
The Development of the Edison System
as a Truly Portable Software Development Environment

by

Michael C. Wonderlich

B. S. Kansas State University, 1985

A Master's Report

submitted in partial fulfillment of the

requirements of the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

Approved by:

Major Professor

A11208 317834

Table of Contents

Chapter 1 - Introduction
1.0 The Project 1

1.1 Motivation for the project 2

1.2 Background of the Edison System. 3

1.3 The organization of this report. 5

Chapter 2 - History of Portable Operating Systems
2.0 History of Portable Operating Systems 6

2.01 IBM 360 operating system family 6

2.02 IBM VM operating system design. 8

2.03 Unix operating system. 10

2.2.1 The Kernel design concept. 10

2.3 The Solo operating system. 12

2.4 The Edison operating system. 12

2.5 The Posix standardized operating system 13

2.6 Improvement in portable operating systems. 14

Chapter 3 - The Edison System
3.0 The Edison System 16

3.1 The Edison Operating System 17

3.2 The Users View of Edison 20

3.3 Size and Performance of the Edison System 23

3.4 Features of the Edison System 25

Chapter 4 - System Implementation
4.0 Procedures Used to Achieve the Project Goal 29

4.1 Conversion of Kernel code to C language 30

4.1.1 Typical Problems Encountered in the
Edison to C Conversion 31

4.2 The Use of Host Environment Calls 33

Chapter 5 - Description of System Activity
5.0 Description of the Project Activity 37

5.1 Description of the Host Operating Systems 37

5.2 Routines Important to Porting 38

5.2.1 check drive() 39

5.2.2 copy_file() 39

5.2.3 get_diskcatalog() 40

5.2.4 rm file() 40

5.2.5 protect_file() 40

5.2.6 readx() and writex() 41

5.3 Techniques Used During This Project 41

5.4 Summary 43

References 45

Appendices
Appendix A

Appendix
Appendix
Appendix

B
C
D

- Kernel Functions Requiring
Modification

- The Edison System Kernel
- The Benchmark Testing Program
- The User's Installation Guide

49
63
141
144

Tables and Figures
Figure 2.1 IBM Virtual Machine Model 9

Table 3.1 Source Code Size of the Edison System 23

Table 3.2 Executable Code Size of the
Edison System 24

Table 3.3 Data Types in the Edison System 27

Table 4.1 Edison Code for Procedure Writetext 31

Table 4.2 C Code for Procedure Writetext 31

Table 5.1 Functions Which Require Modification
During Porting 39

Table 5.2 Flag Settings for Test Environments 42

PAGE 1

CHAPTER 1

INTRODUCTION

1.0 The Project

The Edison System [BH2] is a small operating system

which was originally designed for microcomputer usage. Its

primary goal was to provide a compact, simple operating

system which could be easily understood and ported to new

computer architectures. In an effort to reduce the amount

of time and effort required to port this operating system, a

project was developed to rewrite its underlying structure in

a high level programming language. This approach relies on

the ability of each architecture's operating system to

service all privileged operations required by the Edison

System.

The following report documents the progression and

development of the methods used to implement Edison in the

following computer environments: Unix with Berkeley 4.3

enhancements, Unix System V, Ultrix, and MS-DOS version 3.2.

The accomplishment of implementing Edison on these systems

demonstrates that writing all portions of the operating

system in a high level language is a realistic option for

system developers. The resulting operating system does not

utilize system -dependent assembly language anywhere in the

operating system. Edison has been tested in all of these

PAGE 2

computer environments.

1.1 Motivation for the project.

The Edison System is comprised of both an operating

system and programming environment. The system language,

also named Edison, is simple yet powerful. The Edison

language is comprised of only a few basic commands and

structures. However, these basic fundamentals have been

carefully chosen to establish the necessary foundation to

produce powerful and extensive applications. The Edison

System possesses adequate development facilities, yet is

contained in a very small quantity of code. Brinch Hansen's

final development system contains approximately 10,000 lines

of program text. This text includes the operating system,

the compiler, the editor, the diskette formatting program,

necessary assembly code, and other utility programs. This

establishes a powerful yet small environment for the devel-

opment of concurrent programs.

The original version of the Edison System can be

transported to new computer environments with relative ease

because all system -dependent features were combined into one

section of code, namely, the Kernel. The Kernel is a col-

lection of system dependent routines which control all

critical functions of the operating system. For every new

computer environment to which Edison is to be ported, the

system Kernel must be rewritten in an assembly language

PAGE 3

acceptable to the host environment.

As a result of this project, a procedure was implement-

ed which virtually eliminates the need to rewrite the Ker-

nel. By writing the Kernel in a high-level language instead

of assembly language, a system has been provided which is

extremely adaptable to new computer environments. Instead

of rewriting an entire Kernel, only small key areas will

require revision. This completes a project previously begun

by T. Scott for the Kansas State University Department of

Computer and Information Science [SCO].

Scott developed a communication protocol implemented in

Edison. This facilitated the movement of application soft-

ware between Edison and other environments. The combination

of these two projects allows an application program to be

developed on any system and ported with no alterations to

any other system which has Edison implemented on it. As a

result of these projects, the Edison System and applications

are available for use upon many different computer systems.

1.2 Background of the Edison System.

Brinch Hansen developed the Edison System with only a

few primary goals [BH2]. Foremost among his goals was that

the system should contain sufficient power to develop non-

trivial programs. Also, the system was to be simple enough

for a single programmer to understand its entirety. The

PAGE 4

system was to contain all necessary development resources to

achieve the first two goals without the introduction of

additional software. A final goal was that the system

should be able to be easily ported to new computer environ-

ments.

To accomplish these goals, Brinch Hansen adopted some

development rules. To aid in the reduction of complexity,

the system was written in one language. A new language was

developed for this purpose, Edison. The Edison language is

very similar to Pascal, but with all of the complex data

structures removed. The language only contains the basic

commands and structures, from which all programming tasks

may be accomplished. The only part of the Edison Develop-

ment System which is not written in Edison is the Kernel,

which was written in the Alva assembler language (the assem-

bly language Alva is a formal notation in which programs can

be written for the PDP 11 computers). The entire Edison

System is contained in approximately 10,000 lines of code.

This results in a compact operating system (only 1200 lines

of Edison code) which occupies very little of the computer's

memory, thus leaving more memory for the development pro-

grams to utilize.

The Edison programming language is patterned in a way

that is similar to the style of Pascal. Some deletions,

additions, and revisions were made to create a powerful,

PAGE 5

well-defined programming language. In addition to standard

computation features found in modern programming languages,

the Edison language also contains constructs for controlling

the concurrent execution of tasks.

1.3 The organization of this report.

This report may be helpful to persons desiring informa-

tion on: developing a program on the Edison System, study-

ing a small compact operating system, the issues of port-

ability and their relevance with operating system develop-

ment, or the development of a Kernel in a high-level lan-

guage.

Chapter Two provides the history of portable operating

systems throughout the last two decades. Chapter Three

provides a history and description of the Edison System.

Chapter Four describes the need for the implementation of a

high level language Kernel. Also, a description of the

project is detailed in this chapter. Chapter Five describes

the procedures taken to implement this project. For further

details on the modified Kernel and operating system rou-

tines, please refer to the appendices included at the end of

this report.

PAGE 6

CHAPTER 2

HISTORY OF PORTABLE OPERATING SYSTEMS

2.0 History of Portable Operating Systems

The first operating systems were very limited. They

can be best described as a monitor which supervised the

execution of a single user's program. Such systems provided

a method of beginning and halting the execution of the

program. Also, during program execution such operating

systems or monitors may have additionally provided proce-

dures for programs to communicate with external devices to

be accessed. To accomplish these tasks the monitors were

written in machine language and were designed for a particu-

lar machine. Every new machine required extensive time and

money to be invested in development of develop a new moni-

tor. There was no standardization of user interfaces pro-

vided by the various monitors, which resulted in confusion

for users and programs migrating from one system to another.

Monitors grew in power and performance, but the lack of

consistency continued.

2.1 IBM 360 operating system family

International Business Machines (IBM) developed the

first major operating system with the capacity to span

multiple processing units.[PET] Their desire was to estab-

PAGE 7

lish a common operating system which would cover a family of

computers. This was a noble attempt at a new design idea.

A common environment would be established for everyone to

work in and this would reduce the amount of time needed to

provide the new software for various computer models. Thus

only one set of application software was to be required for

the entire family of computers. The reduced time and costs

of design and maintenance were intended to greatly enhance

IBM's position in the computer industry.

Unfortunately this bold attempt did not succeed as

hoped. The operating system did provide a common operating

system for a family of computers. The attempt to make a

universal, powerful operating system, resulted in a product

which was extremely large and confusing. It was impossible

for any single person to understand the entire operating

system. Over 17,000 hours of design and programming time

went into the development of the IBM/360 operating system.

While it was possible for the operating system to perform

powerful functions, it was difficult to discover how to

perform these functions.

Despite these problems the system was a success. By

the standards of the time, great advances had been achieved

with the 360 operating system design. The operating system

was capable of being implemented upon several different

models. Due to the complex projects desired, large software

PAGE 8

development teams were required to write application pack-

ages, but these applications were easier to develop and

install than ever before. The improved efficiency of the

360 operating system provided IBM with the opportunity to

concentrate more heavily in the development of new applica-

tion software.

2.2 IBM VM operating system design.

The foundation of the 360 and the 370 operating system

family is the concept of a virtual monitor.[IBM] The

360/370 system is designed in layers. At the lowest level

is a control program (CP) which has the capability of manag-

ing multiple virtual machines simultaneously. A virtual

machine is the logical representation of a desired machine.

The resources it sees are actually constructs of the CP

which provide all the appearances of the physical device. A

CP maintains a mapping from the virtual devices to the

physical devices. Each virtual machine may be executing a

different operating system. The notion of a virtual monitor

even provides the ability to test a new CP in a virtual

machine which would then in turn provide another level of

virtual machines (Figure 2.1). This design proved to be

very flexible and provided great strengths for the develop-

ment of software. Specifically, the ability to create a

test environment to simulate the system the application

PAGE 9

software will be utilized in.

MVS CMS CMS DOS/VS
BATCH

VS/1
TEST

Virtual CP

CP

IBM Virtual Machine Model
Figure 2.1

PAGE 10

2.3 Unix operating system.

The next major attempt at a universal operating system

met with better luck. Unix was developed by Richie and

Thompson in 1974.[PET] A new design idea was used which

emphasized simplicity rather than speed or sophistication.

A high-level language, C, was used to write a majority of

the operating system code. C provided the constructs neces-

sary to produce a multi -tasking operating system. It also

follows the formal definitions of a structured language.

These features allow software to be written in an efficient

and easily readable fashion. The result was an operating

system written in about 10,000 lines of code. This proved

to be much easier to manage and transport to new architec-

tures. With the advent of Unix, an operating system existed

which was capable of being modified for adaptation to new

computer architectures. Soon many vendors were producing

versions of Unix for their machines.

2.2.1 The Kernel design concept.

The primary reason for the success in porting Unix

between machines can be found in the structure of its Ker-

nel. The Kernel is a library of routines to provide system

level control. Whenever a process desires a function of the

system, a request is made to the Kernel. The Kernel then

processes the request and returns the result. Multiple

PAGE 11

processes may be simultaneously executing under the control

of the Kernel. Whenever a system -dependent request (pri-

marily a request for resource access) is desired, the Kernel

is called to provide traffic control for communication

between processes or with system resources.

The primary responsibility of a Kernel is the control

of input devices, output devices, and secondary storage

devices. If a process were capable of having direct access

to these devices, there would be no way to force a process

to respect the usage of a device by other processes. Thus,

the Kernel is the only process capable of directly control-

ling these devices. If a process needs this device, it

sends its request to the Kernel and the Kernel will do the

processing. In this manner, the Kernel may restrict and

supervise all critical operations.

A Kernel's code has traditionally been written in

assembly language. This enhances the speed efficiency of

the operating system. Assembly language generally allows a

better method of control of the critical areas of a comput-

er. Since assembly language is the direct representation of

the machine language of the computer, anything the computer

is capable of doing can be done in assembly language. When

programming in assembly language, the execution speed of

heavily used system routines can be optimized. If an oper-

ating system is being ported to a new computer processor,

PAGE 12

only the Kernel must be rewritten. This drastically im-

proves the time necessary for conversion. This is a major

reason for the success of the Unix operating system and

other operating systems which incorporate this design idea.

2.3 The Solo operating system.

Brinch Hansen could see the power and flexibility of

the Kernel design. He wanted a powerful operating system

for development, but wanted it to be small enough for a

single person to easily understand all the aspects of the

operating system. One of his first attempts was the Solo

operating system.[BH1] Solo provided an environment in

which both sequential and concurrent Pascal programs could

be easily developed. The Solo operating system was designed

as a single user system and was small enough to be easily

understood by a single person. This finally proved that an

operating system did not have to be complex to be effective.

By utilizing three primary processes to control input,

execution, and output, Brinch Hansen provided a simple and

effective usage of computing power. All three of these

processes direct their critical tasks to a Kernel which

controls all resources and resolves conflicting requests.

2.4 The Edison operating system.

Brinch Hansen was pleased with the results achieved by

Solo but was still not satisfied with its size or the power

PAGE 13

available. Therefore, he proceeded to develop a new operat-

ing system to be utilized on a personal computer. The

result was the Edison System. In this system, Brinch Hansen

provides a powerful operating system with a closely related

programming language. The entire system is written in the

Edison programming language. The only exception is the

Kernel which was written in the Alva assembly language. The

Edison System continues his achievements in compact and

portable operating systems. The system is still easily

understood by a single user and is capable of powerful

development software.

2.5 The Posix standardized operating system

The IEEE Standards Committee in January 1985 adopted

the first draft of the specifications of a standardized

operating system.[IEEE] The name of this standardized

operating system is Posix. This standard (IEEE 1003.1) is

based upon the Unix operating system. It provides for a

standard operating system interface for all software de-

velopers to follow. Posix will be available upon many

different manufacturer's computer architecture, but the

software will be interchangeable from one system to another.

It will not be executable -code compatible, but rather

source -code compatible. The program will require compila-

tion upon the new host system, but the program will not

require any modification to execute correctly. This is a

PAGE 14

big step to establishing a common development environment

for application software.

The IEEE Standards Committee is still working on a

final draft for Posix standard 1003.1. The standard is also

being reviewed by ANSI and is under consideration for adop-

tion as an ISO standard. This will establish a world-wide

standard in operating systems and software development

environments.

The goals of the Posix standard and the goals of our

project are the same. Both want to establish a standard

environment which may be used to develop application soft-

ware. The amount of development time will be greatly re-

duced since all software will only require implementation

into one environment. Posix will require cooperation from

all software and hardware vendors to succeed, the Edison

System may be implemented by any interested person on most

host environments. Posix will have greater execution speed

because it is the operating system for the hardware, the

Edison System can be implemented more quickly by layering

the Edison System on top of the host operating system.

2.6 Improvement in portable operating systems.

The greatest hindrance to easily porting these later

operating systems is the necessity of rewriting the Kernel

in assembly language of the target machine. The Kernel does

PAGE 15

provide a centralized library of routines, but this library

must be written specifically for each new computer environ-

ment. The intention of this project was to write a Kernel

in a high-level language in order to improve its portabili-

ty. No longer will it be necessary to rewrite the entire

Kernel, but rather only small specific routines within the

Kernel. The majority of the code consists of standard

execution controls which would require no changes since the

algorithms are not dependent upon system features. This

benefit cannot be achieved without the cost of decreased

speed efficiency. The use of an optimizing compiler can

help to relieve this problem to some extent. The benefits

greatly outweigh the costs so the change is a wise one.

To illustrate this concept, we have taken the Edison

System and rewritten the assembly language Kernel into the

high-level language C. We will adhere to the ANSI standard

version of C. Variations of these standards are available

in almost all the major computer environments. Therefore,

the result will be a very portable Edison System which is

capable of execution in a large variety of computer environ-

ments.

PAGE 16

CHAPTER 3

THE EDISON SYSTEM

3.0 The Edison System

The Edison System contains three primary parts: the

operating system, the Edison language, and utility programs.

