

HIGH LEVEL ABSTRACTIONS AND VISUALIZATION OF

SENSOR NETWORK APPLICATIONS

by

SANDEEP PULLURI

B.E., Osmania University, India, 2005

A THESIS

Submitted in partial fulfillment of the requirements for the degree

 MASTER OF SCIENCE

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2008

Approved by:

Major Professor

 Dr. Gurdip Singh

Abstract

TinyOS is a component based operating system written in nesC programming language. TinyOS

provides interfaces and components for common low level abstractions such as packet

communication, routing and sensing for node level sensor network application programming.

This project aims to provide high level abstractions to users by providing the notion of a virtual

node, which represents a set of physical nodes, allowing users to specify global scenarios, and a

mechanism to decompose a high level global scenario into local node level scenarios for each of

the individual sensor nodes.

A global scenario with virtual components, provided by the user, is first converted into a global

scenario by eliminating the virtual components from the model by using a mapping information

provided the user and replacing these virtual components by their respective physical

components. Appropriate algorithm components and the automatically generated adapter

components for these algorithm components are then plugged- in to implement inter-node

interactions. This global scenario is then converted to the node level local scenarios by

introducing the automatically generated proxy components for the remote components and

connecting these proxy components using the RMI layer. The Cadena model is modified to

include the attribute location for the components to identify the remote components. The make

files are then generated for these local scenarios and are ready to be deployed on the physical

motes.

The framework provides a GUI tool which is used to visualize the data of the sensor network in

both simulation and deployment. The framework provides the user with commands that can be

issued to the network from the Cadena component model as a set of interfaces to the components

and a python script is used to capture this information in an xml file. The Cadena model is

modified to include the attribute observable to the interfaces to identify them as the GUI

commands. The GUI loads this XML file and the topology file for the actual deployment, can

issue commands to the network and displays the results to the user. The GUI tool also enhances

the Tossim simulator to model the external effects over the sensor network and to place the

motes based on the topology information using the Tython environment.

iii

Table of Contents

Table of Contents ... iii

List of Figures .. vi

Acknowledgement .. vii

CHAPTER 1 – TinyOS... 1

1.1 Introduction .. 1

1.2 Component Model .. 1

CHAPTER 2 – Tossim.. 2

2.1 Introduction .. 2

2.2 Limitations of the Tossim simulator .. 3

CHAPTER 3 – Tython .. 4

3.1 Introduction .. 4

3.2 Using Tython to control the Simulation ... 5

3.2.1 Basic Commands and Modification to the Interface... 6

3.2.2 Mobility of the Motes ... 7

3.2.3 Simulating External Effects .. 8

3.3 Sending commands to the motes .. 9

CHAPTER 4 – CADENA... 10

4.1 Modeling components and scenarios in Cadena .. 10

4.2 Modifications made to the Cadena model.. 11

4.3 Python script to generate scenario XML file ... 11

CHAPTER 5 – HIGHER LEVEL ABSTRACTIONS ... 15

5.1 Virtual Node ... 15

5.2 Algorithm components (Algorithm Layer) .. 16

5.2. 1 Breadth First Search.. 16

5.2. 2 Traversal algorithms for aggregation .. 18

5.3 Mapping XML File .. 20

5.4 Adapter components... 22

CHAPTER 6 – Remote Method Invocation ... 25

6.1 Global Scenario .. 25

iv

6.1.1 Introduction ... 25

6.1.2 Modeling global scenario in Cadena... 25

6.2 Proxy Components ... 26

6.3 RMI Layer Implementation.. 28

6.4 JAVA RMI ... 29

7.1 Introduction .. 32

7.2 GUI Components.. 32

7.3 GUI Layer Implementation .. 34

CHAPTER 8 – PHYSICAL LAYER ... 36

8.1 Introduction .. 36

8.2 Implementation... 36

CHAPTER 9 – CODE GENERATION.. 39

9.1 Loading the Scenario XML file ... 39

9.2 Loading the Mapping Xml File .. 40

9.3 Elimination of Virtual Nodes ... 42

9.4 Generation of node level scenarios .. 44

9.5 Generation of GUI Components .. 45

9.6 Generation of code for components and interfaces .. 46

9.7 Generation of Make files .. 46

CHAPTER 10 - GUI FOR DATA VISUALIZATION .. 47

10.1 Introduction... 47

10.2 Loading the topology XML file.. 48

10.3 Loading the Scenario XML file .. 48

10.4 Connect to the Simulation or Deployment ... 50

CHAPTER 11 – EXAMPLES .. 51

11.1 Parking Lot ... 51

11.2 Kitchen Application .. 54

CHAPTER 12 – PERFORMANCE RESULTS ... 58

12.1 Performance .. 58

CHAPTER 13 – CONCLUSIONS ... 62

13.1 Summary ... 62

v

13.2 Future Work .. 62

References ... 63

vi

List of Figures

Fig. 1 – Tython Architecture... 5

Fig. 2 – Virtual Node Model ... 16

Fig. 3 – BFSAlgorithm Component 1 ... 17

Fig. 4 – Traverse Component.. 19

Fig. 5 – Example Model.. 22

Fig. 6 – Model with adapter component ... 24

Fig. 7 – Example RMI Model ... 26

Fig. 8 – Model after RMI is plugged in .. 27

Fig. 9 – Example GUI component .. 32

Fig. 10 – Model after GUI is plugged in... 33

Fig. 11 – Complete Architecture... 38

Fig. 12 – GUI Concept .. 47

Fig. 13 – GUI Snapshot 1 ... 49

Fig. 14 – Parking Lot Model ... 51

Fig. 15 – Parking Lot model deployment ... 53

Fig. 16 – RMI Example Model ... 54

Fig. 17 – Scenario 0 Model ... 55

Fig. 18 – Scenario 1 Model ... 56

Fig. 19 – Scenario 2 Model 1 .. 56

Fig.20 - Search performance ... 58

Fig. 21 – BFS Operation performance .. 59

Fig. 22 – BFS Multiple search performance ... 59

Fig. 23 – Topology Deployed on Field ... 59

Fig. 24 – Search performance on the Real Field... 60

Fig. 25 – Aggregation Operation performance ... 60

Fig. 26 – RMI Operation performance ... 61

file:///C:\Documents%20and%20Settings\sandeepp\Desktop\modified%20document\thesis_sandeep.doc%23_Toc214826874
file:///C:\Documents%20and%20Settings\sandeepp\Desktop\modified%20document\thesis_sandeep.doc%23_Toc214826875
file:///C:\Documents%20and%20Settings\sandeepp\Desktop\modified%20document\thesis_sandeep.doc%23_Toc214826876
file:///C:\Documents%20and%20Settings\sandeepp\Desktop\modified%20document\thesis_sandeep.doc%23_Toc214826877
file:///C:\Documents%20and%20Settings\sandeepp\Desktop\modified%20document\thesis_sandeep.doc%23_Toc214826878
file:///C:\Documents%20and%20Settings\sandeepp\Desktop\modified%20document\thesis_sandeep.doc%23_Toc214826879
file:///C:\Documents%20and%20Settings\sandeepp\Desktop\modified%20document\thesis_sandeep.doc%23_Toc214826880
file:///C:\Documents%20and%20Settings\sandeepp\Desktop\modified%20document\thesis_sandeep.doc%23_Toc214826881
file:///C:\Documents%20and%20Settings\sandeepp\Desktop\modified%20document\thesis_sandeep.doc%23_Toc214826882
file:///C:\Documents%20and%20Settings\sandeepp\Desktop\modified%20document\thesis_sandeep.doc%23_Toc214826883
file:///C:\Documents%20and%20Settings\sandeepp\Desktop\modified%20document\thesis_sandeep.doc%23_Toc214826884
file:///C:\Documents%20and%20Settings\sandeepp\Desktop\modified%20document\thesis_sandeep.doc%23_Toc214826886
file:///C:\Documents%20and%20Settings\sandeepp\Desktop\modified%20document\thesis_sandeep.doc%23_Toc214826887
file:///C:\Documents%20and%20Settings\sandeepp\Desktop\modified%20document\thesis_sandeep.doc%23_Toc214826888
file:///C:\Documents%20and%20Settings\sandeepp\Desktop\modified%20document\thesis_sandeep.doc%23_Toc214826889
file:///C:\Documents%20and%20Settings\sandeepp\Desktop\modified%20document\thesis_sandeep.doc%23_Toc214826890
file:///C:\Documents%20and%20Settings\sandeepp\Desktop\modified%20document\thesis_sandeep.doc%23_Toc214826891
file:///C:\Documents%20and%20Settings\sandeepp\Desktop\modified%20document\thesis_sandeep.doc%23_Toc214826895

vii

Acknowledgement

I would like to take this opportunity to express my gratitude to some important people

who have inspired and guided me to complete this project.

Firstly, I thank my Major Professor and Advisor, Prof. Gurdip Singh for his continued

support and guidance throughout this project. I thank you for your patience, for always being

supportive and willing to point me in the right direction.

I thank my committee members, Prof. Daniel Andersen and Prof. Mitchell Neilsen for

their support.

