interdot interactions with the magnetic field parallel to one of the array edges, by

using different a values. Both of their calculations were sufficiently accurate and insensitive

to the magnetic induction sweep rate. We note that the particular a values we used to fit the

KS and TP curves, aKS = 1.5 nm and aTP = 1.2 nm, are in quantitative agreement with their

different hdip choices, aTP/aKS = (hKSdip /h
TP
dip)

1/3 = 2−1/3. We note that for the same nanodot

magnetic moment Ms, comparing the same nanodot magnetization values requires setting

V TP
dot = V KS

dot , so that the different a values arise solely from different dipolar interaction

strength hdip choices. In short, we have shown that there were two reasons for the apparent

discrepancies in the KS and TP results. First, there was confusion created by both KS and

TP. KS used two inequivalent definitions of Ms. TP used both an infinitely small nanodot

volume and incompatible units for the magnetization and magnetic field. Second, the above

exposé shows that even after these two differences are reconciled through proper definitions

of the nanodot magnetization and magnetic moment, what sets the KS and TP calculations

apart is their uses of different dipolar interaction strengths hdip. The TP calculations

based on twice the KS dipolar interaction strength naturally lead to qualitatively different

behavior.

Finally, we noticed that although dipolar interactions also oppose the magnetization

process in 2D systems by increasing the onset magnetic induction strength for the attainment

of saturation as in 3D systems, their effect is opposite to that found for the 3D system with a

much smaller damping coefficient and much slower sweep rate. We find that when qualitative

changes in the M(B) curves do not occur with decreasing lattice constants, the area of the

hysteresis increases correspondingly. We also showed that at least one critical a value a∗ can

exist, at which qualitative changes in the M(B) hysteresis curves appear, accompanied by

an abrupt decrease in the hysteresis loop area upon a minuscule increase of the interaction

strength.
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Chapter 4

First principles calculations of the
electronic and geometric structure of
Ag27Cu7 Nanoalloy

4.1 Introduction

Small bimetallic nanoclusters often have physical and chemical properties that are distinct

from that of their pure bulk counterparts and suggestive of novel applications.15,96,97 Not

surprisingly, materials assembled from finite-sized bimetallic clusters have been investigated

intensively not only for their catalytic and optical properties,98–108 but also for their ability

to assemble into cluster crystals 109,110 and their possible applications in single-electron tun-

nelling devices.15 Along with its high symmetry and relatively high melting temperature,

one of the criteria for a cluster to be used as a potential building block for cluster-assembled

materials is its chemical stability relative to other reagents and to other clusters of the same

material. Also, major difficulties arise from the fact that clusters may tend to coalesce when

assembled. This can be prevented in one of two ways - either by isolating the clusters in

matrices or by coating them with surfactants.110 An alternative route is to find nanoclusters

that are naturally stable, i.e., nanoclusters whose intra-cluster interaction is stronger than

the inter-cluster interaction allowing the clusters to keep their individual identity intact

upon assembling. Even so, cluster-assembled materials could still be metastable against

dissociation into their bulk phases.
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Darby et al.97, using many-body Gupta potentials, studied the structure and stability

(as reflected by the total energy) of a wide variety of CuxAuy nanoclusters with up to 56

atoms and x/y = 1, 3; corresponding to the well-known x : y ratios that result in stable

ordered bulk phases at low-temperatures.111 They found that the geometry of the cluster

is influenced by the tendency to maximize the number of Cu − Au and Au − Au bonds.

Rossi et al.15, on the other hand, proposed a new family of 34-atom bimetallic alloys using

the genetic global optimization technique (GGO).15 These nanoalloys are characterized by

a perfect core-shell structure in which the smaller atoms (Cu or Ni) compose the core

whereas, the relatively larger, Ag atoms lie on the surface. They find the nanoalloys to

be energetically and thermodynamically more stable than pure clusters Ni34, Cu34, and

Ag34,
15 and attribute the relative stability of the nanoalloy structures to the supplanting of

the inner Ag atoms by smaller atoms (Cu or Ni) thereby reducing the internal strain in

Ag34, or the replacement of outer Cu atoms by larger atoms (Ag) to reduce the external

strain in Cu34. As we shall see later, the most stable of the 34-atom Ag − Cu nanoalloy

family proposed by Rossi et al,15 Ag27Cu7, provides a hint that it is not the x : y ratio that

guarantees the stability of either bulk or nano-alloys, rather it is the maximization of the

number of optimized Cu− Cu and Cu− Ag bonds.

Among a set of possible core-shell nanoclusters modelled by many-body interatomic po-

tentials, Rossi et al.15 chose the compositions corresponding to their most stable structures

for some selected sizes and locally optimized the structures using density functional theory

(DFT) to confirm the trends given by the GGO and to single out the clusters with high

electronic stability, namely, the width of HOMO-LUMO (Highest Occupied Molecular Or-

bital - Lowest Unoccupied Molecular Orbital) gap. They determined the thermodynamic

stability of the chosen structures through calculations of the melting temperatures from

molecular dynamics simulations and of temperature-dependent probabilities of the global

minima by harmonic thermodynamics.112 Among the 34-atom family of nanoclusters, they

found Ag27Cu7 and Ag27Ni7 to have the least excess energy with respect to bulk atoms
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(the lowest heat of formation), strong electronic stability (large HOMO-LUMO gap), and

relatively high melting temperatures.15 For these particular clusters they have proposed a

structure with D5h symmetry in which the 7 core-Cu atoms form a decahedral structure

while the 27 shell-Ag atoms are placed in an anti-Mackay overlayer.

Experiments and heat of formation calculations have shown that Ag−Cu alloys generally

tend to segregate.113–115 In a sense, the core-shell structure of Ag27Cu7 nanoalloy is itself

segregated. In order to understand how its particular geometry implicitly stabilizes it, a

detailed examination of the relative strengths and lengths of the Ag − Cu, Cu − Cu, and

Ag−Ag bonds is needed. For bulk Cu−Au alloys the presence of a dip in the electronic DOS

near the Fermi level was also considered to be a signature of alloy stability.113 Interestingly,

such a dip is not found in bulk Au − Ag alloys.111,113 Moreover, in the case of crystalline

solids, the structural stability is linked to the absence of phonon instabilities.116 The purpose

of this paper is to carry out a full investigation of the relationship between the geometric

and electronic structure of Ag27Cu7 nanoalloy and related bulk systems to get insights into

the various factors that may impact their stability. That is, through examination of the

formation energy, the density of states near the Fermi level, the HOMO-LUMO gap, and

the charge density distribution, we develop criteria which may lead to chemical and electronic

stability of Ag27Cu7. To obtain additional insights into the structure-stability relationship,

we have also carried out calculations of the bond-length, the electronic structure, and the

phonon dispersion of Ag3Cu and Cu3Ag bulk alloys in their Ll2 phase.

The rest of the chapter is organized as follows: Section 4.2 contains the computational

details, while Section 4.3 is a summary of our results and is divided in subsections 4.3.1

and 4.3.2. Subsection 4.3.1 analyzes the geometry and bond coordination of the atoms in

the Ag27Cu7 nanoalloy and those in the bulk Ag−Cu Ll2 alloys, for insights into proposed

stability criteria. In Subsection 4.3.2, we examine our calculated DOS of Ag27Cu7 and of the

bulk systems (Cu3Ag and Ag3Cu ), and the charge density distribution of Ag27Cu7. Finally,

in Section 4.4 we summarize our conclusions, and discuss how the relation between structure
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and stability in Ag27Cu7 nanoalloy can be understood in terms of a specific hierarchy in

bond strength and the capability of the structure to provide the bond lengths for which that

hierarchy is satisfied.

4.2 Computational Details

Periodic super-cell calculations are performed in the framework of density functional the-

ory.117 Our calculations are based on the pseudopotential approach and the plane wave

method (Quantum ESPRESSO: opEn-Source Package for Research in Electronic Structure,

Simulation, and Optimization).118 Ultra-soft pseudo-potentials119 used here are generated

consistently with GGA schemes. For the GGA functional the expression introduced by

Perdew, Burke, and Ernzerhof (PBE) has been introduced.120 Integrations up to the Fermi

surface are performed by using a broadening technique41 with smearing parameter of 0.2 eV

(0.147 Ry). Below we provide some specifies of the calculations as relevant to a particular

system.

4.2.1 Calculation of bulk systems

We have performed extensive convergence tests for lattice constants, bulk moduli and total

energies of bulk Cu, Ag, Ag3Cu , and Cu3Ag . To obtain the minimum energy configuration

with zero stress based on total energy differences of 1 mRy, as well as, convergence up to the

third and second digit in the lattice parameter (in a.u.), and the bulk modulus (in Mbar),

respectively, the calculations demand a k-point sampling of 145 Monkhorst-Pack special

points121 (corresponding to a 16 × 16 × 16 Monkhorst-Pack grid) for the integrations over

the Brillouin zone (BZ). Furthermore, the plane wave kinetic energy cut-off, Ecut, and the

energy at which the charge density Fourier expansion is truncated, Eρ, had to be set equal

to 680 eV (50Ry) and 8160 eV (600 Ry), respectively. These convergence criteria surpass

by far most of those reported in the literature, but are necessary to obtain reliable results

in the present case, as we will see.
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The lattice dynamics of Ag3Cu and Cu3Ag bulk alloy at arbitrary wave-vectors is ob-

tained by the Perturbational DFT (DFPT) which is based on the linear response the-

ory.122–124 To determine the force constants we use a 2 × 2 × 2 q-point mesh in the BZ

of the Ll2 structure.123 Phonon dispersion curves are obtained by the standard Fourier

interpolation method.123

4.2.2 Calculation of Ag27Cu7 nanoalloy and isolated atoms

Since in the unrelaxed configuration of Ag27Cu7 the separation between the most distant

atoms was about 8.7 Å, we locate the nanoalloy inside a cubic super-cell with side length of

24 Å. In this manner we ensure that as a result of periodic boundary conditions, the atoms

at the edges of neighboring clusters are at least 15 Å apart, thereby isolating the clusters

from each other. The same cubic box is used to model and calculate the total energy of

isolated Cu and Ag atoms, using a spin-polarized calculation.

In this work the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm125 is used to min-

imize the nanoalloy total energy as a function of atomic positions.118 At equilibrium, forces

on the nanocluster atoms are required to be below 6.5×10−4 eV/A (2.6×10−5 Ry/au). Given

the large dimensions of the super-cell used for the nanoalloy and the free atom calculations,

integrations over the BZ can be accurately performed using only 1 k-point. To confirm this,

we have tested the total energy convergence using 24 special k-points to find that the total

energy changes by only 4×10−5 eV while forces on each atom remain below 8×10−3 eV/A.

For the nanoalloy, Ecut and Eρ are 680 eV and 8160 eV, respectively, as mentioned above.

Since these parameters surpass the demands for convergence in other systems involving

copper or silver, and using the same DFT code,126,127 we expect them to work well for the

nanoalloys of interest here. While these demands for convergence make the calculations very

cpu intensive, it is worth mentioning that we find the total energy and even the geometry

of the nanoalloy to be severely affected if we were to use the default values of Ecut = 340

eV and Eρ = 1360 eV in the code. For example, with the latter choice, the fully relaxed
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D5h structure (resulting from Ecut = 680 eV and Eρ = 8160 eV) is no longer stable and

displays intra-layer dislocations of up to 1 Å and forces which cannot be lowered below

2.5×10−2eV/A.

4.3 Results and Discussion

Since the nanoalloy presents several opportunities for comparison of its properties and devel-

opment of criteria for its stability, we find it beneficial to divide this section into two subsec-

tions, each of which consists of several parts. In subsection 4.3.1, we concentrate on issues

related to the geometry, the distribution of bond lengths, the atomic coordination, and the

formation energy of the nanoalloy. We first introduce a notation in subsection 4.3.1.1 that

classifies the atoms in Ag27Cu7 according to their location within the nanoalloy. In 4.3.1.2,

we inspect how the local coordination of the atoms in the nanoalloy relates to the bond

lengths. Since there is hardly any experimental data on Ag27Cu7 and since calculations of

the phonon density of states of the nanoalloy from first principles is still a challenge, we

have included in subsection 4.3.1.3 our results for the structure and dynamics of bulk alloys,

Ag3Cu and Cu3Ag, to gain insights and draw stability criteria for the nanoalloy of interest

here. The average formation energy of Ag27Cu7 nanoalloy and stability considerations are

analyzed in subsection 4.3.1.4.

In subsection 4.3.2 we focus on the electronic DOS and the local charge density of the

nanoalloy. Subsection 4.3.2.1 contains the electronic DOS of the Ag27Cu7 nanoalloy and

includes for comparison also those of bulk alloys, Ag3Cu and Cu3Ag. The local charge

density distribution in the nanoalloy is summarized in subsection 4.3.2.2.

4.3.1 Geometry, bond coordination, and stability considerations

4.3.1.1 Geometric Structure of Ag27Cu7 nanoalloy

The initial configuration we adopted for Ag27Cu7
128 nanoalloy nicely relaxes towards the

D5h symmetry after energy minimization, as seen from the plots in Fig. 4.1. Accordingly,
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Figure 4.1: Three-dimensional picture of the six types of non-equivalent atoms. The red
arrow represents the 5-fold rotation axis. (a) Five Cu0 atoms sitting on the mirror plane of
the cluster, z0 = 3.88 Å. Note that the zi-coordinates are given with respect to the reference
frame used in the figure and will define later interlayer distances; (b) The five Ag0 atoms
also sit on the mirror plane, z0 = 3.88 Å; (c) Two Cu1 atoms sitting on the 5-fold rotation
axis symmetrically located above and below the mirror plane, z1= 5.17 Å and z−1=2.59 Å.
Notice that Cu0-pentagon fits in the Ag0-pentagon; (d) Ten Ag2 atoms form two pentagons
symmetrically located above and below the mirror plane, z2 = 5.31 Å and z−2 = 2.44 Å;
(e) Ten Ag3 form two pentagons symmetrically located above and below the mirror plane,
z3 = 6.24 Å and z−3 = 1.52 Å; (f) The two Ag4 atoms sit on the 5-fold rotation axis
symmetrically located above and below the mirror plane, z4 = 7.76 Å and z−4 = 0 Å.
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Figure 4.2: Top view of Ag27Cu7 nanoalloy, perpendicular to the mirror plane. The side
length of each pentagon as aMn (see text).

there are only 6 types of non-equivalent atoms: 4 types of Ag and 2 types of Cu atoms.

This leads to a natural and useful classification of the atoms that refers to their distance

from the mirror plane: Cu layer 0 (Cu0), Ag layer 0 (Ag0), Cu layer ±1 (Cu1), Ag layer

±2 (Ag2), Ag layer ±3 (Ag3), Ag layer ±4 (Ag4), as shown in Fig. 4.1. Layer 0, which

lies on the mirror plane, consists of two pentagonal structures; the smaller one is made

of copper atoms (Cu0) and fits in the larger one that is composed of silver atoms (Ag0)

(Fig. 4.1(a) and (b)). The single-atom layers, layers ±1 and ±4, sit on the 5-fold rotation

axis (see Fig. 4.1(c) and (f)). The other two pentagonal layers, ±2 and ±3, are centered

at the 5-fold symmetry axis (Fig. 4.1(d) and (e)). The radii of Ag2 and Cu0 pentagons

are parallel to each other, but rotated 36◦ with respect to the Ag0 and Ag3 pentagons, as

shown in Fig. 4.2. Since the layers are symmetric with respect to a mirror plane, the cluster

can be characterized by only five of them, say, the central layer (layer 0) and those above

this (layers 1 to 4). Ultimately, the symmetry of Ag27Cu7 allows us to fully describe its

geometric structure by 8 parameters: the interlayer distances (d01 = 1.341, d12 = 0.052,

d23 = 0.992, d34 = 1.512 Å) and the pentagons. side length (aCu0 = 2.584, aAg0 = 4.897,
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Figure 4.3: (a) Bond coordination for Cu atoms of Ag27Cu7 compared with Cu bulk; (b)
bond coordination for Ag atoms of Ag27Cu7 compared with Ag bulk.

aAg2 = 5.115, aAg3= 2.948 Å, as shown in Fig. 4.2). The dislocations in the D5h structure,

as present in our initial configuration,128 relaxed into the perfect D5h structure under the

stringent criterion that the apothem of each pentagon can be well defined up to 0.0003 Å,

while interlayer distances are well defined up to 0.0001 Å. The interatomic bond lengths

for the 34 atoms in the cluster, in the relaxed geometry, are summarized in Table 4.1, and

discussed in detail below.

4.3.1.2 Neighbor distances in Ag27Cu7: a comparison with bulk Ag and bulk Cu
values

Despite the perfect D5h symmetry of the cluster, Table 4.1 shows an intricate hierarchy of

NN in the optimized structure. For example, for Ag3 the 1st NN atoms (Cu1) are at 2.726

Å while their 6th nearest neighbors are at 2.948 Å, all within a separation of 3.0 Å. Figs. 4.3

(a) and (b) show a comparison between the bond coordination of atoms in the Ag27Cu7
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Table 4.1: This table contains six sets of 2-column ”sub-tables” showing the distance (d)
from each type of atom in the nanoalloy to all its neighbors. In the right column of each sub-
table appears the type of neighbor which is being referred and the number of such equivalent
atoms at the same distance is shown as a subscript. Notice that here equivalent atoms are
not considered being so if they do not belong to the same layer.