The combination of these three parts provides substantial

power in establishing a good programming and application

environment. The Edison language is based upon a strong

relationship with the operating system. This is because the

operating system is written in the Edison language. The

features used to develop the operating system may also be

used in developing application software. This strong simi-

larity establishes an efficient relationship between the

operating system and an application. The use of the exact

same functions in both improves accuracy and aids in program

development. The only portion of the operating system not

written in Edison is the Kernel, which will be discussed

later. The last portion of the Edison System consists of

the assorted utilities which have been written to enhance

the programming environment. The two most important of

these utilities are the editor and the compiler. The editor

is a simple line editor which provides for program creation

and modification during development. The compiler is a four

pass compiler which translates source code in the Edison

language into a pseudo -code which is explained later in this

PAGE 17

chapter.

3.1 The Edison Operating System

The Edison Operating System is the result of the con-

tinuing work of Brinch Hansen. Beginning with his work on

the Solo, Trio, and Mono operating systems and continuing

with his work on Edison, it has been Brinch Hansen's goal to

provide a powerful operating system that can be easily

understood by the single programmer. The best way to pro-

vide this environment is through supplying only those fea-

tures needed for applications. By reducing the total number

of activities for the operating system to supervise, greater

attention may be directed towards the supported routines.

Fewer instructions also means less time is required during

the testing and debugging stages of software development.

The inclusion of more complex instructions would have creat-

ed more time required to debug these instructions. It is

much easier for a programmer to work with only a few simple

instructions rather than to have complex instructions or

many instructions available which the programmer cannot

remember.

The major part of the Edison Operating System was

written in the Edison language. This portion provides the

functions the application programs will use. The processing

of simpler functions is provided at this level. Whenever a

PAGE 18

process requires access to physical or logical devices, the

operating system relays the request to the Kernel. The

Kernel is the only portion of this operating system which is

coded in assembly language. The Kernel processes all re-

quests which are dependent upon the environment of the

system.

The Kernel is the heart of the operating system. It is

the portion that handles all critical and primary process-

ing. Data exchange with the secondary storage, input and

output transfers to devices, and process control are the

concern of the Kernel. If an operating system is written

correctly, the Kernel becomes the only portion of the oper-

ating system that will require modification in order to move

to a new system environment.

When the computer system is initialized, the Kernel is

the first section of code to be loaded. This will be done

automatically by the computer from a predetermined device.

The Kernel will initialize its environment (establish all

default values and locations for this particular implementa-

tion) and then proceed to load the remainder of the operat-

ing system. At this point, the Edison environment is ready

for the user's application.

The most important function of the Kernel in the Edison

System is the processing of the pseudo -code generated by the

compiler. Pseudo -code has been shown to provide increased

PAGE 19

portability between systems.[HEN] The pseudo -code instruc-

tion set for the Edison language is independent of the CPU

instruction set of the executing machine. Thus, all compil-

ers generate the same pseudo -code, regardless of the system

environment in which the compiler exists.

The Kernel emulates a stack machine and provides for

the translation from the pseudo -code instructions corre-

sponding to a program into the actual machine instructions

needed for execution. The use of pseudo -code does decrease

the execution speed of a process when compared to the direct

execution of machine instructions corresponding to a proc-

ess. However, the increased flexibility of the pseudo -code

instruction set makes the usage of pseudo -code a greatly

desired requirement. The Edison System utilizes a pseudo -

code instruction set with 67 operations.

The exchange of data information is the second most

important task for the Kernel. The exchange of data may

occur between main memory and secondary storage devices or

I/O devices such as keyboards, crts, or printers. It is

important during the usage of these devices that only one

process should be accessing a particular device at any given

instance. The supervision of data exchanges is the respon-

sibility of the operating system. When an application

process requests the use of a device from the operating

system, the request is passed to the Kernel since it in-

PAGE 20

volves a system dependent feature. The Kernel will then re-

strict the execution of all of the other processes so that

the device request may be completed before any other process

can interrupt and possibly interfere with this request. The

Kernel translates the application's request into a request

directly to the device. This process works whether the

device is a logical or physical device. If it is a logical

device, the Kernel will perform any translations necessary

to simulate the desired logical device.

The final task of the Kernel is management of memory

allocation for variables and the correct treatment of data

types. Memory allocation for variables forms a portion of

the stack environment provided and used by the Kernel. If

an implementation includes additional resources (memory or

devices) it may be necessary to enlarge the size of the

stack.

3.2 The Users View of Edison

The Edison System differs from traditional operating

system command interpreters in the syntactic analysis which

it performs upon user commands. Traditional command inter-

preters allow the parameters to be entered directly as a

part of the command, for example:

print(systemtext, true)

PAGE 21

This has proven to provide a very readable command

structure, but is difficult for a command interpreter to

process this type of command efficiently. The parameters

may have to be in certain locations of the command string or

proper interpretation may be dependent upon keywords in the

command string. It is impossible for the command interpret-

er to know exactly how many parameters all application

programs may require. Therefore, the interpreter cannot

always catch errors in parameter passing. To avoid these

problems, the Edison System uses a slightly different set of

rules for command structure:

1. Only the application program name is accepted

by the command interpreter.

2. It is the responsibility of each application

program to request the necessary parameters

during its execution.

The following example illustrates a typical user com-

mand in the Edison System:

Command = print

File name = systemtext
Print all pages? yes
Print line numbers? yes

The message Command = is the prompt for the Edison

System command interpreter. The application developer then

defines prompts to request the parameters the application

PAGE 22

may require. These prompts are a part of the application

software which must be coded by the programmer. The addi-

tional effect of this implementation is the increased user

friendliness. The application software user is not required

to remember the proper parameter sequence. The application

program can be designed to request the information in a

clear concise manner.

PAGE 23

3.2 Size and Performance of the Edison System

The original version of the Edison System was developed

by Brinch Hansen on a PDP 11. The final system for the

original Edison consists of a total 10,000 lines of program

text; the number of source lines in each of the major mod-

ules is shown in Table 3.1.

Operating System 1200 lines

Compiler 4200 lines

Editor 500 lines

Formatting program 400 lines

PDP 11 assembler 1600 lines

Other programs 400 lines

Edison programs 8300 lines

Kernel 1800 lines

Edison System 10100 lines

Source Code Size of the Edison System
Table 3.1

PAGE 24

The main store for the system was contained in only 28K

words and is illustrated in Table 3.2.

Kernel 1800 words

Operating system code 7200 words

Operating system variables 2400 words

System size 11400 words

User space 17300 words

Storage space 28700 words

Executable Code Size of the Edison System

Table 3.2

PAGE 25

A simple benchmark speed test program was written to

test the effects on execution speed. With the Kernel writ-

ten in a high-level language, it could be predicted to

execute slower than the original Edison System which uti-

lizes an assembly language Kernel. The benchmark speed

tests confirm this prediction. The (see Appendix C) exe-

cutes on the original Edison System in 25 seconds. The same

program executing in the portable Edison System requires 60

seconds to reach completion. While this execution speed

difference is substantial, the benefits derived from a truly

portable operating system are of greater importance to this

project. The reduction in development time achieved by a

common development environment is our primary goal.

3.3 Features of the Edison System

Several features of the Edison System make it a very

user friendly environment. An important feature to users,

is the consistency of editing features throughout the entire

system. The command interpreter permits the use of the same

editing controls which are employed by the editor. The

editor is not a powerful, full -featured editor, but rather

provides only the basic commands that are a requirement of a

development editor. By reducing the number of commands

available, it becomes easier for the user to master the

editor in a very short time. The biggest drawback to the

editor is the lack of full -screen editing. However, this

PAGE 26

feature requires system dependent functions for the control

of the screen. Since this is counter -productive to the goal

of the system, full -screen editing is not included.

The usability available to the user from Edison makes

it a very good candidate as a language for writing applica-

tion programs. The strong relationship between a high-level

language and the operating system allows the opportunity for

some very strong language features to be provided. The same

routines which control the operating system, may also be

used by the programmer to enhance the power of application

program. (eg. Concurrent processes may be created and

controlled by the user in an application program by using

the same constructs the operating system uses when control-

ling application software.)

The programming language structure provides all the

controls needed for the programmer to develop applications

which utilize concurrent processing. Module structures are

provided to contain routines to control critical areas.

These modules are used by multiple processes to share common

variables and devices. (eg. Only one process may send data

to the printer, all other processes must wait until this

process is finished with the printing task.)

The data types are well defined and provide ample

control for the user to utilize. Strong type checking is

inherent throughout the system. The data types available

PAGE 27

are illustrated in Table 3.3.

Integer positive and negative whole numbers

Operators

Boolean

Operators

Characters

Enumerated

Records

Arrays

Sets

arithmetic operators +,-,*,div,mod

logical symbols denoting true or
false

Boolean operators not,and,or

standard characters as defined by
the ASCII character set

a collection of user defined sym-
bols

a collection of fields which may
consist of any accepted data types

a finite sequence of any accepted
data type

a finite set of values, similar to
the mathematical definition of sets

Data Types in the Edison Language

Table 3.3

The Edison System provides a powerful development and

application environment. The original design allowed for

easy porting of Edison to new computer system environments

since all system dependent routines are contained in the

Kernel. In order to move the Edison System to a new envi-

PAGE 28

ronment the Kernel is the only section of code which must be

rewritten.

PAGE 29

CHAPTER 4

SYSTEM IMPLEMENTATION

4.0 Procedures Used to Achieve the Project Goal

The primary goal for this project was to establish the

feasibility of using a high level language to write a

operating system Kernel. This should result in an operating

system which may be easily ported to new system environ-

ments. Since this would then establish a standard operating

environment, efficiency, in the development and maintenance

of software applications can be greatly enhanced.

This first decision was related to which high level

language to employ. It was necessary to use a language

which provided powerful data structures, quick execution of

resulting code, and compilers available for all major

computer system environments. After a review of all major

languages in use, the decision was made to utilize the

language C. This choice was related to C's ability to

fulfill the requirements:

> Powerful data structures - C provides for the

standard data types, structures, and also

includes enumerated types.

PAGE 30

Character strings are easily manipulated

(which became a very powerful tool in the

final implementation).

Compilers are available for all major operat-

ing system environments, so there is a wide

range of systems to which the Edison system

can be ported.

Execution speed is a secondary concern of our project

since its primary goal is to provide an implementation of an

operating system which is extremely portable. It is recog-

nized in the definition of the project that execution speed

does suffer, but the reduction in speed is acceptable in

most circumstances.

4.1 Conversion of Kernel code to C language

When Brinch Hansen originally developed the Edison

system Kernel, he wrote the Kernel in the Edison language

[BH2]. Later when he implemented the Edison system on a PDP

11, he converted the Edison code to the ALVA assembly lan-

guage. The original Edison code was used by Brinch Hansen

as comments to illustrate the program flow. We capitalize

on the use of these comments. Part of the decision to use C

was based upon the similarity of C and Edison languages.

Approximately ninety percent of the Kernel is a simple

conversion of Edison language syntax to the equivalent C

PAGE 31

language syntax. An illustration of this conversion between

Edison and C may be seen with the routine 'writetext'.

proc writetext(value: text)
var i: int; c: char
begin i := 1;

c := value[1];
while c <> '#' do

writechar(c);
i := i + 1;
c := value[i]

end
end

Table 4.1 Edison code for procedure writetext

writetext(value)
text value;
{ int i; char c;

i := 1;
c := value[1];
while (c != '#')

(writechar(c);
i++;
c := value[i]

}

)

Table 4.2 C code for procedure writetext

4.1.1 Typical Problems Encountered in the Edison to C

Of course not everything was a straightforward conver-

sion. The first problem to be encountered was a very minor

one, but one which had disastrous effects. The memory

allocation for a character in Edison is one word, which is

two bytes long. In C, the memory allocation for a character

is one byte long. The Edison system uses two bytes, but

PAGE 32

only the lower byte is the actual character. The upper byte

is set to 0000 0000. The reason two bytes are used is

because the stack is always accessed in terms of one word

values. This is done in order to provide consistency

throughout the system. The solution to this problem was

simple. When the Kernel accessed the stack, it ignored the

high byte and only used the lower byte when working with

characters.

A similar problem also occurred with the memory

allocation length of integers. Edison uses one word (two

bytes) for the allocation of integers. However, C has two

definitions of integers, a long integer occupies four bytes

while a short integer has two bytes. In C, the integer data

type int may be of either length. This is dependent upon

the implementation of the compiler. It is important to

check upon this feature whenever using a new C compiler for

porting this Kernel.

be two bytes.

A much more difficult problem to overcome was the usage

of sets. The Edison language provides the data type set.

This definition is very similar to the mathematical

definition of set. It is a collection of a finite number of

members (possibly zero). The Edison definition requires

that a set be of a basic type (char, integer, etc.) and that

all members

It is mandatory that the length of int

be of that type.

PAGE 33

The C language does not include the data structure set.

Upon investigation of the ALVA assembly language code, it

was discovered that the implementation used there involved a

bit -mapped field. A predetermined system limit of 128

values was chosen by Brinch Hansen as the maximum number of

members in a set in the PDP 11 implementation. By using

this same method, a structure was constructed in C which

provided bit mapping. Each possible member (maximum 128)

has a certain ordinal value. Whenever it is necessary to

insert a member into a set, the ordinal value of the member

is calculated and that bit is changed to the value of 1.

Whenever it is necessary to remove a member of a set, the

ordinal value of the member is again calculated and that bit

is changed to the value of 0. The status of a member's

inclusion may be determined at any time by checking its

associated bit value..pa

4.2 The Use of Host Environment Calls

A problem results from installing Edison as an

application layer upon a host operating system in that

Edison does not have direct access to the disk storage

devices. These operations fall under the control of the

host operating system. For this reason, it is necessary for

the Edison Kernel to make calls to the host environment to

provide access to disk storage devices.

The C language provides the function system(string)

PAGE 34

where string denotes a character command string. C also

includes several string manipulation functions which provide

for the simple construction of lengthy command strings to be

submitted to the host environment. Operations involving

files such as directory lookups, file deletions, and file

renaming can be provided by using the host environment's

commands for these purposes. The Kernel functions create

the needed command string sequence and submit it to the host

system for processing. The results are then received by the

Edison Kernel and relayed to the Edison operating system.

(Application programs must request the Edison operating

system to provide control for disk storage device opera-

tions.)

Routines involving access to secondary storage devices

in the Kernel are dependant upon the host environment.

These device routines must be changed for each new environ-

ment to which this Kernel is ported. These routines in-

clude: check_ drive, copy_file, get_diskcatalog, rm_file, and

protect _file. More information on porting to new host

environments is given in the next chapter.

The remaining changes to the Kernel which involve

input/output devices were accomplished without major changes

to the methods previously used by Brinch Hansen. The C

language provides for standard single character input/output

routines. These routines (getc() and printf(11%c) are

PAGE 35

common with all C compilers and have presented no difficul-

ties in their implementation. The single character routines

provide the basic foundation for an implementation of all

the Edison System's input/output routines, (eg. writename,

writeline).

The conversion of a Kernel written in assembly language

to a high-level language Kernel was accomplished with little

difficulty. The interface to host environments was confined

to five routines (check drive, copy_file, get diskcatalog, _

rm_file, and protect_file). This provided for straightfor-

ward conversions when porting to new hosts. By using a

code -optimizing compiler, the reduction in execution speed

was held to a minimum. A comparison was made between an

original Edison System designed for an IBM PC compatible

microcomputer and the MS-DOS implementation of our project.

The benchmark program (see Appendix C) was executed in both

environments. In the original Edison System, the execution

was completed in 35 seconds. In the MS-DOS implementation,

the same program required 60 seconds to execute. While this

difference is substantial, it is acceptable under the goals

defined by this project.

The layering of the Edison System above a host environ-

ment has provided an additional advantage. Now the Edison

System is capable of utilizing greater disk storage than was

possible with the original Kernel. Any disk storage that is

PAGE 36

available to the host environment is now available to the

Edison System. Multiple disk drive access and expanded

storage capacity will greatly enhance the usability of the

Edison System.

PAGE 37

CHAPTER 5

DESCRIPTION OF THE PROJECT ACTIVITY

5.0 Description of the Project Activity

The primary goal of this project was to provide a

kernel which could be easily ported to new computer environ-

ments. In order to establish the effectiveness of the

project, the kernel was ported to the following systems:

UNIX System V, UNIX BSD release 4.3, Ultrix, and MS-DOS. It

is not possible to transfer the executable code directly

from one of these environments to another, therefore it is

necessary to recompile the kernel from the C source code in

each environment. All other components are written in

Edison and compiled to virtual or pseudo code which the

Kernel interprets.

