MORPHOLOGICAL AND PHYSIOLOGICAL TRAITS AS INDICATORS OF DROUGHT TOLERANCE IN TALLGRASS PRAIRIE PLANTS

by

SALLY SUE TUCKER

B.S., Pittsburg State University, 2007

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Division of Biology
College of Arts and Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2010
Approved by:
Major Professor
Dr. Jesse B. Nippert

Abstract

The Konza Prairie in northern Kansas, USA contains over 550 vascular plant species; of which, few have been closely studied. These species are adapted to environmental stress as imposed by variable temperature, precipitation, fire, and grazing. Understanding which plant traits relate to drought responses will allow us to both predict drought tolerance and potential future shifts in plant community composition from changes in local climate. Morphological and physiological measurements were taken on 121 species of herbaceous tallgrass prairie plants grown from seed in a growth chamber. Gas exchange measurements including maximum photosynthetic rate, stomatal conductance to water vapor, and intercellular CO_{2} concentration were measured. All plants were exposed to a drought treatment and were monitored daily until stomatal conductance was zero. At this point, critical leaf water potential ($\Psi_{\text {crit }}$), an indicator of physiological drought tolerance was assessed. Other measurements include root length, diameter, volume, and mass, leaf area, leaf tissue density, root tissue density, and root to shoot ratio. Traits were compared using pair-wise bivariate analysis and principal component analysis (PCA). A dichotomy was found between dry-adapted plants with thin, dense leaves and roots, high leaf angle, and highly negative $\Psi_{\text {crit }}$ and hydrophiles which have the opposite profile. A second axis offers more separation based on high photosynthetic rate, high conductance rate, and leaf angle, but fails to provide a distinction between C_{3} and C_{4} species. When tested independently, grasses and forbs both showed drought tolerance strategies similar to the primary analysis. Matching up these axes with long term abundance data suggests that species with drought tolerance traits have increased abundance on Konza, especially in upland habitats. However, traits that relate to drought tolerance mirror relationships with nutrient stress, confounding separation of low water versus low nutrient strategies. My results not only illustrate the utility of morphological and physiological plant traits in classifying drought responses across a range of species, but as functional traits in predicting both drought tolerance in individual species and relative abundance across environmental gradients of water availability.

Table of Contents

List of Figures v
List of Tables vi
Acknowledgements viii
Dedication ix
CHAPTER 1 - Introduction 1
Evolution of tallgrass prairie. 1
Climate Change 2
Drought Physiology 4
Experimental Investigation 5
References 8
CHAPTER 2 - Plant Traits and Drought Tolerance 12
Introduction 12
Methods 14
Site Description 14
Plant Cultivation 15
Physiological and Morphological Measurement 15
Statistical Analysis 17
Field Confirmation 17
Results 18
Univariate Statistics 18
Pair-wise Relationships 18
Multivariate Trait Relationships 19
Discussion 20
References 25
Tables and Figures 30
CHAPTER 3 - Predicting Abundance across Multiple Scales Using Plant Functional Traits 37
Introduction 37
Methods 40
Site Description 41
Abundance Measurements 41
Plant Traits Measurements 43
Results 43
Discussion 46
References 52
Tables and Figures 56
CHAPTER 4 - CONCLUSIONS 59
The Utility of Plant Functional Traits in Tallgrass Prairie 59
References 65
Appendix A - Additional Traits Data 66

List of Figures

Figure 2.1 Linear correlation of experimental leaf angle and field leaf angle measurements. ($\mathrm{n}=$ 50, r $=0.58, P$ <0.0001).. 30

Figure 2.2 PCA axes. Graminoids are represented by circles; forbs are represented by squares.
Open symbols represent C_{4} photosynthesis; closed represent C_{3} photosynthesis. $\mathrm{n}=121.31$
Figure 2.3 Pairwise correlations. Graminoids are represented by circles; forbs are represented by squares. Open symbols represent C_{4} photosynthesis; closed represent C_{3} photosynthesis. (A) $\mathrm{n}=111, \mathrm{R}^{2}=0.29, P<0.0001$ (B) $\mathrm{n}=105, \mathrm{R}^{2}=0.15, P<0.0001$ (C) $\mathrm{n}=107, \mathrm{R}^{2}=0.14, P$

List of Tables

Table 2.1Controlled environment schedule for lighting and temperature. Bulbs are a combination of fluorescence and actinic light representing the natural spectrum. Each chamber contains 4 each 1000 Watt high pressure sodium lamps and 1000 Watt metal halide lamps. 30
Table 2.2 Field and laboratory leaf tissue measurements. Means reported with standard deviations; P values calculated using Welch two-sample t-tests $(\alpha=0.05) . \mathrm{n}=50 \ldots \ldots30$
Table 2.3 Univariate statistics. $\mathrm{n}=121$.. 33
Table 2.4 Pair-wise correlations and P-values for ten primary traits. P-values in the upper right and correlation coefficients in the lower left are bolded for statistical significance ($\alpha=0.05$).
\qquad
Table 2.5 Eigenvectors and eigenvalues resulting from rotation in Principal Component Analysis. Bold values represent a significant contribution to the axis. Eigenvalues are listed for each axis with the cumulative percentage of variation explained. $\mathrm{n}=121$

Table 2.6 Forbs: eigenvectors and eigenvalues resulting from the rotated PCA axes containing forb species. Bold values represent a significant contribution to the axis. Eigenvalues are listed for each axis with the cumulative percentage of variation explained. $\mathrm{n}=92$

Table 2.7 Graminoids: Resulting eigenvectors and eigenvalues from the rotated PCA axes containing graminoid species. Bold values represent a significant contribution to the axis. Eigenvalues are listed for each axis with the cumulative percentage of variation explained. n
\qquad
Table 2.8 Multiple regression with categorical variables, general linear model. For each contrast I report least squares means (LSM) and partial R^{2}, each contrast's proportion of the total variation explained by the model ($\alpha=0.05$). .. 36
Table 2.9 Pair-wise correlations between PCA axes and secondary plant traits. Bold values represent statistically significant P values ($\alpha=0.05$). .. 36

Table 3.1 Pairwise regressions for all traits and all treatments. Bold values indicate statistical
significance. Estimate abbreviated "Est". $(\alpha=0.05) \ldots \ldots . ~$

Table 3.2 Stepwise multiple linear regression, containing 10 primary traits. Partial R^{2} is the proportion of model R^{2} contributed by each trait. Sum of Squares represented by SS. ($\alpha=$ 0.05)57
Table 3.3 Stepwise multiple linear regression containing Mycorrhizal data. Partial R^{2} is the proportion of the model R^{2} contributed by each trait. Sum of Squares represented by SS. (α $=0.05$) 58
Table A. 1 Plant species taxonomy. KUT code is a species-specific unique identifier for Konza Prairie. Life history abbreviations; $\mathrm{A}=$ annual, $\mathrm{B}=$ biennial, $\mathrm{P}=$ perennial. Type refers to photosynthetic type. Biochemical subtype only applies to C_{4} species. 66
Table A. 2 Plant biomass by species. 70
Table A. 3 Leaf-level physiology by species. See table Table A. 11 for units. 74
Table A. 4 Field Comparison Data 78
Table A. 5 Principal Components 80
Table A. 6 Leaf and Root Morphology 84
Table A. 7 Mycorrhizal data. Wilson and Hartnett, 1998 87
Table A. 8 Calculated traits. 88
Table A. 9 Konza species abundance, contrasts. (Log 10 transformed) 92
Table A. 10 Konza Abundance, treatment combinations. (Log 10 transformed) 96
Table A. 11 Univariate statistics. $\mathrm{n}=121$ 100

Acknowledgements

I would like to thank everyone who has contributed to this project in particular as well as those who have helped guide me through my academic career. Thanks to Dr. Jesse Nippert for accepting a rather lost graduate student into his lab in the first place. In addition to the endless advice, input, and expertise he provided, Jesse also supplied the occasional, well-timed nudge I needed. A big thank you to Dr. Joe Craine, a trusted mentor and advisor who always took time to help me understand. Thanks to Dr. Hartnett for his guidance as a member of my committee; Jacob Carter, Jeff Hartman, and Jackie Ott -- encouraging friends and faithful allies; Gracie Orozco and Teall Culbertson for their tireless work and numerous hours in the lab, and Troy Ocheltree for his frequent help and extensive knowledge. Thank you to those individuals who both challenged and inspired me as great teachers and exceptional scientists. For life lessons and shared wisdom, many thanks to Dr. Steven Long, Dr. Joe Coelho, Dr. Mohamed El-Bermawy, Dr. Jim Triplett, Dr. Joe Arruda, Dr. Dixie Smith, Dr. Martha Smith-Caldas and Dr. Tony Joern.

I am grateful for the love and support of my family and friends. Thanks to my Mom for always believing in me; to Jenny, the best sister and friend; and to Matt for his understanding, encouragement, love, and patience. Thank you for keeping me upright and on course.

For generous financial support of my Master's research I would like to acknowledge the National Science Foundation, Konza Prairie LTER, Kansas State University: Division of Biology and University of Kansas Field Station: Small Grants Program. Finally, thanks to Kansas State University: Division of Biology, The Nature Conservancy, the National Park Service, Wichita State University, Emporia State University, and Kansas University for use of property and resources.

Dedication

For my Dad,

You instilled in me every tool I would need to achieve my goals.
A fascination with nature
The desire to learn
Determination
Compassion
Integrity
You knew I could. I knew I could.

CHAPTER 1 - Introduction

Evolution of tallgrass prairie

An ecosystem that once stretched 162 million hectares from western Indiana in the east to the Colorado Rocky Mountains in the west, the North American prairie has undergone a multitude of changes in the last 150 years (Samson and Knopf, 1994). Historically, homesteading and subsistence farming supported development in the Midwest. This was followed by increasing conversion of virgin prairie to agricultural fields, fencing and seeding of pastureland, and intense fragmentation due to road building, and urban development and expansion. As much as 99.9% of the historic range of tallgrass prairie has been lost or modified in some way (Samson and Knopf, 1994). In Kansas, the number is lower (82.6\%, Samson and Knopf, 1994), due in part to the natural topography that prevents plowing and other commercial use. The Flint Hills region is a prime example of land protected from the plow by thin rocky soils. Agriculture is still ubiquitous, but well-managed grazing operations have helped preserve invaluable tracts of native tallgrass prairie.

Although grasslands are found all over the world, the tallgrass prairie evolved and was maintained in North America by the complex movements of the continent's air masses (Borchert, 1950). It is a mesic system dominated by herbaceous vegetation, particularly warm season grasses. Situated in the middle of several other biomes, its central location becomes evident in the conglomeration of species that make up the plant community (Axelrod, 1985; Freeman, 1998). To the east, increased precipitation results in the eastern deciduous forests. In the north, temperature allows a shift to boreal forest. Precipitation again causes a change in the west as the rain shadow of the Rocky Mountains leads to a dry zone just east of the mountain chain (Borchert, 1950). Plants migrate readily and establish indiscriminately where conditions permit.

As a result, species from all of these biomes are found in the tallgrass flora, making it a cosmopolitan assemblage (Freeman, 1998). Even so, prairie communities are not static. The composition has changed many times in the past and current and future climate change may spur another shift in the native plant community.

Climate Change

While the Midwestern prairies are characterized by high inter- and intra-annual climate variability for both temperature and precipitation (Borchert, 1950), human-influenced global warming increases the probability of alterations in climate and more frequent extreme events for key environmental drivers like precipitation and temperature (Easterling et al., 2000; Houghton et al., 2001; Alley et al., 2003; Alley et al., 2007). The Intergovernmental Panel on Climate Change models a much warmer United States by 2099 (IPCC, 2007). Predictions for the Midwest and Kansas in particular suggest a 3-4 degree Celsius increase in mean annual temperature over this time period. Predictions of the scope of future changes in precipitation vary among climate models, but there is a growing consensus that annual net precipitation for the Great Plains is likely to remain similar to present amounts, but the seasonal distribution and magnitude of rainfall events are likely to change (Gordon et al., 1992; Easterling et al., 2000; Meehl et al., 2005; Christensen et al., 2007). Alterations in precipitation regimes can occur in several ways. First, a reduction in small and intermediate size rain events, and an increase in the frequency of large rain events increases variability as the events become less frequent. This change in timing does not affect the total annual volume of rainfall received, but alters the distribution and amount of precipitation received during rainfall events (Karl and Trenberth, 2003). Secondly, seasonal changes in precipitation can result in more rainfall during the winter months, and reduced rainfall during the summer months (Christensen et al., 2007). If the total
amount of rainfall received during the growing season is reduced and the growing season precipitation pattern becomes more variable, the result would likely be greatly reduced water availability for plants, even in the absence of total changes in net annual precipitation (Knapp et al., 2002). Furthermore, the increased frequency of large rain events could further diminish available water as precipitation falling faster than the maximum soil infiltration rate or exceeding field capacity would be lost as runoff. Evapotranspiration losses from the soil will necessarily accelerate under increased temperatures, also leading to less available water in the soil. All told, the consequences for the tallgrass prairie region would be increased soil drying coupled with longer periods of drought.

The variable and complex responses of grasslands to climatic variability present a significant challenge for forecasting responses to future climate change (Nippert et al., 2006). Altered timing of rainfall events, with no change in total rainfall amount, has significant consequences from the physiology of individual plants to ecosystem carbon fluxes (Knapp et al., 2002; Fay et al., 2003; Harper et al., 2005; Fay et al., 2008). The effects of multiple climate changes (e.g., multiple forms of precipitation variability) are predicted to be additive, but more complex interactions are likely for several key processes such as decomposition and soil CO_{2} flux (Luo et al., 2001). The responses of key plant physiological processes and morphological traits are integral for relating community and ecosystem responses to climate changes that include both directional changes and greater rainfall variability. Extensive work is currently focused on the dominant species responses in this ecosystem in an attempt to predict and understand potential changes (Nippert et al., 2009). Predicting changes in population growth, community structure, and ecosystem energy balance, however, becomes very difficult when little is known mechanistically about the sub-dominant plant community in tallgrass prairies.

Due to their importance in ecosystem function and economic viability, native C_{4} grasses have consistently been well studied (Knapp et al, 1994; Smith and Knapp, 2003), leaving the physiological responses and morphological characteristics of tallgrass prairie forbs and C_{3} grasses relatively unexplored. Even with a solid understanding of phylogeny and general function (i.e. nitrogen fixers, C_{3} grasses, C_{3} forbs, C_{4} grasses), a closer examination of the morphology and physiology of many lesser-known tallgrass species is a novel endeavor. These previously unmeasured traits may elucidate complex or previously unknown relationships between physiological processes and anatomical structures. For example, how do maximum photosynthetic rates relate to root morphology to move great quantities of water during periods of peak performance? Specifically, I want to improve our understanding of patterns of water-use during periods of increased water limitation and understand which traits confer an advantage to plants in dry environments or during drought events.

Drought Physiology

Plants found in arid environments are known to employ a number of strategies to preserve water and subsist under both mild water limitation and extreme drought stress. Physical leaf traits such as leaf size (Dimmit, 2000), stomatal placement, leaf angle, and root depth (Nippert and Knapp, 2007) have all been shown to be successful adaptations to survive or even avoid drought stress. The creosote bush for example is a well-known desert competitor that employs tiny leaves with silvery hairs and waxy cuticle to reduce heat and prevent evaporative losses and an extensive root system for water acquisition (Dimmitt, 2000). Physiology also plays a role in enabling plants to conserve limiting resources and assimilate carbon while minimizing water loss. Take the C_{4} and CAM photosynthetic pathways for example; both processes evolved to enable water or heat stressed plants to photosynthesize while conserving water (Dimmit, 2000;

Taiz and Zeiger, 2002). Alternatively, strategies to minimize water stress during periods of low water availability may mirror responses to low nutrient availability. Stress tolerators (including low water and low nutrient species), as proposed by Grime (1977) should be long-lived perennials with low relative growth rates, low mineral and water turnover, and long-lived leaves and roots. During discrete periods of intense water limitation, do drought tolerators limit growth and physiology to conserve resources? Are the better competitors those that can fix carbon when water is most limiting or those that cease stomatal conductance, mobilizing carbon reserves instead? (Tardieu and Simonneau, 1998; McDowell, et al., 2008). Do species that succeed in low water environments out-compete the other species or simply have a lower tolerance threshold?

Within an ecosystem, individual plant responses to drought may differ. For example, various responses may be seen in plants experiencing drought more slowly, over longer periods, or at different points in the plant's life cycle. As drought responses occur over a variety of timescales, each warrants investigation. Experiments should focus on simulating these different conditions in order to observe variable strategies and innate plasticity. Furthermore, while it is generally accepted that in grasslands resource limitation acts as a strong bottom-up control on plants, biotic factors such as herbivory, pathogens, or parasitism are also influential but will not be specifically considered in this investigation.

Experimental Investigation

Experiments designed to address these issues must be inclusive of all functional groups, and must take into consideration all players in a plant community. Several studies have already been completed that incorporate the use of both dominant and subdominant species (Grime et al., 1997; Craine et al., 2001). Determining predictive traits that can be applied universally will increase success in answering broadly focused questions without forcing experiments to be
exhaustive. Although it was conducted small scale, the following preliminary study using similar methods yielded promising results.

An assessment of traits from 22 species was conducted by Nippert and Craine in 2008 (unpublished data) which showed novel relationships between leaf tissue density and critical water potentials. Low tissue density in leaves corresponded to the highest water potentials before wilting. Those with high tissue density show the opposite tendency and are assumed to be best equipped to withstand drought conditions. It was speculated that thick leaves without a low critical water potential ($\Psi_{\text {crit }}$) [water availability at the point conductance ceases], may be an adaptation to a low nutrient environment and may therefore have more to do with leaf retention than drought tolerance. An objective of my study was to investigate this relationship further across a broader range of selected species and explore additional traits through further inquiry. Additionally, I would like to know, are these traits static within a species that has a wide geographic range? The urgency of these questions is amplified when the prospect of global climate change is taken into consideration.

I will use similar methods to address the following lines of questioning. How will the tallgrass prairie ecosystem respond to climate change? Will species losses be driven by differences in morphology, functional group, phylogenetics, physiology, or competition? In a typically mesic environment, how can I determine which species may be at risk of extinction under a changing temperature- precipitation regime? I expect to see a range of traits in the diverse association of species on Konza Prairie. Using both morphological and physiological traits measured on these plants, I suspect a trait or suite of traits will predict drought tolerance across all species. Once I determine which species are tolerant, I will have a better understanding of the current plant community and how beneficial drought tolerance traits are in the field.

