

Classification of land cover using semantic segmentation

by

Dishan Anupama Nahitiya

B.S., Kansas State University, 2017

A REPORT

Submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

Carl R. Ice College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2021

 Approved by:

Major Professor

Daniel Andreason

Copyright

© Dishan Nahitiya 2021.

Abstract

In agricultural fields, knowledge about the proportion of the soil surface covered with

live vegetation and crop residue cover is key to assess the risk of soil erosion by wind and water.

Live vegetation and residue cover act as an effective barrier that reduces the raindrop impact on

the soil surface that can potentially break soil aggregates and wash away the soil particles and

nutrients in the soil solution. Traditional methods for quantifying live vegetation and soil residue

cover include line transects and sets of reference images, two methods that have proven accurate,

but highly time-consuming and repetitive. This research aims at training a Deep Convolutional

Neural Network (DCNN) to automate the classification of bare soil, crop residue, and live

vegetation from downward-facing images of agricultural fields. A SegNet model, which is a

deep convolutional encoder-decoder architecture for robust pixel-wise semantic segmentation,

was trained using batch sizes of 4 images and a learning rate of 0.01. The training dataset

consisted of 3300 images and the test set consisted of 645 images. All images were collected

from agricultural fields and experimental plots across Kansas State University Experiment

Stations. Images were first auto-labeled and then labels were manually revised by a human using

the MATLAB Image Labeler application. The SegNet model resulted in an accuracy of 90% in

the training set and 84% in the test set. Despite the intricate patterns, shapes, and colors given by

soil, plant, and stubble element, the trained SegNet shows promising results for automating the

classification of land cover from images. The trained SegNet was also implemented on a web-

based application to help farmers, field agronomists, and scientists to process images for better

assessment of the risk of soil erosion and to quantify the impact of soil and water conservation

practices.

iv

Table of Contents

List of Figures ... v

List of Tables .. vii

Acknowledgements .. viii

Dedication .. ix

1. Introduction .. 1

2. Methodology and Experimental Design ... 5

2.2 Method description ... 5

2.1.1 SegNet Architecture ... 7

2.2 Dataset .. 9

2.3 Experimental Setup ... 13

2.3.3. Tuning hyperparameters ... 14

2.4. Evaluation .. 15

3. Results and Discussion ... 17

4. Future work ... 28

5. References ... 29

v

List of Figures

Figure 1. An illustration of the classification process of the DNNs network. The DNN model

predicts the probabilities based on patterns learned through the training process of DNN

models which includes self-feature extraction and classification. The model includes

neurons (blue circles in the middle network) that activate based on certain patterns and

assign probabilities that will help in making the decision. The neuron network will activate

based on the weights stored during the training process. .. 5

Figure 2. Flow chart of process steps in the experiment. Process steps include data collection,

image processing, data labeling, development, training, and evaluation of the model, and

web implementation. ... 6

Figure 3. An illustration of proposed SegNet architecture. SegNet, an encoder-decoder

architecture using pooling indices to carry the full feature map throughout the model. The

structure does not include any fully connected layers due to convolutional behavior. The

decoder retrieves pooling indices from the encoder and produces the feature maps.

(Badrinarayanan et al., 2017). ... 8

Figure 4. An illustration of the process of the SegNet structure. a, b, c, d are values that are

carried through feature maps. The SegNet uses max pooling indices to upsample the feature

maps (Badrinarayanan et al., 2017). ... 9

Figure 5. Residue, stubble, and plant classification using a combination of Canopeo and Otsu’s

method. A) Original image. B) Classified image with lower threshold sensitivity (0.35). C)

Canopeo and Otsu classified image with a higher threshold sensitivity (0.65). The images

are classified as soil (brown), residue (yellow), and plant (green). 11

Figure 6. Optimizer variation results in loss vs Epochs. Adam optimizer (A) and RMS prop (B)

were used and both optimizers managed to converge as expected, but the RMS prop

converged slightly earlier and produce less loss than Adam. ... 17

Figure 7. Batch size variations result in loss vs epochs. The training results of the batch sizes for

batch sizes 1 and 4. The batch size refers to the number of samples that the model work

through before it updates the model parameters in each training session. 18

vi

Figure 8. Dropout variations on loss vs epochs. Results from changing dropout relative value of

0.2 vs 0.4. Both curves behave similarly and 0.4 dropout shows less fluctuation. 19

Figure 9. Variants on epochs. Training results for variation epochs values. The training slight

improvement of the test accuracy but overall can be neglected. .. 19

Figure 10. Examples of predictions from the trained SegNet, left column has the original image,

the middle column consists of the corresponding labeled images labeled from MATLAB,

and the rightmost column has the images consist of the prediction from the trained SegNet

model, and classes can identify as soil (brown), stubble (blue) and canopy (green). 23

Figure 11. The image pair shows a scenario of misclassifications from the trained SegNet model.