Cu0 Ag0 Cu1 Ag2 Ag3 Ag4
Type d Type d Type d Type d Type d Type d
(NN) (Å) (NN) (Å) (NN) (Å) (NN) (Å) (NN) (Å) (NN) (Å)
Cu11 2.55 Cu02 2.72 Cu05 2.55 Cu01 2.59 Cu11 2.73 Cu11 2.59
Cu-11 2.55 Ag31 2.88 Cu-11 2.58 Ag-21 2.87 Cu02 2.79 Ag35 2.93
Cu02 2.58 Ag-31 2.88 Ag41 2.59 Ag32 2.90 Ag01 2.88 Cu05 4.46
Ag21 2.59 Ag22 3.00 Ag35 2.73 Ag02 3.00 Ag22 2.90 Ag25 4.99
Ag-21 2.59 Ag-22 3.00 Ag25 4.35 Cu11 4.35 Ag41 2.93 Cu-11 5.17
Ag02 2.72 Cu11 4.36 Ag05 4.36 Cu02 4.46 Ag32 2.95 Ag05 5.69
Ag-32 2.79 Cu-11 4.36 Ag-35 4.43 Ag-32 4.68 Cu-11 4.43 Ag-35 6.72
Ag32 2.79 Ag32 4.77 Ag-25 5.13 Ag41 4.99 Cu02 4.48 Ag-25 6.87
Cu02 4.18 Ag-32 4.77 Ag-41 5.17 Ag22 5.12 Ag-22 4.68 Ag41 7.76
Ag41 4.46 Ag02 4.90 Cu-11 5.13 Ag-31 4.72
Ag-41 4.46 Cu02 5.28 Ag32 5.73 Ag02 4.77
Ag22 4.46 Ag41 5.69 Ag-22 5.86 Ag32 4.77
Ag-22 4.46 Ag-41 5.69 Cu02 6.43 Cu01 5.26
Ag32 4.48 Cu01 6.36 Ag-32 6.81 Ag-32 5.56
Ag-32 4.48 Ag32 6.79 Ag-41 6.87 Ag22 5.73
Ag31 5.26 Ag-32 6.79 Ag31 6.92 Ag-32 6.71
Ag-31 5.26 Ag22 7.04 Ag02 7.04 Ag-41 6.72
Ag02 5.28 Ag-22 7.04 Ag-31 7.84 Ag02 6.79
Ag01 6.36 Ag02 7.92 Ag22 8.28 Ag-22 6.81
Ag22 6.43 Ag21 8.64 Ag01 8.64 Ag21 6.92
Ag-22 6.43 Ag-21 8.64 Ag-22 8.76 Ag-21 7.84
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nanoalloy and that of atoms in bulk Ag and bulk Cu. Notice from Table 4.1 that the local

coordination of Cu atoms in Ag27Cu7 seems, in fact, not dramatically different from that in

bulk Cu regarding the number of first and second NN. The Cu0 atoms, for example, have

12 neighbors within a distance of 2.548 and 2.786 Å, and another twelve between 4.181 and

4.482 Å. Silver atoms, on the other hand, find themselves in unusual atomic environments:

at distances 3 Å (bulk Ag nearest neighbors distance) Ag2 and Ag4 atoms have barely

acquired 6 neighbors, while Ag3 and Ag0 atoms get 9 and 8 NN, respectively. Between 4.2-

4.5 Å, at which bulk Ag atoms already have 18 NN, Ag0, Ag3 and Ag4 atoms have acquired

only 11 neighbors, while Ag2 atoms have only 7 NN, finding themselves as the most under-

coordinated atoms of the cluster. Most importantly, we notice that the NN bond lengths

between Cu atoms contract by as much as 2% with respect to the value in bulk (2.599 Å).

Such contraction may be expected for Cu atoms in low coordination environments, such as

on the surface layer of Cu(100) (inward contraction of around 3 %116), and not in Ag27Cu7

because of their high coordination (12) as in bulk Cu. Interestingly, for the shell Ag atoms,

which have much lower local coordination than the core Cu atoms, the Ag − Ag NN bond

lengths are only 2.6 % shorter than those in bulk Ag (2.943 Å). If coordination alone were a

measure, one might have expected the most under-coordinated Ag atoms, Ag2 and Ag4, to

undergo a larger contraction, as found on Ag surfaces.116 Instead, in Ag27Cu7, Ag2 and Ag4

form short bonds of about 2.59 Å with their neighboring Cu atoms, as seen from Table 4.1.

These bond lengths are in fact very close to the smallest Cu−Cu bond lengths (2.55 Å) and

considerably smaller than the smallest Ag−Ag bond lengths (2.87 Å). Indeed, it follows from

Table 4.1 that in Ag27Cu7 the first NN of every Ag atom is a Cu atom, pointing to the reality

that finite sized structures of these elements may not follow straightforwardly the behavior of

infinite and/or semi-infinite systems and the relationship between bond coordination number

and bond stiffening might be subtler in nanoalloys. Two conclusions may, nevertheless, be

drawn from the above: 1) the fact that Cu− Cu bond lengths in Ag27Cu7 contract almost

as much as Ag − Ag bond lengths suggests that Cu atoms are more sensitive than Ag
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atoms to either low coordination, or local geometry, or chemical environment; 2) the low

coordination of the Ag atoms appears to be significantly compensated by the formation of

short bond lengths with Cu atoms. To discriminate between the above mentioned effects

of local coordination, geometry, and environment, the conclusions about bond lengths in

the Ag27Cu7 nanoalloy need to be put on firmer grounds through examinations of details

of the electronic structure and the charge density distribution, and their implications for

nanoalloy stability. We will turn to this in Sections 4.3.1.4 and 4.3.2. But before we do

that, it is interesting to examine the structural stability of related bulk alloys, Ag3Cu and

Cu3Ag, for which some information already exists and hence can serve as reference points.

The relationship between the composition of Ag27Cu7 and Ag3Cu is obvious. The other

alloy is chosen to establish whether preponderance of Cu and/or its effect on bond lengths

is a key for understanding the structural stability of these alloys.

4.3.1.3 Structure, phonons, and heat of formation of Cu3Ag and Ag3Cu bulk
alloys

In considerations of structural stability of bulk alloys, it is essential that the heat of formation

be negative and that the phonon spectrum be well defined. Ag−Cu alloys, unlike Au−Cu

and Au − Ag alloys, are known for their tendency to segregate and have a miscibility gap

beyond the eutectic temperature of the material.113–115 Earlier calculations113–115 have shown

that Ag−Cu alloys possess a positive heat of formation regardless of the chosen ratio of Ag

to Cu.113,114 In particular, the heat of formation per atom was found to be about 70 meV

for Ag3Cu (60 meV, in this work) and 80 meV for Cu3Ag (64 meV, in this work), pointing

to the structural instability of these Ag − Cu bulk alloys.114

It has, however, been pointed that even with a positive heat of formation presence of

a well-defined phonon spectrum may serve as an indicator of alloy stability under special

formation conditions, for example, using non-equilibrium techniques.129–132 Indeed, among

a variety of immiscible noble-transition metal alloys, some - particularly those that mix

fcc and hcp metals - have shown mutual solid solubility.133 Kong et al.129 have calculated
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Figure 4.4: Calculated phonon spectra of the hypothetical L12 phase of (a) Ag3Cu and (b)
Cu3Ag bulk alloys.
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the phonon spectra of several structures of the equilibrium immiscible AgxRuy alloys, for

x/y = 1/3 and 3, to find that only the L12 and D019 phases of Ru3Ag may be stable. In

Ref.129, phonon-stable/unstable structures were associated with the presence of relatively

high charge density bridging NN atoms of the same/different element. We will come to

charge density implications later in Section 4.3.2.2. For the present discussion, we note

that, regardless of the structure of the stable phases, the phonon-stable Ag −Ru alloys are

all Ru-rich and have smaller lattice parameter than the corresponding Ag-rich structures,

owing to the fact that typical bond lengths in bulk Ru are smaller than those in bulk

Ag. Moreover, Kong et al. were able to remove the phonon instabilities, when present, by

artificially increasing the external pressure; i.e., by simply reducing the equilibrium lattice

parameter.

In the above spirit, we now turn to the calculation of the structure and the lattice

dynamics of Ag3Cu and Cu3Ag bulk alloys using DFT and DFPT methods. We find the

bond-length for Ag3Cu to be 2.87 Å and that of Cu3Ag to be 2.70 Å. For reference, note

that our calculated bond lengths for bulk Cu and Ag are 2.59 and 2.94 Å, respectively. Note

also that the shortest Ag−Cu bond lengths in Ag27Cu7 are around 2.6 Å. The bond-lengths

in bulk alloys Ag3Cu and Cu3Ag are thus larger than the shortest Ag − Cu bond-length

in the nanoalloy and that in bulk Cu and may imply lack of overlap of the d-orbitals for

its Ag − Cu and Cu− Cu bonds (as we shall see), pointing to the structural instability of

these bulk alloys. Our calculated phonon dispersion curves (Fig. 4.4) of Ag3Cu and Cu3Ag,

showing the absence of unstable modes, however, suggest that these alloys may be stable

and obtainable by non-equilibrium techniques.129

Phonon dispersion curves are furthermore a measure of the contribution of the vibrational

entropy to the free energy of a given system.134 The vibrational entropy integrates the

vibrational DOS weighted by a factor that falls off as the frequency of phonons increases.

Thus, vibrational entropy plays a larger role in minimization of the free energy for systems

whose (well-defined) phonon dispersion curves display notable contributions and shifts of the
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density of states towards the lower frequency range.115 For example, bulk Cu3Au (L12) has

larger vibrational entropy than either bulk Au or Cu.135 Our calculated phonon dispersion

for bulk Ag3Cu (see Figs. 4.4(a)) is softer than that of bulk alloy (Figs. 4.4(b)), bulk Ag,136

and bulk Cu,136 indicating that the vibrational entropy of Ag3Cu is larger than that of the

bulk Ag and Cu. Regardless, the vibrational entropic contribution to the reduction of the

free energy is small115 (typically less than 5 meV at room temperature) compared to the

positive heat of formation (∼60 meV) found for this bulk alloy. Instead, the presence of

stiffer vibrational DOS of Cu3Ag, compared to that of Ag3Cu, reflects stronger bonds in

the former which may provide stability if created by the techniques mentioned above.129–132

4.3.1.4 Formation energy of Ag27Cu7

In Ref.15 the thermodynamic stability of a given nanoalloy is evaluated via considerations of

its melting temperature and its relative energetic stability is established through comparison

of the heat of formation. Remarkably, although clusters with increasing binding energies per

atom do not necessarily have higher melting temperatures,137 Ag27Cu7 came out with both

the highest melting point and the least heat of formation. In terms of stability and minimum-

energy structures, however, it is important to know also the output given by the average

formation energy, which measures the dissociation or cohesive energy of the nanoalloy, and

to analyze the meaning, implications, and scope of these two energetic considerations. Thus,

to estimate the average strength of the bonds, we calculate the so-called average formation

energy per atom, Eform, which is defined as,

Eform(AgN1CuN2) =
E(AgN1CuN2)−N1E(Agfree)−N2E(Cufree)

N
, (4.1)

where N = N1 + N2 and E(Cufree) and E(Agfree) are the energies of isolated Cu and Ag

atoms, respectively. We find Eform(Ag27Cu7) to be 2.17 eV. Since no experimental data on

this particular binary nanocluster exists, we turn to the formation energy of related systems

for comparison. For example, our calculated cohesive energy of bulk Ag, Ag3Cu, Cu3Ag,

and Cu are 2.51, 2.66, 3.06, and 3.34 eV, respectively, implying that Eform(Ag27Cu7) is
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smaller than all these bulk values. Note that the higher cohesive energy of bulk Ag3Cu as

compared to that of bulk Ag signals a stronger Ag−Cu bond than the usual Ag−Ag one.

In fact, from the results presented in Ref.15, one finds that the average formation energy

per atom of the 34-atom family decreases monotonically from ∼2.6 to ∼2.0 eV as the Ag

content increases from 0 to 34. Considerations of formation energy alone would thus imply

that in this family of nanoalloys the Cu − Cu and Cu − Ag bonds are stronger than the

Ag − Ag bonds and that Ag27Cu7 is not the most stable structure. It is thus surprising

that a related quantity, i.e. the heat of formation (defined as in Eq. 4.1, but substituting

E(Cufree) and E(Agfree) by the cohesive energy of Cu and Ag, respectively), plotted as

function of the Ag/Cu ratio in Ref.,15 shows a minimum at this intermediate composition

(Ag27Cu7) - a result that stands in contrast to that found in Ag − Cu bulk alloys.113–115 n

reality, the formation of intricately tailored structures as Ag27Cu7 is not expected to occur

simply by melting the parent compounds. Thus measures like heat of formation have to

be supplemented by others such as the dynamical stability of the alloy as displayed by its

vibrational modes. Nevertheless, we find that the heat of formation of the Ag27Cu7 is 9 times

larger than that of Ag3Cu, but this suggestion of instability might be misleading since the

heat of formation not only measures the strength of the bonds but also weighs the energetic

cost(gain) of breaking(forming) single element bulk bonds to form(from breaking) binary

bonds. In reality, the formation of intricately tailored structures as Ag27Cu7 is not expected

to occur simply by melting the parent compounds. Thus measures like heat of formation

have to be supplemented by others such as the dynamical stability of the alloy as displayed

by its vibrational modes. The heat of formation is perhaps more of an indicator of the

life-time of the nanoalloy, say, against clustering and the eventual formation of segregated

metallic bulk Cu and Ag, if one ignores the energy barriers needed to actually break all

bonds in the nanoalloy.

On the experimental side, in addition, we note that the pure clusters Ag−7 (Ref. 47) and

Ag+
19 (Ref.138) were found to have dissociation energy of 2.73 eV and 2.88 eV, which are very
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close to the experimentally observed cohesive energy of bulk Ag (2.94 eV). The formation

of pure cluster structures, such as Ag−7 and Ag+
19, may thus be seen to be energetically

more favorable than the nanoalloys. Perhaps, the possible disintegration of Ag27Cu7 into

pure-element clusters may be argued against on the basis of the strength of the Ag − Cu

bond. To estimate the strength of the bonds in the 34-atom nanoalloys and understand

what distinguishes Ag27Cu7 in its family of nanoalloys, we turn to Fig.2 of Ref.15. Rossi

et al. show that as the amount of Cu increases up to ∼20 % (starting from Ag34), the

heat of formation is reduced or kept constant, implying that small amounts of Cu atoms

immersed among Ag atoms (in the nanoalloys Ag34−nCun as n decreases from 7 to 1) create

Cu − Ag and Cu − Cu bonds that are stronger than those in bulk Cu and are able not

only to counterbalance the cost of the cohesive energy of the newly added Cu atom, but

also to increasingly stabilize the nanoalloy. Fig.2 of Ref.15 shows also that if the content of

Cu increases beyond 7 atoms, the heat of formation increases again, with the implication

that the strength of the bonds is not able to compensate the bulk Cu cohesive energy for

an additional atom. In conclusion, Ag27Cu7 possesses the composition and geometry that

maximizes the number of Cu− Cu and Cu− Ag bonds using the minimum number of Cu

atoms.

The structural stability considerations presented above are derived entirely from the

energetics of Ag27Cu7. The contributions of vibrational entropy could be important112

and may lead to a minimum of the free energy (as a function of the Ag/Cu ratio) which

is different from that in the plot of Rossi et al. They, however, argue against such a

possibility.15 Calculations of the phonon frequencies of these nanoalloys from first principles,

as presented in section A.3 for the Ll2 bulk alloys, is obviously desirable. Such a study may

also serve as an indicator of stable compositions. However, the resulting contributions of the

vibrational entropy to the free energy are expected to be small and should not change the

conclusions drawn from the mean vibrational frequencies using Lennard-Jones potentials.15
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4.3.2 Electronic structure and charge density distribution

4.3.2.1 Electronic DOS of Ag27Cu7 nanoalloy and Ll2 Ag − Cu alloys

To obtain the electronic DOS of bulk Cu3Ag and Ag3Cu alloys and Ag27Cu7 nanoalloy from

ab initio electronic structure calculations, the discrete states are broadened using Gaussian

functions of width 0.14 eV. The resulting DOS of Ag27Cu7 is shown in Fig. 4.5(a)-(c), while

that of the bulk alloys is presented in Fig. 4.5(d) and (e). First of all, the HOMO-LUMO

gap (∆ in Fig. 4.5(a)) of Ag27Cu7 is found to be 0.77 eV in the ground state, which is only

slightly smaller than that reported by Rossi et al,15 0.82 eV. As expected, the s-states have

negligible contributions and the displayed structures have mostly d-character between -5.5

and -1.7 eV. Fig. 4.5(b) shows that the centroid of the nanoalloy valence band red-shifts ∼ 1

eV as compared to bulk Ag, and blue-shifts ∼ 0.5 eV with respect to bulk Cu. Fig. 4.5(c)

shows that even though the amount of Cu in the Ag27Cu7 nanoalloy is ∼ 4 times less than

that of Ag, it contributes to shift the centroid of the valence band to lower binding energies.

As shown in Fig. 4.5(c)-(e) and in Refs.111,139, the role of Cu is, in general, to enhance the

DOS at the top of the valence band and to shift the centroid to lower binding energies,

while the effect of Ag is the opposite. Similar results have been reported for Au − Pd

nanoclusters,140 in which the increasing content of Au on Pd clusters reduces the density

of states at the Fermi level. Fig. 4.5(b) and (c) show in addition that the valence band

of the nanoalloy is as broad as that of either pure bulk constituents - a point worth of

noticing since atoms in a low coordinated environment generally exhibit a valence band

narrowing.140 Pure Ag clusters and Cu3Au surfaces,141,142 for example, have shown this

effect. The hybridization of Ag and Cu states in Ag27Cu7 thus compensates the d-band

narrowing that each atom undergoes.

In general, the features in the electronic DOS that discriminate stable alloy phases are not

yet fully understood. Although it is well accepted113 that the dip in the DOS at the Fermi

level is related to the stability of a particular alloy phase, there is no obvious correlation
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Figure 4.5: (a) Total and projected electronic DOS of Ag27Cu7. The later corresponds to
the contribution of s and d atomic states between -7 and 4.2 eV from the Fermi level, EF ,
which is set equal to 0. The s-contribution is negligible up EF . The HOMO-LUMO gap in
the ground state, ∆ = 0.77 eV, is highlighted in red; (b) comparison between the total DOS
of Ag27Cu7 and that of Ag and Cu bulk; (c) contribution from the core (Cu) and shell (Ag)
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d-contribution from each species the total DOS of the alloy in the L12 phase.
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between the two since stable and ordered Cu − Au alloys present a dip in the DOS while

Au−Ag alloys do not.113 In the former the dip in the DOS changes position, width and depth

with composition, and structure, and has been found to be related to the electronic specific

heat.111 Kokko et al.111 noticed also that the dip is considerably lessened in the layered

CuAuI phase (which reduces the Au−Cu bond) with respect to Cu3Au and Au3Cu. Also,

based on their electronic specific heat calculations, they infer that the dip is even smoother

in the disordered phases. In this work, we find that the nanoalloy Ag27Cu7 displays hardly

any dip while the Ll2 Ag−Cu alloys display one (compare Fig. 4.5(a), (d) and (e)) similar

to, but broader than, that found in stable Cu−Au alloys.111 Yet, from considerations of the

heat of formation, the Ag−Cu alloys are marked as being immiscible. Furthermore, we find

that the DOS of the Ag atoms (Fig. 4.5(b) and (c)) in Ag27Cu7 resembles to some extent

that of bulk Ag, despite being highly under coordinated, while that of the fully coordinated

Cu atoms is strikingly different from bulk Cu presumably, since half of its neighbors are Ag

atoms.

In order to understand the correlation between the Ag/Cu content ratio, the consequent

decrease/increase of the bond lengths, and the structure of the electronic DOS, we turn to

examination of the changes experienced by the DOS of individual Ag and Cu atoms in a

set of environments (some natural, some artificial): Ag27Cu7 nanoalloy, a free standing Ag

and Cu monolayer, bulk Ag −Cu alloys, and bulk Ag and Cu (Figs. 4.6-4.8). For the bulk

systems, we consider also the effect on the DOS (Fig. 4.7 of expanding and contracting the

lattice constant from the equilibrium value found in our DFT calculations. The DOS of Ag

and Cu atoms in Figs. 4.6-4.8 allow comparison on a one-to-one basis and not as percentile

contributions as presented in Fig. 4.5.

