DRYING CHARACTERISTICS OF DISTILLERS WET GRAINS
UNDER VARYING CONDENSED DISTILLERS SOLUBLES
AND DRYING TEMPERATURE LEVELS
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ABSTRACT. Distillers dried grains with solubles (DDGS) has been shown to be an excellent livestock feed ingredient, and it
is produced by the fuel ethanol industry, which is primarily located in the Midwest United States. There is a growing need
to transport DDGS over long distances via rail, but this can often be hampered by poor flowability when unloading. DDGS
is formed by combining condensed distillers solubles (CDS) with distillers wet grain (DWG) and then drying at high
temperatures. It is hypothesized that drying conditions can affect resulting DDGS chemical, physical, and flow properties,
but there is currently little quantified information about drying behavior of these coproducts. Thus, the objective of this study
was to investigate the moisture desorption patterns of DWG for three CDS addition levels [10%, 15%, and 20% wet basis
(wb)] at three drying temperatures (100 C, 200 °C, and 300 C), to thus produce DDGS. Several mathematical models (Page,
Newton, Pilosof, Henderson-Pabis, and others) were used to fit the observed moisture data over time. A new comprehensive
model was developed for moisture ratio versus time (the best fit had R*= 0.91, SEM = 0.17) using a modified Page model
which accounted for varying CDS and temperature levels. The developed model will be useful to predict moisture content
values of DDGS for various drying times, CDS addition levels, and drying temperatures, and will thus be a benefit to industrial

processing conditions.
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he fuel ethanol industry in the United States has

experienced rapid growth recently. Researchers

and commodity brokers have determined that if

fuel ethanol producers were not increasing their
output every year, there would have been at least a 15%
increase in oil and gasoline prices. That would put oil at more
than $115 a barrel, instead of the average price of $102
(Barta, 2008). Distillers dried grain with solubles (DDGS) is
one of the main coproducts from the corn-based fuel ethanol
industry and is obtained mainly from dry milling production
plants. DDGS typically contains 86% to 93% (db) dry matter,
26% to 34% (db) crude protein, 3% to 13% (db) fat, and
important amino acids like methionine, leucine, arginine,
and threonine (Speihs et al., 2002; Rosentrater and
Muthukumarappan, 2006). Due to relatively high protein and
energy levels, DDGS is used as livestock feed for both
ruminant and non-ruminant animals (Kleinschmit et al.,
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2006; Kleinschmit et al., 2007; Mjoun et al., 2007; Mpapho
et al., 2007; Bharathan et al., 2008). Besides using DDGS as
livestock feed, new uses for DDGS (e.g. as fertilizers,
aquaculture feed, and pet litter) have also been reported
Cheesbrough et al., 2008; Greenquist et al., 2009; RFA,
2010).

About 16 million metric tons of DDGS were produced in
the year 2007-2008 (AAFC Bulletin, 2006); but that rose to
nearly 30 million metric tons in 2010 (RFA, 2010). In order
to effectively utilize DDGS in domestic and international
markets, it is increasingly important to transport DDGS over
long distances and to store them (often under varying
environmental conditions) for long periods of time. But
DDGS often does not easily discharge from hoppers. Poor
flowability can significantly affect its utility as a livestock
feed. DDGS tends to form “cakes,” due to agglomeration of
particles, which block or reduce flow. “Caking” (also known
as “bridging”) is defined as the tendency of DDGS particles
to form hard agglomerated masses. Caking and bridging add
to the cost of DDGS marketing, since human power,
machinery, and time are required to break the agglomerates
and unload the affected railcars (Rock and Schwedes, 2005).
Agglomerates of DDGS are often broken by using sledge
hammers and pick axes, both of which can cause undesirable
damage to the rail cars (Bhadra et al., 2009b).

Some possible factors which may be responsible for poor
flowability include moisture content, CDS content, fat
content, ambient humidity, ambient temperature, particle
size, and shape. For example, as CDS level increases,
Ganesan et al. (2008c, 2008d) found that DDGS flowability
decreases. A significant amount of work has recently been
done on various aspects of DDGS flowability, such as: a)
inclusion of flow agents to improve flowability (Ganesan
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et al., 2008a), b) measuring physical properties of DDGS and
correlating them with Carr (1965) and Jenike (1964) shear
test properties (Ganesan et al., 2007a); c) chemical and
physical property analysis and development of a flowability
model for commercial DDGS samples from local ethanol
plants (Bhadra et al.,, 2009a; Bhadra et al., 2009b), d)
development of a predictive flowability model based on
exploratory data analysis (Ganesan et al., 2007c), e)
determination of dynamic water adsorption (Ganesan et al.,
2007b) and sorption isotherm behavior (Ganesan et al.,
2008b) of DDGS with varying soluble levels, following
Peleg (1988), Pilosof et al. (1985), and Singh and
Kulsherestha (1987).

DDGS is produced at dry grind fuel ethanol plants by
mixing  distillers wet grains (DWG) (containing
non-fermentable materials, and is produced by centrifuging
water from the whole stillage after fermentation), with
condensed distillers solubles (often referred to as CDS or
“syrup,” which is produced by evaporating the thin stillage
from centrifugation). After mixing the wet grains and CDS,
the mixed fraction is then subjected to drying, often with
drying temperatures of 1000°F (air inlet) and 300°F (air
outlet) or more. Drying operations are an integral part of
DDGS production, and they affect the final quality and nature
of the DDGS produced. They can also affect the flowability
of the DDGS. Many technological improvements and
changes have been made in the fermentation and distillation
steps of ethanol processing over the years, and these changes
have increased the efficiency of energy use for ethanol
production. However, little attention has been given to issues
related to consistency and quality, especially in terms of CDS
addition rates and drying conditions. These will affect the
resulting physical, chemical, and flowability properties, and
ultimately the overall market opportunities for DDGS.
Unfortunately, there is no indication of prior research done
regarding experimental studies or mathematical modeling of
moisture desorption, quantification of drying rate, or
moisture diffusion processes for DDGS.