Landscape heterogeneity should dictate differences in species abundance based on land management practices and the soil moisture characteristics associated with specific management regimes. Logic suggests that drought tolerant species will be found in areas that experience periodic to frequent water stress. For example, annually burned areas tend to have warmer soils early in the growth season (Bremer \& Ham, 1999) and dryer soils. These locations should be preferentially inhabited by species with the drought tolerance syndrome.

In addition to low water availability, Konza prairie is limited by a number of other resources. Not only can two resources be important limiting factors, these limiting resources can change over space and time (transient maxima hypothesis, Seastedt and Knapp, 1993). Understanding the conditions that lead to various limitations can be made simpler using plant traits as indicators. For example, plants that successfully survive and continue to grow despite a limitation will have traits that make this possible (Reich et al., 2003). The distribution of plants on Konza is determined by both biotic and abiotic factors such as resource limitation, fire and grazing disturbances, and competition which challenge plant survival. Plants must not only be able to attain vital resources but must often compete inter- and intraspecifically to gain them. Plant traits are responsible for this differential performance on tallgrass prairie as the most successful plants possess the most beneficial traits. Expanding the scope to look at abundance on a broad scale should reveal the most successful strategy employed in tallgrass prairie.

Pursuing these questions should help bring together an understanding of traits that contribute to a plant's ability to survive drought conditions with current knowledge of plant functional traits centered primarily around nutrient limitation. By using a common technique and statistical analysis, my study can be compared to those assessing traits across nutrient gradients.

References

Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM, Pielke RA,

Pierrehumbert RT, Rhines PB, Stocker TF, Talley LD, and Wallace JM. 2003. Abrupt climate change. Science 299: 2005-2010.

Alley RB, et al. Climate Change 2007: The Physical Science Basis, Summary for Policy Makers. 2007. Geneva, Switzerland, IPCC Secretariat. Working Group I Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 2-2-2007.

Awada T, Moser LE, Schacht WH, Reece PE. 2002. Stomatal variability of native warmseason grasses from the Nebraska Sandhills. Canadian Journal of Plant Science 82: 349355.

Axelrod DI. 1985. Rise of the Grassland Biome, Central North America. The Botanical Review 51(2): 163-201.

Borchert JR. 1950. The climate of the Central North American grassland. Annals of the Association of American Geographers 40:1-39.

Bremer DJ, Ham JM. 1999. Effects of spring burning on surface energy balance in a tallgrass prairie. Agricultural and Forest Meteorology 97: 43-54.

Christensen JH. 2007. Regional climate projections. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller, (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

Craine JM, Frowhle J, Tilman DG, Wedin DA, Chapin III FS. 2001. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93: 274-285.

Dimmit MA. 2000. Plant Ecology of the Sonoran desert region. In: CA. Phillips SJ, Comus PW, eds. A Natural History of the Sonoran Desert. Berkley, CA, USA: University of California Press, 129-151.

Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, and Mearns LO. 2000. Climate extremes: Observations, modeling, and impacts. Science 289:2068-2074.

Fay PA, Kaufman DM, Nippert JB, Carlisle JD, and Harper CW. 2008. Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change. Global Change Biology 14:1600-1608

Fay PA, Carlisle JD, Knapp AK, Blair JM, and Collins SL. 2003. Productivity responses to altered rainfall patterns in a C_{4}-dominated grassland. Oecologia 137:245-251.

Freeman CC. 1998. The flora of the Konza prairie: a historical review and contemporary patterns. In: Knapp AK, Briggs, JM, Hartnett DC, Collins SL, eds. Grassland Dynamics: Long-term Ecological Research in Tallgrass Prairie. New York, NY, USA: Oxford University Press, 69-80.

Grime JP. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist 111(982): 11691194.

Grime JP, Thompson K, Hunt R, Hodgson JG, Cornelissen JHC, Rorison IH, Hendry GAF, Ashenden TW, Askew AP, Band SR, Booth RE, Bossard CC, Campbell BD, Cooper JEL, Davison AW, Gupta PL, Hall W, Hand DW, Hannah MA, Hillier SH, Hodkinson DJ, Jalili A, Liu Z, Mackey JML, Matthews N, Mowforth MA, Neal AM, Reader RJ, Reiling K, RossFraser W, Spencer RE, Sutton F, Tasker DE, Thorpe PC, Whitehouse J. 1997. Integrated screening validates primary axes of specialisation in plants. Oikos 79(2): 259-281.

Gordon HB, Whetton PH, Pittock AB, Fowler AM, and Haylock MR. 1992. Simulated changes in daily rainfall intensity due to the enhanced greenhouse-effect - implications for extreme rainfall events. Climate Dynamics 8:83-102.

Harper CW, Blair JM, Fay PA, Knapp AK, Carlisle JD. 2005. Increased rainfall variability and reduced rainfall amount decreases soil CO_{2} flux in a grassland ecosystem. Global Change Biology 11: 322-334.

Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA, eds. 2001. Climate change 2001: the scientific basis. Contributions of working groups I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge.

IPCC. 2007. Climate change 2007: the physical science basis. Contribution of Working Group I to the Forth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 1009.

Karl TR, and Trenberth KE. 2003. Modern global climate change. Science 302:1719-1723.

Knapp AK, Fay PA, Blair JM, Collins SL, Smith MD, Carlisle JD, Harper CW, Danner

 BT, Lett MS, McCarron JK. 2002. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 298:2202-2205.Knapp AK, Hamerlynk EP, Owensby, CE. 1993. Photosynthetic and water relations responses to elevated CO 2 in the C 4 grass Andropogon gerardii. International Journal of Plant Science. 154(4): 459-466.

Luo Y, Wan S, Hui D, and Wallace LL. 2001. Acclimation to soil respiration to warming in a tallgrass prairie. Nature 413:622-625.

McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA. 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist 178(4): 719-739.

Meehl GA, Arblaster JM, and Tebaldi C. 2005. Understanding future patterns of increased precipitation intensity in climate model simulations. Geophysical Research Letters 32:L18719.

Nippert JB, Knapp AK. 2007. Soil water partitioning contributes to species coexistence in tallgrass prairie. Oikos 116: 1017-1029.

Nippert JB, Knapp AK, and Briggs JM. 2006. Intra-annual rainfall variability and grassland productivity: can the past predict the future? Plant Ecology 184:65-74.

Nippert JB, Fay PA, Carlisle JD, Knapp AK, Smith MD. 2009. Ecophysiological response of two dominant grasses to altered temperature and precipitation regimes, Acta Oecologia, doi: 10.1016/j.actao.2009.01.010

Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB. 2003. The evolution of plant functional variation: Traits, spectra, and strategies. International Journal of Plant Sciences 164(3): S143-S164.
Samson and Knopf. 1994. Prairie conservation in North America. Bioscience 44(6): 418-421.

Seastedt TR, Knapp AK. 1993. Consequences of nonequilibrium resource availability across multiple timescales: the transient maxima hypothesis. The American Naturalist, 141(4): 621-633.

Smith MD, Knapp AK. 2003. Dominant species maintain ecosystem function with non-random species loss. Ecology Letters, 6(6): 509-517.

Taiz L, Zeiger E. 2002. Plant Physiology, $3^{r d} e d$. Sunderland, MA, USA: Sinauer Associates.

Tardieu F, Simonneau T. 1998. Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modeling isohydric and anisohydric behaviors. Journal of Experimental Botany 49: 419-432

Towne EG. 2002. Vascular Plants of Konza Prairie Biological Station: An Annotated Checklist of Species in a Kansas Tallgrass Prairie. SIDA 20:269-294

Wahl S and Ryser P. 2000. Root tissue structure is linked to ecological strategies of grasses. New Phytologist 148:459-471

CHAPTER 2-Plant Traits and Drought Tolerance

Introduction

Across a wide variety of ecosystems (Watt, 1947), drought reduces productivity (Knapp, 1984; Tilman and Elhaddi, 1992; Ciais et al., 2005), leads to shifts in species abundance (Tilman and Elhaddi, 1992), and can be responsible for local extinction (Tilman and Elhaddi, 1992). The episodic nature of water availability produces drought at multiple scales, from decade-long reductions in precipitation (Weaver, 1954), seasonal dry periods (Abrams and Knapp, 1986), and daily mid-day inductions of plant water stress (Fahnestock and Knapp, 1994).

Grasslands specifically are characterized by drought (Carpenter, 1940). Tropical grasslands and savannas typically have annual dry seasons during which grasses senesce (Lieberman, 1982). Temperate grasslands periodically experience years with low precipitation that help shape the characteristic plant community (Borchert, 1950, Tilman and Elhaddi, 1992). While mild drought elicits species-level responses, severe events can have more dramatic effects on the entire plant community (Coupland, 1958; Fuhlendorf and Smeins, 1998). With projected increases in temperature and reduced water availability during the growing season (IPCC, 2007), drought is likely to remain an ecologically-important driver of grassland structure in the future.

Plants have evolved a range of physiological responses to low water availability (Eggemeyer et al., 2006; McDowell et al., 2008). Stomatal regulation allows fine temporal control of water loss in response to environmental conditions (Franks et al., 1997; Brodribb et al., 2009). Stomatal regulation allows leaves to avoid low water potentials or tolerate low water potentials. Isohydric plants reduce stomatal conductance (and thereby carbon assimilation) to maintain relatively constant water potentials in response to reduced water availability (Bates and Hall, 1981). Anisohydric species maintain rates of stomatal conductance and carbon assimilation
at the expense of decreasing leaf water potentials during dry conditions (Larcher, 1973; Franks et al, 2007; McDowell et al., 2008). Species that employ anisohydry are considered to be drought tolerant as they are able to maintain physiological processes during drought events. While isohydric species can survive drought events, they are sensitive to drought cues and are unable to photosynthesize under stress. In this study, species that employ isohydry are considered to be drought intolerant.

Physiological drought tolerance is expected to be linked to other functional traits due to underlying mechanisms resulting from physiological or evolutionary tradeoffs (Reich et al., 2003). For example, due to inherent tradeoffs in plant resource allocation, stress-tolerant species should have low rates of gas exchange and low maximal growth rates (Reich et al., 2003). In a study of 43 UK grassland species, drought insensitive plants were slow-growing and had the highest relative yield under all conditions (Grime et al., 1997). A number of strategies to preserve water and subsist under both mild water limitation and extreme drought stress have been recorded in plants. Small leaves (Reiger et al, 1992), high leaf angle (Medina et al, 1990), and root morphology have all been shown to be successful adaptations to survive or even avoid drought stress. Cavitation-resistant xylem is present in plants occurring in areas of frequent drought (McDowell et al., 2008). The C_{4} and CAM photosynthetic pathways both evolved to increase photosynthetic efficiency in hot or arid environments (Gibson, 1998; Nelson \& Sage, 2005). Differential performance has been shown between various functional groups (WUE, Kocacinar \& Sage, 2003;WUE and $\mathrm{A}_{\text {net, }}$ Eggemeyer et al., 2006), so I also expect that physiological drought tolerance should vary by functional group.

In order to better understand patterns of drought tolerance among grassland species and their relationship to other functional traits, I measured physiological drought tolerance and
numerous morphological traits for a wide suite of species present at a mesic prairie in central North America. My goal was to understand the variation in physiological drought tolerance among species. I also aimed to understand how other functional traits such as maximum photosynthetic rates and root system morphology relate to physiological drought tolerance and how these relationships differ among functional groups. I hypothesized that prairie plants would exhibit a range of responses to drought including plants that can tolerate severe drought and those that cannot survive mild water limitation. I also expected responses to differ among functional groups (C_{3} grass, C_{4} grass, C_{3} forb, C_{4} forb) due to differences in morphology and phenology. Finally, as a stress tolerance strategy I hypothesized that drought tolerant species would show signs of a physiological tradeoff resulting in lower photosynthetic rates.

Methods

Site Description

Konza Prairie Biological Station (KPBS) is a 3487 ha native tallgrass prairie located in the Flint Hills of northeastern Kansas, USA ($3905^{\prime} \mathrm{N}, 9635^{\prime} \mathrm{W}$). The prairie landscape is dominated by a few species of warm season grasses (Andropogon gerardii, Sorghastrum nutans, Schizacyrium scoparium, and Panicum virgatum) while cool season grasses and a diverse suite of forbs round out the plant community. KPBS receives an average of 835 mm of precipitation annually, most of which (75\%) falls during the growing season. Over the last century at KPBS, mean annual precipitation regularly deviated from the long term mean by about 25% and reached values as high as 184% of the mean in the wettest year (1533 mm in 1951) and 47% in the driest year (392 mm in 1966). While the mean annual temperature for KPBS is $13^{\circ} \mathrm{C}$, the mean low for the year is $-3{ }^{\circ} \mathrm{C}$ in January and the mean high of $27^{\circ} \mathrm{C}$ occurs in July.

Plant Cultivation

Of the 477 herbaceous, non-wetland vascular plants found on KPBS (Towne, 2002), 121 species were chosen for this study. Species chosen for the experiment encompass a broad range of attributes. Phylogeny, life history, and seed availability were all considered during the selection process in order to best represent the floral diversity found on KPBS. Seeds were obtained from a variety of sources, including the Kansas Native Plant Society, the National Plant Germplasm System, Chicago Botanic Garden - National Tallgrass Prairie Seed Bank, Taylor Seed Farms (White Cloud, KS), and local collection from the Konza Prairie Biological Station.

Propagules were germinated on damp filter paper in Petri plates at room temperature. Stratified seeds were stored on damp filter paper in a $5^{\circ} \mathrm{C}$ incubator for at least 30 days while those that required scarification were abraded with sandpaper before being germinated in appropriate conditions. Seedlings were transplanted to 164 mL plastic Cone-tainers (D-40, Stuewe and Sons, Inc. Corvalis, OR) containing standardized, untreated lowland soil from KPBS (silty clay loam). Plants in containers were grown in a Conviron growth chamber (Model PGV 36, Controlled Environments Limited, Winnipeg, Manitoba) with 16 hour days at $25^{\circ} \mathrm{C}$ and 8 hour nights at $20^{\circ} \mathrm{C}$ (Table 2.1). Plants were watered daily and treated with a commercial fertilizer (Miracle Grow 24-8-16 All Purpose Fertilizer) biweekly to eliminate nutrient stress. Eight replicates of each species were maintained.

Physiological and Morphological Measurement

Plants were grown in the growth chamber for 8-12 weeks before data collection. Gas exchange was measured using a Li-6400 infra-red gas analyzer with red/blue LED light source and CO_{2} injector (LICOR Biosciences, Lincoln, NE). Light intensity inside the cuvette was 2000 $\mu \mathrm{mol} \mathrm{m}{ }^{-2} \mathrm{~s}^{-1}, \mathrm{CO}_{2}$ concentration was 400 ppm , and relative humidity was kept constant at 40%.

Measurements were performed on the newest fully-expanded leaves and included maximum photosynthetic rate $\left(\mathrm{A}_{\max }\right)$, stomatal conductance to vapor $\left(\mathrm{g}_{\mathrm{s}}\right)$, and water use efficiency (WUE) which is the ratio $\mathrm{A}_{\max } / \mathrm{E}$.

Leaf thickness was measured in inter-vein tissue for 2-3 newly-expanded, mature leaves on each plant using digital calipers (Thermo Fisher Scientific Inc., Waltham, MA). Leaf angle relative to horizontal was measured by averaging 3-5 protractor measurements per plant following Norman and Campbell (1989).

After 8-12 weeks, plants were divided into sets of 50 and were subjected to a dry-down period with daily monitoring using a steady state diffusion porometer (Model SC-1, Decagon Devices, Inc., Pullman, WA). Stomatal conductance was recorded daily during dry-down until the conductance rate fell below 5\% of the maximum. Following stomatal closure, non-senesced leaf tissue was collected and the hydrostatic pressure potential was measured using a Scholander pressure bomb (PMS Instrument Company, Albany, OR). This leaf pressure potential corresponding to stomatal closure is henceforth referred to as the species' critical water potential ($\Psi_{\text {crit }}$). A subset of the leaves was used to measure leaf area (LI-COR Leaf Area Meter, Model LI-3100) and subsequently oven dried and weighed to calculate Specific Leaf Area (SLA). Leaf tissue density $\left(\rho_{\mathrm{L}}, \mathrm{g} \mathrm{cm}^{-3}\right)$, the ratio of leaf mass to leaf volume was calculated using leaf area and thickness. The remaining biomass was sorted to leaf or stem and dried at $60^{\circ} \mathrm{C}$ to determine total aboveground biomass. Roots were sorted into coarse (> 2 mm) and fine roots. A representative sample of the fine roots was scanned into a digital root imaging program (Winrhizo; Regents Instruments, Inc., Nepean, Ontario, Canada) which calculated total root length (cm), total root volume $\left(\mathrm{cm}^{3}\right)$, and average root diameter by length (mm). The remainder
of the roots was oven dried, weighed, and used to calculate specific root length (SRL), root tissue density $\left(\rho_{\mathrm{R}}, \mathrm{g} \mathrm{cm}^{-3}\right)$, and fraction root.

Additional species-level data for a subset of the species included date of first flowering, which is reported as the average first day each year that each species was observed in bloom at KPBS from 2000-2009. Mycorrhizal responsiveness, which is the growth enhancement associated with mycorrhizal inoculation under standardized conditions, and mycorrhizal root length colonization data for my study species were reported by Wilson and Hartnett (1998).

Statistical Analysis

Ten functional traits were chosen as the primary functional traits of interest.
Encompassing tissue and whole plant morphology and physiology, these traits included $\rho_{\mathrm{R}}, \rho_{\mathrm{L}}$, average root diameter, leaf thickness, leaf angle, root mass, shoot mass, $\Psi_{\text {crit }}, \mathrm{A}_{\text {max }}$, and g_{s}. The 10 traits were used in pairwise correlations and in principal component analysis (JMP 8.0.2, SAS Institute, Inc., Cary, NC). Multivariate analysis was also performed by functional group (grass v. forb and C_{3} v. C_{4}) to establish predictive characteristics specific to each group. Correlations between additional traits such as SLA, phenology, and mycorrhizal data and the PCA axes were tested to examine relationships with drought tolerance.