5.1 Description of the Host Operating Systems

The host operating systems in the porting experiment

are very similar to one another. They all represent a

version of the original Unix operating system or a new

operating system deriving many design concepts from Unix.

These environments were not chosen in order to reduce the

amount of code that must be changed, but rather because

these operating systems were the only ones available with

correctly functioning C compilers. Other operating systems

did provide C compilers, but did not adhere to accepted

industry standards in regard to available functions. It was

PAGE 38

a requirement that the C compiler be capable of all func-

tions standard with both the ANSI C language and the lan-

guage defined by Kernighan and Ritchie. Unfortunately, C

compilers that meet this requirement are not available under

all operating systems.

5.2 Routines Important to Porting

When rewriting the kernel, an effort was made to

minimize the number of routines which would require modifi-

cation during the porting process. There were seven rou-

tines which eventually required a large amount of modifica-

tion to their logic. The routines contain the calls to the

host operating system to provide the basic functions re-

quired by the Edison operating system. These functions

provide input and output control to the console and storage

devices. These functions are listed in Figure 5.1. The

source code for these routines may be found in Appendix A.

All other functions were capable of being rewritten in the

standard C language.

PAGE 39

1. check_drive()
2. copy_file()
3. get_diskcatalog()
4. rm _file()
5. protect_file()
6. readx()
7. writex()

Table 5.1 Functions Which Require Modification
During Porting

5.2.1 check_ drive()

The routine check_drive() is used to determine if the

user of Edison has access to the requested drive. This is

accomplished by requesting a listing of the files from the

host environment. All host operating systems give an error

response to this request when the drive is unavailable. It

is necessary to modify the source code to include the

request for the listing and the error message expected for

the host environment.

5.2.2 copy_file()

This routine is requested whenever Edison wishes to

copy an old file to a new file. This routine passes the

file names to the host environment with the copy command of

the host environment. Since this command syntax is not

consistent among all operating systems, it is necessary to

code a command specific to the target system into the rou-

tine when porting.

PAGE 40

5.2.3 get_diskcatalog()

This routine processes the list of files available on

the desired drive. This routine was the most difficult to

code. It is necessary to code the command to request the

list of files. This list must be directed into a file,

which is then read from by this routine. It is necessary to

modify the source code in this routine to include the loca-

tions of the file name, length of file in bytes, and access

availability.

5.2.4 rm_file()

This routine deletes the desired file from the drive.

It is necessary to code the host environment command for

file deletion into this routine. This routine then adds the

name of the desired file and submits the request to the host

environment.

5.2.5 protect_file()

This routine sets the protection flag to the desired

access status. When the protection flag is true, the file

is read-only and cannot be altered or deleted. This routine

requires the command syntax of the host environment command

to alter file attributes. Some host environments (eg. MS-

DOS) require a resident command file to be present (eg.

ATTRIB . EXE for MS-DOS).

PAGE 41

5.2.6 readx() and writex()

These routines read and write a character to the host

environment display. Each of these routines utilizes the

standard input/output routines of the C language. An

enhancement sometimes available to the C language in host

environments is a library called curses. If the curses

enhancements are available, then different input/output

functions are used in the implementation. Curses is used

because it provides full screen control in the host environ-

ment. It is necessary to use different function calls when

utilizing this library. For this reason, it is necessary to

tell these routines which routines to use..pa

5.3 Techniques Used During This Project

During this project it was desired to provide a simple

method to allow the kernel to be ported from one of the test

host environments to another. The goal was to have one

source code file for the kernel which required flags to be

set at the beginning of the code. In this manner, it was

easier to port the file from one environment to another and

also to better illustrate the routines which require modifi-

cation during porting. By setting the flags as shown in

Figure 2, it is possible to compile the kernel for the

desired host environment.

PAGE 42

Host Environment Flag Settings

MS-DOS #define MSDOS 1

UNIX System V #define UNIXSYSTEM 1

UNIX BSD4.3 #define UNIXSYSTEM 0

Ultrix #define UNIXSYSTEM 0

HCX/UX 3.0 #define UNIXSYSTEM 0

Flag Settings for Test Environments
Table 5.2

Because of desired file naming conventions, the Edison

system is invoked from any host environment system by the

command 'Edison'. The source code for this file reveals

that this is a simple routine which calls the kernel. The

kernel initializes the Edison system and processes the

command instructions until controlled shutdown or an abnor-

mal ending.

To increase the flexibility of the Edison system, a

default drive was encoded to allow for two data drives to be

accessed and still have the system utilities available to

the user. This drive and directory are defined in the

kernel as DEFAULTDRIVE. It is necessary to provide this

information to the kernel before compilation.

PAGE 43

5.4 Summary

This primary goal of this project was to provide a

kernel which could be easily ported to new computer environ-

ments. In this manner, a uniform environment would be

available to all Edison programs in all computer environ-

ments. This project achieved its goal by writing the kernel

in the high-level language C. Only seven routines require

modification to their logic in order to port the Edison

system to a new host environment.

PAGE 44

PAGE 45

REFERENCES

PAGE 46

[BH1] Hansen, Per Brinch. The Architecture of
Concurrent Programs, Prentice -Hall, 1977.

[BH2] Hansen, Per Brinch. Programming a Personal
Computer, Prentice -Hall, 1982.

[HEN] Henderson, John. Software Portability, Gower
Technical Press Limited, 1988.

[IBM] IBM Systems Journal, Volume 18, Number 1,
1979, p. 1.

[IEEE] IEEE Software, Posix Success Enhances CS's
Standards Leadership, January 1989, p. 108,131.

[K&R] Kernighan, Brian W. and Ritchie, Dennis M..
The C Programming Language, Prentice -Hall,
Englewood Cliffs, 1978.

[PET] Peterson, James and Silberschatz, Abraham.
Operating System Concepts, Addison-Wesley
Publishing, 1983.

[SCO] Scott, Terry. An Implementation of the KERMIT
Protocol Using the Edison System, Kansas State
University, 1985.

[WIL] Wilde, Martin. Solo32: A Concurrent Pascal
Operating System with Unix Interfaces, Kansas
State University, 1984.

PAGE 47

PAGE 48

PAGE 49

APPENDIX A

KERNEL FUNCTIONS REQUIRING MODIFICATION

PAGE 50

/***
This is a new procedure to be passed to the operating system
as a procedure parameter. It is used to determine if a

directory input by the user is a valid directory. The
parameter 'value' in the following sample call is returned
TRUE if the directory exists and the user has access to it,

and FALSE otherwise.

drive[driveno][x] = '\0';

#if TRACE >= 1

fp = fopen("log11,nall);
if (printit)

fprintf(fp, "In check_drive P=%ld s=%ld t=%ld\n",p, s,

t);
fclose(fp);
#endif
s -= 82;
c = st[s + 1];
driveno = st[s + 81]; /* get the drive number */

/* Copy the directory to be checked into a string
while ((x <= 80) && (((c >= 'a') && (c <= 'z'))

((c >= '-') && (c <= '9'))
((c >= 'A') && (c <= 'Z'))

c == 1/1 II c
== '\\' II

(drive[driveno][x++] = c;
c = st[s + 1 + x];

)

#ifdef UNIXSYSTEM
if (drive[driveno][x-1] != '/')

drive[driveno][x++] = 7';
#endif
#ifdef MSDOS
if (drive[driveno][x-1] != '\\')

drive[driveno][x++] = '\\';
#endif

the directory to be checked into a string
while ((x <= 80) && (((c >= 'a') && (c <= 'z'))

C ==

((c >= '-') && (c <= '9'))
((c >= 'A') && (c <= 'Z'))

c == 1/1 II c
== '\\' II

(drive[driveno][x++] = c;
c = st[s + 1 + x];

)

#ifdef UNIXSYSTEM
if (drive[driveno][x-1] != '/')

drive[driveno][x++] = 7';
#endif
#ifdef MSDOS
if (drive[driveno][x-1] != '\\')

drive[driveno][x++] = '\\';
#endif

I : I)) C ==

*/

I : I))

drive[driveno][x] = '\0';

*/

PAGE 51

/* Get a temporary file and direct a directory listing */

/* for the directory to be checked into the temporary file*/
gettempfile(&fname);
#ifdef MSDOS
sprintf(systemcall, "dir %s > %s", &drive[driveno][0],
fname);
#else
sprintf(systemcall, "ls -1 %s > %s 2>&1",
&drive[driveno][0], fname);
#endif
#if TRACE < 0

printf("%s - Called from check_drive()\n",systemcall);
#endif
system(systemcall);

/* Open the temporary file and read the first line */
fp = fopen(fname, "r");
#ifdef MSDOS
fscanf(fp, "%["\n]s", line);
fscanf(fp, "%["\n]s", line);
fscanf(fp, "%["\n]s", line);
fscanf(fp, "%["\n]s", line);
fscanf(fp, "%["\n]s", line);
if (feof(fp))

st[st[s + 82]] = FALSE;
else

st[st[s + 82]] = TRUE;
#else
fscanf(fp, "%["\n]s", line);

/* If the directory exists and the user has access, the */

/* first line will have "total " for the first six
characters */

if (strncmp(line, "total ", 6))

st[st[s + 82]] = FALSE;
else

st[st[s + 82]] = TRUE;
#endif
/* close and remove the temporary file */

fclose(fp);
#ifdef MSDOS
sprintf(systemcall, "erase %s > NUL", fname);
#else
sprintf(systemcall, "rm %s", fname);
#endif
#if TRACE < 0

printf("%s - Called from check drive()\n",systemcall);
#endif
system(systemcall);

PAGE 52

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
)

/**
This is a new procedure to be passed to the operating
system as a procedure parameter. It is used to copy files.

proc k_copy_file(filel, file2: overname; drivel,
drive2: int);

parameters at procedure entry:
st[s - 0] : drive2 (int)
st[s - 1] : drivel (int)
st[s - 13] : file2 array [1:12] (char)
st[s - 25] : filel array [1:12] (char)

***/
copy_file()
{ char file1[13], file2[13];

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In copy_file P=%ld s=%ld t=%ld\n",p, s, t);
fclose(fp);
#endif
s -= 26;

/* if the first file is "*" then copy all */
/* files from directory 1 to directory 2 */

if (st[s + 1] == '*')
#ifdef MSDOS

sprintf(systemcall, "copy %s* %s > NUL", &drive[st[s +

25]][0],
&drive[st[s + 26]][0]);

#else
sprintf(systemcall, "cp %s* %s", &drive[st[s + 25]][0],
&drive[st[s + 26]][0]);
#endif
else

(getfilename(filel, s + 1);
getfilename(file2, s + 13);

#ifdef MSDOS

PAGE 53

sprintf(systemcall, "copy %s%s %s%s > NUL", &drive[st[s +

25]][0], filel,
&drive[st[s + 26]][0], file2);

#else
sprintf(systemcall, "cp %s%s %s%s", & drive [st [s+

25]][0], filel,
&drive[st[s + 26]][0], file2);

#endif

#if TRACE < 0

printf("%s - Called from copy_file()\n",systemcall);
#endif
system(systemcall);
#if TRACE >= 2

register_ dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
}

/***
This is a new procedure to be passed to the operating
system as a procedure parameter. It is used to get the
directory of a directory which is used as a virtual foppy
disk.

proc k_get_diskcatalog(var catalog: overcatalog;
drive: int);

parameters at procedure entry:

st[s 0] drive (int)
st[s - 1] : catalog address of catalog variable

The catalog
size:
contents:
unused: filler;

has the form:
int;

table;

table has the form:
array [1:47] (item)

item has the form:
title: name;
attr: attributes

attributes
address:
length:
protected:

has the form:
int;

position;
bool;

PAGE 54

position
pages,

has the form:
words: int;

So from a base address of base, the overall structure on the
stack looks like:
st[base + 0] : size "number of item entries in catalog"

itemlbase
st[itemlbase
st[itemlbase

"address
st[itemlbase +
st[itemlbase +

st[itemlbase
item2base
st[item2base
st[item2base

"address
st[item2base + 13]
st[item2base + 14)

st[item2base
item47base

base 1

0] title
12] attr.address

is not needed without real disks to map"
13] : attr.position.pages "# of pages"
14] : attr.position.words

"# words
15]

i tem 1ba se
0]

12]
is not needed without
: attr.position.pages
: attr.position.words

"# words
15]
item46base

on last page"
attr.protected

16
title

attr.address
real disks to map"
"# of pages"

on last page"
attr.protected

16
***/
#ifdef MSDOS /* MS-DOS version of
get_diskcatalog */
get_diskcatalog()
(long itemaddr, value, count=0;
FILE *fp, *fopen();
char *fname, line[100], *ptr, *login;
integer w;

#if TRACE >= 1

fp = fopen("log","a");
if (printit) fprintf(fp, "In get_diskcatalog P=%ld s=%ld

t=%ld\n",p, s, t);
fclose(fp);
#endif
s -= 2;

itemaddr = st[s + 1] + 1;

gettempfile(&fname);
w = strlen(drive[st[s+2]][0]);
strncat(strcpy(systemcall, "dir "), &drive[st[s + 2]][0],w);
strcat(strcat(systemcall, " > "), fname);
#if TRACE < 0

printf("%s - Called from get_diskcatalog()\n",systemcall);
#endif
system(systemcall);

PAGE 55

fp = fopen(fname, "r");
for (w=1; w<5; w++) (/* Remove the first 4

lines of the directory */
fscanf(fp,"%["\n]s",line);
fgetc(fp);
)

while (!(feof(fp)))
{ fscanf(fp,"%["\n]s",line);
fgetc(fp);
if ((count < 47) && (strncmp(&line[10],"File(s)",7)) &&

(strncmp(&line[13],"<DIR>",5)) &&
(!(feof(fp))) && (strcmp(fname, &line[0])))
{

for (w=0; line[w]!='\0'; w++)
/* Make all files lower case */
line[w] = tolower(line[w]);

st[itemaddr + 15] = FALSE;
ptr = &line[13];
value = 0;
while ((*ptr < '0') I I

(*ptr > '9'))
ptr++;

while ((*ptr >= '0') && (*ptr <= '9'))
{ value = value * 10 + (*ptr - '0');
ptr++;
)

value = value / 2;
st[itemaddr + 13) = value / PAGESIZE + 1;
if (!(st[itemaddr + 14] = value % PAGESIZE))

{ st[s + 13] -= 1;
st[s + 14] = PAGESIZE;
)

value = 0;

while ((value < 12) && (line[0 + value] != '\0'))
{ st[itemaddr + value] = line[0 + value];
value++;
)

while (value < 12)
st[itemaddr + value++] = ";

count++;
itemaddr += 16;
)

)

st[st[s + 1]] = count;
fclose(fp);
strcat(strcpy(systemcall, "erase "), fname);
#if TRACE < 0

printf("%s - Called from get_diskcatalog()\n",systemcall);
#endif
system(systemcall);
#if TRACE >= 2

PAGE 56

register_dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
)

#endif

#ifdef UNIXSYSTEM

/* UNIXSYSTEM Version of get_diskcatalog()

get_diskcatalog()
{ integer itemaddr, value, count=0;
FILE *fp, *fopen();
char *fname, line[100], *ptr, *login;

*/

#if TRACE >= 1

fp = fopen("log","a");
if (printit)

fprintf(fp, "In get_diskcatalog P=%ld s=%ld t=%ld\n",p,
s, t);

fclose(fp);
#endif
s -= 2;

/* find the name of the user */
login = getpwuid(getuid())->pw_name;

/* set itemaddr to point to the first item in catalog */
itemaddr = st[s + 1] + 1;

/* Get a temporary file
/* for the directory to
gettempfile(&fname);
sprintf(systemcall, "ls
fname);
#if TRACE < 0

printf("%s - Called
#endif
system(systemcall);

and direct a directory listing */
be checked into the temporary file*/

-1 %s > %s", &drive[st[s + 2]][0],

from get_diskcatalog()\n",systemcall);

/* Open the temporary file and skip over the first line */
fp = fopen(fname, "r");
fscanf(fp,"%["\n]s",line);
fgetc(fp);

/* read in the first line of the directory listing
fscanf(fp,"%["\n]s",line);
fgetc(fp);

*/

PAGE 57

/***
for each line in the directory listing put the
file in the catalog if it meets certain criteria
criteria
catalog only holds 47 files. Each line must represent a
file. "line[0] == '-' represents a file. The filename must
be less or equal to 12 characters in length. Don't include
the kernel's temporary file. Files are ignored if the user
does not have read access.
**/
while (!(feof(fp)))

(if ((count < 47) &&
(line[0] == '-') &&
(strlen(&line[45]) <= 12) &&
(strcmp(fname, &line[45])) &&
((strncmp(&line[14], login, strlen(login))) ?