Biological materials, especially grains and foods, have
been extensively modeled for drying characteristics. Drying
of food and biological materials is an extremely important
process, since it has a great effect on end product quality,
preservation, and storage (Kingsly and Singh, 2007). Drying
kinetics are complex phenomena and require dependable
models to predict drying behavior (Sharma et al., 2003). And
it is important to have accurate models to simulate drying
curves under different drying conditions (Simal et al., 2005).
Drying modeling refers to developing abstract mathematical
models that can express the relationship between average
moisture content and drying time (Pabis et al., 1998). Most
research work in this area has focused on thin layer drying,
which assumes that the material layer is thin enough or the air
velocity is high enough so that the conditions of the drying
air (humidity and temperature) are constant throughout the
material (Menges and Ertekin, 2006).

Much research has been pursued over the years to develop
drying models. For example, researchers have reported
mathematical relationships among moisture, drying time,
and drying air temperature for pomegranate arils (Kingsly
and Singh, 2007), tomato seeds (Sogi et al., 2003), amaranth
seeds (Mendoza et al., 2003), apricots (Menges and Ertekin,
2006), wheat grains (Goneli et al., 2007), and mushrooms,
pollen, and pistachios (Midilli et al., 2002).
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Clearly, there has been much modeling accomplished on
the drying behavior of various biological and food materials,
but as yet, there has not been a single study regarding drying
characteristics or moisture desorption of DWG. Because
drying is a key process in the production of DDGS, and drying
conditions affect the resulting chemical, physical, and flow
properties of DDGS particles, our main objective was to
develop comprehensive mathematical desorption models for
DWG, and to fit experimental data on these models, which
can explain desorption patterns for various CDS addition and
drying temperature levels. Mathematical models can provide
essential information on the behavior of DDGS under
varying operating conditions, and are thus beneficial for
facility designers and operators, and can be used to improve
handling of DDGS and increase its overall marketability.

MATERIALS AND METHODS
CoPRODUCT COLLECTION AND SAMPLE PREPARATION
Samples of distillers wet grains (DWG) and condensed
distillers solubles (CDS) were collected from a commercial
fuel ethanol plant in South Dakota, and they were stored
frozen (-10°C % 1°C), until experimentation began. For each
CDS/DWG combination, CDS was added to DWG at levels
of 10%, 15%, and 20% as-is basis [i.e., wet basis (wb)] and
then blended thoroughly in a laboratory mixer (AUTOMIX
Model no. D300, Hobart Corporation, Troy, Ohio) for 5 min.
Each of the CDS/DWG combinations was replicated eight
times, yielding 24 (3 X 8) samples, each of which were then
subjected to three drying temperatures (thus n=72 total runs
in the study), using a full factorial experimental design
(table 1). The mixed DWG/CDS samples were placed in
plastic bags and stored (-10°C) to prevent microbial spoilage
of the samples.

DRYING EXPERIMENTS

Approximately 10 g of each of the CDS/DWG replicates
were spread uniformly onto a thin steel plate (which had a
diameter of 66.6 mm, height of plate edge of 6.66 mm, plate
thickness of 0.60 mm, and a total surface area of 0.0034 m?).
Samples were dried in a laboratory-scale (model no. 838F,
Fisher Scientific, Pittsburg, Pa.) oven. Drying was done at
one of three temperatures (100°C, 200°C, 300°C) for all
samples. These temperatures were based on interviews and
discussions with various industry experts (data not

Table 1. Experimental design used for the study.!?]

Drying Temperature Condensed Distillers
(&) Solubles (CDS) (%, wb)
100 10

15
20
200 10
15
20
300 10
15
20

Treatment

—_

O 00 NN N AW N

[a] Each treatment was replicated eight times, thus n = 72 total trials in
the study.
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published). A balance was placed on top of the oven and
attached to the sample (using a thin wire cable) to measure
changes in sample mass over time (due to drying), as
illustrated in figure 1. This dynamic process was used to
minimize heat loss and maintain the accuracy of the drying
data. For 100°C and 200°C drying temperatures, the
experiment was stopped when sample mass values were
constant for at least 6 min. For 300°C, however, the mass was
recorded every 1 min, due to faster drying rates at this
elevated temperature. After all data was collected, moisture
loss rates were calculated as dx/dt (change in mass/change in
time) in % (db); time was reported in min.