 Finally, I would like to thank my family and friends for their unrelenting support and

encouragement, and for raising my spirits whenever I needed it.

1

CHAPTER 1 – TinyOS

1.1 Introduction

TinyOS is an open source component based operating system designed for

wireless sensor networks. It features a component-based architecture which enables

rapid innovation and implementation while minimizing code size as required by the

severe memory constraints inherent in sensor networks. The TinyOS system,

libraries, and applications are written in nesC, a dialect of C programming language

optimized for the memory limitations of the sensor networks. nesC supports the

TinyOS concurrency model and its programs are a set of software components which

are connected to each other using interfaces.

1.2 Component Model

A nesC application consists of components which can use or provide

interfaces and different components are connected using these interfaces. An interface

in a nesC application consists of commands and events. A component which provides

the interface has to provide the implementation for the commands in that interface

and can signal the events to the components using that interface. On the other hand, a

component using the interface has to provide the implementation for the event

handlers in the interface. Modules in TinyOS provide the implementation of the

components and the configuration. A scenario is a collection of components and the

wiring between the interfaces of these components which describes the complete

application.

NesC programs are built out of software components some of which are

hardware abstractions. TinyOS provides interfaces and components for common

abstractions such as packet communication, routing and sensing. The framework

developed in this project provides the user with higher level abstractions with some

generic services so that they can be directly used. It also aims at providing the user a

global view of application while abstracting the underlying communication details.

2

CHAPTER 2 – Tossim

2.1 Introduction

Sensor networks are composed of a large number of tiny communicating

devices (motes) with the capability of sensing and computation. Compared to

traditional networks, the motes in sensor networks have very limited computational

and communication capabilities because of their low energy resources.

Tossim is a discrete event simulator for TinyOS sensor networks. The TinyOS

code for a mote can be directly compiled to the TOSSIM framework which runs on

PC. In this way, we can debug, test and analyze the algorithms in controllable and

repeatable environment. TOSSIM provides run-time configurable debugging output,

allowing a user to examine the execution of an application from different perspectives

without needing to recompile it. TinyViz is a Java-based GUI that allows you to

visualize and control the simulation as it runs, inspecting debug messages, radio and

UART packets, and so forth. The simulation provides several mechanisms for

interacting with the network; packet traffic can be monitored, packets can be

statically or dynamically injected into the network. TOSSIM is compiled by typing

“make pc” in an application directory. In addition to the expected TinyOS

components, a few simulator-specific files are compiled; these files provide

functionality such as support for network monitoring over TCP sockets. The TOSSIM

executable is build/pc/main.exe. TOSSIM has a single required parameter, the

number of nodes to simulate.

By default, TOSSIM prints out all debugging information. TOSSIM output

can be configured by setting the DBG environment variable in a shell. TinyViz, the

Tossim user interface, provides an extensible graphical user interface for debugging,

visualizing, and interacting with TOSSIM simulations of TinyOS applications. Using

TinyViz, you can easily trace the execution of TinyOS apps, visualize radio

messages, and manipulate the virtual position and radio connectivity o f motes. In

addition, TinyViz supports a simple "plugin" API that allows you to write your own

3

TinyViz modules to visualize data in an application-specific way, or interact with the

running simulation.

2.2 Limitations of the Tossim simulator

 Every mote in the simulation runs the same TinyOS program.

The Tossim simulator does not allow motes in the network to run different

programs and communicate with each other. One way to overcome this is to

write a main configuration file which initializes the mote specific sub-

configurations for the respective motes based on the

TOS_LOCAL_ADDRESS value.

 There is no way to directly specify connectivity between nodes in a network.

There is no capability to directly specify connectivity between nodes in a

network. By default, TOSSIM places all nodes in the simulation in a grid,

where every node can listen to (is connected to) every other node in the

network. To overcome this, the TinyViz user interface can be used to place

the motes on it and choosing the radio model from the TinyViz plug- in.

 Tossim is focused on simulating TinyOS and its execution rather than

simulating the real world. It does not capture the real world behavior.

 While Tossim simulates network behavior at bit level and simulates each

individual ADC component, it does not model real world features. Instead, it

provides abstractions of certain real-world phenomena (such as bit error).

With tools outside the simulation itself, we can then manipulate these

abstractions to implement whatever models we want to use.

4

CHAPTER 3 – Tython

3.1 Introduction

To overcome some of the limitations of the Tossim as explained in the

Chapter 2 and to model behaviors such as mote movement, changing sensor readings

and other real world phenomenon, TOSSIM provides a socket based command API

for other programs to connect and issue commands to the simulator. One solution is

TinyViz, a GUI which communicates with TOSSIM over the socket API. With

TinyViz, we can interact with a simulation through a GUI panel by dragging motes

and setting options. These actions can be difficult to reproduce exactly (e.g., dragging

a mote).

Tython (or, Tinython) complements TinyViz's visualization by adding a

scripting interface to TOSSIM. Users can interact with a running simulation through

TinyViz, a Tython console, or both simultaneously. Tython is based on Jython, a Java

implementation of the Python language. Jython makes it very easy to import and use

Java classes within Python. This allows users to access the entire TinyOS Java tool

chain, including packet sources, MIG-generated messages, and TinyViz.

Tython sit on top of SimDriver, a Java application that manages interactions

with TOSSIM. The core of SimDriver is an event bus. Java plug- ins can connect to

this event bus, can receive TOSSIM events and send TOSSIM commands. Many of

the Tython abstractions are built on top of SimDriver plug- in.

SimDriver can be invoked by the following command.

java net.tinyos.sim.SimDriver -gui -run main.exe 10

This command will start TinyViz with the Tython console and start the simulation

with 10 motes.

All TOSSIM events are sent to the SimDriver and internally distributed via

the Event Bus. Periodic / future events can be implemented by inserting an event and

registering a callback handler. Python scripts can register a handler to get events as

well. The Tython console can be started using TinyViz GUI using the following

command.

5

#tinyviz –run build/pc/main 10

This command starts the SimDriver, starts TinyViz GUI and connects the GUI

to the simulation of 10 motes and provides a Tython console where we can import the

Java classes reflected by the Jython and those of the TinyOS java tool chain. Then we

can issue Tython commands on the command line which are sent to the Tython

interpreter which runs concurrently with the TOSSIM simulation and interacts with it.

We can import the simcore module to the Tython environment which provides the

python object interface by the following command at the Tython command prompt.

#from simcore import *

This module hides the internal complexities of the interaction of the

SimDriver with the TOSSIM. This module is the core interface that is used to interact

with the Tython environment. This module is in fact not Python code at all, instead, a

single instance of each class of the Java net.tinyos.sim.script.reflect package is

created and is bound into the simcore module.

Fig. 1 – Tython Architecture

3.2 Using Tython to control the Simulation

6

3.2.1 Basic Commands and Modification to the Interface

When the simulation is started with TinyViz and the Tython console,

the motes are assigned random locations and are displayed on the TinyViz

interface and the default radio model that is used is empirical. Tossim

supports two radio models, Empirical and FixedRadius. With FixedRadius we

can choose either 10ft or 100ft or 1000ft as the communication range for the

motes.

We can use the Tython commands to give the motes initial coordinates

and to choose the radio model, so that the topology on which we want to run

the simulation is ready and then give an another command to resume the

simulation.

The Tython commands that can be issued to the Tossim simulation and

their purpose are as follows:

 sim.pause() - to pause the running simulation

 sim.resume() - to resume the paused simulation

 sim.stop() - to stop the simulation

 motes[i].moveTo(x,y) – to move the mote with id i to the location

(x,y)

This is the command the Tython interface can use to place the motes

on the TinyViz interface with the given coordinates. The user can

provide the coordinates for each mote in XML format so that these

coordinates are read and this command can be issued for each of the

motes with these coordinates as the parameters.

 motes[i].turnOff() – to turn off the mote with id as i.

By default if we start Tython using the TinyViz, GUI it gives a

command line interface to enter the commands, which are sent to the

SimInterpreter internally by the SimDriver. Now as there is a need to provide

to the user a graphical interface so that the user can select the co mmands and

send them to the simulation instead of using the default command line

interface, the internal java TinyOS tool chain hasis to be changed. Because of

7

this a change is made to the internal SimDriver class so that it waits for the

GUI program to connect to it on the TCP channel on a particular port. Once

we connect GUI to the TCP channel, the commands coming from the GUI can

be sent to the channel and the output from the simulation can be retrieved

from the channel.

3.2.2 Mobility of the Motes

Internally the movement of the motes is performed as follows. It issues the

mote.moveTo() command repeatedly by calculating the next position from the

destination coordinates and the amount it should get close to the destination

each time, which is determined by the rate.