(line[7] == 'r') : (line[1] == 'r')))
{

if (strncmp(&line[14], login, strlen(login)) == 0)

st[itemaddr + 15] = (line[2] == '-')
else

st[itemaddr + 15] = (line[8] == '-')

/* read the size of the file in bytes */
ptr = &line[20];
value = 0;

while ((*ptr < '0') II (*ptr > '9'))
ptr++;

while ((*ptr >= '0') && (*ptr <= '9'))
{ value = value * 10 + (*ptr - '0');
ptr++;

/* convert from bytes to words (two byte words) */
value = value / 2;

/* determine number of pages and number of
/* words on last page from the number of words
st[itemaddr + 13] = value / PAGESIZE + 1;
if (!(st[itemaddr + 14] = value % PAGESIZE))

(st[s + 13] -= 1;
st[s + 14] = PAGESIZE;

*/
*

/* copy the filename */
value = 0;
while ((value < 12) && (line[45 + value] != '\0'))

{ st[itemaddr + value] = line[45 + value];
value++;

PAGE 58

/* fill the unused part of the name with blanks */
while (value < 12)

st[itemaddr + value++] = ";
/* increment the count and point to the next item */
count++;
itemaddr += 16;

/* read the next line */
fscanf(fp,"%[-\n]s",line);
fgetc(fp);
}

/* put the number of items in the catalog
st[st[s + 1]] = count;

*/

/* close and remove the temporary file */
fclose(fp);
sprintf(systemcall, "rm %s", fname);
#if TRACE < 0

printf("%s - Called from get_diskcatalog()\n",systemcall);
#endif
system(systemcall);
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif

#endif /* UNIXSYSTEM Version */

/***
This is a new procedure *to be passed to the operating
system as a procedure parameter. It is used to delete
files. If the file to be removed is 'halt.command' and the
directory number is number 5 (an invalid drive), then the
kernel exits gracefully (ie the user has typed in the
command 'exit').

proc k_rm_file(filel: overname; drivel: int);
parameters at procedure entry:

st[s 0] drivel (int)
st[s - 12] : filel array [1:12] (char)
**/
rm file()

PAGE 59

(char file[13];

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In rm_file P=%ld s=%ld t=%ld \n", p, s, t);
fclose(fp);
#endif
s -= 13;
getfilename(file, s + 1);
if ((strcmp(file, "halt.command")

quit(0);
#ifdef MSDOS
sprintf(systemcall,
file);
#endif
#ifdef UNIXSYSTEM
sprintf(systemcall,
#endif
#if TRACE < 0

printf("%s - Called
#endif
system(systemcall);
#if TRACE >= 2

register_ dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
)

== 0) && (st[s+13] == 5))

"erase %s%s > NUL", &drive[st[s+13]][0],

"rm %s%s", &drive[st[s+13]][0], file);

from rm_file()\n",systemcall);

/***
This is a new procedure to be passed to the operating system
as a procedure parameter. It is used to protect and unpro-
tect files.

proc k_protect_file(title: overname; drive: int;
value: bool))

parameters at procedure entry:
st[s - 0] : value (bool)
TRUE:protect FALSE:unprotect
st[s - 1] . drive (int)
st[s - 13] : title array [1:12] (char)
**/
protect_file()
(char file[13];

#if TRACE >= 1

FILE *fp, *fopen();

PAGE 60

fp = fopen("log","a");
if (printit)

fprintf(fp, "In protect_file P=%ld s=%ld t=%ld\n",p, s,
t);

fclose(fp);
#endif
s -= 14;
getfilename(file, s + 1);
#ifdef MSDOS /* Requires MS-DOS version 3.x ATTRIB.EXE */
sprintf(systemcall, "attrib %s %s%s", (st[s+ 14] ? "+R" :

ii_RII),

&drive[st[s+13]][0], file);
#endif
#ifdef UNIXSYSTEM
sprintf(systemcall, "chmod %s %s%s", (st[s + 14] ? "ugo-w" :

"u+w"),
&drive[st[s+13]][0], file);
#endif
#if TRACE < 0

printf("%s - Called from protect _file()\n",systemcall);
#endif
system(systemcall);
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
)

/***/
/* The procedure readx has been rewritten. */
/* It no long works directly with the keyboard. Instead */
/* it simply calls routines to get the key value. */
/***/
readx(value)
char *value;{
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In readx P=%ld s=%ld t=%ld \n",p, s, t);
fclose(fp);
#endif

PAGE 61

#ifdef UNIXSYSTEM
*value = getch();
#else
*value = getchar();
#endif /* Translate Unix new -
line to */
if (*value==10) *value=13; /* Edison newline */

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(1);
#endif
)

/
/
/***/
writex(value)
integer value;
{

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In writex P=%ld s=%ld t=old %c (%ld)\n"
s, t, value,value);

fclose(fp);
#endif

/***/
/* The procedure write has been rewritten. */

/* It no long works directly with the screen memory. */

/* Instead it simply calls routines to place the */

* character value. */

* It has also been renamed to writex. */

#ifdef UNIXSYSTEM
addch(value);
refresh();
#else
printf("%c",value);
#endif
#if TRACE >= 2

PI

PAGE 62

register_dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
)

PAGE 63

APPENDIX B

THE EDISON SYSTEM KERNEL

PAGE 64

#define MSDOS 1

#include <stdio.h>

#ifdef UNIXSYSTEM
#include
#include
#include
#endif

<pwd.h>
<signal.h>
<curses.h>

typedef long integer;
compiler */

#define OPSYSCODE 12514

/* Define length of integer for

/* Size of Operating System */

#define DEFAULTDRIVE "c:\\edison\\"
/*
DEFAULTDRIVE is the directory that is checked last for
the programs the user tries to execute. It is the 'third'
floppy disk drive.
*/

#define
/*

TRACE
TRACE
TRACE
TRACE
TRACE
TRACE

0

level
level
level
level
level

-1 - Host system calls
0 - No trace statements
1 - Procedure entry/exit
2 - Register dump
3 - Stack dump

All but one opcode procedures and many other procedures have
the trace statements. Newline is the only opcode procedure
without the trace statements because it has been removed
from the output of the compiler as an optimization. All
trace and debugging statements are printed to a file named
log in order to not interfer with running the system.
*/

#define
#define
#define
#define
#define
#define

TRUE 1

FALSE 0

FILLERWORD 0

PAGESIZE 512
SECTORLENGTH 64
MINADDR 999

/* 20 communication channes have been included
for 'distributed' programs. */

#define NUMCOMMCHANNELS 20

PAGE 65

#define MAXADDR 57342

#ifdef MSDOS
typedef long huge store[MAXADDR + NUMCOMMCHANNELS + 1];
#else
typedef int store[MAXADDR + NUMCOMMCHANNELS + 1];
#endif

/* Here are the various opcodes that are to
/* be executed, and their respective value
#define ADD4 1792
#define ALSO4 1795
#define AND4 1798
#define ASSIGN4 1801
#define BLANK4 1804
#define COBEGIN4 1807
#define CONSTANT4 1810
#define CONSTRUCT4 1813
#define DIFFERENCE4 1816
#define DIVIDE4 1819
#define DO4 1822
#define ELSE4 1825
#define ENDCODE4 1828
#define ENDLIB4 1831
#define ENDPROC4 1834
#define ENDWHEN4 1837
#define EQUAL4 1840
#define FIELD4 1843
#define GOTO4 1846
#define GREATER4 1849
#define IN4 1852
#define INDEX4 1855
#define INSTANCE4 1858
#define INTERSECTION4 1861
#define LESS4 1864
#define LIBPROC4 1867
#define MINUS4 1870
#define MODULO4 1873
#define MULTIPLY4 1876
#define NEWLINE4 1879
#define NOT4 1882
#define NOTEQUAL4 1885
#define NOTGREATER4 1888
#define NOTLESS4 1891
#define OR4 1894
#define PARAMARG4 1897
#define PARAMCALL4 1900
#define PROCARG4 1903
#define PROCCALL4 1906

*/
*/

PAGE 66

#define PROCEDURE4 1909
#define PROCESS4 1912
#define SUBTRACT4 1915
#define UNION4 1918
#define VALSPACE4 1921
#define VALUE4 1924
#define VARIABLE4 1927
#define WAIT4 1930
#define WHEN4 1933
#define ADDR4 1936
#define HALT4 1939
#define OBTAIN4 1942
#define PLACE4 1945
#define SENSE4 1948
#define ELEMASSIGN4 1951
#define ELEMVALUE4 1954
#define LOCALCASE4 1957
#define LOCALSET4 1960
#define LOCALVALUE4 1963
#define LOCALVAR4 1966
#define OUTERCALL4 1969
#define OUTERCASE4 1972
#define OUTERPARAM4 1975
#define OUTERSET4 1978
#define OUTERVALUE4 1981
#define OUTERVAR4 1984
#define SETCONST4 1987
#define SINGLETON4 1990
#define STRINGCONST4 1993

store st;

#define NONE 0

#define NL 10
#define SP '

1

#define ESC 27
#define pdpll FALSE
#define MAXROW 24
#define MAXCOLUMN 80
#define TEXTLENGTH 80
#define NAMELENGTH 12
#define SETLENGTH 8

#define SETLIMIT 127
#define CURSORNO 0

#define ERASENO 1

#define DISPLAYNO 2

#define ACCEPTNO 3

#define PRINTNO 4

#define GETNO 5

PAGE 67

#define PUTNO 6

#define CHECKDRIVENO 7

#define COPYNO 8

#define GETCATALOGNO 9

#define RMNO 10
#define PROTECTNO 11
#define PARAMLENGTH 27
#define MAXPARAM 12

/* #define PARAMLENGTH 17
#define MAXPARAM 7 */

#define MAXPROC 6

typedef char text[TEXTLENGTH + 1];
typedef char name[NAMELENGTH + 1];
typedef struct
(integer settype2[8];
) settypel;

struct procstate
{ integer bx, sx, tx, px;
);
struct procstate q[MAXPROC + 1];

integer linenumber;

integer this, tasks, stacktop, progtop, b, s, t,

char drive[3][81], systemcall[193];
/* drive is an array of directories that are
/* being used as virtual floppy disks
/* drive[0] and drive[1] are user directories
/* drive[2] is the default drive

loadset(addr, value)
integer addr;
settypel *value;
{ integer i=0;
while (i<SETLENGTH)

value->settype2[i] =
st[addr + i];
i++;

*1
*/
*/
*1

p1 printit;

storeset(addr, value)

PAGE 68

integer addr;
settypel *value;
(integer i=0;
while (i<SETLENGTH)

{

st[addr + i] =
value->settype2[i];
i++;
}

)

loadname(addr, value)
integer addr; name value;
{ integer i = 0;

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In loadname P=%ld s=%ld t=%ld %ld '%s
s, t, addr, value);

fclose(fp);
#endif

while (i < NAMELENGTH - 1)

{ value[i] = st[addr + i];
i++;
)

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(1);
#endif
)

I

findname(id)
name id;
{ integer addr;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In findname P=%ld s=%ld t=%ld '%s'\n",
t, id);

fclose(fp);
#endif

\n",p,

ID, s,

if (tasks == 1)

PAGE 69

addr = t + 1;

else
addr = progtop + 1;

while (addr < p)

(loadname(addr, id);
addr += NAMELENGTH;

addr += (st[addr] / 2);

)

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(1);
#endif
)

/***/
/* The procedure write has been rewritten. */
/* It no long works directly with the screen memory. */
/* Instead it simply calls routines to place the */
/* character value. */
/* It has also been renamed to writex. */
/***/
writex(value)
integer value;
{

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In writex P=%ld s=%ld t=%ld %c (%ld)\n", p,
s, t, value,value);

fclose(fp);
#endif

#ifdef UNIXSYSTEM
addch(value);
refresh();
#else
printf("%c",value);
#endif

PAGE 70

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
)

/***/
/* The procedure write has been modified. */

/***/
writechar(value)
integer value;{
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In writechar P=%ld s=%ld t=%ld %c (%ld)\n",
p, s, t,value,value);

fclose(fp);
#endif

writex(value);

if (value == NL) writex(13);
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
)

writetext(value)
text value;
(integer i = 0; char c;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In writetext P=%ld s=%ld t=%ld '%s'\n",
s, t,value);

fclose(fp);
#endif

PI

PAGE 71

c = value[0];
while (c != '#')

{ writechar(c);
c = value[++i];
)

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(1);
#endif
)

writeint(value)
integer value;
{ char no[7];
integer i;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In writeint P=%ld s=%ld t=%ld %ld\n",
t,value);

fclose(fp);
#endif

if (value == 0)

{ i = 1; no[1] = '0';)
else

if (value > 0)

{ i = 0;

while (value > 0)

{ no[++i] = value % 10
+ '0';
value= value / 10;
)

)

while (i > 0)

writechar(no[i--]);

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(1);
#endif
)

p, s,

writename(value)

PAGE 72

char value[];
{ integer i = 0; char c;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In writename P=%ld s=%ld t=%ld '%s'\n",
s, t,value);

fclose(fp);
#endif

while (i < NAMELENGTH - 1)

c = value[i++];
if (c != SP)

writechar(c);
}

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(1);
#endif

ID,

/***/
/* The procedure readx has been rewritten. */
/* It no long works directly with the keyboard. Instead */
/* it simply calls routines to get the key value. */
/***/
readx(value)
char *value;{
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In readx P=%ld s=%ld t=%ld \n",p, s, t);
fclose(fp);
#endif

PAGE 73

#ifdef UNIXSYSTEM
*value = getch();
#else
*value = getchar();
#endif /* Translate Unix new -
line to */
if (*value==10) *value=13; /* Edison newline */

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(1);
#endif
)

pausex()
{ char response;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In pausex P=%ld s=%ld t=%ld\n",p, s, t);
fclose(fp);
#endif
writetext(
"push return to continue#");

readx(&response);
writechar(NL);
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(1);
#endif
}

stop(lineno, reason)
integer lineno; text reason;
{ name id;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In stop P=%ld s=%ld t=%ld %ld
t, lineno, reason);

fclose(fp);
#endif

%s'\n",p, s,

PAGE 74

findname(id);
writechar(NL);
writename(id);
writetext(" line #");

writeint(lineno);
writechar(SP);
writetext(reason);
writechar(NL);

reboot();
#if TRACE >= 2

register_ dump();
#endif
#if TRACE >= 3

stack_dump(30);
#endif
)

/* The procedures processor_trap, instruction_trap
/* and power trap are no longer needed.

