

The Effect of LED Light Color and Feed Type on the Performance of Male Broiler Chicks to 21 Days. Kayla McGurk, Christopher J. Delfelder, Daniel Seitz, Richard S. Beyer

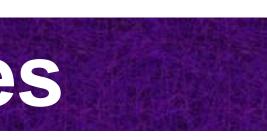
Introduction

- Poultry producers are rapidly adapting new lighting technology that reduces labor and energy costs.
- There are numerous choices of color or spectrun brightness, control systems, and lenses available marketplace. These choices will impact energy us performance, and animal welfare as well as farm
- Intensity and color may impact how a bird views and feed devices, litter, and other birds.

Objectives

• The study was designed to determine broiler prestarter and starter performance when placed under 4 colors of lights and two feed types.

Experimental Procedures


- 4 colors of lights: red, green, blue, and white and two types: sorghum-soy or corn-soy based in a 4 by 2 fa arrangement with 4 reps for each combination of treatments.
- Pens were fitted with LED focal lights 72" over the life with the ring of light focused between the feed pan a nipple drinker line.
- The pens were 5' by 14' with 4" of pine shavings.
- Twelve male Cobb broiler chicks were placed in each which was randomly assigned a light color and feed
- At placement, house incandescent lights at 25 lumer provided for 48 hours, then reduced to 15 lumens for hours
- On day 4, the house lights were extinguished and on LED lamps were used, and were set at 15 lumens in the focal area.
- Pen weights and feed were recorded at day 10 and 21.

- the study was affected by diet type.
- efficient.
- \bullet

Department of Animal Sciences and Industry, Kansas State University, Manhattan

Corn-Based Diet

n,
e in the
se, bird
workers.
the water

vo feed	Treatment	
actorial	Corn	
	Sorghum	
itter,	Blue	
and the	Green	
	Red	
	White	
ch pen	Blue Corn	
d type	Blue Sorghum	
ens were or 24	Red Corn	
	Red Sorghum	
nly the	Green Corn	
tho		

Green Sorghum

White Sorghum

White Corn

Conclusions

At 10d, sorghum fed chicks were significantly less feed efficient than corn fed chicks, however, no other measurement in

At 10d, only the chicks under blue light had increased BWG. The chicks under blue lights fed corn were significantly more

There were no main effects of light color, feed type, or interaction observed for any of the treatments. The results indicate that under blue, red, green or white lights, early performance of male broiler chicks are remarkably similar.

Self-mixed rations :	10d	21d	Self-mixe
Ingredients			Ingredients
Corn	44.70 kg	132.0 kg	Milo
Soybean meal	24.30 kg	59.2 kg	Soybean meal
Limestone	1.152 g	3.10 kg	Limestone
Mono Dical	0.790 kg	1.90 kg	Soybean oil
Salt	0.274 kg	676 g	Mono Dical
Soybean oil	0.216 kg	1.60 kg	Salt
Biolys 70	0.205 kg	530 g	Biolys 70
DL Methionine	0.180 kg	470g	DL Methionine
KSTATE Po	0.202 kg	500 g	KSTATE Po
Ronozyme H	13.70 g	38 g	Ronozyme H
Coban	28.00 g	100 g	Coban

Treatment Means :

BWG0 10 (kg) 2.17a 2.17a 2.24a

2.14a

2.15a

2.15a

2.25b

2.23b

2.19ab

2.10ab

2.06a

2.22ab

2.19ab

2.05ab

Sorghum-Based Diet

0d	21	d			Self-mixed	rations:	10d	21d
				Ingred	ients			
0	'0 kg 132.0 kg			Milo	Milo			130.2 kg
80	kg 59.2	kg		Soybe	an meal	2	24.30 kg	59.2 kg
52	g 3.10	kg		Limes	tone	•	1.152 g	3 kg
)0	kg 1.90			Soybe	an oil	C).864 kg	3.60 kg
	kg 676	•		Mono	Dical	C).154 kg	1.90 kg
	kg 1.60			Salt		C).274 kg	0.676 kg
	kg 530	•		Biolys	70	C).194 kg	0.5 kg
	kg 470	•			thionine).194 kg	430 g
	kg 500			KSTA).187 kg	0.5 kg
70		•			zyme H		13.70 g	38 g
/ 0 00				Cobar			28.00 g	100 g
UU	g 100	y y		CONAI	•			
0	FI0_10	G/F0_10	BWG10_2	FI10_21	G/F10_21	BWG0_21		G/F0_21
	(kg)		1 (kg)	(kg)		(kg)	(kg)	
	2.51a	0.87 a	7.19 a	10.00a	0.72a	9.34a	12.52a	0.75a
	2.61a	0.83b	7.24 a	10.00a	0.72a	9.40a	12.61a	0.75a
	2.59a	0.87b	7.10a	9.93a	0.71a	9.34a	12.52a	0.75a
	2.54a	0.84ab	7.25 a	10.02a	0.72a	9.40 a	12.56a	0.75a
	2.59 a	0.83a	7.24 a	10.03a	0.72a	9.37a	12.61a	0.74a
	2.54a	0.85ab	7.27 a	10.04a	0.72a	9.42 a	12.57a	0.75a
	2.50ab	0.90b	7.08 a	9.97a	0.71a	9.33a	12.47a	0.75a
	2.67b	0.84 a	7.11a	9.90a	0.72a	9.34a	12.57a	0.74a
	2.62b	0.84 a	7.27 a	10.16a	0.72a	9.45a	12.78a	0.74a
	2.56ab	0.82 a	7.22 a	9.90a	0.73a	9.30a	12.45a	0.75a
	2.40 a	0.86ab	7.21a	9.90a	0.73a	9.27a	12.29a	0.75a
	2.67b	0.83a	7.29 a	10.15a	0.72a	9.51a	12.82a	0.74a
	2.54ab	0.86ab	7.20 a	10.00a	0.72a	9.38a	12.54a	0.75a
	2.54ab	0.83a	7.35a	10.07a	0.73a	9.50a	12.61a	0.75a

this experiment.

Support

Appreciation is expressed to KSU extension for financial support of

