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Abstract 

 

TinyOS is a component based operating system written in nesC programming language. TinyOS 

provides interfaces and components for common low level abstractions such as packet 

communication, routing and sensing for node level sensor network application programming. 

This project aims to provide high level abstractions to users by providing the notion of a virtual 

node, which represents a set of physical nodes, allowing users to specify global scenarios, and a 

mechanism to decompose a high level global scenario into local node level scenarios for each of 

the individual sensor nodes.  

 

A  global scenario  with virtual components, provided by the user, is first converted into a global 

scenario by eliminating the virtual components from the model by using a mapping information 

provided the user and replacing these virtual components by their respective physical 

components. Appropriate algorithm components and the automatically generated adapter 

components for these algorithm components are then plugged- in to implement inter-node 

interactions. This global scenario is then converted to the node level local scenarios by 

introducing the automatically generated proxy components for the remote components and 

connecting these proxy components using the RMI layer. The Cadena model is modified to 

include the attribute location for the components to identify the remote components. The make 

files are then generated for these local scenarios and are ready to be deployed on the physical 

motes.  

 

The framework provides a GUI tool which is used to visualize the data of the sensor network in 

both simulation and deployment. The framework provides the user with commands that can be 

issued to the network from the Cadena component model as a set of interfaces to the components 

and a python script is used to capture this information in an xml file. The Cadena model is 

modified to include the attribute observable to the interfaces to identify them as the GUI 

commands. The GUI loads this XML file and the topology file for the actual deployment, can 

issue commands to the network and displays the results to the user. The GUI tool also enhances 

the Tossim simulator to model the external effects over the sensor network and to place the  

motes based on the topology information using the Tython environment.  
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CHAPTER 1 – TinyOS  

 

1.1  Introduction 

TinyOS is an open source component based operating system designed for 

wireless sensor networks. It features a component-based architecture which enables 

rapid innovation and implementation while minimizing code size as required by the 

severe memory constraints inherent in sensor networks. The TinyOS system, 

libraries, and applications are written in nesC, a dialect of C programming language 

optimized for the memory limitations of the sensor networks. nesC supports the 

TinyOS concurrency model and its programs are a set of software components which 

are connected to each other using interfaces.  

1.2  Component Model 

A nesC application consists of components which can use or provide 

interfaces and different components are connected using these interfaces. An interface 

in a nesC application consists of commands and events. A component which provides 

the interface has to provide the implementation for the commands in that interface 

and can signal the events to the components using that interface. On the other hand, a 

component using the interface has to provide the implementation for the event  

handlers in the interface. Modules in TinyOS provide the implementation of the 

components and the configuration. A scenario is a collection of components and the 

wiring between the interfaces of these components which describes the complete 

application. 

NesC programs are built out of software components some of which are 

hardware abstractions. TinyOS provides interfaces and components for common 

abstractions such as packet communication, routing and sensing. The framework 

developed in this project provides the user with higher level abstractions with some 

generic services so that they can be directly used. It also aims at providing the user a 

global view of application while abstracting the underlying communication details.  
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CHAPTER 2 – Tossim  

 

2.1  Introduction 

Sensor networks are composed of a large number of tiny communicating 

devices (motes) with the capability of sensing and computation. Compared to 

traditional networks, the motes in sensor networks have very limited computational 

and communication capabilities because of their low energy resources. 

Tossim is a discrete event simulator for TinyOS sensor networks. The TinyOS 

code for a mote can be directly compiled to the TOSSIM framework which runs on 

PC. In this way, we can debug, test and analyze the algorithms in controllable and 

repeatable environment. TOSSIM provides run-time configurable debugging output, 

allowing a user to examine the execution of an application from different perspectives 

without needing to recompile it. TinyViz is a Java-based GUI that allows you to 

visualize and control the simulation as it runs, inspecting debug messages, radio and 

UART packets, and so forth. The simulation provides several mechanisms for 

interacting with the network; packet traffic can be monitored, packets can be 

statically or dynamically injected into the network. TOSSIM is compiled by typing 

“make pc” in an application directory. In addition to the expected TinyOS 

components, a few simulator-specific files are compiled; these files provide 

functionality such as support for network monitoring over TCP sockets. The TOSSIM 

executable is build/pc/main.exe. TOSSIM has a single required parameter, the 

number of nodes to simulate. 

By default, TOSSIM prints out all debugging information. TOSSIM output 

can be configured by setting the DBG environment variable in a shell. TinyViz, the 

Tossim user interface, provides an extensible graphical user interface for debugging, 

visualizing, and interacting with TOSSIM simulations of TinyOS applications. Using 

TinyViz, you can easily trace the execution of TinyOS apps, visualize radio 

messages, and manipulate the virtual position and radio connectivity o f motes. In 

addition, TinyViz supports a simple "plugin" API that allows you to write your own 
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TinyViz modules to visualize data in an application-specific way, or interact with the 

running simulation. 

2.2  Limitations of the Tossim simulator  

 Every mote in the simulation runs the same TinyOS program. 

The Tossim simulator does not allow motes in the network to run different 

programs and communicate with each other.  One way to overcome this is to 

write a main configuration file which initializes the mote specific sub-

configurations for the respective motes based on the 

TOS_LOCAL_ADDRESS value. 

 There is no way to directly specify connectivity between nodes in a network. 

There is no capability to directly specify connectivity between nodes in a 

network. By default, TOSSIM places all nodes in the simulation in a grid, 

where every node can listen to (is connected to) every other node in the 

network. To overcome this, the TinyViz user interface can be used to place 

the motes on it and choosing the radio model from the TinyViz plug- in. 

 Tossim is focused on simulating TinyOS and its execution rather than 

simulating the real world. It does not capture the real world behavior. 

 While Tossim simulates network behavior at bit level and simulates each 

individual ADC component, it does not model real world features. Instead, it 

provides abstractions of certain real-world phenomena (such as bit error). 

With tools outside the simulation itself, we can then manipulate these 

abstractions to implement whatever models we want to use. 
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CHAPTER 3 – Tython  

 

3.1  Introduction 

To overcome some of the limitations of the Tossim as explained in the 

Chapter 2 and to model behaviors such as mote movement, changing sensor readings 

and other real world phenomenon, TOSSIM provides a socket based command API 

for other programs to connect and issue commands to the simulator. One solution is 

TinyViz, a GUI which communicates with TOSSIM over the socket API. With 

TinyViz, we can interact with a simulation through a GUI panel by dragging motes 

and setting options. These actions can be difficult to reproduce exactly (e.g., dragging 

a mote).  

Tython (or, Tinython) complements TinyViz's visualization by adding a 

scripting interface to TOSSIM. Users can interact with a running simulation through 

TinyViz, a Tython console, or both simultaneously. Tython is based on Jython, a Java 

implementation of the Python language. Jython makes it very easy to import and use 

Java classes within Python. This allows users to access the entire TinyOS Java tool 

chain, including packet sources, MIG-generated messages, and TinyViz.  

Tython sit on top of SimDriver, a Java application that manages interactions 

with TOSSIM. The core of SimDriver is an event bus. Java plug- ins can connect to 

this event bus, can receive TOSSIM events and send TOSSIM commands. Many of 

the Tython abstractions are built on top of SimDriver plug- in.  

SimDriver can be invoked by the following command.  

# java net.tinyos.sim.SimDriver -gui -run main.exe 10  

This command will start TinyViz with the Tython console and start the simulation 

with 10 motes.  

All TOSSIM events are sent to the SimDriver and internally distributed via 

the Event Bus. Periodic / future events can be implemented by inserting an event and 

registering a callback handler. Python scripts can register a handler to get events as 

well. The Tython console can be started using TinyViz GUI using the following 

command.  
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#tinyviz –run build/pc/main 10  

This command starts the SimDriver, starts TinyViz GUI and connects the GUI 

to the simulation of 10 motes and provides a Tython console where we can import the 

Java classes reflected by the Jython and those of the TinyOS java tool chain. Then we 

can issue Tython commands on the command line which are sent to the Tython 

interpreter which runs concurrently with the TOSSIM simulation and interacts with it.  

We can import the simcore module to the Tython environment which provides the 

python object interface by the following command at the Tython command prompt.  

#from simcore import *  

This module hides the internal complexities of the interaction of the 

SimDriver with the TOSSIM. This module is the core interface that is used to interact 

with the Tython environment. This module is in fact not Python code at all, instead, a 

single instance of each class of the Java net.tinyos.sim.script.reflect package is 

created and is bound into the simcore module.  