MATHEMATICAL MODELING OF DRYING CURVES

Modeling of drying data was accomplished in two
sequential steps. For the moisture content versus time
modeling of DWG desorption characteristics, we used
moisture content values directly over time and examined the
performance of several empirical equations in order to
develop an overall global model for moisture content (% db)
versus time (min) (table 2) and included terms for CDS and
temperature levels. For the moisture ratio versus time
modeling, we converted the moisture content (% db) values
into a dimensionless quantity, known as moisture ratio, and
examined moisture ratio (-) versus time (min) models, which
also included terms for CDS and temperature levels. Details
of the equations used are given in table 3 and 4. Moisture ratio
(MR) is defined as (X-X¢)/(Xo-Xc), where X is the
equilibrium moisture content (% db), X, is the initial
moisture content (% db), and X is the moisture content (% db)
at a particular time. In this stage of modeling, we first used
a logarithmic model form, as drying of biological materials
is generally a diffusion-controlled process and often may be
represented by Fick’s law (Sogi et al., 2003). The simplified
solution to Fick’s law, also known as the logarithmic, or
Newton, model is given as:

MR = (X-X)/(Xo-Xe) = exp(-k) (1)

where MR is the moisture ratio (-), X is the moisture content
(% db), X is the equilibrium moisture content (% db), X, is
the initial moisture content (% db), k is the drying rate
constant (time™1), and t is the drying time (min). In this stage
of modeling, we also used Page’s model, because Page’s
model has been widely used to describe drying behavior of
variety of biological materials and can often yield better
results than the logarithmic model (Tan et al., 2001; Sogi

| Balance

Sample Cup

Laboratory Oven

Figure 1. Schematic of experimental set up used to measure sample mass
over time.
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et al., 2003; Menges and Ertekin, 2006). The Page model is
expressed mathematically as:

MR = (X-X,) / (Xo-Xe) = exp(-kt)" @

where MR is the dimensionless parameter moisture ratio (-),
k is the drying rate constant (time1), t is the time (min), n is
the experimental constant to be determined statistically.
We also modified the basic Page model (eq. 2) so that it
could encompass the varying CDS and drying temperature
levels. Incorporation of CDS and temperature level terms
would lead to a unique model that would help predict the
desorption behavior of DWG under various operating
conditions. Other common models examined for the
moisture ratio versus time data for our samples are given in
table 3.
The main assumptions for our modeling efforts included:
constant air flow rate inside the laboratory oven,
constant humidity during experiments,
thin layer drying was achieved, and
the samples achieved thermal equilibrium with the oven.

STATISTICAL ANALYSIS

Parameter estimates for the above models were
determined using non-linear regression with the PROC NLIN
procedure of SAS v9.1 (SAS, 2002), using the Gauss-Newton
method to resolve the models and predict parameter
estimates (Seber and Wild, 1989). The standard error of the
mean (SEM) between the predicted moisture content (or
moisture ratio) and drying rate data is given as:

SEM - | S0 =¥’ 3)
DF

where Y; and ?z are the experimentally observed and
predicted moisture contents (or moisture ratios),
respectively, and DF is the degree of freedom (number of data
points minus the number of coefficients in the model). PROC
NLIN directly provides the F-statistic (F-value) and R2
(coefficient of determination) values, which are calculated
from the model sum of squares, error sum of squares, and
total sum of squares. The suitability of each model was
determined by comparing the SEM, F-statistic, R2, and
parameter estimate values. An extensive search on previous
drying work reveals that these parameters were most often
used to determine the validity of the models (Sogi et al., 2003;
Doymaz, 2005; Menges and Ertekin, 2006; Ganesan et al.,
2007b; Ganesan et al., 2007c; Kingsly and Singh, 2007).
Some researchers have also calculated the chi-square test,
RZ - adjusted values, percentage of variance, residual plots,
and other various statistical tests to evaluate resulting models
(Simal et al., 2005; Menges and Ertekin, 2006; Ganesan et al.,
2007c¢). In this study, a model was considered “good” if it
yielded higher R2 and F-statistic values, relatively smaller
SEM values, reasonable parameter estimate values, and most
importantly, it yielded a good fit between model-predicted
and experimental data.

RESULTS AND DISCUSSION
Moi1STURE CONTENT VS. TIME MODELING

Table 2 shows all the models we explored to fit our data
using moisture content (% db) as the response variable. As
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Table 2. Summary of nonlinear regression output for moisture content vs. time modeling for varying CDS and temperature levels.?]