Field Confirmation

To check for relevance to field-grown plants, I compared my traits data to a field experiment that examined some of my study species. Leaf angle, leaf thickness, specific leaf area, and leaf tissue density were measured on 50 species collected from a range of sites on KPBS. Plants were measured in the summer of 2009 following the same procedures as in the laboratory experiment (Craine and Towne, in review). I employed Welch's two sample t-tests to
test the similarity in sample means due to unequal variances among the traits ($\mathrm{R}, 2.10 .0$, Table 2.2). In all traits but leaf angle, no differences were present between laboratory and field-grown plants ($P>0.05$). Leaf angles did vary significantly but both populations were linearly correlated (Table 2.2, r $=0.58, P<0.0001$).

Results

Univariate Statistics

Among species, $\mathrm{A}_{\text {max }}$ varied by a factor of 12.5 , ranging from $1.95 \mu \mathrm{~mol} \mathrm{CO}_{2} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ in Physalis pubescens to $24.5 \mu \mathrm{~mol} \mathrm{CO} \mathrm{m}^{-2} \mathrm{~s}^{-1}$ in Erigeron annuus (Table 2.3). Xanthium strumarium had the least dense leaves $\left(0.10 \mathrm{~g} \mathrm{~cm}^{-2}\right)$ while Andropogon gerardii had the most dense $\left(0.86 \mathrm{~g} \mathrm{~cm}^{-2}\right)$. Critical water potential ($\Psi_{\text {crit }}$) ranged from -8.9 MPa (Bouteloua curtipendula) to -1.1 MPa (Tradescantia bracteata). The thinnest leaves belonged to Chloris verticillata (0.08 mm) while Silphium lacinatum had the thickest $(0.57 \mathrm{~mm})$. Root tissue density $\left(\rho_{\mathrm{R}}\right)$ ranged from $0.11 \mathrm{~g} \mathrm{~cm}^{-1}$ in the C_{3} forb Euphorbia marginata to $0.58 \mathrm{~g} \mathrm{~cm}^{-1}$ in the C_{3} forb Amorpha cansecens. Psoralidium tenuiflorum had the largest fraction of belowground biomass (0.84) while the legume Chamaechrista fasciculata had the smallest fraction (0.12).

Pair-wise Relationships

Among the 10 main functional traits, 47% of the pairwise correlations were significant. The strongest correlation was between the two gas exchange variables as species with high photosynthetic rates had the highest stomatal conductance (Table 2.4, r $=0.70, P<0.001$). Correlations among traits extended between roots and leaves. For example, species with thin leaves had thin roots ($\mathrm{r}=0.42, P<0.001$). Overall, $\Psi_{\text {crit }}$ correlated with 4 of the 9 other main functional traits. Species that were more physiologically tolerant of drought (lowest $\Psi_{\text {crit }}$) had
thin leaves $(\mathrm{r}=0.28, P<0.001)$, thin roots $(\mathrm{r}=0.54, P<0.001)$, dense leaves $(\mathrm{r}=-0.37, P<$ 0.001), and a high leaf angle ($\mathrm{r}=-0.39, P<0.001$).

Multivariate Trait Relationships

In a multivariate analysis of the 10 main functional traits, the first trait axis separated drought-tolerant species from drought-intolerant species (Table 2.5). Six traits contributed significantly to the axis, accounting for 28.3% of the total variation in all traits among all 121species explained by PCA. Species that were physiologically tolerant of drought (low $\Psi_{\text {crit }}$) had: 1.) thin, dense leaves, 2.) thin, dense roots, and 3.) a high leaf angle. For example, Hesperostipa spartea which continued to conduct water down to -8.0 MPa had leaves that were $0.62 \mathrm{~g} \mathrm{~cm}^{-3}$ and only 0.12 mm thick. In contrast, Asclepias speciosa ceased conducting water at 2.0 MPa. Its leaves had a density of only $0.27 \mathrm{~g} \mathrm{~cm}^{-3}$ and were 0.19 mm thick. Drought-tolerant species did not differ in photosynthetic water use efficiency from drought-intolerant species (Table 2.9). Drought-tolerant species did not flower at different times nor differ in their dependence on mycorrhizal fungi than drought-intolerant species. On average, grasses had a more drought-tolerant strategy than forbs (Table $2.8, P<0.001$) and a simple dichotomy of species into grasses and forbs explained 50% of the variation in Axis 1. Neither photosynthetic pathway nor life history was associated with differences in Axis 1 (Table 2.8).

Axis 2 reflected the strong correlation among species in gas exchange rates that were largely independent of drought-tolerance (Table 2.5). As seen in the bivariate relationships, species with high photosynthetic rates also had high rates of stomatal conductance and their leaves were held at a high angle. These species also had a higher fraction of root biomass than those low on the axis (Table 2.9, r $=0.32, P<0.001$). On average forbs scored lower than grasses on Axis 2, which reflects their lower rates of gas exchange (Table 2.8). The third axis
primarily separated species based on their size at the end of the experiment (Table 2.5). Axis 3 did not include any physiological traits and only explained 3.7% more variation than expected by chance.

With differences in grasses and forbs explaining a large proportion of the variation in Axis 1, multivariate analyses for the 10 main functional traits were run separately for the two groups (Table 2.6, Table 2.7). Patterns among functional traits within functional groups were broadly similar to the overall patterns. Morphological traits were associated for both groups on one axis, drought tolerance was independent of the morphological traits, and plant size was independent of both morphology and drought tolerance. The major difference in trait relationships between grasses and forbs was that physiological drought tolerance was associated with gas exchange parameters for forbs instead of being grouped with the leaf morphological traits (Table 2.6). In grasses, physiological drought tolerance was still associated with both leaf and root tissue traits but also contributed to a lesser extent to the gas exchange axis (Table 2.7).

Discussion

Physiological responses to drought have been addressed for species in multiple habitats including wetlands (Touchette et al., 2007), dry rainforest (Curran et al., 2009), tropical forest (Baltzer et al., 2009), and temperate forest (Hallik et al., 2009). Assessment of these characteristics is common in dominant forest assemblages, but much less common for herbaceous species and subdominant or rare community members. Across the 121 Konza grassland species that I measured, physiological drought tolerance ($\Psi_{\text {crit }}$) ranged from -1 to -8.9 MPa, a range that nearly encompasses the global range of drought tolerance. Grassland species measured by Knapp during the 1983 drought reflected field water potentials much closer to the range I recorded than any measured on KPBS in recent years (Knapp, 1984). For example, I
routinely measured $\Psi_{\text {crit }}$ at water potentials as low as -8 MPa , but field measurements performed on species coinciding with my study species on Konza prairie were frequently much higher (~-2 MPa) during average growing season conditions (Nippert and Knapp, 2007).

Physiological drought tolerance is not an isolated trait. Low $\Psi_{\text {crit }}$ is associated with a suite of morphological traits that enables plants to withstand the physical stress imposed by very low water potentials experienced as a result of the driving atmospheric force and low water availability. For the Konza flora, drought-tolerant species had thin, dense leaves held at a high angle and thin, dense roots. The direct and indirect advantages of these traits for drought tolerance still remain to be investigated. Yet, a high leaf tissue density is likely associated with either thicker cell walls or smaller cells, which would confer greater physical resistance to negative cellular pressures. The low average root diameter may be a product of thinner xylem elements to prevent cavitation even under very high tension, but could also be indirectly associated with the need to compete for water or nutrients. The inclusion of thin leaves, thin roots, and leaf angle as traits associated with drought tolerance likely reflects a higher prevalence of drought tolerance in grasses which were on average, more drought tolerant than forbs.

Current understanding of stress tolerance strategies and physiological tradeoffs led me to expect that drought-tolerant species would have lower rates of leaf gas exchange. Contrary to this prediction, physiological drought tolerance and gas exchange proved to be orthogonal. The lack of relationship between drought tolerance and gas exchange was not due to bias from photosynthetic pathway. C_{4} species were not more or less likely to tolerate drought than C_{3} species, despite the inherent differences that exist between the two pathways. It is possible that the two would be inversely related over a broader set of species or under different conditions. The highest photosynthetic rate that I observed was less than half of the global maximum (24.5
vs. $66 \mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$, respectively; see Wright, 2004) and was lower than photosynthetic rates previously measured on the same species in situ at Konza (Nippert et al., 2007). Alternatively, drought stress tolerance may differ mechanistically from nutrient stress especially when water stress is only periodic.

As much as drought is an important structuring force in grasslands, many of the species that I examined were physiologically intolerant of drought. Physiologically intolerant species subsisting in this drought-prone ecosystem survive by either escaping drought or avoiding it. Although I was not able to empirically differentiate the two, there seem to be some ecological patterns to the drought intolerant species. First, some drought-intolerant species escape drought by occupying microsites where drought is less important. For example, Tradescantia ohiensis is often found in wet microsites which are readily available in deep lowland soil or near hillside seeps which occur commonly at KPBS. Phenological escape allows cool-season species to complete their lifecycles in the wetter, milder spring and fall seasons, eluding water limitation altogether (Taiz and Zeiger, 2002). Alternatively, species employing phenological avoidance, primarily annuals, respond to environmental stimuli during unfavorable conditions by rapidly flowering and setting seed. Completion of the life cycle occurs at an accelerated pace before severe drought occurs. In perennial species, a common avoidance reaction is senescence for the duration of the drought period; plants re-grow leaves and resume their life cycles once conditions improve (Schizachyrium scoparium). The last class of avoiders is made up of deeply rooted species, such as Lespedeza capitata, that avoid drought stress by accessing deep soil water (Canadell et al, 1996). For example, previous work has shown that soil water is relatively available at depths greater than 1 meter (Briggs and Knapp, 1995; Nippert and Knapp, 2007) on KPBS despite antecedent precipitation patterns. All of these processes have been recorded in
field situations (Taiz and Zeiger, 2002), but further characterization of these mechanisms of persistence in prairie species is needed. The drought simulated in my study is likely more comparable to severe drought than episodic seasonal drought; but plant responses occurring over additional timescales warrant investigation as well.

Natural populations can be used in other ways to validate the findings of this study. For example, landscape heterogeneity should dictate differences in species abundance based on land management practices and the soil moisture characteristics associated with specific management regimes. Drought tolerant species logically should be found in areas with less available water. For example, annually burned areas tend to have warmer soils early in the growth season (Bremer \& Ham, 1999) leading to higher evapotranspiration and dryer soils which should preferentially be inhabited by species with my drought tolerance syndrome. Expanding the scope of my questions to look at abundance on a broad scale should reveal the most successful strategy employed in tallgrass prairie overall. Further extrapolation of my results could potentially predict tolerance in other grassland and savanna ecosystems.

In ecosystems that experience unpredictable periodic drought, drought tolerance may be a morphological syndrome. In this study using a large species set of prairie plants, physiological drought tolerance was correlated with morphology but had a negligible relationship with instantaneous gas exchange rates and biomass allocation above or belowground. Thus, plants are built to physically withstand low water potentials via thin, dense leaf and root tissues and high leaf angle without discernible leaf-level costs for reduced photosynthetic rates when water is available. This is contrary to current ideas about stress tolerance in plants where nutrient conservation comes at a physiological cost (Grime et al., 1997; Reich et al, 2003; Craine, 2009). Additionally, traits previously considered to be adaptive to low nutrient environments may
actually be beneficial in other capacities. For example, root tissue density may play a role in preventing cavitation or improving refill rates (Wahl and Ryser, 2000). Future incorporation of additional morphological traits may improve the resolution of my tolerance predictions.

Differences in vascular structure of herbaceous species is largely unknown (except see: Wahl and Ryser, 2000), and a detailed examination of leaf and root xylem, including assessment of resistances to water flux from roots to leaf mesophyll may improve understanding of the tradeoffs associated with drought tolerance in grassland species.

References

Abstract

Abrams MD, Knapp AK. 1986. Seasonal water relations of three gallery hardwood forest species in Northeast Kansas. Forest Science 32(3): 697-696.

Baltzer JL, Gregoire DM, Bunyavejchewin S, Noor NSM, Davies SJ. 2009. Coordination of foliar and wood anatomical traits contributes to tropical tree distributions and productivity along the Malay-Thai peninsula. American Journal of Botany 96(12): 22142223.

Bates LM, Hall AE. 1981. Stomatal closure with soil water depletion not associated with changes in bulk leaf water status. Oecologia 50: 62-65.

Borchert JR. 1950. The climate of the central North American grassland. Ann. Assoc. Am. Geog. 40: 1-39.

Bremer DJ, Ham JM. 1999. Effects of spring burning on surface energy balance in a tallgrass prairie. Agricultural and Forest Meteorology 97: 43-54.

Briggs JM, Knapp AK. 1995. Interannual variability in primary production in tallgrass prairie : climate, soil moisture, topographic position, and fire as determinants of aboveground biomass. American Journal of Botany 82(8): 1024-1030

Brodribb TJ, McAdam SAM, Jordan GJ, Field TS. 2009. Evolution of stomatal responsiveness to CO 2 and optimization of water-use efficiency among land plants. New Phytologist 183(3): 839-847.

Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze E-D. 1996.

Maximum rooting depth of vegetation types at the global scale. Oecologia 108: 583-595.

Carpenter JR. 1940. The grassland biome. Ecological Monographs 10(4): 617-684.

Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N,

Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058): 529-533.

Coupland RT. 1958. The effects of fluctuations in weather on the grasslands of the Great Plains. Botanical Review 24(5): 273-317.

Craine JM. 2009. Resource strategies of wild plants. Princeton, NJ, USA: Princeton University Press, 65-118, 251-281.

Craine JM, Froehle J, Tilman DG, Wedin DA, Chapin FS. 2001. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93(2): 274-285.

Craine JM, Towne EG. in review. Leaf tissue density, not specific leaf area, consistently predicts abundance of grassland species across topographic and disturbance contrasts. Oikos.

Curran TJ, Clarke PJ, Warwick NWM. 2009. Water relations of woody plants on contrasting soils during drought: does edaphic compensation account for dry rainforest distribution? Australian Journal of Botany 57(8): 629-639.

Dimmit MA. 2000. Plant Ecology of the Sonoran desert region. In: CA. Phillips SJ, Comus PW, eds. A Natural History of the Sonoran Desert. Berkley, CA, USA: University of California Press, 129-151.

Eggemeyer KD, Awada T, Wedin DA, Harvey FE, Zhou XH. 2006. Ecophysiology of two native invasive woody species and two dominant warm-season grasses in the semiarid grasslands of the Nebraska Sandhills. International Journal of Plant Sciences 167(5): 991-999.

Fahnestock JT, Knapp AK. 1994. Plant responses to selective grazing by bison: interactions
between light, herbivory and water stress. Vegetatio 115(2): 123-131.

Franks PJ, Drake PL, Froend RH. 2007. Anisohydric but isohyrodynamic: seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. Plant, Cell and Environment 30:19-30.

Fuhlendorf SD, Smeins FE. 1998. The influence of soil depth on plant species response to grazing within a semiarid savanna. Plant Ecology 138: 89-96.

Gibson AC. 1998. Photosynthetic organs of desert plants. Bioscience 48(11): 911-920.

Grime JP, Thompson K, Hunt R, Hodgson JG, Cornelissen JHC, Rorison IH, Hendry GAF, Ashenden TW, Askew AP, Band SR, Booth RE, Bossard CC, Campbell BD, Cooper JEL, Davison AW, Gupta PL, Hall W, Hand DW, Hannah MA, Hillier SH, Hodkinson DJ, Jalili A, Liu Z, Mackey JML, Matthews N, Mowforth MA, Neal AM, Reader RJ, Reiling K, RossFraser W, Spencer RE, Sutton F, Tasker DE, Thorpe PC, Whitehouse J. 1997. Integrated screening validates primary axes of specialisation in plants. Oikos 79(2): 259-281.

Hallik L, Niinemets U, Wright IJ. 2009. Are species shade and drought tolerance reflected in leaf-level structural and functional differentiation in Northern Hemisphere temperate woody flora? New Phytologist 184(1): 257-274.

IPCC. 2007. Climate change 2007: the physical science basis. Contribution of Working Group I to the Forth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 1009.

Knapp A. 1984. Water relations and growth of three grasses during wet and drought years in a tallgrass prairie. Oecologia 65: 35-43.

Kocacinar F, Sage RF. 2003. Photosynthetic pathway alters xylem structure and hydraulic function in herbaceous plants. Plant Cell and Environment 26(12): 2015-2026.

Larcher W. 1973. Physiological plant ecology, $2^{\text {nd }}$ edition. Heidelberg, Germany: SpringerVerlag, 236-245.

Lieberman D. 1982. Seasonality and Phenology in a dry tropical forest in Ghana. Journal of Ecology 70(3): 791-806.

McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA. 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist 178(4): 719-739.

Medina E, Garcia V, Cuevas E. 1990. Sclerophylly and oligotrophic environments: relationships between leaf structure, mineral nutrient content, and drought resistance in tropical rain forests of the Upper Rio Negro region. Biotropica 22(1): 51-64.

Nelson EA, Sage TL, Sage RF. 2005. Functional leaf anatomy of plants with crassulacean acid metabolism. Functional Plant Biology 32(5): 409-419.

Nippert JB, Fay PA, Knapp AK. 2007. Photosynthetic traits in C3 and C4 grassland species in mesocosm and field experiments. Environmental and Experimental Biology 60: 412-420.

Nippert JB and Knapp AK. 2007. Soil water partitioning contributes to species coexistence in tallgrass prairie. Oikos 116: 1017-1029.

Norman JM, Campbell GS. 1989. Canopy Structure In: Peaarcy RW, Ehleringer J, Mooney HA, Rundel PW, eds. Plant Physiological Ecology. New York, NY, USA: Chapman and Hall, 301-325.

Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB. 2003. The evolution of plant functional variation: Traits, spectra, and strategies. International Journal of Plant Sciences 164(3): S143-S164.

Reiger M, Duemmel M. 1991. Comparison of drought resistance among Prunus species from divergent habitats. Tree Physiology 11: 369-380.

Taiz L, Zeiger E. 2002. Plant Physiology, $3^{r d} e d$. Sunderland, MA, USA: Sinauer Associates.

Tilman D, Elhaddi A. 1992. Drought and biodiversity in grasslands. Oecologia 89(2): 257-264.

Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D. 2005. Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist 167(2): 493-508.

Touchette BW, Iannacone LR, Turner GE, Frank AR. 2007. Drought tolerance versus drought avoidance: A comparison of plant-water relations in herbaceous wetland plants subjected to water withdrawal and repletion. Wetlands 27(3): 656-667.

Towne EG. 2002. Vascular Plants of Konza Prairie Biological Station: An Annotated Checklist of Species in a Kansas Tallgrass Prairie. SIDA 20(1): 269-294.