             

 

Fig. 1 – Tython Architecture 

    

3.2   Using Tython to control the Simulation  
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3.2.1 Basic Commands and Modification to the Interface  

When the simulation is started with TinyViz and the Tython console, 

the motes are assigned random locations and are displayed on the TinyViz 

interface and the default radio model that is used is empirical. Tossim 

supports two radio models, Empirical and FixedRadius. With FixedRadius we 

can choose either 10ft or 100ft or 1000ft as the communication range for the 

motes.  

We can use the Tython commands to give the motes initial coordinates 

and to choose the radio model, so that the topology on which we want to run 

the simulation is ready and then give an another command to resume the 

simulation. 

The Tython commands that can be issued to the Tossim simulation and 

their purpose are as follows:  

 sim.pause( ) - to pause the running simulation  

 sim.resume() - to resume the paused simulation  

 sim.stop() - to stop the simulation  

 motes[i].moveTo(x,y) – to move the mote with id i to the location 

(x,y)  

This is the command the Tython interface can use to place the motes 

on the TinyViz interface with the given coordinates. The user can 

provide the coordinates for each mote in XML format so that these 

coordinates are read and this command can be issued for each of the 

motes with these coordinates as the parameters.  

 motes[i].turnOff( ) – to turn off the mote with id as i.  

 

By default if we start Tython using the TinyViz, GUI it gives a 

command line interface to enter the commands, which are sent to the 

SimInterpreter internally by the SimDriver. Now as there is a need to provide 

to the user a graphical interface so that the user can select the co mmands and 

send them to the simulation instead of using the default command line 

interface, the internal java TinyOS tool chain hasis to be changed. Because of 
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this a change is made to the internal SimDriver class so that it waits for the 

GUI program to connect to it on the TCP channel on a particular port. Once 

we connect GUI to the TCP channel, the commands coming from the GUI can 

be sent to the channel and the output from the simulation can be retrieved 

from the channel. 

  

3.2.2 Mobility of the Motes 

Internally the movement of the motes is performed as follows. It issues the 

mote.moveTo() command repeatedly by calculating the next position from the 

destination coordinates and the amount it should get close to the destination 

each time, which is determined by the rate.  

Sample Java Code for mote movement:  

(xc,yc) – source coordinates ;  

(dxc,dyc) – destination coordinates  

step – increment at every period  

rate is the rate of movement  

os is the channel which connects to the SimInterpreter class  

Motemove(xc,yc,dxc,dyc,step,rate)  

{  

dx=dxc-xc;  

dy=dyc-yc;  

distance = Math.sqrt(((dxc-xc)*(dxc-xc))+((dyc-yc)*(dyc-yc)));  

nsteps = distance / step;  

xstep=dx/nsteps;  

ystep=dy/nsteps;  

while(yc!=dyc || xc!=dxc)  

{   

distance = Math.sqrt((dxc-xc)*(dxc-xc))+((dyc-yc)*(dyc-yc));  

if(distance < step)  

{  

os.writeBytes("motes[0].moveTo("+dxc+","+dyc+")\n");  
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xc=dxc;  

yc=dyc;  

}  

else  

{  

xc=xc+xstep;  

yc=yc+ystep;  

os.writeBytes("motes[0].moveTo("+xc+","+yc+")\n");  

}  

Thread.sleep(rate);  

}  

} 

 

3.2.3 Simulating External Effects 

In the deployment system where we work with the real motes, whenever 

an external effect is sensed by the sensing component of the mote, the ADC 

value of the mote gets changes and the mote can respond if the observed ADC 

value is above some threshold which is determined by the application. For 

example if we have a mote with a light sensing component in it, whenever it 

observes the light, its ADC value gets increased and later when there is no 

light, ADC values gets decreased. Similarly in object tracking app lications, 

the motes which detect the object should return high ADC values compared to 

the other motes.  

On the other hand in simulation if we use the ADC component and call 

ADC.getData(), a random number is generated and is returned as ADC value. 

By default simulating applications which react to the external effects could 

not be done in TOSSIM. We have a command in Tython which set the ADC 

value of a mote.  

comm.setADCValue(id,simTime,port,value)  

where id is the mote id, simTime is the simulation time at which the value 

should be set, port is the port number and the value is the ADC value.  
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This command can be used as follows to simulate the external scenarios. 

Suppose if there is an XML file which has the scenario specified. There is a 

need to formalize the format of specifying these scenarios for various effects 

such as temperature detection, light sensors, object detectors, etc. Reading the 

scenario information the motes ADC values can be changed using the above 

command. 

Sometimes there is a need to simulate applications where a single mote 

has many sensing components for example a mote can have a magnetometer 

to detect the objects as well as photo sensor to detect the light. To simulate 

these types of scenarios two ADC components should be used. As ADC is a 

parameterized interface we can specify the ports on which we seek to set the 

values as the parameter for these ADC components in the configuration file.  

Example nesc code:  

TestTinyVizM.ADC1 -> ADCC.ADC[1];  

TestTinyVizM.ADC2 -> ADCC.ADC[2];  

To set the value for first ADC port number 1 can be used and to set the 

value for the second ADC port number 2 can be used. In this way we can 

simulate the applications with multiple sensing attributes.    

 

3.3  Sending commands to the motes 

MIG is a tool that generates Java classes for TinyOS packets. The MIG tool parses C 

structures for TinyOS packets and builds a Java class with assessors for each of the 

packet fields. The Tython command used to send the message msg to mote with id 

moteid is as follows 

comm.sendRadioMessage(moteid,simTime,msg) 
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CHAPTER 4 – CADENA 

 

4.1  Modeling components and scenarios in Cadena 

Cadena is an Eclipse-based extensible integrated modeling and development 

framework for component based Systems. Cadena provides the capability to define the 

modeling environments for widely used component models such as nesC a component 

model for sensor networks built on TinyOS. TinyOS has a component-based architecture 

which enables rapid innovation and implementation while minimizing code size as 

required by the severe memory constraints inherent in sensor networks. The Cadena team 

chose to develop plugins to support end-to-end development for TinyOS/nesC to help 

support a team of developers at K-State that are currently experimenting with sensor 

network technologies. 

We need to following steps to use Cadena: (a) Install  Cadena and install the 

TinyOS plugins to the Eclipse/Cadena environment. (b) Create a new TinyOS project 

using the New TinyOS project wizard dialog. (c) Create a new TinyOS module under the 

current project in the module directory and choose the Style as nesC style. The TinyOS 

existing interfaces, components, scenarios and other libraries are modeled as Cadena 

interfaces, components and scenarios and provided as a zip folder TinyOSLibs.zip. (d) 

Import this folder in to the Cadena environment and added this to the project references 

list so that the existing TinyOS libraries can be used in modeling the applications. Then 

either new interface types can be added to the module or the existing interfaces can be 

imported. (e) Once all the needed interfaces are added to the module add the new 

component types using or providing the interfaces added to the module or import the 

existing components to the module.  

(f) Then create a new Cadena Scenario under the Scenario directory and import 

the module created previously to this scenario. Components can be added to the scenario 

from the component types added to the module or the already existing TinyOS 

components can also be added to the scenarios which are added to the project as 

references. (g) As the last step connect the interfaces of the components in the scenario to 

create the complete nesC application. In the graph view of the scenario the complete 
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application can be seen with the components and the interface connections between these 

components. 

4.2   Modifications made to the Cadena model 

The default Cadena component model does not provide the capability to design an 

application with location of the components specified   and does not allow connection 

between the interfaces of components which are at different locations. That is the global 

scenario cannot be modeled; instead different node level scenarios have to be designed 

separately which restricts the user to have the global view of the application. 

The nesC style for module specification in Cadena has no property “location” for 

the components. There is no concept of location for the components. Since this project 

aims to provide the user a global view of the application which includes the multiple 

node level scenarios and connections between them, the nesC style was changed to 

include the property “location” of integer type for the component types. This property 

specifies where each component has to be deployed.  

The other property that is added is the boolean property “observable” for the 

interface types to specify the commands of these interfaces as observable if it is true. The 

user needs to provide the implementation for these observable commands in the 

components so that these commands can be called from an external tool to observe the 

desired data or to perform some action on the node. The basic example can be to set the 

transmission power of the motes by sending a command to the mote. The other example 

could be to make the mote sleep and wake up. The observable commands can also be 

used to view the values some of the variables in the running network. The project also 

aims at designing a GUI tool which issues these commands and provide the results to the 

user which is discussed later in the document. 