Parameter Estimates Model Performance

No. Regression Equation A B C D E Model SS Error SS Total SS RZ  F-statistic SEM
1 X=Xo*exp(-A*T"C*t)*exp(CDS"D*B) 6.31E-06  0.00109 1.61 1.81 20335506.00  399710.00 20735216.00 0.98 14804.80 58.88
2 X=Xo*exp(-A*T*t)*exp(CDS"B) 0.00039 -1.081 19412273.00  1322944.00 20735217.00 0.94  8554.68 65.50
3 X=Xo*exp(-A*T*t*CDS) 0.000025 18855783.00  1879434.00 20735217.00 0.91 11708.20 68.56
4 X=Xo*(C*CDS)/(A+(B*t*T) 0.467  -7.85E+72 0.03 3414839.00 17320378.00 20735217.00 0.16 230.20 121.89
5 X=(Xo-t/(A+(B*t)))*exp(-D/T)*((CDS*E)+C) 0.0473  0.00476 0.4624 -97.8022  0.00462 18782495.00  1952721.00 20735216.00 0.91  2237.29 230.90
6 X=Xo*exp((-A*T*t)*(B*CDS)/(C*CDS) 0.000432  0.3912 0.03 19418034.00  1317183.00 20735217.00 0.94  8594.64 179.00
7 X=(Xo-t/(A+(B*t)))*exp(-D*T)*((CDS*E)+C) 0.0468  0.00472 1.7317 0.00357  0.0176 18742553.00  1992663.00 20735216.00 0.90  2187.78 236.50
8  X=(Xo-t/(A+(B*t)))*exp(-D/T"*2)*((CDS*E)+C) 0.0471  0.00479 0.6104 -6999.8  0.00607 18761433.00  1973784.00 20735217.00 0.90  2210.94 229.50
9 X=(Xo-t/(A+(B*t)))*exp(-D/T"*2)*((CDS/E)+C) 0.0471  0.00479 0.6104 -6999.8 164.8 18761433.00  1973784.00 20735217.00 0.90  2210.94 275.36
10 X=(Xo-t/(A+(B*1)))*exp(vD/T*2)*((E/(CDS"2))+C)  0.0469 0.0048 0.202 -7005.9 0.5 18738047.00  1997170.00 20735217.00 0.90  2730.25 173.75
11 X=Xo*(C*CDS)/(A+(B*t"2*T)) 4.6703  5.15E+38 0.3 3414839.00 17320378.00 20735217.00 0.16 230.08 122.05
12 X=Xo*(C*CDS)/(A+(B*t*T"2)) 4.6703  5.15E+38 0.3 3414839.00 17320378.00 20735217.00 0.16 230.08 122.05
13 X=Xo*exp(-A*T*t)*exp(CDS*B) 0.000403  5.75E-03 19468340.00  1266877.00 20735217.00 0.94  8959.35 65.00
14 X=Xo*exp(-A*T*t)*exp(B/CDS) 0.000386  7.19E-01 19415403.00  1319813.00 20735216.00 0.94  8576.35 265.15
15 X=Xo*exp(-A*T*t)*exp(B/CDS"2) 0.000398  3.15E-04 19471949.00  1263267.00 20735216.00 0.94  8986.34 246.12
16 X=A+B*T+C*CDS+D*exp(-E*t) 115 -0.6591 0.8523 239.8 0.53 4959770.00  1060609.00  6020379.00 0.82  1366.66 30.12
17  X=A+B*t+ C*CDS+D*exp(-T) 42139  -0.0534 0.0116  4.583E+43 851.00 1004.70 1855.70 0.46 330.33 178.89
18  X=A+(t*CDS*B) C*exp(-T) 4.2735  -0.00281 4.174E+43 720.90 1134.80 1855.70 0.39 371.98 480.63
19 X=A+B*exp(-C*CDS)+D*t+E*T 288.6 478064456 4808606 -4.0782  -0.6071 3615403.00 2404976.00  6020379.00 0.60 880.18 56.69
20 X=A+B*exp(-C*CDS)+D*t+E*T 288.6 478064456 4808606 -4.0782  -0.6071 3615403.00 2404976.00  6020379.00 0.60 880.18 68.96
21  X=A+ B*exp(-C*CDS)+D*(t+T) 183.1 31060814 3125879 -0.3617 851937.00 5168442.00 6020379.00 0.14 193.19 562.39
23 X=A+ B*exp(-C*(CDS+t))+D*T 1524 -49E+34 5.189E+30  -0.2243 387004.00 5633375.00  6020379.00 0.06 80.51 11968.89
25 X=A+ B*exp-(C*(CDS*T))+D*t 152.1 1 1 -2.4041 1513760.00  4506619.00  6020379.00 0.25 393.67 89.63
26 X=A+ B*exp(-C*(t*T))+D*CDS 91.0209 1.21E+02 1 0.9281 992933.00  5027446.00  6020379.00 0.16 115.64 789.56
27 X=A+ B*exp(-C*(t*CDS))+C*T 134.3 218.1 0.00604 -0.6103 4456696.00  1563683.00  6020379.00 0.74  1111.55 36.56
28 X=A+ B*exp(-C*(t*CDS))+D*T 1 -0.2744599  0.628583 -0.4104109 904.70 951.00 1855.70 0.49 371.00 56.23
29  X=A+ B*exp-(C*(t*T))+D*CDS 4.0521 1.2152 1 0.01 100.60 1755.10 1855.70 0.05 33.57 102.30
30  X=A+1/((B+C)*t +(T+CDS)*D) -6.3484  -0.9997 1 0.000028 3177034.00  2843345.00  6020379.00 0.53 645.21 75.89
31  InX=(A-B)- ((C*t)/(D*CDS+E*T)) 5.2709 1 8.3694 -692.2 126.6 10.78 1844.92 1855.70 0.01 3.42 4256.89
32 InX=(A-B)- ((C*CDS)/(D*t+E*T)) 5.2597 1 -25.4036  -3339.3 123342 32.83 1822.87 1855.70 0.02 10.54 1025.50
33 X=A*CDS/(1+B*exp((-C)*t)*(1/T)) 483657 569112 -1.6087 14597794.00  6214714.00 20812508.00 0.70  1376.46 1858163.95
34 X=A*CDS/(1+B*exp((-C)*t)*(1/T)) 838.8 3064.1 -0.2144 20095.60 3228.20 23323.80 0.86  3647.97 849.82
35 InX=exp(-A*CDS"B)+C*T+D*t 1843031  -801667 0.0119 0.0406 18985.00 4338.80 23323.80 0.81  2564.15 115.07
36 X=A-((t*CDS*T)/(B*t+ C*CDS)) 226.7 5.3083 12.6135 5151605.00  868774.00  6020379.00 0.86  3471.86 31.81
37  X=A-((B*CDS+C*T)*t/D*t) 145.1 -0.00503  0.00117 1 2278823.00  3741556.00  6020379.00 0.38 356.60 25.63
38 X=A-((B*CDS+C*T)*t/D) 201.1 -0.1576 0.0544 1 4920660.00  1099719.00  6020379.00 0.82  2619.80 34.33
39  X=A-(t*CDS/(B*T+ C*CDS))+ D*t 1521  9.983E+52 -5.89E+30  -2.4041 1513760.00  4506619.00  6020379.00 0.25 393.67 0.51
40  X=A-((t*CDS)/(B*t + C*CDS +D*T)) 113.7 145.7 0.886 -80.1157 100729.00  5919650.00  6020379.00 0.02 6.64 241
41  X=A-((t*CDS)/(B*t + C*CDS +D*T)) 112.09  -1.33E+08 244E+08 -8.52E+07 38841.10  5981537.90  6020379.00 0.01 7.61 5.69
42 X=A-((t*CDS)/(B*t + C*CDS +D*T)) 1112 -8.1219 15183.8 -3036.1 70740.20  5949638.80  6020379.00 0.01 6.96 6.51
43 X=A+B*T+C*CDS+D*exp((-E)*t) 115 -0.6591 0.8523 239.8 0.05 4959770.00  1060609.00  6020379.00 0.82 13366.66 30.12
44 X=A-((t*CDS)/(B*t+ C*CDS +D*T)) Did not converge