*/
*/

processlimit(lineno)
integer lineno;{
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In processlimit P=%ld s=%ld t=%ld %ld\n",p,
s, t,lineno);

fclose(fp);
#endif
stop(lineno,
"process limit exceeded#");

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(1);
#endif
)

variablelimit(lineno)
integer lineno;(
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In variablelimit P=%ld s=%ld t=%ld

PAGE 75

%ld\n",p, s, t,lineno);
fclose(fp);
#endif
stop(lineno,
"variable limit exceeded#");

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(1);
#endif
)

rangeerror(lineno)
integer lineno;{
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In rangeerror P=%ld s=%ld t=%ld %ld\n",p,
s, t, lineno);

fclose(fp);
#endif
stop(lineno,
"range limit exceeded#");
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(1);
#endif
)

callerror(lineno){
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In callerror P=%ld s=%ld t=%ld %ld\n",p, s,
t, lineno);

fclose(fp);
#endif
stop(lineno,
"invalid program call#");
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(1);

PAGE 76

#endif
)

#define MAXCODE 12288
moveprogram()
(integer m;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In moveprogram P=%ld s=%ld t=%ld \n",
t);

fclose(fp);
#endif

m = (st[s - MAXCODE + 1] / 2) +

NAMELENGTH;
s = s - MAXCODE - NAMELENGTH;

t -= m;
while (m > 0)

(st[t + m] = st[s + m];

111--;
)

#if TRACE >= 1

(FILE *fp, *fopen();
integer x=1;
fp = fopen("log", "a");

fprintf(fp, " moving code for program : ");

while (x <= NAMELENGTH)
fprintf(fp, "%c", st[t + x++]);

fprintf(fp, " starting at %ld (t+l)\n", t+1);
fclose(fp);
)

#endif

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(1);
#endif
)

P, s,

/***
The new version of loadprogram sets up the stack in order to

PAGE 77

to call the procedure get. get has already been modified to
read a page from a Unix file. So loadprogram only needs to
call get multiple times and read in the entire file.
**/
loadprogram()
{ integer i;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log11,11a11);
if (printit)

fprintf(fp, "In loadprogram P=%ld s=%ld \n",p,
fclose(fp);
#endif
st[s + 1] = 'o';
st[s + 2] = 'p';
st[s + 3] = 's';
st[s + 4] = 'y';
st[s + 5] = 's';
st[s + 6] = 'c';
st[s + 7] = 'o';
st[s + 8] = 'd';
st[s + 9] = '.';
st[s + 10] = 'p';
st[s + 11] = '1';
st[s + 12] = 'n';

st[s + 13] = 2; /* Drive number */
st[s + 14] = 1; /* Page number */

i = OPSYSCODE / 2;
st[s + 15] = i / PAGESIZE + 1; /* st[s + 15] =
pages */
if (!(st[s + 16] = i % PAGESIZE)) /* st[s + 16] =

s);

number of

number of
words */

(st[s + 15] -= 1; /* on
the last page */

st[s + 16] = PAGESIZE;
)

st[s + 17] = s + 18 ; /* Address to load the page */
while (st[s + 14] <= st[s + 15])

(s += 17;
get();
st[s + 14] = st[s + 14] + 1;
st[s + 17] = st[s + 17] + PAGESIZE;
)

i = NAMELENGTH + 1;

while (--i > 0)

st[s + 5 + i] = st[s + i];
s += MAXCODE + 17; /* patch */
moveprogram();

PAGE 78

s = s - 17 + NAMELENGTH;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(1);
#endif
)

resume(){
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In resume P=%ld s=%ld t=%ld\n",p, s, t);
fclose(fp);
#endif
b = q[this].bx;
s = q[this].tx;
t = q[this].tx;
p = q[this].px;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

preempt()(
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In preempt P=%ld s=%ld t=%ld\n",p, s, t);
fclose(fp);
#endif
q[this].bx = b;
q[this].tx = s;
q[this].tx = t;
q[this].px = p;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

PAGE 79

/***/
/* This procedure has been slightly modified. */
/* New kernel calls have to be defined as parameters */
/* to the operating system. Also the default drive */
/* is initialized. */
/***/
initialize()(
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In initialize P=%ld s=%ld t=%ld\n",p, s, t);
fclose(fp);
#endif

#ifdef UNIXSYSTEM
initsignals();
initcurses();
#endif

this = 1;
tasks = 1;
b = MINADDR + PARAMLENGTH;

st[b - 27] = pdpll;

st[b - 26] = MAXROW;
st[b - 25] = MAXCOLUMN;
st[b - 23] = CURSORNO;
st[b - 21] = ERASENO;
st[b - 19] = DISPLAYNO;
st[b - 17] = ACCEPTNO;
st[b - 15] = PRINTNO;
st[b - 13] = GETNO;
st[b - 11] = PUTNO;
st[b - 9] = CHECKDRIVENO;
st[b - 7] = COPYNO;
st[b - 5] = GETCATALOGNO;
st[b - 3] = RMNO;
st[b - 1] = PROTECTNO;
stropy(&drive[2][0], DEFAULTDRIVE);
s = b + 4;
st[s] = NONE;

t = MAXADDR;
loadprogram();
p = t + NAMELENGTH + 2;

PAGE 80

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(1);
#endif

/***/
/* This procedure has been rewritten.
/* If curses is being used the cursor is moved to
/* correct screen coordinates.
/* else a message is printed saying this function is

/* is no longer operative.
/***/
cursor()
f integer row, column;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In cursor P=%ld s=old t=%ld\n",p, s, t);
fclose(fp);
#endif

s -= 2;
row = st[s + 1];
column = st[s + 2];

#ifdef UNIXSYSTEM
move(row - 1, column - 1);
refresh();
#else
printf("\ncursor is now an inoperative function\n");
#endif
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif

/***/
/* This procedure has been rewritten. */

/* If curses is being used the function is performed */
/* else a message is printed saying this function is */

/* is no longer operative. */

PAGE 81

/* It has also been renamed to kerase. */
/***/

kerase(){
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In kerase P=%ld s=%ld t=%ld\n",p, s, t);
fclose(fp);
#endif

#ifdef UNIXSYSTEM
clearok(curscr, TRUE);
clrtobot();
refresh();
clearok(curscr, FALSE);
#else
printf("\nerase is now a inoperative fuction\n");
#endif
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
)

display()
{ char value;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In display P=%ld s=old t=%ld %c\n",p, s, t,
st[s]);

fclose(fp);
#endif
value = st[s];
writex(value);
s -= 1;

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
)

PAGE 82

acceptx()
{ integer addr; char temp;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In acceptx P=%ld s=%ld t=%ld \n",p, s, t);
fclose(fp);
#endif
addr = st[s--];
readx(&temp);
st[addr] = temp;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
)

/***/
/* This procedure has been rewritten. */
/* Instead of working with a directly printer, the */

/* character to be printed is sent to a file named */

/* printerfile. */
/***/
print()
{ FILE *fp, *fopen();

#if TRACE >= 1

fp = fopen("log","a");
if (printit)

fprintf(fp, "In print P=%ld s=%ld t=%ld\n",p, s, t);
fclose(fp);
#endif

fp = fopen("printerfile",
fprintf(fp,"%c",st[s]);
fclose(fp);

s--;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
)

"a");

PAGE 83

/***
Here is the new version of the procedure get.

proc k_read_page(title: overname; drive, pageno: int;
file _size: overposition; var block: overpage);
parameters at procedure entry:
st[s - 0] : block address of block accepting page
st[s - 1] : file_size.words (int)
st[s - 2] : file_size.pages (int)
st[s - 3] : pageno (int)
st[s - 4] : driveno (int)
st[s - 16] : title array [1:12] (char)
**/
get()
{ char fullname[94], fname[13], word0, wordl;
FILE *fp, *fopen();
integer words, wordsread=0, addr;

#if TRACE >= 1

fp = fopen("log","a");
if (printit)

fprintf(fp, "In get P=%ld s=%ld t=%ld\n",p, s, t);
fclose(fp);
#endif
s -= 17;

/* Get the complete path and name of the file */
getfilename(fname, s + 1);
sprintf(fullname, "%s/%s", &drive[st[s+13]][0], fname);

/* Open and seek the correct page of the file */
fp = fopen(fullname, "r");
fseek(fp, (st[s + 14] - 1) * (PAGESIZE * 2), 0);

/* Determine the number of words (two byte words) to read
*/

words = (st[s + 14] < st[s + 15]) ? PAGESIZE : st[s + 16];
/*(pageno < # pages in file) ? 512 : # words on

last page*/

/* addr is where the page is to be read to */
addr = st[s + 17];

/* Read the correct number of words */
while (wordsread < words)

{ integer temp;
fscanf(fp, "%c%c", &word0, &wordl);
temp = Oxff & ((int)(word0));

PAGE 84

temp = (temp << 8) ((Oxff & ((int)(wordl)));
st[addr + wordsread++] = (temp & 0x8000) ? (temp (

Oxffff0000) : temp;
)

fclose(fp);

/* Fill the rest the page with FILLERWORD.
/* This was originally used for debugging purposes.

while (wordsread < PAGESIZE)
st[addr + wordsread++] = FILLERWORD;

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
)

/***
Here is the new version of the procedure put.

proc k write_page(title: overname; drive, pageno: int;
file _size: overposition; var block: overpage);
parameters at procedure entry:
st[s - 0] : block address of block holding page
st[s - 1] : file_size.words (int)
st[s - 2] : file_size.pages (int)
st[s - 3] : pageno (int)
st[s - 4] : driveno (int)
st[s - 16] : title array [1:12] (char)

**/
put()
{ char fullname[94], fname[13], word[2];
FILE *fp, *fopen();
integer words, wordsput = 0, addr;

#if TRACE >= 1

fp = fopen("log","a");
if (printit)

fprintf(fp, "In put P=%ld s=old t=%ld\n",p, s, t);
fclose(fp);
#endif
s -= 17;

/* Get the complete path and name of the file */
getfilename(fname, s + 1);
sprintf(fullname, "%s/%s", &drive[st[s+13]][0], fname);

/* Open and seek the correct page of the file */

PAGE 85

fp = fopen(fullname, "r+");
fseek(fp, (st[s + 14] - 1) * (PAGESIZE * 2), 0);

/* Determine the number of words (two byte words) to write
*/
words = (st[s + 14] < st[s + 15]) ? PAGESIZE : st[s + 16];

/*(pageno < # pages in file) ? 512 : # words on
last page*/

/* addr is where the page is to be written from */

addr = st[s + 17];

/* Write the correct number of words */
while (wordsput < words)

{ word[1] = st[addr + wordsput];
word[0] = st[addr + wordsput++] » 8;
fprintf(fp,"%c%c", word[0], word[1]);
)

fclose(fp);
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
)

/***
This is a new procedure to be passed to the operating system
as a procedure parameter. It is used to determine if a

directory input by the user is a valid directory. The
parameter 'value' in the following sample call is returned
TRUE if the directory exists and the user has access to it,
and FALSE otherwise.

proc k_ checkdrive(drivedir: overline; drive: int;
var value: bool);

parameters at procedure entry:
st[s - 0] : value * address of bool indicating if *

* drivedir is a valid directory *

st[s - 1] : drive * (int) drive number (1 or 2) *

st[s - 81] : drivedir * array [1:81] (char)
***/
check_drive()
{ integer x=0, driveno;
char c, *fname, line[100];
FILE *fp, *fopen();

#if TRACE >= 1

fp = fopen("log","a");

PAGE 86

if (printit)
fprintf(fp, "In check_drive P=%ld s=%ld t=%ld\n",p, s,

t);
fclose(fp);
#endif
s -= 82;
c = st[s + 1];
driveno = st[s + 81]; /* get the drive number */

/* Copy the directory to be checked into a string
while ((x <= 80) && (((c >= 'a') && (c <= 'z'))

((c >= '-') && (c <= '9'))
((c >= 'A') && (c <= 'Z'))

c == '/' II c == '\\' II c == 1:1))

{ drive[driveno][x++] = c;
c = st[s + 1 + x];
)

#ifdef UNIXSYSTEM
if (drive[driveno][x-1] != '/')

drive[driveno][x++] . '/';
#endif
#ifdef MSDOS
if (drive[driveno][x-1] != '\\')

drive[driveno][x++] = 1\\1;
#endif

drive[driveno][x] = '\0';

*/

/* Get a temporary file and direct a directory listing */

/* for the directory to be checked into the temporary file*/
gettempfile(&fname);
#ifdef MSDOS
sprintf(systemcall, "dir %s > %s", &drive[driveno][0],
fname);
#else
sprintf(systemcall, "ls -1 %s > %s 2>&1",
&drive[driveno][0], fname);
#endif
#if TRACE < 0

printf("%s - Called from check_drive()\n",systemcall);
#endif
system(systemcall);

/* Open the temporary file and read the first line
fp = fopen(fname, "r");
#ifdef MSDOS
fscanf(fp, "%[^\n]s", line);
fscanf(fp, "%[-\n]s", line);
fscanf(fp, "%["\n]s", line);
fscanf(fp, "%["\n]s", line);

*/

PAGE 87

fscanf(fp, "%r\n]s", line);
if (feof(fp))

st[st[s + 82]] = FALSE;
else

st[st[s + 82]] = TRUE;
#else
fscanf(fp, "%["\n]s", line);

/* If the directory exists and the user has access, the */
/* first line will have "total " for the first six

characters */
if (strncmp(line, "total ", 6))

st[st[s + 82]] = FALSE;
else

st[st[s + 82]] = TRUE;
#endif
/* close and remove the temporary file */

fclose(fp);
#ifdef MSDOS
sprintf(systemcall, "erase %s > NUL", fname);
#else
sprintf(systemcall, "rm %s", fname);
#endif
#if TRACE < 0

printf("%s - Called from check_drive()\n",systemcall);
#endif
system(systemcall);
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
)

/**
This is a new procedure to be passed to the operating
system as a procedure parameter. It is used to copy files.

proc k _copy_file(filel, file2: overname; drivel,
drive2: int);

parameters at procedure entry:
st[s - 0] : drive2 (int)
st[s - 1] : drivel (int)
st[s - 13] : file2 array [1:12] (char)
st[s - 25] : filel array [1:12] (char)

***/

PAGE 88

copy_file()
{ char filel[13], file2[13];

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In copy_file P=%ld s=%ld t=%ld\n",p, s, t);
fclose(fp);
#endif
s -= 26;

/* if the first file is "*" then copy all */
/* files from directory 1 to directory 2 */

if (st[s + 1] == 'lc')

#ifdef MSDOS
sprintf(systemcall, "copy %s* %s > NUL", &drive[st[s +

25]][0],
&drive[st[s + 26]][0]);

#else
sprintf(systemcall, "cp %s* %s", &drive[st[s + 25]][0],
&drive[st[s + 26]][0]);
#endif
else

(getfilename(filel, s + 1);
getfilename(file2, s + 13);

#ifdef MSDOS
sprintf(systemcall, "copy %s%s %s%s > NUL", &drive[st[s +

25]][0], filel,
&drive[st[s + 26]][0], file2);

#else
sprintf(systemcall, "cp %s%s %s%s", &drive[st[s +

25]][0], filel,
&drive[st[s + 26]][0], file2);

#endif
)

#if TRACE < 0

printf("%s - Called from copy_file()\n",systemcall);
#endif
system(systemcall);
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
)

/***
This is a new procedure to be passed to the operating

PAGE 89

system as a procedure parameter. It is used to get the
directory of a directory which is used as a virtual foppy
disk.

proc k_get_diskcatalog(var catalog: overcatalog;
drive: int);

parameters at procedure entry:

st[s
st[s

- 0] : drive (int)
- 1] : catalog address of catalog variable

The catalog has the form:
size: int;
contents: table;
unused: filler;

table has the form:
array [1:47] (item)

item has the form:
title: name;
attr: attributes

attributes has the form:
address: int;
length: position;
protected: bool;

position has the form:
pages, words: int;

So from a base address of base, the overall structure on the
stack looks like:
st[base + 0] : size "number of item entries in catalog"

itemlbase = base + 1

st[itemlbase + 0] : title
st[itemlbase + 12] : attr.address

"address is not needed without real disks to map"
st[itemlbase + 13] : attr.position.pages "# of pages"
st[itemlbase + 14] : attr.position.words

"# words on last page"
st[itemlbase + 15] : attr.protected
itemlbase = itemlbase + 16
st[item2base + 0] : title
st[item2base + 12) : attr.address

"address is not needed without real disks to map"
st[item2base + 13] : attr.position.pages "# of pages"
st[item2base + 14] : attr.position.words

"# words on last page"

PAGE 90

st[item2base + 15] : attr.protected
item47base = item46base + 16
***/
#ifdef MSDOS /* MS-DOS version of
get_diskcatalog */
get_diskcatalog()
{ long itemaddr, value, count=0;
FILE *fp, *fopen();
char *fname, line[100], *ptr, *login;
integer w;

#if TRACE >= 1

fp = fopen("log","a");
if (printit) fprintf(fp, "In get_diskcatalog P=%ld s=%ld

t=%ld\n",p, s, t);
fclose(fp);
#endif
s -= 2;
itemaddr = st[s + 1] + 1;

gettempfile(&fname);
w = strlen(drive[st[s+2]][0]);
strncat(strcpy(systemcall, "dir "), &drive[st[s + 2]][0],w);
strcat(strcat(systemcall, " > "), fname);
#if TRACE < 0

printf("%s - Called from get_diskcatalog()\n",systemcall);
#endif
system(systemcall);
fp = fopen(fname, "r");

for (w=1; w<5; w++) (/* Remove the first 4

lines of the directory */
fscanf(fp,"%["\n]s",line);
fgetc(fp);
)

while O(feof(fp)))
(fscanf(fp,"%["\n]s",line);
fgetc(fp);
if ((count < 47) && (strncmp(&line[10],"File(s)",7)) &&

(strnomp(&line[13],"<DIR>",5)) &&
(!(feof(fp))) && (strcmp(fname, &line[0])))
{

for (w=0; line[w]!='\0'; w++)
/* Make all files lower case */

line[w] = tolower(line[w]);
st[itemaddr + 15] = FALSE;
ptr = &line[13];
value = 0;

while ((*ptr < '0') 11 (*ptr > '9'))
ptr++;

while ((*ptr >= '0') && (*ptr <= '9'))
{ value = value * 10 + (*ptr - '0');

