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Abstract 

In agricultural fields, knowledge about the proportion of the soil surface covered with 

live vegetation and crop residue cover is key to assess the risk of soil erosion by wind and water. 

Live vegetation and residue cover act as an effective barrier that reduces the raindrop impact on 

the soil surface that can potentially break soil aggregates and wash away the soil particles and 

nutrients in the soil solution. Traditional methods for quantifying live vegetation and soil residue 

cover include line transects and sets of reference images, two methods that have proven accurate, 

but highly time-consuming and repetitive. This research aims at training a Deep Convolutional 

Neural Network (DCNN) to automate the classification of bare soil, crop residue, and live 

vegetation from downward-facing images of agricultural fields. A SegNet model, which is a 

deep convolutional encoder-decoder architecture for robust pixel-wise semantic segmentation, 

was trained using batch sizes of 4 images and a learning rate of 0.01. The training dataset 

consisted of 3300 images and the test set consisted of 645 images. All images were collected 

from agricultural fields and experimental plots across Kansas State University Experiment 

Stations. Images were first auto-labeled and then labels were manually revised by a human using 

the MATLAB Image Labeler application. The SegNet model resulted in an accuracy of 90% in 

the training set and 84% in the test set. Despite the intricate patterns, shapes, and colors given by 

soil, plant, and stubble element, the trained SegNet shows promising results for automating the 

classification of land cover from images. The trained SegNet was also implemented on a web-

based application to help farmers, field agronomists, and scientists to process images for better 

assessment of the risk of soil erosion and to quantify the impact of soil and water conservation 

practices.  
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1. Introduction 

By 2050, agricultural production needs to be increased by about 71% (Rosegrant & 

Cline, 2003) to meet the rising global food demand. Unfortunately, the increasing pressure to 

increase agricultural production has acted as a catalyst for soil degradation and soil erosion (Lal 

et al., 2020). As a result of more intensive farming, each year an estimated 24 billion metric tons 

of fertile soil are lost due to soil erosion (Pretty et al., 2011). Thus, there is an increasing need for 

the adoption of soil and water conservation practices that improve productivity, resiliency, and 

sustainability of agricultural systems to reduce the rate of soil degradation (Fageria et al., 2005; 

Mitchell et al., 2012). Conservation practices that promote soil cover by live vegetation and crop 

residue can result effective to reduce soil erosion and preserve or enhance the structure and 

fertility of the soil (Gabriel et al., 2021).  

In a crop field, soil cover can usually be present in the form of vegetation canopy and 

crop residue. Crop residue cover includes stems and stalks left on the soil surface after harvesting 

the previous crop, while canopy cover refers to the actively growing vegetation present in the 

field. Parts of the field that are not covered by live vegetation or crop residue usually consist of 

exposed bare soil. The combination of crop residue and canopy cover acts as an effective barrier 

to minimize soil erosion by deflecting kinetic energy from the raindrops that can break down soil 

aggregate and wash away the soil particles and nutrients in the soil (Xin et al., 2016). Dissolved 

soil nutrients carried by surface runoff usually end up in downstream water bodies and their 

excessive accumulation can cause eutrophication of water reservoirs that can have hazardous 

effects on marine life (Ekholm & Lehtoranta, 2012). An actively growing vegetation and crop 

residue cover also protect the soil surface from wind erosion (Duniway et al., 2019). For 
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instance, previous studies found that preserving 20% of residue cover on the soil surface can 

reduce wind erosion by about 50%, and maintaining 50% of the soil surface covered by crop 

residue can reduce wind erosion by 95% (Donald W. Fryrear, 1985). Residue cover can also play 

an important role in soil water conservation by reducing the soil evaporation rate (Flerchinger et 

al., 2003). Apart from acting as a protective barrier to soil, agronomists use canopy cover as a 

key attribute to track crop growth and estimate light interception (Shepherd et al., 2018). 