45  X=A+ B*exp((-C)*(T+t))+D*CDS Did not converge

46 X=A+1/(B*CDS+C*(T+t)) Did not converge

47  InX=A+1/(B*CDS+C*(T+ t) Did not converge

48  X=A+1/(B*CDS+C*T+D*t) Did not converge

49  X=A+B*CDS+C*T+D/(1-E*exp((-F)*t)) Did not converge

50 X=A+1/(B*T+C*CDS+D*t) Did not converge

51  X=A+1/((B+C)*T +(CDS+t)*D) Did not converge

52 X=A+1/((B+C)*CDS +(T+t)*D) Did not converge

53 InX=A+1/((B+C)*CDS +(T+t)*D) Did not converge

54 X=A+1/((B+C)*T+(t+CDS)*D) Did not converge

55  InX=A+1/((B+C)*T +(t+CDS)*D) Did not converge

56 X=(A-B)-(t/(C*CDS+D*T)) Did not converge

57 X=(A-B)-((C*t)/(D*CDS+E*T)) Did not converge

58 X=(A-B)-(CDS/(C*t+D*T)) Did not converge

59  X=(A-B)-(T/(C*CDS+D*T)) Did not converge

60  X=(A-B)-(T/(C*CDS+D*T)) Did not converge

61  InX=(A-B)-((C*T)/(C*CDS+D*T)) Did not converge

62 X=A+ B*exp(-C*(CDS+T))+D*t Did not converge

63 X=A-((t*CDS)/(B*t+ C*CDS+D*T)) Did not converge

[al X is moisture content (% db) at a given time, Xo is initial moisture content (% db), t is time (min), T is temperature (°C), CDS is level of condensed distillers
solubles (% wb), A through E are empirical parameter estimates for the model terms, SS is the sum of squares; SEM is the standard error of the mean.
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Table 3. Basic mathematical models used to examine moisture ratio vs. time data.[2]

No. Model Equation Common Name Reference

1 MR=exp(-kt) Newton Ayensu (1997)

2 MR=exp(-kt") Page Menges and Ertekin (2006)
3 MR=A*exp(-kt) Henderson and Pabis Henderson and Pabis (1961)
4 MR=A*exp(-kt) + ¢ Logarithmic Midilli et al. (2002)

5 MR=A*exp(-kt) + (1-A) *exp (-kAt) Two term exponential Sharaf-Elden et al. (1980)

6 MR=1+At+Bt2 Wang and Singh Ozdemir and Devres (1999)
7 MR=A*exp(-kt") + Bt Midilli et al. Midilli et al. (2002)

10 MR=Bt/(Bt+1) Sing-Kulshrestha Singh and Kulshrestha (1987)
11 MR=A(1-B*exp(-kt))+C Mechanistic growth Draper and Smith (1998)

12 MR=A/(1+B*exp(-kt)) Logistic growth Draper and Smith (1998)

13 MR=A*exp(-B*exp(-kt)) Gompertz model Draper and Smith (1998)

[a] MR is defined as moisture ratio (-) given as = (X-X¢)/(Xo-Xe); X is moisture content (% db) at a given time; X,, is initial moisture content (% db); X
is equilibrium moisture content (% db); t is time (min); A, B, C, k, and n are empirical parameter estimates for the model terms.

clearly shown, the standard error of the mean (SEM) values
were substantially higher than the SEM values obtained for
moisture ratio versus time modeling (table 4). This meant
that using moisture ratio actually resulted in a better fit than
did moisture content. From table 2 we can also observe that
for models 1, 2, and 43 there were relatively high F-values
(14804.80, 11708.20, and 13366.66, respectively) but they

exhibited very high SEM values (58.88, 68.56, and 30.12,
respectively), when compared to models G4 and G17 (table
4). Again from table 2, we can clearly observe that equations
39, 40, 41, and 42 showed lower values of SEM, which
indicated better fits for the experimental data, but they also
showed much lower F-values, and somewhat odd parameter
estimate values; overall they provided poor model fitting

Table 4. Summary of nonlinear regression output for moisture ratio vs. time modeling for varying CDS and temperature levels.[2]