A) Original image of soil cover and the B) Predicted image from the SegNet model. The red

circles indicate the misclassified regions. ... 24

Figure 12. Image of the front-end user interface of the SRPNet web application. The app utilizes

the JSON version of the trained SegNet model which takes the input as an image (left) and

predicts the labels (right). ... 27

vii

List of Tables

Table 1. Soil cover is identified as three key attributes of soil, stubble, and Plant. This table

indicates the distribution of the images. ... 10

Table 2. Pixel count per class label across the entire dataset. ... 12

Table 3. Information for each layer of the SegNet architecture used in this study. The encoder is

a combination of a convolutional layer, batch normalization layer, and Relu layer, and the

decoder consists of upsampling layers. ... 13

Table 4. The hyperparameter training. For the process of training, hyperparameters were tested

under the key main feature of Learning rates, optimizers, batch size, and dropout. The table

demonstrates the relative experiment. ... 14

Table 5. Training results after training the model based on the SegNet model. 20

Table 6. Evaluation results on trained best performing SegNet model which was trained for 3000

epochs under 0.01 learning rate. ... 20

Table 7. Evaluation of the labeling algorithms Canopeo and Otsu algorithms. Initially, the

Canopeo method classifies the green vegetation in the image. Otsu methods mainly focus on

classifying remainder pixels into residue and soil. ... 21

viii

Acknowledgements

I would like to thank Dr. Andres Patrignani for providing me guidance throughout many

projects. Thank you to Dr. Daniel Andresen, for supporting me every step of the way in my

masters. Special thanks to Mohammad Bisheh, Sarthak Khanal, and Narmadha Mohankumar for

helping me understand the topic of machine learning.

ix

Dedication

I dedicated this work to my beloved parents Sunil Nahitiya and Kumudunie Pangoda and

my brothers Hashan Nahitiya and Prashan Nahitiya.

1

1. Introduction

By 2050, agricultural production needs to be increased by about 71% (Rosegrant &

Cline, 2003) to meet the rising global food demand. Unfortunately, the increasing pressure to

increase agricultural production has acted as a catalyst for soil degradation and soil erosion (Lal

et al., 2020). As a result of more intensive farming, each year an estimated 24 billion metric tons

of fertile soil are lost due to soil erosion (Pretty et al., 2011). Thus, there is an increasing need for

the adoption of soil and water conservation practices that improve productivity, resiliency, and

sustainability of agricultural systems to reduce the rate of soil degradation (Fageria et al., 2005;

Mitchell et al., 2012). Conservation practices that promote soil cover by live vegetation and crop

residue can result effective to reduce soil erosion and preserve or enhance the structure and

fertility of the soil (Gabriel et al., 2021).

In a crop field, soil cover can usually be present in the form of vegetation canopy and

crop residue. Crop residue cover includes stems and stalks left on the soil surface after harvesting

the previous crop, while canopy cover refers to the actively growing vegetation present in the

field. Parts of the field that are not covered by live vegetation or crop residue usually consist of

exposed bare soil. The combination of crop residue and canopy cover acts as an effective barrier

to minimize soil erosion by deflecting kinetic energy from the raindrops that can break down soil

aggregate and wash away the soil particles and nutrients in the soil (Xin et al., 2016). Dissolved

soil nutrients carried by surface runoff usually end up in downstream water bodies and their

excessive accumulation can cause eutrophication of water reservoirs that can have hazardous

effects on marine life (Ekholm & Lehtoranta, 2012). An actively growing vegetation and crop

residue cover also protect the soil surface from wind erosion (Duniway et al., 2019). For

2

instance, previous studies found that preserving 20% of residue cover on the soil surface can

reduce wind erosion by about 50%, and maintaining 50% of the soil surface covered by crop

residue can reduce wind erosion by 95% (Donald W. Fryrear, 1985). Residue cover can also play

an important role in soil water conservation by reducing the soil evaporation rate (Flerchinger et

al., 2003). Apart from acting as a protective barrier to soil, agronomists use canopy cover as a

key attribute to track crop growth and estimate light interception (Shepherd et al., 2018).

Over the years, simple and practical methods have been developed to quantify the soil

cover in field conditions. The line transect method (Sloneker, 1977) consists of using a

measuring stick or tape to create a transect along which a trained operator counts the number of

marks on the stick or tape intersecting stubble pieces or live vegetation. The transect is often

repeated several times across the field to obtain an accurate field average of residue and

vegetation cover. Another practical method that has gained popularity is the photo-comparison

method, in which a trained operator uses a predefined set of images representing pre-calculated

images of crop residue or canopy cover for a specific crop. The user needs to visually compare a

selected area in the field (e.g. using a quadrat) to the set of reference images to estimate the

percent of residue or vegetation cover. In general, the line transect method is more reliable than

the photo-comparison method, which tends to overestimate residue cover by 6 to 10 percent

(Laflen et al., 1981). While these methods provide a first-order approximation of the soil cover,

they can result in tedious, time-consuming, and labor-intensive. In recent years, the increasing

processing power of mobile devices has propelled the use of downward-facing digital image

analysis for quantifying soil cover. Digital image processing has the potential to rapidly and

accurately assess the amount of residue and vegetation cover in agricultural fields to better guide

the implementation of soil and water conservation practices. For instance, a new application

3

called Canopeo uses a simple, but effective, thresholding algorithm that can rapidly quantify the

percent of green vegetation from a downward-facing digital image (Patrignani & Ochsner, 2015).