Over the years, simple and practical methods have been developed to quantify the soil 

cover in field conditions. The line transect method (Sloneker, 1977) consists of using a 

measuring stick or tape to create a transect along which a trained operator counts the number of 

marks on the stick or tape intersecting stubble pieces or live vegetation. The transect is often 

repeated several times across the field to obtain an accurate field average of residue and 

vegetation cover. Another practical method that has gained popularity is the photo-comparison 

method, in which a trained operator uses a predefined set of images representing pre-calculated 

images of crop residue or canopy cover for a specific crop. The user needs to visually compare a 

selected area in the field (e.g. using a quadrat) to the set of reference images to estimate the 

percent of residue or vegetation cover. In general, the line transect method is more reliable than 

the photo-comparison method, which tends to overestimate residue cover by 6 to 10 percent 

(Laflen et al., 1981). While these methods provide a first-order approximation of the soil cover, 

they can result in tedious, time-consuming, and labor-intensive. In recent years, the increasing 

processing power of mobile devices has propelled the use of downward-facing digital image 

analysis for quantifying soil cover. Digital image processing has the potential to rapidly and 

accurately assess the amount of residue and vegetation cover in agricultural fields to better guide 

the implementation of soil and water conservation practices. For instance, a new application 
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called Canopeo uses a simple, but effective, thresholding algorithm that can rapidly quantify the 

percent of green vegetation from a downward-facing digital image (Patrignani & Ochsner, 2015). 

However, more advanced classification methods are required for learning and recognizing 

complex patterns and textures in images involving bare soil, live vegetation, and crop residue 

(Agarap, 2018; Narayanan et al., 2016).  

There have been several research studies quantifying soil cover using machine learning 

methods, however, prior research work has been primarily focused on classifying green canopy 

cover (Levien et al., 1999). A recent study that aimed at quantifying crop residue and green 

vegetation using machine learning uses the Random Forest (RF) algorithm, which is an ensemble 

decision tree approach (Riegler-Nurscher et al., 2018). The main limitation of this approach is 

that it fails to effectively capture the difference between the stubble and soil due to similarities in 

color ranges and texture. In light of these limitations, more sophisticated methods capable of 

identifying the complex patterns in an image are required to achieve higher land cover 

classification accuracy. The recent advances in image analysis using deep neural networks have 

proven to be highly effective in analyzing more complex image patterns. Deep learning is a 

subfield of machine learning, which typically uses an architecture with a significantly larger 

number of layers stacked together to identify complex patterns (Voulodimos et al., 2018). Deep 

neural networks (DNN) are designed to continually analyze input data and learn to represent 

multiple levels of abstraction through generating weights and featured maps by using pattern 

recognition algorithms (Lecun et al., 2015). Semantic segmentation, also known as pixel-wise 

segmentation has been remarkable in classifying and objects in images in a class-enclosed 

region. The main purpose of this method is to make a dense prediction and assign a categorical 

label to every input pixel of an image. This technology has become very popular in the fields of 
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medicine (Litjens et al., 2017), natural language processing (Lecun et al., 2015), and computer 

vision (Voulodimos et al., 2018). This task is closely related to the semantic segmentation 

problem and it is one of the popular methods which is widely used in robots, robot-assisted 

surgery, and intelligent military system (Wang et al., 2018). 

In this study, we hypothesize that semantic segmentation using a DNN network will be 

capable of accurately classifying the crop residue, live vegetation, and bare soil components 

obtained from images of agricultural fields. 
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2. Methodology and Experimental Design 

 

 2.2 Method description 

 

The proposed method for classifying live vegetation, crop residue, and bare soil consists 

of using a deep learning convolutional neural network (CNN). Convolutional layers serve as 

feature extraction tools by applying a filter to the input image that generates a feature map 

(Figure 1). 

 

 

Figure 1. An illustration of the classification process of the DNNs network. The DNN model 

predicts the probabilities based on patterns learned through the training process of DNN models 

which includes self-feature extraction and classification. The model includes neurons (blue 

circles in the middle network) that activate based on certain patterns and assign probabilities that 

will help in making the decision. The neuron network will activate based on the weights stored 

during the training process.  

Certain steps were followed in the study in required training the model as its mentions as 

follows. 
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Figure 2. Flow chart of process steps in the experiment. Process steps include data collection, 

image processing, data labeling, development, training, and evaluation of the model, and web 

implementation.  

 

As mentioned in Figure 2, the experiment starts with collecting input data for the model. 

Next, the labels of the images are designed and generated via MATLAB. Then the images were 

divided into two sets, train and test datasets. Once all the images are prepared the proposed 

semantic segmentation model was trained with the image data set and also evaluated. 