 

4.3   Python script to generate scenario XML file 

The information in the Cadena model has to be captured in the form of an XML 

file which has the details about the components, their locations, the wiring information 

and the also the interface information like the commands, events and their parameters to 

generate the nesC modules files, interface files and the node level scenario files. This 
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XML file is very important and is used at every stage in the project framework to plug in 

the algorithm components based on the user needs, to generate the additional required 

components and wirings and also for the automation of the code generation.  

The XML format is as shown below 

 <scenario> 

    <name> </name> 

    <component> 

       <name> </name> 

       <location></location> 

       <type> </type> 

       <input_ports/> 

       <output_ports> 

          <wire> 

             <port> </port> 

             <connected_to> 

                <wire_to> </wire_to> 

                <comp_name> </comp_name> 

                <location></location> 

             </connected_to> 

          </wire> 

      `       </output_ports> 

    </component> 

  <portinfo> 

       <port> 

          <name> </name> 

          <location></location> 

          <compname> </compname> 

          <periodic></periodic> 

          <observable> </observable> 

          <commands_list> 

             <command> 
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                <name> </name> 

                <return_type> </return_type> 

                <async></async> 

                <parameters/> 

             </command> 

          </commands_list> 

          <events_list> 

             <event> 

                <name> </name> 

                <return_type> </return_type> 

                <async> </async> 

                <parameters> 

                 </parameters> 

             </event> 

          </events_list> 

       </port> 

  </portinfo> 

</scenario> 

As shown in the XML file the components information and the interface 

information along with the observable property information is captured which is later 

used to load these commands in the GUI. This XML file is generated using a python 

script which is written using the java API available for the Cadena tool in the package 

“edu.ksu.cis.cadena.core.specification”.  

For example to extract all the components information from a scenario, the 

pseudo code will look something as follows 

for comp in scenario.allInstances: 

 print "Scenario %s contains component %s" % ( 

   scenario.name, comp.name) 

   print "component type is %s" % ( 

   comp.type.name)  

print "component location is %d" % ( 
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   Integer.toString(comp.location)) 

To extract the interface information from a component “comp”, the pseudo 

code will look something as follows 

for port in comp.ports:  

 print "component %s has port %s" % ( 

    comp.name, 

    port.name) 

To run the python script right click on the graph view of the scenario and 

select Jython  - Run Jython Script and select the python script and the XML file with 

all the required information is generated with the scenario name.  
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CHAPTER 5 – HIGHER LEVEL ABSTRACTIONS 

5.1  Virtual Node 

Wireless sensor network (WSN) applications exhibit a high degree of 

decentralization. This is particularly true of scenarios where the data reported by sensors 

is used to control actuators affecting the environment. Implementing this control loop in a 

decentralized fashion is much more complex than in mainstream, centralized 

applications. 

Consider an application where there are many temperature sensors deployed in a 

field. When the average of these temperature readings of these sensors report a value 

higher than the threshold then the sprinklers in field should be switched on or an 

emergency signal should be triggered. Implementing this kind of application in a 

centralized manner is impractical. Thus, decentralized coordination of sensing and 

actuating activities increases performance but increases complexity. The available 

programming frameworks are too low-level and force the programmer to deal with the 

details of data gathering, bookkeeping, and communication, instead of focusing on the 

application logic. Higher- level programming abstractions are needed to deal with the 

complexity of decentralized sensor networks. 

This project framework uses the concept of virtual nodes, a programming 

abstraction abstracting a set of physical nodes. The data from a set of physical sensor 

nodes are collected, processed according to the application specific function and provided 

as the single reading of a virtual node. The set of the physical nodes abstracted by the 

virtual node is specified by the user using the Mapping XML file which is discussed later. 

Using the virtual node abstraction, the user can focus on the application logic rather than 

the low level implementation details including the message communication and data 

gathering. 

For example, in the following figure a set of eight physical nodes are abstracted 

by a virtual node. The Monitor can query the virtual node to get the temp and the virtual 

node gathers the data from the physical nodes apply the application specific aggregation 

function and provides the result to the Monitor component as a single reading. In this way 

the virtual node abstracts the communication details between the different physical nodes. 
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This also gives a scope to develop some generic functions which can be automatically 

plugged in based on the user requirements in place of the virtual node. 

 

 

5.2  Algorithm components (Algorithm Layer) 

 

5.2. 1 Breadth First Search 

The general use of the sensor network might be to search for a node with 

some search criteria and read or write variables on the searched node. This 

general service is provided to the user as a BFSAlgorithm.nc scenario which is in 

the library and automatically plugs in based on the Mapping XML file.  

For example, if the virtual node is abstracting a set of physical nodes each 

has some data which is replicated randomly in the network and the virtual node is 

providing services to search for the node with the data available on it and also 

read that variable. Then, the BFSAlgorithm can be plugged which provides the 

services the user needs. It searches the network for the required attribute in a 
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                                                Fig. 2 – Virtual Node Model  
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breadth first manner and returns the nearest node available in the network 

satisfying the criteria. If there are multiple nodes available then the algorithm 

returns the first node and caches the remaining results for the future searches. This 

component is written so that multiple searches can simultaneously run in the 

network, where each one is identified by the search id issued by the base station. 

The BFSAlgorithm component looks as shown in the following figure 

 

 

 

The visit interface has the following commands and the events  

 visit – command result_t visit(char* criteria, int x1,int y1,int x2,int y2) 

visit interface take the parameters as search criteria, the bounded 

coordinates which represents the area that is needed to search.  

 visit_reply - event result_t visit_reply(int refid,char *criteria); 

visit_reply event is signaled with the refid that is used to later access 

the node which satisfied the search criteria and the criteria specifying 

for which the search command is used.  

. The read interface has the following commands and the events  

 read - command result_t read(int refid,char* variable); 

read command takes tha parameters as the refid which is returned by 

the search call, and the variable that is to be read from the node.  

                         Fig. 3 – BFSAlgorithm Component 1 
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 read_reply - event result_t read_reply(char* value,char* criteria); 

read_reply event is signaled when the requested data is ready and the 

data is returned in the string format which is then later needed to be 

converted to the actual data type.  

 The write interface has the following commands and the interfaces  

 write - command result_t write(int refid,char* variable,char* value);  

write command takes the parameters as the refid, the variable name to 

be written and the value. 

 write_reply - event result_t write_reply(char* status,char* variable); 

write_reply event is signaled with the status of the write command 

which may be either success or failure.  

 The interface BFSCount is used to get the number of messages sent at the 

BFS level which is used for the performance evaluation of the algorithm. 

visit_action interface has the command visit_action which is the action to be taken 

on the visit call. Similarly read_action and write_action has the commands 

read_action and write-action which are the actions to be taken at the physical 

level in respect to read and write commands.  

The search algorithm used is the breadth first search algorithm which 

initially creates a breadth first tree on the nodes during the init process and later 

uses this tree to search on it. It stops if there is any positive response from the 

current search level. Else it searches at the next level. If no node is available then 

it returns -1.  At every node if the search is positive it stores the address of the 

next hop in the path variable which is indexed by the refid and this refid is 

returned to the user. Thus the later reads and writes can use this refid to exactly 

traverse to the node using the path information.  

 

5.2. 2 Traversal algorithms for aggregation 

The other basic service that is provided as part of the project framework is 

generic traversal algorithm which is used to gather the data from all the physical 

nodes and then apply the aggregation function and return the return the result to 
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the user. One example of application using this might be the sprinkler system 

which is explained earlier in this chapter.  

This service is provided as a scenario Traverse.nc which is also stored in 

the library and automatically plugs in based on the Mapping XML file. The 

Traverse component looks as shown in the following figure  

 

 

The tvisit interface has the following commands and the events  

 tvisit – command result_t tvisit(char* criteria, int x1,int y1,int x2,int 

y2) 

tvisit interface take the parameters as search criteria, the bounded 

coordinates which represents the area that is needed to gather the data 

for the aggregation. 

 tvisit_reply - event event result_t tvisit_reply(int data,char *criteria); 

tvisit_reply event is signaled with the aggregated data and the criteria 

on which the data is aggregated. 