Sample Java Code for mote movement:

(xc,yc) – source coordinates ;

(dxc,dyc) – destination coordinates

step – increment at every period

rate is the rate of movement

os is the channel which connects to the SimInterpreter class

Motemove(xc,yc,dxc,dyc,step,rate)

{

dx=dxc-xc;

dy=dyc-yc;

distance = Math.sqrt(((dxc-xc)*(dxc-xc))+((dyc-yc)*(dyc-yc)));

nsteps = distance / step;

xstep=dx/nsteps;

ystep=dy/nsteps;

while(yc!=dyc || xc!=dxc)

{

distance = Math.sqrt((dxc-xc)*(dxc-xc))+((dyc-yc)*(dyc-yc));

if(distance < step)

{

os.writeBytes("motes[0].moveTo("+dxc+","+dyc+")\n");

8

xc=dxc;

yc=dyc;

}

else

{

xc=xc+xstep;

yc=yc+ystep;

os.writeBytes("motes[0].moveTo("+xc+","+yc+")\n");

}

Thread.sleep(rate);

}

}

3.2.3 Simulating External Effects

In the deployment system where we work with the real motes, whenever

an external effect is sensed by the sensing component of the mote, the ADC

value of the mote gets changes and the mote can respond if the observed ADC

value is above some threshold which is determined by the application. For

example if we have a mote with a light sensing component in it, whenever it

observes the light, its ADC value gets increased and later when there is no

light, ADC values gets decreased. Similarly in object tracking app lications,

the motes which detect the object should return high ADC values compared to

the other motes.

On the other hand in simulation if we use the ADC component and call

ADC.getData(), a random number is generated and is returned as ADC value.

By default simulating applications which react to the external effects could

not be done in TOSSIM. We have a command in Tython which set the ADC

value of a mote.

comm.setADCValue(id,simTime,port,value)

where id is the mote id, simTime is the simulation time at which the value

should be set, port is the port number and the value is the ADC value.

9

This command can be used as follows to simulate the external scenarios.

Suppose if there is an XML file which has the scenario specified. There is a

need to formalize the format of specifying these scenarios for various effects

such as temperature detection, light sensors, object detectors, etc. Reading the

scenario information the motes ADC values can be changed using the above

command.

Sometimes there is a need to simulate applications where a single mote

has many sensing components for example a mote can have a magnetometer

to detect the objects as well as photo sensor to detect the light. To simulate

these types of scenarios two ADC components should be used. As ADC is a

parameterized interface we can specify the ports on which we seek to set the

values as the parameter for these ADC components in the configuration file.

Example nesc code:

TestTinyVizM.ADC1 -> ADCC.ADC[1];

TestTinyVizM.ADC2 -> ADCC.ADC[2];

To set the value for first ADC port number 1 can be used and to set the

value for the second ADC port number 2 can be used. In this way we can

simulate the applications with multiple sensing attributes.

3.3 Sending commands to the motes

MIG is a tool that generates Java classes for TinyOS packets. The MIG tool parses C

structures for TinyOS packets and builds a Java class with assessors for each of the

packet fields. The Tython command used to send the message msg to mote with id

moteid is as follows

comm.sendRadioMessage(moteid,simTime,msg)

10

CHAPTER 4 – CADENA

4.1 Modeling components and scenarios in Cadena

Cadena is an Eclipse-based extensible integrated modeling and development

framework for component based Systems. Cadena provides the capability to define the

modeling environments for widely used component models such as nesC a component

model for sensor networks built on TinyOS. TinyOS has a component-based architecture

which enables rapid innovation and implementation while minimizing code size as

required by the severe memory constraints inherent in sensor networks. The Cadena team

chose to develop plugins to support end-to-end development for TinyOS/nesC to help

support a team of developers at K-State that are currently experimenting with sensor

network technologies.

We need to following steps to use Cadena: (a) Install Cadena and install the

TinyOS plugins to the Eclipse/Cadena environment. (b) Create a new TinyOS project

using the New TinyOS project wizard dialog. (c) Create a new TinyOS module under the

current project in the module directory and choose the Style as nesC style. The TinyOS

existing interfaces, components, scenarios and other libraries are modeled as Cadena

interfaces, components and scenarios and provided as a zip folder TinyOSLibs.zip. (d)

Import this folder in to the Cadena environment and added this to the project references

list so that the existing TinyOS libraries can be used in modeling the applications. Then

either new interface types can be added to the module or the existing interfaces can be

imported. (e) Once all the needed interfaces are added to the module add the new

component types using or providing the interfaces added to the module or import the

existing components to the module.

(f) Then create a new Cadena Scenario under the Scenario directory and import

the module created previously to this scenario. Components can be added to the scenario

from the component types added to the module or the already existing TinyOS

components can also be added to the scenarios which are added to the project as

references. (g) As the last step connect the interfaces of the components in the scenario to

create the complete nesC application. In the graph view of the scenario the complete

11

application can be seen with the components and the interface connections between these

components.

4.2 Modifications made to the Cadena model

The default Cadena component model does not provide the capability to design an

application with location of the components specified and does not allow connection

between the interfaces of components which are at different locations. That is the global

scenario cannot be modeled; instead different node level scenarios have to be designed

separately which restricts the user to have the global view of the application.

The nesC style for module specification in Cadena has no property “location” for

the components. There is no concept of location for the components. Since this project

aims to provide the user a global view of the application which includes the multiple

node level scenarios and connections between them, the nesC style was changed to

include the property “location” of integer type for the component types. This property

specifies where each component has to be deployed.

The other property that is added is the boolean property “observable” for the

interface types to specify the commands of these interfaces as observable if it is true. The

user needs to provide the implementation for these observable commands in the

components so that these commands can be called from an external tool to observe the

desired data or to perform some action on the node. The basic example can be to set the

transmission power of the motes by sending a command to the mote. The other example

could be to make the mote sleep and wake up. The observable commands can also be

used to view the values some of the variables in the running network. The project also

aims at designing a GUI tool which issues these commands and provide the results to the

user which is discussed later in the document.

4.3 Python script to generate scenario XML file

The information in the Cadena model has to be captured in the form of an XML

file which has the details about the components, their locations, the wiring information

and the also the interface information like the commands, events and their parameters to

generate the nesC modules files, interface files and the node level scenario files. This

12

XML file is very important and is used at every stage in the project framework to plug in

the algorithm components based on the user needs, to generate the additional required

components and wirings and also for the automation of the code generation.

The XML format is as shown below

 <scenario>

 <name> </name>

 <component>

 <name> </name>

 <location></location>

 <type> </type>

 <input_ports/>

 <output_ports>

 <wire>

 <port> </port>

 <connected_to>

 <wire_to> </wire_to>

 <comp_name> </comp_name>

 <location></location>

 </connected_to>

 </wire>

 ` </output_ports>

 </component>

 <portinfo>

 <port>

 <name> </name>

 <location></location>

 <compname> </compname>

 <periodic></periodic>

 <observable> </observable>

 <commands_list>

 <command>

13

 <name> </name>

 <return_type> </return_type>

 <async></async>

 <parameters/>

 </command>

 </commands_list>

 <events_list>

 <event>

 <name> </name>

 <return_type> </return_type>

 <async> </async>

 <parameters>

 </parameters>

 </event>

 </events_list>

 </port>

 </portinfo>

</scenario>

As shown in the XML file the components information and the interface

information along with the observable property information is captured which is later

used to load these commands in the GUI. This XML file is generated using a python

script which is written using the java API available for the Cadena tool in the package

“edu.ksu.cis.cadena.core.specification”.

For example to extract all the components information from a scenario, the

pseudo code will look something as follows

for comp in scenario.allInstances:

 print "Scenario %s contains component %s" % (

 scenario.name, comp.name)

 print "component type is %s" % (

 comp.type.name)

print "component location is %d" % (

14

 Integer.toString(comp.location))

To extract the interface information from a component “comp”, the pseudo

code will look something as follows

for port in comp.ports:

 print "component %s has port %s" % (

 comp.name,

 port.name)

To run the python script right click on the graph view of the scenario and

select Jython - Run Jython Script and select the python script and the XML file with

all the required information is generated with the scenario name.

15

CHAPTER 5 – HIGHER LEVEL ABSTRACTIONS

5.1 Virtual Node

Wireless sensor network (WSN) applications exhibit a high degree of

decentralization. This is particularly true of scenarios where the data reported by sensors

is used to control actuators affecting the environment. Implementing this control loop in a

decentralized fashion is much more complex than in mainstream, centralized

applications.

Consider an application where there are many temperature sensors deployed in a

field. When the average of these temperature readings of these sensors report a value

higher than the threshold then the sprinklers in field should be switched on or an

emergency signal should be triggered. Implementing this kind of application in a

centralized manner is impractical. Thus, decentralized coordination of sensing and

actuating activities increases performance but increases complexity. The available

programming frameworks are too low-level and force the programmer to deal with the

details of data gathering, bookkeeping, and communication, instead of focusing on the

application logic. Higher- level programming abstractions are needed to deal with the

complexity of decentralized sensor networks.

This project framework uses the concept of virtual nodes, a programming

abstraction abstracting a set of physical nodes. The data from a set of physical sensor

nodes are collected, processed according to the application specific function and provided

as the single reading of a virtual node. The set of the physical nodes abstracted by the

virtual node is specified by the user using the Mapping XML file which is discussed later.

Using the virtual node abstraction, the user can focus on the application logic rather than

the low level implementation details including the message communication and data

gathering.