Semantic segmentation classification algorithms were used in identifying intrinsic 

patterns to classify the soil cover based on a defined category set. Our goal in this method is to 

use an RGB color image (512 x 512 x 3) to create a pixel-wise probability segmentation map for 

each class label. Popular DNN architectures for semantic segmentation include U-net 

(Ronneberger et al., 2015), DeconvNet (Ronneberger et al., 2015), and SegNet (Badrinarayanan 

et al., 2017), which showed promise in the field of computer vision. In this study, we are 

exploring SegNet structure, a design that carries indices from max-pooling layers from the 

encoder to the decoder. A disadvantage of a U-Net is that it carries the full-featured map to the 

decoder, requiring heaving amounts of memory consumption. Similarly, a DeconvNet uses a 
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fully connected layer which makes it larger to train. Therefore we favored the use of a SegNet 

structure which requires fewer parameters than the other structures. 

 

 2.1.1 SegNet Architecture 

The Seg (semantic segmentation) Net (Network) architecture is an encoder-decoder based 

architecture proposed by (Badrinarayanan et al., 2017) in the year 2015. The encoder layer 

includes 5 encoders and consists of 13 layer of convolutional layers included in the VGG16 

network (Simonyan & Zisserman, 2015). Each encoder produces a featured map with the help 

convolutional layer which applies dot product by sliding a filter sized patch across the two-

dimensional image. The encoder also includes a convolutional layer followed by a batch 

normalization layer (Li et al., 2019) and a rectified linear unit layer (RELU) (Zhong et al., 2019). 

The pooling layers which follow help to create a spatial resolution of the maps. The architecture 

discards the fully connected layers and only retains high-resolution feature maps in the decoder 

outputs, which can reduce the number of trainable parameters significantly. 
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Figure 3. An illustration of proposed SegNet architecture. SegNet, an encoder-decoder 

architecture using pooling indices to carry the full feature map throughout the model. The 

structure does not include any fully connected layers due to convolutional behavior. The decoder 

retrieves pooling indices from the encoder and produces the feature maps. (Badrinarayanan et al., 

2017). 

 

The key component of the SegNet is that each encoder corresponds to a decoder in the 

hierarchical order. As mentioned in Figure 4, each upsampling layer in the decoder receives 

pooling indices from the corresponding encoder concatenate with the non-leaner upsample on the 

feature maps. 
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Figure 4. An illustration of the process of the SegNet structure. a, b, c, d are values that are 

carried through feature maps. The SegNet uses max pooling indices to upsample the feature 

maps (Badrinarayanan et al., 2017). 

 

 2.2 Dataset 

 

The dataset of images for this study consisted of downward-facing digital images 

obtained from agricultural fields containing soil, stubble, and green vegetation. Images were 

collected at several Kansas State University Experiment Research Stations. Images were taken 

with a combination of mobile devices and point-and-shoot cameras about 1.5 meters above the 

ground. Before labeling, images were downsized to 512 x 512 pixels. The dataset contained a 

total of 3972 images that were manually aggregated based on the predominant classes in each 

image Table 1 
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Table 1. Soil cover is identified as three key attributes of soil, stubble, and Plant. This table 

indicates the distribution of the images. 

Category Number of images 

Soil 212 

Stubble 262 

Soil and stubble 461 

Soil and plant 410 

Stubble and plant 112 

Soil, stubble, and plant 1846 

Total 3300 

 

The labeling process was carried in two steps, an automated step and a manual step. The 

automated labeling step consisted of first classifying green vegetation using the existing 

algorithm in Canopeo (Patrignani & Ochsner, 2015). After classifying green pixels, bare soil and 

crop residue were classified using Otsu’s thresholding technique (Jun & Jinglu, 2008). This 

classification sequence provided a first-order approximation to the three classes present in the 

images. In the classifying process, Canopeo was successful in identifying the green canopy in 

images1. The rest of the pixels of the image was then classified using the OTSU method, which 

has the slight ability to distinguish between stubble and soil based on thresholds. 

 

                                                 

1 The canopeo algorithm uses extracted RGB layer information and calculate the color ratios of red to green (R/G) 

and blue to green (B/G) and an excess green index-ExG (2G–R–B)  

ExG = 2*G - R – B ,  RG = R/G   , BG = B/G 

plant = RG < 0.95 & BG < 0.95 & ExG > 20 



11 

 

Figure 5. Residue, stubble, and plant classification using a combination of Canopeo and Otsu’s 

method. A) Original image. B) Classified image with lower threshold sensitivity (0.35). C) 

Canopeo and Otsu classified image with a higher threshold sensitivity (0.65). The images are 

classified as soil (brown), residue (yellow), and plant (green). 