 The twrite interface has the following commands and the interfaces  

 twrite - command result_t twrite(char* variable,char* value); 

twrite command takes the parameters as the variable name to be 

written and the value. 
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                                   Fig. 4 – Traverse Component  
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The interface TCount is used to get the number of messages sent at the 

Traverse level which is used for the performance evaluation of the algorithm. 

tvisit_action interface has the command tvisit_action which is the action to be 

taken on the tvisit call. Similarly twrite_action has the command twrite-action 

which is the action to be taken at the physical level in respect write command.  

The traverse algorithm forms a tree rooted at the base station for the initial 

command and later uses this tree in its aggregations. 

 

5.3  Mapping XML File 

The Cadena component model for a nesC application can have some real 

components and some virtual components. The virtual components in the Cadena 

component model have the component names that being with “virtual_”. To 

generate the node level scenarios these virtual components are to be collected and 

the associated algorithm components and the actual physical components should 

be plugged in. The information needed for this step is given by the user in the 

form of an XML file named Mapping.XML file which maps the virtual 

components and their interfaces to the physical components and their interfaces.  

The format of the Mapping.XML file is as shown below 

<Mapping> 

       <VirtualNode> 

                <Name> </Name> 

     <PhysicalNode> 

     <Name> </Name> 

      <Searchers> 

    <Command>      

     <V_int> </V_int> 

     <P_int> </P_int> 

     <V_comm> </V_comm> 

     <P_comm> </P_comm> 

     <A_type> </A_type> 

     <V_event> </V_event> 
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     <P_event> </P_event> 

     <P_fun> </P_fun> 

     <Criteria> </Criteria> 

    </Command> 

    <Readers> 

    </Readers> 

    <Writers> 

     <Variable> 

      <Name> </Name> 

      <type></type> 

      <V_int> </V_int> 

      <P_int> </P_int> 

      <V_comm> </V_comm> 

      <P_comm> </P_comm> 

     </Variable> 

    </Writers> 

   </Searchers> 

   <Aggregators> 

   </Aggregators> 

  </PhysicalNode> 

</VirtualNode> 

  </Mapping>   

 

As seen from the Mapping XML file, the information about the physical 

node for each virtual node is captured. Each virtual node has some searchers and 

aggregators. Then in turn each searcher has some writers and readers and each 

aggregator has writers associated with it. For searchers the data in the A_type is 

“nearest” which specifies that the BFSAlgorithm is needed to plugged in and for 

the aggregators the A_type is “aggregation” which specifies the Traverse 

algorithm is needed to be plugged in.  
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Mapping file also has the details of the corresponding physical commands 

and the physical events of the physical node for each of the virtual commands and 

the virtual events of the virtual node. This information is used to generate the 

adapter components for the algorithms which connect the real components with 

the algorithm components and also to the physical components on the other end 

which is explained in the next section.  

5.4  Adapter components 

Adapter components are the bridging components that are to be generated to 

connect the real components with the algorithm components. These are used so that 

the interfaces in the algorithm components need not be changed to connect them to 

different physical components. Adapter components also play an important role in 

converting the data types to string type when they are passed to the algorithm and 

also to convert back them to their respective types when they are sent to the real 

components. 

Adapter components for the algorithm components are generated in such a 

way that for each interface the virtual component is providing the adapter component 

provides that interface and from the mapping file the physical interface corresponding 

to this virtual interface the adapter component uses this interface. Likewise the wiring 

is changed accordingly. 

For example consider the following model 

 

 

In the above model virtual_Temp is the virtual node as its name beings with 

the “virtual_” keyword. Let us consider the Mapping file for this model is as shown in 

the following XML file 

    Monitor 

 
 

search 

virtual_Temp 

 
 

search 

Temp_Node 

 
 

GetTemp 

      Fig. 5 – Example Model  
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<Mapping> 

       <VirtualNode> 

                <Name>virtual_Temp </Name> 

     <PhysicalNode> 

     <Name>Temp_Node </Name> 

      <Searchers> 

    <Command>      

     <V_int>search </V_int> 

     <P_int>GetTemp </P_int> 

     <V_comm> searchtemo</V_comm> 

     <P_comm> gettemp</P_comm> 

     <A_type>nearest </A_type> 

     <V_event>search_reply </V_event> 

     <P_event> get_reply </P_event> 

     <P_fun>temp_fun </P_fun> 

     <Criteria>Temp </Criteria> 

    </Command> 

    <Readers> 

    </Readers> 

    <Writers>     

    </Writers> 

   </Searchers> 

   <Aggregators> 

   </Aggregators> 

  </PhysicalNode> 

</VirtualNode> 

</Mapping>  

 Since in the above Mapping XML file the A_type is nearest BFSAlgorithm 

component needed to plugged in and the adapter component to be generated for this 

component is BFSAdapter component. The final scenario that is generated after 
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eliminating the virtual node and plugging in the adapter, algorithm and the associated 

physical components is shown in the next figure.  

 

 

 

 

 

 

As seen from the above figure the BFSAdapter component acts as a bridge 

between the algorithm components and the real physical components.  

 

 

 

 

Fig. 6 – Model with adapter component  
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CHAPTER 6 – Remote Method Invocation  

6.1  Global Scenario 

6.1.1 Introduction 

Global Scenario in a configuration component model of the nesC 

application which contains components which are to be deployed a t different 

locations in the network and the connections between the interfaces provided and 

used by these components. The default component model of the nesC application 

does not allow connecting the interfaces of the components which are to be 

deployed at different locations. There is no concept of the attribute location for 

the components in this model. 

6.1.2 Modeling global scenario in Cadena 

Previously, to implement the global scenario the node level scenarios are 

to be modeled with the components which are at one single location and 

connections between these components. Then the connections between the 

components which are at different locations are to be implemented explicitly by 

the user using the radio message communication between these components. The 

designer would not be able to look at the complete global application model, but 

instead able to view the unconnected node level scenarios.  

This project provides a framework to the user so that the user can model 

the global scenario in the Cadena plug- in by adding a new attribute “location” to 

the component implementation in the Cadena. The location attribute specifies the 

physical location the component is to be deployed. The designer of the application 

can design the global model as if he is designing the node level model, by 

connecting the interfaces normally and assigning the location attribute 

appropriately. Thus the designer can view the global application by connecting 

the node level scenarios abstracted by the attribute location.    
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6.2     Proxy Components  

Proxy components are the components that are to be generated for the remote 

components in the node level local scenarios when the global scenario is decomposed in 

to the node level scenarios. In the global scenario if an interface of a component A at  

location i is connected to the interface of a component B at location j, then the proxy of 

the component B is generated at location i and the proxy of the component A is generated 

at location j.  

For example consider the following model 

 

 

Here in this global scenario the component A is at location 1 and the component 

B is at location 2. A is using the GetData interface which is connected to the GetData 

interface provided by the component B. After generating the proxy components the 

application model looks as shown in the following figure  
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Fig. 7 – Example RMI Model 
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Proxy component for B “proxy_B” is generated at location 1 and proxy 

component for A “proxy_A” is generated at location 2. Component proxy_B provides the 

interface GetData which is connected to the GetData interface of the component A and 

component proxy_A uses interface GetData is connected to the GetData interface of 

component B. 

The rules for generating the proxy components are: 

1) If component A is using an interface connected to the remote component B then the 

proxy of the remote component proxy_B is generated providing the interface and the 

component A uses interface is connected to the provides interface of the proxy_B.  

2) If component A is providing an interface connected to the remote component B then 

the proxy of the remote component proxy_A is generated using the interface and the 

component A provides interface is connected to the uses interface of the proxy_B. 

Execution of the commands and events are as follows 

1) If A at location 1 calls the command of the GetData interface, the proxy_B 

component handles this command to the RMI (Remote Method Invocation) layer, 
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Fig. 8 – Model after RMI is plugged in 
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then the RMI layer handles this command call to the proxy_A at location 2 which 

calls the command in the component B. 

2) If B signals the event to the proxy_A at location 2, proxy_A handles this event to the 

RMI layer then the RMI layer handles this event to the proxy_B component at 

location 1 which then signals the event to the component A.  

In this way proxy components along with the RMI layer are used to invoke the 

remote commands and to signal the remote events. Thus, this gives the designer a global 

view of the application abstracting the underlying communication model used for routing 

these commands and signals through the network. 

6.3  RMI Layer Implementation 

Remote Method Invocation layer is implemented as a nesC scenario RMILayer.nc 

which provides the interface RMIInterface and uses the interfaces PhysRcv and 

PhysSend provided by the physical layer.  