From Figs. 4.6(a) and (b), we note that as the content of Ag and consequently the

lattice parameter in the two bulk alloys decrease, an increasingly sharper peak is generated

at intermediate energies since the bottom of the d-band remains almost unchanged most

states from the top of the bulk Ag band (Fig. 4.6(e)) retract to lower energies. Despite
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= 2.59 Å; (c) Ag atoms in expanded Cu3Ag with l = lAgbulk
; (d) Ag atoms in

contracted Cu3Ag with l = d(Cu0-Cu1)= 2.55 Å; (e) Ag atoms in bulk Ag expanded by 8%;
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the later feature, a few states appear between -1.5 and -2.5 eV, above the range of the

DOS of bulk Ag, and hybridize with Cu states. We will see below that the appearance

of the higher energy states is related purely to the presence of Cu, whereas the depletion

of the top of the Ag d-band is not only due to the presence of Cu but also to the overlap

of Ag − Ag orbitals at distances smaller than the bond-length of bulk Ag. To isolate the

effect of the bond length, we turn to the DOS in Fig. 4.7 for Ag and Cu atoms in bulk

environments with bond lengths different from the equilibrium values. In order to maintain

a reference point, we have taken the lattice constant of expanded Ag3Cu and Cu3Ag to

be that of bulk Ag, leading to an expansion of 2.4 % in the former and 8.9 % in the

latter. Similarly, to infer the effect of lattice contraction we have used the lattice constant

of bulk Cu for Ag3Cu (contraction of 9.8 %) and the bond-length of Cu0−Cu1 for Cu3Ag

(contraction of 5.5 %. By comparing Figs. 4.6(e) and 4.7(f), we find that contraction of

Ag −Ag bonds pushes the bottom of the Ag d-band to lower energies and depletes the top

of the band, while comparison of Figs. 4.6(a) with 4.7(b) and 4.6(b) with 4.7(d) indicates

that the contraction of Ag − Cu bonds also pushes the bottom of the Ag d-band to lower

energies and significantly lessens the highest features of the DOS of Ag d-band in bulk

alloys. We also conclude from Figs. 4.7(b) and 4.7(d), and Fig. 4.6(e), 4.6(a) and 4.6(b)

that the presence of Cu is responsible for the appearance of Ag states above the top of the

bulk Ag band hence improving the overlap with the Cu d-band. On the other hand, as seen

from Figs. 4.6(e) and 4.7(e), the expansion of Ag − Ag bonds depletes the bottom of the

DOS and slightly enhances the DOS at the top. Similarly, the expansion of the Ag − Cu

in the bulk alloys depletes the bottom of the DOS and enhances the highest peaks of the

DOS (compare 4.6(a) with 4.7(a) and 4.6(b) with 4.7(c)). The same effect of expansion,

though augmented, is caused on the DOS of Ag by low coordination, as in the case of a free

standing (111) monolayer (Fig. 4.6(d)), in which the 6-coordination of Ag atoms causes a

strong depletion at the bottom and enhancement at the top of the d-band. From the above,

we conclude that the low coordination of Ag atoms in the Ag27Cu7 nanoalloy can indeed
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account for the depletion of the bottom of the d-band (Fig. 4.6(c)). On the other hand, the

reduction of the DOS at the top of the d-band of Ag0 (Fig. 4.8(a)), Ag3 (Fig. 4.8(c)), and

Ag4 (Fig. 4.8(d)) atoms, suggests that the presence of Cu at such short distances overpowers

their low coordination and no enhancement of the DOS at the top of the Ag d-band occurs,

nevertheless, as seen in bulk alloys, the hybridization of Cu and Ag states is at the same

time improved by Cu by setting off the occupation of states above the top of the d-band of

bulk Ag (see Fig. 4.6(c) and Figs. 4.8(a)-(d)).

We now turn to the issue of the DOS of Cu atoms in the Ag27Cu7 nanoalloy which differ

prominently from that of bulk Cu. We consider three different aspects that may influence

their electronic structure: the conspicuously disparate overall geometry, the presence of

Ag, and the existence of bond lengths longer than that of bulk Cu. To understand each

one of these we first note that if Cu − Ag bonds are longer than that of bulk Cu, then

the bottom of the d-band of Cu is strongly depleted and an increasingly sharper peak at

the top is created, which slightly shifts towards higher energies (compare Figs. 4.6(f) with

4.7(g) and 4.6(g) with 4.7(i)). As already noted for the Ag atoms, the effect of expanding

Cu− Cu bonds is similar to that of Cu atoms in a low coordinated environment (compare

Fig. 4.7(k) and 4.6(i) with 4.6(j)), that is, the bottom of the Cu d-band (states below ∼3.5

and ∼ 4.0 eV in Figs. 4.6(i) and 4.7(k), respectively) is entirely extinguished. Interestingly,

the d-band of the free monolayer is sharply localized at the top edge, resembling that of Cu0

(Fig. 4.8(e)) and Cu1 (Fig. 4.8(f)) atoms notwithstanding their full coordination in Ag27Cu7.

Contracting Ag − Cu bonds in bulk alloys reduces the DOS at the top, which is pushed

to lower energies, and enhances the bottom of the d-band, thus improving the Ag − Cu

hybridization, as seen by comparing Figs. 4.6(f) with 4.7(b), 4.6(g) and 4.7(j). Similar

features are found by contracting the Cu− Cu bond is bulk Cu (compare Figs. 4.6(j) and

4.7(l)). More importantly, note in Figs. 4.7(j) that even when Cu−Cu and Cu−Ag bonds

in bulk Cu3Ag are shorter than that of bulk Cu, the region from ∼ 4.0 eV - ∼ 5.0 eV is

nevertheless strongly quenched, suggesting that the presence of Ag also strongly depletes
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most of the bottom of the d-band of Cu atoms (something similar occurs in Au − Cu, see

Ref.111). Observe also that presence of Ag introduces states below the bottom of the DOS

of bulk Cu (Figs. 4.6(f)-(h) and 4.7(g)-(j)), which hybridize with Ag. From the above, we

conclude first that the sharp peak (Fig. 4.6(h)) at the top of the DOS of Cu atoms in Ag27Cu7

nanoalloy, characteristic of low-coordination (Figs. 4.6(i)), can only be accounted for by the

relatively long distances (∼ 2.7-2.8 ) between Cu atoms and half of their nearest neighbors

- all Ag atoms - (see Figs. 4.3(a) and Table I), seemingly leading to a weak interaction of

the Cu atoms with those far-lying Ag neighbors, as occurs for Cu atoms in bulk Ag3Cu

and Cu3Ag alloys. The DOS of Cu atoms in bulk Ag3Cu (Figs. 4.6(f)) thus indicates that

the strength of the Ag − Cu bond is considerably weak for Cu atoms; in fact, expanding

the lattice parameter (Figs. 4.7(g)) changes insignificantly the DOS of Cu. Second, the

effect of the Ag environment on the DOS of Cu atoms in Ag27Cu7 is connected with the

depletion of states between 2.5 and 3.5 below the Fermi level, i.e., the dip around 3.0 eV

in Fig 4.6(h), 4.6(e) and (f). We note in addition that the DOS of Ag27Cu7 below the dip

( 3.5 eV) is remarkably high, as compared to that of bulk alloys (see Figs. 4.6(f) and (g)) -

despite the low Cu content - and generates a much stronger hybridization between Cu and

Ag states, contrasting that observed in bulk alloys (see Figs. 4.5(c)-(e)); interestingly, the

DOS of states of Cu atoms at 3.5 eV below the Fermi level in the compressed lattice of bulk

Ag3Cu (Figs. 4.7(b)) is almost as high as that of Cu atoms in Ag27Cu7 and also results in

a stronger hybridization between Cu and Ag states compared to that found in equilibrium

bulk Ag3Cu bulk. In the third place, we conclude that the optimum Cu − Ag bonding in

Ag27Cu7 comes about in terms of the electronic DOS through the shortening of Ag − Cu

bonds that allows the hybridization of the d-states of Cu and Ag atoms, suppressing by this

means the dip featuring in the DOS of Cu3Ag and Ag3Cu alloys.

Finally, we remark that although the DOS of Ag atoms is not changed as drastically as

that of Cu atoms in bulk Ag−Cu alloys - suggesting that Cu is more sensitive than Ag to

the chemical environment -, the vulnerability of Cu to the presence of Ag is intermixed with
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long bond-length effects. That is, the presence of Cu depletes the top of the Ag d-band as

much as Ag depletes the bottom of Cu d-band. However, the short Ag − Ag and Ag − Cu

bonds (with respect to bulk Ag) as present in both bulk alloys broaden the d-band of Ag

atoms, compensating in this manner the effect of the Cu atoms. On the other hand, the

Cu−Cu and Cu−Ag bond lengths induced in both bulk alloys never become shorter than

that of bulk Cu, rather it is quite the opposite. As a result, narrowing of the d-band of

Cu atoms is triggered, aggravating the depletion caused by the presence of Ag atoms and,

hence, exaggerating the actual chemical susceptibility of Cu to the Ag environment. In

summary, the electronic DOS is found unambiguously related to the bond lengths held in a

particular geometry.

If we were to extrapolate the above results to related systems, we would speculate that

the dip in the DOS identifies less stable phases of noble metal alloys. For example, the

stability Au − Ag alloys and the absence of a dip in their DOS may be attributed to the

fact that the lattice parameter of bulk Au and Ag are nearly identical and that the d-band

of bulk Ag lies within that of bulk Au, assuring significant d-band hybridization. Likewise,

the hybridization between Cu and Au states is strong in bulk Au − Cu alloys because the

d-band of Cu also lies within that of bulk Au, albeit in the region near its Fermi level, while

that of Ag lies deeper. The overlap between the bands of Ag and Cu, on the other hand,

is relatively small resulting in weaker Cu − Ag hybridization in bulk Cu − Ag alloys. The

dip in the DOS of Au− Cu is probably not a sign of stability, rather it may be a sign that

structures and/or compositions allowing shorter Au−Cu would be more stable (amorphous

phases, perhaps). The heat of formation of bulk Cu3Au, for example, is negative because

the strength of the Au − Cu bond is larger than that of bulk Cu and Au, even at the

distances dictated by the L12 phases, but which are not necessarily the distances at which

the strength of all three Au − Cu, Au − Au, and Cu − Cu bonds is optimized with the

corresponding hierarchal importance, as exemplified by L12 bulk Ag−Cu alloys whose long

Ag − Cu bonds contrast the significantly short ones found in the Ag27Cu7 nanoalloy.
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4.3.2.2 Charge density distribution of Ag27Cu7 nanoalloy

The first aspect that comes to mind in Fig. 4.9-4.14 of the plotted charge densities of the

nanoalloy Ag27Cu7 is that Ag atoms barely supply charge to the surface of the nanoalloy.

The question is whether the surface charge depletion coincides with charge redistribution

from Ag atoms to Cu atoms since two neighboring metals with significantly different work

function can give rise to electron transfer from one metal to the other, as reported in

calculations of Pd clusters on Au(111) by Sánchez et al,142 in correspondence with a work

function difference of ∼ 0.3 eV. Here, the work function of Cu is larger than that of Ag by

∼ 0.2 eV. Indeed, Figs. 4.9 and 4.10 display higher charge density around Cu atoms than

around Ag atoms.

The plot of the charge density in a plane passing through 10 Ag and Cu atoms in

Fig. 4.9 illustrates that the Cu0-Ag2 and Cu1-Ag4 bonds are linked by the highest bonding

charge density, corresponding indeed to the shortest Ag−Cu bond lengths (∼ 2.58 Å), and

implying that they are stronger than the Cu1-Cu1 ( 2.58 Å), Cu0-Cu0 (2.58 Å) bonds and

even the Cu0-Cu1 bonds (2.55 Å), in that order (see Figs. 4.9 and 4.10). The next strength

of bonding charge density occurs for Cu0-Ag0 bonds, followed by Cu1-Ag3 bonds, as shown

in Figs. 4.9 and 4.10. In this case, the bond lengths are 2.72 and 2.73 Å, respectively. Notice

that, in the second set of bonds, the charge density is considerably lower than in Cu0-Ag2

and Cu1-Ag4 bonds, which supports the assumption that Ag − Cu interactions die out

very rapidly (see Section 4.3.2.1). The third place in bonding charge density corresponds to

Cu0-Ag3 (Fig. 4.11) bonds and the shortest Ag−Ag bonds: Ag0-Ag3 and Ag2-Ag2 bonds

(Fig. 4.9) whose bond lengths are 2.79, 2.87 and 2.89 Å, respectively (Table 4.1). The first

might influence very little Cu0 atoms since the bond is quite large. However, this bonding

charge density appears as large as that of Ag0-Ag3, which is 0.1 Å further apart. The

next in bonding charge density is the Ag2-Ag3 bond (Fig. 4.12), whose length is 2.90 Å,

followed by the Ag3-Ag4 bond (Fig. 4.9), whose length is 2.93 Å. The latter bond length

is close to that of the Ag0-Ag3 bond (and almost identical to the bond length of bulk Ag);
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Figure 4.9: 2D Charge density plot at a plane that contains the 5-fold rotation axis of
Ag27Cu7 nanoalloy and is, therefore, perpendicular to its mirror plane. Atoms labelled with
red color are precisely centered on that plane.
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Figure 4.10: 2D Charge density plot at the mirror plane of Ag27Cu7. Atoms labelled with
red color are precisely centered on that plane.
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Figure 4.11: 2D Charge density plot at a plane that contains the positions where Cu0 and
Ag3 atoms (labeled with red color) are centered. Atoms labelled with blue color are depicted
in the section but are not centered precisely on that plane.
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Figure 4.12: 2D Charge density plot at a plane that contains the positions where Ag2 and
Ag3 atoms (labeled with red color) are centered. Atoms labelled with blue color are depicted
in the section but are not centered precisely on that plane.
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Figure 4.13: 2D Charge density plot at a plane which is parallel to the mirror plane of
Ag27Cu7. The pentagonal layer composed of Ag3 atoms (labeled with red color) is contained
in this plane. Atoms labelled with blue color are depicted in the section but are not centered
precisely on that plane.
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Figure 4.14: 2D Charge density plot at a plane that contains the positions where Ag0 and
Ag2 atoms (labeled with red color) are centered. Atoms labelled with blue color are depicted
in the section but are not centered precisely on that plane.
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however, the charge density bridging these atoms is slightly weaker. Note that Ag3-Ag3

bonds (Fig. 4.13) are only slightly longer (2.95 Å) but the bonding charge density around it

is less than that around the Ag3-Ag4 bonds. The charge density around the Ag0-Ag2 bond

(Fig. 4.14) is substantially lower than that around Ag3-Ag3, consistent with a larger bond

length, 3.0 Å. The next larger bond lengths are more than ∼ 4 Å, which are expected to

provide much weaker direct interactions that will not be discussed here.

In reference to the importance of bond strength and length hierarchies in alloys, men-

tioned in subsection 4.3.2.1, we turn to the discussion in 4.3.1.3 of Ref.129 in which Ag−Ru

phonon-stable structures were associated with a high charge density bridging atoms of the

same element, whereas phonon-unstable structures were associated with a high charge den-

sity bridging atoms of different elements. Instead, following the arguments above, we pro-

pose that their charge density plots indicate that Ag-rich structures do not allow for strong

Ru − Ru bonds and so, although strong Ru − Ag and Ag − Ag bonds are present, the

structure is unstable. Additional support to our assertion comes from the fact that phonon

instabilities are not present in some Ru-rich structures,129 while those in Ag-rich structures

disappear by reducing the equilibrium lattice parameter.129 Besides, Ag-rich structures with

reduced lattice parameter show clearly that the charge density bridging Ru − Ru bonds is

enhanced (see Fig. 4.3(e) of Ref.129). The above suggests that in Ag−Ru alloys the strength

hierarchy is in the following order: {Ru−Ru, Ag −Ru, Ag −Ag}. In fact, relatively large

differences between the strength of Ru − Ru and Ag − Ru bonds and a pronounced deep

dip in the DOS can be expected to explain all their results simultaneously.

4.4 Summary and Conclusions

We have presented DFT calculations of the Ag27Cu7 nanoalloy to understand its structure

and relative stability via considerations of its energetics, electronic DOS, and charge density

distribution. The local coordination of Cu atoms seems not dramatically different from

that in bulk Cu regarding the number of first and second NN, whereas Ag atoms find
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themselves in a very low-coordinated environment but, in return, form Ag − Cu bonds as

short as the shortest Cu−Cu bonds. On the other hand, the electronic structure of the Cu

atoms in Ag27Cu7 deviates much more from that of atoms in bulk Cu, as compared to the

corresponding case of Ag atoms in this nanoalloy.

Related bulk alloys, Ag3Cu and Cu3Ag, have positive heat of formation and form larger

bonds than the shortest ones found in the Ag27Cu7. However, we find that the resulting

interatomic bonds in these bulk alloys are sufficiently strong to make their cohesive energy

larger than that of bulk Ag and display stable phonon dispersion curves.

From our analysis of the geometric and electronic structure, we conclude that the relative

stability of Ag27Cu7, among its nanoalloy family, is the result of the maximization of the

number of Cu − Cu and Cu − Ag bonds, using the minimum number of Cu atoms. The

core-shell Ag−Cu nanoalloys do not behave differently from Ag−Cu bulk alloys regarding

the segregation tendency and the migration of Ag to the surface, as pointed earlier,143

since Ag27Cu7 is segregated by construction. Furthermore, the segregated structure is the

attribute that leads to its relative stability, provided that the core-shell structure allows

Cu− Cu and Cu− Ag pairs to approach and form bonds nearly as strong as they can be,

at almost no expense of either contracting the typical Ag−Ag bond or (most importantly)

stretching the typical Cu− Cu bond.

The HOMO-LUMO gap of Ag27Cu7 is found to be 0.77 eV. The DOS of Ag27Cu7 shows

similar features as those of Ag−Cu bulk alloys. We find that the novel features of the DOS

of full-coordinated Cu atoms in Ag27Cu7 atoms are caused by the relatively long distance

separating Cu atoms from half of its first NN. Short Ag − Cu bond-lengths, on the other

hand, improve the hybridization of Cu and Ag states; explaining why the hybridization

of Cu and Ag states in the Ag27Cu7 nanoalloy is stronger than in Ag − Cu bulk alloys.