However, more advanced classification methods are required for learning and recognizing

complex patterns and textures in images involving bare soil, live vegetation, and crop residue

(Agarap, 2018; Narayanan et al., 2016).

There have been several research studies quantifying soil cover using machine learning

methods, however, prior research work has been primarily focused on classifying green canopy

cover (Levien et al., 1999). A recent study that aimed at quantifying crop residue and green

vegetation using machine learning uses the Random Forest (RF) algorithm, which is an ensemble

decision tree approach (Riegler-Nurscher et al., 2018). The main limitation of this approach is

that it fails to effectively capture the difference between the stubble and soil due to similarities in

color ranges and texture. In light of these limitations, more sophisticated methods capable of

identifying the complex patterns in an image are required to achieve higher land cover

classification accuracy. The recent advances in image analysis using deep neural networks have

proven to be highly effective in analyzing more complex image patterns. Deep learning is a

subfield of machine learning, which typically uses an architecture with a significantly larger

number of layers stacked together to identify complex patterns (Voulodimos et al., 2018). Deep

neural networks (DNN) are designed to continually analyze input data and learn to represent

multiple levels of abstraction through generating weights and featured maps by using pattern

recognition algorithms (Lecun et al., 2015). Semantic segmentation, also known as pixel-wise

segmentation has been remarkable in classifying and objects in images in a class-enclosed

region. The main purpose of this method is to make a dense prediction and assign a categorical

label to every input pixel of an image. This technology has become very popular in the fields of

4

medicine (Litjens et al., 2017), natural language processing (Lecun et al., 2015), and computer

vision (Voulodimos et al., 2018). This task is closely related to the semantic segmentation

problem and it is one of the popular methods which is widely used in robots, robot-assisted

surgery, and intelligent military system (Wang et al., 2018).

In this study, we hypothesize that semantic segmentation using a DNN network will be

capable of accurately classifying the crop residue, live vegetation, and bare soil components

obtained from images of agricultural fields.

5

2. Methodology and Experimental Design

 2.2 Method description

The proposed method for classifying live vegetation, crop residue, and bare soil consists

of using a deep learning convolutional neural network (CNN). Convolutional layers serve as

feature extraction tools by applying a filter to the input image that generates a feature map

(Figure 1).

Figure 1. An illustration of the classification process of the DNNs network. The DNN model

predicts the probabilities based on patterns learned through the training process of DNN models

which includes self-feature extraction and classification. The model includes neurons (blue

circles in the middle network) that activate based on certain patterns and assign probabilities that

will help in making the decision. The neuron network will activate based on the weights stored

during the training process.

Certain steps were followed in the study in required training the model as its mentions as

follows.

6

Figure 2. Flow chart of process steps in the experiment. Process steps include data collection,

image processing, data labeling, development, training, and evaluation of the model, and web

implementation.

As mentioned in Figure 2, the experiment starts with collecting input data for the model.

Next, the labels of the images are designed and generated via MATLAB. Then the images were

divided into two sets, train and test datasets. Once all the images are prepared the proposed

semantic segmentation model was trained with the image data set and also evaluated.

Semantic segmentation classification algorithms were used in identifying intrinsic

patterns to classify the soil cover based on a defined category set. Our goal in this method is to

use an RGB color image (512 x 512 x 3) to create a pixel-wise probability segmentation map for

each class label. Popular DNN architectures for semantic segmentation include U-net

(Ronneberger et al., 2015), DeconvNet (Ronneberger et al., 2015), and SegNet (Badrinarayanan

et al., 2017), which showed promise in the field of computer vision. In this study, we are

exploring SegNet structure, a design that carries indices from max-pooling layers from the

encoder to the decoder. A disadvantage of a U-Net is that it carries the full-featured map to the

decoder, requiring heaving amounts of memory consumption. Similarly, a DeconvNet uses a

7

fully connected layer which makes it larger to train. Therefore we favored the use of a SegNet

structure which requires fewer parameters than the other structures.

 2.1.1 SegNet Architecture

The Seg (semantic segmentation) Net (Network) architecture is an encoder-decoder based

architecture proposed by (Badrinarayanan et al., 2017) in the year 2015. The encoder layer

includes 5 encoders and consists of 13 layer of convolutional layers included in the VGG16

network (Simonyan & Zisserman, 2015). Each encoder produces a featured map with the help

convolutional layer which applies dot product by sliding a filter sized patch across the two-

dimensional image. The encoder also includes a convolutional layer followed by a batch

normalization layer (Li et al., 2019) and a rectified linear unit layer (RELU) (Zhong et al., 2019).

The pooling layers which follow help to create a spatial resolution of the maps. The architecture

discards the fully connected layers and only retains high-resolution feature maps in the decoder

outputs, which can reduce the number of trainable parameters significantly.

8

Figure 3. An illustration of proposed SegNet architecture. SegNet, an encoder-decoder

architecture using pooling indices to carry the full feature map throughout the model. The

structure does not include any fully connected layers due to convolutional behavior. The decoder

retrieves pooling indices from the encoder and produces the feature maps. (Badrinarayanan et al.,

2017).

The key component of the SegNet is that each encoder corresponds to a decoder in the

hierarchical order. As mentioned in Figure 4, each upsampling layer in the decoder receives

pooling indices from the corresponding encoder concatenate with the non-leaner upsample on the

feature maps.