Parameter Estimates Model Performance

No. Regression Equation Equation Name k A B C n Model SS  Error SS Total SS R2  F-statistic SEM
G1 MR=A*CDS*exp(-k*T*t) Modified Newton model 0.00 0.06 299.30 36.91 336.21 0.89 472836 0.21
G2 MR=A*CDS*exp((-k*t)/T) Modified Newton model 1 1.61 0.03 235.60 100.70  336.30 0.70 1364.50  0.29
G3 MR=exp(-k*t)/(T*CDS) Modified Newton model 2 208.60 192.40 143.80 33620 057 151612 0.52
G4 MR=exp-(k*T*t*CDS)"n Modified Page model 1 0.00148 0.02 304.60 31.67 33627 091 1122210 0.17
G5 MR=exp(-k*t)+(1-A)*exp((-k*CDS*t)/T) Modified 2 term exp model 1 0.07 16.28 262.40 73.81 336.21 0.78 2072.64 13.60
Go6 MR=1+(A*t)+((B*t*CDS)/T) Modified Wang & Singh 1 -0.05 0.18 232.30 103.90 33620 0.69 1302.80 0.30
G7 MR=1+(A*t)+((B*t"2)/(CDS*T)) Modified Wang & Singh 2 -0.04 0.63 242.80 9347 33627 0.72 151428 0.28
G8 MR=1+(A*t*CDS)+((B*t"2)/T) Modified Wang & Singh 3 0.00 0.04 195.10 141.10 33620 058 806.36  0.34
G9 MR=1+(A*t*T)+((B*t"2)/CDS) Modified Wang & Singh 4 -0.0003  0.0028 311.60 24.68 33628 0.93 7359.90 0.15
G10 MR=A*exp(-k*t)+((B*t*CDS)/T) Modified Henderson & Pabis 1 0.87 0.04 0.08 285.30 50.91 336.21 0.85 217642 0.24
G11 MR=A*exp(-k*t)+((B*t*T)/CDS) Modified Henderson & Pabis 2 0.73  -0.0019 -0.0043 296.80 3945 33625 0.88 2921.72 0.19
G12 MR=A*exp(-k*t)+(B*t*T*CDS) Modified Henderson & Pabis 3 0.72 0.00  -0.0048 295.00 4127 33627 0.88 277521 0.19
G13 MR=exp(-(k)*t)+A*t/CDS+B*t/T Modified Henderson & Pabis 4 0.08 -0.12 1.33 291.50 4820  339.70 0.85 222028 0.21
G14 MR=exp((-k)*t"T)+ A*t/CDS Modified Henderson & Pabis 5 0.21 0.14 137.20 202.50  339.70 040 38830 1.24
G15 MR=exp((-K)*t+ A*t*T/CDS Modified Henderson & Pabis 6 0.06 0.00 264.40 7530  339.70 0.82 264847 0.24
G16 MR=exp((-K)*t)+A*t/(CDS+T) Modified Henderson & Pabis 7 0.09 0.54 286.30 5340  339.70 0.84 3005.78 0.22
G17 MR=exp((-k)*t)+A*t/CDS+B*T*t Modified Henderson & Pabis 8 -0.01 -0.02 0.00 316.20 2350  339.70 0.94 5791.11 0.14
G18 MR=exp((-k)*t)+ A*t/CDS +B*T"t Modified Henderson & Pabis 9 Did not converge

G19 MR=exp((-k)*t)+ A*t/CDS +B*t/T +C Modified Henderson & Pabis 10 0.05 -0.13 1.80 -0.22 55.73 4313 98.86 0.56 504.44 124
G20 MR=exp((-k)*t"T)+ A*t/CDS+ B Modified Henderson & Pabis 11 1.12 -0.14 0.20 6.74 86.87 93.61 0.07 4439 2.56
G21 MR=exp((-k)*t)+ A*t*T/CDS +B Modified Henderson & Pabis 12 0.37 -0.45 0.74 34.97 63.90 98.86 0.35 320.67 0.89
G22 MR=exp((-k)*t)+ A*t/(CDS+T)+B Modified Henderson & Pabis 13 0.06 1.81 -0.99 49.85 289.85 33970 0.50 595.99 98.86
G23 MR=exp((-k)*t)+ A*t/CDS +B*T"t +C Modified Henderson & Pabis 14 Did not converge

G24 MR=exp((-k)*t)+A*t/CDS+B*/(T+C) Modified Henderson & Pabis 15 0.07 -0.08  -0.19 -144.60 296.90 4280  339.70 0.87 2033.01 0.23
G26 MR=exp((-k)*t"T)+ A*t/(B+CDS) Modified Henderson & Pabis 16 1.21 4.57  409.20 142.00 19770  339.70 0.42 274.00  6.90
G27 MR=exp((-k)*t)+ A*t*T/(B+CDS) Modified Henderson & Pabis 17 1.00 0.07 -0.05 316.00 2370  339.70 0.93 5209.85 14.05
G28 MR=exp((-k)*t)+A*t/(CDS+T+B) Modified Henderson & Pabis 18 0.09 0.10  -95.22 289.70 50.00  339.70 0.85 2111.57 0.24
G29 MR=exp((-k)*t)+A*t/CDS+(B*T*t)/C Modified Henderson & Pabis 19 -0.01 -0.02 0.00 1.00 316.20 2350  339.70 0.94 5791.11 0.29

(2] For base models refer to table 2; MR is moisture ratio (-) given as = (X-X¢)/(Xo-X), t is time (min) X is moisture content (% db) at a given time;

X, is initial moisture content (% db); X, is equilibrium moisture content (% db); T is temperature (°C); CDS is level of condensed distillers solubles
(% wb); k, A, B, C, k, and n are empirical parameter estimates for the model terms; SEM is the standard error of the mean; SS is the sum of squares;
model G4 (in bold) represents the final selected overall model for MR = £ (T, CDS).
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results. From table 2, we can also observe that out of
63 possible equations examined, 19 of the equations did not
converge, and thus were rejected for model selection
purposes.