 

As seen in Figure 5, the Otsu method continuously needed supervision and adjustment of 

threshold sensitivity in the labeling process. In the scenario, the Otsu method had a higher 

chance of identifying the stubble and soil in the ground and a higher threshold misclassify most 

of the soil classes as residue. Due to this behavior, after the images were auto-labeled, the labels 

in each image were inspected by a trained operator, and changes in pixel labels were manually 

revised. The entire labeling process was conducted using the MATLAB Image Labeler 

application (Mathworks, Inc., Natick, MA). Pixels in the image was be categorized into classes 

of stubble, live green vegetation, and bare soil. The labeled image set contains 3300 images and 

645 test images possessing a resolution of 512 x 512 per a labeled image. 
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Table 2. Pixel count per class label across the entire dataset.   

Data set Soil Plant Stubble None 

Train set 381258802 239173488 244491360 151550 

Test set 75812418 39904756 53095226 8336 

 

After investigating the class category ‘none’ we conclude that best fit pixels represented 

by this class can be reassigned as soil class. During the processing stage in the training process of 

the model deep learning model, we re-assigned the ‘none’ pixels to class soil. 
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 2.3 Experimental Setup 

SegNet architecture consists of 4 encoders and corresponded decoders with the same 

architecture as the experimental architecture and the filter sizes for the convolutional layers were 

varied throughout the model in contrast to the recommended constant filter size of 64 in the 

original SegNet structure.  

Table 3. Information for each layer of the SegNet architecture used in this study. The encoder is 

a combination of a convolutional layer, batch normalization layer, and Relu layer, and the 

decoder consists of upsampling layers.  

Set Type # Filter Layer/Padding Input size Output size 

Encoder 1 Conv+BN Relu 64 M,2 512 x512 x3 512 x 512 x 64 

Encoder 2 Conv+BN+Relu 128 M,2 512 x 512 x 64 256 x 256 x128 

Encoder 3 Conv+BN+Relu 256 M,2 256 x 256 x128 128 x 128 x 256 

Encoder 4 Conv+BN+Relu 256 M,2 128 x 128 x 256 64 x 64 x 256 

Encoder 5 Conv+BN+Relu 512 M,2 64 x 64 x 256 32 x 32 x 512 

Decoder 5 Deconv 256 U,2 32 x 32 x 512 64 x 64 x 256 

Decoder 4 Deconv 256 U,2 64 x 64 x 256 128 x 128 x 256 

Decoder 3 Deconv 64 U,2 128 x 128 x 256 256 x 256 x 64 

Decoder 2 Deconv 32 U,2 256 x 256 x 64 512 x 512 x 3 

Decoder 1  softmax   512 x 512 x 3 

M stands for max-pooling U stands for upsampling (Mittal et al., 2018) 

 

The training of the DNN model was conducted with the Python 3.7.9 version on an 

Anaconda 4.9.2 virtual environment. Keras, a high-level deep learning module offered by 

TensorFlow version 2.3 was utilized in the training process of the model. Moreover, Sklearn, 

Numpy, Pandas, Matplotlib libraries were utilized in supporting other functions. Pre-trained 

SegNet model architecture was tuned using hyperparameters in the project. The experiment was 

conducted in a desktop computer equipped with a 3.8 GHz Ryzen 9 3900x 12-core processor and 

a single GeForce RTX 2080 (NVIDIA, Santa Clara, CA) graphics processing unit (GPU). To speed 

up the training of the SegNet, the image data processing was conducted using 32-bit single-

precision floating-point format. 



14 

 

 2.3.3. Tuning hyperparameters 

Table 4. The hyperparameter training. For the process of training, hyperparameters were tested 

under the key main feature of Learning rates, optimizers, batch size, and dropout. The table 

demonstrates the relative experiment.   

Parameter Variations 

Learning rates 0.1, 0.01 

Optimizers RMS prop, Adam 

Batch size 1, 4 

Dropouts 20%, 40%. 