 

Proxy components which use the RMI layer to execute remote commands and 

signal remote events have to use the RMIInterface which has the following commands 

and events 

 RMISend - command result_t RMISend(char* msg,int destid); 

Proxy components converts the command call or a event signal along with 

the parameters in them as a string message and calls the RMISend() 

command with this string message and the destination node id where the 

method is to be executed as the parameters.  

 RMIReceiveComplete - event result_t RMIReceiveComplete(char* m); 

RMIInterface also has an event RMIReceiveComplete which is signaled 

by the RMI layer to the proxy components with the string message as a 

parameter, which represents the command or the event when there is an 

RMI message received from the physical layer addressed to that particular 

node.  
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PhysRcv and PhysSend interfaces are used to receive the RMI messages from the 

physical layer and to send the RMI messages to the physical layer which then uses the 

COMM layer to send these messages over the radio communication.  

RMI Layer is implemented as a reliable layer over end to end communication. To 

implement the reliability the protocol that is used is alternating bit protocol (ABP) which 

eliminates the duplicate messages and also the duplicate acknowledgements. RMI Layer 

has a queue to store the incoming messages from the proxy components. Two arrays are 

used to maintain the bitmaps one for the messages and one for the acknowledgements so 

that the expected bit in the messages can be saved for each of the neighbors. RMI layer 

also has the routing tables which has the information of the next hop for each destination 

in the network. When the RMI layer receives a message from the proxy component, it is 

enqueued and is sent over to the physical layer to send it to the next hop from the routing 

table information for the destination id when the medium is free. The message is resent if 

there is no acknowledgement received. Once the acknowledgement is received the bit is 

changed in the array for that neighbor. In this way the duplicate messages are dropped 

and also the duplicate acknowledgements are dropped by using the ABP protocol even 

for the acknowledgements. When the RMI layer receives a message from the physical 

layer it checks the destination id in the message and if the message is addressed to it, 

RMI layer signals the RMIReceiveComplete event with the message to the proxy 

component. If the destination id in the message is different from the node id then it is 

enqueued and sent to the physical layer to be sent to the next hop for the destination. In 

this way the message is routed from the source to the destination using the routing table 

information. 

6.4  JAVA RMI 

Java RMI is a mechanism that allows one to invoke a method on an object that 

exists in another address space. This “other address space” could be on the same machine 

or on a different one. For example when a process on machine A calls a method on 

machine B, the calling process on A is suspended, and execution of the called method 

takes place on machine B. Information is transported from the caller to the callee which 

includes the parameters and can come back in the form of the procedure result.  
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The idea behind RMI is that the calling procedure should not be aware that the 

called method is executing on a different machine. This is achieved in the following way. 

When the caller A calls the remote method of B, a stub identical to the remote process is 

created which when called, instead of executing, the method packs the parameters into a  

message and sends the message to the process B. Similarly on the process B, a stub 

identical to the process A is created and when the message arrives at the process B, the 

stub of process A unpacks the parameters and calls the method on B.  

 Dynamic Binding 

The issue in executing RMI calls is that how the process A locates the process 

B. To address this issue, java RMI uses dynamic binding technique to match 

the processes for example clients with servers. Each process has a formal 

specification which contains the methods the process is providing along with 

the parameter information. When the process begins it sends a message to the 

object registry to register itself. Each process is identified by the version 

number, unique identifier and a handle to locate it.  When a process calls the 

remote method, the process sends a message to the object registry asking to 

import the remote process. If there is any process registered with the object 

registry with the given version number and name, it returns the handle and  the 

unique identifier to the calling process stub.  

 Comparison of Java RMI and RMI provided by the project framework  

The RMI service provided in this project framework uses the similar 

procedure as it is in the Java RMI in generating the stubs for the remote 

processes. It also uses the same technique in packing the method call along 

with the parameters in a message and sending it over to the remote process for 

execution. 

The main difference between both of them is the way the remote processes are 

located for sending the messages. While the Java RMI as explained above 

uses the object registry so that the remote processes can register themselves, 

there is no concept of the object registry in the RMI framework used in this 

project. Instead it is assumed that a shortest route algorithm is run on the 

network so as to populate the routing tables present at each and every location 
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in the network. Whenever a node calls a remote command the information 

present in this routing table is used to identify the remote process and route 

the command to it.  
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CHAPTER 7 – GRAPHICAL USER INTERFACE LAYER 

7.1  Introduction 

As mentioned in the Chapter 4, the Cadena model is modified so that the 

interfaces have an additional boolean attribute “observable” to identify these 

interfaces as the observable interfaces if it is set to true so that the commands of these 

interfaces can be called from the GUI to view the data interested to the user. In this 

way the commands that the user want to issue from the GUI are des igned as the 

interfaces to the components with the observable attribute as true for these interfaces. 

The other application interfaces has the observable attribute either set to false or can 

be left as default value. 

 

7.2  GUI Components 

GUI components are the components which are to be generated for the 

components that has the observable property as true for any of the interfaces in its 

provides list. If a component A at location i have a interface GetX in its provides list 

with the observable property as true for this interface, then the gui component with 

respect to the component A “gui_A” has to be generated with the interface GetX 

added to its uses list. 

For example consider the following component 
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Fig. 9 – Example GUI component 
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Here the component A at location 1 provides the interface GetX with the 

observable property as true. After generating the GUI component the application 

model looks as shown in the following figure 

  

 

 

GUI component for the component A “gui_A” is generated at location 1 with the 

interface GetX in its uses list and this interface is connected to the GetX interface 

provided by the component A.  

The rules for generating gui components are as follows 

1) If a component A is providing an observable interface, then the gui component 

“gui_A” is generated for that component which uses that interface and is connected to 

the interface provided by A. 

2) The gui component generated should use the interface GUIInterface and is connected 

to the GUI Layer, which is used to send messages to the GUI and receive message 

from the GUI through UARTControl.  

In this way the gui components along with the GUI layer are used to get the 

commands from the GUI, execute the commands and send the results back to the GUI to 
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Fig. 10 – Model after GUI is plugged in 
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display for the user in response to these commands. Thus giving the designer a way to 

specify the commands in the application model and executing the commands and 

returning the interested data to the user using the abstraction of underlying GUI layer and 

the gui components. 

 

7.3  GUI Layer Implementation 

Graphical User Interface layer is implemented as a nesC scenario 

GUILayer.nc which provides the interface GUIInterface and uses the interfaces 

PhysRcv and PhysSend provided by the physical layer.  

GUI components which use the GUI layer to execute the commands from the 

user and send responses back to the user have to use the GUIInterface which have the 

following commands and events 

 GUISend - command result_t GUISend(char* msg); 

GUI components converts the command call or a event signal along 

with the parameters in them as a string message and calls the GUISend() 

command with this string message as the parameter.  

 GUIReceiveComplete - event result_t GUIReceiveComplete(char* m); 

GUIInterface also has an event GUIReceiveComplete which is 

signaled by the GUI layer to the gui components with the string message as a 

parameter, which represents the command along with the parameters 

converted to string type when there is an GUI message received from the 

physical layer addressed to that particular node.  

PhysRcv and PhysSend interfaces are used to receive the GUI messages from 

the physical layer and to send the GUI messages to the physical layer which then uses 

the UARTControl layer to send these messages over the UART back to the GUI.  

GUI layer do not process any message, whenever it gets a message from the 

physical layer it simply forwards it to the gui component and whenever it gets a 

message from the gui component it forwards it to the physical layer. It acts as a 

bridge between the gui components and the physical layer. Once the gui components 

gets the message from the GUI layer, the message is decoded to extract the interface 

name, command name and the parameters. Then the command in that interface is to 
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be called using the parameters converted back from string type to their respective data 

types. 
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CHAPTER 8 – PHYSICAL LAYER 
 

8.1  Introduction 

The physical layer is the low level layer and the most important one in the 

framework. All the upper layers GUILayer, RMILayer, BFSAlgorithm and Traverse 

algorithm layers use physical layer to send and receive messages over the radio 

communication and the UART Control.  

 

8.2  Implementation 

Physical Layer is implemented as a nesC scenario PhysLayer.nc which 

provides the interfaces PhysSend and PhysRcv and uses the interfaces SendMsg, 

ReceiveMsg provided by the GenericComm and UARTComm layers.  