9

Figure 4. An illustration of the process of the SegNet structure. a, b, c, d are values that are

carried through feature maps. The SegNet uses max pooling indices to upsample the feature

maps (Badrinarayanan et al., 2017).

 2.2 Dataset

The dataset of images for this study consisted of downward-facing digital images

obtained from agricultural fields containing soil, stubble, and green vegetation. Images were

collected at several Kansas State University Experiment Research Stations. Images were taken

with a combination of mobile devices and point-and-shoot cameras about 1.5 meters above the

ground. Before labeling, images were downsized to 512 x 512 pixels. The dataset contained a

total of 3972 images that were manually aggregated based on the predominant classes in each

image Table 1

10

Table 1. Soil cover is identified as three key attributes of soil, stubble, and Plant. This table

indicates the distribution of the images.

Category Number of images

Soil 212

Stubble 262

Soil and stubble 461

Soil and plant 410

Stubble and plant 112

Soil, stubble, and plant 1846

Total 3300

The labeling process was carried in two steps, an automated step and a manual step. The

automated labeling step consisted of first classifying green vegetation using the existing

algorithm in Canopeo (Patrignani & Ochsner, 2015). After classifying green pixels, bare soil and

crop residue were classified using Otsu’s thresholding technique (Jun & Jinglu, 2008). This

classification sequence provided a first-order approximation to the three classes present in the

images. In the classifying process, Canopeo was successful in identifying the green canopy in

images1. The rest of the pixels of the image was then classified using the OTSU method, which

has the slight ability to distinguish between stubble and soil based on thresholds.

1 The canopeo algorithm uses extracted RGB layer information and calculate the color ratios of red to green (R/G)

and blue to green (B/G) and an excess green index-ExG (2G–R–B)

ExG = 2*G - R – B , RG = R/G , BG = B/G

plant = RG < 0.95 & BG < 0.95 & ExG > 20

11

Figure 5. Residue, stubble, and plant classification using a combination of Canopeo and Otsu’s

method. A) Original image. B) Classified image with lower threshold sensitivity (0.35). C)

Canopeo and Otsu classified image with a higher threshold sensitivity (0.65). The images are

classified as soil (brown), residue (yellow), and plant (green).

As seen in Figure 5, the Otsu method continuously needed supervision and adjustment of

threshold sensitivity in the labeling process. In the scenario, the Otsu method had a higher

chance of identifying the stubble and soil in the ground and a higher threshold misclassify most

of the soil classes as residue. Due to this behavior, after the images were auto-labeled, the labels

in each image were inspected by a trained operator, and changes in pixel labels were manually

revised. The entire labeling process was conducted using the MATLAB Image Labeler

application (Mathworks, Inc., Natick, MA). Pixels in the image was be categorized into classes

of stubble, live green vegetation, and bare soil. The labeled image set contains 3300 images and

645 test images possessing a resolution of 512 x 512 per a labeled image.

12

Table 2. Pixel count per class label across the entire dataset.

Data set Soil Plant Stubble None

Train set 381258802 239173488 244491360 151550

Test set 75812418 39904756 53095226 8336

After investigating the class category ‘none’ we conclude that best fit pixels represented

by this class can be reassigned as soil class. During the processing stage in the training process of

the model deep learning model, we re-assigned the ‘none’ pixels to class soil.

13

 2.3 Experimental Setup

SegNet architecture consists of 4 encoders and corresponded decoders with the same

architecture as the experimental architecture and the filter sizes for the convolutional layers were

varied throughout the model in contrast to the recommended constant filter size of 64 in the

original SegNet structure.

Table 3. Information for each layer of the SegNet architecture used in this study. The encoder is

a combination of a convolutional layer, batch normalization layer, and Relu layer, and the

decoder consists of upsampling layers.

Set Type # Filter Layer/Padding Input size Output size

Encoder 1 Conv+BN Relu 64 M,2 512 x512 x3 512 x 512 x 64

Encoder 2 Conv+BN+Relu 128 M,2 512 x 512 x 64 256 x 256 x128

Encoder 3 Conv+BN+Relu 256 M,2 256 x 256 x128 128 x 128 x 256

Encoder 4 Conv+BN+Relu 256 M,2 128 x 128 x 256 64 x 64 x 256

Encoder 5 Conv+BN+Relu 512 M,2 64 x 64 x 256 32 x 32 x 512

Decoder 5 Deconv 256 U,2 32 x 32 x 512 64 x 64 x 256

Decoder 4 Deconv 256 U,2 64 x 64 x 256 128 x 128 x 256

Decoder 3 Deconv 64 U,2 128 x 128 x 256 256 x 256 x 64

Decoder 2 Deconv 32 U,2 256 x 256 x 64 512 x 512 x 3

Decoder 1 softmax 512 x 512 x 3

M stands for max-pooling U stands for upsampling (Mittal et al., 2018)

The training of the DNN model was conducted with the Python 3.7.9 version on an

Anaconda 4.9.2 virtual environment. Keras, a high-level deep learning module offered by

TensorFlow version 2.3 was utilized in the training process of the model. Moreover, Sklearn,

Numpy, Pandas, Matplotlib libraries were utilized in supporting other functions. Pre-trained

SegNet model architecture was tuned using hyperparameters in the project. The experiment was

conducted in a desktop computer equipped with a 3.8 GHz Ryzen 9 3900x 12-core processor and

a single GeForce RTX 2080 (NVIDIA, Santa Clara, CA) graphics processing unit (GPU). To speed

up the training of the SegNet, the image data processing was conducted using 32-bit single-

precision floating-point format.