PAGE 91

ptr++;
)

value = value / 2;
st[itemaddr + 13] = value / PAGESIZE + 1;
if (!(st[itemaddr + 14] = value % PAGESIZE))

(st[s + 13] -= 1;
st[s + 14] = PAGESIZE;
)

value = 0;
while ((value < 12) && (line[0 + value] != '\0'))

(st[itemaddr + value] = line[0 + value];
value++;
)

while (value < 12)
st[itemaddr + value++] = ";

count++;
itemaddr += 16;
)

)

st[st[s + 1]] = count;
fclose(fp);
strcat(strcpy(systemcall, "erase "), fname);
#if TRACE < 0

printf("%s - Called from get_diskcatalog()\n",systemcall);
#endif
system(systemcall);
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
)

#endif

#ifdef UNIXSYSTEM

/* UNIXSYSTEM Version of get_diskcatalog()

get_diskcatalog()
{ integer itemaddr, value, count=0;
FILE *fp, *fopen();
char *fname, line[100], *ptr, *login;

*/

#if TRACE >= 1

fp = fopen("log","a");
if (printit)

fprintf(fp, "In get_diskcatalog P=%ld s=%ld t=%ld\n",p,
s, t);

fclose(fp);

PAGE 92

#endif
s -= 2;

/* find the name of the user */
login = getpwuid(getuid())->pw_name;

/* set itemaddr to point to the first item in catalog */
itemaddr = st[s + 1] + 1;

/* Get a temporary file
/* for the directory to
gettempfile(&fname);
sprintf(systemcall, "ls
fname);
#if TRACE < 0

printf("%s - Called
#endif
system(systemcall);

and direct a directory listing */
be checked into the temporary file*/

-1 %s > %s", &drive[st[s + 2]][0],

from get_diskcatalog()\n",systemcall);

/* Open the temporary file and skip over the first line */
fp = fopen(fname, "r");
fscanf(fp,"%[-\n]s",line);
fgetc(fp);

/* read in the first line of the directory listing */
fscanf(fp,"%["\n]s",line);
fgetc(fp);

/***
for each line in the directory listing put the
file in the catalog if it meets certain criteria
criteria :

catalog only holds 47 files. Each line must represent a
file. "line[0] == '-' represents a file. The filename must
be less or equal to 12 characters in length. Don't include
the kernel's temporary file. Files are ignored if the user
does not have read access.
**/
while (!(feof(fp)))

{ if ((count < 47) &&
(line[0] == '-') &&
(strlen(&line[45]) <= 12) &&
(strcmp(fname, &line[45])) &&
((strncmp(&line[14), login, strlen(login))) ?
(line[7] == 'r') : (line[1] == 'r')))
{

if (strncmp(&line[14], login, strlen(login)) == 0)

st[itemaddr + 15] = (line[2] == '-')
else

st[itemaddr + 15] = (line[8] == '-'):

PAGE 93

/* read the size of the file in bytes */
ptr = &line[20];
value = 0;

while ((*ptr < '0') 11
(*ptr > '9'))

ptr++;
while ((*ptr >= '0') && (*ptr <= '9'))

(value = value * 10 + (*ptr - '0');
ptr++;
)

/* convert from bytes to words (two byte words) */
value = value / 2;

/* determine number of pages and number of
/* words on last page from the number of words
st[itemaddr + 13] = value / PAGESIZE + 1;

if (!(st[itemaddr + 14] = value % PAGESIZE))
(st[s + 13] -= 1;
st[s + 14] = PAGESIZE;
)

*/
*/

/* copy the filename */
value = 0;
while ((value < 12) && (line[45 + value] != '\0'))

(st[itemaddr + value] = line[45 + value];
value++;
)

/* fill the unused part of the name with blanks */
while (value < 12)

st[itemaddr + value++] =
'

I;

/* increment the count and point to the next item */
count++;
itemaddr += 16;
)

/* read the next line */
fscanf(fp,"%["\n]s",line);
fgetc(fp);
)

/* put the number of items in the catalog */
st[st[s + 1]] = count;

/* close and remove the temporary file */
fclose(fp);
sprintf(systemcall, "rm %s", fname);
#if TRACE < 0

PAGE 94

printf("%s - Called from get_diskcatalog()\n",systemcall);
#endif
system(systemcall);
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
}

#endif /* UNIXSYSTEM Version */

/***
This is a new procedure to be passed to the operating

system as a procedure parameter. It is used to delete
files. If the file to be removed is 'halt.command' and the
directory number is number 5 (an invalid drive), then the
kernel exits gracefully (ie the user has typed in the
command 'exit').

proc k_rm_file(filel: overname; drivel: int);
parameters at procedure entry:

st[s - 0] : drivel (int)
st[s - 12] : filel array [1:12] (char)
**/
rm file()
(char file[13];

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In rm_file P=%ld s=%ld t=%ld \n", p, s, t);
fclose(fp);
#endif
s -= 13;
getfilename(file, s + 1);
if ((strcmp(file, "halt.command") == 0) && (st[s+13] == 5))

quit(0);
#ifdef MSDOS
sprintf(systemcall, "erase %s%s > NUL", &drive[st[s+13]][0],
file) ;

#endif
#ifdef UNIXSYSTEM
sprintf(systemcall, "rm %s%s", &drive[st[s+13]][0], file);
#endif
#if TRACE < 0

printf("%s - Called from rm_file()\n",systemcall);
#endif

PAGE 95

system(systemcall);
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
)

/***
This is a new procedure to be passed to the operating system
as a procedure parameter. It is used to protect and unpro-
tect files.

proc k_protect_file(title: overname; drive: int;
value: bool))

parameters at procedure entry:
st[s - 0] : value (bool)
TRUE:protect FALSE:unprotect
st[s - 1] : drive (int)
st[s - 13] : title array [1:12] (char)
**/
protect_file()
{ char file[13];

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In protect_file P=%ld s=%ld t=%ld\n",p, s,
t);

fclose(fp);
#endif
s -= 14;
getfilename(file, s + 1);
#ifdef MSDOS /* Requires MS-DOS version 3.x ATTRIB.EXE */
sprintf(systemcall, "attrib %s %s%s", (st[s+ 14] ? "+R" :

"-R"),
&drive[st[s+13]][0], file);
#endif
#ifdef UNIXSYSTEM
sprintf(systemcall, "chmod %s %s%s", (st[s + 14] ? "ugo-w" :

"u+w"),
&drive[st[s+13]][0], file);
#endif
#if TRACE < 0

printf("%s - Called from protect_file()\n",systemcall);
#endif
system(systemcall);
#if TRACE >= 2

PAGE 96

register_dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
}

kernelcall(procno)
integer procno;
(

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In kernelcall P=%ld s=%ld t=%ld %ld\n",p,
s, t, procno);

fclose(fp);
#endif
#if TRACE >= 3

stack_dump(85);
#endif
switch(procno)

{

case CURSORNO:
cursor();
break;

case ERASENO:
kerase();
break;

case DISPLAYNO:
display();
break;

case ACCEPTNO:
acceptx();
break;

case PRINTNO:
print();
break;

case GETNO:
get();
break;

case PUTNO:
put();
break;

case CHECKDRIVENO:
check_drive();
break;

case COPYNO:
copy_file();
break;

case GETCATALOGNO:
get_diskcatalog();
break;

case RMNO:
rm file();
break;

case PROTECTNO:
protect_file();
break;

)

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
)

/* standard instructions

newline(lineno)
(p += 2;
)

*/

PAGE 97

gotox(displ)
integer displ;
{

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In gotox P=%ld s=%ld t=%ld %ld destina-
tion=%ld\n",

p, s, t, displ, p+(displ/2));
fclose(fp);
#endif
p = p + (displ / 2);
#if TRACE >= 2

register_ dump();
#endif
#if TRACE >= 3

stack_dump(1);
#endif
)

libproc(paramlength,
templength,lineno)
integer paramlength,templength,lineno;
{

#if TRACE >= 1

PAGE 98

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In libproc P=%ld s=%ld t=%ld %ld %ld
%id\n",

p, s, t, paramlength, templength, lineno);
fclose(fp);
#endif
if (tasks>1)

callerror(lineno);

st[b + 2] =
b - (paramlength / 2) - 1;
if (s + (templength / 2) > t)

variablelimit(lineno);

p = p + 4;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
)

endlib(lineno)
integer lineno;
{

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In endlib P=%ld s=%ld t=%ld %ld\n",p, s, t,
lineno);

fclose(fp);
#endif
moveprogram();
p = t + NAMELENGTH + 2;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
)

procedure(paramlength,varlength,
templength, lineno)
integer paramlength,varlength;

PAGE 99

integer templength, lineno;
{

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In procedure P=%ld s=%ld t=%ld b=%ld %ld
%ld %ld %ld\n",

p, s, t, b, paramlength, varlength, templength, lineno);
fclose(fp);
#endif
st[b + 2] =
b - (paramlength / 2) - 1;
s = s + (varlength / 2);
if (s + (templength / 2) > t)

variablelimit(lineno);

. p + 5;
#if TRACE >= 2

register_ dump();
#endif
#if TRACE >= 3

stack_dump(3);
#endif
)

endproc()
{

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In endproc P=%ld s=%ld t=%ld b=%ld\n",p, s,
t, b);

fclose(fp);
#endif

if (st[b + 4] != NONE) {

p = st[b + 4];
t = st[b + 3];
s = st[b + 2];
b = st[b + 1];)

else
p = p + 1;

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif

PAGE 100

)

field(displ)
integer displ;
{

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In field P=%ld s=%ld t=%ld %ld\n",
p, s, t, displ);

fclose(fp);
#endif
st[s] = st[s] + (displ / 2);
p = p + 2;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(5);
#endif
)

indexx(lower,upper,length,lineno)
integer lower,upper,length,lineno;
{

integer i;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In indexx P=%ld s=%ld t=%ld %ld %ld %ld
%ld\n",

p, s, t,lower, upper, length, lineno);
fclose(fp);
#endif
i = st[s];
s = s - 1;
if (i<lower 11 i>upper)

rangeerror(lineno);

st[s] = st[s] +
(i - lower) * (length / 2);
P = P + 5;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(5);

PAGE 101

#endif
)

instance(steps)
integer steps;
(

integer link,m;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In instance P=%ld s=%ld t=%ld %ld\n",p, s,
t, steps);

fclose(fp);
#endif
link = b;
m = steps;

while (m > 0) (

link = st[link];
m = m - 1;

)

S = S + 1;
st[s] = link;
p = p + 2;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(5);
#endif
)

variable(displ)
integer displ;
{

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In variable P=%ld s=%ld t=%ld %ld\n",p, s,
t, displ);

fclose(fp);
#endif
st[s] = st[s] + (displ / 2);
p = p + 2;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(5);

PAGE 102

#endif
)

blank(number)
integer number;
(

integer i;

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In blank P=%ld s=%ld t=%ld %ld\n",p, s, t,
number);

fclose(fp);
#endif
i = 0;

while (i < number) {

i = i + 1;
st[s + i] = SP;
)

s = s + number;
p = p + 2;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(1);
#endif
)

construct(number,lineno)
integer number,lineno;
{ integer member, i;

settypel new;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In construct P=%ld s=%ld t=%ld %ld
%ld\n",p, s, t,number, lineno);

fclose(fp);
#endif
for (i=0; i<SETLENGTH; i++)

new.settype2[i] = 0;
i = 0;

while (i < number)
{ member = st[s--];
if ((member < 0) II

(member > SETLIMIT))

PAGE 103

rangeerror(lineno);

insert_member(new.settype2,
member);
i++;
)

storeset(s + 1, &new);
s += SETLENGTH;
p += 3;

#if TRACE >= 2

register_ dump();
#endif
#if TRACE >= 3

stack_dump(15);
#endif
)

constant(value)
integer value;
{

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In constant P=%ld s=%ld t=%ld %ld\n",p, s,

t, value);
fclose(fp);
#endif
s = s + 1;

st[s] = value;
p = p + 2;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(2);
#endif
)

value(length)
integer length;
{

integer y,i;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

PAGE 104

fprintf(fp, "In value P=%ld s=%ld t=%ld %ld\n",p, s, t,
length);

fclose(fp);
#endif
length = length / 2;
y = st[s]; i = 0;

while (i < length) (

st[s + i] = st[y + i];
i = i + 1;

)

s = s + length - 1;
p = p + 2;
#if TRACE >= 2

register_ dump();
#endif
#if TRACE >= 3

stack_dump(length+3);
#endif
)

valspace(length)
integer length;
{

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In valspace P=%ld s=%ld t=%ld %ld\n",p, s,
t, length);

fclose(fp);
#endif
s = s + (length / 2);
p = p + 2;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(1);
#endif
)

notx()
(

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In notx P=%ld s=%ld t=%ld \n",p, s, t);
fclose(fp);
#endif

PAGE 105

st[s] = (1 (st[s]));
p = p + 1;

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(2);
#endif
)

multiply(lineno)
integer lineno;
{ long sts, sts_1;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In multiply P=%ld s=%ld t=%ld %ld\n",p, s,
t, lineno);

fclose(fp);
#endif
s--;
sts = st[s]; sts1 = st[s+l];
st[s] = st[s] * st[s + 1];

if (sts * sts_1 != st[s])
rangeerror(lineno);

p += 2;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(2);
#endif
)

divide(lineno)
integer lineno;
{ long sts, sts_1;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In divide P=%ld s=%ld t=%ld %ld\n",p, s, t,

lineno);
fclose(fp);
#endif
s--;

PAGE 106

sts = st[s]; sts1 = st[s+1];
st[s] = st[s] / st[s + 1];

if (sts / sts _ 1 != st[s])
rangeerror(lineno);

p += 2;

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(2);
#endif
}

modulo(lineno)
integer lineno;

long sts, sts_1;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log11,11a11);
if (printit)

fprintf(fp, "In modulo P=%ld s=%ld t=%ld %ld\n",p, s, t,

lineno);
fclose(fp);
#endif
s--;
sts = st[s]; sts l = st[s+l];
st[s] = st[s] % st[s + 1];

if (sts % sts_1 != st[s])
rangeerror(lineno);

p += 2;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(2);
#endif

andx(){
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In andx P=%ld s=%ld t=%ld \n",p, s, t);

fclose(fp);
#endif

PAGE 107

s--;
st[s] = st[s] && st[s + 1];
p++;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(2);
#endif
)

intersection()
(settypel x, y;
integer i;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In intersection P=%ld s=%ld t=%ld \n",p, s,
t);

fclose(fp);
#endif

s -= SETLENGTH;
loadset(s + 1, &y);
loadset(s - SETLENGTH + 1, &x);

for (i=0; i<SETLENGTH; i++)
x.settype2[i] = x.settype2[i] & y.settype2[i];

storeset(s - SETLENGTH + 1, &x);

p += 1;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

minus(lineno)
integer lineno;
(long sts;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In minus P=%ld s=%ld t=%ld %ld\n",p, s, t,
lineno);

PAGE 108

fclose(fp);
#endif
sts = st[s];
st[s] = - st[s];
if (-sts != st[s])

rangeerror(lineno);

p += 2;

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(2);
#endif
)

add(lineno)
integer lineno;
{ long sts, sts_1;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In add P=%ld s=%ld t=%ld %ld\n",p, s, t,
lineno);

fclose(fp);
#endif
s--;
sts = st[s]; sts l = st[s+1];
st[s] = st[s] + st[s + 1];

if (sts + sts_1 != st[s])
rangeerror(lineno);

p += 2;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(2);
#endif
)

subtract(lineno)
integer lineno;
{ long sts, sts_1;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log11,11a11);

PAGE 109

if (printit)
fprintf(fp, "In subtract P=%ld s=%ld t=%ld %ld\n",p, s,

t, lineno);
fclose(fp);
#endif
s--;
sts = st[s]; sts l = st[s+1];
st[s] = st[s] - st[s + 1];

if (sts - sts_1 != st[s])
rangeerror(lineno);

p += 2;

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(2);
#endif

orx()(
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In orx P=%ld s=%ld t=%ld \n",p, s, t);
fclose(fp);
#endif
s--;
st[s] = st[s] II st[s + 1];

p++;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(2);
#endif

unionx()
{ settypel x, y;
integer i;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In union P=%ld s=%ld t=%ld \n",p, s, t);
fclose(fp);