Wahl, S. and P. Ryser. 2000. Root tissue structure is linked to ecological strategies of grasses. New Phytologist 148:459-471.

Watt AS. 1947. Pattern and process in the plant community. Journal of Ecology 35(1-2): 1-22.

Weaver JE. 1954. A seventeen-year study of plant succession in prairie. American Journal of Botany 41(1): 31-38.

Wilson GWT, Hartnett DC. 1998. Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. American Journal of Botany 85(12): 1732-1738.

Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. CavenderBares, T. Chapin, J. H. C. Cornelissen, M. Diemer, J. Flexas, E. Garnier, P. K. Groom, J. Gulias, K. Hikosaka, B. B. Lamont, T. Lee, W. Lee, C. Lusk, J. J. Midgley, M. L. Navas, U. Niinemets, J. Oleksyn, N. Osada, H. Poorter, P. Poot, L. Prior, V. I. Pyankov, C. Roumet, S. C. Thomas, M. G. Tjoelker, E. J. Veneklaas, and R. Villar. 2004. The worldwide leaf economics spectrum. Nature 428:821-827.

Tables and Figures

Table 2.1 Controlled environment schedule for lighting and temperature. Bulbs are a combination of fluorescence and actinic light representing the natural spectrum. Each chamber contains 4 each 1000 Watt high pressure sodium lamps and 1000 Watt metal halide lamps.

Time	$0: 00-5: 59$	$06: 00-21: 59$	$22: 00-23: 59$
Temperature	20 C	25 C	20 C
Lights	0 Lamps	8 Lamps	0 Lamps
Light Intensity	0	$1200 \mu \mathrm{~mol} / \mathrm{m}^{2} / \mathrm{s}$	0

Table 2.2 Field and laboratory leaf tissue measurements.
Means reported with standard deviations; P values calculated using Welch two-sample ttests ($\alpha=0.05$). $\mathrm{n}=50$

	Leaf Angle	Leaf Thickness	$\boldsymbol{\rho}_{\mathbf{L}}$	SLA
Lab	38.6 ± 27	0.22 ± 0.097	0.41 ± 0.145	156 ± 54.1
Field	51.8 ± 23	0.22 ± 0.133	0.44 ± 0.180	138 ± 59.3
\boldsymbol{P}	$<\mathbf{0 . 0 0 0 1}$	0.86	0.22	0.05

Figure 2.1 Linear correlation of experimental leaf angle and field leaf angle measurements. ($\mathrm{n}=50, \mathrm{r}=0.58, P<0.0001$)

Figure 2.2 PCA axes. Graminoids are represented by circles; forbs are represented by squares. Open symbols represent C_{4} photosynthesis; closed represent C_{3} photosynthesis. $\mathrm{n}=121$

Figure 2.3 Pairwise correlations. Graminoids are represented by circles; forbs are represented by squares. Open symbols represent \mathbf{C}_{4} photosynthesis; closed represent \mathbf{C}_{3} photosynthesis. (A) $\mathrm{n}=111, \mathrm{R}^{2}=0.29, P<0.0001(\mathrm{~B}) \mathrm{n}=105, \mathrm{R}^{2}=0.15, P<0.0001(\mathrm{C}) \mathrm{n}=$ $107, R^{2}=0.14, P<0.0001$ (D) $n=110, R^{2}=0.08, P=0.0034$

Table 2.3 Univariate statistics. $\mathbf{n}=121$

	$\begin{aligned} & \mathbf{A}_{\max }(\mu \mathrm{mol} \mathrm{CO} \\ & \mathbf{C O}_{2} \\ & \left.\mathbf{m}^{-2} \mathbf{s}^{-1}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{g}_{s}\left(\mathbf{m o l} \mathrm{H}_{2} \mathrm{O}\right. \\ & \left.\mathbf{m}^{-2} \mathbf{s}^{-1}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \Psi_{\text {crit }} \\ & \text { (bars) } \end{aligned}$	Leaf Thickness (mm)	Leaf Angle (degrees)	Avg. Root Diameter (mm)	$\begin{aligned} & \text { SLA } \\ & \left(\mathrm{cm}^{2} \mathbf{g}^{-1}\right) \\ & \hline \end{aligned}$	$\rho_{\mathrm{L}}\left(\mathrm{g} / \mathrm{cm}^{-3}\right)$	$\begin{aligned} & \mathbf{S R L} \\ & \left(\mathbf{m ~ g}^{-1}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \rho_{\mathrm{R}} \\ & \left(\mathrm{~g} \mathrm{~cm}^{-3}\right) \\ & \hline \end{aligned}$	Fractio n Root
Mean	10.3	0.131	-46.7	0.216	38.6	0.273	156.1	0.406	99.1	0.304	0.391
Standard											
Deviation	4.3	0.062	20.6	0.097	27.2	0.088	54.1	0.145	70.6	0.097	0.148
Max	24.5	0.303	-11.2	0.568	90.0	0.455	315.5	0.862	437.4	0.586	0.835
Median	10.2	0.124	-40.0	0.196	40.0	0.268	152.9	0.391	81.9	0.295	0.362
Min	2.0	0.028	-89.0	0.081	0.0	0.097	54.9	0.100	17.1	0.105	0.122

Table 2.4 Pair-wise correlations and P-values for ten primary traits. P-values in the upper right and correlation coefficients in the lower left are bolded for statistical significance ($\alpha=$ 0.05).

	$\mathbf{A}_{\text {max }}$	$\mathrm{g}_{\text {s }}$	$\Psi_{\text {crit }}$	Leaf Thickn ess	Leaf Angle	Avg. Root Diamet er	$\boldsymbol{\rho}_{\text {L }}$	$\rho_{\text {R }}$	Shoot Mass	Root Mass
$\mathbf{A}_{\text {max }}$	---	0.001	0.88	0.10	0.45	0.18	0.30	0.41	0.60	0.82
$\mathrm{g}_{\text {s }}$	0.70	---	0.90	0.001	0.43	0.07	0.02	<0.01	<0.001	0.02
$\Psi_{\text {crit }}$	-0.01	0.01	---	<0.01	<0.001	<0.001	<0.001	0.09	0.23	0.43
Leaf Thickness	0.15	0.30	0.28	---	0.72	<0.001	<0.001	<0.01	0.19	0.24
Leaf Angle	0.07	0.08	-0.39	-0.04	---	<0.01	0.21	0.74	0.18	0.08
Avg. Root Diameter	0.12	0.17	0.54	0.42	-0.26	---	<0.001	<0.001	<0.01	0.62
$\rho_{\text {L }}$	-0.10	-0.22	-0.37	-0.53	0.13	-0.44	---	0.05	<0.001	0.61
$\rho_{\text {R }}$	-0.08	-0.26	-0.16	-0.24	0.03	-0.30	0.18	---	0.83	0.11
Shoot Mass	-0.05	-0.33	-0.12	-0.12	-0.13	-0.25	0.36	0.02	---	<0.001
Root Mass	-0.02	-0.21	-0.08	0.11	0.17	-0.05	0.05	0.15	0.45	---

Table 2.5 Eigenvectors and eigenvalues resulting from rotation in Principal Component Analysis. Bold values represent a significant contribution to the axis. Eigenvalues are listed for each axis with the cumulative percentage of variation explained. $n=121$

Eigenvectors	Axis 1	Axis 2	Axis 3
Avg. Root Diameter	$\mathbf{0 . 8 0}$	-0.02	-0.10
Leaf Thickness	$\mathbf{0 . 7 1}$	-0.31	-0.10
ρ_{L}	$\mathbf{- 0 . 7 1}$	-0.13	0.12
$\Psi_{\text {crit }}$	$\mathbf{0 . 7 0}$	0.30	0.19
ρ_{R}	$\mathbf{- 0 . 4 1}$	-0.20	0.08
Leaf Angle	$\mathbf{- 0 . 4 0}$	$\mathbf{0 . 4 7}$	0.12
$\mathrm{~g}_{\mathrm{s}}$	0.24	$\mathbf{0 . 8 2}$	-0.29
$\mathrm{~A}_{\text {max }}$	0.12	$\mathbf{0 . 8 0}$	-0.02
Root Mass	0.02	0.05	$\mathbf{0 . 8 9}$
Shoot Mass	-0.18	-0.19	$\mathbf{0 . 7 6}$
Eigenvalues	$\mathbf{2 . 8}(\mathbf{2 8 . 3 \%})$	$\mathbf{1 . 7}(\mathbf{4 5 . 7 \%)}$	$\mathbf{1 . 4 (\mathbf { 5 9 . 3 \% })}$

Table 2.6 Forbs: eigenvectors and eigenvalues resulting from the rotated PCA axes containing forb species. Bold values represent a significant contribution to the axis. Eigenvalues are listed for each axis with the cumulative percentage of variation explained. $\mathrm{n}=92$

Eigenvector	Axis 1	Axis 2	Axis 3
$\mathrm{A}_{\text {max }}$	$\mathbf{0 . 8 0}$	0.12	-0.14
$\mathrm{~g}_{\mathrm{s}}$	$\mathbf{0 . 7 1}$	0.25	$\mathbf{- 0 . 3 6}$
Avg. Root Diameter	$\mathbf{0 . 6 3}$	0.17	0.02
$\Psi_{\text {crit }}$	$\mathbf{0 . 4 7}$	-0.24	-0.04
ρ_{R}	$\mathbf{- 0 . 4 7}$	-0.09	-0.11
ρ_{L}	-0.32	$\mathbf{- 0 . 6 2}$	0.08
Leaf Thickness	0.31	$\mathbf{0 . 7 4}$	0.28
Leaf Angle	-0.15	$\mathbf{0 . 7 6}$	-0.15
Shoot Mass	-0.06	$\mathbf{- 0 . 3 9}$	$\mathbf{0 . 8 0}$
Root Mass	-0.05	0.24	$\mathbf{0 . 8 3}$
Eigenvalue	$\mathbf{2 . 8 (\mathbf { 2 8 . 2 \% })}$	$\mathbf{1 . 5}(\mathbf{4 3 . 5 \%})$	$\mathbf{1 . 4}(\mathbf{5 7 . 2 \%})$

Table 2.7 Graminoids: Resulting eigenvectors and eigenvalues from the rotated PCA axes containing graminoid species. Bold values represent a significant contribution to the axis. Eigenvalues are listed for each axis with the cumulative percentage of variation explained. n $=29$

Eigenvector	Axis 1	Axis 2	Axis 3
Leaf Thickness	$\mathbf{0 . 7 6}$	-0.03	0.05
Leaf Angle	$\mathbf{0 . 6 7}$	0.12	-0.18
$\Psi_{\text {crit }}$	$\mathbf{0 . 6 3}$	0.11	$\mathbf{- 0 . 4 4}$
ρ_{L}	$\mathbf{0 . 5 1}$	$\mathbf{0 . 3 5}$	-0.02
Avg. Root Diameter	$\mathbf{0 . 4 8}$	0.25	0.09
$\mathrm{~A}_{\max }$	$\mathbf{0 . 3 7}$	0.19	$\mathbf{0 . 7 7}$
ρ_{R}	-0.30	$\mathbf{0 . 6 4}$	0.29
$R_{\text {oot Mass }}$	0.05	$\mathbf{0 . 8 2}$	-0.08
Shoot Mass	0.12	$\mathbf{0 . 6 8}$	$\mathbf{- 0 . 3 8}$
$\mathrm{~g}_{\mathrm{s}}$	0.00	-0.20	$\mathbf{0 . 7 7}$
Eigenvalue	$\mathbf{2 . 2}(\mathbf{2 2 \%})$	$\mathbf{1 . 9}(\mathbf{4 1 . 1 \%})$	$\mathbf{1 . 5 (5 6 . 4 \%)}$

Table 2.8 Multiple regression with categorical variables, general linear model.
For each contrast I report least squares means (LSM) and partial $\mathbf{R}^{\mathbf{2}}$, each contrast's proportion of the total variation explained by the model $(\alpha=0.05)$.

	Axis 1			Axis 2			Axis 3		
	\boldsymbol{P}	Partial \mathbf{R}^{2}	LSM	\boldsymbol{P}	Partial \mathbf{R}^{2}	LSM	\boldsymbol{P}	Partial \mathbf{R}^{2}	LSM
Growth Form	<0.0001*	0.50		0.0002*	0.10		0.02	0.04	
Grass Forb			$\begin{aligned} & -1.27 \\ & 0.35 \end{aligned}$			$\begin{aligned} & 0.55 \\ & -0.36 \end{aligned}$			$\begin{aligned} & 0.39 \\ & -0.26 \end{aligned}$
Photosynthetic Type	0.79	4.06E-04		0.02	0.04		0.82	$\begin{aligned} & 3.66 \mathrm{E}- \\ & 04 \end{aligned}$	
$\begin{aligned} & \text { C3 } \\ & \text { C4 } \end{aligned}$			$\begin{array}{r} -0.43 \\ -0.49 \end{array}$			$\begin{aligned} & 0.42 \\ & -0.23 \end{aligned}$			$\begin{aligned} & 0.03 \\ & 0.10 \end{aligned}$
Life History	0.64	0.001		0.45	0.004		0.15	0.01	
Annual Perennial			$\begin{array}{r} -0.49 \\ -0.42 \end{array}$			$\begin{aligned} & 0.003 \\ & 0.19 \end{aligned}$			$\begin{aligned} & 0.22 \\ & -0.09 \end{aligned}$
Growth Form x PS Type							0.03	0.03	
Life History x PS Type				0.04	0.03				
Model R ${ }^{2}$	0.50			0.16			0.09		

Table 2.9 Pair-wise correlations between PCA axes and secondary plant traits.
Bold values represent statistically significant P values ($\alpha=0.05$).

	Axis 1			Axis 2		Axis 3	
	r	P	R	P	r	P	
SLA	$\mathbf{- 0 . 2 7}$	$<\mathbf{0 . 0 1}$	-0.08	0.40	$\mathbf{- 0 . 2 3}$	$\mathbf{0 . 0 1}$	
SRL	$\mathbf{- 0 . 6 0}$	$<\mathbf{0 . 0 0 1}$	0.10	0.28	0.01	0.87	
Fraction Root	$\mathbf{0 . 2 2}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 3 2}$	$<\mathbf{0 . 0 0 1}$	0.08	0.37	
Myc. Responsiveness	0.32	0.13	-0.25	0.24	0.04	0.84	
Myc. Colonization	0.09	0.68	-0.20	0.34	0.22	0.31	
Water Use Efficiency	-0.05	0.63	0.09	0.35	$\mathbf{0 . 2 3}$	$\mathbf{0 . 0 1}$	
Date of First Bloom	-0.06	0.60	-0.09	0.44	0.13	0.27	

CHAPTER 3 - Predicting Abundance across Multiple Scales Using Plant Functional Traits

Introduction

Environmental stress is a key regulator of plant growth, as plants are impacted by a range of stresses during their lifetime. Often plants are well-adapted to a distinct set of stresses while being negatively impacted by others. Resource limitation is a prominent stress that plays a role in structuring plant communities and restraining fecundity. For example water, light, and nutrients are critical for plant growth and maintenance. Lacking one would result in plant death while low levels limit growth rates and other physiological processes. While all of these other biotic and abiotic factors such as disturbance, competition, pathogens, and herbivory also factor into plant community structure, the critical role of resource limitation is addressed as the primary control . Natural selection under many conditions has led to variation in traits that increase fitness in response to these stresses. Disparity in plant performance within a stressed environment is due primarily to differences in plant characteristics or traits.

Species fitness is influenced by adaptive traits in a given environment. All living plants must be suited to some degree to their local environment to initially germinate and become established. Further survival is contingent on the traits possessed by a plant for resource acquisition, competition, and defense. The most successful plants should be those that are well adapted to the stresses of a given environment, a result of beneficial traits. Traits have been used to understand community structure (Tilman and Elhaddi, 1992; Diaz et al., 1998) and ecosystem function (Craine et al., 2002; Craine and Lee, 2003) as well as possible changes imposed by biotic and abiotic factors (light environment (Reich et al., 2002), climate change (Diaz et al., 1998), invasive species (Craine and Lee, 2003), disturbance (Craine et al., 2001), and nutrient
availability (Craine et al., 2001)). As plant traits are found to consistently correlate with a specific stress or environment, these predictive characteristics are called functional traits.

Plant functional traits are often correlated with each other leading to the formation of discrete groups that describe particular survival strategies (Grime, 1977; Chapin, 1980; Grime et al., 1997; Diaz et al, 1998; Craine et al, 2001; Tjoelker et al., 2005). These suites of traits are responsible for the performance of a plant in its environment. For example, species in low nutrient environments often have dense root and leaf tissues, high leaf longevity, high nitrogen use efficiency (NUE), and high root: shoot ratios; all traits that allow the preservation of nutrientrich tissues (Chapin, 1980; Grime et al., 1997; Craine et al, 2001; Craine et al, 2002). Species successful in high nutrient environments have the reverse; high relative growth rates, low leaf and root tissue density, and low root: shoot ratios that allow rapid growth to take advantage of the available resources. In water-stressed environments there is less agreement about the traits that make up the survival strategy. Reich et al. (2003) suggests that plants should have high water use efficiency, thick leaves and cuticles, thick-walled cells, and low SLA while Tucker shows that a drought tolerance strategy in response to pulsed water availability contains thin, dense roots and leaves, high physiological drought tolerance, and high leaf angles (Chapter 2, this volume). These strategies should reflect traits that overcome the most prominent local environmental stress or resource limitation.

Further improving the utility of functional trait strategies would allow one to use simple measurements of a single or a few traits to establish the strategy being employed rather than performing a full profile or experimental assessment. In this way, plant functional traits or groups of traits should also be useful as predictors of relative abundance or growth at multiple scales, as the plants with the most beneficial attributes should be the most abundant. Ecological
gradients are useful for comparing differences in limiting resources that should result in trait differences (Diaz et al., 1998; Craine et al., 2001; Craine and Lee, 2003) and variable abundance. Although plant survival occurs at the microhabitat scale, functional trait success should be evaluated at various scales. Plot-level or watershed-level assessments should average across all microhabitats or a representative sample within that physical space to yield the sum of all successful strategies within the space. Landscape scale assessments amplify this process. The traits that best predict abundance at this scale are those that overcome or are well-adapted for the most common or most limiting stressor across all microsites.