14

 2.3.3. Tuning hyperparameters

Table 4. The hyperparameter training. For the process of training, hyperparameters were tested

under the key main feature of Learning rates, optimizers, batch size, and dropout. The table

demonstrates the relative experiment.

Parameter Variations

Learning rates 0.1, 0.01

Optimizers RMS prop, Adam

Batch size 1, 4

Dropouts 20%, 40%.

Epochs 1000, 3000

In model training, gradient descent optimization (Zhong et al., 2019) was used to

minimize the cost function as far as possible. Categorical cross-entropy (CE), a softmax

activation algorithm was utilized to identify the divergence between class probability in the

distributions (Janocha & Czarnecki, 2017). Then the softmax function squashes a multi-

classification vector generated by CE into a value between 0 to 1 creating a probability spread

for each class which ultimately adds up to 1 for each pixel. The probabilities of classes can be

identified as one-of-many classification which depicts that each sample pixel in the sample set

should belong to one category at all times.

Fine-tuning of the hyperparameters was conducted before the training model. This

process improves the accuracy and efficiency of the model. As mentioned in Table 4, well-

known optimizers for semantic segmentation, Root Means Square Propagation (RMSProp) and

Adaptive Moment Optimization (Adam) were used (setiawan et al., 2018) for this experiment.

Then, we devised a short experiment including a small range of settings and optimizers. The

baseline experiment was designed as follows.

15

• Size of the images used: 512 x 512 pixels

• Number of the channel in the image: 3

• Networks optimizers: RMS prop

• Learning rate for the optimizer: 0.01

• The dropout rate in the classifier network: 0.4

• Number of epochs for classifier training: 200

Once the hyperparameters were analyzed, we started training the best-performing model

with the input image data for multiple iterations (epochs).

 2.4. Evaluation

Evaluation for the best performing model was conducted by analyzing the confusion

matrix and overall accuracy over the test data set. The confusion matrix describes how well the

classifier predicts each class for each pixel. With help of the confusion matrix, we analyzed the

factors of precision, recall, and F1-score as mentioned in the following equations.

𝐹1 = 2 ∗

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(2)

𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(3)

Where F-1 score, Precision, and recall are formulas calculated from the confusion matrix.

TP stands for true positive, FP stands for false positive, TN stands for true negative, and FN

stands for false negative. According to eq. 2, Precision specifies the fact that of being accurate

16

and eq.3 Recall stands for whether the actual positive was identified through the classification

process.

Accuracy of confusion matrix proves to be a better indicator of the model strength in

identifying the distributions of the classes. (Mittal et al., 2018) .We used the F1 score as a

weighted average on precision and recall to evaluate the model accuracy. F1 score illustrates the

balance between Precision and Recall.

17

3. Results and Discussion

First, the hyperparameters were tuned based on the baseline experiment to fine-tune the

model. The experiment was conducted under a constant seed value in Tensorflow to make stable

output for every training.

Figure 6. Optimizer variation results in loss vs Epochs. Adam optimizer (A) and RMS prop (B)

were used and both optimizers managed to converge as expected, but the RMS prop converged

slightly earlier and produce less loss than Adam.

Gradient descent optimization algorithms are proven to be significant in multiclass

classifications for the baseline experiment and the core algorithm which helps the neural network

minimize the loss. Figure 6 depicts that both optimizers demonstrated promising results during

the training process. RMS prop optimizer converged slightly earlier than the Adam optimizer to

achieving similar losses during the training process. Then the batch size was adjusted to

experiment with the loss fluctuation that occurred in training.

18

Figure 7. Batch size variations result in loss vs epochs. The training results of the batch sizes for

batch sizes 1 and 4. The batch size refers to the number of samples that the model work through

before it updates the model parameters in each training session.

Unexpectedly, according to Figure 7, a lower batch size of size as 1 image which training

performance was not significant enough to be considered for an output. We assume that this may

result in higher fluctuations in losses encountered in the training process. Due to hardware

constraints, we had to reduce to 4 images per batch. Furthermore, we apply dropout

regularization methods to avoid overfitting in the training process. More training was needed to

increase the accuracy of the model and the process of which the model starting mimicking the

output rather than predicting the output

19

Figure 8. Dropout variations on loss vs epochs. Results from changing dropout relative value of

0.2 vs 0.4. Both curves behave similarly and 0.4 dropout shows less fluctuation.

Figure 8 states that the loss function validation loss curve and the training loss curve

initially converged on 200 epochs. 0.4% dropouts were giving slight variation in the loss. After

implementing the dropout we continuously increased the number of epochs to achieve higher

accuracy without overfitting. Figure 9 shows the model behavior training under higher epochs.

The accuracy slightly improved with time.