All the upper layers in the framework which use PhysSend interface to send 

the radio messages has the following commands and events  

 send - command result_t send(char* message,char dcomp,int dest); 

send command is called with the parameters message string, type of 

the message and the destination id whenever any layer wants to send a 

message. The dcomp parameter is used to de multiplex the message 

upon the reception of the message on the destination such that the 

messages sent by one layer are provided to the same layer on the 

destination. The dest parameter is used to identify where the message 

is needed to be delivered. If it is -1 then message is broadcasted, or if it 

is -2 then the message is sent over the UART and if it is anything else 

then the message is sent to that particular id. The dest parameter value 

-2 is used when the GUILayer wants to send the replies of the 

commands to the GUI on the PC. The dcomp character along with the 

source node id added to the message string and is sent using the send 

command of the SendMSg interface.  

 sendDone - event result_t sendDone(); 



37 

 

sendDone event is signaled by the physical layer when the physical 

layer gets the event sendDone from the Comm layer indicating that the 

message transmission is completed by the Comm layer.  

All the upper layers in the framework which use PhysRcv interface to receive 

the radio messages has the following event 

 receive - event result_t receive(char* message,char dcomp); 

Physical Layer signals the receive event when it receives the message 

from the Comm layer. It extracts the dcomp character from the 

received message and include this character as a parameter to the 

receive event. Upon reception of this event at the upper layer, the 

dcomp character is used to identify if this message is targeted for it. In 

this case if it is addressed to that layer then the message is processed 

else the message is ignored. The dcomp character for the GUILayer is 

„G‟, for the RMILayer is „R‟, for the BFSAlgorithm is „B‟ and for the 

Traverse is „T‟. 

Thus the physical layer commands can be used by the upper layers to send and 

receive the messages over the radio communication and also to send the message to 

the UART and receive from UART control abstracting the underlying Comm layer 

details. 

The level of the physical layer in the whole application framework is shown in 

the following diagram. 
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CHAPTER 9 – CODE GENERATION 

 

9.1  Loading the Scenario XML file 

Once the global scenario is modeled in Cadena tool, the user can use the 

python script and generate the scenario XML file which contains the complete details 

of the application model in XML format. The details include the components, their 

locations, wiring information and also the regarding the ports their names, commands, 

events and their parameters and the observable property information.  

This scenario XML file can be used along with the user provided abstractions 

to generate the node level scenarios with the make files so that they are ready to be 

deployed on the motes. 

The initial step in generating the code is to load the scenario XML file, parse 

it and save the information in this XML file as java objects so that they are used in the 

later stages. 

The structure of the java objects are as follows 

 Component(String comp_name, LinkedList uses, LinkedList provides, 

int location, String type) 

o comp_name – name of the component 

o uses – the uses interface list and their wiring information (list 

of wiring class objects) 

o provides – the provides interface list and their wiring (list of 

wiring calss objects) 

o location – location of the component 

o type – base type of the component 

 wiring(String input_interface_name, LinkedList connections) 

o inpit_interface_name – the name of the interface 

o connections – the list of other components to which this 

interface is connected (list of interfacedef class objects) 

 interfacedef(String comp_name, String int_name, int location) 
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o comp_name – name of the component to which interface is 

connected 

o int_name – name of the interface 

o location – location of the component to which interface is 

connected 

 Scenario(int location, LinkedList components) 

o location – location of the scenario 

o components – list of components at that location 

 interfaceclass(String name, String comp_name, boolean observable, 

LinkedList commands, LinkedList events) 

o name – name of the interface 

o comp_name – interface the component belongs to 

o observable – attribute which specify it as a GUI command 

o commands – list of commands ( list of command class objects) 

o events – list of events ( list of command class objects) 

 Command (String n, String rt, boolean a, LinkedList params) 

o n – command name 

o a – async information of the command 

o params – list of parameters and their types 

 

9.2  Loading the Mapping Xml File 

As explained in Chapter 5, the Cadena component model consists of some 

virtual components and some real components. The higher abstractions provided by 

the user, which maps the interfaces provided by the virtual components to those 

interfaces of the physical components are given in the format of an XML file which is 

called Mapping XML file. The next step in the code generation is to load the 

Mapping XML file, parse it and store it internally as java objects so that it is used in 

the later stages. 

The structure of the java objects are as follows 

 VirtualNode(String name, LinkedList physicalnodes) 
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o name – name of the virtual node 

o physicalnodes – list of the physical nodes under this virtual 

node 

 PhysicalNode(String name, LinkedList searchers, LinkedList 

aggregators) 

o name – name of the physical node 

o searchers – list of searchers under this physical node 

o aggregators – list of aggregators under this physical node 

 Searcher(String vir_int, String phys_int, String vir_comm, String 

phys_comm, String acc_type, String vir_event, String phys_event, 

String function, String criteria, LinkedList readers, LinkedList writers)  

o vir_int – name of the virtual interface 

o phys_int – name of the physical interface 

o vir_comm – name of the virtual command 

o phys_comm – name of the physical command 

o acc_type – accessor type to determine the algorithm needed to 

plug- in 

o vir_event – name of the virtual event 

o phys_event – name of the physical event 

o function – function used at the adapter level  

o criteria – criteria for the search 

o readers – list of readers associated with this search 

o writers – list of writers associated with this search 

 Aggregator (String vir_int, String phys_int, String vir_comm, String 

phys_comm, String acc_type, String vir_event, String phys_event, 

String function, String criteria, LinkedList writers) 

o vir_int – name of the virtual interface 

o phys_int – name of the physical interface 

o vir_comm – name of the virtual command 

o phys_comm – name of the physical command 
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o acc_type – accessor type to determine the algorithm needed to 

plug- in 

o vir_event – name of the virtual event 

o phys_event – name of the physical event 

o function – function used at the adapter level  

o criteria – criteria for the search 

o writers – list of writers associated with this search 

 Reader(String name, String type, String vir_int, String phys_int, String 

vir_comm, String phys_comm, String vir_event, String phys_event)  

o name – name of the reader 

o type – type of the variable to be read 

o vir_int – name of the virtual interface 

o phys_int – name of the physical interface 

o vir_comm – name of the virtual command 

o phys_comm – name of the physical command 

o vir_event – name of the virtual event 

o phys_event – name of the physical event 

 Writer(String name, String type, String vir_int, String phys_int, String 

vir_comm, String phys_comm)  

o name – name of the writer 

o type – type of the variable to be written 

o vir_int – name of the virtual interface 

o phys_int – name of the physical interface 

o vir_comm – name of the virtual command 

o phys_comm – name of the physical command 

 

9.3  Elimination of Virtual Nodes 

Once the information about the components and the mapping information of 

the virtual nodes to the physical nodes is obtained the next step is to replace the 

virtual nodes with their respective physical nodes. This step also deals with the 
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addition of new components which includes the algorithm components and their 

adapter components to the total components list.  

 

The pseudo code for the elimination of the virtual nodes is given below 

 Scan Scenario XML file and form a list of virtual components as 

VirtualComps. 

 Scan Mapping XML file and form a list of mapped virtual components as 

MappedComps 

 For each virtual compoenent vnode in VirtualComps 

For each mapped component mnode in MappedComps 

 If vnode.name == mnode.name 

  For each physical node pnode in vnode 

   For each searcher search in pnode 

    If pnode.acc_type == “nearest” 

     Plug BFS Algo 

Add appropriate wirings to      

BFSAdapter components 

 For each readr in search  

  Add wirings 

 For each writer in search 

  Add wirings 

   For each aggregator aggregate in pnode 

    If pnode.acc_type == “aggregation” 

     Plug Traverse Algo 

Add appropriate wirings to      

TraverseAdapter components 

 For each writer in aggregate 

  Add wirings 

 

 After plugging in the required algorithm components and adding the 

appropriate adapter components and their wirings, the virtual components that are the 
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components whose name starts with “virtual_” can be removed from the total list of 

the components. 

 

9.4  Generation of node level scenarios 

As explained in Chapter 6, the global scenario has components having 

different values for their location attribute and these components are connected to 

each other thus giving the user a global view of the application.  

The next step in the code generation is to generate the node level scenario 

wirings by introducing the proxy components and connecting the proxy components 

using the RMI layer. 