The observed differences in electronic DOS between Ag27Cu7 and L12 alloys arise not only

because of low-coordination and geometry differences but mainly because the symmetry

enforces long Cu− Cu and Cu− Ag bonds, unlike the situation in Ag27Cu7.
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In Ag27Cu7, the charge density along Ag − Cu bonds whose length is ∼ 2.6 Å is even

larger than that around Cu− Cu bonds, and certainly larger than those bridging Ag −Ag

atoms. Nevertheless, Ag−Cu bonds whose length is of the order of that in bulk Ag3Cu, or

even Cu3Ag, are surrounded by an appreciably quenched charge density, explaining why the

DOS of Cu atoms show low coordination features. We infer a hierarchy of bond strength,

{Cu−Cu, Cu−Ag, and Ag−Ag}, correlated to a bond length order, {Ag−Ag, Cu−Ag,

and Cu − Cu} so that, the actual strength of the bonds in a particular structure becomes

the signature of a relaxed geometry, which may or may not satisfy the above hierarchy, let

the strongest bonds to realize, and thus be stable.
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Chapter 5

First principles study of the formation
of Pt islands on Ru nanoparticles

5.1 Introduction

Direct methanol fuel cells (DMFC) are considered a promising means for energy conversion in

”hydrogen-based economy” because they work at low temperature and use liquid methanol

as fuel, which is easy to deliver and store. In DMFC, the same anode is used as a catalyst

for both methanol reforming and for the oxidation of hydrogen obtained by that reforming.

Although the carbon monoxide released in the course of this reaction is supposed to be

oxidized by hydroxyl radicals obtained from admixed water, it still severely poisons the

commonly used Pt anode by blocking the Pt sites and, in this way, reducing the rate of

hydrogen electro-oxidation. Similarly, in proton exchange fuel cells operating with pre-

reformed gas, the anode is poisoned by carbon monoxide molecules, inevitably present in

hydrogen obtained from hydrocarbons.

It is known144 that PtRu alloys are more tolerant to CO poisoning than pure Pt, though

their tolerance is still unsatisfactory. Another disadvantage of these catalysts is still the

high content of expensive platinum. It has been recently found that nanoclusters of Ru

exposed to spontaneous Pt deposition are much more tolerant to CO than commercial PtRu

catalysts145,146. In addition, it is commercially advantageous that the content of Pt on these

novel materials is significantly reduced with respect to Ru−Pt alloys. Brankovic et al.145,146
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deposited Pt on ∼2.5 nm size Ru nanoparticles and found that the 1:20 ratio (PtRu20),

which corresponds to ∼0.1 monolayer (ML) coverage, surpass substantially the catalytic

performance of PtRu and Pt2Ru3 in the presence of CO. This feature was attributed to

the spillover effect, in terms of the tendency of CO to leave the Pt and diffuse towards

Ru. It was assumed146 that Pt atoms form two dimensional (2D) islands on the facets

of the Ru nanoparticles, although, the actual arrangement of the deposited Pt atoms was

not determined because of experimental limitations.146 Since the first step in obtaining a

systematic understanding of the enhanced reactivity of this catalyst is the determination

of its surface structure, we have proceeded to do the same theoretically using ab initio

structure calculations in this work.

We first notice that the resulting structure of deposited Pt atoms will be determined by

the balance between the propensity of the atoms to increase the number of chemical bonds

and the stress caused by a misfit in the Ru− Ru and Pt− Pt bond lengths. Competition

between these two factors may, at a critical size of a Pt island, cause crossover between 2D

and three dimensional (3D) growth mode or island-substrate atom exchange.147,148 Experi-

mentally, the bond length of bulk Ru and Pt phase are of 2.706 Å and 2.775 Å, respectively.

The size mismatch between Ru and Pt is not large, and so it is not obvious which growth

mode is preferred by Pt. Experimentally, rather large (∼2.5 nm) Pt monolayer islands on

Ru(0001)149 have been obtained by Pt vapor deposition at coverages as low as 0.03 ML. On

the other hand, it has been found that under spontaneous deposition Pt forms 2 - 3 layer

islands of 3 - 10 nm diameter on Ru(0001).150 As noted above, Pt coverage is critical for the

catalytic properties of the Ru nanoparticles145; island size effects - tuned by Pt coverage -

have also been reported for methanol electro-oxidation.151 All the above suggests that the

correlation between catalytic activity and coverage has implications on how Pt arranges

itself on the Ru nanoparticles, as we shall see later. The arising question is, which structure

of Pt atoms on Ru faceted clusters is energetically the most favorable?While the focus of

this work is not on understanding the catalytic reactivity of the Pt − Ru nanoparticles,
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we notice that previous calculations indicate that the CO adsorption energies on various

binary Pt−Ru systems, ranging from Pt(111) to 1ML of Pt on Ru(0001), are reduced upon

lowering Pt content.152 Kopper et al.152 proposed that 1 ML of Pt deposited on Ru(0001)

surface might be the best H2/CO oxidation catalyst due to the reduced binding energy of

CO to Pt and the consequent increment of available active Pt sites.

Since Ru nanoclusters in Refs.145,146 have well developed facets divided by edges, both

formation of Pt islands on Ru facets and Pt diffusion over Ru nanoparticle edges are of

interest. To gain insight into the former, we have examined the energetics of Pt islands,

as a function of size, on the Ru(0001) surface. To this end, we carry out first principles

calculations of the geometry and formation energy of Pt islands whose size ranges from 1

to 9 atom, as well as that of 1ML of Pt, adsorbed on Ru(0001). Furthermore, to assess the

possibility of diffusion of Pt atoms and dimers, we simulate two edges of a Ru nanoparticle

using a superstructure described in the next section and calculate diffusion barriers of Pt

atoms on its (0001) and (1101) facet and across its edges. The rest of this chapter is organized

as follows: Section 5.2 presents the computational details, Section 5.3 contains our results

and provides some discussion about Pt islands on Ru(0001) (subsection 5.3.1) and of Pt

diffusion on the (0001) facet and across the edges of our Ru nanostructure (subsection 5.3.2).

Section 5.4 summarizes our results and conclusions.

5.2 Computational details

In this paper periodic supercell calculations have been carried out within the density func-

tional theory (DFT) framework29,30 using the plane wave pseudopotential method153 - em-

bodied into the ESPRESSO code (previously known as PWSCF)154 - with ultrasoft pseu-

dopotentials.155 We have used a kinetic energy cutoff of 25 Ry for the wave functions and

100 Ry for the charge density to obtain convergent results with sufficient computational

accuracy of the lattice constant of bulk Ru and Pt. Brillouin zones were sampled with

either the (4 × 3 × 1) or the (3 × 3 × 1) Monkhorst-Pack k-point meshes,39 depending
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on the size of the supercell, as we will see. Since the main uncertainty of DFT comes

from the exchange-correlation potential, we have used two different approximations for the

exchange-correlation functional: the Perdew and Wang generalized gradient approximation

(GGA)36 and the Perdew, Burke, and Ernzerhof (PBE) modified GGA37, and compared

some of the results obtained using these two approximations. To achieve force relaxation of

the studied structures, the total energy of the system and the forces acting on each atom

are obtained after each self-consistent electronic structure and minimized by the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm.156 At equilibrium, forces on each atom are

required to be below 0.3 mRy/au. The diffusion barriers for monomers and dimers on the

Ru superstructure are obtained by the direct dragging method. The 3D graphics presented

in this work were generated by the Xcrysden program.157

We note that in the calculations of the geometry and formation energy of Pt islands the

usage of supercells may introduce contributions from island-island interactions, as a result

of the imposed periodicity of the system. This is particularly true for the largest islands

in the 3 × 4 and 4 × 4 supercells in which edge-atoms of neighboring islands are as close

as third nearest neighbors (NN) of the Ru(0001) surface. A simple way to estimate this

spurious interaction is to consider that between two Pt atoms adsorbed on the surface the

interaction energy, Eint, defined as changes in the total energy of the dimer on Ru(0001) as

the Pt−Pt distance varies. Roughly, Eint = E(2Pt/Ru)−2E(1Pt/Ru), where E(2Pt/Ru)

is the adsorption energy of 2 Pt atoms on Ru(0001) in a 4× 4 supercell and E(1Pt/Ru) is

the adsorption energy of 1 Pt atom on the same surface and supercell. Our results provide

that Eint = -0.203, +0.074, and -0.018 eV, as the separation between the two Pt atoms

increases from 1st to 2nd, and 3rd NN bond length, respectively. The interaction between

3rd NN is thus expected to be 10 times smaller than that of 1st NN; accordingly, Eform, as

calculated in this work, can be reliable up to ± 0.02 eV for the largest islands.
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Figure 5.1: Model of a faceted Ru nanoparticle exposing a (0001) facet and two (1̄101)
facets. Different colors distinguish the five layers parallel to the (0001) surface constituting
the structure.

5.2.1 2D Pt islands on Ru(0001)

The facets of Ru nanoparticles are first modeled by a 5 layer Ru(0001) slab, which is the

surface known to have the lowest energy.158 Pt adatoms are placed on only one side of the

slab. To avoid the interaction between surfaces and Pt adatoms of neighboring periodic

supercells we have imposed a 15 Å vacuum layer, whereas to reduce the interaction between

deposited Pt islands, the (0001) surface unit cells is extended to either (3 × 4) or (4 × 4)

structures depending on the island size. The (3× 4) and (4× 4) supercells contained 60 and

80 Ru atoms, respectively, plus Pt atoms forming the island. Their corresponding surface

Brillouin zone is sampled with a (4× 4× 1) and (3× 4× 1) k-point mesh, respectively.

5.2.2 Monomer and dimer on faceted superstructure

To model Pt diffusion through the nanoparticles edges we have taken into consideration

the Ru(0001) and Ru(1101) surfaces, which are among the most stable Ru surfaces.146,158

We consider a periodic 3D superstructure containing 116 Ru atoms and made of a 4-atom

wide Ru(0001) facet and two Ru(1101) facets (see Fig. 5.1). The construction of this Ru
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supercell, which has 7× 4 in-plane periodicity, is achieved by stacking five Ru(0001) layers:

two of 7×4, one of 6×4, one of 5×4, and one of 4×4 atoms. The so obtained edges, on each

side of the Ru(0001) are different, say edge A and B. Atoms forming edge A (edge B) are

contiguous to hcp (fcc) hollow sites of the (0001) facet. The bottom two layers (see Fig. 5.1)

were not allowed to relax to guarantee the stability of the superstructure. We impose a

15 Å vacuum layer between periodic superstructures along the direction perpendicular to

the surface, as in the system described previously. The Brillouin zone is sampled with a

(2× 3× 1) k-point mesh. The adsorption energy and diffusion barriers of Pt monomers and

dimers are calculated on the (0001) and the (1101) facets.

5.3 Results and Discussion

To determine in-plane slab periodicity, we have calculated bulk lattice parameters using PW

and PBE approximation for the exchange-correlation functional. The bond lengths of bulk

Ru and Pt are found to be 2.706(2.744PBE) and 2.77(2.82PBE) Å, respectively, while the

c/a ratio of bulk Ru is found to be 1.585 (PBE) Å.

5.3.1 Pt islands on Ru(0001)

We have calculated the optimized geometric structure and energetics of 1 to 5 Pt atom

islands adsorbed on Ru(0001) using the (3×4) supercell and that of 1 to 9 Pt atom island on

Ru(0001) using the (4×4) supercell. The relaxed structure of one Ptmonolayer on Ru(0001)

has been also obtained. To characterize the energetics and stability of a given Pt island, we

obtained its formation energy, which is defined as: Eform = E(Ru+Pt)−E(Ru)−nE(Ptat).

Here E(Ru+ Pt) is the energy of Ru slab adsorbed with a n-atom Pt island, while E(Ru)

and E(Ptat) denote the energy of the clean Ru slab and the energy of a free Pt atom,

respectively. The structure with lowest average formation energy per Pt atom, Eform/n,

will thus be distinguished as the energetically most favorable one. Fig. 5.2(a) presents the

dependencies of Eform/n on the size of the island, n, for n = 1-5 using a (3× 4) supercell,
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Figure 5.2: The upper panel shows the average formation energy per atom, Eform/n, as
a function of the size of the islands, n, for n = 1 - 5 using a (3x4) supercell, as provided by
PBE and GGA. The lower panel shows also Eform/n vs. n using instead a (4x4) supercell,
for n =1 - 4, 6, 7, and 9.
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Figure 5.3: Two configurations of a 7-atom Pt island (blue) on Ru(0001) (grey) showing
the detachment of one Pt atom. The configuration in the right panel has lower Eform/n
than the configuration in the left panel by ∼0.14 eV (see text).

as provided by PBE and GGA. Fig. 5.2(b) displays the dependencies of Eform/n on n using

a (4 × 4) supercell, for n = 1-4, 6, 7 and 9. Note that the values n = 12 and n = 16

represent a coverage of 1ML of Pt in the (3×4) and (4×4) supercells, respectively. We find

that both PBE and GGA provide the same qualitative dependence: the larger island, the

stronger the bonds, indicating that the full monolayer provides lowest Eform/n. The effect

of atom detachment (from Pt islands) on Eform has been studied as well. Fig. 5.3 shows

two configurations considered for the 7-atom Pt island adsorbed on Ru(0001). We find that

the detachment (transition from the left to the right configuration in the figure) causes an

increase in Eform from -38.55 eV to -37.52 eV. Similar results have been obtained for the

islands of other sizes. The increment of energy per Pt atom upon detachment, however,

does not depend significantly on the island size and vary in the range of 0.11 - 0.14 eV. For

instance, for a 2-atom Pt island, detachment leads to an increase in Eform from -10.46 eV

to -10.24 eV, while for a 3-atom island, the energy increases from -15.88 eV to -15.52 eV

upon the detachment.

The well-known tendency of many-atom systems to form as many interatomic bonds

as possible leads to 2D, layer by layer growth. For binary systems, however, this can be
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Figure 5.4: Two configurations of a 9-atom Pt island (blue) with 2D(left) and 3D(right)
structure on Ru(0001) (grey) (see text).

overpowered by other factors and growth of multilayer islands may occur instead of wetting.

For instance, the misfit between the typical bond lengths of the adatoms and the substrate

may cause tensile or compressive stress as the adatom cluster grows larger and may, at

certain point, induce the 2D/3D crossover, favoring the formation of multilayer islands. We

have therefore performed calculations for some 3D Pt islands on Ru(0001) and found that

the 2D islands are more stable that 3D ones. For example, two configurations of a 9-atom

Pt island with 2D and 3D structures (see Fig. 5.4) were found to have Eform = -50.06 eV

and -48.54 eV, respectively. Analyses of the above results point that Pt atoms tend to form

the configurations that provide the maximum number of bonds regardless of their chemical

nature until they form at least one single monolayer. There still remains the question: why,

despite the misfit, no 2D/3D crossover occurs? In order to grasp some understanding of the

issue, we note first that

In the 2D Pt islands under consideration, the number of NN fluctuates from 3 (single

atom) to 9 (full monolayer). Decrease in the number of NN usually causes reduction of the

equilibrium interatomic distances. Indeed, we find that for a free standing Pt monolayer, in

which every Pt atom has only 6 nearest neighbors, the equilibrium Pt− Pt NN distance is

much shorter (∼2.6 Å) than that in bulk Pt (∼2.8 Å) and even shorter than the Ru− Ru
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NN distance in bulk Ru (∼2. Å). The misfit in low dimensional structures is thus not well

defined because of the dependency on the coordination number of the atoms in question.

For these surface alloys, there is also the issue of stress induced by the bond-length misfit

between the Pt nanostructures and the Ru surface atoms, neither one of which is expected

to be at the bulk value, given the diversity of their local geometric environment. For the Pt

atoms on the top of a hcp metal such as Ru, there is also an incommensurability in bulk

structure. We find that the bulk NN bond length of Pt atoms certainly decreases when they

arrange in an hcp structure. In that case, the bulk bond length misfit (PBE) between Pt and

Ru decreases from ∼2.8 to ∼1.4 %. Furthermore, the surface interlayer distance in Pt(111)

expands to 2.49 Å (∼1.0 % with respect to bulk), while that of the hypothetical Pt(0001)

contracts to 2.39 Å notwithstanding that intralayer NN distances are 1.8 % smaller than in

the fcc bulk.

In summary, the formation of larger 2D islands appears to be favored because of the

increasing number of bonds achieved by this means, while the aforesaid bond-length misfit

seems to be mitigated by the low-coordination of Pt atoms and the hcp structure of the Ru

substrate.

5.3.2 Pt diffusion on (0001) facet and through edges of a Ru nanos-
tructure

From the above, we have gained an understanding of the tendency of Pt atoms to form 2D

islands, wetting the Ru(0001) surface rather than clustering in multiple 2D or 3D structures.

The experimental evidence, however, suggests that Pt islands maintain small size on Ru

nanoparticles,146 say ∼0.5 nm (5 to 7 atoms), for 0.1 ML coverage. The difference in the

characteristic of Pt surface alloys on Ru(0001) and on Ru nanoparticle is part of the reason

for the substantial reactivity of Pt adatoms on Ru nanoclusters and not on Ru surfaces. If

Pt atoms were to make as many bonds as possible on the Ru nanoparticle as they do on the

Ru surface, one would expect that, even for low coverage (∼0.1 ML), a large island should

totally cover one of the facets of the Ru nanoparticles. For example, a Ru nanoparticle of
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Table 5.1: Adsorption energy (in eV) of a Pt monomer on various sites of the (0001) and
(1101) facets of our Ru nanoparticle model (see numbering notation in Fig. 5.5)

0001 fcc 0001 hcp (1101)
Label Eads Label Eads Label Eads

(Fig. 5.5) (eV) (Fig. 5.5) (eV) (Fig. 5.5) (eV)
1 4.94 4 4.86 1 5.66
2 4.93 5 4.77 2 4.92
3 5.05 6 4.78

2.5 nm with the proposed cubo-octahedral structure146 - a 14-faceted structure - could hold

roughly ∼7 (∼4) Pt atoms per squared (triangular) facet for homogeneous coverage of 0.1

ML (∼70 Pt atoms), whereas the same coverage coalesced into a single island could totally

cover one of the squared facets, which seems not to be the case.146

One main difference between the infinite surface and the nanoparticle is that the latter

exhibits edges dividing its facets. It is hence natural that they prevent Pt coalescence on

the Ru nanoparticles. If this is true, 2D islands are formed on each facet, but they do

not join together into a large unique island because the edges prevent those initial small

islands from diffusing to other facets, thus persisting as few-atom 2D islands. Support for

the aforesaid reasoning will be attained below by comparing the barrier for Pt atoms to

diffuse on a (0001) facet with that for Pt to diffuse across the edges towards a (1101) facet.

Pt Monomers

The Ru nanostructure used for the above purpose is displayed in Fig. 5.1. It possesses 3

fcc (fcc1, fcc2, fcc3) and 3 hcp (hcp4, hcp5, hcp6) non-equivalent hollow sites on the (0001)

facet, as shown in Fig. 5.5(a). Pt monomers sit at those sites with different adsorption

energies (see Table 5.1) and, as expected, they prefer to sit at fcc hollow sites.