In the North American tallgrass prairie stresses may be natural or anthropogenic. As primary drivers of the tallgrass prairie climate, grazing, and fire influence plants directly as well as impacting soil characteristics (Hulbert, 1969), nutrient availability (Blair, 1997), and the entire biotic community. This ecosystem is characterized by extremes and unpredictability. Both rainfall and temperature are variable and drought and excess rainfall are both relatively common. Historically bison grazed throughout the Great Plains. Their grazing behaviors cause marked changes in the plant community (Towne et al., 2005) by increasing the abundance of forbs and reducing that of grasses (Hartnett et al., 1996; Collins et al., 1998; Towne et al., 2005). Nutrient availability is also impacted, as digested plant matter is re-deposited and feeds back into the nitrogen cycle, ultimately leading to greater nitrogen availability in grazed areas (Blair, 1997; Johnson and Matchett, 2001). Predicting the responses of plants to grazing conditions may lead one to look for plants that grow rapidly to take advantage of the nutrient availability and result in low tissue density and high specific leaf area (Grime et al., 1997; Wahl and Ryser, 2000; Craine and Lee, 2003). Fire affects nutrient availability and plant communities as well, typically
decreasing nutrient availability and increasing cover of grasses when burned annually. Testing a variety of scales should take all of these drivers into consideration.

My primary interest is finding traits that best predict relative abundance in tallgrass prairie. A study conducted on 76 species in Minnesota grasslands was able to explain up to 80% of the variation in relative abundance in fertilized plots using plant traits (Craine et al., 2001). Drought tolerance traits should be significant predictors of relative abundance across a landscape where drought is ubiquitous. The importance of these traits is hypothesized to vary across burned, unburned, grazed and ungrazed watersheds, as water stress is likely to vary among them (Seastedt et al., 1991; Blair, 1997; Johnson and Matchett, 2001). I hypothesized that drought tolerance traits should be the best predictors of drought tolerance in upland, ungrazed, and burned sites where water is frequently less available than in lowland, grazed, and unburned sites (Seastedt et al., 1991; Johnson and Matchett, 2001). Nutrients are also limiting in this ecosystem and are hypothesized to be less available in upland, ungrazed, and burned sites. Low nutrient traits will likely be prevalent in these sites. Finally, mycorrhizal root colonization and mycorrhizal responsiveness should be important in all treatments as many prairie grasses and forbs are obligate mycotrophs and the association often improves resource acquisition and competitive ability (Wilson and Hartnett, 1997). Determining which traits best correlate to abundance under specific conditions can give me insight into the survival strategies present in abundant species in prairie communities.

Methods

Site Description

Konza Prairie Biological Station (KPBS) is a 3487 ha native tallgrass prairie located in the Flint Hills of northeastern Kansas, USA (39 05’N, 9635^{\prime} W). The landscape is dominated by low rolling hills composed of alternating layers of shale and limestone. The flat tops of these hills often have thin rocky soil (Florence, cherty clay loam soils) that drains rapidly while the lowland soils (Tully, silty clay loam soils) have deep fertile soils with more available moisture (Nippert and Knapp, 2007). Considered a mesic prairie, Konza supports over 550 vascular plant species (Towne, 2002). The plant community is primarily herbaceous with dominant warm season grasses and a diverse suite of forbs. KPBS receives an average of 835 mm of precipitation annually, most of which (75%) falls during the growing season. The mean annual temperature for KPBS is $13^{\circ} \mathrm{C}$. The average low for the year is $-3^{\circ} \mathrm{C}$ in January and the average high of 27 ${ }^{\circ} \mathrm{C}$ occurs in July.

KPBS has been studying the ecological effects of various land management practices for 27 years by assigning over 60 watersheds an experimental fire and grazing treatment. The sitelevel experimental design at KPBS was set up by Hulbert in 1983 (Hulbert and Wilson, 1983) and treatments in many of the plots have been continued to present day. Prescribed burns are assigned to each watershed at one, two, four, or twenty year intervals. Four watersheds are grazed by cattle while 10 more are grazed by the native ungulates Bos bison (bison). Controlled burns take place in the spring (mid March-late April).

Abundance Measurements

As part of the long term research at KPBS, plant composition has been sampled twice annually (late May-June and mid-August - September) since 1983, to capture canopy cover and frequency values for both early- and late-season species. Twenty watersheds were chosen to
represent the six land management treatments; grazed and ungrazed watersheds that are burned annually or infrequently (every 20 years) in the uplands or lowlands. In each watershed there are eight 50-meter permanent transects; half of which are located in shallow, rocky upland soil while the other half are located in deep, fertile lowland soil. Relative abundance was sampled in five permanently marked circular plots $\left(10 \mathrm{~m}^{2}\right)$ that are evenly spaced along each transect. A modified Daubenmeier cover scale (Bailey and Poulton, 1968) was used to visually estimate species cover.

Average relative abundance in the watershed for each year was calculated by selecting the larger abundance for each species from the two sample periods and using the midpoint of the cover class to average across all upland or lowland plots in the watershed. I averaged across 17 years (1993-2009) to yield a single relative abundance value for each prairie species. Relative abundance for each watershed was combined across similar treatments to gain average values for each treatment combination as well as values of maximum contrast. For example, abundance was averaged across all grazed watersheds to gain a value of single relative abundance for the grazed treatment that could be compared to the ungrazed treatment. This was done for grazed, ungrazed, annual burns (burned), 20 year burns (unburned), upland, and lowland treatments. These categories will be referred to as contrasts. Finally, I averaged across all treatments to get a single abundance value for each species across all of Konza.

Throughout the remainder of the paper, watershed treatments will be named using a three character code. The first place designates grazed (G) or ungrazed (U). The second character describes the burn frequency, 1 for frequent and 20 for infrequent. The third character refers to the topographic position, upland Florence soils (f) or lowland Tully soils (t). For example the
code U20f refers to the average value of all sample plots that were ungrazed, burned infrequently, and found in the uplands.

Plant Traits Measurements

Of the 304 species recorded over the 17 years of abundance sampling, 84 of these were examined for drought tolerance traits by Tucker (Chapter 2, this volume). Tallgrass prairie species were grown from seed in a growth chamber for at least 8-12 weeks. Upon flowering or reaching a size sufficient for measurement, maximum physiological measurements were taken using a Li-6400 portable photosynthesis machine (LICOR Biosciences, Lincoln, NE). Plants were exposed to a drought period during which they were monitored for leaf stomatal conductance until the plant stopped conducting. At this point the critical water potential ($\Psi_{\text {crit }}$) was measured, an indicator of physiological tolerance to drought. Morphological leaf and root traits including leaf angle, leaf thickness, leaf tissue density, average root diameter, root tissue density, root mass, shoot mass, and fraction root were also measured. Average date of first bloom for many of the study species was obtained from KPBS and mycorrhizal responsiveness and mycorrhizal root colonization data was reported by Wilson and Hartnett (1998).

JMP (JMP 8.0.2, SAS Institute, Inc., Cary, NC) was used in all analyses. Missing traits data values were first filled using an average for the trait to eliminate instability in the models. All abundance values were \log transformed prior to analysis. Stepwise multiple linear regressions were performed for each treatment and each contrast using AIC to determine best fit.

Results

Critical water potential did not predict relative abundance on Konza. Its effectiveness was limited to upland and infrequent contrasts and three treatment combinations (Tables and Figures

Table 3.1). Two other drought tolerance traits, root tissue density and leaf angle were significant predictors of relative abundance across all of KPBS $\left(R^{2}=0.19\right.$, Table 3.2). Root tissue density was also positively related to upland and lowland abundance, frequently burned plots, grazed and ungrazed plots as well as four out of the eight treatment combinations in the multivariate analysis. In pairwise comparisons to all contrasts and treatment combinations, root tissue density was significant in all but one comparison (Tables and Figures

Table 3.1). Surpassing the other traits in frequency and significance, root tissue density was the best single predictor of abundance I measured in this ecosystem.

Contrasting treatments allowed the assessment of individual management components such as presence and absence of grazing and frequency of burns (frequent or infrequent), as well as topographic position (upland or lowland). Root tissue density was the strongest single predictor in the burned, ungrazed, and lowland contrasts (Tables and Figures

Table 3.1). In the upland contrast, critical water potential was the best single predictor and it explained more variation than root tissue density and average root diameter in the model (partial $\mathrm{R}^{2}=0.11,0.07,0.05$, Table 3.2). Lowland abundance was described by root tissue density alone, but only explained 11% of the variation. In the burned watersheds, root tissue density and leaf angle explain 20% of the total variation. The best model to describe unburned watersheds contained a single variable, leaf tissue density, which only explained 8% of the variation (Table 3.2). However, through linear regression, critical water potential was also shown to be a significant predictor in unburned watersheds $(\mathrm{P}=0.01$, Tables and Figures

Table 3.1). Models for grazed and ungrazed both explained 20% of the variation in abundance, but the component traits shared only one commonality, root tissue density (Table 3.2). Abundant plants in ungrazed watersheds had dense roots, thin leaves, a large allocation to
roots and a small allocation to aboveground biomass. Grazed watersheds however, were best described by dense roots and a high leaf angle [very similar to overall abundance]. The best single predictor for each differed as well, in ungrazed watersheds it was root tissue density, while in grazed watersheds leaf angle was most successful (Tables and Figures

Table 3.1).
Both upland grazed treatment combinations had models composed of root and leaf traits. They were both predicted by high leaf angle and dense roots $\left(G 20 f, R^{2}=0.30 ; G 1 f, R^{2}=0.37\right.$; Table 3.2). Both lowland grazed sites were best described by a model with a single parameter, G20t by low conductance rates $\left(\mathrm{R}^{2}=0.11\right)$ and G1t by dense roots $\left(\mathrm{R}^{2}=0.11\right)$. Root mass was one of the largest contributing factors in the ungrazed treatments. It was the only parameter describing abundance in $\mathrm{U} 20 \mathrm{f}\left(\mathrm{R}^{2}=0.22\right)$. It was a component in the models for U 20 t and U1t (partial $\mathrm{R}^{2}=0.09,0.06$). Only U1f lacks root mass as a trait, as it is described by root tissue density alone $\left(R^{2}=0.22\right)$.

The following trends were present among treatment combinations and contrasts in the first multivariate analysis (Table 3.2). Four groups shared the paired traits root tissue density and leaf angle; overall abundance, frequently burned, grazed and G1f. These were all predicted to experience more water stress relative their opposites, but could be nutrient limited as well. Leaf angle, an indication of high light availability was seen in the grazed contrast and 3 out of 4 grazed treatments, overall abundance, the frequent contrast, and an ungrazed treatment (U20t). Root mass was consistent as it appeared in 3 out of 4 ungrazed treatments and the ungrazed contrast.

When mycorrhizal data was incorporated, sample size dropped dramatically ($\mathrm{n}<20$), but in many cases the explanatory power of the models improved (Table 3.3). For example, the
model for overall abundance described 19% of the variation in the first analysis, but with mycorrhizal data added the model changed to include leaf tissue density, low shoot mass, a high percent mycorrhizal root colonization, and explained 64% of the total variation. Again, the sample size dropped dramatically $(\mathrm{n}=19)$. Leaf tissue density also became more significant as a component trait with mycorrhizal traits in many treatments including upland, ungrazed, G1f, G1t, and U1t. Mycorrhizal data was not a component in any of the four 20 year burn combinations, but it was important in all four annually burned combinations.

Discussion

The plant traits I measured predict species relative abundance on Konza prairie. Several strategies are noted in the trait-abundance contrasts present among the various treatment combinations. I was able to describe up to 37% of the variability found in the G1f combination plots using root tissue density and angle $(\mathrm{n}=53$, Table 3.3) with the ten primary traits. When mycorrhizal data is incorporated, I can explain up to 70% in U1f with mycorrhizal root colonization alone (Table 3.3).

Tallgrass prairie has a number of limiting resources that tend to fluctuate based on loss and gain of nutrients and change in physical environments under grazing, burning, or climatic factors. At times there may even be multiple limiting factors in a single location (Seastedt and Knapp, 1993; Blair, 1997). Many of the models identified in this study suggest that plants are adapted to water stress, nutrient stress, or both. For example, low critical water potentials indicate plants that can tolerate high levels of water stress before gas exchange stops (Tucker, Chapter 2, this volume), while high leaf tissue density is often associated with low nutrient environments (Wahl and Ryser, 2000; Craine, 2009). Some of these models contain multiple traits that point to multiple resource strategies or the traits themselves have been shown to be
advantageous in response to different limiting resources. Determining the difference is problematic however, due to the limited understanding we currently have about drought tolerance as a resource strategy (Craine, 2009).

Root tissue density $\left(\rho_{\mathrm{R}}\right)$ appears to be among the most important traits in tallgrass prairie. Overall abundance on Konza and all of the contrasts except infrequent burning were predicted by root tissue density. High root tissue density has often been linked with low nutrient environments and tends to be correlated with high leaf tissue density (Wahl and Ryser, 2000). Dense roots have low turnover rates and are robust due to a high percentage of root stele (Wahl and Ryser, 2000). They also have a larger number of thin xylem elements with reinforced cell walls (Hacke et al., 2001) than less dense roots which could help prevent embolisms and subsequent cavitation as well as increase refill rates (Wahl and Ryser, 2000). The relationship between cavitation resistance and reduced water transport was discussed in the 2003 paper on plant functional trait tradeoffs (Reich et al., 2003). These vascular characteristics may be responsible for its performance as a drought tolerance trait in a recent study by Tucker (Chapter 2, this volume). It is not possible in this study to determine which is the more important function of this trait, but it likely functions to tolerate stress in multiple capacities.

These problematic overlaps in survival strategy leave many of the fire, grazing, and topographic treatments in the balance between water and nutrient limitation. Nearly every trait determined to be related to drought tolerance by Tucker (Chapter 2, this volume) for this species set also falls into the relatively well-defined category of low nutrient traits (Craine, 2009). Critical water potentials in the models help to pull out those areas where drought tolerance is sure to play a role; across upland sites, infrequent sites, and to a lesser degree in U20t. While this result confirms previous results that uplands are more water limited than lowlands (Briggs et al.,

1995; Nippert and Knapp, 2007), this trait is unsuccessful in predicting average abundance on Konza and many of the contrasts. It is probable that while water limitation plays a role in structuring all communities on Konza, critical water potential may not the best trait to represent adaptation to low water availability. It may be more successful, however in tolerating discrete drought events in this ecosystem which are most prevalent or severe in areas where water is commonly limiting.

Light limitation is another stress that occurs in some locations on Konza Prairie. While it does occur, light is less likely to be limiting than water or nutrients. Areas that experience high levels of light should exhibit an increase in allocation to belowground parts, as energy will be shifted to increase acquisition of limiting water or mineral resources (Craine, 2009). Maintaining a balance of these limiting factors allows the plant to maximize photosynthetic rates. This could be responsible for the positive correlation between areas of lower plant canopy such as annually burned treatments and root mass or root tissue density. Although grazing should lead to increased available light, Johnson and Matchett (2001) have shown that root mass is still much lower in annually burned grazed areas than ungrazed areas. I report high root mass in three out of four ungrazed treatment combinations except U1f where I see high root tissue density. I would expect to see the opposite resource allocation, allocation to shoots, in light-limited environments such as unburned prairies with thick plant canopies and dense surface litter. As limiting factors are known to shift on Konza, light limitation would be more easily detected by evaluating temporal rather than spatial gradients. While high shoot mass was not included in any of the models, light limitation may be better detected by sampling late in the growing season rather than using the methods employed here.

There are some treatments on Konza Prairie where my traits do not work very well. For example, the lowland and infrequent contrasts have very low R^{2} values contributed by single traits ($\rho_{\mathrm{R}}, \mathrm{R}^{2}=0.11 ; \rho_{\mathrm{L}} \mathrm{R}^{2}=0.08$,). G1t and G20 t each have models that explain only 11% of the total variation (with traits root tissue density and conductance respectively), echoing the low descriptive power seen in the lowland contrast. Furthermore, lowland, infrequent, and G20t do not improve with the introduction of mycorrhizal data as many other treatments did. While these traits are likely to be one part of the story, it is clear that the traits driving fitness under these conditions are not present in my traits set. While morphological traits may be important here, only further work can determine the nature of the missing traits. Although the explanatory power of the ten primary traits or trait sets used in the first analysis was often near 20%, the addition of more traits will likely increase the variation described by plant functional traits. For example, if critical water potential was important in a model, another trait that improves drought tolerance such as rooting depth may further improve the model.

The incorporation of mycorrhizal data added tremendous explanatory power to many of the treatments in the second multiple regression analysis; however, this was at the expense of sample size. This suggests two distinct possibilities. First, percent mycorrhizal colonization and percent mycorrhizal responsiveness as plant traits are likely very important in this ecosystem where many species are known to be obligate or facultative mycotrophs (Wilson and Hartnett, 2008). Naturally, in a system where mycorrhizal symbiosis confers a competitive advantage, traits involving this relationship should strongly influence relative abundance. Therefore, collecting data for mycorrhizal root colonization and mycorrhizal responsiveness on a broader species set should add descriptive power to whole communities of prairie plants.

Alternatively, the increased R^{2}, s may be due to the fact that the species with mycorrhizal data were primarily common species and lacked the rare and subdominant component included in the remainder of the plant trait measurements. Furthermore, reducing the sample size is likely to reduce sampling of functional groups or guilds that may also respond differentially to mycorrhizae. Therefore, mycorrhizal colonization may be a good descriptor of these common species, but I am unable to compare the effect on non-dominant species. It is possible that mycorrhizae are responsible for maintaining high abundance in common species but are not responsible for the success of rare species. Either way, these mycorrhizal trait relationships in tallgrass prairie ecosystems are important because ecosystem function is likely much more dependent on the success and dynamics of these common species than the less common ones.

A trend in this data is the repeated pairing of mycorrhizal root colonization to leaf tissue density. There is also a single relationship with mycorrhizal responsiveness. Although this relationship is unlikely to be causal, the traits may be indirectly related. Leaf tissue density is commonly measured in the functional trait literature and is associated with low relative growth rates, long leaf life span, and low rates of nutrient turnover (Ryser, 1996; Craine and Lee, 2003); all of which are beneficial in low productivity environments. Additionally, dense leaves have high tensile strength and are thought to be more resistant to damage and herbivory, making this adaptation potentially beneficial in grazed areas. Mycorrhizae are also commonly adapted to low-nutrient plants, but more work will have to be done to determine the source of this link between functional traits.

Although the thirteen traits I chose as predictors of relative abundance did not explain all of the variation in the data set, there was a relatively high degree of descriptive power especially when the range of species and other possible sources of variation are taken into consideration.