Figure 9. Variants on epochs. Training results for variation epochs values. The training slight

improvement of the test accuracy but overall can be neglected.

20

After fine-tuning the hyperparameters, the tuned model was trained and evaluated model

performance with the 644 of the test images. Results were gathered based on the variations of

epochs.

Table 5. Training results after training the model based on the SegNet model.

Training epoch Validation loss Training loss Test accuracy

200 0.3396

0.3501

0.8424

1000 0.3127

0.2816

0.839

3000 0.3003

0.2447

0.8461

5000 0.3079

0.2407

0.8483

Observations from Table 5 illustrate that there was no significant improvement for the

stubbles’ Training loss over time. But the validation loss and overall test accuracy increase

improved slightly. The largest evaluation matrices values were evaluated at model trained to

3000 epochs.

Table 6. Evaluation results on trained best performing SegNet model which was trained for 3000

epochs under 0.01 learning rate.

Label F1-score Precision Recall

Stubble 0.77 0.86 0.69

Soil 0.85 0.79 0.93

Canopy 0.92 0.95 0.91

21

After training the best performing model, F1 scores were analyzed to identify the

classification performance of each class. As evaluated in Table 6, the model was able to identify

stubble with higher precision (0.86) than soil (0.79) but failed to have a lower recall of 0.69. In

contrast, soil class acquired a higher recall (0.93) than stubble (0.69). This indicates that stubble

carried in most of the scenarios, classify more as soil and less as stubble. Overall the green

canopy has the highest success in classifying having the highest precision (0.95) and recall

(0.91).

The use of the deep learning method was then compared with the previously utilized

image labeling techniques to evaluate the performance of the trained semantic segmentation

model. The Canopeo and Otsu threshold techniques were highly supportive effective in labeling

the images. The SegNet model was evaluated on the factors of precision, recall, F1-score as

mention in Table 7.

Table 7. Evaluation of the labeling algorithms Canopeo and Otsu algorithms. Initially, the

Canopeo method classifies the green vegetation in the image. Otsu methods mainly focus on

classifying remainder pixels into residue and soil.

Label† F1-score Precision Recall

Stubble 0.48 0.64 0.38

Soil 0.74 0.65 0.86

Canopy 0.96 0.98 0.95

† Otsu’s methods mainly focus on classifying remainder pixels into residue and soil. Images for

this test were labeled using the Otsu algorithm with a parameter value of 0.35, which was a

reasonable thresholding sensitivity based on several sample images.

In both techniques thresholding and deep neural network learning, the Canopeo algorithm

was nearly successful in classify the green vegetation in the images. The F1-score values in

stubble (0.48) and soil (0.74) were comparatively lower than the stubbles (0.77) and soil (0.85)

22

classification in the Deep learning model. This confirms that the SegNet model performs better

in identifying the slight pattern difference between soil and residue and the necessity of manual

cleaning after utilizing the auto labeling algorithm.

The trained SegNet model was then visually evaluated for model performance. Diverse

images were considered for the evaluation process. Input images were analyzed through the

model and output from the softmax layer was analyzed through an Argmax operation to (returns

the index of largest predicted category) to the predicted label for the cover.

23

Figure 10. Examples of predictions from the trained SegNet, left column has the original image,

the middle column consists of the corresponding labeled images labeled from MATLAB, and the

rightmost column has the images consist of the prediction from the trained SegNet model, and

classes can identify as soil (brown), stubble (blue) and canopy (green).

24

According to Figure 10, the trained SegNet model was able to identify the canopy cover

much more accurately. In most cases, the model was able to properly classify the strong,

significant features in stubble, but fail to perform well in classifying weaker, plain features.

Figure 11. The image pair shows a scenario of misclassifications from the trained SegNet model.

A) Original image of soil cover and the B) Predicted image from the SegNet model. The red

circles indicate the misclassified regions.

Figure 11 explains the stronger and weaker features predicted by the model. Due to this

result, the stubble and soil carry low F1 scores. In most of the scenarios, it depicts more soil and

less stubble. Our effort is to increase the accuracy of the quantifying stubble. The model was

accurate in identifying the green vegetation in the test image set. Most errors occurred on the soil

and stubble classifications.

First, the DNN model was trained and extracted was available for the general public

through a web application. SRPNet, the web application takes an image input through a camera

or any other device. Then 2D images are processed according to the models' input size. The

model then calculates the soil cover with the help of the trained model. After the training, the

https://dishan3x.github.io/SRPNet/

25

model was saved to Tensorflow protobuf type and then converted the model to JSON type with

the assistance of TensorFlow.js convertors. The model was installed in an easy-to-use standalone

web application in a combined environment of vanilla JavaScript and Tensorflow.js 3.3.0. The

web app was then hosted as a standalone, free-to-use open-source web app in GitHub. The app

has analyses images with the help of tensorflow.js, and WebGL, a JavaScript API that helps to

access the GPU in the electronic equipment.