PAGE 110

#endif

s -= SETLENGTH;
loadset(s + 1, &y);
loadset(s - SETLENGTH + 1, &x);

for (i=0; i<SETLENGTH; i++)
x.settype2[i] = x.settype2[i] 1 y.settype2[i];

storeset(s - SETLENGTH + 1, &x);

p += 1;

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

difference()
{ settypel x, y;
integer i;

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In difference P=%ld s=%ld t=%ld \n",p, s,

t);
fclose(fp);
#endif

s -= SETLENGTH;
loadset(s + 1, &y);
loadset(s - SETLENGTH + 1, &x);

for (i=0; i<SETLENGTH; i++)
x.settype2[i] = x.settype2[i] &

storeset(s - SETLENGTH + 1, &x);

p += 1;

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

y.settype2[i];

equal(length)

PAGE 111

integer length;
{ integer y, i = 0;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log11,11an);
if (printit)

fprintf(fp, "In equal P=%ld s=%ld t=%ld %ld\n",p, s, t,
length);

fclose(fp);
#endif
length = length / 2;

y = s - length + 1;
s = y - length;

while ((i < length - 1) &&
(st[s + i] == st[y + i]))

i++;

st[s] = st[s + i] == st[y + i];

p += 2;

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(2);
#endif
)

notequal(length)
integer length;
(integer y, i = 0;

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log11,flall);
if (printit)

fprintf(fp, "In notequal P=%ld s=%ld t=%ld %ld\n",p, s

t, length);
fclose(fp);
#endif

length = length / 2;
y = s - length + 1;

s = y - length;

while ((i < length - 1) &&
(st[s + i] == st[y + i]))

i++;

PAGE 112

st[s] = st[s + i] != st[y + i];

p += 2;

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(2);
#endif
)

less()
{

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In less P=%ld s=%ld t=%ld \n"
fclose(fp);
#endif
s--;
st[s] = st[s] < st[s + 1];

p++;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(2);
#endif
)

I PI s, t);

notless()
{

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In notless P=%ld s=%ld t=%ld \n",p, s, t);
fclose(fp);
#endif
s--;
st[s] = st[s] >= st[s + 1];

p++;
#if TRACE >= 2

register_dump();
#endif

PAGE 113

#if TRACE >= 3

stack_dump(2);
#endif
)

greater()
(

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In greater P=%ld s=%ld t=%ld \n",p, s, t);
fclose(fp);
#endif
s--;
st[s] = st[s] > st[s + 1];

p++;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(2);
#endif
)

notgreater()
{

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log11,11a11);
if (printit)

fprintf(fp, "In notgreater P=%ld s=%ld t=%ld \n",p, s,

t);
fclose(fp);
#endif
s--;
st[s] = st[s] <= st[s + 1];

p++;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(2);
#endif
)

inx(lineno)
integer lineno;

PAGE 114

{ integer x, displ, x_map;
settypel y;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In inx P=%ld s=%ld t=%ld %ld\n",p, s, t,
lineno);

fclose(fp);
#endif

s -= SETLENGTH;
loadset(s + 1, &y);
x = st[s];
if ((x < 0) 11 (x > SETLIMIT))

rangeerror(lineno);

displ = (x & 0x70) » 4;
x_map = 0x8000 >> (x & Oxf);
st[s] = x_map & y.settype2[displ];
p += 2;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(2);
#endif
)

assign(length)
integer length;
(integer x, y, i = 0;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In assign P=%ld s=%ld t=%ld %ld\n",p, s
t,length);

fclose(fp);
#endif
length = length / 2;

s = s - length - 1;

x = st[s + 1];
y = s + 2;

while (i < length)
(st[x + i] = st[y + i];
i++;

)

PAGE 115

p += 2;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(2);
#endif
)

addrx()(
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In addrx P=%ld s=%ld t=%ld \n",p, s, t);
fclose(fp);
#endif
s--;
st[s] = st[s + 1];
p++;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(2);
#endif
)

haltx(lineno)
integer lineno;{
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In haltx P=%ld s=%ld t=%ld %ld\n",p, s, t,
lineno);

fclose(fp);
#endif
stop(lineno, "halt#");
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

obtainx()(
#if TRACE >= 1

PAGE 116

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In obtainx P=%ld s=%ld t=%ld \n",p, s, t);
fclose(fp);
#endif
s -= 2;
if ((st[s + 2] < 0) II

(st[s + 2] > (MAXADDR + NUMCOMMCHANNELS + 1)))
stop(linenumber, "obtain address out of range#");

else
st[st[s + 2]] =
st[s + 1];

p++;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
}

placex()(
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In placex P=%ld s=%ld t=%ld \n",p, s, t);
fclose(fp);
#endif
s -= 2;
if ((st[s + 1] < 0) II

(st[s + 1] > (MAXADDR + NUMCOMMCHANNELS + 1)))
stop(linenumber, "place address out of range#");

else
st[st[s + 1]] = st[s + 2];

p++;
#if TRACE >= 2

register_ dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

sensex()(
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");

PAGE 117

if (printit)
fprintf(fp, "In sensex P=%ld s=%ld t=%ld \n",p, s, t);

fclose(fp);
#endif

s -= 2;
if ((st[s + 1] < 0) II

(st[s + 1] > (MAXADDR + NUMCOMMCHANNELS + 1)))
stop(linenumber, "place address out of range#");

else
st[s] =
st[s + 1] &

st[s + 2];
p++;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

procarg(displ)
integer displ;
{

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In procarg P=%ld s=%ld t=%ld %ld\n",p, s,
t, displ);

fclose(fp);
#endif
st[++s] = p + (displ / 2);
p += 2;
#if TRACE >= 2

register_ dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

paramarg(displ)
integer displ;
{ integer addr;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");

PAGE 118

if (printit)
fprintf(fp, "In paramarg P=%ld s=%ld t=%ld %ld\n",p, s,

t, displ);
fclose(fp);
#endif
addr = st[s] + (displ / 2);
st[s] = st[addr];
st[s + 1] = st[addr + 1];
s++;
p += 2;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

proccall(displ)
integer displ;{
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In proccall P=%ld s=%ld t=%ld %ld\n",p, s,
t,displ);

fclose(fp);
#endif
st[s + 1] = b;
st[s + 3] = t;
st[s + 4) = p + 2;
b = s;
s += 4;
p += (displ / 2);
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

paramcall(displ)
integer displ;
{ integer addr, dest;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

PAGE 119

fprintf(fp, "In paramcall P=%ld s=%ld t=%ld %ld\n",p, s,

t, displ);
fclose(fp);
#endif
addr = st[s] + (displ / 2);
dest = st[addr + 1];
if (dest <= MAXPARAM)

(s--;
kernelcall(dest);
p += 2;
)

else
(st[s] = st[addr];
st[s + 1] = b;
st[s + 3] = t;
st[s + 4] = p + 2;
b = s;
s += 4;

p = dest;
)

#if TRACE >= 2

register_ dump();
#endif

stack_dump(10);
#endif
)

dox(displ)
integer displ;{
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In dox P=%ld s=%ld t=%ld %ld\n",p, s, t,

displ);
fclose(fp);
#endif
if (st[s])

p += 2;

else
p += (displ / 2);

s--;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);

PAGE 120

#endif
)

elsex(displ)
integer displ;
{

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In elsex P=%ld s=%ld t=%ld %ld\n",p, s, t,
displ);

fclose(fp);
#endif
p += (displ / 2);
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

whenx()
{

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In whenx P=%ld s=%ld t=%ld\n",p, s, t);
fclose(fp);
#endif
p++;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

waitx(displ)
integer displ;{
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In waitx P=%ld s=%ld t=%ld %ld\n",p, s, t,
displ);

fclose(fp);
#endif
p += (displ / 2);
preempt();
this = this % tasks + 1;
resume();
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

endwhen()
{

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In endwhen P=%ld s=%ld t=%ld\n",
fclose(fp);
#endif
p++;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

13,

PAGE 121

s, t);

process(templength, lineno)
integer templength, lineno;
{

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In process P=%ld s=%ld t=%ld %ld %ld\n",
p, s, t, templength, lineno);

fclose(fp);
#endif
if (s + (templength / 2) > t)

variablelimit(lineno);

p += 3;
#if TRACE >= 2

register_dump();

PAGE 122

#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

alsox(displ)
integer displ;(
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In alsox P=%ld s=%ld t=%ld %ld\n",p, s, t,

displ);
fclose(fp);
#endif
if (tasks > 1)

(while (this < tasks)
(q[this] = q[this + 1];

this++;
}

tasks -= 1;
this = 1;
resume();
) else if (tasks == 1)

(s = stacktop;
t = progtop;
p += (displ / 2);
}

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

cobeginx(number, lineno)
integer number, lineno;
{ integer length, i;

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In cobeginx P=%ld s=%ld t=%ld %ld %ld\n",p,
s, t, number, lineno);

fclose(fp);
#endif

PAGE 123

tasks = number;
if (tasks > MAXPROC)

processlimit(lineno);

stacktop = s;
progtop = t;
length = (t - s) / tasks;

i = 0;
while (i < tasks)

(i++;
t = s + length;
q[i].bx = b;
q[i].sx = s;
q[i].tx = t;
q[i].px = p + (st[p + 2 * i + 2] / 2);

s = t;
)

this = 1;
resume();
#if TRACE >= 2

register_ dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

endcode(lineno)
integer lineno;(
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In endcode P=%ld s=%ld t=%ld %ld\n",p, s,
t, lineno);

fclose(fp);
#endif
stop(lineno, "terminated#");
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif

PAGE 124

)

localvar(displ)
integer displ;(
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In localvar P=%ld s=%ld t=%ld b=%ld
%ld\n",p, s, t, b, displ);

fclose(fp);
#endif
st[++s] = b + (displ / 2);
p += 2;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(5);
#endif
)

outervar(displ)
integer displ;{
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In outervar P=%ld s=%ld t=%ld %ld\n",p, s,
t, displ);

fclose(fp);
#endif
st[++s] = st[b] + (displ / 2);
p += 2;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

localvalue(displ)
integer displ;{
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

PAGE 125

fprintf(fp, "In localvalue P=%ld s=%ld t=%ld b=%ld
%ld\n",p, s, t, b, displ);

fclose(fp);
#endif
st[++s] = st[b + (displ / 2)];
p += 2;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(5);
#endif
)

outervalue(displ)
integer displ;(
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In outervalue P=%ld s=%ld t=%ld %ld\n",p,
s, t, displ);

fclose(fp);
#endif
st[++s] = st[st[b] + (displ / 2)];

p += 2;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

localset(displ)
integer displ;
(integer addr, i = 0;

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In localset P=%ld s=%ld t=%ld %ld\n",p, s,
t,displ);

fclose(fp);
#endif
addr = b + (displ / 2);
while (i < SETLENGTH)

PAGE 126

(st[s + i + 1] = st[addr + i];
i++;

)

s += SETLENGTH;
p += 2;

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

outerset(displ)
integer displ;
(integer addr, i = 0;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In outerset P=%ld s=%ld t=%ld %ld\n",p, s,
t,displ);

fclose(fp);
#endif

addr = st[b] + (displ / 2);
while (i < SETLENGTH)

(st[s + i + 1] = st[addr + i];
i++;
)

s += SETLENGTH;
p += 2;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

localcase(vardispl,value,progdispl)
integer vardispl, value, progdispl;
(

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");

PAGE 127

if (printit)
fprintf(fp, "In localcase P=%ld s=%ld t=%ld %ld %ld

%ld\n",p
, s, t, vardispl, value, progdispl);

fclose(fp);
#endif
if (st[b + (vardispl / 2)] == value)

p += 4;
else

p += (progdispl / 2);

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
}

outercase(vardispl,value,progdispl)
integer vardispl, value, progdispl;
{

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In outercase P=%ld s=%ld t=%ld %ld %ld
%ld\n",

p, s, t, vardispl, value, progdispl);
fclose(fp);
#endif
if (st[st[b]+ (vardispl / 2)] == value)

p += 4;

else
p += (progdispl / 2);

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif

stringconst(number)
integer number;

PAGE 128

{ integer i = 0;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In stringconst P=%ld s=%ld t=%ld %ld\n",p,
s, t, number);

fclose(fp);
#endif

while (i < number)
{ i++;
st[s + i] = st[p + i + 1];

)

s += number;
p += number + 2;

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10+number);
#endif
)

setconst(number)
integer number;
{ integer i;

settypel new;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In setconst P=%ld s=%ld t=%ld %ld\n",p, s,

t, number);
fclose(fp);
#endif
for (i=0; i<SETLENGTH; i++)

new.settype2[i] = 0;

i = 0;

while (i++<number)
{ insert_member(new.settype2,
st[p + i + 1]);

)

storeset(s + 1, &new);
s += SETLENGTH;
p += number + 2;

#if TRACE >= 2

PAGE 129

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

singleton(value)
integer value;
(settypel new;
integer i;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In singleton P=%ld s=%ld t=%ld %ld\n",p, s,
t, value);

fclose(fp);
#endif
for (i=0;i<SETLENGTH;i++)

new.settype2[i] = 0;
insert_member(new.settype2, value);
storeset(s + 1, &new);
s += SETLENGTH;
p += 2;

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

elemvalue()(
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In elemvalue P=%ld s=%ld t=%ld \n",p, s, t);
fclose(fp);
#endif
st[s] = st[st[s]];
p += 1;

#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);

PAGE 130

#endif
)

elemassign()(
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In elemassign P=%ld s=%ld t=%ld \n",p, s,
t);

fclose(fp);
#endif
st[st[s - 1]] = st[s];
s -= 2; p += 1;
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

outercall(displ)
integer displ;
(

#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In outercall P=%ld s=%ld t=%ld %ld\n",p, s,
t, displ);

fclose(fp);
#endif
st[++s] = st[b];
st[s + 1] = b;
st[s + 3] = t;
st[s + 4] = p + 2;
b = s;
s += 4;
p += (displ / 2);
#if TRACE >= 2

register_dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

PAGE 131

outerparam(displ)
integer displ;
{ integer addr, dest;
#if TRACE >= 1

FILE *fp, *fopen();
fp = fopen("log","a");
if (printit)

fprintf(fp, "In outerparam P=%ld s=%ld t=old %ld\n",p,
s, t, displ);

fclose(fp);
#endif
addr = st[b] + (displ / 2);
dest = st[addr + 1];
if (dest <= MAXPARAM)

(kernelcall(dest);
p += 2;
)

else
(st[++s] = st[addr];
st[s + 1] = b;
st[s + 3] = t;
st[s + 4] = p + 2;
b = s;
s += 4;
p = dest;
)

#if TRACE >= 2

register_ dump();
#endif
#if TRACE >= 3

stack_dump(10);
#endif
)

execute_ instruction()

{ integer op;

op = st[p];
switch (op)

{ case ADD4: add(st[p + 1]); break;

case ALSO4: alsox(st[p + 1]); break;

case AND4: andx(); break;

case ASSIGN4: assign(st[p + 1]); break;

case BLANK4: blank(st[p + 1]); break;

PAGE 132

case COBEGIN4: cobeginx(st[p + 1], st[p + 2]);
break;

case CONSTANT4: constant(st[p + 1]);
break;

case CONSTRUCT4: construct(st[p + 1], st[p + 2]);
break;

case DIFFERENCE4: difference(); break;

case DIVIDE4: divide(st[p + 1]); break;

case D04: dox(st[p + 1)); break;

case ELSE4: elsex(st[p + 1]); break;

case ENDCODE4: endcode(st[p + 1]); break;

case ENDLIB4: endlib(st[p + 1]); break;

case ENDPROC4: endproc(); break;

case ENDWHEN4: endwhen(); break;

case EQUAL4: equal(st[p + 1]); break;

case FIELD4: field(st[p + 1]); break;

case GOTO4: gotox(st[p + 1]); break;

case GREATER4: greater(); break;

case IN4: inx(st[p + 1]); break;

case INDEX4: indexx(st[p + 1], st[p + 2], st[p + 3], st[p
+ 4]); break;

case INSTANCE4: instance(st[p + 1]); break;

case INTERSECTION4: intersection(); break;

case LESS4: less(); break;
case LIBPROC4: libproc(st[p + 1], st[p + 2], st[p + 3]);

break;

case MINUS4: minus(st[p + 1]); break;

case MODUL04: modulo(st[p + 1]); break;