This work confirms that adaptive plant traits are employed in areas where water and nutrients are the limiting factors. These two survival strategies share several traits including root tissue density, leaf tissue density, and leaf thickness. Understanding the nuances of the two strategies will require a more elegant experiment to parse the relative contribution to each, but a few clues can be found in this experiment. For example, I saw that morphological traits were seen in nearly every treatment instead of the physiological responses predicted by the low nutrient plant strategy. This fits closely with the drought tolerance strategy assembled by Tucker (Chapter 2, this volume), where drought tolerance was composed of critical water potential and leaf and root morphological traits. Critical water potential did not strongly predict abundance across all of Konza as expected, suggesting that it may not be the best trait to represent drought tolerance or that nutrient stress may be more important in some areas. Despite my uncertainty about Konza's primary stressors, I know that the most prominent traits to use to predict success on Konza include root tissue density, mycorrhizal colonization and leaf tissue density. Furthermore, these traits can be used as tools to predict species success, invasibility, or likelihood of establishment in prairie restoration situations. The next step is to fill in the gaps in my models both by improving mycorrhizal data and incorporating additional hydraulic traits. The development of a strong drought tolerance strategy will require more experimentation and testing in other ecosystems, but will fill a critical niche in scientific understanding of plant functional traits.

References

Bailey AW, Poulton CE. 1968. Plant communities and environmental interrelationship in a portion of the Tillamook burn, northwestern Oregon. Ecology 49(1): 1-13.

Blair, JM. 1997. Fire, N availability, and plant response in grasslands: a test of the transient maxima hypothesis. Ecology 78(8): 2359-2368.

Bremer DJ, Ham JM. 1999. Effect of spring burning on the surface energy balance in a tallgrass prairie. Agricultural and Forest Meteorology 97: 43-54.

Briggs JM, Knapp AK. 1995. Interannual variability in primary production in tallgrass prairie: climate, soil moisture, topographic position, and fire as determinants of aboveground biomass. American Journal of Botany 82(8): 1024-1030.

Chapin FS. 1980. THE MINERAL-NUTRITION OF WILD PLANTS. Annual Review of Ecology and Systematics 11: 233-260.

Collins SL, Knapp AK, Briggs JM, Blair JM, Steinauer EM. 1998. Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 280: 745-747.

Collins SL, Smith MD. 2006. Scale-dependent interaction of fire and grazing on community heterogeneity in tallgrass prairie. Ecology 87(8): 2058-2067.

Craine JM. 2009. Resource strategies of wild plants. Princeton, NJ, USA: Princeton University Press, 65-118, 251-281.

Craine JM, Froehle J, Tilman DG, Wedin DA, Chapin FS. 2001. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93(2): 274-285.

Craine JM, Lee WG. 2003. Covariation in leaf an root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia 134: 471-478.

Craine JM, Tilman D, Wedin D, Reich P, Tjoelker M, Knops J. 2002. Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. Functional ecology 16: 563-574.

Diaz S, Cabido M, Casanoves F. 1998. Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science 9(1): 113-122.

Grime JP. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist 111(982): 11691194.

Grime JP, Thompson K, Hunt R, Hodgson JG, Cornelissen JHC, Rorison IH, Hendry GAF, Ashenden TW, Askew AP, Band SR, Booth RE, Bossard CC, Campbell BD, Cooper JEL, Davison AW, Gupta PL, Hall W, Hand DW, Hannah MA, Hillier SH, Hodkinson DJ, Jalili A, Liu Z, Mackey JML, Matthews N, Mowforth MA, Neal AM, Reader RJ, Reiling K, RossFraser W, Spencer RE, Sutton F, Tasker DE, Thorpe PC, Whitehouse J. 1997. Integrated screening validates primary axes of specialisation in plants. Oikos 79(2): 259-281.

Hacke UG, Sperry, JS.2001. Functional and ecological xylem anatomy. Perspectives in Plant Ecology, Evolution and Systematics, 4(2): 97-115.

Hartnett DC, Hickman KR, Fischer Walter LE. 1996. Effect of bison grazing, fire, and topography on floristic diversity on tallgrass prairie. Journal of Range Management. 49: 413-420.

Hulbert LC. 1969. Fire and litter effects in undisturbed bluestem prairie in Kansas. Ecology 50(5): 874-877.

Hulbert LC, Wilson JK. 1983. Fire interval effects on flowering of grasses in Kansas bluestem prairie. Proceedings of the Seventh North American Conference (C.L. Kucera, editor). Southwest Missouri State University; Springfield, Missouri, 255-257.

Johnson LC and Matchett JR. 2001. Fire and grazing regulate belowground processes in tallgrass prairie. Ecology 82(12): 3377-3389.

Knapp A. 1984. Water relations and growth of three grasses during wet and drought years in a tallgrass prairie. Oecologia 65: 35-43.

Knapp AK, Seastedt TR. 1986. Detritus accumulation limits productivity of tallgrass prairie. Bioscience 36(10): 662-668.

Nippert JB and Knapp AK. 2007. Soil water partitioning contributes to species coexistence in tallgrass prairie. Oikos 116: 1017-1029.

Reich PB, Wright IJ, Cavendar-Bares J, Craine JM, Oleskyn J, Westoby M, Walters MB. 2002. The evolution of plant functional variation: traits, spectra and strategies. International Journal of Plant Science 164: 143-164.

Ryser P. 1996. The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses. Functional Ecology 10(6): 717-723.

Seastedt TR, Briggs JM, Gibson DJ. 1991. Controls of Nitrogen limitation in tallgrass prairie. Oecologia 87: 72-79.

Tilman D, Elhaddi A. 1992. DROUGHT AND BIODIVERSITY IN GRASSLANDS. Oecologia 89(2): 257-264.

Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D. 2005. Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist 167(2): 493-508.

Towne EG. 2002. Vascular Plants of Konza Prairie Biological Station: An Annotated Checklist of Species in a Kansas Tallgrass Prairie. SIDA 20(1): 269-294.

Towne EG, Hartnett DC, Cochran RC. 2005. Vegetation trends in tallgrass prairie from bison and cattle grazing. Ecological Applications, 15(5): 1550-1559.

Towne EG, Kemp KE. 2008. Long-term response patterns of tallgrass prairie to frequent summer burning. Rangeland Ecology Management. 61: 509-520.

Vinten MA, Hartnett DC, Finck EJ, Briggs JM. 1993. Interactive effects of fire, bison (Bos bison), grazing and plant community composition in tallgrass prairie. American Midland Naturalist, 129: 10-18.

Wahl S, Ryser P. 2000. Root tissue structure is linked to ecological strategies of grasses. New Phytologist 148:459-471.

Wilson GWT and Hartnett DC. 1997. Effects of mycorrhizae in on plant growth and dynamics in experimental tallgrass prairie microcosms. American journal of Botany 84 (4): 478-482.

Wilson GWT, Hartnett DC. 1998. Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. American Journal of Botany 85(12): 1732-1738.

Tables and Figures

Table 3.1 Pairwise regressions for all traits and all treatments. Bold values indicate statistical significance. Estimate abbreviated "Est". ($\alpha=0.05$)

	$\mathrm{A}_{\text {max }}$		Cond.		$\Psi_{\text {crit }}$		Leaf Angle		Leaf Thickness		ρ_{L}		ρ_{R}		Avg Root Diameter		Root Mass		Shoot Mass	
	Est	P																		
Abundanc e	-0.01	0.78	-2.3	0.43	-0.01	0.12	0.02	0.01	-3.4	0.06	2.0	0.09	5.4	0.003	-0.6	0.78	0.001	0.03	-0.0002	0.57
Upland	-0.04	0.34	-0.8	0.78	-0.02	0.01	0.01	0.04	-3.0	0.11	1.5	0.26	4.9	0.01	-0.9	0.66	0.001	0.20	-0.0003	0.43
Lowland	-0.03	0.46	-4.6	0.12	-0.003	0.76	0.01	0.10	-3.0	0.10	1.4	0.24	5.3	0.004	-0.3	0.88	0.001	0.03	-0.0001	0.85
Grazed	-0.02	0.53	-2.2	0.42	-0.01	0.06	0.02	0.001	-3.2	0.05	2.2	0.04	4.4	0.01	-1.6	0.39	0.001	0.05	0.0000	0.95
Ungrazed	-0.03	0.47	-4.8	0.13	-0.01	0.43	-0.001	0.92	-4.4	0.04	1.5	0.32	6.1	0.004	-0.4	0.87	0.001	0.18	-0.0002	0.55
Frequent	0.01	0.87	-2.4	0.39	-0.01	0.22	0.01	0.06	-3.6	0.06	1.3	0.29	6.3	0.001	-0.5	0.80	0.001	0.05	-0.0003	0.44
Infrequent	-0.03	0.48	-1.4	0.61	-0.02	0.01	0.01	0.06	-3.0	0.08	2.7	0.02	3.5	0.04	-1.3	0.48	0.001	0.06	-0.0001	0.82
G1f	-0.03	0.44	-3.0	0.31	-0.02	0.02	0.02	0.004	-3.9	0.08	1.6	0.21	7.1	. 0002	-2.7	0.21	0.001	0.12	-0.0002	0.54
G1t	0.004	0.92	-3.6	0.18	-0.002	0.80	0.01	0.31	-2.5	0.16	1.1	0.33	4.4	0.01	-0.8	0.67	0.001	0.09	0.0003	0.40
G20f	0.001	0.99	1.4	0.65	-0.02	0.01	0.02	0.002	-0.9	0.71	1.8	0.17	4.3	0.02	-0.5	0.81	0.001	0.02	0.0001	0.79
G20t	-0.06	0.10	-6.7	0.01	-0.01	0.16	0.01	0.14	-2.1	0.21	2.4	0.03	3.4	0.04	-1.6	0.41	0.001	0.04	0.0004	0.19
U1f	0.01	0.90	-3.0	0.34	-0.01	0.32	0.01	0.51	-3.2	0.11	0.9	0.54	7.3	. 0003	-0.2	0.93	0.001	0.27	-0.0003	0.37
U1t	-0.07	0.17	-8.7	0.01	0.003	0.77	-0.01	0.46	-3.6	0.26	2.1	0.20	6.0	0.01	0.7	0.78	0.001	0.11	0.00004	0.92
U20f	0.03	0.57	-0.2	0.94	-0.02	0.06	0.01	0.13	0.5	0.85	-0.1	0.93	3.3	0.12	-1.2	0.59	0.002	0.001	0.001	0.18
U20t	0.01	0.87	-3.6	0.33	-0.02	0.05	-0.005	0.58	-3.9	0.22	2.6	0.07	4.4	0.04	-0.8	0.75	0.001	0.03	0.0004	0.42

Table 3.2 Stepwise multiple linear regression, containing 10 primary traits. Partial $\mathbf{R}^{\mathbf{2}}$ is the proportion of model \mathbf{R}^{2} contributed by each trait. Sum of Squares represented by SS. ($\alpha=0.05$)

Treatment	\mathbf{R}^{2}	n	Trait	$\text { Partial } \mathbf{R}^{2}$	\mathbf{P} value	Estimate	SS
Abundance	0.19	78	ρ_{R}	0.10	0.004	5.1	17.4
			Leaf Angle	0.09	0.01	0.02	15.2
Upland (f)	0.23	65	$\Psi_{\text {crit }}$	0.11	0.003	-0.03	15.3
			ρ_{R}	0.07	0.01	4.7	10.3
			Avg Root Diameter	0.05	0.04	5.1	6.9
Lowland (t)	0.11	73	ρ_{R}	-	0.004	5.3	17.7
Frequent (1)	0.20	72	ρ_{R}	0.15	0.00	6.251	22.1
			Leaf Angle	0.05	0.047	0.013	6.9
Infrequent (20)	0.08	72	ρ_{L}	-	0.02	2.7	10.4
Grazed (G)	0.20	75	Leaf Angle	0.12	0.002	0.02	15.4
			ρ_{R}	0.08	0.01	4.0	10.0
Ungrazed (U)	0.23	66	Root Mass	0.06	0.03	0.001	10.7
			Leaf Thickness	0.06	0.03	-5.0	10.5
			Shoot Mass	0.06	0.03	-0.001	10.3
			ρ_{R}	0.05	0.05	4.2	8.2
G 1 f	0.37	53	ρ_{R}	0.23	<0.0001	6.9	19.2
			Leaf Angle	0.14	0.002	0.02	11.7
G 1 t	0.11	62	ρ_{R}	-	0.01	4.4	9.9
G 20 f	0.30	52	Leaf Angle	0.19	0.000	0.02	16.7
			ρ_{R}	0.11	0.005	5.0	10.3
G 20 t	0.11	58	Conductance		0.01	-6.7	9.5
U1f	0.22	56	ρ_{R}	-	0.0003	7.3	23.8
U1t	0.22	49	Conductance	0.10	0.01	-9.6	14.2
			Root Mass	0.06	0.04	0.001	8.2
			Shoot Mass	0.06	0.05	-0.001	7.8
U 20 f	0.22	45	Root Mass	-	0.001	0.002	14.9
U 20 t	0.23	47	Root Mass	0.09	0.02	0.002	9.5
			Leaf Angle	0.07	0.03	-0.02	7.5
			$\Psi_{\text {crit }}$	0.06	0.04	-0.02	6.5

Table 3.3 Stepwise multiple linear regression containing Mycorrhizal data. Partial $\mathbf{R}^{\mathbf{2}}$ is the proportion of the model R^{2} contributed by each trait. Sum of Squares represented by SS. $(\alpha=0.05)$

Treatment	\mathbf{R}^{2}	n	Trait	Partial \mathbf{R}^{2}	P value	Estimate	SS
Abundance	0.64	19	ρ_{L}	0.36	0.001	5.7	10.5
			Shoot Mass	0.18	0.01	-0.002	5.1
			Myc Root Colonization	0.11	0.04	0.03	3.1
Upland (f)	0.61	18	ρ_{L}	0.37	0.004	3.7	4.4
			Myc Root Colonization	0.24	0.014	0.0	2.9
Lowland (t)	0.11	73	ρ_{R}	-	0.004	5.3	17.7
Frequent (1)	0.40	62	ρ_{R}	0.20	<. 0001	7.7	29.0
			Date first Bloom	0.11	0.001	0.01	16.6
			Leaf Angle	0.05	0.02	0.01	7.4
			Shoot Mass	0.04	0.04	-0.001	5.8
Infrequent (20)	0.09	72	Ycrit	-	0.01	-0.02	11.4
Grazed (G)	0.06	75	ρ_{L}	-	0.04	2.2	7.7
Ungrazed (U)	0.67	19	Myc Root Colonization	0.28	0.002	0.1	11.5
				0.21	0.01	5.2	8.8
			Shoot Mass	0.19	0.01	-0.002	7.8
G 1 f	0.63	18	ρ_{L}	0.43	0.002	3.63	4.3
			Myc Root Colonization	0.20	0.020	0.0	2.0
G 1 t	0.63	19	ρ_{L}	0.33	0.002	4.4	6.7
			Myc Responsiveness	0.31	0.003	0.01	6.3
G 20 f	0.18	52	Leaf Angle	-	0.002	0.0	14.4
G 20 t	0.11	58	Conductance	-	0.01	-6.7	9.5
U1f	0.70	17	Myc Root Colonization	-	<. 0001	0.069	19.9
U 1 t	0.68	16	Myc Root Colonization	0.26	0.02	0.05	6.2
			ρ_{L}	0.25	0.02	5.7	6.0
			$\Psi_{\text {crit }}$	0.18	0.04	0.03	4.3
U 20 f	0.22	45	Root Mass	-	0.001	0.002	14.9
U 20 t	0.27	41	Date first Bloom	-	0.001	0.02	21.4

CHAPTER 4-CONCLUSIONS

The Utility of Plant Functional Traits in Tallgrass Prairie

The utility of plant functional traits is found in their predictive capacity. To understand why a plant lives where it does, we must understand the adaptations that permit local survival. Plants are equipped with traits that allow continued existence in a particular environment (Diaz et al., 1998; Reich et al., 2003). Plants experience a number of stresses including heat, chilling, freezing, water limitation, anoxia, pathogens, excessive irradiation, light limitation, nutrient limitation, salt stress, competition, and herbivory. Without the option to leave, plants must tolerate the stresses in order to survive and reproduce. In the tallgrass prairie, water stress is ubiquitous. Natural climatic stochasticity leads to the possibility of drought throughout the growing season and as mentioned in Chapter 2, can impose a range of severities. As a result, prairie plants must harbor adaptations to survive periodic drought.

Although some short-term physiological responses to drought are understood, the mechanisms of drought tolerance are still largely unknown. Plant functional traits related to drought tolerance have not been given as much attention as those related to other environmental stresses, especially nutrient limitation. While the strategies employed by plants to overcome high and low light conditions, high and low nutrients conditions, and disturbances are easily outlined, drought tolerance is much more of a mystery (Craine, 2009). Work in this area has been undertaken much more fervently by agricultural scientists and geneticists. However, we still have a difficult time describing what enables a plant to tolerate drought events. In order to close the gap between nutrients and water, I used a familiar experimental protocol to address the question of drought tolerance in the tallgrass prairie (Grime et al., 1997; Craine et al., 2001).

Using 121 replicated species native to Konza Prairie, a temperate mesic grassland in northeastern Kansas, I addressed the following hypotheses. 1) Tallgrass prairie species will exhibit a broad range of abilities to tolerate drought due to intrinsic diversity in the plant community. 2) Plant functional traits are related to drought tolerance and can be used to predict drought tolerance in prairie species. 3) Plants will exhibit tradeoffs between stress tolerance and physiological activity including photosynthetic rate as more energy will need to be devoted to tolerance than carbon assimilation.

Using plants drawn from 22 families, I was able to investigate not only the most common Konza species, but the subdominant community members as well. In some cases I gathered unique data on previously unmeasured species. Plants exhibited great diversity in total size, biomass allocation, photosynthetic rate, physiological drought tolerance (Ψ crit), root characteristics, and leaf characteristics. This diversity illustrates the importance of expanding studies to include more representative samples of the communities being described. The range is best illustrated in Table A.11.