In addition, Pt monomers preferably sit on sites surrounded by 2 edge atoms (hcp4 and

fcc3), rather than on those surrounded by only one (hcp6 and fcc1) or none (hcp5, fcc2)

edge atom. Note that the adsorption energy of a monomer on the (0001) facet is lower than

on the infinite surface (5.13 eV). Across edge A, the first (1101) available site is a 4-fold

131



( b )

R u ( 0 0 0 1 )

R u ( 1 1 0 1 )

1

( a )e d g e  A

e d g e  B

2

1 2 3
4 5 6

Figure 5.5: Adsorption sites of Pt monomers (red) on the (0001) facet of the Ru nanopar-
ticle model (blue). Numbers ”1”, ”2” and ”3” indicate fcc sites and ”4”, ”5”, ”6” indicate
hcp sites. (b) Adsorption sites of Pt monomers on the (1̄101) facets of the Ru nanoparticle
model. Numbers ”1” and ”2” indicate four-fold and three-fold hollow sites, respectively.

hollow site, denoted by ”1” in Fig. 5.5(b), whose adsorption energy, 5.66 eV, is substantially

higher than that on fcc sites of the (0001) facet. Across edge B, the first (1101) available

site is a 3-fold hollow site, denoted by ”2” in Fig. 5.5(b), whose adsorption energy is 4.92

eV. The above results, incidentally, suggest that there may be a propensity of Pt to deposit

on (1101) facets in the long range.

The calculated diffusion barriers,∆E, through edge A, appears to be highly asymmetric

(see Fig. 5.6(a)): ∆E(fcc3 → ”1”) = 0.49 eV and ∆E(”1” → fcc3) = 1.10 eV.

The diffusion barrier through edge B comprises two processes - one on the (0001) facet

(fcc1→ hcp4) and one effectively across the edge (hcp4→ ”2 ”) - given that it is surrounded

by hcp hollow sites on the (0001) side. As shown in Fig. 5.6(b) and (c), the activation energy

barriers for monomer diffusion on the (0001) facet and through the edges are found to be

comparable.

In order to estimate the probability of Pt diffusion entailed by these barriers, we have
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Figure 5.6: Energy barrier for the diffusion of a Pt monomer (a) across the edge A (see
Fig. 5.5): fcc3 ←→ type ”1” site, (b) on the (0001) facet: fcc1 ←→ hcp4, and (c) across
the edge B: hcp4 ←→ type ”2” site.

roughly calculated the diffusion rate of Pt monomers. The latter, dominated by the expo-

nential of the energy barrier, is given by R = D0e
− ∆E

kBT , where kB is the Boltzmann constant,

T is the temperature, and D0 is the diffusion prefactor17 whose typical values are of the

order of ∼ 1012 s−1. We obtain that, at room temperature, the diffusion rate through edge

B (∼ 2 ×108 and ∼ 2×107 s−1, for ”2”→ hcp4 and hcp4→ ”2”, respectively) is comparable

to that on the (0001) facet (∼ 4×108 and ∼1×1010 s−1, for fcc1 → hcp4 and hcp4 → fcc1,

respectively). On the other hand, the diffusion rate through edges A (∼ 3×10−7 and ∼ 6

× 103 s−1, for ”1” → fcc3 and fcc3 → ”1”, respectively) is found to be several orders of

magnitude lower than that through edges B or that on the (0001) facet. In summary, our

results indicate that edges A compel Pt monomers to remain on the facet where they are

initially adsorbed, but not so edges B. In real Ru nanoparticles we might thus expect that

Pt monomers may diffuse across some edges and may not across some others.

Pt dimers

The results of previous sections indicate that clustering of 2D islands on the facets and

monomer diffusion across the edges are expected to occur readily. Yet, in order for Pt
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Figure 5.7: Adsorption sites and Eform/n (n = 2) of Pt dimers (red) on the facets of the
Ru nanoparticle model (blue). (a) Top view of the (0001) facet showing a dimer at fcc2 sites.
(b) Top view of the (0001) facet showing a dimer at hcp5 sites. (c) Top view of the (0001)
facet showing a dimer at fcc1 sites. (d) Top view of the (0001) facet showing a dimer with
one atom at a fcc1 site and the other beyond the edge of the same facet. The coordination
number of the atoms is 5 and 4, respectively. (e) Top view of the (1̄101) facet showing a
dimer with one atom at a hcp4 site and the other at a type ”2” hollow site. (f) Top view of
the (1̄101) facet showing a dimer at a type ”2” and type ”1” hollow sites of the same facet.

islands to coalesce and form larger islands, they would have to diffuse through the edges.

We therefore turn to the calculation of the energy barrier for a dimer to diffuse from fcc to

hcp sites (on the (0001) facet) and through edge B, the easy edge for monomers to cross.

Some of the sites that Pt dimers may adopt on the (0001) and the (1101) facets, as well

as the corresponding average formation energies per atom, are shown in Fig. 5.7. We find

that Eform/n of the dimer increases (∼ 0.12 eV) with respect to that of the monomer,

suggesting that dimers would preferably form rather than diffuse as monomers through the
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Figure 5.8: The upper three panels from left to right illustrate initial, transition, and final
states, respectively, of the diffusion of a dimmer (red) from fcc to hcp sites, as seen from
the top of the (0001) facet (blue). The lower panel shows the corresponding barriers of this
process and the inverse, from hcp to fcc sites.

easy edges. As in the case of monomers, dimers prefer to sit on fcc sites on the (0001) facet

(see Fig. 5.7(a) and (b)); similarly, the adsorption energy of Pt dimers at fcc sites near edge

B (only one edge-atom neighbor) and in the middle of the Ru stripe is almost the same (see

Fig. 5.7(a) and (c)). On the (0001) facet, when one of the atoms in the dimer comes closer to

the edge and its coordination is reduced from 5 to 4 (compare Fig. 5.7(c) and (d)), Eform/n

drops ∼ 0.16 eV, suggesting that there is a higher barrier for Pt dimers to approach the

edges to the point where its atoms become more undercoordinated. On the (1101) facet,

analogously, Eform/n is 0.52 eV lower for a dimer across the (0001) and (1101) edges (see

Fig. 5.7(e)) than for a dimer sitting on the (1101) facet close to the edge (see Fig. 5.7(f)).

As shown in Fig. 5.8, the barrier for the dimer to diffuse from hcp to fcc sites is similar

to that for monomers while is 2.5 times smaller for the inverse process, from fcc to hcp.

The diffusion rates (1.4×109 and 8.8×104 s−1, correspondingly) thus differ by four orders of

magnitude, indicating that dimers are most of the time at fcc sites. This presents another

indication that Pt dimers (or larger islands) would not leave the (0001) facet since, for it to

diffuse across edge B, it must be on hcp sites. As shown in Fig. 5.9, the diffusion across edge

B comprises two stages. The initial state of the first stage corresponds to the configuration
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Figure 5.9: The upper five panels from left to right illustrate the two-step diffusion of the
dimmer (red) across the edge intersecting the (0001) and the (1̄101) facets (blue). First,
third, and fifth upper panels are local minimum energy configurations of the dimmer and the
second and forth upper panels are transition states. The lower panel shows the barrier for
the dimmer to diffuse back and forth from either local minimum energy configuration (see
text).
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shown in Fig. 5.7(d) in which one atom is on a fcc1 site and the other is slightly beyond the

edge whereas, in the final state, the atom at the fcc1 site diffuses to a hcp4 site and the other

moves to a type ”2 ” site (see Fig. 5.5(b)) of the (1101) facet, as shown in Fig. 5.7(e). The

energy barriers for the dimer to diffuse back and forth from the initial and final states are

shown in Fig. 5.9 while the corresponding diffusion rates for these processes are low (∼ 104).

Indeed, the energy barriers of the first stage are very similar to those for dimer diffusion

from fcc to hcp sites (see Fig. 5.8) and for monomer diffusion through edge A (see Fig. 5.6).

Notice also that the final state described above is only an intermediate stage of the diffusion

towards the (1101) facet. For the second stage, the initial state is naturally the configuration

shown in Fig. 5.7(e) while the final state corresponds to that shown in Fig. 5.7(f), in which

both atoms sit on the (1101) facet. The energy barrier to move from the initial to the final

state (see Fig. 5.9) produces also a low diffusion rate of 6×103 s−1, while the inverse process,

whose barrier is 3 times larger, provides a diffusion rate of ∼1.4×10−14 s−1, indicating that

dimers like monomers on the (1101) facets will most likely remain there. In short, edge B,

which offers a low-barrier diffusivity path to monomers, renders to Pt dimmers two energy

barriers for facet-to-facet diffusion, each representing a diffusion rate at least three orders

of magnitude lower than those of the monomer. We expect the diffusion rates of trimers

and other n-mers of Pt on Ru nanoparticle facets to be even lower than that found here for

dimers.

5.4 Summary

We have calculated from first principles the energetics and geometry of Pt islands deposited

on Ru(0001), as well as the energy barriers for diffusion of Pt monomers and dimers through

the edges intersecting the (0001) and (1101) facets of a superstructure modeling a nanopar-

ticle. We find that the low coordination of Pt atoms composing the islands and the hcp

structure of the substrate promote that Pt islands adsorbed on the Ru(0001) grow as large

as possible up to 1ML and avoid the 2D/3D crossover. Nevertheless, we have proposed
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that, in experiment, Pt atoms arrange homogeneously over the facets of Ru nanoparticles

by spontaneous deposition and form 2D islands on each facet, but they do not join together

into a large unique island because the edges of the Ru nanoparticles prevent the initial is-

lands from diffusing to other facets, persisting thus as few-atom 2D islands. Our calculated

barriers indicate that there may be some edges in the Ru nanoparticles for which the diffu-

sion rate across-edge is several orders of magnitude lower than the diffusion rate on-facet,

even for monomers. For those edges that may offer low diffusion barriers to monomers, our

calculated barriers for dimers suggest that dimers or larger islands, whose formation is more

probable than the monomer diffusion, remain in the facet where they were formed since the

diffusion rate across-edge is several orders of magnitude lower than that of monomers.
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Chapter 6

First-principles study of the surface
phonon dispersion of c(2x2)-CO on
Cu(001)

6.1 Introduction

Comprehension of the coupling between molecules and metallic surfaces have attracted much

interest in the last three decades159,160 because of the insight it provides into chemisorption

and diffusion processes,161 which ultimately control phenomena such as catalysis and cor-

rosion. In this regard, ab initio numerical methods based on the density-functional theory

(DFT) represent, to date, the most robust and accurate approach to model, understand,

and predict the geometrical, electronic, and dynamical properties of chemisorbed surfaces,

as well as many other systems. Of particular relevance in this work is the density-functional

perturbation theory (DFPT), which furnishes a powerful and comprehensive framework to

deal with perturbations in the ionic positions since it provides access to the dynamics of

the adsorbate and the substrate in the entire surface Brillouin zone (SBZ) while taking into

consideration all inter-atomic couplings within the system.116 On the experimental side, dif-

ferent spectroscopic techniques, such as infrared-reflection absorption spectroscopy (IRRAS)

and Raman and electron energy loss spectroscopy (EELS), have provided a vast amount of

data on vibrational modes whose frequencies exceed ∼20 meV.162 Inelastic Helium Atom

Scattering (HAS) has instead been the leading technique for measuring frequencies below
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∼20 meV, particularly those arising from fluctuations of the surface-molecule bond, as man-

ifested in the frustrated translation (FT) modes of adsorbed molecules.16

The CO/Cu(100) system, has been widely studied because of its structural symme-

try, relatively simple electronic structure, and experimental approachability.163 Low Energy

Electron Diffraction (LEED) and Near-Edge x-ray Adsorption Fine Structure (NEXAFS)

measurements show that CO adsorbs on Cu(001) with the C end bound atop Cu surface

atoms and the molecular bond oriented normal to the surface, forming a c(2x2) overlayer at

half monolayer, θ = 0.5 ML (see Fig. 6.2(a)).160,164–166 Vibrational modes of CO on Cu(001)

have also been extensively studied experimentally167 and theoretically at the center of the

SBZ,34,159 the Γ-point (see Fig. 6.2(b)). Many of the calculations available in the literature

have used a cluster model for the substrate168–173 and applied the frozen-phonon or finite

differences (FD) method174 to determine ν1 and ν2, while ignoring the role of the substrate

(frozen substrate method). To our knowledge, no attempt to obtain theoretically the phonon

dispersion relations of the chemisorbed surface has so far been carried out, while the latter

has been assessed experimentally only in the low frequency range by HAS.16

The vibrational modes of CO on the Cu(001) surface may be divided into two groups

according to their polarization. The first group involving displacements perpendicular to the

surface are the C-O and the Cu-CO stretch modes, whose frequencies are denoted by ν1 and

ν2, respectively. The second group involves mostly horizontal displacements derived from the

rotational and translational motions of the free CO molecule that become frustrated upon

adsorption on the Cu surface.16 The four modes among this group consist of two frustrated

rotation (FR) modes and two frustrated translation (FT) modes, whose frequencies are

denoted by ν3 and ν4, respectively. Notice that straight atop adsorption of the molecule on

the (001) surfaces of fcc metals causes degeneracy in the two FR and FT modes at Γ.16

Lewis and Rappe175 computed the frequencies of all six modes at Γ, treating both the

adsorbate and the substrate on equal footing, using the local density approximation (LDA)

of the density functional theory (DFT) and the finite differences (FD) method. They found
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reasonable agreement with experiment for the Rayleigh wave of the substrate, and for ν1 and

ν3, but not for ν2 and ν4. They also found the molecule-substrate bond to be anharmonic

with respect to horizontal displacements and that the introduction of anharmonicity effects

in the force constants shifted ν4 very close to the experimental value.175 Favot et al.34,

applying the DFPT method with GGA, obtained values of ν1 and ν2 at the Γ point to be in

agreement with the experimental data, but ν3, ν4 and the frequencies of the substrate modes

were not reported. They compared the capabilities of LDA and GGA to describe c(2x2)-

CO/Cu(100), and found that LDA fails to find the top site as the preferred adsorption site of

the molecule, while GGA reproduces it correctly. In this work, through examination of the

dispersion of the phonons of c(2x2)-CO/Cu(100) using DFPT with both approximations,

we show that apart from predicting the wrong adsorption site, LDA produces negative

frequencies for the FT mode almost everywhere in the sampled regions of the SBZ (except

in the vicinity of Γ), suggesting - against the experimental evidence - that the CO-c(2x2)

overlayer is unstable under the FT mode distortion. There are indications that this situation

is derived from the strong overestimation of the C-Cu bond strength,34,176 which makes the

LDA potential energy surface favor the hollow site to atop for CO on Cu(001). Meanwhile,

the dispersion of the FT mode obtained from GGA reproduces quantitatively well HAS

measurements without need to adjust the involved force constants to incorporate anharmonic

effects.175

The different scenario exhibited by GGA regarding the C-Cu interaction calls also for re-

visiting the softening of the Rayleigh wave (RW), with respect to the clean surface, observed

in HAS measurements upon CO adsorption.16 It has been partially explained by the mass

overloading of covered Cu atoms. Namely, Ellis et al.16 obtained a dispersion relation that

underestimates the observed softening by keeping intact the force constants of the clean

surface and simply taking into account the mass overloading of covered atoms. In turn,

previous LDA DFT calculations175 did not find considerable changes in the force constants

of surface Cu atoms while reasonable agreement with experiment was obtained for the fre-
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quency of the back-folded RW at Γ, leaving the mass overloading as the main reason for the

softening of the RW. It is not straightforward to interpret or classify the softening as due to

either fact. On the one hand, only one of the two Cu surface atoms in the unit cell adsorbs

and carries CO whereas the RW refers to the vibration of the first layer (mainly) which is

represented by both surface atoms in the unit cell. On the other hand, upon CO chemisorp-

tion covered and bare atoms relax in opposite directions. Namely, covered atoms not only

drag a CO molecule but also relax outwards, while bare atoms remain relaxed inwards with

respect to bulk interlayer spacing, as occurs for the clean surface. Understanding of the

softening of the RW becomes even more complex since structural features and changes in

the force constants of the substrate are a matter of disagreement between LDA and GGA

and, in spite of that, both reproduce well HAS measurements of the RW.

The rest of this work is organized as follows: Section 6.2 contains the computational

details for the present calculations. Section 6.3 is a summary of results concerning the

structure of bulk Cu, clean Cu(001), and c(2x2)-CO/Cu(100). In Section 6.4, we present

our results and discussion of the dynamics of all three systems. Chapter 7 contains the

concluding remarks of this study.

6.2 Computational details

Periodic super-cell calculations are performed on the basis of the DFT formalism and the

pseudopotential approach.116 The present results are derived from the mixed basis (MB)

technique,177 which reduces significantly the size of the basis set to describe valence states

that are strongly localized near atomic sites. Using norm-conserving pseudotentials (NCPP),

we obtain results within both LDA and GGA. The former is applied through the Hedin-

Lundqvist33 parametrization of the exchange-correlation functional, whereas GGA is intro-

duced via the expression by Perdew, Burke, and Ernzerhof.120

The radius around Cu sites, at which the d -type local functions are smoothly cut off,

rcutoff , is 2.3 au for both LDA and GGA. The rcutoff of s- and p- type local functions is
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1.2 and 1.08 au, respectively, for C and O in both LDA and GGA. In the present GGA

calculations, d -type basis functions are included in the description of the valence states of

C atoms. The maximum kinetic energy, Emax, of the plane waves used to describe valence

states has been set to 20 Ry for LDA and increased up to 33 Ry for GGA to reach convergence

of the CO bond length and the atomic forces in c(2x2)-CO/Cu(001). The energy at which

the Fourier expansion of the charge density is truncated, Gmax, has been set to 50 Ry for

both LDA and GGA.

The clean and the CO-chemisorbed Cu(001) surfaces are simulated with symmetric slabs

inside a tetragonal unit cell containing either 9 (for LDA) or 7 (for GGA) layers of Cu. In

the chemisorbed surface, CO molecules are symmetrically located on each side of the slab.

Periodically repeated slabs are separated by a distance equivalent to 9 and 11 layers, corre-

spondingly. Integrations inside the SBZ are done over discrete meshes of 8x8x8, 8x8x1, and

6x6x1 k-points for bulk Cu, clean Cu, and CO-c(2x2)-Cu(001), respectively. Integrations

up to the Fermi surface at an irreducible set of k-points are obtained using the broadening

technique for the level occupation,178 where the Gaussian smearing parameter, Σ, is set to

0.2 eV.

To find the binding energy of a molecule in the c(2x2) overlayer, we have taken into

account the direct interaction among the molecules. We have thus calculated the total

energy of CO molecules in a free standing two dimensional c(2x2) array as in the c(2x2)-

CO/Cu(001) system, using the same super-cell employed in the chemisorbed system, as well

as all other parameters. The direct-interaction energy among molecules in the above two

dimensional array is thus the difference between the total energy of one molecule in the

array and that of an isolated molecule. The latter is modelled using a large super-cell of

19x19x21 au, so as to limit integration over only 1 k-point.