For example, in the following figure a set of eight physical nodes are abstracted

by a virtual node. The Monitor can query the virtual node to get the temp and the virtual

node gathers the data from the physical nodes apply the application specific aggregation

function and provides the result to the Monitor component as a single reading. In this way

the virtual node abstracts the communication details between the different physical nodes.

16

This also gives a scope to develop some generic functions which can be automatically

plugged in based on the user requirements in place of the virtual node.

5.2 Algorithm components (Algorithm Layer)

5.2. 1 Breadth First Search

The general use of the sensor network might be to search for a node with

some search criteria and read or write variables on the searched node. This

general service is provided to the user as a BFSAlgorithm.nc scenario which is in

the library and automatically plugs in based on the Mapping XML file.

For example, if the virtual node is abstracting a set of physical nodes each

has some data which is replicated randomly in the network and the virtual node is

providing services to search for the node with the data available on it and also

read that variable. Then, the BFSAlgorithm can be plugged which provides the

services the user needs. It searches the network for the required attribute in a

Monitor

Virtual

TempNode

PN PN

PN

PN

PN

PN

PN

PN

PN

PN

 Fig. 2 – Virtual Node Model

17

breadth first manner and returns the nearest node available in the network

satisfying the criteria. If there are multiple nodes available then the algorithm

returns the first node and caches the remaining results for the future searches. This

component is written so that multiple searches can simultaneously run in the

network, where each one is identified by the search id issued by the base station.

The BFSAlgorithm component looks as shown in the following figure

The visit interface has the following commands and the events

 visit – command result_t visit(char* criteria, int x1,int y1,int x2,int y2)

visit interface take the parameters as search criteria, the bounded

coordinates which represents the area that is needed to search.

 visit_reply - event result_t visit_reply(int refid,char *criteria);

visit_reply event is signaled with the refid that is used to later access

the node which satisfied the search criteria and the criteria specifying

for which the search command is used.

. The read interface has the following commands and the events

 read - command result_t read(int refid,char* variable);

read command takes tha parameters as the refid which is returned by

the search call, and the variable that is to be read from the node.

 Fig. 3 – BFSAlgorithm Component 1

 BFSAlgorithm

StdControl
 visit_action

visit

write read_action

read write_action

BFSCount

18

 read_reply - event result_t read_reply(char* value,char* criteria);

read_reply event is signaled when the requested data is ready and the

data is returned in the string format which is then later needed to be

converted to the actual data type.

 The write interface has the following commands and the interfaces

 write - command result_t write(int refid,char* variable,char* value);

write command takes the parameters as the refid, the variable name to

be written and the value.

 write_reply - event result_t write_reply(char* status,char* variable);

write_reply event is signaled with the status of the write command

which may be either success or failure.

 The interface BFSCount is used to get the number of messages sent at the

BFS level which is used for the performance evaluation of the algorithm.

visit_action interface has the command visit_action which is the action to be taken

on the visit call. Similarly read_action and write_action has the commands

read_action and write-action which are the actions to be taken at the physical

level in respect to read and write commands.

The search algorithm used is the breadth first search algorithm which

initially creates a breadth first tree on the nodes during the init process and later

uses this tree to search on it. It stops if there is any positive response from the

current search level. Else it searches at the next level. If no node is available then

it returns -1. At every node if the search is positive it stores the address of the

next hop in the path variable which is indexed by the refid and this refid is

returned to the user. Thus the later reads and writes can use this refid to exactly

traverse to the node using the path information.

5.2. 2 Traversal algorithms for aggregation

The other basic service that is provided as part of the project framework is

generic traversal algorithm which is used to gather the data from all the physical

nodes and then apply the aggregation function and return the return the result to

19

the user. One example of application using this might be the sprinkler system

which is explained earlier in this chapter.

This service is provided as a scenario Traverse.nc which is also stored in

the library and automatically plugs in based on the Mapping XML file. The

Traverse component looks as shown in the following figure

The tvisit interface has the following commands and the events

 tvisit – command result_t tvisit(char* criteria, int x1,int y1,int x2,int

y2)

tvisit interface take the parameters as search criteria, the bounded

coordinates which represents the area that is needed to gather the data

for the aggregation.

 tvisit_reply - event event result_t tvisit_reply(int data,char *criteria);

tvisit_reply event is signaled with the aggregated data and the criteria

on which the data is aggregated.

 The twrite interface has the following commands and the interfaces

 twrite - command result_t twrite(char* variable,char* value);

twrite command takes the parameters as the variable name to be

written and the value.

 Traverse

StdControl

 tvisit_action

tvisit

twrite

 twrite_action

TCount

 Fig. 4 – Traverse Component

20

The interface TCount is used to get the number of messages sent at the

Traverse level which is used for the performance evaluation of the algorithm.

tvisit_action interface has the command tvisit_action which is the action to be

taken on the tvisit call. Similarly twrite_action has the command twrite-action

which is the action to be taken at the physical level in respect write command.

The traverse algorithm forms a tree rooted at the base station for the initial

command and later uses this tree in its aggregations.

5.3 Mapping XML File

The Cadena component model for a nesC application can have some real

components and some virtual components. The virtual components in the Cadena

component model have the component names that being with “virtual_”. To

generate the node level scenarios these virtual components are to be collected and

the associated algorithm components and the actual physical components should

be plugged in. The information needed for this step is given by the user in the

form of an XML file named Mapping.XML file which maps the virtual

components and their interfaces to the physical components and their interfaces.

The format of the Mapping.XML file is as shown below

<Mapping>

 <VirtualNode>

 <Name> </Name>

 <PhysicalNode>

 <Name> </Name>

 <Searchers>

 <Command>

 <V_int> </V_int>

 <P_int> </P_int>

 <V_comm> </V_comm>

 <P_comm> </P_comm>

 <A_type> </A_type>

 <V_event> </V_event>

21

 <P_event> </P_event>

 <P_fun> </P_fun>

 <Criteria> </Criteria>

 </Command>

 <Readers>

 </Readers>

 <Writers>

 <Variable>

 <Name> </Name>

 <type></type>

 <V_int> </V_int>

 <P_int> </P_int>

 <V_comm> </V_comm>

 <P_comm> </P_comm>

 </Variable>

 </Writers>

 </Searchers>

 <Aggregators>

 </Aggregators>

 </PhysicalNode>

</VirtualNode>

 </Mapping>

As seen from the Mapping XML file, the information about the physical

node for each virtual node is captured. Each virtual node has some searchers and

aggregators. Then in turn each searcher has some writers and readers and each

aggregator has writers associated with it. For searchers the data in the A_type is

“nearest” which specifies that the BFSAlgorithm is needed to plugged in and for

the aggregators the A_type is “aggregation” which specifies the Traverse

algorithm is needed to be plugged in.

22

Mapping file also has the details of the corresponding physical commands

and the physical events of the physical node for each of the virtual commands and

the virtual events of the virtual node. This information is used to generate the

adapter components for the algorithms which connect the real components with

the algorithm components and also to the physical components on the other end

which is explained in the next section.

5.4 Adapter components

Adapter components are the bridging components that are to be generated to

connect the real components with the algorithm components. These are used so that

the interfaces in the algorithm components need not be changed to connect them to

different physical components. Adapter components also play an important role in

converting the data types to string type when they are passed to the algorithm and

also to convert back them to their respective types when they are sent to the real

components.

Adapter components for the algorithm components are generated in such a

way that for each interface the virtual component is providing the adapter component

provides that interface and from the mapping file the physical interface corresponding

to this virtual interface the adapter component uses this interface. Likewise the wiring

is changed accordingly.

For example consider the following model

In the above model virtual_Temp is the virtual node as its name beings with

the “virtual_” keyword. Let us consider the Mapping file for this model is as shown in

the following XML file

 Monitor

search

virtual_Temp

search

Temp_Node

GetTemp

 Fig. 5 – Example Model

23

<Mapping>

 <VirtualNode>

 <Name>virtual_Temp </Name>

 <PhysicalNode>

 <Name>Temp_Node </Name>

 <Searchers>

 <Command>

 <V_int>search </V_int>

 <P_int>GetTemp </P_int>

 <V_comm> searchtemo</V_comm>

 <P_comm> gettemp</P_comm>

 <A_type>nearest </A_type>

 <V_event>search_reply </V_event>

 <P_event> get_reply </P_event>

 <P_fun>temp_fun </P_fun>

 <Criteria>Temp </Criteria>

 </Command>

 <Readers>

 </Readers>

 <Writers>

 </Writers>

 </Searchers>

 <Aggregators>

 </Aggregators>

 </PhysicalNode>

</VirtualNode>

</Mapping>

 Since in the above Mapping XML file the A_type is nearest BFSAlgorithm

component needed to plugged in and the adapter component to be generated for this

component is BFSAdapter component. The final scenario that is generated after

24

eliminating the virtual node and plugging in the adapter, algorithm and the associated

physical components is shown in the next figure.

As seen from the above figure the BFSAdapter component acts as a bridge

between the algorithm components and the real physical components.