PAGE 133

case MULTIPLY4: multiply(st[p + 1]); break;

case NEWLINE4: newline(st[p + 1]); break;

case NOT4: notx(); break;
case NOTEQUAL4: notequal(st[p + 1]); break;

case NOTGREATER4: notgreater(); break;

case NOTLESS4: notless(); break;

case OR4: orx(); break;
case PARAMARG4: paramarg(st[p + 1]); break;

case PARAMCALL4: paramcall(st[p + 1]); break;

case PROCARG4: procarg(st[p + 1]); break;

case PROCCALL4: proccall(st[p + 1]); break;

case PROCEDURE4: procedure(st[p + 1], st[p + 2], st[p +
3], st[p + 4]);

break;

case PROCESS4: process(st[p + 1], st[p + 2]); break;

case SUBTRACT4: subtract(st[p + 1]); break;

case UNION4: unionx(); break;
case VALSPACE4: valspace(st[p + 1]); break;

case VALUE4: value(st[p + 1]); break;

case VARIABLE4: variable(st[p + 1]); break;

case WAIT4: waitx(st[p + 1]); break;

case WHEN4: whenx(); break;
case ADDR4: addrx(); break;
case HALT4: haltx(st[p + 1]); break;

case OBTAIN4: obtainx(); break;

case PLACE4: placex(); break;
case SENSE4: sensex(); break;
case ELEMASSIGN4: elemassign(); break;

case ELEMVALUE4: elemvalue(); break;

PAGE 134

case LOCALCASE4: localcase(st[p + 1], st[p + 2], st[p +

3]); break;

case LOCALSET4: localset(st[p + 1]); break;

case LOCALVALUE4: localvalue(st[p + 1]); break;

case LOCALVAR4: localvar(st[p + 1]); break;

case OUTERCALL4: outercall(st[p + 1]); break;

case OUTERCASE4: outercase(st[p + 1], st[p + 2], st[p +
3]); break;

case OUTERPARAM4: outerparam(st[p + 1]); break;

case OUTERSET4: outerset(st[p + 1]); break;

case OUTERVALUE4: outervalue(st[p + 1]); break;

case OUTERVAR4: outervar(st[p + 1]); break;

case SETCONST4: setconst(st[p + 1]); break;

case SINGLETON4: singleton(st[p + 1]); break;

case STRINGCONST4: stringconst(st[p + 1]); break;

default:
Value = %ld\n",

p, s, t, op);
register_dump();
stack dump(10);

printf("Invalid OP. P=%ld s=%ld t=%ld

prog_stack_dump(9);
reboot();
break;

/***/
/* Here is the main procedure for the Edison kernel. */
/***/
main()
{

printit = TRUE;
initialize();

PAGE 135

while (TRUE)
{ execute_ instruction();
)

)

/***/
/* This procedure will dump a section of the stack. */
/* The procedure receives one parameter which is the */

/* number of stack locations below the location pointed*/
/* at by the p 'register' to be dumped. (600 max) */

/* This procedure was added for debugging purposes. */
/***/
stack_dump(depth)
integer depth;
{ integer limit = -1, temp, max_depth = 600;
FILE *fp, *fopen();
unsigned d;
fp = fopen("log", "a");

/* verify the depth */
if (depth <= 0)

depth = 1;

if ((depth > max_depth) && (s > max_depth))
limit = s - max_depth;

if ((depth < max_depth) && (depth < s))
limit = s - depth;

/* print a header */
fprintf(fp, "\n");
fprintf(fp, "\n hex integer
binary");

/* dump the stack */
for (depth = s; depth > limit; depth--)

{ fprintf(fp, "\n st[%5d] == %08x%12d
depth, st[depth], st[depth]);
temp = st[depth];
d = 0x80000000;
while (d != 0)

(if (temp & d)

fprintf(fp, "1");
else

fprintf(fp, "0");
d »= 1;
)

)

fprintf(fp,
fclose(fp);
)

"\n");

PAGE 136

/***/
/* This procedure will dump a the values of the */
/* registers for the user to see in both decimal and hex.*/
/* This procedure was added for debugging purposes. */
/***/
register_dump()
(

printf("\n THIS = %5X TASKS = %5X STACKTOP = %5X
PROGTOP = %5X\n"
,this,tasks,stacktop,progtop);
printf(" B = %5X S = %5X T = %5X P =
%5X\n",b,s,t,p);
printf("\n");
printf(" THIS = %5d TASKS = %5d STACKTOP = %5d
PROGTOP = %5d\n"
,this,tasks,stacktop,progtop);
printf(" B = %5d S = %5d T = %5d P =
%5d\n",b,s,t,p);
)

/***/
/* This procedure will insert a new set member into a */
/* set. This is done by bitwise ORing the new member */

/* into the set. */
/* This procedure was added for set manipulation. */
/***/
insert_member(set, member)
integer set[SETLENGTH], member;
{ integer displ;
unsigned member_map;

displ = (member & 0x70) » 4;
member_map = 0x00008000 » (member & Oxf);
set[displ] = set[displ] 1 member_map;
)

/***/
/* This procedure receives a character string which is */
/* returned with the name of a file name not in use to */

/* be used as a temporary file. */
/* This procedure was added. */
/***/
gettempfile(fname)
char **fname;
{ FILE *fopen(), *fp;
*fname = "tempa";

PAGE 137

while (fp = fopen(*fname,"r"))
{ char c;
fclose(fp);
c = *(*fname + 4) + 1;
if (c == 91)

c += 2;
if (c == 96)

c++;
*(*fname + 4) = c;
)

}

/***/
/* This procedure receives a character string and a */
/* starting location on the stack (st). It retrieves the*/
/* file name from the stack and returns it in the */
/* character string for use by the kernel. */
/* This procedure was added for debugging purposes. */
/***/
getfilename(file, start)
char file[13];
integer start;
{ integer x=0;
char c;

c = st[start];
while ((x < 12) && ((c == '.')

((c >= 'a') && (c <= 'z'))
((c >= 'A') && (c <= 'Z'))
((c >= '0') && (c <= '9'))))

file[x++] = c;
c = st[start + x];

file[x] = 1\0';

)

/**/
/* This procedure will dump a section of the stack. */
/* The procedure receives one parameter which is the */
/* number of stack locations above and below the */
/* location pointed at by the p 'register' to be dumped.*/
/* This procedure was added for debugging purposes. */
/**/
prog_stack_dump(depth)
integer depth;
{ integer temp, templ, max_depth = 50;
FILE *fp, *fopen();

PAGE 138

char c;
unsigned d;

/* verify the depth */
if (depth <= 0)

depth = 5;

/* print a header */
fp = fopen("log", "a");
fprintf(fp, "\n\n hex integer

binary");
temp = p - depth;

/* dump the stack */
while ((p + depth >=

(c = (temp == p)

fprintf(fp, "\n%c
c, temp, st[temp]
tempi = st[temp];
d = 0x80000000;
while (d != 0)

(if (tempi & d)

fprintf(fp, "1");
else

fprintf(fp,
d »= 1;

)

temp++;
}

fprintf(fp, "\n");
fclose(fp);
)

temp) && (temp
? Ipl : I I;

st[%5d] ==
, st[temp]);

HOU):

<= MAXADDR))

%08x%12d

/***/
*/
*/
*/

/* This procedure exits from the kernel with a exit
/* status that will allow the kernel to reboot.
/* This procedure has been added.
/***/
reboot()
(

#ifdef UNIXSYSTEM
quitcurses();
#endif
exit(999);
)

/***/
*/
*/
*/

/* This procedure exits from the kernel with a exit
/* status that will cause complete exit from the
/* Edison system.

PAGE 139

/* This procedure has been added. */
/***/
quit()
{

#ifdef UNIXSYSTEM
quitcurses();
#endif
exit(0);
)

#ifdef UNIXSYSTEM
/***/

/* This procedure makes all the initializations */
/* neccessary for signals. Signals is used to handle */
/* different signals recieved, such as ^C and */
/* arithmatic errors so that curses can be exited from */
/* gracefully, the Edison virtual machine can be */
/* rebooted or whatever other actions that are needed */
/* can be taken. */
/* This procedure has been added. */
/***/
initsignals()
{ signal(SIGQUIT, reboot);
signal(SIGINT, reboot);
signal(SIGBUS, reboot);
signal(SIGSEGV, reboot);
)

/***/
/* This procedure makes all the initializations */

/* neccessary for curses */

/* This procedure has been added. */
/***/
initcurses()
(LINES = MAXROW;
COLS = MAXCOLUMN;
initscr();
crmode();
noecho();
leaveok(stdscr, FALSE);
scrollok(stdscr, TRUE);
clearok(curscr, FALSE);
refresh();
)

/***/
/* This procedure simply calls the curses procedure to */
/* gracefully exit from curses. */

/* This procedure has been added. */

PAGE 140

/***/
quitcurses()
{ endwin();
)

#endif

/***/
/*
/*

This procedure is used to print the value of a set.
A set is held in 8 locations on the stack (st), so

*/
*/

/* the easy way of printing the set value is to call */

/* the procedure stack dump. */

/* This procedure was added for debugging purposes. */

/***/
printset(setloc)
integer setloc;
{ integer ssave;
ssave = s;
s = setloc + SETLENGTH - 1;

stack_dump(8);
s = ssave;
)

PAGE 141

APPENDIX C

THE BENCHMARK TESTING PROGRAM

PAGE 142

Edison System Prefix

const nl = char(10); sp = ";
linelength = 80 "characters";
namelength = 12 "characters";
sectorlength = 256 "integers"

set charset (char)
array line [1:linelength] (char)
array name [1:namelength] (char)
array sector [1:sectorlength] (int)
record position (pages, words: int)
enum word (sixteen_bits)
array program [1:12300] (word)
array stream [1:536] (word)

proc prefix(
progname: name;
pdpll: bool;
maxrow, maxcolumn: int;
proc select(normal: bool);
proc cursor(row, column: int);
proc erase;
proc display(value: char);
proc assume(condition: bool; text: line);
proc accept(var value: char);
proc pause;
proc print(value: char);
proc openread(var file: stream; title: name);
proc more(var file: stream): bool;
proc read(var file: stream; var value: char);
proc mark(var file: stream): position;
proc move(var file: stream; place: position);
proc endread(var file: stream);
proc openwrite(var file: stream; title: name);
proc write(var file: stream; value: char);
proc endwrite(var file: stream);
proc create(drive: int; title: name);
proc delete(drive: int; title: name);
proc locate(var drive: int; title: name);
proc rename(drive: int; old, new: name);
proc protect(drive: int; title: name; value: bool);
proc readbool(proc read(var c: char); var value: bool);
proc readint(proc read(var c: char); var value: int);
proc readname(proc read(var c: char); var value: name);
proc writebool(proc write(c: char); value: bool);
proc writeint(proc write(c: char); value, length: int);
proc writename(proc write(c: char); value: name);
proc writeline(proc write(c: char); value: line);
proc readsector(drive, sectorno: int; var value: sector);

PAGE 143

proc writesector(drive, sectorno: int;
var value: sector);

proc subset(first, last: char): charset;
proc load(title: name): program)

"The Edison -PC System: Benchmark Test Program
Date

Copyright (c) 1982 Per Brinch Hansen"

var x : int

begin
x := 1;
while x<=1000 do

writeint(display,x,5);
display(nl);
x := x + 1

end
end

PAGE 144

APPENDIX D

THE USER'S INSTALLATION GUIDE

PAGE 145

The work and time of installing the Edison System onto

a new host environment has been greatly reduced with this

project. This guide will provide the programmer with the

necessary information to achieve a successful installation.

The first step is to copy all of the supporting system

files for the Edison System onto the new host environment.

These files include the operating system, the compiler, the

editor, and a few miscellaneous programs included for pro-

gram development. It is also necessary to copy the C source

code files onto the host environment. The list of files

that must be copied onto the new host environment are shown

in Table D.1.

PAGE 146

EDISON.0 C source code file

CKERNEL.0 C source code file

OPSYSCOD.PLN The Edison Operating System

EDIT The Edison System Editor

COMPILE The Edison Language Compiler

EDISON1 The Edison Compiler (Pass 1)

EDISON2 The Edison Compiler (Pass 2)

EDISON3 The Edison Compiler (Pass 3)

EDISON4 The Edison Compiler (Pass 4)

CUT Application Development Aid

PASTE Application Development Aid

PRINT Text Printing Program

ASC2ED.0 Source Code for Programmer Aid

ED2ASC.0 Source Code for Programmer Aid

Files Necessary for Installation
on New Host Environment

Table D.1

PAGE 147

It will be necessary for the new host environment to

have a C compiler that is compatible with the C language as

defined by Kernighan and Ritchie. The files ED2ASC.0 and

ASC2ED.0 will require no modification for the new environ-

ment. It is simply necessary to compile them into executa-

ble form. These files will convert Edison text files into

ASCII text files and also from ASCII to Edison.

The only modification the file EDISON.0 will require is

the specification of the drive and path necessary to start

the program CKERNEL (which will be compiled from CKERNEL.C).

The remaining modifications must be done to the file CKER-

NEL.C. The modifications are restricted to some declara-

tions at the beginning of the program and seven routines.

These routines are listed in Appendix A.

The changes in the declarations at the beginning of

program are very simple. The default drive/path definition

must be supplied with the DEFAULTDRIVE declaration. During

implementation debugging procedures, it may be necessary to

change the trace level. By changing the declaration of

TRACE, it is possible to have the system provide varying

amounts of information during execution.

The first routines to require modification are READX()

and WRITEX(). Modification to these routines is only neces-

sary if full screen control is desired in the new host

environment. If screen control is desired, then it is

PAGE 148

necessary to supply the routine calls in READX() and

WRITEX().

The next few routines require similar modifications.

The routines of COPY FILE(), RM FILE°, and PROTECT FILE()

rely upon the host environment to provide the operations

necessary for their execution. These routines make calls to

the host environment to invoke commands to copy files, erase

files, and protect files. Each of these routines must be

modified to utilize the correct syntax for the system com-

mands.

The final two routines are the most difficult to modi-

fy. Both CHECK_DRIVE0 and GET_DISK_CATALOG() access the

disk catalog. These routines also submit a system call to

the host environment. They request a directory of the disk

catalog and they route the response to a temporary file.

The CHECK DRIVE() routines use the information gained from

the directory to determine if the selected drive is valid.

Every host environment will give an error message if an

invalid directory is requested. This routine looks for the

error message. The routine GET DISK CATALOG is the most

complex routine to modify. It is necessary for this routine

to translate the directory supplied by the host environment

into something the Edison System can understand. This

routine uses the temporary file created to hold the direc-

tory information from the disk catalog request. It scans

PAGE 149

each line and locates the file name, size, and protection

status. The host environment must be capable of supplying

the size of the file in bytes (8 bits) or words (16 bits).

This routine must convert size in bytes into the size in

words. (Size in bytes is the most common method used in

today's host environments.)

For further enhancements, it may be desired to modify

the routines CURSOR() and ERASE(). These routines provide

greater usability when implementing full screen control. It

is necessary to modify these routines to use the screen

control routines available with the host environment.

The implementation of the Edison System is very

straightforward. The process has been greatly reduced by

the completion of this project. It is now easily installed

into a new environment with minimal delay. This guide has

outlined the steps necessary to follow when implementing the

Edison System in a new host environment.

The Development of the Edison System
as a Truly Portable Software Development Environment

by

Michael C. Wonderlich

B. S. Kansas State University, 1985

An ABSTRACT of a MASTER'S REPORT

submitted in partial fulfillment of the

requirements of the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

The Edison System was developed by Brinch Hansen to

establish an environment for the development of application

software. His design is built upon the concept of providing

a small portable operating system. The Edison System is

comprised of the operating system, a programming language

(also called Edison), and some assorted support programs.

The entire system is contained in a very small amount of

code.

The goal of this project is to rewrite the kernel from

assembly language into a high level language. This provides

a more portable system than before. Since most host envi-

ronments have compilers for the language C, this is the high

level language the kernel has been written in. Now only a

few minor changes are necessary in the kernel to move it

into a new host environment.

With the success of this project, it is now possible to

easily port the Edison System to new host environments. The

Edison System was successfully implemented in several ver-

sions of Unix and MS-DOS. This report discusses the history

leading to the development of this project. A full account

of the project is included for anyone wishing to further

this work. Hopefully the work accomplished in this project

will be used to further the development of a truly portable

system environment. This system will provide a common

environment to develop application software for all uses in

the computer industry.