Minimization of the slab total energy as a function of the atomic positions is based upon

the reduction of Hellmann-Feynman forces7 below 10−3 Ry/au, using the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm.179
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The calculation of the lattice dynamical matrices at specific q-points of the SBZ is

based on the lineal response theory embodied within DFPT,116,122 as developed by Heid

and Bohnen.180 Studies of the dynamics of CO/Cu(001) have also been performed using

the plane-wave technique and ultra-soft pseudopotentials with the Quantum ESPRESSO

package118, which essentially provides the same results when LDA is used, but overestimates

the frequency of the FT mode when GGA is used. For the sake of clarity, those results will

not be presented here. Calculations of the dynamical matrices at specific q-points are

performed applying a convergence criterion of 0.02 meV in the phonon energies. For bulk

Cu, Cu(001), and c(2x2)-CO/Cu(001), they are calculated at the q-points of a 4x4x4, a

4x4x1, and a 2x2x1 mesh, respectively. The real-space force constants in these systems are

obtained by the standard Fourier transform of the corresponding dynamical matrices.181

The force constants of both surfaces are then matched with those of bulk Cu to model a

clean and a chemisorbed asymmetric slab of 50 and 800 layers, respectively, and used to

obtain the frequencies at arbitrary q-points. Surface modes in the clean surface have been

identified as those whose amplitude weight in the two outermost layers is larger than 20%.

In the chemisorbed slab, surface modes and resonances have been identified as those whose

amplitude weight in the 6 outermost atoms (including C and O) is larger than 20 and 5%,

respectively.

In order to reliably compare the results given by inclusive DFPT calculations and those

by the FD-frozen substrate (FD-FS) method, we have computed ν1 and ν2 using the later

method within LDA. The 2x2 force constant matrix that primarily controls the C-O and

CO-Cu stretch modes is obtained from the forces developed on C and O as their vertical

equilibrium position on Cu(001) is independently modified by finite differences of ±0.04 Å

while keeping the Cu slab fixed.
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Table 6.1: Lattice constant ( a) and bulk modulus (B) of bulk Cu.
Theory Experiment

LDA GGA
NCPP AE NCPP AE

This work Ref.182 This work Ref.182 Refs.125,183,184

a (Å) 3.57 3.52 3.68 3.62 3.61
B (GPa) 170 192 128 151 138

6.3 Structural properties

6.3.1 Bulk Cu

Convergence tests of the lattice constant and bulk modulus have been performed extensively.

As shown in Table 6.1, the lattice parameter of bulk Cu is found in good agreement with

all-electron (AE) calculations, which are the ultimate test for pseudopotentials methods.

Nevertheless, our calculated bulk modulus (B), falls below that provided by AE calculations.

182 Discrepancies with AE calculations in this respect are expected since B involves the

derivative of the energy with respect to the volume, being thus more responsive to the

differences between AE and PP calculations than the lattice parameter. As for agreement

with experiment,125,183,184 LDA underestimates the lattice constant and yields, therefore,

larger bulk modulus. GGA overcorrects LDA, though it reproduces better the experimental

bulk modulus than does LDA. Our results for bulk Cu are also in good agreement with those

obtained by pseudopotential calculations reported in studies of relevance to this work.34,175

6.3.2 Clean Cu(001)

The relaxation of the interlayer distances normal to the surface of Cu(001) has been exten-

sively studied theoretically.34,116,161,175,185 Nevertheless, before conducting our study on the

CO-chemisorbed surface, it is essential to test the applied methodology with interrelated

and well characterized systems, as is the clean Cu(001) surface; which, furthermore, will

serve as a reference to appraise the extent to which CO chemisorption affects it. The top

view of Cu(001) and the (1x1) SBZ are shown in Figs. 6.1(a) and (b), respectively. Notice
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Table 6.2: Percentage change of the interlayer spacing of the outermost layers of Cu(100)
compared to the bulk situation.

Theory1 Experiment
LDA GGA SPLEED2 MEIS3

∆d12 -2.57 -2.82 -1.2 -2.4
∆d23 +0.55 +0.58 +0.9 +1.0
∆d34 +0.30 fixed - -

1This work 2Ref.187 3Ref.186

in Table 6.2 that both LDA and GGA produce an inwards relaxation of the surface layer

of ∼ 3%, as shown in Table 6.2. These results are in agreement with earlier pseudopoten-

tial calculations34,116,161,175,185 and with surface structure measurements via the medium ion

energy scattering (MEIS) technique (see Table 6.2).186

6.3.3 c(2x2)-CO/Cu(001)

The c(2x2) structure exhibited by the CO adlayer on Cu(001) is illustrated in Fig. 6.2(a).

Notice there that the primitive super-cell contains two atoms per layer, and that these

are non-equivalent in odd numbered layers since CO sits directly above only one of them.

Accordingly, atoms in the first layer are referred either as covered or bare atoms. To our

knowledge there is no experimental characterization of the substrate geometry after CO

adsorption. The present work and previous calculations34,175 indicate that the first and third

layers rumple, but not the second layer atoms. As shown in Table 6.3, there are differences

in the interlayer relaxations of the Cu(001) surface upon CO adsorption as predicted by

LDA and GGA. In both cases, CO raises the original inwards contraction of covered atoms

and makes them relax slightly outwards with respect to the bulk situation. GGA, however,

finds that such outwards relaxation is two times larger than predicted by LDA. Additionally,

LDA indicates that the inwards relaxation of bare atoms is also slightly lessened by CO,

while, according to GGA, bare atoms undergo an inwards relaxation stronger (∼ -4.0%)

than that of atoms in the clean surface. We notice that similar trends were found in Refs.34

and175; even though, there are moderate differences regarding the spacing among deeper
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Figure 6.1: (a) The top view of the Cu(100) surface. First layer atoms are represented by
filled circles and second layer atoms are represented by open circles. (b)The corresponding
(1x1) surface Brillouin zone of Cu(100).
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Figure 6.2: (a) The top view of the surface shows CO (grey circles), and first (filled
circles) and second (open circles) layer atoms of Cu(100). The 1x1 (dashed line) and the
c(2x2) (solid line) surface unit cells are underlined. (b) The corresponding (1x1) (dotted
line) and c(2x2) surface Brillouin zones (solid line) showing the Γ, X, and M points; and
the ∆, Σ, and Y directions.
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Table 6.3: Percentage change of the interlayer spacing of the outermost Cu layers of c(2x2)-
CO on Cu(100) compared to the bulk situation; bond-length of CO, dC−O, when it is adsorbed
on Cu(001) (on Cu), isolated (free) CO, and in a free-standing c(2x2) mesh (mesh); and
bond-length of the C-Cu bond, dCu−C. Label A distinguishes the interlayer Cu spacing re-
ferred to atoms that have CO directly above, while B accounts for the those which do not.

Theory Experiment
LDA GGA

This work Ref.175 Ref.34 This work Ref.34 Refs.164,a 189,b

and160c

∆d12 +0.34A +0.50A +1.4A +1.32A +2.0A -
-2.17B -1.56B -2.7B -4.41B -4.1B

∆d23 -0.17A +0.44A +0.1A +0.02A +0.2A -
+0.64B +1.39B +1.2B +0.71B +1.7B

∆d34 -0.15A +0.72A - -0.44A - -
-0.96B -0.40B -1.12B

dC−O(Å)chemisorbed 1.16 1.14 1.15 1.16 1.16 1.15a

dC−O(Å)mesh 1.14 - - 1.15 - -

dC−O(Å)free 1.14 1.12 1.36 1.14 1.15 1.13b

dCu−C(Å) 1.83 1.85 1.82 1.88 1.88 1.90 ±0.01a

layers (see Table 6.3). As for C-O and Cu-C bond lengths, for which experimental data are

available, Table 6.3 shows that GGA gives better agreement with experiment than LDA.

Note that the molecular bond-length is enlarged after chemisorption,176,188 in agreement

with experiment.

The results of our calculated interaction energy among molecules in the free standing

c(2x2) array also point to difficulties in the application of LDA to this system: LDA finds

it to be attractive by ∼45 meV, while GGA shows it to be repulsive by ∼75 meV. Exper-

iments160,190 suggest that, even below a coverage of one-half monolayer, the interaction of

chemisorbed CO molecules is repulsive and estimated to be ∼20 meV at 0.5 ML,160 albeit

for chemisorbed CO on Cu(001). It is also known that the binding energy of the molecule to

the surface is strongly overestimated by LDA , while GGA substantially improves agreement

with the experimental value,34,191 0.57 eV.160 Our GGA calculation produces a chemisorp-

tion energy of 0.75 eV, which takes into account the above (repulsive) direct interactions

among molecules.
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Table 6.4: Calculated real space atomic force constants of bulk Cu corresponding to first
NN, in units of dyn/cm. Experimental values192 (at 49 K) were obtained by fitting the
measured frequencies.

Theory1 Experiment
LDA GGA NIS

XX 15941 12226 13278
XY 17897 13595 14629
ZZ -1801 -1037 -1351

1This work

6.4 Lattice dynamics

6.4.1 Bulk Cu

Figure 6.3 shows that the calculated phonon dispersion of bulk Cu is in reasonable agree-

ment with neutron inelastic-scattering measurements (NIS).192,193 GGA dispersion curves

appear in closer agreement with experimental data than those of LDA, though. At the zone

boundaries, where differences in the force constants become conspicuous in the phonon dis-

persion, LDA provides a stiffer phonon spectrum by ∼2.5 meV as compared to experiment,

while that of GGA is softer by ∼1.5 meV. Indeed, as shown in Table 6.4, LDA overesti-

mates the real space force constants between first nearest neighbors (NN) XX, XY, and

ZZ by ∼20, ∼22 and ∼33%, respectively; while GGA underestimate them by ∼8, ∼7, and

∼23%, respectively.

6.4.2 Cu(001)

The phonon dispersion of Cu(001) has been studied at length using DFPT methods re-

cently.116,126 Repeating this calculation is, however, a testing ground for the computational

methodology that is being used, but, above all, it is imperative to obtain a commensurable

comparison with the chemisorbed surface. Our calculated dispersion along the Σ ([100]),

∆ ([110]), and Y directions (see Fig. 6.1(b)) is shown in Figs. 6.4 (LDA) and 6.5 (GGA)

and compared to HAS and EELS measurements.194–196 Observe that surface phonons are

labelled in accordance with the notation introduced by Allen et al.197 In agreement with
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Figure 6.3: LDA(black line) and GGA(grey line) phonon spectrum of bulk Cu. Experimen-
tal data, open193 and filled192 circles, are taken from NIS measurements at room temperature
and 49K, respectively.
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Table 6.5: Frequencies (in meV) of the surface modes of Cu(100) at the high symmetry
points X and M (see Fig. 6.2 (b)). The main polarization (SH, L, or V) is denoted in
parenthesis and the superscript indicates the layer showing largest amplitude weight.

Theory Experiment
LDA GGA

This work Ref.116 This work Ref.195 Ref.196

X S1(SH
1) 9.7 9.9 9.1 - -

S4(V
1) 14.6 14.0 13.5 13.4 -

S5(SH
2) 15.6 15.0 14.3 - -

S6(L
1) 27.0 26.1 24.1 25.2 -

M S1(V
1) 18.7 19.9 16.9 25.2 16.8

L1(L
1) 22.3 - 20.1 20.2 20.5

S2(V
2) 22.3 21.1-21.7 20.0 20.3 -

their work and as seen in Figs. 6.4 and 6.5, a large number of surface modes come out in

the phonon dispersion of Cu(001), especially along Y . In the subsections below, however,

we describe only those which are of interest in the discussion of the chemisorbed surface;

their frequencies at high symmetry q-points (X and M) are summarized in Table 6.5 and

compared with those reported in Ref.116 and experiment.

We find that, in the top layer, intralayer force constants among first NN are ∼12 (LDA)

and 7-10% (GGA) softer than in bulk Cu, whereas, in the second layer, intralayer force

constants among first NN differ from bulk values by less than 1%. In turn, the interlayer

force constants coupling the first and second layers via first NN stiffen by ∼15-17% and

20-22% in LDA and GGA, respectively. Experimentally,195,196 such stiffening has been

estimated to be ∼20%, on the average. Finally, force constants coupling second-third, and

third- forth layers are found to soften by ∼4 and ∼2%, respectively.

Surface modes along ∆

Along ∆, S1 is the surface mode of lowest energy, as shown in Figs. 6.4 and 6.5. It is

totally localized in the first layer at the X point. However, it is undetectable by scattering

techniques since its polarization is shear horizontal (SH) all along. Above S1, it appears the

RW - S4 in Allen’s notation -, which is a surface mode essentially vertically (V-) polarized,
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although a longitudinal (L-) contribution is also present. Its amplitude weight is greatest at

the first layer but it dies out well below the first two layers. Right above S4, there appears

a SH mode, S5, with dominant displacement in the second layer. Finally, S6 is found inside

the spectrum gap, close to the zone boundary, and with predominant L-polarization in the

first layer. We note that, above S4, LDA shows also a resonance in the first and second

layers and with mixed L- and V- polarization that follows closely HAS measurements. It is

not plausible, nevertheless, to associate it with the experimental data since the amplitude

weight in the two outermost layers contributes, at most, ∼12%. The reason why DFPT

does not reproduces such L- polarized mode, sharply detected in HAS experiments, remains

an open question to date (A similar situation existed for the Cu(111) surface, though in this

case the issue has been resolved just recently.198).116,126

Surface modes along Y

We observe that S4, which is vertically polarized at X, develops into a predominantly SH-

mode as it crosses Y .197 Similarly, S1, which along ∆ is SH- polarized, changes rapidly to

V- polarization along this direction. Notice in Figs. 6.4 and 6.5 that no experimental data

is available for comparison.

Surface modes along Σ

The mode with lowest frequency along Σ is the first-layer RW (see Figs. 6.4 and 6.5),

known as S1 in Allen’s notation.197 It is mainly V-polarized at the M-point, acquiring an

additional L-polarization as it approaches to the Γ-point. In the second layer, we find the

V-polarized mode S2. GGA indicates that it prevails along Σ, reaching one-quarter way to

Γ (see Fig. 6.5) with either V- or mixed V-L polarization. LDA, on the other hand, finds

that it is more delocalized and very rapidly becomes a resonance that runs throughout Σ

(see Fig. 6.4). This mode thus soon forms part of a band of bulk resonances along Σ (see

Fig. 6.4) whose maximum amplitude weight comes from either the second and first layers

(with V- and L- polarization, respectively) when close to the SBZ boundary, or first layer
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(with mixed V-L mixed polarization) when close to Γ. There are other two more modes at

M that were not described in Allen’s work. The first, L1, is a L-polarized mode that, in

LDA, becomes a resonance more rapidly than S2. GGA finds it to persist as a dispersionless

mode one-quarter way along Σ (see Figs. 6.5); it barely matches a couple of experimental

points, though. The second one is just a SH-degenerate pair of L1 at M. The degeneracy

with the latter is broken outside M but the SH-mode persists all along Σ in LDA and up to

the mid point of the same in GGA (see Figs. 6.4 and 6.5). Notice that because of its SH-

character, by no means could it be associated to the HAS measurements matching so well

our LDA points (see Fig. 6.4).

6.4.3 c(2x2)-CO/Cu(001)

In our calculations, we find that the force constants coupling C-O, C-Cu, O-Cu, C-C, and O-

O are stiffer in LDA than in GGA. In particular, those between C-C (between neighboring

molecules) and C-Cu are, respectively, 20 and 40% larger. The force constants given by

both LDA and GGA reflect that the in-plane interactions between neighboring molecules

are much smaller than the out-of-plane ones, which arise from the perturbation of the C-O

bond length. This fact is reflected in the strong (weak) dispersion of the C-O stretch mode

(all other modes), as shown later (see Figs. 6.6 and 6.7). As regards the substrate, LDA

indicates that the chemisorption of CO has little impact on the force constants mediating

the interaction between bare atoms and their first NN in the second layer, whereas those

mediating the interaction between covered atoms and their first NN in the second layer, YY,

YZ, ZY, and ZZ, are mildly softened by 12, 12, 24 and 6%, respectively, as compared to the

clean surface. GGA, in contrast, finds that CO chemisorption modifies the force constants of

not only covered atoms but also of bare ones. Naturally, the major effect occurs on covered

atoms, whose corresponding force constants are softened by 40, 20, 38, and 14%, respectively,

while those of bare atoms are stiffened by 14, 14, 14, and 9%, respectively. Unlike interlayer

force constants, intralayer force constants between bare atoms and their first NN covered
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Table 6.6: Frequencies (in meV) at Γ of the adsorbate and surface vibrational modes of
c(2x2)− CO/Cu(001).

Theory Exp.
LDA GGA HAS

IRRAS
This This Ref.1752 Ref.341 Ref.1913,4 This Ref.341 Ref.1913,4 Refs.16

work1 work3 work1 Ref.162

ν1 265.6 268.1 261.7 259.8 268.8 257.7 251.2 262.6 258.5
ν2 54.6 45.9 52.9 54.2 49.6 47.4 47.2 44.4 42.8
ν3 34.4 - 35.0 - - 33.3 - - 35.6
ν4 2.1 - 1.75 - - 3.7 - - 3.9
S1 15.8 - 16.0 - - 14.2 - - 15.2
L1 22.6 - - - - 20.2 - - -
S2 23.1 - 23.2 - - 20.4 - - -

1DFPT. 2DFT-FD. 3DFT-FD-FS. 4Substrate not relaxed. 53.4 meV with anharmonic
correction.

atoms are barely altered by CO chemisorption. Namely, they are ∼5(GGA) or ∼8%(LDA)

stiffer than would be if CO were not present. Tables 6.6 and 6.7 summarize the frequencies

obtained at Γ and X, respectively, and compare them with those found in experiment and

former studies, when available. The characterization of the vibrational modes displayed by

CO and the Cu(001) substrate is presented below.

CO modes

(a) Dispersion of the C-O internal stretch mode ( ν1): LDA and GGA find that the C-O

stretch mode disperses inside the SBZ (see Figs. 6.6 and 6.7) by ∼10 meV at X, as noted

from Table 6.7. No contribution from the substrate is observed, as can be expected from

the frequency range in which ν1 lies. At Γ, small differences are found in the calculated

frequencies depending on whether LDA or GGA is used, whether the FD or the DFPT

method is applied, and whether the substrate is frozen (FS) or not. The agreement with

experiment is in general reasonable.

(b) Dispersion of the Cu-CO stretch mode ( ν2): As seen in Figs. 6.6 and 6.7, our calcu-

lations show that the CO-substrate stretch mode disperses at most by ∼0.4 meV over the
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Figure 6.6: LDA phonon dispersion of c(2x2)-CO/Cu(100), modelled by a Cu 50-layer
slab. Filled circles denote theoretical surface modes. Experimental data are taken from
Ref.16: Filled circles and triangles were associated with multi-phonon processes. Open circles
correspond to the substrate Rayleigh wave. Squares were associated with the FT mode of CO
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Table 6.7: Frequencies (in meV) at X of the adsorbate and surface vibrational modes of
c(2x2)-CO/Cu(001).