Fig. 6 – Model with adapter component

 Monitor

search

 BFSAdapter

 visit
search

 read
visit_action

 write

 GetTemp

Temp_Node

GetTemp

 BFSAlgorithm

visit
 visit_action

read
 read_action

write

 write_action

25

CHAPTER 6 – Remote Method Invocation

6.1 Global Scenario

6.1.1 Introduction

Global Scenario in a configuration component model of the nesC

application which contains components which are to be deployed a t different

locations in the network and the connections between the interfaces provided and

used by these components. The default component model of the nesC application

does not allow connecting the interfaces of the components which are to be

deployed at different locations. There is no concept of the attribute location for

the components in this model.

6.1.2 Modeling global scenario in Cadena

Previously, to implement the global scenario the node level scenarios are

to be modeled with the components which are at one single location and

connections between these components. Then the connections between the

components which are at different locations are to be implemented explicitly by

the user using the radio message communication between these components. The

designer would not be able to look at the complete global application model, but

instead able to view the unconnected node level scenarios.

This project provides a framework to the user so that the user can model

the global scenario in the Cadena plug- in by adding a new attribute “location” to

the component implementation in the Cadena. The location attribute specifies the

physical location the component is to be deployed. The designer of the application

can design the global model as if he is designing the node level model, by

connecting the interfaces normally and assigning the location attribute

appropriately. Thus the designer can view the global application by connecting

the node level scenarios abstracted by the attribute location.

26

6.2 Proxy Components

Proxy components are the components that are to be generated for the remote

components in the node level local scenarios when the global scenario is decomposed in

to the node level scenarios. In the global scenario if an interface of a component A at

location i is connected to the interface of a component B at location j, then the proxy of

the component B is generated at location i and the proxy of the component A is generated

at location j.

For example consider the following model

Here in this global scenario the component A is at location 1 and the component

B is at location 2. A is using the GetData interface which is connected to the GetData

interface provided by the component B. After generating the proxy components the

application model looks as shown in the following figure

 B

GetData

 Loc - 2

 A

 GetData

Loc - 1

Fig. 7 – Example RMI Model

27

Proxy component for B “proxy_B” is generated at location 1 and proxy

component for A “proxy_A” is generated at location 2. Component proxy_B provides the

interface GetData which is connected to the GetData interface of the component A and

component proxy_A uses interface GetData is connected to the GetData interface of

component B.

The rules for generating the proxy components are:

1) If component A is using an interface connected to the remote component B then the

proxy of the remote component proxy_B is generated providing the interface and the

component A uses interface is connected to the provides interface of the proxy_B.

2) If component A is providing an interface connected to the remote component B then

the proxy of the remote component proxy_A is generated using the interface and the

component A provides interface is connected to the uses interface of the proxy_B.

Execution of the commands and events are as follows

1) If A at location 1 calls the command of the GetData interface, the proxy_B

component handles this command to the RMI (Remote Method Invocation) layer,

 A

 GetData

Loc - 1

 B

GetData

 Loc - 2

 proxy_B

GetData

 Loc - 1

 proxy_A

 GetData

Loc - 2

RMI LAYER

Fig. 8 – Model after RMI is plugged in

28

then the RMI layer handles this command call to the proxy_A at location 2 which

calls the command in the component B.

2) If B signals the event to the proxy_A at location 2, proxy_A handles this event to the

RMI layer then the RMI layer handles this event to the proxy_B component at

location 1 which then signals the event to the component A.

In this way proxy components along with the RMI layer are used to invoke the

remote commands and to signal the remote events. Thus, this gives the designer a global

view of the application abstracting the underlying communication model used for routing

these commands and signals through the network.

6.3 RMI Layer Implementation

Remote Method Invocation layer is implemented as a nesC scenario RMILayer.nc

which provides the interface RMIInterface and uses the interfaces PhysRcv and

PhysSend provided by the physical layer.

Proxy components which use the RMI layer to execute remote commands and

signal remote events have to use the RMIInterface which has the following commands

and events

 RMISend - command result_t RMISend(char* msg,int destid);

Proxy components converts the command call or a event signal along with

the parameters in them as a string message and calls the RMISend()

command with this string message and the destination node id where the

method is to be executed as the parameters.

 RMIReceiveComplete - event result_t RMIReceiveComplete(char* m);

RMIInterface also has an event RMIReceiveComplete which is signaled

by the RMI layer to the proxy components with the string message as a

parameter, which represents the command or the event when there is an

RMI message received from the physical layer addressed to that particular

node.

29

PhysRcv and PhysSend interfaces are used to receive the RMI messages from the

physical layer and to send the RMI messages to the physical layer which then uses the

COMM layer to send these messages over the radio communication.

RMI Layer is implemented as a reliable layer over end to end communication. To

implement the reliability the protocol that is used is alternating bit protocol (ABP) which

eliminates the duplicate messages and also the duplicate acknowledgements. RMI Layer

has a queue to store the incoming messages from the proxy components. Two arrays are

used to maintain the bitmaps one for the messages and one for the acknowledgements so

that the expected bit in the messages can be saved for each of the neighbors. RMI layer

also has the routing tables which has the information of the next hop for each destination

in the network. When the RMI layer receives a message from the proxy component, it is

enqueued and is sent over to the physical layer to send it to the next hop from the routing

table information for the destination id when the medium is free. The message is resent if

there is no acknowledgement received. Once the acknowledgement is received the bit is

changed in the array for that neighbor. In this way the duplicate messages are dropped

and also the duplicate acknowledgements are dropped by using the ABP protocol even

for the acknowledgements. When the RMI layer receives a message from the physical

layer it checks the destination id in the message and if the message is addressed to it,

RMI layer signals the RMIReceiveComplete event with the message to the proxy

component. If the destination id in the message is different from the node id then it is

enqueued and sent to the physical layer to be sent to the next hop for the destination. In

this way the message is routed from the source to the destination using the routing table

information.

6.4 JAVA RMI

Java RMI is a mechanism that allows one to invoke a method on an object that

exists in another address space. This “other address space” could be on the same machine

or on a different one. For example when a process on machine A calls a method on

machine B, the calling process on A is suspended, and execution of the called method

takes place on machine B. Information is transported from the caller to the callee which

includes the parameters and can come back in the form of the procedure result.

30

The idea behind RMI is that the calling procedure should not be aware that the

called method is executing on a different machine. This is achieved in the following way.

When the caller A calls the remote method of B, a stub identical to the remote process is

created which when called, instead of executing, the method packs the parameters into a

message and sends the message to the process B. Similarly on the process B, a stub

identical to the process A is created and when the message arrives at the process B, the

stub of process A unpacks the parameters and calls the method on B.

 Dynamic Binding

The issue in executing RMI calls is that how the process A locates the process

B. To address this issue, java RMI uses dynamic binding technique to match

the processes for example clients with servers. Each process has a formal

specification which contains the methods the process is providing along with

the parameter information. When the process begins it sends a message to the

object registry to register itself. Each process is identified by the version

number, unique identifier and a handle to locate it. When a process calls the

remote method, the process sends a message to the object registry asking to

import the remote process. If there is any process registered with the object

registry with the given version number and name, it returns the handle and the

unique identifier to the calling process stub.

 Comparison of Java RMI and RMI provided by the project framework

The RMI service provided in this project framework uses the similar

procedure as it is in the Java RMI in generating the stubs for the remote

processes. It also uses the same technique in packing the method call along

with the parameters in a message and sending it over to the remote process for

execution.

The main difference between both of them is the way the remote processes are

located for sending the messages. While the Java RMI as explained above

uses the object registry so that the remote processes can register themselves,

there is no concept of the object registry in the RMI framework used in this

project. Instead it is assumed that a shortest route algorithm is run on the

network so as to populate the routing tables present at each and every location

31

in the network. Whenever a node calls a remote command the information

present in this routing table is used to identify the remote process and route

the command to it.

32

CHAPTER 7 – GRAPHICAL USER INTERFACE LAYER

7.1 Introduction

As mentioned in the Chapter 4, the Cadena model is modified so that the

interfaces have an additional boolean attribute “observable” to identify these

interfaces as the observable interfaces if it is set to true so that the commands of these

interfaces can be called from the GUI to view the data interested to the user. In this

way the commands that the user want to issue from the GUI are des igned as the

interfaces to the components with the observable attribute as true for these interfaces.

The other application interfaces has the observable attribute either set to false or can

be left as default value.

7.2 GUI Components

GUI components are the components which are to be generated for the

components that has the observable property as true for any of the interfaces in its

provides list. If a component A at location i have a interface GetX in its provides list

with the observable property as true for this interface, then the gui component with

respect to the component A “gui_A” has to be generated with the interface GetX

added to its uses list.

For example consider the following component

 A

GetX

 Loc - 1

Fig. 9 – Example GUI component

33

Here the component A at location 1 provides the interface GetX with the

observable property as true. After generating the GUI component the application

model looks as shown in the following figure

GUI component for the component A “gui_A” is generated at location 1 with the

interface GetX in its uses list and this interface is connected to the GetX interface

provided by the component A.

The rules for generating gui components are as follows

1) If a component A is providing an observable interface, then the gui component

“gui_A” is generated for that component which uses that interface and is connected to

the interface provided by A.

2) The gui component generated should use the interface GUIInterface and is connected

to the GUI Layer, which is used to send messages to the GUI and receive message

from the GUI through UARTControl.