These traits were integrated using principal component analysis to understand which traits were related to drought tolerance. Physiological drought tolerance $\left(\Psi_{\text {crit }}\right)$ was the central index used to quantify each species' ability to tolerate drought conditions. Using both physiological and morphological plant characteristics I was able to assemble a suite of traits that was closely correlated to $\Psi_{\text {crit }}$ and that described the natural contrasts found in the data. Traits were well segregated into three axes that described drought tolerance, photosynthetic rate, and plant size. The drought tolerance axis explained 28% of the total variation and contained six plant traits. Plants with the tolerance strategy should have a low $\Psi_{\text {crit }}$, low average root diameter, thick leaves, high leaf tissue density, high root tissue density, and high leaf angle. Interestingly,
this profile mirrors many of the most common plants present in the ecosystem: grasses. Furthermore, the strategy seems to be more reliant on a consistent physical structure rather than physiological characteristics, suggesting that some plants, especially grasses are built to be drought tolerant.

My study supports physiological drought tolerance ($\Psi_{\text {crit }}$) as a reasonable metric of a plant's ability to tolerate water limitation and continue to photosynthesize. Plants with a high $\Psi_{\text {crit }}$ [close to zero] have low tolerance and stop conducting soon after stress occurs. Asclepias incarnata and Tradescantia ohiensis are good examples of species that can tolerate very little water stress. Plants with a very low $\Psi_{\text {crit }}[-5--9 \mathrm{MPa}]$ are able to continue gas exchange for a longer period of time even as water becomes more limiting. The most tolerant species measured in my study was Bouteloua curtipendula which was able to maintain conductance down to critical water potentials of -8.9 MPa .

The physiological traits fell out on Axis 2. Still describing a significant portion of the variation ($17 \%, \mathrm{n}=121$, Table 2.5), this axis is orthogonal to the drought tolerance axis, making the two independent of each other. Reduced physiological rates including photosynthesis, respiration, and relative growth rates are an integral part of the accepted stress tolerance strategy (Grime, 1977; Chapin, 1980; Craine, 2009). Removing them from my drought tolerance strategy suggests that surviving drought stress has more to do with morphology than physiological adaptations.

The work presented here provides clues to the traits that are responsible for plant survival in the drought-prone tallgrass prairie ecosystem. In order to predict drought tolerance in a species that has not been previously measured or tested, one or more of the traits in the tolerance strategy can be used as a screening tool. Pairwise correlations of these traits suggest that average root
diameter would be the best predictor, followed by leaf angle (Table 2.4). However, many species from this ecosystem may prove not to possess traits that promote drought tolerance. The tallgrass prairie also supports many species that are categorized as drought intolerant. Relying on a number of adaptations that allow them to escape or avoid drought, these species will complete their life cycles when water is less limiting. The key to diversity in tallgrass prairie is an assemblage of species that effectively exploits the available resources and harbors other adaptations that allow survival despite the somewhat unpredictable climate.

Once I had a better understanding of the traits leading to drought tolerance across a broad set of prairie species, I used the same plant traits measured in Chapter 2 to test against long term relative abundance from Konza Prairie. I first wanted to see if plant traits could predict relative abundance across a landscape. I hypothesized that traits would 1) predict relative abundance across all of Konza as well as 2) differentiate between treatments and 3) topographic positions.

I used the long term data collected across a matrix of fire and grazing treatments. Seventeen years of data were averaged to yield a single relative abundance value for each plant species found in each land management treatment. I generated statistical models using the plant traits to describe each individual treatment and their combinations. These predictions were successful in the majority of treatments with only 10% of the models describing less than 10% of the total variation. For Konza average relative abundance, the best predictors were root tissue density and leaf angle $\left(R^{2}=0.19\right)$. Root tissue density was important in 10 out of 15 models generated from the primary 10 traits. Among the treatments that were not well-described by the models [$\mathrm{R}^{2} \leq 0.11$ in both analyses] were infrequently burned, lowlands, and G20t (Table 3.2, Table 3.3).

When I assess similarities and difference in strategy among the fire and grazing treatments, there are complications. First, many of the treatments have traits in common, and few split easily into discrete groups. For example, root tissue density is shared by all but one of the contrasts (Infrequent). Root mass is easier to explain as it appears in 3 out of 4 ungrazed treatments and the ungrazed contrast. While I showed that root tissue density, leaf tissue density, leaf angle, leaf thickness, and average root diameter were all related to drought tolerance, I also know that they are all associated with the low nutrient strategy. This fact makes it impossible to differentiate between drought tolerance and low nutrient tolerance strategies in these treatments.

Incorporating mycorrhizal data from Wilson and Hartnett (1998) and phenology improved the fit of 9 models, suggesting a large contribution to abundance by mycorrhizal root colonization. However, this data was only available for 19 species, dropping the total number of species tested in the second analysis. Furthermore, many of the species included in the mycorrhizal data are dominant or common species, thereby eliminating many of the rare species included in the first analysis. While the inclusion of the mycorrhizal data illustrated the link between relative abundance and mycorrhizal symbiosis, it merely confirms previous research illustrating that many dominant species are obligate mycotrophs (Wilson and Hartnett, 1998). Collecting mycorrhizal data for more of these species would be a good way to test the validity of my results and could confirm a broader importance for mycorrhizal colonization as a functional trait.

Presenting a complete set of drought tolerance traits to the plant functional trait community will likely spur a number of experiments to either rebut or confirm my results. Regardless of the outcomes, renewed interest in pursuing these questions using plant functional traits is critical to the field. How can we hope to understand plant community composition or
dynamics by leaning on our knowledge of nutrients, light, and disturbance alone? The utility of plant characteristics as functional traits is in the development of rules and the ability to understand a plant's role in its environment and predict its response (Diaz et al., 1998; Craine, 2009). While extensive work has been done on plant functional traits over the years, much more consensus has been garnered around traits relating to nutrient availability than water availability. Many of the traits measured in this study are the same ones used and often cited as adaptations to high or low nutrient environments. While the function of traits such as leaf and root tissue density or average root diameter may serve to either conserve or utilize available resources, the physical shape of the plant impacts the movement of water and may in fact serve to promote or slow water, improve surface area for absorption or influence water relations in another way. As guidance in this area is limited, further work on the flow of water through these structures will likely be the most instructive study moving toward a mechanistic understanding of drought tolerance.

References

Chapin FS. 1980. THE MINERAL-NUTRITION OF WILD PLANTS. Annual Review of Ecology and Systematics 11: 233-260.

Craine JM. 2009. Resource strategies of wild plants. Princeton, NJ, USA: Princeton University Press, 65-118, 251-281.

Craine JM, Froehle J, Tilman DG, Wedin DA, Chapin FS. 2001. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93(2): 274-285.

Diaz S, Cabido M, Casanoves F. 1998. Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science 9(1): 113-122.

Grime JP, Thompson K, Hunt R, Hodgson JG, Cornelissen JHC, Rorison IH, Hendry GAF, Ashenden TW, Askew AP, Band SR, Booth RE, Bossard CC, Campbell BD, Cooper JEL, Davison AW, Gupta PL, Hall W, Hand DW, Hannah MA, Hillier SH, Hodkinson DJ, Jalili A, Liu Z, Mackey JML, Matthews N, Mowforth MA, Neal AM, Reader RJ, Reiling K, RossFraser W, Spencer RE, Sutton F, Tasker DE, Thorpe PC, Whitehouse J. 1997. Integrated screening validates primary axes of specialisation in plants. Oikos 79(2): 259-281.

Reich PB, Wright IJ, Cavendar-Bares J, Craine JM, Oleskyn J, Westoby M, Walters MB.

2002. The evolution of plant functional variation: traits, spectra and strategies. International Journal of Plant Science 164: 143-164.

Wilson GWT, Hartnett DC. 1998. Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. American Journal of Botany 85(12): 1732-1738.

Appendix A - Additional Traits Data

Table A. 1 Plant species taxonomy. KUT code is a species-specific unique identifier for Konza Prairie. Life history abbreviations; $\mathbf{A}=$ annual, $B=$ biennial, $P=$ perennial. Type refers to photosynthetic type. Biochemical subtype only applies to C_{4} species.

$\begin{aligned} & \text { KUT } \\ & \text { Code } \end{aligned}$	Genus	Species	Family	Life			Biochemical Subtype (C4)
				Growth Form	Hist		
					ory	Type	
106	Achillea	millefolium	Asteraceae	Forb	P	C3	
112	Ageratina	altissima	Asteraceae	Forb	P	C3	
121	Amaranthus	blitoides	Amaranthaceae	Forb	A	C4	NAD-ME
123	Amaranthus	retroflexus	Amaranthaceae	Forb	A	C4	NAD-ME
126	ambrosia	psilostachya	Asteraceae	Forb	P	C3	
129	Amorpha	canescens	Fabaceae	Forb	P	C3	
133	Andropogon	gerardii	Poaceae	Grass	P	C4	NADP-ME
137	Antennaria	neglecta	Asteraceae	Forb	P	C3	
138	Apocynum	cannabinum	Apocynaceae	Forb	P	C3	
145	Aristida	oligantha	Poaceae	Grass	A	C4	NADP-ME
146	Aristida	purpurea	Poaceae	Grass	P	C4	NADP-ME
148	Artemisia	ludoviciana	Asteraceae	Forb	P	C3	
150	Asclepias	speciosa	Asclepiadaceae	Forb	P	C3	
152	Asclepias	sullivantii	Asclepiadaceae	Forb	P	C3	
155	Asclepias	verticillata	Asclepiadaceae	Forb	P	C3	
157	Asclepias	viridis	Asclepiadaceae	Forb	P	C3	
160	Astragalus	canadensis	Fabaceae	Forb	P	C3	
166	Baptisia	australis	Fabaceae	Forb	P	C3	
179	Bouteloua	curtipendula	Poaceae	Grass	P	C4	NAD-ME or PCK
181	Bouteloua	gracilis	Poaceae	Grass	P	C4	NAD-ME or PCK
185	Bromus	inermis	Poaceae	Grass	P	C3	
202	Carex	annectens	Cyperaceae	Grass	P	C3	
227	Chamaecrista	fasciculata	Fabaceae	Forb	A	C3	
231	Chamaesyce	nutans	Euphorbiaceae	Forb	A	C4	NADP-ME
240	Chloris	verticillata	Poaceae	Grass	P	C4	PCK
243	Cirsium	altissimum	Asteraceae	Forb	B	C3	
260	Cucurbita	foetidissima	Cucurbitaceae	Forb	P	C3	
285	Desmanthus	illinoensis	Fabaceae	Forb	P	C3	
288	Desmodium	illinoense	Fabaceae	Forb	P	C3	
294	Dichanthelium	acuminatum	Poaceae	Grass	P	C3	
304	Echinacea	angustifolia	Asteraceae	Forb	P	C3	
305	Echinacea	pallida	Asteraceae	Forb	P	C3	

Table A. 1 continued (2 of 4)

KUT Code	Ge			Growth Form	Life Histo		Biochemical Subtype (C4)
307	Echinodorus	berteroi	Alismataceae	Forb	P	C3	
313	Eleusine	indica	Poaceae	Grass	A	C4	NAD-ME
315	Elymus	canadensis	Poaceae	Grass	P	C3	
316	Elymus	villosus	Poaceae	Grass	P	C3	
317	Elymus	virginicus	Poaceae	Grass	P	C3	
323	Eragrostis	pectinacea	Poaceae	Grass	A	C4	NAD-ME
326	Erigeron	annuus	Asteraceae	Forb	A	C3	
334	Eupatorium	altissimum	Asteraceae	Forb	P	C3	
335	Euphorbia	corollata	Euphorbiaceae	Forb	P	C3	
338	Euphorbia	dentata	Euphorbiaceae	Forb	A	C3	
340	Euphorbia	marginata	Euphorbiaceae	Forb	A	C3	
344	Festuca	subverticillata	Poaceae	Grass	P	C3	
365	Helianthus	annuus	Asteraceae	Forb	A	C3	
369	Helianthus	petiolaris	Asteraceae	Forb	A	C3	
370	Helianthus	tuberosus	Asteraceae	Forb	P	C3	
371	Heliopsis	helianthoides	Asteraceae	Forb	P	C3	
373	Hesperostipa	spartea	Poaceae	Grass	P	C3	
379	Hordeum	jubatum	Poaceae	Grass	P	C3	
380	Hordeum	pusillum	Poaceae	Grass	A	C3	
396	Koeleria	macrantha	Poaceae	Grass	P	C3	
399	Lactuca	canadensis	Asteraceae	Forb	B	C3	
400	Lactuca	ludoviciana	Asteraceae	Forb	B	C3	
408	Lepidium	densiflorum	Brassicaceae	Forb	A	C3	
410	Lepidium	virginicum	Brassicaceae	Forb	A	C3	
413	Lespedeza	capitata	Fabaceae	Forb	P	C3	
416	Lespedeza	violacea	Fabaceae	Forb	P	C3	
419	Liatris	aspera	Asteraceae	Forb	P	C3	
420	Liatris	mucronata	Asteraceae	Forb	P	C3	
421	Liatris	punctata	Asteraceae	Forb	P	C3	
447	Mirabilis	linearis	Nyctaginaceae	Forb	P	C3	
450	Monarda	fistulosa	Lamiaceae	Forb	P	C3	
466	Oenothera	biennis	Onagraceae	Forb	B	C3	
468	Oenothera	macrocarpa	Onagraceae	Forb	P	C3	
481	Packera	plattensis	Asteraceae	Forb	B	C3	
482	Panicum	capillare	Poaceae	Grass	A	C4	
485	Panicum	virgatum	Poaceae	Grass	P	C4	
488	Pascopyrum	smithii	Poaceae	Grass	P	C3	

Table A. 1 continued (3 of 4)

$\begin{aligned} & \text { KUT } \\ & \text { Code } \end{aligned}$	Genus	Species	Family	Growth Form	Life Hist ory	Type	Biochemical Subtype (C4)
494	Penstemon	cobaea	Scrophulariaceae	Forb	P	C3	
495	Penstemon	grandiflorus	Scrophulariaceae	Forb	P	C3	
496	Penstemon	tubiflorus	Scrophulariaceae	Forb	P	C3	
504	Physalis	pubescens	Solanaceae	Forb	A	C3	
513	Plantago	rugelii	Plantaginaceae	Forb	P	C3	
516	Poa	arida	Poaceae	Grass	P	C3	
519	Poa	pratensis	Poaceae	Grass	P	C3	
534	Polygonum	virginianum	Polygonaceae	Forb	P	C3	
542	Prunella	vulgaris	Lamiaceae	Forb	P	C3	
547	Psoralidium	tenuiflorum	Fabaceae	Forb	P	C3	
553	Ratibida	pinnata	Asteraceae	Forb	P	C3	
565	Rudbeckia	hirta	Asteraceae	Forb	A	C3	
566	Ruellia	humilis	Acanthaceae	Forb	P	C3	
575	Salvia	azurea	Lamiaceae	Forb	P	C3	
576	Salvia	reflexa	Lamiaceae	Forb	A	C3	
592	Setaria	pumila	Poaceae	Grass	A	C4	NADP-ME
598	Silphium	integrifolium	Asteraceae	Forb	P	C3	
599	Silphium	laciniatum	Asteraceae	Forb	P	C3	
603	Solanum	carolinense	Solanaceae	Forb	P	C3	
605	Solanum	rostratum	Solanaceae	Forb	A	C3	
606	Solidago	canadensis	Asteraceae	Forb	P	C3	
608	Solidago	missouriensis	Asteraceae	Forb	P	C3	
609	Solidago	mollis	Asteraceae	Forb	P	C3	
610	Solidago	petiolaris	Asteraceae	Forb	P	C3	
613	Sorghastrum	nutans	Poaceae	Grass	P	C4	NADP-ME
622	Sporobolus	heterolepis	Poaceae	Grass	P	C4	NAD-ME
625	Stellaria	media	Caryophyllaceae	Forb	A	C3	
627	Stenosiphon	linifolius	Onagraceae	Forb	B	C3	
633	Symphyotrichum	laeve	Asteraceae	Forb	P	C3	
635	Symphyotrichum	oblongifolium	Asteraceae	Forb	P	C3	
647	Tradescantia	bracteata	Commelinaceae	Forb	P	C3	
648	Tradescantia	ohiensis	Commelinaceae	Forb	P	C3	
651	Tragopogon	dubius	Asteraceae	Forb	B	C3	
674	Verbesina	alternifolia	Asteraceae	Forb	P	C3	
675	Vernonia	baldwinii	Asteraceae	Forb	P	C3	
687	Vulpia	octoflora	Poaceae	Grass	A	C3	
689	Xanthium	strumarium	Asteraceae	Forb	A	C3	
693	Zizia	aurea	Apiaceae	Forb	P	C3	

Table A. 1 continued (4 of 4)

KUT							Biochemical Subtype
Code	Genus	Species	Family	Form	Life History	Type	(C4)
$\mathbf{9 9 9 . 0 0 1}$	Baptisia	alba	Fabaceae	Forb	P	C3	
$\mathbf{9 9 9 . 0 0 2}$	Echinacea	atrorubens	Asteraceae	Forb	P	C3	
$\mathbf{9 9 9 . 0 0 3}$	Eryngium	yuccifolium	Apiaceae	Forb	P	C3	
$\mathbf{9 9 9 . 0 0 4}$	Eupatorium	purpureum	Asteraceae	Forb	P	C3	
$\mathbf{9 9 9 . 0 0 5}$	Helianthus	salicifolius	Asteraceae	Forb	P	C3	
$\mathbf{9 9 9 . 0 0 6}$	Liatris	pycnostachya	Asteraceae	Forb	P	C3	
$\mathbf{9 9 9 . 0 0 7}$	Penstemon	digitalis	Scrophulariaceae	Forb	P	C3	
$\mathbf{9 9 9 . 0 0 8}$	Prenanthes	aspera	Asteraceae	Forb	P	C3	
$\mathbf{9 9 9 . 0 0 9}$	Rudbeckia	lacinata	Asteraceae	Forb	P	C3	
$\mathbf{9 9 9 . 0 1 0}$	Solidago	nemoralis	Asteraceae	Forb	P	C3	
$\mathbf{9 9 9 . 0 1 1}$	Solidago	ulmifolia	Asteraceae	Forb	P	C3	
$\mathbf{9 9 9 . 0 1 2}$	Asclepias	incarnata	Asclepiadaceae	Forb	P	C3	

Table A. 2 Plant biomass by species.