Theory Experiment
LDA GGA HAS

This work This work Ref.16

ν1 254.9 248.2 -
ν2 54.4 47.0 -
ν3 34.1 32.7 -
ν4 -7.4 5.5 5.8
S1 9.3 8.3 -
S4 13.1 11.6 12.3

13.3 12.2
S5 15.2 13.1 -

15.6 14.8
S6 27.1 23.6 -

sampled region of the SBZ, in both LDA and GGA. It is found to involve an additional

C-O stretching of the C-O bond and to be coupled to an out-of-phase vibration of the Cu

atom, which carries ∼33% of the amplitude. LDA, however, predicts ν2 ∼12 meV higher

than the experimental value, while GGA finds it to be only ∼5 meV higher, as summarized

in Table 6.6.

(c) Frustrated Rotation of CO ( ν3): As seen in Table 6.6, the experimental value of

ν3 at Γ is well reproduced by both LDA and GGA. At Γ, LDA and GGA agree that the

contribution of the substrate to the vibrational amplitude reaches only ∼3%, while those of

C and O are ∼75 and ∼21%, respectively. Close to X, at which the substrate contribution is

maximal, the first and second layers contribute no more than 7%. Figs. 6.6 and 6.7 show that

the FT mode is nearly dispersionless but splits visibly along the edge of the SBZ and along

the Σ direction The maximum splitting reaches ∼0.7 meV at the zone boundary. The branch

with lowest energy has shear horizontal (SH) polarization (displacement perpendicular to

propagation direction).

(d) Frustrated Translation of CO ( ν4): Significant differences are seen in Figs. 6.6 and

6.7 between LDA and GGA in relation to the dispersion of the FT mode. It is apparently
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well described at Γ by LDA175 because it estimates ν4 only ∼2 meV below the experimental

value. Nonetheless, it is unstable almost everywhere outside Γ. GGA, on the other hand, is

able to reproduce ν4 in excellent agreement with the experimental assessment, as shown in

Table 6.7. GGA presents no instabilities, and shows remarkable agreement with the HAS

data set, indicating stability of the c(2x2) overlayer (See Fig. 6.7).16 Bagus and Wöll (private

communication of Ref.167) have performed cluster calculations and found that, opposite to

the FR mode, the amplitude of O in the FT mode is larger than that of C by 60%. By

inspection of the displacement vectors (in GGA) along the main polarization, we observe

that the amplitude of O at Γ is about two times larger than that of C. Considering the total

amplitude weight of molecule, as we have been doing so far, C and O contribute ∼20 and

∼80% (all along the sampled SBZ), respectively, which is indeed opposite to the FR mode.

At Γ, the FT mode perturbs the Cu-C bond length but not so the CO-CO bond length.

Outside Γ, nevertheless, particularly at zone boundaries, CO-CO bond lengths are perturbed

and the effects of the interaction among molecules come about. The longitudinal (L-)

polarized (atomic displacement along the propagation direction) branch and the SH- branch

of the FT mode split along Σ and along the edge of the SBZ, but not along ∆. Fig. 6.8 shows

the displacement patterns of the L- and SH- modes at the zone boundaries to illustrate that

such is the case since the displacement pattern of the FT in both polarizations is equivalent

along ∆, whereas, along Σ, the L-mode involves CO-rows vibrating one against the other and

the SH-mode involves the shearing vibration of CO-rows. The displacements occurred in the

L- and SH-modes along Σ, thus, set different perturbations to the intermolecular distance.

Notice that, for example, each molecule has four CO first NN. At the zone boundary along

Σ, in the L-mode, two of the corresponding bond-lengths do not change, one distends, and

the other one contracts; while, in the SH-mode, two of these do not change and the other

two distend. Interestingly, GGA indicates that the SH-branch has lower frequency than

the L-branch and even than the frequency at Γ. Both branches result negative in LDA, as

mentioned before; however, it may be worth to mention that the LDA L-branch has lower
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energy. Close to the zone boundaries, the amplitude weight of the substrate in the FT

mode is small (∼3%) given that its frequency falls below the bulk band. However, both

LDA and GGA find that the FT mode couples to the substrate in the vicinity of Γ in the

sense that bulk modes whose frequency is close to ν4 include a contribution from a FT

motion of the molecule. In fact, the amplitude weight of CO in these mode, as a function of

their frequency, shows a Gaussian-like behavior (which half-band width is ∼0.12 meV) and

so ν4 has been taken as the frequency that peaks this function. Notice, however, that such

harmonic resonant coupling is manifested only by the symmetric broadening of the mode

since ν4 itself is independent of the dynamics of the substrate. Namely, fixing the substrate

(by artificially increasing the mass of Cu atoms) eliminates the broadening but changes ν4

negligibly. The L-branch of the FT mode and the RW do hybridize at their crossing point

giving rise to two L-polarized FT modes that are split by ∼0.4 meV and show different

degrees of contribution from the vertical vibration of the surface.

Substrate modes along Σ

Notice that modes proper to clean Cu(001) from the zone boundary of the c(2x2) SBZ to

M are back-folded along Σ from the zone boundary of the c(2x2) SBZ to Γ (see Fig. 6.1).

(a) S1. The RW, S1, increases its frequency along Σ, until it reaches the zone boundary

and matches, except for a 1 meV gap, the back-folded S1, which has its maximum at Γ and

decreases its frequency along Σ. The gap between the RW branches at the zone boundary

may be explained by the fact that the higher (lower) branch corresponds to a mode whose

amplitude weight is primarily vertical in bare atoms (covered atoms dragging the molecule to

some extent), involving also a small contribution from the L-polarized vibration of covered

(bare) atoms. In fact, it matches that of the RW of the clean surface, suggesting that

bare atoms are not affected. Nevertheless, we will see that this is not the case and mass

overloading does not alone softens the RW. At Γ, where the softening with respect to the

clean surface is maximal, the back-folded S1 mode corresponds to an out-of-phase vibration

between covered and bare atoms. In this case, the contribution of bare atoms is 50% larger
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Figure 6.8: Displacement patterns of the FT. Filled and open circles represent first and
second layer atoms, respectively. Small grey circles symbolize CO: (upper-left) SH-mode at
the zone boundary of the c(2x2) SBZ along Σ. (upper-right) L-mode at the zone boundary
of the c(2x2) SBZ along Σ. (lower-left) SH-mode at X (along ∆). (lower-right) L-mode at
X (along ∆).
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than that of covered atoms and CO molecules are dragged parallel to the latter. Close to Γ,

S1 is broadened and appears as a finite-width resonance whose maximum amplitude weight

can be as low as 6% in the first two layers, yet detectable by HAS. We observe that, although

LDA and GGA predict different effects of CO chemisorption on the force constants of the

first layer, in both cases S1 softens by ∼16% at Γ, overestimating in fact HAS measurements

(∼10%).

(b) S2. This mode only appears back-folded from M to Γ. It steeply disappears outside

Γ, as soon as it immerses into the bulk band. At Γ, S2 is well inside the bulk band even

though no coupling to bulk modes is observed. In fact, it appears to be more localized in

the chemisorbed surface than in the clean surface (at M).

(c) L1 and the corresponding SH-branch. In the clean surface these modes arise close

to the zone boundary so that in the chemisorbed surface they appear mainly as back-folded

modes. At Γ the back-folded L1 and its degenerate SH pair stiffen very slightly (1.3 and

0.5% in LDA and GGA, respectively). They are not totally localized in the first or second

layers but exhibit a significant contribution of ∼60% to the amplitude weight from deeper

layers. Outside Γ, the back-folded L1 disappears rapidly while the back-folded SH mode

disperses and becomes more localized towards the zone boundary. There, it matches the

branch that originally appears in the clean surface but vanishes rapidly back to Γ.

Substrate modes along ∆

Modes proper to the clean surface along Y are back-folded to ∆ in the c(2x2) SBZ (see

Fig. 6.1 (b)).

(a) S1 and the corresponding L-branch. S1 is totally localized in the first layer and

the CO overlayer. The latter vibrates in-phase with covered atoms but with much smaller

amplitude. S1 softens at X by ∼5, and ∼8% in LDA and GGA, respectively (see Table 6.7).

LDA and GGA find also a L-polarized degenerate pair of S1 at X. Such mode corresponds

to S1 along Y , which is back-folded along ∆ in the chemisorbed SBZ. The degeneracy is

broken outside X. The back-folded S1 remains L-polarized as it goes across ∆ towards Γ up
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to the crossing point with the RW, where it becomes V-polarized. It is slightly softened

around the zone boundary, just as much as S1 at X; nonetheless, the softening becomes

stronger, similar to that of the RW, right after crossing the RW and the transitioning to

V-polarization.

(b) S4. This is the RW along ∆. It is mostly localized (∼60-70%) in the first layer and,

to lesser degree, in the molecule. At X, S4 splits by ∼0.2 and ∼0.6 meV in LDA and GGA,

respectively. Regarding the first layer, only covered (bare) atoms contribute to the mode

with lower (higher) energy. Notice that in this case, both branches are softened with respect

to the clean surface at X by 8.2 and 11.0%, in LDA, and by 9.6 and 15.0%, in GGA, while

HAS measurements16 find ∼8.2% softening. We also obtain the back-folded S4, originally

arising along Y in the clean surface. It is V-polarized close to the zone boundary. In GGA,

it broadens and becomes a resonance as soon as it immerses into the bulk band, reappearing

as a surface mode close to Γ with mixed L- and SH-polarization. In LDA, S4 remains highly

localized in the surface and changes smoothly to L-polarization.

(c) S5. This mode is strongly localized in the second layer with mixed SH- and L-

polarization. It rapidly becomes a resonance along ∆ towards Γ. At X, S5 splits by 0.4 and

1.7 meV in LDA and GGA, respectively (see Table∼6.7). LDA shows that the lower branch

softens by 7.1% while the other - bearing ∼25% contribution from deeper layers - does not

change at all. In GGA both branches are totally localized in the second layer. One of these

softens by 8.4% and the other stiffens by 3.5%. LDA presents also a resonance at 15.4 meV.

(d) S6. This mode is found together with a degenerate SH pair at X. Note in Figs. 6.6

and 6.7 that the degeneracy is broken inside the SBZ. LDA and GGA find that S6 - and

the SH-branch - remain nearly dispersionless and involve an additional V- second layer

vibration, as occurs in the clean surface. These modes are, incidentally, more localized in

the first layer of the chemisorbed surface than in that of Cu(001). At the right end of the

bulk band gap (see Figs. 6.6 and 6.7), S6 slightly softens and becomes a resonance while it

penetrates the bulk band. The SH branch, in contrast, extends well inside the bulk band
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and becomes more localized at the top two layers. According to GGA, S6 softens at X by

2.0%, while LDA predicts no softening.

6.5 Summary

First-principles calculations of the structure and lattice dynamics of bulk Cu, Cu(001) and

c(2x2)-CO/Cu(100) surfaces have been presented. The structure and lattice dynamics of

bulk Cu and Cu(001) are found to be in good agreement with earlier results. In both cases,

however, GGA is in better agreement with experiment than LDA. For the chemisorbed

surface, significant differences arise between both approximations concerning structure and

lattice dynamics, as summarized below.

We find that CO-modes are influenced by molecule-substrate and molecule-molecule

interactions. The C-O stretch mode disperses by ∼10 meV along ∆, indicative of CO-CO

interactions. Inspection of the displacement vectors in our DFPT calculations confirms that

the C-O stretch mode is independent of the dynamics of the substrate. The value of ν1 is

found to be in good agreement with experiment, regardless of the approximation used for

the exchange correlation functional.

Nevertheless, the results obtained for ν2, ν4, and the structure and vibrational frequencies

of the substrate depend on whether LDA or GGA is used. Our results and those of Ref.34

suggest that this is related to the inability of LDA to describe the Cu-C bond (wrong

adsorption site and overestimation of the binding energy34). Surprisingly, the value of ν2

provided by LDA FD-FS calculations is closer to the experimental one than that by LDA-

DFPT. It has been suggested the DFPT result may be corrected by using an appropriate

choice of coordinates in the phonon calculation.175 The reason, however, is apparently the

cancellation of errors, since FD-FS calculations neglect the strong contribution of covered

Cu atoms. We find that omission of the dynamics of the substrate lowers ν2 by ∼8 meV in

DFPT calculations. It is thus not surprising that the stiffening due to the overestimation by

LDA of the C-Cu bond strength can be counterbalanced by the softening resulting from a
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frozen substrate. Along the same lines, a much better estimation of ν2 can be expected from

DFPT GGA calculations since the adsorption site, the chemisorption energy, and dCu−C are

in good agreement with experiment.

In this work, the unsuitably of LDA to describe this chemisorbed surface is evident from

the instability of the FT mode that it produces almost everywhere inside the SBZ. GGA, in

contrast, is able to reproduce the dispersion of the FT mode as measured by HAS.16 More

importantly, the close agreement between our GGA calculations and HAS measurements

indicates that the harmonic approximation is apt to describe the Cu-CO bond, contrary

to the conclusion drawn from LDA results.175 Examination of the real space force constant

matrices indicates that lateral interactions among CO molecules exist as well. They are

at least 10 times smaller than those due to the perturbation to the C-O bond length, but

enough to make the FT and the FR (to a lesser degree) modes to disperse and split their

SH- and L- branches, which otherwise would be degenerate. Interestingly, the frequency

of the SH-branch at X- which displacement pattern distends half of the CO-CO first NN

bond-lengths - is 3 meV lower than that of the L-branch and than the frequency at Γ.

Clearly, the SH-branch cannot explain the low branch observed experimentally, which is

rather attributed to defects in the overlayer.16 Finally, the frequency range of the FT mode

allows for coupling to the substrate over a significant region around Γ. Such harmonic

resonant coupling is manifested only through the broadening of the spectral line of the FT

mode, but its frequency (the center of the distribution) is found to be independent of the

dynamics of the substrate.

LDA displays a mild effect of CO chemisorption on the relaxation and force constants

of the surface. Even so, the back-folded RW is significantly softened in such a way that

LDA is able to closely reproduce HAS measurements. This feature is rather unexpected

in consideration of the poor ability of LDA to describe the Cu-CO interaction and its less

successful description of the acoustic modes of bulk Cu and the RW in Cu(001). GGA, on

the other hand, finds that CO chemisorption significantly perturbs the structure and the
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first NN force constants of the surface layer atoms. Softening of the RW is well reproduced;

only slightly overestimated by ∼1 meV at Γ. It is surprising that, while LDA and GGA differ

considerably in the response of the substrate to CO chemisorption, the actual percentage

softening of the back-folded RW with respect to the clean surface is comparable. We find

that softening of the RW along Σ and ∆ is not necessarily connected with the vibration of

covered atoms, which indicates that mass overloading cannot alone account for it. Were that

the case, all surface modes involving the first layer would be softer. On the contrary, L1, for

example, does not soften, notwithstanding the leading involvement of first layer atoms. In

fact, it slightly stiffens, perhaps because of the little hardening of intralayer force constants

of the first layer. Moreover, softening/stiffening of the various modes is selective for layer,

direction, and polarization, indicative of different modifications in Cu force constants. For

example, S2, V-mode in the second layer, stiffens and S1 slightly softens (along ∆) while

it is L-polarized - where it is totally localized in the first layer - but undergoes a stronger

softening after it becomes V-polarized - where deeper layers are involved. Softening of the

RW seems thus due not only to the mass of CO but also to longer range interactions, i.e.

beyond first NN and involving deeper layers, that subdue differences in the local bonding of

surface atoms and result in an overall softening of the RW, which is sometimes independent

on whether covered or bare atoms are primarily involved.

We call attention to the folding of Y (of the 1x1 SBZ) onto ∆ (of the c(2x2) SBZ),

which displays back-folded modes along the latter. For example, back-folded S1 and back-

folded S4 are found along ∆ with changed polarization that may make them observable.

In particular, S1 acquires V-polarization close to Γ and L-polarization close to X. Ellis et

al. observed some HAS peaks precisely at the region where back-folded S1 is V-polarized.

Without considering that Y is back-folded onto ∆, those peaks were associated to multi-

phonon excitation bands.16 Nevertheless, the excellent fit of their measurements to our

back-folded S1 suggests that this mode was observed rather than multi-phonon excitation

bands. Perhaps more importantly, back-folded S1 becomes as well discernible to scattering

168



spectroscopy techniques close to the zone boundary since it is changed from SH- (along Y

of the (1x1) SBZ) to L- polarization (along ∆ of the c(2x2) SBZ) in that region. It means

that the frequency of S1 (SH-polarized in Cu(001)) can be indirectly measured at X via

back-folded S1. We believe that three of the 2T overtones 16 observed by Ellis et al. along

∆ may also correspond to back-folded S1, in the region where is L-polarized. The fact that

S1 has been predicted (along ∆) by theory since early studies of short-range interacting fcc

structures,197 and remained inaccessible to experiments due to its polarization, renders its

detection and confirmation of the predicted frequency as an additional worthy verification

of the success of DFT, the linear response theory, and the slab method in describing the

fcc(001) surfaces.
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Chapter 7

Conclusions

This thesis has presented our results of the geometric, electronic, vibrational and magnetic

properties of several nanostructured systems. From the study of interparticle dipolar inter-

actions on three-dimensional and two dimensional ensembles of magnets, we have solved the

Landau-Lifshitz equation for 3D and 2D cubic lattices of nanomagnets, subject to dipole-

dipole interactions and spin anisotropy. We find that a classical approach - applied to

magnets in square arrays - produces stepped hysteresis curves, suggesting these do not

have necessarily a quantum origin. The smaller the damping constant, the stronger the

maximum induction required to produce hysteresis. The shape of the hysteresis loops also

depends on the damping constant. We find further that the system magnetizes and de-

magnetizes at decreasing magnetic field strengths with decreasing sweep rates, resulting in

smaller hysteresis loops. Variations of the lattice constant within realistic values in the show

that the dipolar interaction plays an important role in the magnetic hysteresis by control-

ling the relaxation process. The temperature dependencies of the damping constant and

of the magnetization are presented and discussed with regard to recent experimental data

on nanomagnets. Magnetic anisotropy enhances the size of the hysteresis loops for external

fields parallel to the anisotropy axis, but decreases it for perpendicular external fields. We

show that its hysteretic behavior is only weakly dependent on the shape-anisotropy field

and the sweep rate, but depends sensitively upon the dipolar interactions. Although in

3D systems, dipole-dipole interactions generally diminish the hysteresis, in two-dimensional
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systems, they strongly enhance it.14 We found that when qualitative changes in the M(B)

curves do not occur with decreasing lattice constants, the area of the hysteresis increases

correspondingly. However, we also showed that at least one critical a value a∗ can exist,

at which qualitative changes in the M(B) hysteresis curves appear, accompanied by an

abrupt decrease in the hysteresis loop area.95 With this understanding in hand, we were

able to reconcile the apparent discrepancies between two earlier theoretical studies.85,94,95

In the near future, although still using an oversimplified model of SMM’s, our target in this

subject continues towards the implementation of ab initio spin-polarized DFT calculations

that allow us to obtain parameter-free results which are, as always, desirable.