In this way the gui components along with the GUI layer are used to get the

commands from the GUI, execute the commands and send the results back to the GUI to

 A

GetX

 Loc - 1

 gui_A

 GetX

Loc - 1

GUI Layer

Fig. 10 – Model after GUI is plugged in

34

display for the user in response to these commands. Thus giving the designer a way to

specify the commands in the application model and executing the commands and

returning the interested data to the user using the abstraction of underlying GUI layer and

the gui components.

7.3 GUI Layer Implementation

Graphical User Interface layer is implemented as a nesC scenario

GUILayer.nc which provides the interface GUIInterface and uses the interfaces

PhysRcv and PhysSend provided by the physical layer.

GUI components which use the GUI layer to execute the commands from the

user and send responses back to the user have to use the GUIInterface which have the

following commands and events

 GUISend - command result_t GUISend(char* msg);

GUI components converts the command call or a event signal along

with the parameters in them as a string message and calls the GUISend()

command with this string message as the parameter.

 GUIReceiveComplete - event result_t GUIReceiveComplete(char* m);

GUIInterface also has an event GUIReceiveComplete which is

signaled by the GUI layer to the gui components with the string message as a

parameter, which represents the command along with the parameters

converted to string type when there is an GUI message received from the

physical layer addressed to that particular node.

PhysRcv and PhysSend interfaces are used to receive the GUI messages from

the physical layer and to send the GUI messages to the physical layer which then uses

the UARTControl layer to send these messages over the UART back to the GUI.

GUI layer do not process any message, whenever it gets a message from the

physical layer it simply forwards it to the gui component and whenever it gets a

message from the gui component it forwards it to the physical layer. It acts as a

bridge between the gui components and the physical layer. Once the gui components

gets the message from the GUI layer, the message is decoded to extract the interface

name, command name and the parameters. Then the command in that interface is to

35

be called using the parameters converted back from string type to their respective data

types.

36

CHAPTER 8 – PHYSICAL LAYER

8.1 Introduction

The physical layer is the low level layer and the most important one in the

framework. All the upper layers GUILayer, RMILayer, BFSAlgorithm and Traverse

algorithm layers use physical layer to send and receive messages over the radio

communication and the UART Control.

8.2 Implementation

Physical Layer is implemented as a nesC scenario PhysLayer.nc which

provides the interfaces PhysSend and PhysRcv and uses the interfaces SendMsg,

ReceiveMsg provided by the GenericComm and UARTComm layers.

All the upper layers in the framework which use PhysSend interface to send

the radio messages has the following commands and events

 send - command result_t send(char* message,char dcomp,int dest);

send command is called with the parameters message string, type of

the message and the destination id whenever any layer wants to send a

message. The dcomp parameter is used to de multiplex the message

upon the reception of the message on the destination such that the

messages sent by one layer are provided to the same layer on the

destination. The dest parameter is used to identify where the message

is needed to be delivered. If it is -1 then message is broadcasted, or if it

is -2 then the message is sent over the UART and if it is anything else

then the message is sent to that particular id. The dest parameter value

-2 is used when the GUILayer wants to send the replies of the

commands to the GUI on the PC. The dcomp character along with the

source node id added to the message string and is sent using the send

command of the SendMSg interface.

 sendDone - event result_t sendDone();

37

sendDone event is signaled by the physical layer when the physical

layer gets the event sendDone from the Comm layer indicating that the

message transmission is completed by the Comm layer.

All the upper layers in the framework which use PhysRcv interface to receive

the radio messages has the following event

 receive - event result_t receive(char* message,char dcomp);

Physical Layer signals the receive event when it receives the message

from the Comm layer. It extracts the dcomp character from the

received message and include this character as a parameter to the

receive event. Upon reception of this event at the upper layer, the

dcomp character is used to identify if this message is targeted for it. In

this case if it is addressed to that layer then the message is processed

else the message is ignored. The dcomp character for the GUILayer is

„G‟, for the RMILayer is „R‟, for the BFSAlgorithm is „B‟ and for the

Traverse is „T‟.

Thus the physical layer commands can be used by the upper layers to send and

receive the messages over the radio communication and also to send the message to

the UART and receive from UART control abstracting the underlying Comm layer

details.

The level of the physical layer in the whole application framework is shown in

the following diagram.

38

Application Components

Proxy

Components

GUI

Components

Adapter

Components

Algorithm

Components

RMI Layer

GUI Layer

Physical Layer

Fig. 11 – Complete Architecture

39

CHAPTER 9 – CODE GENERATION

9.1 Loading the Scenario XML file

Once the global scenario is modeled in Cadena tool, the user can use the

python script and generate the scenario XML file which contains the complete details

of the application model in XML format. The details include the components, their

locations, wiring information and also the regarding the ports their names, commands,

events and their parameters and the observable property information.

This scenario XML file can be used along with the user provided abstractions

to generate the node level scenarios with the make files so that they are ready to be

deployed on the motes.

The initial step in generating the code is to load the scenario XML file, parse

it and save the information in this XML file as java objects so that they are used in the

later stages.

The structure of the java objects are as follows

 Component(String comp_name, LinkedList uses, LinkedList provides,

int location, String type)

o comp_name – name of the component

o uses – the uses interface list and their wiring information (list

of wiring class objects)

o provides – the provides interface list and their wiring (list of

wiring calss objects)

o location – location of the component

o type – base type of the component

 wiring(String input_interface_name, LinkedList connections)

o inpit_interface_name – the name of the interface

o connections – the list of other components to which this

interface is connected (list of interfacedef class objects)

 interfacedef(String comp_name, String int_name, int location)

40

o comp_name – name of the component to which interface is

connected

o int_name – name of the interface

o location – location of the component to which interface is

connected

 Scenario(int location, LinkedList components)

o location – location of the scenario

o components – list of components at that location

 interfaceclass(String name, String comp_name, boolean observable,

LinkedList commands, LinkedList events)

o name – name of the interface

o comp_name – interface the component belongs to

o observable – attribute which specify it as a GUI command

o commands – list of commands (list of command class objects)

o events – list of events (list of command class objects)

 Command (String n, String rt, boolean a, LinkedList params)

o n – command name

o a – async information of the command

o params – list of parameters and their types

9.2 Loading the Mapping Xml File

As explained in Chapter 5, the Cadena component model consists of some

virtual components and some real components. The higher abstractions provided by

the user, which maps the interfaces provided by the virtual components to those

interfaces of the physical components are given in the format of an XML file which is

called Mapping XML file. The next step in the code generation is to load the

Mapping XML file, parse it and store it internally as java objects so that it is used in

the later stages.

The structure of the java objects are as follows

 VirtualNode(String name, LinkedList physicalnodes)

41

o name – name of the virtual node

o physicalnodes – list of the physical nodes under this virtual

node

 PhysicalNode(String name, LinkedList searchers, LinkedList

aggregators)

o name – name of the physical node

o searchers – list of searchers under this physical node

o aggregators – list of aggregators under this physical node

 Searcher(String vir_int, String phys_int, String vir_comm, String

phys_comm, String acc_type, String vir_event, String phys_event,

String function, String criteria, LinkedList readers, LinkedList writers)

o vir_int – name of the virtual interface

o phys_int – name of the physical interface

o vir_comm – name of the virtual command

o phys_comm – name of the physical command

o acc_type – accessor type to determine the algorithm needed to

plug- in

o vir_event – name of the virtual event

o phys_event – name of the physical event

o function – function used at the adapter level

o criteria – criteria for the search

o readers – list of readers associated with this search

o writers – list of writers associated with this search

 Aggregator (String vir_int, String phys_int, String vir_comm, String

phys_comm, String acc_type, String vir_event, String phys_event,

String function, String criteria, LinkedList writers)

o vir_int – name of the virtual interface

o phys_int – name of the physical interface

o vir_comm – name of the virtual command

o phys_comm – name of the physical command

42

o acc_type – accessor type to determine the algorithm needed to

plug- in

o vir_event – name of the virtual event

o phys_event – name of the physical event

o function – function used at the adapter level

o criteria – criteria for the search

o writers – list of writers associated with this search

 Reader(String name, String type, String vir_int, String phys_int, String

vir_comm, String phys_comm, String vir_event, String phys_event)

o name – name of the reader

o type – type of the variable to be read

o vir_int – name of the virtual interface

o phys_int – name of the physical interface

o vir_comm – name of the virtual command

o phys_comm – name of the physical command

o vir_event – name of the virtual event

o phys_event – name of the physical event

 Writer(String name, String type, String vir_int, String phys_int, String

vir_comm, String phys_comm)

o name – name of the writer

o type – type of the variable to be written

o vir_int – name of the virtual interface

o phys_int – name of the physical interface

o vir_comm – name of the virtual command

o phys_comm – name of the physical command

9.3 Elimination of Virtual Nodes

Once the information about the components and the mapping information of

the virtual nodes to the physical nodes is obtained the next step is to replace the

virtual nodes with their respective physical nodes. This step also deals with the

43

addition of new components which includes the algorithm components and their

adapter components to the total components list.