Epochs 1000, 3000 

 

In model training, gradient descent optimization  (Zhong et al., 2019)  was used to 

minimize the cost function as far as possible. Categorical cross-entropy (CE), a softmax 

activation algorithm was utilized to identify the divergence between class probability in the 

distributions (Janocha & Czarnecki, 2017). Then the softmax function squashes a multi-

classification vector generated by CE into a value between 0 to 1 creating a probability spread 

for each class which ultimately adds up to 1 for each pixel. The probabilities of classes can be 

identified as one-of-many classification which depicts that each sample pixel in the sample set 

should belong to one category at all times. 

Fine-tuning of the hyperparameters was conducted before the training model. This 

process improves the accuracy and efficiency of the model. As mentioned in Table 4, well-

known optimizers for semantic segmentation, Root Means Square Propagation (RMSProp) and 

Adaptive Moment Optimization (Adam)  were used (setiawan et al., 2018) for this experiment. 

Then, we devised a short experiment including a small range of settings and optimizers. The 

baseline experiment was designed as follows. 
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• Size of the images used: 512 x 512 pixels 

• Number of the channel in the image: 3 

• Networks optimizers: RMS prop 

• Learning rate for the optimizer: 0.01   

• The dropout rate in the classifier network: 0.4 

• Number of epochs for classifier training: 200 

Once the hyperparameters were analyzed, we started training the best-performing model 

with the input image data for multiple iterations (epochs). 

 

 2.4. Evaluation 

Evaluation for the best performing model was conducted by analyzing the confusion 

matrix and overall accuracy over the test data set. The confusion matrix describes how well the 

classifier predicts each class for each pixel.  With help of the confusion matrix, we analyzed the 

factors of precision, recall, and F1-score as mentioned in the following equations. 

 

 
𝐹1 =  2 ∗   

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(1) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2) 

 
𝑅𝑒𝑐𝑎𝑙𝑙      =    

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3) 

 

Where F-1 score, Precision, and recall are formulas calculated from the confusion matrix. 

TP stands for true positive, FP stands for false positive, TN stands for true negative, and FN 

stands for false negative. According to eq. 2, Precision specifies the fact that of being accurate 
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and eq.3 Recall stands for whether the actual positive was identified through the classification 

process. 

Accuracy of confusion matrix proves to be a better indicator of the model strength in 

identifying the distributions of the classes. (Mittal et al., 2018) .We used the F1 score as a 

weighted average on precision and recall to evaluate the model accuracy.  F1 score illustrates the 

balance between Precision and Recall. 
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3. Results and Discussion  

First, the hyperparameters were tuned based on the baseline experiment to fine-tune the 

model. The experiment was conducted under a constant seed value in Tensorflow to make stable 

output for every training. 

 

Figure 6. Optimizer variation results in loss vs Epochs. Adam optimizer (A) and RMS prop (B) 

were used and both optimizers managed to converge as expected, but the RMS prop converged 

slightly earlier and produce less loss than Adam. 

 

Gradient descent optimization algorithms are proven to be significant in multiclass 

classifications for the baseline experiment and the core algorithm which helps the neural network 

minimize the loss. Figure 6 depicts that both optimizers demonstrated promising results during 

the training process. RMS prop optimizer converged slightly earlier than the Adam optimizer to 

achieving similar losses during the training process. Then the batch size was adjusted to 

experiment with the loss fluctuation that occurred in training. 
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Figure 7. Batch size variations result in loss vs epochs. The training results of the batch sizes for 

batch sizes 1 and 4. The batch size refers to the number of samples that the model work through 

before it updates the model parameters in each training session.  

 

Unexpectedly, according to Figure 7, a lower batch size of size as 1 image which training 

performance was not significant enough to be considered for an output. We assume that this may 

result in higher fluctuations in losses encountered in the training process. Due to hardware 

constraints, we had to reduce to 4 images per batch. Furthermore, we apply dropout 

regularization methods to avoid overfitting in the training process. More training was needed to 

increase the accuracy of the model and the process of which the model starting mimicking the 

output rather than predicting the output 
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Figure 8. Dropout variations on loss vs epochs. Results from changing dropout relative value of 

0.2 vs 0.4. Both curves behave similarly and 0.4 dropout shows less fluctuation.  

 

Figure 8 states that the loss function validation loss curve and the training loss curve 

initially converged on 200 epochs. 0.4% dropouts were giving slight variation in the loss. After 

implementing the dropout we continuously increased the number of epochs to achieve higher 

accuracy without overfitting.  Figure 9 shows the model behavior training under higher epochs. 