The pseudo code for generating the node level scenarios is given below 

 For each component comp in total components 

For each wiring port in comp.uses 

 For each connection conn in port.connections 

  If conn.location == comp.location 

   Local wiring no need of any change 

  Else 

Create component  “proxy_”+conn.compname at 

location comp.location 

   Modify conn to connect to this new component 

For the component conn.compname remove this 

connection from its provides list 

For each wiring port in comp.provides 

 For each connection conn in port.connections 

  If conn.location == comp.location 

   Local wiring no need of any change 

  Else 

Create component  “proxy_”+conn.compname at 

location comp.location 

   Modify conn to connect to this new component 
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For the component conn.compname remove this 

connection from its uses list  

 Add the wirings from the proxy components to the RMI Layer components 

 

Once the proxy components are generated then the components which are at 

one location can be collected and group them as local scenarios. Later the XML files 

for these local scenarios can be generated.  

 

9.5  Generation of GUI Components 

The next step is to generate the GUI Components for those components which 

have any of the interface with the observable property as true in its provides list. 

Observable interfaces are the interfaces with commands that can be called from an 

external graphical user interface.  

The pseudo code for generating the GUI Components is given below 

 For each scenario scen in total scenarios 

For each component comp in scen.components 

 For each wiring in comp.provides 

  For each interface port in total ports 

   If port.name = wiring.name 

    If port.obervable = = true 

     Add port to observeinterfaces list 

 

   If observeinterfaces.size() >0 

    Create component “gui_”+comp.name 

     For each interface in observeinterfaces 

      Add wiring to gui component uses list  

      Add wiring to comp provides list 

 

In this way the gui components for the components that have observable 

interfaces are generated. Whenever GUI issues a command, the gui component 

respective to the actual component receives this command from the UART control 
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and parses the command to get the interface name and the command name. Then the 

command in that interface is called by the gui component. Similarly if any event is 

signaled to the gui component, it sends a message back to the GUI through UART 

control. 

9.6  Generation of code for components and interfaces 

In this step the configuration files for every scenario and the module files for 

each of the components and also the interface files for the interface used or provided 

by these components are generated. Here in this step the code is generated for the 

commands and the events of the proxy components, gui components and also for the 

adapter components. 

 

9.7  Generation of Make files 

Finally the make file is to be generated for every node level scenario with the 

main component as the main configuration file for that scenario and also setting 

PFlags to include the library where the library components are stored. Files specific to 

each scenario are generated in its own folder and are ready to be deployed on the 

motes. 
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CHAPTER 10 - GUI FOR DATA VISUALIZATION 

 

10.1 Introduction 

The concept of having a GUI for the sensor network is to control the running sensor 

network applications and to visualize the data interested to the user from the network by 

issuing the commands from the GUI to the network and get the results back from the 

network to the GUI in both simulation mode and also in the deployed system 

Thus, the GUI is needed to be initialized as shown below which can interact 

bidirectional with both the simulation and the deployed system using respective 

interfaces. The Simulation interface here would be Tython environment using which we 

can issue the commands to the network. In Tossim, Serial Forwarder can receive the 

messages only from the more with TOS_LOCAL_ADDRESS as 0 which is the base 

station of the network. 

 

The deployment interface could to connect to the mote using the USB serial cable on 

a specific port and using the serial forwarder tool to send the messages and receive the 

messages from the network to the GUI. 

 

 

 

 

GUI 

Deployment 

Interface (DI) 

Simulated 

System 
  

  
 
 

 
 

 
 

Simulation 

Interface (SI) 
 

Deployed 

System 

Fig. 12 – GUI Concept 
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10.2 Loading the topology XML file 

Before the simulation is started or the GUI connects to the deployed network, the 

topology information should be loaded by the GUI so that the GUI displays the same 

topology as it in the deployment or simulation. 

The format of this XML file is as follows 

<topology> 

 <mote>  

  <id>0</id> 

  <x>22</x> 

  <y>22</y> 

 </mote> 

 <mote>  

  <id>1</id> 

  <x>28</x> 

  <y>28</y> 

 </mote> 

</topology> 

The above file tells the GUI to place the mote with id 0 at the location (22, 22) and to 

place the mote with id 1 at the location (28, 28). In Simulation the Tython command is 

used to place the motes so that the same topology can be seen in the TinyViz interface.  

 

10.3 Loading the Scenario XML file 

To send the commands to the network the GUI should know what commands are to 

be sent, the parameters associated with these commands and the responses for these 

commands. This information can be embedded in the application model when the user 

models the application in Cadena by setting the observable property of some of the 

interfaces as true. As specified in the previous chapters this information is extracted using 

the python script and captured in a XML file.  

The GUI should load this XML file, parse it and identify the commands that  are to be 

issued for each mote. 
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The GUI with the motes placed on it and the commands loaded from the scenario 

XML file is as shown below 

  

 

Fig. 13 – GUI Snapshot 1 

 

It has a menu File with Load Topology and Load Observable Commands 

submenus to load both the topology XML file and the Scenario XML file respectively. 

There is also a Commands List on the GUI that is populated with the commands that can 

be issued when a specific mote is selected on the GUI. Then the command can be sent by 

selecting the Send Command button.  

There are also buttons like Start, Pause and Stop which are used to start or resume 

the simulation, pause the simulation and stop the simulation respectively.  
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10.4 Connect to the Simulation or Deployment 

Once the GUI is loaded with the topology and the scenario information, the GUI 

can either be connected to Simulation or Deployment by using the Connect Menu and 

selecting either Simulation or Deployment submenu.  

If the Simulation option is selected then the GUI connects to the TCP channel of 

the SimDriver class so that the commands can be written to this channel and the output 

can be extracted from this channel. The Serial Forwarder is started with sf@tossim-serial 

MoteComm variable to receive the messages from the base station through UART 

control. 

If the Deployment option is selected then the GUI prompts the user to enter the 

post number so that the GUI can be connected to any specific mote using 

serial@COM+”portnum:”+57600 MoteCom variable where 57600 is the baud rate for 

telosb motes 

Once the GUI is either connected to the Simulation or Deployment, the user can 

select the commands from the list and can issue them. If there are any parameters for the 

commands the GUI prompts the user to enter the parameters. If the GUI received 

response for any of its commands they are displayed to the user in a new window. The 

message format that the GUI sends is the 

“CompName.InterfaceName.CommandName(parameter list)”. Parameter list is formed 

by converting all the parameters of the command to string type. The results are received 

in the same format. Once the GUI gets the output it can used the interface name and 

command name to identify the command for which the output is obtained and can show 

the appropriate prompt message to the user. 
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CHAPTER 11 – EXAMPLES 

 

11.1  Parking Lot 

In this example the concept of the virtual node is demonstrated which has some 

searchers with the access type as “nearest” so that the BFSAlgorithm can be plugged in. 

Assume that there is a sensor node at every parking lot in a parking area which maintains 

the status of the availability of the parking lot. When a car approaches the client which is 

the GUI running on a PC, it induces the search command to the virtual node. Then the 

whole network is searched in a breadth first manner and the reference to the nearest node 

available is returned to the user. The user can then use this reference to update the status of 

this parking lot to be reserved and can issue additional read requests on the attributes of 

the parking lot. 

The Cadena component model for this application looks as shown below 

 

 

In the above model virtualLot is the virtual node as its name beings with 

the “virtual_” keyword. Let us consider the Mapping file for this model is as 

shown in the following XML file 

<Mapping> 

       <VirtualNode> 

                <Name>virtual_Lot </Name> 

     <PhysicalNode> 

     <Name>Slot_Node </Name> 

      <Searchers> 

    Monitor 
 

 
search 
 

    WriteAvail 

virtual_Lot 
 

 
search 
 

WriteAvail 

Slot_Node 
 

 
GetData 
 

SetData 

                                Fig. 14 – Parking Lot Model 



52 

 

    <Command>      

     <V_int>search </V_int> 

     <P_int>GetData </P_int> 

     <V_comm> search</V_comm> 

     <P_comm> getdata</P_comm> 

     <A_type>nearest </A_type> 

     <V_event>search_reply </V_event> 

     <P_event> getdata_reply </P_event> 

     <P_fun>avail_fun </P_fun> 

     <Criteria>Slot </Criteria> 

    </Command> 

    <Readers> 

    </Readers> 

    <Writers>  

     <Variable> 

      <Name>avail</Name> 

      <type>bool</type> 

      <V_int>WriteAvail</V_int> 

      <P_int>Setdata</P_int> 

      <V_comm>writeavail</V_comm> 

      <P_comm>set</P_comm> 

     </Variable>    

    </Writers> 

   </Searchers> 

   <Aggregators> 

   </Aggregators> 

  </PhysicalNode> 

</VirtualNode> 

</Mapping>  

Since in the above Mapping XML file the A_type is nearest, BFSAlgorithm 

component needed to plugged in and the adapter component to be generated for this 
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component is BFSAdapter component. The final scenario that is generated after 

eliminating the virtual node and plugging in the adapter, algorithm and the associated 

physical components is shown in the next figure.  