The pseudo code for the elimination of the virtual nodes is given below

 Scan Scenario XML file and form a list of virtual components as

VirtualComps.

 Scan Mapping XML file and form a list of mapped virtual components as

MappedComps

 For each virtual compoenent vnode in VirtualComps

For each mapped component mnode in MappedComps

 If vnode.name == mnode.name

 For each physical node pnode in vnode

 For each searcher search in pnode

 If pnode.acc_type == “nearest”

 Plug BFS Algo

Add appropriate wirings to

BFSAdapter components

 For each readr in search

 Add wirings

 For each writer in search

 Add wirings

 For each aggregator aggregate in pnode

 If pnode.acc_type == “aggregation”

 Plug Traverse Algo

Add appropriate wirings to

TraverseAdapter components

 For each writer in aggregate

 Add wirings

 After plugging in the required algorithm components and adding the

appropriate adapter components and their wirings, the virtual components that are the

44

components whose name starts with “virtual_” can be removed from the total list of

the components.

9.4 Generation of node level scenarios

As explained in Chapter 6, the global scenario has components having

different values for their location attribute and these components are connected to

each other thus giving the user a global view of the application.

The next step in the code generation is to generate the node level scenario

wirings by introducing the proxy components and connecting the proxy components

using the RMI layer.

The pseudo code for generating the node level scenarios is given below

 For each component comp in total components

For each wiring port in comp.uses

 For each connection conn in port.connections

 If conn.location == comp.location

 Local wiring no need of any change

 Else

Create component “proxy_”+conn.compname at

location comp.location

 Modify conn to connect to this new component

For the component conn.compname remove this

connection from its provides list

For each wiring port in comp.provides

 For each connection conn in port.connections

 If conn.location == comp.location

 Local wiring no need of any change

 Else

Create component “proxy_”+conn.compname at

location comp.location

 Modify conn to connect to this new component

45

For the component conn.compname remove this

connection from its uses list

 Add the wirings from the proxy components to the RMI Layer components

Once the proxy components are generated then the components which are at

one location can be collected and group them as local scenarios. Later the XML files

for these local scenarios can be generated.

9.5 Generation of GUI Components

The next step is to generate the GUI Components for those components which

have any of the interface with the observable property as true in its provides list.

Observable interfaces are the interfaces with commands that can be called from an

external graphical user interface.

The pseudo code for generating the GUI Components is given below

 For each scenario scen in total scenarios

For each component comp in scen.components

 For each wiring in comp.provides

 For each interface port in total ports

 If port.name = wiring.name

 If port.obervable = = true

 Add port to observeinterfaces list

 If observeinterfaces.size() >0

 Create component “gui_”+comp.name

 For each interface in observeinterfaces

 Add wiring to gui component uses list

 Add wiring to comp provides list

In this way the gui components for the components that have observable

interfaces are generated. Whenever GUI issues a command, the gui component

respective to the actual component receives this command from the UART control

46

and parses the command to get the interface name and the command name. Then the

command in that interface is called by the gui component. Similarly if any event is

signaled to the gui component, it sends a message back to the GUI through UART

control.

9.6 Generation of code for components and interfaces

In this step the configuration files for every scenario and the module files for

each of the components and also the interface files for the interface used or provided

by these components are generated. Here in this step the code is generated for the

commands and the events of the proxy components, gui components and also for the

adapter components.

9.7 Generation of Make files

Finally the make file is to be generated for every node level scenario with the

main component as the main configuration file for that scenario and also setting

PFlags to include the library where the library components are stored. Files specific to

each scenario are generated in its own folder and are ready to be deployed on the

motes.

47

CHAPTER 10 - GUI FOR DATA VISUALIZATION

10.1 Introduction

The concept of having a GUI for the sensor network is to control the running sensor

network applications and to visualize the data interested to the user from the network by

issuing the commands from the GUI to the network and get the results back from the

network to the GUI in both simulation mode and also in the deployed system

Thus, the GUI is needed to be initialized as shown below which can interact

bidirectional with both the simulation and the deployed system using respective

interfaces. The Simulation interface here would be Tython environment using which we

can issue the commands to the network. In Tossim, Serial Forwarder can receive the

messages only from the more with TOS_LOCAL_ADDRESS as 0 which is the base

station of the network.

The deployment interface could to connect to the mote using the USB serial cable on

a specific port and using the serial forwarder tool to send the messages and receive the

messages from the network to the GUI.

GUI

Deployment

Interface (DI)

Simulated

System

Simulation

Interface (SI)

Deployed

System

Fig. 12 – GUI Concept

48

10.2 Loading the topology XML file

Before the simulation is started or the GUI connects to the deployed network, the

topology information should be loaded by the GUI so that the GUI displays the same

topology as it in the deployment or simulation.

The format of this XML file is as follows

<topology>

 <mote>

 <id>0</id>

 <x>22</x>

 <y>22</y>

 </mote>

 <mote>

 <id>1</id>

 <x>28</x>

 <y>28</y>

 </mote>

</topology>

The above file tells the GUI to place the mote with id 0 at the location (22, 22) and to

place the mote with id 1 at the location (28, 28). In Simulation the Tython command is

used to place the motes so that the same topology can be seen in the TinyViz interface.

10.3 Loading the Scenario XML file

To send the commands to the network the GUI should know what commands are to

be sent, the parameters associated with these commands and the responses for these

commands. This information can be embedded in the application model when the user

models the application in Cadena by setting the observable property of some of the

interfaces as true. As specified in the previous chapters this information is extracted using

the python script and captured in a XML file.

The GUI should load this XML file, parse it and identify the commands that are to be

issued for each mote.

49

The GUI with the motes placed on it and the commands loaded from the scenario

XML file is as shown below

Fig. 13 – GUI Snapshot 1

It has a menu File with Load Topology and Load Observable Commands

submenus to load both the topology XML file and the Scenario XML file respectively.

There is also a Commands List on the GUI that is populated with the commands that can

be issued when a specific mote is selected on the GUI. Then the command can be sent by

selecting the Send Command button.

There are also buttons like Start, Pause and Stop which are used to start or resume

the simulation, pause the simulation and stop the simulation respectively.

50

10.4 Connect to the Simulation or Deployment

Once the GUI is loaded with the topology and the scenario information, the GUI

can either be connected to Simulation or Deployment by using the Connect Menu and

selecting either Simulation or Deployment submenu.

If the Simulation option is selected then the GUI connects to the TCP channel of

the SimDriver class so that the commands can be written to this channel and the output

can be extracted from this channel. The Serial Forwarder is started with sf@tossim-serial

MoteComm variable to receive the messages from the base station through UART

control.

If the Deployment option is selected then the GUI prompts the user to enter the

post number so that the GUI can be connected to any specific mote using

serial@COM+”portnum:”+57600 MoteCom variable where 57600 is the baud rate for

telosb motes

Once the GUI is either connected to the Simulation or Deployment, the user can

select the commands from the list and can issue them. If there are any parameters for the

commands the GUI prompts the user to enter the parameters. If the GUI received

response for any of its commands they are displayed to the user in a new window. The

message format that the GUI sends is the

“CompName.InterfaceName.CommandName(parameter list)”. Parameter list is formed

by converting all the parameters of the command to string type. The results are received

in the same format. Once the GUI gets the output it can used the interface name and

command name to identify the command for which the output is obtained and can show

the appropriate prompt message to the user.

51

CHAPTER 11 – EXAMPLES

11.1 Parking Lot

In this example the concept of the virtual node is demonstrated which has some

searchers with the access type as “nearest” so that the BFSAlgorithm can be plugged in.

Assume that there is a sensor node at every parking lot in a parking area which maintains

the status of the availability of the parking lot. When a car approaches the client which is

the GUI running on a PC, it induces the search command to the virtual node. Then the

whole network is searched in a breadth first manner and the reference to the nearest node

available is returned to the user. The user can then use this reference to update the status of

this parking lot to be reserved and can issue additional read requests on the attributes of

the parking lot.

The Cadena component model for this application looks as shown below

In the above model virtualLot is the virtual node as its name beings with

the “virtual_” keyword. Let us consider the Mapping file for this model is as

shown in the following XML file

<Mapping>

 <VirtualNode>

 <Name>virtual_Lot </Name>

 <PhysicalNode>

 <Name>Slot_Node </Name>

 <Searchers>

 Monitor

search

 WriteAvail

virtual_Lot

search

WriteAvail

Slot_Node

GetData

SetData

 Fig. 14 – Parking Lot Model

52

 <Command>

 <V_int>search </V_int>

 <P_int>GetData </P_int>

 <V_comm> search</V_comm>

 <P_comm> getdata</P_comm>

 <A_type>nearest </A_type>

 <V_event>search_reply </V_event>

 <P_event> getdata_reply </P_event>

 <P_fun>avail_fun </P_fun>

 <Criteria>Slot </Criteria>

 </Command>

 <Readers>

 </Readers>

 <Writers>

 <Variable>

 <Name>avail</Name>

 <type>bool</type>

 <V_int>WriteAvail</V_int>

 <P_int>Setdata</P_int>

 <V_comm>writeavail</V_comm>

 <P_comm>set</P_comm>

 </Variable>

 </Writers>

 </Searchers>

 <Aggregators>

 </Aggregators>

 </PhysicalNode>

</VirtualNode>

</Mapping>

Since in the above Mapping XML file the A_type is nearest, BFSAlgorithm

component needed to plugged in and the adapter component to be generated for this

53

component is BFSAdapter component. The final scenario that is generated after

eliminating the virtual node and plugging in the adapter, algorithm and the associated

physical components is shown in the next figure.