The accuracy slightly improved with time. 

 

 

Figure 9. Variants on epochs. Training results for variation epochs values. The training slight 

improvement of the test accuracy but overall can be neglected.  
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After fine-tuning the hyperparameters, the tuned model was trained and evaluated model 

performance with the 644 of the test images. Results were gathered based on the variations of 

epochs. 

 

Table 5. Training results after training the model based on the SegNet model. 

Training epoch Validation loss Training loss Test accuracy 

200 0.3396 

 

0.3501 

 

0.8424 

 

1000 0.3127 

 

0.2816 

 

0.839 

3000 0.3003 

 

0.2447 

 

0.8461 

 

5000 0.3079 

 

0.2407 

 

0.8483 

 

 

Observations from Table 5 illustrate that there was no significant improvement for the 

stubbles’ Training loss over time. But the validation loss and overall test accuracy increase 

improved slightly. The largest evaluation matrices values were evaluated at model trained to 

3000 epochs. 

 

Table 6. Evaluation results on trained best performing SegNet model which was trained for 3000 

epochs under 0.01 learning rate. 

Label F1-score Precision Recall 

Stubble 0.77 0.86 0.69 

Soil 0.85 0.79 0.93 

Canopy 0.92 0.95 0.91 
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After training the best performing model, F1 scores were analyzed to identify the 

classification performance of each class. As evaluated in Table 6, the model was able to identify 

stubble with higher precision (0.86) than soil (0.79) but failed to have a lower recall of 0.69.  In 

contrast, soil class acquired a higher recall (0.93) than stubble (0.69).  This indicates that stubble 

carried in most of the scenarios, classify more as soil and less as stubble. Overall the green 

canopy has the highest success in classifying having the highest precision (0.95) and recall 

(0.91).  

The use of the deep learning method was then compared with the previously utilized 

image labeling techniques to evaluate the performance of the trained semantic segmentation 

model. The Canopeo and Otsu threshold techniques were highly supportive effective in labeling 

the images. The SegNet model was evaluated on the factors of precision, recall, F1-score as 

mention in Table 7. 

 

Table 7. Evaluation of the labeling algorithms Canopeo and Otsu algorithms. Initially, the 

Canopeo method classifies the green vegetation in the image. Otsu methods mainly focus on 

classifying remainder pixels into residue and soil. 

Label† F1-score Precision Recall 

Stubble 0.48 0.64 0.38 

Soil 0.74 0.65 0.86 

Canopy 0.96 0.98 0.95 

† Otsu’s methods mainly focus on classifying remainder pixels into residue and soil. Images for 

this test were labeled using the Otsu algorithm with a parameter value of 0.35, which was a 

reasonable thresholding sensitivity based on several sample images.  

 

In both techniques thresholding and deep neural network learning, the Canopeo algorithm 

was nearly successful in classify the green vegetation in the images.  The F1-score values in 

stubble (0.48) and soil (0.74) were comparatively lower than the stubbles (0.77) and soil (0.85) 
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classification in the Deep learning model. This confirms that the SegNet model performs better 

in identifying the slight pattern difference between soil and residue and the necessity of manual 

cleaning after utilizing the auto labeling algorithm. 

The trained SegNet model was then visually evaluated for model performance. Diverse 

images were considered for the evaluation process. Input images were analyzed through the 

model and output from the softmax layer was analyzed through an Argmax operation to (returns 

the index of largest predicted category) to the predicted label for the cover. 
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Figure 10. Examples of predictions from the trained SegNet, left column has the original image, 

the middle column consists of the corresponding labeled images labeled from MATLAB, and the 

rightmost column has the images consist of the prediction from the trained SegNet model, and 

classes can identify as soil (brown), stubble (blue) and canopy (green).  
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According to Figure 10, the trained SegNet model was able to identify the canopy cover 

much more accurately. In most cases, the model was able to properly classify the strong, 

significant features in stubble, but fail to perform well in classifying weaker, plain features. 

 

Figure 11. The image pair shows a scenario of misclassifications from the trained SegNet model. 

A) Original image of soil cover and the B) Predicted image from the SegNet model. The red 

circles indicate the misclassified regions.  