Indeed, based on the fact that the functionality of ab initio DFT calculations is, up

to the use and choice of a pseudopotential,7 independent of the chemical environment, we

have analyzed the Ag27Cu7 nanoalloy and bulk alloys, and draw the properties of alloyed

structures in general. We conclude that size effects in single-element systems take place

mainly due to the local coordination of the atoms which may differ considerably from that

in the bulk environment. In such cases, along with structural changes (as those occurring

in nanoclusters), bond lengths are expected to change from bulk bond lengths typically by

a few percent. In binary system, however, we have found that the perspective is different

since the strength of the binary bond, compared with that of the single-element bonds, is a

decisive factor. First of all, it seems that binary bulk systems are present in nature either

as ordered or amorphous alloys, or as segregated systems, depending on the strength of the

binary bond as compared to the strength of the two single-element bonds, and depending as

well on the difference between the optimum lengths of the two strongest bonds. The strength

of the binary bond in a given ordered structure must not be weaker than the average of the

two single elements bonds in bulk in order for the alloy to have a negative heat of formation.

In the case of Au − Cu alloys, for example, the cohesive energy of Cu3Au is higher than

that of bulk Cu and Au. In addition, the difference between the optimum bond-lengths

that make possible for the two strongest bonds to exist may be required to be as small as
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possible; otherwise, amorphous phases might be favored. In the nano-scale, however, for few

tens of atoms and when the bulk structure is vanished, the main difference is that the later

condition may be flexible. Namely, one can take advantage of the difference between the

optimum lengths of the strongest bonds while playing with core-shell or layered structures,

for example. Indeed, we have seen that one key factor for the relative stability of Ag27Cu7

is the freedom of Ag−Cu bonds to be optimized. Contrastingly, in L12 Ag−Cu alloys, the

Ag−Cu bonds play a minor role because the lattice parameter dictated by the Ag content

in the ordered lattices strongly weakens the binary bond and never patches up for the cost

of breaking Ag − Ag bonds and, above all, Cu − Cu bonds. Nevertheless, it is surprising

that the cohesive energy of any of these two alloys is larger than that of bulk Ag. That

is in fact the first hint indicating that Ag − Cu bonds are stronger than Ag − Ag bonds,

and that Cu−Cu bonds are stronger than Ag−Cu bonds. It suggests thus an importance

hierarchy of bonds as follows: {Cu − Cu, Cu − Ag, and Ag − Ag}. We noticed, however,

that the actual strength of the bonds in a particular structure is simply the signature of

the relaxed geometry; the equilibrium positions may or may not let the strongest bonds

to realize. In Ag27Cu7, for example, the two-dimensional charge density plots suggest that

Ag−Cu bonds are stronger than Cu−Cu bonds, while the trend in the formation energy of

the nanoalloy family suggests the opposite. We find moreover that few Cu atoms immersed

in Ag can create bonds stronger than those in bulk Cu. It is the stability what ultimately

is contingent on whether the resulting geometry allows for the existence and maximization

of the bonds that must be favored according to the hierarchy natural of the species. The

best illustration of this assertion is the large bond-lengths found in bulk Ag3Cu and Cu3Ag

, which stretch the Cu−Cu and Ag−Cu bonds by ∼ 0.3 Å, with respect to those found in

bulk Cu and in the Ag27Cu7 nanoalloy. In brief, it seems that there is a precise ladder order

of maximum bond strengths and optimum bond lengths between atoms of the same and

different species which may together unequivocally predict the most stable configuration

and composition of a given system. Among noble metals, (given the heats of formation
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and calculations of the dimmer binding energy and bond-length, not presented here for the

sake of clarity), we conclude that for bond strength it is as follows: {Au − Cu, Au − Au,

Au−Ag, Cu−Cu, Ag −Cu, and Ag −Ag}, while for the shortest optimum bond lengths

it is: {Cu − Cu, Au − Cu, Ag − Cu, Au − Au, Au − Ag, and Ag − Ag}. Therefore, since

the conclusions along this paper have been motivated by earlier studies of noble metal and

Ag − Ru alloys, and our results apparently do not depend on intrinsic properties of Ag or

Cu other than the position of the d-band, it is interesting to investigate whether any binary

system (at least non-magnetic) would obey a similar hierarchy that applies to any atomic

environment, say bulk alloys, deposited surfaces, nanoalloys, etc. The stability of Cu−Au

alloys, for example, emerges naturally, while the conclusion of Darby et al.97 indicating that

in Cu − Au nanoalloys is crucial to favor Cu − Au and Au − Au bonds to minimize the

energy, properly fits into the proposed hierarchy.

In terms of the stability of Ag27Cu7 nanoalloy, the energy cost of breaking bulk bonds is

perhaps an aspect that should not be considered for its feasibility, since it is not expected

to occur by simply melting bulk Ag and Cu. The stability of arrays of Ag27Cu7 nanoalloys

against the opposite process - dissociation of a hypothetical Ag27Cu7 array into the bulk

segregated phase - represents thus the main concern regarding possible applications. We

propose that, well down the melting temperature of Ag27Cu7,
15 the stability of the eventual

core-shell nanoalloys in an array against decay into the bulk segregated phase also relies on

the bond strength hierarchy. For a given array of such core-shell nanoalloys, the immediate

interaction that occurs among nanoalloys is shell-shell interaction, that is, Ag − Ag inter-

actions, which has been found to be the weakest one. We can thus expect the cluster to

be stable against single element bulk decomposition with no need to isolate them in matri-

ces or coating surfactants110 since core(Cu)-shell(Ag) interactions are much stronger that

shell(Ag)-shell(Ag) interactions.

Future work will focus on the substitution of Ag atoms by Au atoms in the D5h structure

proposed in Ref.15. We expect Au27Cu7 nanoalloys to have enhanced stability because the
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core-shell structure of Ag27Cu7 optimizes the binary bond - the strongest one for Cu− Au

alloys - and keeps Ag − Ag in the typical bulk bond lengths, which in the case of Au27Cu7

would certainly be a very favorable since the Au − Au bond is next in strength after the

Au − Cu bond. In addition, the energy distribution of the electronic states of Au and the

short Cu−Au bond-lengths furnished by the D5hcould provide better hybridization between

Cu−Au d-states than that of Cu−Ag in Ag27Cu7 and that of between Cu−Au d-states

in ordered Au − Cu alloys. We acknowledge that for larger core-shell nanocluster, say few

nanometers, the bonds strength hierarchy might open the possibility of Au interpenetration

and the consequent amorphization of the nanocluster. Nevertheless, that would imply a very

unlikely simultaneous bond breaking of the two strongest and length optimized Cu − Au

(core-shell) and Au − Au (intra-shell) bonds. Furthermore, experimental confirmation of

the stability of 8-10 nm core-shell nanoparticles at room temperature evidence the low

probability of such event.199

First principles calculations were also feasible and necessary to give one step further in

the understanding of the enhanced reactivity of Pt-decorated Ru nanoparticles, which is

relevant to the hydrogen economy. This project establishes the origination of an electric

current based on the oxidation of hydrogen atoms. Such a process needs to be catalyzed

in order to be suitable for technological applications, and while Pt atoms are known as the

best catalyst for H-oxidation, traces of CO - always present in hydrogen reservoirs - poison

their catalytic properties and vanish the outcoming current. At present Pt-Ru alloys are

commercially-used catalysts exhibiting CO-tolerance over pure Pt. Recently, Ru nanoparti-

cles decorated with small amounts of Pt were found capable to maintain the electric current

for a considerable longer time period than commercial alloys. In order to understand the

factors that render enhanced CO-tolerance to Pt-decorated Ru nanoparticles, we have first

studied Pt deposition on Ru(0001) and a Ru nanoparticle model. We have concluded that,

unlike the Ru surface, Ru nanoparticles compel Pt atoms to remain scattered on their facets

provided that, although Pt tend to coalesce (as in the case of Ru(0001)), their diffusivity
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through the edges of the Ru nanoparticles is strikingly reduced as they grow larger.

Finally, we have addressed the vibrational dynamics of c(2x2)-CO on Cu(001) from ab

initio methods to account for some of the interrogatives around this model system that have

persisted after many years of research. Our GGA calculation has been able reproduce Helium

Atom Scattering (HAS) measurements for the dispersion of the frustrated translation (FT)

mode of CO-molecules and show that it is a normal mode of the system. Our results thus

point to the harmonic nature of the Cu-C bond, which exhibits zero-temperature quartic

anharmonicity within LDA. We find instead that the spectral line of the FT is broadened by

a harmonic resonant coupling of the substrate over a large region around the Γ point, which

nevertheless does not influence the FT mode frequency, and that LDA is, in fact, incapable

to describe the dynamics of c(2x2)-CO on Cu(001). In addition, due to the relatively weak

binding energy of CO to the surface and the distance separating CO molecules at half

monolayer coverage, it has been considered that the dynamics of chemisorbed CO molecules

on Cu(001) is negligibly coupled to neighboring molecules and the substrate. Our results,

however, establish that CO-modes are considerably influenced by molecule-substrate and/or

molecule-molecule interactions.

Regarding the effect of CO molecules on the Cu substrate, we concluded that CO mass

overloading of the surface atoms cannot alone account for the softening of the Rayleigh

wave. Softening of the RW seems thus due also to the long-range effects of CO on the force

constants of the substrate. Furthermore, we have obtained the dispersion of surface phonons

matching HAS measurements inside the SBZ, which have been associated to multi-phonon

excitation bands. Nevertheless, the excellent fit of their measurements to our calculated

back-folded S1 suggests that this mode was observed rather than multi-phonon excitation

bands. Perhaps more importantly, we find that back-folded S1 becomes as well discernible

to scattering spectroscopy techniques close to the zone boundary since its polarization is

changed from SH- to L- polarization upon folding on the c(2x2) SBZ. The frequency of S1

(SH-polarized in Cu(001)) can hence be indirectly measured at X via back-folded S1. The fact
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that S1 has been predicted (along ∆) by theory since early studies of short-range interacting

fcc structures and remained inaccessible to experiments due to its polarization renders its

detection and confirmation of the predicted frequency as an additional worthy verification of

the success of DFT, the linear response theory, and the slab method in describing the fcc(001)

surfaces. The following step towards the understanding of the dynamics of chemisorbed

metallic surfaces, the rate of diffusion, desorption, and reaction, etc., is the extension of

this work to other Cu surfaces and other noble and transition metals. Currently, we are

pursuing a similar investigations of c(2x2)-CO-Ag(001).

176



Bibliography

[1] M. G. Schultz, T. D. Diehl, G. P. Brasseur, and W. Zittel, Science 302, 624 (2003).

[2] Z. P. Liu, S. J. Jenkins, and D. A. King, Phys. Rev. Lett. 94, 196102 (2005).

[3] F. Alber and P. Carloni, Protein Science 9, 2535 (2000).

[4] W. G. Minarik, F. J. Ryerson, and E. B. Watson, Science 272, 530 (1996).

[5] J. Tersoff, Phys. Rev. Lett. 56, 632 (1986).

[6] G. J. Ackland and R. Thetford, Philosophical Magazine A 56, 15 (1987).

[7] M. Payne, M. Teter, D. Allan, T. Arias, and J. Joannopoulos, Rev. Mod. Phys. 64,

1045 (1992).

[8] J. Ho, F. C. Khanna, and B. C. Choi, Phys. Rev. B 70, 172402 (2004).

[9] J. Ho, F. C. Khanna, and B. C. Choi, Phys. Rev. Lett. 92, 097601 (2004).

[10] J. Sinova et al., Phys. Rev. B 69, 085209 (2004).

[11] E. M. Lifshitz and L. P. Pitaevskii, Course of Theoretical Physics Vol.5: Statistical

Physics, volume 5, Pergamon, New York, 1980.

[12] T. L. Gilbert, Trans. Mag. 40, 3443 (2004).

[13] M. Elstner et al., Phys. Rev. B 58, 7260 (1998).
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Appendix A

Derivative of a Functional

Let us consider first a function f(g). The the derivative of f with respect to g is

df

dg
= lim

ε→0

f(g + ε)− f(g)

ε
(A.1)

The integral of a function f(x) in the interval [a, b] is

∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

b− a
n

f(xi). (A.2)

where xi = a+ i
(
b−a
n

)
.

Now, let us consider a function f of several variables, g1, g2, ., gn. If the variables change

from g0
1, g

0
2, ., g0

n by dg1, dg2, ., dgn, respectively. The differential of F , dF , is defined by its

partial derivatives as follows,

df(g0) =
∂f

∂g1

∣∣∣
g0
dg1 +

∂f

∂g2

∣∣∣
g0
dg2 + .+

∂f

∂gn

∣∣∣
g0
dgn =

n∑
i=1

∂f

∂gi

∣∣∣
g0
dgi, (A.3)

where g0 = {g0
1, g

0
2, ..., g

0
n} and

∂f

∂gi
= lim

ε→0

f(g1, ..., gi + ε, ..., gn)− f(g1, ..., gi, ..., gn)

ε
(A.4)

Let G(x) be the continuous limit (n→∞) of the set of variables {g0, ., gi, ., gn}, hence,
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f({g0, ., gi, ., gn}) becomes a functional F [G(x)], whose functional derivative is

δF [G(x)]

δG(x′)
≡ lim

λ→0

F [G(x) + λδ(x− x′)]− F [G(x)]

λ
(A.5)

= lim
λ→0

lim
n→∞

f(g1, ..., gi + λ n
j−k , ..., gn)− f(g1, ..., gi, ..., gn)

λ
(A.6)

where δ(x−x′) is a Dirac’s delta and i, j, and k ∈ [1, n]. Introducing the change of variable

λ = ε (j−k)
n

, we obtain

δF [G(x)]

δG(x′)
= lim

n→∞
lim
ε→0

f(g1, ..., gi + ε, ..., gn)− f(g1, ..., gi, ..., gn)

ε (j−k)
n

(A.7)

= lim
n→∞

n

(j − k)
lim
ε→0

f(g1, ..., gi + ε, ..., gn)− f(g1, ..., gi, ..., gn)

ε
(A.8)

Using Eq. A.4 we can rewrite Eq. A.8

δF [G(x)]

δG(x′)
= lim

n→∞

n

(j − k)
∂f

∂gi
(A.9)

From (A.3), we can write

dF [G(x)] = lim
n→∞

df(g1, ..., gi, ..., gn) = lim
n→∞

n∑
i=1

∂f

∂gi
dgi (A.10)

= lim
n→∞

n∑
i=1

b− a
n

( n

b− a
∂f

∂gi
dgi

)
= lim

n→∞

n∑
i=1

b− a
n

( n

j − k
∂f

∂gi
dgi

)
(A.11)

Following the definition of the integral in A.2, we obtain

dF [G(x)] =

∫ b

a

dx′
δF [G(x)]

δG(x′)
δG(x′) (A.12)

where dgi → δG(x′) as n→∞
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Appendix B

Numerical integration of the
Landau-Lifshitz equation

We rotate our reference frame at every integration time step in such a way that Bc,eff
i is along

the z axis. In this case, we can easily solve the LL equation, Eq. (3.1). For simplicity of

notation, we drop the subscripts i and superscripts c, and remember that we are describing

the precession of the ith nanomagnet in the cth crystal. We define the axes to describe the

magnetization direction of this particular nanomagnet, M̂ , θ̂, and φ̂, where φ̂ = M̂ × θ̂,

and then write

Beff = Bzẑ = Bz(M̂ cos θ − θ̂ sin θ)

= M̂BM + θ̂Bθ. (B.1)

Since the magnitude of the dipole moment Ms is conserved, in spherical coordinates Eq.(1)

leads to

dM̂

dt
= θ̂

dθ

dt
+ φ̂ sin θ

dφ

dt

= θ̂αBθ + φ̂γBθ. (B.2)

Finally, from

dθ

dt
= = −α|Beff | sin θ, (B.3)

dφ

dt
= −γ|Beff |, (B.4)
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we obtain for a very small time interval dt,

φ(t0 + dt) ≈ φ(t0)− γ|Beff(t0)|dt, (B.5)

θ(t0 + dt) ≈ θ(t0)− α|Beff(t0)| sin[θ(t0)]dt. (B.6)

These equations were used in our numerical calculations. In order to relate the angles to

measurable quantities, however, we note that it is possible to integrate Eqs. (B.3) and (B.4)

exactly, obtaining

θ(t) = cos−1
[
tanh

(
tanh−1(cos[θ(t0)]

+α

∫ t

t0

dτ |Beff(τ)|
)]
, (B.7)

φ(t) = φ(t0)− γ
∫ t

t0

dτ |Beff(τ)|, (B.8)

which is equivalent to that obtained using a somewhat different technique.44 We note that

by expanding Eqs. (B.7) and (B.8) to leading order in dt, we recover Eqs. (B.6) and (B.5),

respectively.

However, these more general forms for θ(t) and φ(t) lead to a more physical interpretation

of our method. Since the dimensionless magnetization components along and perpendicular

to Beff are Mz = cos θ, Mx = sin θ cosφ, and My = sin θ sinφ, we have

Mz(t) = tanh
(
tanh−1[Mz(t0)] + α

∫ t

t0

dτ |Beff(τ)|
)
,

(B.9)

Mx(t) =
√

1− [Mz(t)]2 cos[φ(t)], (B.10)

and

My(t) =
√

1− [Mz(t)]2 sin[φ(t)]. (B.11)

Independent of the coordinates, we must assure that (for the ith nanomagnet in the cth

configuration) M changes its direction smoothly, in order to obtain a reliable calculation
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for the overall
−→
M. Since each component of M cannot change dramatically, we must

therefore require θ � 2π and φ � 2π. These restrictions then require us to set the time

integration step width dt sufficiently small. If for example, γ/α were on the order of 10+11

and |Beff | were in the range 10−3 − 10−2 T, we would require dt < 10−11 s. For sweep rate

∆B
∆t
≈ 10−2T/s, where ∆t = Ntdt ≈ 10−4 s, Nt must be on the order of 107. Since we would

need to recalculate the direction of the magnetization of each nanomagnet Nt times in each

∆B step, this would be a significant challenge with present day computers.

One thing we can do to make our calculations feasible for the sweep rates used in SMM

studies is to set α extremely small, say α
γ

. 10−10, although such small α values have not

been reported in experiments. Otherwise, to study much larger but perhaps more reasonable

α values, we would have to use much faster sweep rates, as in KS.94
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