When the Monitor component calls the method search, the BFSAdapter calls the visit

of the BFSAlgorithm with the given search criteria, The BFSAlgorithm then calls the

visit_action command in the BFSAdapter, which in turn calls the GetData command. The

return event of this call is sent to back to the adapter which processes the result using the

function mentioned in the search mapping file and returns either true or false to the

BFSAlgorithm. If this is true its id is stores in the path and a reference to this path is sent to

the user. Else the BFSAlgorithm sends a message to all its neighbors to search at next level.

In this way the whole network is searched by the BFSAlgorithm until a positive response is

 Monitor

search

 WriteAvail

 BFSAdapter
 SetData
 visit

search
 read

visit_action
 write
WriteAvail

 GetData

Slot_Node

GetData

SetData

 BFSAlgorithm

visit

 visit_action
read

 read_action
write

 write_action

Fig. 15 – Parking Lot model deployment

54

received at any search level. Thus the parking lots are abstracted by a single virtual lot and

can respond to the user queries.

11.2 Kitchen Application

In this example, the usage of the remote method invocation layer and the concept

of the proxy nodes are demonstrated. Consider an application where there is a need to

monitor a kitchen so that an alarm can be fired if the stove is on and there is no one in the

kitchen room. There are three scenarios that are needed. One is to sense the temperature

of the stove to determine if it is on. Second one is to sense the pressure on the floor to

determine if any is monitoring the stove and third scenario is to fire an alarm based on the

sensor values of the first and the second scenario.

 The Cadena application model for this application might look something as

follows

Let us consider that the Monitor and the Alarm components are deployed at

location1, Floor component is deployed at location 2 and the Stove component is

deployed at location 3.

 Monitor

 GetTemp

 GetPressure

 FireAlarm

 Loc - 1

 Stove

GetTemp

 Loc - 3

 Floor

GetPressure

 Loc - 2

 Alarm

FireAlarm

 Loc - 1

Fig. 16 – RMI Example Model

55

When this model is processed by the tool which generates the node level

scenarios, three separate scenarios are generated each to be deployed at its specific

location. The node level scenarios look something as follows

Scenario 1

Scenario 2

 Monitor

 GetTemp

 GetPressure

 FireAlarm

 Loc - 1

proxy_Stov

GetTemp

 RMIInterface

 Loc - 1

proxy_Floor

GetPressure

 Loc - 1

 Alarm

FireAlarm

 Loc - 1

RMILayer

RMIInterface

 Loc - 1

Fig. 17 – Scenario 0 Model

56

Scenario 3

Proxy_Monitor

 GetPressure

 RMIInterface

 Loc -2

 Floor

GetPressure

 Loc - 2

RMILayer

RMIInterface

 Loc - 2

Proxy_Monitor

 GetTemp

 RMIInterface

 Loc -3

 Stove

GetTemp

 Loc - 3

RMILayer

RMIInterface

 Loc - 3

Fig. 18 – Scenario 1 Model

Fig. 19 – Scenario 2 Model 1

57

In this way the node level scenarios are generated which can be deployed on three

different motes. The underlying physical topology is known to the RMI layer in the form of the

routing tables which can use this information to route the command calls and event calls to the

specific motes using the radio communication.

58

CHAPTER 12 – PERFORMANCE RESULTS

12.1 Performance

 BFSAlgorithm

A Cadena model is developed for the parking lot example as explained in

the Chapter 11. Then the XML for this scenario is generated using the python

script and the node level scenario files are generated using the XMLtoNesC

java tool. This scenario is deployed on a test bed with 16 telosb motes

arranged in a 4 by 4 grid topology. Test bed has a central USB hub which

connects to each of the telosb motes on the bed and also supplies power for

them. To calculate the number of messages sent by each of the mote, the GUI

needs to connect to each of the motes on their particular port number and issue

the command to retrieve the result. So an extra interface is added to the model

with observable attributes as true to get this result.

The algorithm is tested on both simulation and deployment and the results

are as follows

No of

messages

Tree

Formation

1st search 2nd search 3rd search 4th search

Simulation 133 32 28 22 20

Deployment 226 111 92 73 44

 Fig.20 - Search performance

The observations that can drawn for the above table are that the number of

messages used for the subsequent searches are getting decreased as some of

the internal nodes are mark closed in the previous searches if there are no

positive responses from any of their children. And also the number of

messages used is more on the deployment compared to the simulation which

explains the fact that more messages are lost because of the interface on the

test bed compared to the simulation.

59

The read and write operations results are as follows

No of

messages Read Write

Simulation 10 7

Deployment 13 8

 Fig. 21 – BFS Operation performance

The results for when two simultaneous searches are issued are as follows

No of
messages 2 searches

Simulation 79

Deployment 146

Fig. 22 – BFS Multiple search performance

In the above case if the algorithm is modified so that for multiple

simultaneous searches having the same criteria, only one search is allowed to

go and the rest are blocked for the first search the number of messages for the

rest of the subsequent searches are almost zero as the first search result is used

to return for these search requests.

 Consider the following topology

Fig. 23 – Topology Deployed on Field

60

The search and the write operations performance on this topology

where the distance between each of the motes is 10 ft is as shown in the

following table

Noofmessages TF search write search write search write search write search write

Deployment 133 9 4 6 6 3 6 56 12 30 13

Fig. 24 – Search performance on the Real Field

The observations that can be drawn are that the number of

messages are decreased for the subsequent searches at the first level and

again follows the same pattern for the searches at the second level. As

there is a wall between two of the motes, more message loss is observed

between these motes.

 Aggregation

To test the aggregation algorithm sprinkler application is modeled in

Cadena and deployed on the test bed in the same way as in explained for

the BFSAlgorithm.

The results observed for the different operations on the aggregation

algorithm are as follows

No of

messages Avg Max Min Write

Simulation 63 51 47 24

Deployment 76 63 58 34

Fig. 25 – Aggregation Operation performance

The observations that can be drawn from the above table are that for

the first aggregation operation more number of messages is used because

this operation constructs the tree on the physical topology. Then the later

operations use this tree.

 RMI Layer

61

The RMI Layer is tested on different scenarios. The first one is for

the single hop; second one is for the 2 hops and third one with both

single hop and two hops and with multiple components.

The number of messages that are used for a remote command

when it is called 100 times with an event associated with this

command is shown below

MoteID 1 hop 2 hops Mixed

ID0 218 221 425

ID1 222 214 451

ID2 218 236

Total(messages) 440 653 1112

Time(secs) 3.38 4.56 9.86

Fig. 26 – RMI Operation performance

The observations that can be drawn from the above table ate that as the

number of hops are increasing and more components using the RMI layer

are increasing there is more message loss and more number of messages

are used.

62

CHAPTER 13 – CONCLUSIONS

13.1 Summary

The project framework enables the user to design a global application in

Cadena tool and to specify the commands the user want to issue to the network to

observe interesting data from the network. The application design can use the

generic services provided by the project framework using the virtual node

abstraction.

The global application is then converted to local scenarios and the code for

these local scenarios are automatically generated by a java tool which can either

tested in Tossim simulation framework or can be deployed on real motes.

Finally a java based Graphical User Interface tool is provided to the user

so that it can be connected to either Simulation framework or to the actual

deployed network to observe the data in the network, debug and monitor the

network.

Thus in this way high level abstractions are used, so that the user can only

deal with the application logic rather than the underlying low level

communication details of wireless sensor networks.

13.2 Future Work

The java tool developed for the generation of the node level scenarios

works only for the scenarios when there are no nested components in the model.

This tool needed to be modified so that nested component models can also be

deployed.

The GUI is needed to be more sophisticated to include some provide some

graphs and charts display to the user if there are any periodic outputs for the

commands.

63

References

1. TinyOS Tutorial

http://www.tinyos.net/tinyos-1.x/doc/tutorial/index.html

2. Tython manual

http://www.tinyos.net/tinyos-1.x/doc/tython/manual.html

3. Pietro Ciciriello, Luca Mottola and Gian Pietro Picco: Building virtual

sensors and actuators over logical neighborhoods, Proceedings of the

International Workshop on Middleware for Sensor Networks, 2006

4. Cadena 2.0: Manual

http://cadena.projects.cis.ksu.edu/update/web/cadena-manual.pdf

5. Remote Method Interface

Tannenbaum. Modern Operating Systems, Second Edition, Prentice Hall.

Chapter 2: Communication in Distributed Systems

http://www.tinyos.net/tinyos-1.x/doc/tutorial/index.html
http://www.tinyos.net/tinyos-1.x/doc/tython/manual.html
http://cadena.projects.cis.ksu.edu/update/web/cadena-manual.pdf