 

Figure 11 explains the stronger and weaker features predicted by the model. Due to this 

result, the stubble and soil carry low F1 scores. In most of the scenarios, it depicts more soil and 

less stubble. Our effort is to increase the accuracy of the quantifying stubble. The model was 

accurate in identifying the green vegetation in the test image set. Most errors occurred on the soil 

and stubble classifications.  

First, the DNN model was trained and extracted was available for the general public 

through a web application. SRPNet, the web application takes an image input through a camera 

or any other device. Then 2D images are processed according to the models' input size. The 

model then calculates the soil cover with the help of the trained model. After the training, the 

https://dishan3x.github.io/SRPNet/


25 

model was saved to Tensorflow protobuf type and then converted the model to JSON type with 

the assistance of TensorFlow.js convertors. The model was installed in an easy-to-use standalone 

web application in a combined environment of vanilla JavaScript and Tensorflow.js 3.3.0. The 

web app was then hosted as a standalone, free-to-use open-source web app in GitHub. The app 

has analyses images with the help of tensorflow.js, and WebGL, a JavaScript API that helps to 

access the GPU in the electronic equipment. 

The application utilized tidy method which frees up the memory from intermediate 

tensors which occur inside the function return a new tensor with the converted image. This 

method will help to save the browser memory without getting overloaded. 

   

    const tensorImg = await tf.tidy(() => { 

        let image_from_element = document.getElementById("uploaded_image"); 

        let tensorImg          =   

tf.browser.fromPixels(image_from_element).toFloat().expandDims(); 

        return tensorImg; 

         

    }); 

 
 

The program will expand the dimension of the image to 1x512x512x3 which fits the input of the 

model for the predictions.  

 

    prediction = await model.predict(tensorImg); 

    tf.dispose(tensorImg); 

    var results = await prediction.argMax(3).dataSync(); 

    tf.dispose(prediction); 
 

 

The prediction and image generation have time complexity O(1) or constant time per pixel. The 

prediction results are computed using an Argmax function with constant time complexity on 

each pixel. Moreover, when the image is W x H pixels, then the complexity is O(W*H) to 
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process the image. Then, the output index is converted to an RGB image in the following code 

snippet.  

    // create an offscreen canvas 

    var canvas = document.createElement("canvas"); 

    var ctx    = canvas.getContext("2d"); 

    

    // size the canvas to your desired image 

    canvas.width  = 512; 

    canvas.height = 512; 

    

    // get the imageData and pixel array from the canvas 

    var imgData = ctx.getImageData(0, 0, 512, 512); 

    var data    = imgData.data; 

   

    index   = 0; 

    counter = 0; 

    for(let y=0; y < canvas.height; y++){ 

        for(let x=0; x < canvas.width; x++){ 

            let index = (x + y * canvas.width)*4; 

         

            pixel_value = results[counter]; 

            // stubble  

            if (pixel_value == 0){ 

                data[index+0] = 255; 

                data[index+1] = 255; 

                data[index+2] = 0; 

                data[index+3] = 255; 

 

            }else if(pixel_value == 1){ 

                // soil brown 

                data[index+0] = 165; 

                data[index+1] = 42; 

                data[index+2] = 42; 

                data[index+3] = 255; 

 

            }else { 

                //live vegetation green 

                data[index+0] = 0; 

                data[index+1] = 255; 

                data[index+2] = 0; 

                data[index+3] = 255; 

 

            } 

            counter += 1;  

        } 

    } 
 

 During the prediction process, the image size did not affect the runtime, the app always 

downsamples the RGB image to 512 x 512 x 3 and then predicts probability matrix of 512 x 512 
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x 3 and the image is also always generated for this same dimension and the algorithm does not 

depend on the input image. 

 

 

 

Figure 12.  Image of the front-end user interface of the SRPNet web application. The app utilizes 

the JSON version of the trained SegNet model which takes the input as an image (left) and 

predicts the labels (right).   
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4. Future work 

 

The deep learning model can improve the accuracy by increasing the number of data in 

the dataset. We are planning to increase the quantity of the images which represent more 

scenarios of stubble and soil. This will be helpful for us to help the model to learn slight 

differences between stubble and soil and improve the accuracy of the DNN model. Furthermore, 

there will be more land covers categories introduced in classifying images. Moreover, we are 

planning to use this trained SegNet model for transfer learning to classify classes in digital 

images in other fields beyond agriculture. We are also planning to host the web application 

utilizing the model open source for users to use in their respective browsers of their choice. 
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