The application utilized tidy method which frees up the memory from intermediate

tensors which occur inside the function return a new tensor with the converted image. This

method will help to save the browser memory without getting overloaded.

 const tensorImg = await tf.tidy(() => {

 let image_from_element = document.getElementById("uploaded_image");

 let tensorImg =

tf.browser.fromPixels(image_from_element).toFloat().expandDims();

 return tensorImg;

 });

The program will expand the dimension of the image to 1x512x512x3 which fits the input of the

model for the predictions.

 prediction = await model.predict(tensorImg);

 tf.dispose(tensorImg);

 var results = await prediction.argMax(3).dataSync();

 tf.dispose(prediction);

The prediction and image generation have time complexity O(1) or constant time per pixel. The

prediction results are computed using an Argmax function with constant time complexity on

each pixel. Moreover, when the image is W x H pixels, then the complexity is O(W*H) to

26

process the image. Then, the output index is converted to an RGB image in the following code

snippet.

 // create an offscreen canvas

 var canvas = document.createElement("canvas");

 var ctx = canvas.getContext("2d");

 // size the canvas to your desired image

 canvas.width = 512;

 canvas.height = 512;

 // get the imageData and pixel array from the canvas

 var imgData = ctx.getImageData(0, 0, 512, 512);

 var data = imgData.data;

 index = 0;

 counter = 0;

 for(let y=0; y < canvas.height; y++){

 for(let x=0; x < canvas.width; x++){

 let index = (x + y * canvas.width)*4;

 pixel_value = results[counter];

 // stubble

 if (pixel_value == 0){

 data[index+0] = 255;

 data[index+1] = 255;

 data[index+2] = 0;

 data[index+3] = 255;

 }else if(pixel_value == 1){

 // soil brown

 data[index+0] = 165;

 data[index+1] = 42;

 data[index+2] = 42;

 data[index+3] = 255;

 }else {

 //live vegetation green

 data[index+0] = 0;

 data[index+1] = 255;

 data[index+2] = 0;

 data[index+3] = 255;

 }

 counter += 1;

 }

 }

 During the prediction process, the image size did not affect the runtime, the app always

downsamples the RGB image to 512 x 512 x 3 and then predicts probability matrix of 512 x 512

27

x 3 and the image is also always generated for this same dimension and the algorithm does not

depend on the input image.

Figure 12. Image of the front-end user interface of the SRPNet web application. The app utilizes

the JSON version of the trained SegNet model which takes the input as an image (left) and

predicts the labels (right).

28

4. Future work

The deep learning model can improve the accuracy by increasing the number of data in

the dataset. We are planning to increase the quantity of the images which represent more

scenarios of stubble and soil. This will be helpful for us to help the model to learn slight

differences between stubble and soil and improve the accuracy of the DNN model. Furthermore,

there will be more land covers categories introduced in classifying images. Moreover, we are

planning to use this trained SegNet model for transfer learning to classify classes in digital

images in other fields beyond agriculture. We are also planning to host the web application

utilizing the model open source for users to use in their respective browsers of their choice.

29

5. References

Agarap, A. F. M. (2018). Deep Learning using Rectified Linear Units (ReLU). In arXiv.

https://github.com/AFAgarap/relu-classifier.

Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A Deep Convolutional Encoder-

Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 39(12), 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615

Donald W. Fryrear. (1985). Soil Cover and Wind Erosion. Transactions of the ASAE, 28(3),

781–784. https://doi.org/10.13031/2013.32337

Duniway, M. C., Pfennigwerth, A. A., Fick, S. E., Nauman, T. W., Belnap, J., & Barger, N. N.

(2019). Wind erosion and dust from US drylands: a review of causes, consequences, and

solutions in a changing world. Ecosphere. https://doi.org/10.1002/ecs2.2650

Ekholm, P., & Lehtoranta, J. (2012). Does control of soil erosion inhibit aquatic eutrophication?

In Journal of Environmental Management (Vol. 93, Issue 1, pp. 140–146). Academic Press.

https://doi.org/10.1016/j.jenvman.2011.09.010

Fageria, N. K., Baligar, V. C., & Bailey, B. A. (2005). Role of cover crops in improving soil and

row crop productivity. In Communications in Soil Science and Plant Analysis (Vol. 36,

Issues 19–20, pp. 2733–2757). Taylor & Francis Group .

https://doi.org/10.1080/00103620500303939

Flerchinger, G. N., Sauer, T. J., & Aiken, R. A. (2003). Effects of crop residue cover and

architecture on heat and water transfer at the soil surface. Geoderma, 116(1–2), 217–233.

https://doi.org/10.1016/S0016-7061(03)00102-2

Gabriel, J. L., García-González, I., Quemada, M., Martin-Lammerding, D., Alonso-Ayuso, M.,

& Hontoria, C. (2021). Cover crops reduce soil resistance to penetration by preserving soil

surface water content. Geoderma, 386, 114911.

https://doi.org/10.1016/j.geoderma.2020.114911

Janocha, K., & Czarnecki, W. M. (2017). On Loss Functions for Deep Neural Networks in

Classification.

Jun, Z., & Jinglu, H. (2008). Image segmentation based on 2D Otsu method with histogram

analysis. Proceedings - International Conference on Computer Science and Software

Engineering, CSSE 2008, 6, 105–108. https://doi.org/10.1109/CSSE.2008.206

Laflen, J. M., Amemiya, M., & Hintz, E. A. (1981). Measuring crop residue cover. Journal of

Soil and Water Conservation, 36(6).