 

 

  

 

When the Monitor component calls the method search, the BFSAdapter calls the visit 

of the BFSAlgorithm with the given search criteria, The BFSAlgorithm then calls the 

visit_action command in the BFSAdapter, which in turn calls the GetData command. The 

return event of this call is sent to back to the adapter which processes the result using the 

function mentioned in the search mapping file and returns either true or false to the 

BFSAlgorithm. If this is true its id is stores in the path and a reference to this path is sent to 

the user. Else the BFSAlgorithm sends a message to all its neighbors to search at next level. 

In this way the whole network is searched by the BFSAlgorithm until a positive response is 
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search 
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             read_action 
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Fig. 15 – Parking Lot model deployment  
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received at any search level. Thus the parking lots are  abstracted by a single virtual lot and 

can respond to the user queries.  

 

11.2 Kitchen Application 

In this example, the usage of the remote method invocation layer and the concept 

of the proxy nodes are demonstrated. Consider an application where there is a need to 

monitor a kitchen so that an alarm can be fired if the stove is on and there is no one in the 

kitchen room. There are three scenarios that are needed. One is to sense the temperature 

of the stove to determine if it is on. Second one is to sense the pressure on the floor to 

determine if any is monitoring the stove and third scenario is to fire an alarm based on the 

sensor values of the first and the second scenario.  

 The Cadena application model for this application might look something as 

follows 

 

 

Let us consider that the Monitor and the Alarm components are deployed at 

location1, Floor component is deployed at location 2 and the Stove component is 

deployed at location 3. 

      Monitor 
 

          GetTemp 
 

      GetPressure 
 
         FireAlarm 

    

      Loc - 1 

      Stove 
 

 
GetTemp 

 
  
     Loc - 3 

     Floor 
 

 
GetPressure 

 
 
     Loc - 2 

    Alarm 
 
 

FireAlarm 
 

 
    Loc - 1 

Fig. 16 – RMI Example Model 
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When this model is processed by the tool which generates the node level 

scenarios, three separate scenarios are generated each to be deployed at its specific 

location. The node level scenarios look something as follows 

 

Scenario 1 

 

 

 

 

 

 

 

 

 

 

Scenario 2 

      Monitor 

 
          GetTemp 

 
      GetPressure 
 

         FireAlarm 
    

      Loc - 1 

proxy_Stov 

 
 

GetTemp 
 
 RMIInterface 
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     Loc - 1 

    Alarm 
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RMILayer 
 

 
RMIInterface 

 

      Loc - 1 

Fig. 17 – Scenario 0 Model 
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Scenario 3 
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        Loc -2 

     Floor 
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RMILayer 
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Proxy_Monitor 
 

 
          GetTemp 
 

   RMIInterface 
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      Loc - 3 

Fig. 18 – Scenario 1 Model  

Fig. 19 – Scenario 2 Model 1 
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In this way the node level scenarios are generated which can be deployed on three 

different motes. The underlying physical topology is known to the RMI layer in the form of the 

routing tables which can use this information to route the command calls and event calls to the 

specific motes using the radio communication.  
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CHAPTER 12 – PERFORMANCE RESULTS 

 

12.1 Performance 

 BFSAlgorithm 

A Cadena model is developed for the parking lot example as explained in 

the Chapter 11. Then the XML for this scenario is generated using the python 

script and the node level scenario files are generated using the XMLtoNesC 

java tool. This scenario is deployed on a test bed with 16 telosb motes 

arranged in a 4 by 4 grid topology. Test bed has a central USB hub which 

connects to each of the telosb motes on the bed and also supplies power for 

them. To calculate the number of messages sent by each of the mote, the GUI 

needs to connect to each of the motes on their particular port number and issue 

the command to retrieve the result. So an extra interface is added to the model 

with observable attributes as true to get this result.  

The algorithm is tested on both simulation and deployment and the results 

are as follows 

     

No of 

messages 

Tree 

Formation 

1st search 2nd search 3rd search 4th search 

Simulation 133 32 28 22 20 

Deployment 226 111 92 73 44 

 

                 Fig.20 - Search performance 

 

The observations that can drawn for the above table are that the  number of 

messages used for the subsequent searches are getting decreased as some of 

the internal nodes are mark closed in the previous searches if there are no 

positive responses from any of their children. And also the number of 

messages used is more on the deployment compared to the simulation which 

explains the fact that more messages are lost because of the interface on the 

test bed compared to the simulation. 
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The read and write operations results are as follows 

 

No of 

messages Read Write 

Simulation 10 7 

Deployment 13 8 

 

                         Fig. 21 – BFS Operation performance  

 

The results for when two simultaneous searches are issued are as follows 

 

No of 
messages 2 searches 

Simulation 79 

Deployment 146 

 

Fig. 22 – BFS Multiple search performance 

 

In the above case if the algorithm is modified so that for multiple 

simultaneous searches having the same criteria, only one search is allowed to 

go and the rest are blocked for the first search the number of messages for the 

rest of the subsequent searches are almost zero as the first search result is used 

to return for these search requests.  

   Consider the following topology 

 

          

 

 

 

 

Fig. 23 – Topology Deployed on Field 
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The search and the write operations performance on this topology 

where the distance between each of the motes is 10 ft is as shown in the 

following table 

Noofmessages TF search write search write search write search write search write 

Deployment 133 9 4 6 6 3 6 56 12 30 13 

 

Fig. 24 – Search performance on the Real Field 

 

The observations that can be drawn are that the number of 

messages are decreased for the subsequent searches at the first level and 

again follows the same pattern for the searches at the second level. As 

there is a wall between two of the motes, more message loss is observed 

between these motes. 

 Aggregation 

To test the aggregation algorithm sprinkler application is modeled in 

Cadena and deployed on the test bed in the same way as in explained for 

the BFSAlgorithm. 

The results observed for the different operations on the aggregation 

algorithm are as follows 

No of 

messages Avg Max Min Write 

Simulation 63 51 47 24 

Deployment 76 63 58 34 

 

Fig. 25 – Aggregation Operation performance 

 

The observations that can be drawn from the above table are that for 

the first aggregation operation more number of messages is used because 

this operation constructs the tree on the physical topology. Then the later 

operations use this tree.  

 

 RMI Layer 
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The RMI Layer is tested on different scenarios. The first one is for 

the single hop; second one is for the 2 hops and third one with both 

single hop and two hops and with multiple components.  

The number of messages that are used for a remote command 

when it is called 100 times with an event associated with this 

command is shown below 

 

MoteID 1 hop 2 hops Mixed 

ID0 218 221 425 

ID1 222 214 451 

ID2   218 236 

Total(messages) 440 653 1112 

Time(secs) 3.38 4.56 9.86 

 

Fig. 26 – RMI Operation performance  

 

The observations that can be drawn from the above table ate that as the 

number of hops are increasing and more components using the RMI layer 

are increasing there is more message loss and more number of messages 

are used. 
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CHAPTER 13 – CONCLUSIONS 

 

13.1 Summary 

The project framework enables the user to design a global application in 

Cadena tool and to specify the commands the user want to issue to the network to 

observe interesting data from the network. The application design can use the 

generic services provided by the project framework using the virtual node 

abstraction. 

The global application is then converted to local scenarios and the code for 

these local scenarios are automatically generated by a java tool which can either 

tested in Tossim simulation framework or can be deployed on real motes.  

Finally a java based Graphical User Interface tool is provided to the user 

so that it can be connected to either Simulation framework or to the actual 

deployed network to observe the data in the network, debug and monitor the 

network.  

Thus in this way high level abstractions are used, so that the user can only 

deal with the application logic rather than the underlying low level 

communication details of wireless sensor networks.  

 

13.2 Future Work 

The java tool developed for the generation of the node level scenarios 

works only for the scenarios when there are no nested components in the model. 

This tool needed to be modified so that nested component models can also be 

deployed. 

The GUI is needed to be more sophisticated to include some provide some 

graphs and charts display to the user if there are any periodic outputs for the 

commands. 
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