The initial moisture contents of the samples were
approximately 250% (db) for all CDS/temperature level
combinations. This was similar to the initial values for thin
layer drying experiments by Kingsly and Singh (2007). Most
of the methods of parameter estimation (such as least squares,
maximum-likelihood, and robust estimation) use an

A
estimate, 6, and minimize the function h(0) iteratively, so

that the sequence converges to our estimated value of 6. In
our case, we used the Gauss-Newton method to approximate
h(0), and minimization was done by a quadratic function,
which was due to the fact that the underlying principle used
in the Newton method works best for functions which are
quadratic (Seber and Wild, 1989). Other methods are also
available for non-linear modeling besides the Gauss-Newton
method, and convergence criteria can be achieved by
changing initialization parameters, maximum likelihood
estimation, etc.; we did not try these other methods, however.

One reason that the moisture content versus time models
did not work well for the DWG in this study was because the
modeling of desorption characteristics is based on the
mathematical principles of thin layer drying, which is the
most popular form of modeling and simulation of agricultural
materials. In thin layer drying models, the rate of change in
material moisture content during the falling rate drying
period is proportional to the instantaneous difference
between material moisture content and the expected material
moisture content when it reaches equilibrium with the drying
air (Menges and Ertekin, 2006). Thus, moisture ratio, which
is the relative moisture content, is actually a better response
variable than moisture content, for mathematical modeling
of thin layer drying behavior of biological samples.

From table 2, models 1, 16, 36, 38, 39, and 43 showed
relatively good R2, SEM, and F-values, and thus appeared to
be potentially viable models; however, the residual plots
(fig. 2) strongly suggest that these selected models actually
did not result in adequate models. Residuals are calculated
from the observed and predicted response variable, and are
given as:

S @

1
where e; is the calculated residual, Y; is an observed response

value, and ?z is the predicted value based on the model
equation used. Thus residuals are the quantitative amount of
error that the regression equation was not able to explain
(Draper and Smith, 1998). Residual plots are developed by
plotting residuals versus predicted response values, and they
are used to examine the adequacy of the prediction model.
Model 1 (from table 2) showed high R? value (0.98), but
from the residual plot (fig. 2) we see it gave an undesired
residual plot. First, the residuals were not distributed
uniformly and evenly along the x-axis; all the residuals
yielded negative values, indicating that the predicted values
were all significantly higher than the observed moisture
content. Again from table 2, model 16 showed an R2 value of
0.82 and SEM of 30.12. However, we deemed it inadequate,
as the residual plot (fig. 2) did not show random distribution,
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some negative values of predicted moisture content were
present, and patterns were evident. Models 36 and 38 yielded
fairly random and even distributions of residuals over the
x-axis, but some negative predicted values of moisture
content were observed, as depicted in figure 2. Thus, we also
rejected models 36 and 38, even though they had high R2
values (0.86 and 0.82, respectively). Model 39 showed a low
SEM value (0.51), which suggested a good fit, but from
figure 2 we can clearly see there was no random distribution
of the residuals; patterns in the residual plot are evident.
Similar results were obtained for model 43, even though it
produced a high F-value (13366.66) and R2 (0.82); residual
plots indicated curved bands of data points, which indicated
that a possible higher order term needed to be added to the
model equation. Thus, models 1, 16, 36, 38, 39, and 43 were
rejected, even though there was evidence of higher RZ,
F-value, and lower SEM. All other models for moisture
content as a function of time were deemed inadequate as well.

MOISTURE RATIO VS. TIME MODELING

Table 3 indicates the list of various base models that were
examined for modeling moisture ratio versus time and were
subsequently modified by incorporating CDS and
temperature levels terms. Only the logarithmic model
(table 3) failed to converge. After examining the
performance of all the models provided in table 3, it became
evident that only five of them (Newton, Page, exponential,
Wang and Singh, and Henderson and Pabis) would yield
acceptable results. Of all the models examined, G4 (table 4)
appeared to perform the best.

From table 4, we observe that model G17, based on the
Henderson and Pabis equation, showed a higher R? value
(0.94) and lower SEM value (0.14) compared to model G4,
but it was not selected as the “best model” because there were
some negative predicted values of moisture ratio for t > 20
min at 200°C, which was possibly due to the negative values
of “k” (the drying rate constant, time1) and “A.” Again, from
table 4, we can also observe that model G29 showed an R2
value of 0.94 which was higher than our selected model G4.
However, model G29 had a lower F-value (5791.11) and
higher SEM value (0.29), which indicated that it fit a little
less well than model G4. Thus, model G4 was selected as the
best equation for modeling moisture ratio vs. time, including
CDS and temperature effects.