Lal, R., Blum, W. E. H., Valentin, C., & Stewart, B. A. (2020). Methods for Assessment of Soil

Degradation. CRC Press. https://books.google.com/books?id=lSAJEAAAQBAJ

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. In Nature (Vol. 521, Issue 7553, pp.

436–444). Nature Publishing Group. https://doi.org/10.1038/nature14539

Levien, L. M., Roffers, P., Maurizi, B., Suero, J., Fischer, C., & Huang, X. (1999). A MACHINE-

LEARNING APPROACH TO CHANGE DETECTION USING MULTI-SCALE IMAGERY 1.

Li, Y., Wang, N., Shi, J., Liu, J., & Hou, X. (2019, March 15). Revisiting batch normalization for

practical domain adaptation. 5th International Conference on Learning Representations,

ICLR 2017 - Workshop Track Proceedings. https://arxiv.org/abs/1603.04779v4

30

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak,

J. A. W. M., van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in

medical image analysis. In Medical Image Analysis (Vol. 42, pp. 60–88). Elsevier B.V.

https://doi.org/10.1016/j.media.2017.07.005

Mitchell, J. P., Singh, P. N., Wallender, W. W., Munk, D. S., Wroble, J. F., Horwath, W. R.,

Hogan, P., Roy, R., & Hanson, B. R. (2012). No-Tillage and high-residue practices reduce

soil water evaporation. California Agriculture, 66(2), 55–61.

https://doi.org/10.3733/ca.v066n02p55

Mittal, A., Hooda, R., & Sofat, S. (2018). LF-SegNet: A Fully Convolutional Encoder–Decoder

Network for Segmenting Lung Fields from Chest Radiographs. Wireless Personal

Communications, 101(1), 511–529. https://doi.org/10.1007/s11277-018-5702-9

Narayanan, B. N., Djaneye-Boundjou, O., & Kebede, T. M. (2016). Performance analysis of

machine learning and pattern recognition algorithms for Malware classification.

Proceedings of the IEEE National Aerospace Electronics Conference, NAECON, 0, 338–

342. https://doi.org/10.1109/NAECON.2016.7856826

Patrignani, A., & Ochsner, T. E. (2015). Canopeo: A Powerful New Tool for Measuring

Fractional Green Canopy Cover. Agronomy Journal, 107(6), 2312–2320.

https://doi.org/10.2134/agronj15.0150

Pretty, J., Toulmin, C., & Williams, S. (2011). Sustainable intensification in African agriculture.

International Journal of Agricultural Sustainability, 9(1), 5–24.

https://doi.org/10.3763/ijas.2010.0583

Riegler-Nurscher, P., Prankl, J., Bauer, T., Strauss, P., & Prankl, H. (2018). A machine learning

approach for pixel wise classification of residue and vegetation cover under field

conditions. Biosystems Engineering, 169, 188–198.

https://doi.org/10.1016/j.biosystemseng.2018.02.011

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical

Image Segmentation. http://arxiv.org/abs/1505.04597

Rosegrant, M. W., & Cline, S. A. (2003). Global Food Security: Challenges and Policies. In

Science (Vol. 302, Issue 5652, pp. 1917–1919). https://doi.org/10.1126/science.1092958

setiawan, wahyudi, setiawan, wahyudi, Utoyo, M. I., & Rulaningtyas, R. (2018). Vessels

semantic segmentation with gradient descent optimization. International Journal of

Engineering & Technology, 7(4), 4062–4067. https://doi.org/10.14419/ijet.v7i4.18104

Shepherd, M. J., Lindsey, L. E., & Lindsey, A. J. (2018). Soybean Canopy Cover Measured with

Canopeo Compared with Light Interception. Agricultural & Environmental Letters, 3(1),

180031. https://doi.org/10.2134/ael2018.06.0031

Simonyan, K., & Zisserman, A. (2015, September 4). Very deep convolutional networks for

large-scale image recognition. 3rd International Conference on Learning Representations,

ICLR 2015 - Conference Track Proceedings. http://www.robots.ox.ac.uk/

Sloneker, L. L, and W. C. M. (1977). Measuring the amounts of crop residue remaining after

tillage.

Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep Learning for

Computer Vision: A Brief Review. In Computational Intelligence and Neuroscience (Vol.

2018). Hindawi Limited. https://doi.org/10.1155/2018/7068349

31

Wang, P., Chen, P., Yuan, Y., Liu, D., Huang, Z., Hou, X., & Cottrell, G. (2018). Understanding

Convolution for Semantic Segmentation. Proceedings - 2018 IEEE Winter Conference on

Applications of Computer Vision, WACV 2018, 2018-January, 1451–1460.

https://doi.org/10.1109/WACV.2018.00163

Xin, Y., Xie, Y., Liu, Y., Liu, H., & Ren, X. (2016). Residue cover effects on soil erosion and

the infiltration in black soil under simulated rainfall experiments. Journal of Hydrology,

543, 651–658. https://doi.org/10.1016/j.jhydrol.2016.10.036

Zhong, L., Hu, L., & Zhou, H. (2019). Deep learning based multi-temporal crop classification.

Remote Sensing of Environment, 221, 430–443. https://doi.org/10.1016/j.rse.2018.11.032