The predicted MR values obtained using model G4 (which
was based on the Page model) exhibited good fit for the MR
values, both when it was applied to the temperature and CDS
level combinations individually, and when it was globally
applied to the entire dataset, as shown in figures 3a and 3b,
respectively. Similar results were obtained for the drying of
pomegranate arils; out of four different models examined, the
Page model worked best (with R2 of 0.99) for all
temperatures (Kingsly and Singh, 2007). However, in that
particular study they only modeled the response variable
moisture ratio as a function of time (Page’s basic model), and
did not include temperature and or other parameters. Some
work related to drying behavior of tomato seeds also revealed
that drying behavior (moisture ratio vs. time) was well
described by Page’s model (Sogi et al., 2003).

In another study (Simal et al., 2005), the Page model
explained nearly 99% of the variance in the drying of kiwi
fruits; the diffusion model provided the least exact model,
while the Page model provided the best description of
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Figure 2. Residual plots for selected moisture content (% db) vs. time models from table 1. All residual plots indicated the inadequacy of the moisture
content modeling efforts, as shown by shifts and patterns observed in the residuals.

moisture ratio over time. Similar to our findings for the
desorption behavior of DWG, the Page model was found to
work well for the thin layer drying of apricots and wheat
grains (Menges and Ertekin, 2006; Goneli et al., 2007).
Doymaz (2005) also found that Page’s model was a better
statistical fit than either the Lewis model or the Henderson
and Pabis model (Henderson and Pabis, 1961), for moisture
ratio versus time modeling of green beans.

The definition we used for MR is appropriate when there
is constant level of relative humidity in the drying air (e.g.
laboratory drying conditions) (Midilli et al., 2002).

Figure 3a presents a plot of predicted moisture ratio (MR)
values (superimposed with the actual data) using the basic
Page model (eq. 2, table 3), while figure 3b presents plots of
moisture ratio versus time using the optimal model for our
data (model G4, table 4), which also includes temperature
and CDS terms. From figure 3b, we can clearly observe that
there was a strong relationship between drying temperature
and moisture ratio; three distinct predicted moisture ratio
lines for 100°C, 200°C, and 300°C were prominently
observed. It was also evident that the time taken to reduce the
moisture content was longer for 100°C compared to 200°C,
which in turn was greater than that for 300°C. This was
anticipated a priori. However, the drying time for each

Vol. 27(5): 777-786

respective temperature level changed little amongst CDS
levels.

From figure 3b at 100°C for the 10% CDS level, we can
see that there was some over-prediction for times greater than
35 min, while there were some under predictions for the 20%
CDS levels. This was probably due to scatter in the
experimental data (i.e., experimental error). Similar patterns
were also found in figure 3a where the basic Page model was
used. Our model fitting graphs were similar to many other
drying studies (Ozdemir and Devres, 1999; Sogi et al., 2003;
Menges and Ertekin, 2006; Doymaz, 2005; Kingsly and
Singh, 2007).

From figure 4 we can see the nature of residuals for various
models. For example, using the Newton model (table 3, eq. 1)
for each drying temperature and CDS level, patterns were
observed in the residuals, which was not desirable (Draper
and Smith, 1998). Figure 4 also indicates the residual plot for
the global equation using our selected optimum model
(eq. G4, table 4) where CDS and temperature parameters
were incorporated. This was an overall comprehensive
model for moisture ratio versus time for DWG. There were
no negative predicted MR values observed in the residual
plots; however, in some cases, we could observe curved
patterns in the residual plots, which suggests that higher order
terms may be necessary for these model equations. Such
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Figure 3. (a) Plot of moisture ratio vs. time using the basic Page Model (eq. 2, table 3) for each CDS/temperature level combination (i.e., the model was
applied to each combination individually). (b) Plot of moisture ratio vs. time using Modified Page Model 1 (eq. G4, table 4), which was the best overall
comprehensive global equation that modeled all collected data, for all CDS/temperature combinations simultaneously.

shortcomings were alleviated in the global model (eq. G4,
table 4), which resulted in a random distribution of residuals,
as shown in figure 4. This strongly suggests that our goal of

developing a global model was successful.

The usefulness of this research arises from the ability to
predict required drying times which are necessary at a given
temperature and CDS addition level in order to achieve a
specified final moisture content in the DDGS. Our final
equation will, of course, need to be verified and validated on
commercial-scale drying equipment at a fuel ethanol plant.
But this study has served as a good starting point, as no one
else has examined or published this kind of drying analysis

to date.
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CONCLUSIONS

The drying behavior of DWG to produce DDGS, using
three CDS addition levels (10%, 15%, and 20% wb) and three
drying temperature levels (100°C, 200°C, and 300°C) was
determined. Comprehensive models for moisture ratio versus
time (based on the Page model) which also included terms for
CDS addition and drying temperature levels were found
effective in predicting moisture ratios (eq. G4, table 4) for
DWG desorption. This first step towards understanding
drying of DDGS will be useful in predicting drying behavior
under varying operating conditions which are often seen in
industry. It can also be used to predict the total drying time
required to achieve a desired moisture content for various
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Figure 4. Residual plots for selected Moisture Ratio (-) models. (a) through (i) Newton model (table 2, eq. 1) results (a) k=0.0348; (b) k=0.0933; (c)
k=0.1964; (d) k=0.032; (e) k=0.0885; f) k=0.2073; (g) k=0.03799; (h) k=0.088; (i) k=0.2258; (j) Global equation (based on modified Page model, eq. G4,
table 3), k=0.00148, n=0.02 - note that the residuals are randomly scattered for this model.

practical settings. Since there have been no developed
models or drying simulation studies for DDGS to date, this
research will be a step towards such research areas. Future
studies with higher CDS levels and other drying temperatures
should also be evaluated.
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