$\begin{aligned} & \text { KUT } \\ & \text { Code } \end{aligned}$	Coarse Root (mg)	Fine Not Scan Root (mg)	Fine Scan Root (mg)	Non- SLA Leaf (mg)	SLA Leaf Mass (mg)	$\begin{aligned} & \text { Stem } \\ & \text { Mass } \\ & \text { (mg) } \end{aligned}$	Shoot Mass (mg)	Root Mass (mg)	Total Mass (mg)
106	116.61	289.07	73.79	846.19	35.20	0.00	881.4	479.5	1360.9
112	20.05	51.54	31.72	153.04	90.10	65.96	309.1	107.4	393.8
121	13.11	0.00	33.18	260.87	16.44	133.80	411.1	59.0	659.8
123	126.49	67.04	55.44	361.80	149.63	392.21	903.6	249.0	1152.6
126	437.00	550.00	89.17	1180.33	23.30	817.00	2020.6	1076.2	3096.8
129	83.58	10.40	76.65	256.07	6.00	42.97	305.0	159.0	485.3
133	221.58	631.19	77.13	934.00	28.73	55.75	1018.5	929.9	1948.4
137	62.16	101.61	47.76	783.26	25.37	0.00	808.6	221.8	1108.8
138	131.70	28.88	49.07	252.45	81.38	162.57	496.4	215.2	783.2
145	162.91	545.36	49.46	2109.86	51.26	283.97	2445.1	757.7	3202.8
146	51.86	125.00	58.72	372.78	24.54	0.00	397.3	235.6	632.9
148	108.75	154.25	69.87	581.05	99.43	327.62	1008.1	332.9	1341.0
150	200.92	60.70	78.44	158.16	83.52	169.74	411.4	340.1	751.5
152	808.15	53.33	50.88	178.70	20.78	196.24	395.7	912.4	1422.8
155	158.70	63.73	92.35	160.63	18.25	82.85	261.7	380.0	699.9
157	242.64	5.62	20.02	84.90	66.64	43.46	195.0	268.3	463.3
160	151.46	31.00	58.00	400.34	147.58	171.30	719.2	240.5	959.7
166	203.10	42.44	68.06	403.30	146.29	157.45	707.0	313.6	1020.6
179	212.41	408.76	67.01	1005.99	52.39	41.11	1099.5	688.2	1787.7
181	256.26	444.40	61.80	747.60	20.16	334.77	1072.4	762.5	1692.7
185	178.98	578.26	57.61	810.29	27.27	0.00	837.6	814.9	1652.4
202	208.15	565.50	61.42	760.40	13.55	0.00	774.0	835.1	1609.0
227	43.19	121.13	27.26	854.98	50.88	438.39	1344.2	187.0	1646.9
231	173.82	320.91	73.17	1025.36	29.98	1003.05	2048.1	568.8	2829.7
240	137.77	335.22	59.98	1040.62	27.87	0.00	1068.5	533.0	1601.5
243	1035.71	212.91	56.80	1065.84	322.79	0.00	1388.6	1305.4	2694.1
260	2210.50	10.23	76.40	822.86	178.47	242.13	1243.5	2297.1	3540.6
285	178.57	147.52	68.35	451.72	43.30	404.50	876.3	394.4	1270.7
288	551.13	194.86	71.50	494.25	36.35	225.00	755.6	883.3	1545.4
294	61.80	79.48	26.10	391.93	13.90	0.00	405.8	167.4	573.2
304	407.85	0.00	38.92	214.27	164.10	0.00	378.4	446.8	825.1
305	58.10	0.00	44.90	16.50	150.90	29.40	196.8	103.0	299.8
307	72.10	0.00	136.20	122.20	98.50	0.00	220.7	208.3	429.0
313	186.82	238.34	46.86	1442.27	11.13	173.44	1626.8	490.7	2197.6
315	117.05	330.80	44.90	780.35	66.55	157.98	1004.9	492.8	1497.6
316	47.83	124.35	47.73	547.10	49.20	0.00	678.1	219.9	898.0

Table A. 2 continued (2 of 4)

$\begin{aligned} & \text { KUT } \\ & \text { Code } \end{aligned}$	Coarse Root (mg)	Fine Not Scan Root (mg)	Fine Scan Root (mg)	NonSLA Leaf (mg)	SLA Leaf Mass (mg)	Stem Mass (mg)	Shoot Mass (mg)	Root Mass (mg)	Total Mass (mg)
317	83.57	232.99	49.54	624.87	40.58	105.44	856.4	367.4	1249.5
323	247.23	574.17	67.85	2828.86	0.00	1361.48	2479.7	889.3	2967.1
326	332.10	517.80	50.30	1398.00	51.20	0.00	1449.2	900.2	2349.4
334	138.54	647.06	81.84	1078.48	274.89	282.44	1635.8	867.4	2503.2
335	37.90	123.20	121.80	-	-			282.9	
338	57.05	110.38	43.56	445.32	37.61	722.17	1205.1	232.6	1556.3
340	60.05	110.10	19.50	265.25	114.15	275.55	655.0	189.7	844.6
344	123.76	309.08	40.04	1042.76	82.58	0.00	1125.3	472.9	1598.2
365	149.71	184.84	46.61	617.83	254.33	745.51	1617.7	402.9	2134.9
369	153.50	132.83	46.00	931.33	185.14	718.65	1835.1	332.3	2167.4
370	358.63	513.79	85.83	898.71	312.74	793.80	2005.3	958.2	2963.5
371	73.43	122.08	44.96	262.94	136.35	150.44	549.7	240.5	790.2
373	183.59	259.21	54.09	578.85	44.78	0.00	623.6	496.9	1120.5
379	81.51	248.61	48.98	867.45	19.12	67.63	954.2	379.1	1333.3
380	172.41	556.84	54.34	1115.65	33.86	0.00	1149.5	783.6	1933.1
396	105.66	161.57	35.14	311.99	18.72	0.00	330.7	302.4	632.0
399	286.25	458.58	58.53	543.43	165.58	129.73	838.7	803.4	1642.1
400	139.20	21.30	34.35	221.00	105.80	0.00	326.8	194.9	521.7
408	58.85	52.42	46.40	441.29	21.11	282.66	743.7	158.1	919.4
410	231.11	102.61	53.39	875.58	74.95	384.43	1335.0	387.1	1722.1
413	77.63	50.03	76.85	296.70	97.33	130.15	524.2	220.6	824.3
416	22.90	117.03	48.50	363.29	78.63	96.08	538.0	176.1	670.7
419	377.57	21.27	28.55	189.33	118.52	0.00	307.9	427.4	735.2
420	92.49	0.00	19.72	19.19	13.91	0.00	33.1	107.1	142.0
421	95.23	0.00	16.90	15.55	33.55	0.00	49.1	112.1	201.7
447	726.94	4.90	48.44	267.12	60.90	206.12	534.1	780.3	1314.4
450	146.32	522.21	72.58	1195.38	53.69	276.91	1336.2	741.1	2079.1
466	197.41	317.19	58.28	1438.20	127.01	30.21	1561.2	590.7	2217.4
468	131.81	53.91	59.56	1007.44	221.12	30.53	1259.1	245.3	1504.4
481	12.27	28.80	55.43	72.68	61.05	3.55	137.3	117.0	265.9
482	-	109.30	29.90	108.10	56.10	0.00	164.2	-	-
485	263.49	690.00	91.39	797.34	31.83	273.57	1102.7	1044.9	2147.6
488	101.20	162.10	47.80	569.00	64.60	313.30	946.9	311.1	1258.0
494	53.15	268.08	67.09	322.02	235.46	26.46	583.9	410.4	1440.9
495	32.60	49.15	51.05	98.88	189.20	2.55	290.6	132.8	423.4
496	172.49	325.18	74.11	1160.97	150.10	42.98	522.6	571.8	649.0

Table A. 2 continued (3 of 4)

KUT Code	$\begin{aligned} & \text { Coarse } \\ & \text { Root } \\ & (\mathbf{m g}) \end{aligned}$	Fine Not Scan Root (mg)	Fine Scan Root (mg)	NonSLA Leaf (mg)	SLA Leaf Mass (mg)	$\begin{aligned} & \text { Stem } \\ & \text { Mass } \\ & \text { (mg) } \end{aligned}$	Shoot Mass (mg)	Root Mass (mg)	Total Mass (mg)
504	500.25	120.00	71.38	363.75	24.87	44.25	507.2	805.2	1693.6
513	194.76	383.26	39.39	1310.75	242.11	98.15	1651.0	617.4	2268.4
516	196.88	370.03	50.95	1374.83	119.77	0.00	1494.6	617.9	2164.7
519	408.64	1065.64	67.37	1191.50	17.13	0.00	1227.7	1541.6	2770.6
534	116.66	134.60	44.25	604.76	203.25	428.59	1236.6	295.5	1534.4
542	103.93	269.20	37.45	1297.91	281.06	180.23	1759.2	445.5	2405.1
547	534.17	0.00	27.93	46.87	33.20	30.70	110.8	562.1	672.9
553	79.95	340.87	52.70	714.97	174.73	0.00	889.7	473.5	1363.2
565	89.93	257.00	38.85	647.50	188.00	0.00	835.5	385.8	1221.3
566	48.52	298.43	104.67	612.97	118.49	176.34	907.8	451.2	1357.3
575	332.01	357.93	96.54	697.73	104.45	223.77	1026.0	786.5	1873.9
576	33.88	231.75	52.69	355.13	-	623.63	-	318.3	
583	358.87	705.81	79.31	899.66	39.18	0.00	938.8	1144.0	2082.8
591	295.74	105.09	75.76	900.38	191.00	160.36	1251.7	481.2	1855.0
592	241.56	756.02	75.83	1361.54	22.52	718.44	2102.6	1124.9	3223.7
598	271.50	849.65	71.30	894.88	132.90	0.00	1027.8	1192.5	2220.2
599	851.22	81.01	59.63	318.65	204.27	0.00	522.9	1010.4	1548.2
603	251.58	87.13	68.55	373.18	140.05	92.78	606.0	386.8	1003.1
605	223.72	68.24	32.83	461.45	79.68	359.38	900.5	333.4	1313.8
606	-	439.90		518.70	0.00	176.20	694.9		
608	106.33	351.00	86.97	374.00	20.95	0.00	570.0	636.8	1206.7
609	25.30	163.00	36.45	81.87	89.53	2.13	173.5	251.3	584.2
610	66.10	116.56	51.84	273.10	127.78	2.91	403.8	234.5	638.3
613	158.18	263.53	56.43	643.93	57.60	0.00	701.5	478.1	1179.7
622	-	-	-	-	-	-	-		
625	-	-	-	608.70	4.30	556.90	1169.9		
627	292.03	46.41	52.36	532.16	115.59	39.69	687.4	390.8	1078.2
633	81.00	156.03	58.28	292.15	132.68	0.00	424.8	295.3	720.1
635	71.27	374.92	89.25	511.92	107.73	9.47	629.1	535.4	1164.6
647	230.66	425.81	60.55	356.88	77.64	21.65	456.2	717.0	1173.2
648	375.44	74.50	55.72	200.66	66.60	0.00	267.3	505.7	772.9
651	465.18	28.77	81.03	374.83	100.40	0.00	475.2	575.0	1050.2
674	209.62	624.32	107.62	625.08	190.97	430.26	1291.9	941.6	2283.7
675	287.46	581.26	82.55	506.66	146.53	176.88	830.1	928.7	1817.6
687	58.16	206.74	28.20	586.60	9.12	0.00	595.7	293.1	888.8
689	124.50	230.97	51.17	648.03	223.47	742.47	1614.0	406.6	2020.6

Table A. 2 continued (4 of 4)

KUT Code	Coarse Root (mg)	Fine Not Scan Root (mg)	Fine Scan Root (mg)	NonSLA Leaf (mg)	SLA Leaf Mass (mg)	Stem Mass (mg)	$\begin{aligned} & \text { Shoot } \\ & \text { Mass } \\ & \text { (mg) } \end{aligned}$	Root Mass (mg)	Total Mass (mg)
693	21.30	8.20	30.00	55.10	117.20	0.00	172.3	59.5	231.8
999.001	431.53	26.30	43.14	397.90	141.37	156.37	695.6	501.0	1196.6
999.002	429.60	5.65	93.74	153.28	148.36	0.00	301.6	476.2	750.5
999.003	177.13	249.76	79.31	476.18	180.55	43.75	700.5	506.2	1206.7
999.004	135.68	486.33	73.29	773.69	147.63	475.31	1396.6	756.7	2097.7
999.005	109.85	258.88	60.52	339.13	83.27	210.55	633.0	429.3	1062.2
999.006	210.03	114.75	33.53	673.33	135.85	0.00	809.2	358.3	1167.5
999.007	194.15	518.10	110.05	1078.49	61.27	0.47	1140.2	832.3	2056.1
999.008	189.93	164.50	32.00	133.27	33.50	0.00	166.8	284.4	727.9
999.009	168.72	497.12	59.66	717.93	51.95	0.00	769.9	748.3	1644.8
999.010	112.13	253.82	43.33	426.81	134.89	29.79	591.5	409.3	1016.0
999.011	104.04	367.86	82.51	890.01	178.51	29.81	1098.3	554.4	1652.8
999.012	147.02	666.60	109.43	240.59	40.52	486.03	755.1	923.1	1678.1

Table A. 3 Leaf-level physiology by species. See table Table A. 11 for units.

KUT Code	Genus species	Photo synthetic Rate	Cond to $\mathrm{H}_{2} \mathrm{O}$	Transpiration Rate	Intercellular CO_{2} Conc.	Crit Water Potential (bars)
106	Achillea millefolium	5.689	0.082	1.784	258.0	-58.83
112	Ageratina altissima	8.100	0.148	3.007	283.3	-29.00
121	Amaranthus blitoides	7.089	0.053	1.363	161.2	-29.50
123	Amaranthus retroflexus	12.641	0.108	2.213	175.3	-42.50
126	Ambrosia psilostachya	4.521	0.061	1.705	255.7	-75.67
129	Amorpha canescens	2.179	0.031	0.820	270.8	-54.50
133	Andropogon gerardii	13.312	0.122	2.999	190.9	-73.90
137	Antennaria neglecta	7.144	0.221	4.708	306.9	-40.75
138	Apocynum cannabinum	10.793	0.110	2.353	214.7	-37.20
145	Aristida oligantha	16.201	0.118	2.593	161.6	-72.20
146	Aristida purpurea	14.464	0.098	2.156	154.3	-84.25
148	Artemisia ludoviciana	8.435	0.102	1.943	223.5	-39.80
150	Asclepias speciosa	15.200	0.190	3.710	239.2	-20.00
152	Asclepias sullivantii	9.861	0.127	3.298	239.8	-66.00
155	Asclepias verticillata	13.523	0.160	3.638	231.3	-22.00
157	Asclepias viridis	11.696	0.119	2.401	207.2	-17.00
160	Astragalus canadensis	13.360	0.162	3.178	230.4	-29.33
166	Baptisia australis	6.177	0.055	1.290	184.8	-28.50
179	Bouteloua curtipendula	19.014	0.166	3.401	180.1	-89.00
181	Bouteloua gracilis	11.040	0.063	1.674	108.7	-82.00
185	Bromus inermis	9.537	0.123	2.938	249.1	-62.00
202	Carex annectens	11.434	0.240	5.564	292.7	-58.40
227	Chamaecrista fasciculata	10.803	0.116	2.444	214.7	-32.83
231	Chamaesyce nutans	5.789	0.043	1.326	182.0	-18.33
240	Chloris verticillata	17.472	0.128	2.678	159.5	-84.80
243	Cirsium altissimum	11.136	0.134	2.747	222.9	-42.80
260	Cucurbita foetidissima	13.293	0.153	3.160	222.7	-25.17
285	Desmanthus illinoensis	8.658	0.086	1.978	209.9	-62.42
288	Desmodium illinoense	5.107	0.043	1.337	187.3	-53.00
294	Dichanthelium acuminatum	6.653	0.121	2.595	285.5	-85.00
304	Echinacea angustifolia	16.200	0.297	4.694	269.4	-52.75
305	Echinacea pallida	13.700	0.155	3.390	233.0	-33.00

Table A. 3 continued (2 of 4)

KUT Code	Genus species	Max Photo Rate	Cond to $\mathrm{H}_{2} \mathrm{O}$	Transpiration Rate	Inter- cellular CO_{2} Conc.	Crit Water Potential (bars)
307	Echinodorus berteroi	13.725	0.185	3.796	253.8	-22.00
313	Eleusine indica	11.320	0.083	2.554	158.2	-30.50
315	Elymus canadensis	9.810	0.134	3.025	252.5	-70.00
316	Elymus villosus	4.280	0.085	1.821	304.8	-72.33
317	Elymus virginicus	12.165	0.156	3.224	246.1	-66.63
323	Eragrostis pectinacea	10.271	0.074	2.165	172.4	-62.13
326	Erigeron annuus	24.500	0.195	5.130	173.0	
334	Eupatorium altissimum	7.714	0.102	2.085	216.9	-36.17
335	Euphorbia corollata	-	-	-	-	-
338	Euphorbia dentata	2.677	0.028	0.853	296.0	-18.29
340	Euphorbia marginata	9.755	0.135	2.645	254.0	-
344	Festuca subverticillata	5.390	0.068	1.758	258.2	-69.80
365	Helianthus annuus	16.944	0.198	3.446	211.5	-31.17
369	Helianthus petiolaris	20.963	0.282	4.719	223.4	-36.00
370	Helianthus tuberosus	7.321	0.058	1.405	171.8	-27.67
371	Heliopsis helianthoides	10.720	0.170	3.131	255.0	-48.50
373	Hesperostipa spartea	8.163	0.151	3.128	287.0	-80.14
379	Hordeum jubatum	12.846	0.163	3.621	246.3	-69.71
380	Hordeum pusillum	13.313	0.222	4.393	275.0	-88.43
396	Koeleria macrantha	13.182	0.202	4.431	266.8	-81.94
399	Lactuca canadensis	14.350	0.160	3.430	223.3	-28.50
400	Lactuca ludoviciana	13.100	0.234	4.065	270.0	-25.00
408	Lepidium densiflorum	6.845	0.093	2.409	248.7	-69.00
410	Lepidium virginicum	6.615	0.081	1.698	259.4	-51.57
413	Lespedeza capitata	11.455	0.233	4.383	266.8	-26.00
416	Lespedeza violacea	7.345	0.082	1.850	230.8	-42.83
419	Liatris aspera	11.375	0.180	3.820	267.3	-60.25
420	Liatris mucronata	12.129	0.230	4.820	294.0	-51.00
421	Liatris punctata	11.900	0.252	5.365	304.5	-77.50
447	Mirabilis linearis	12.996	0.126	2.516	192.4	-58.00
450	Monarda fistulosa	5.819	0.058	1.490	203.5	-38.65
466	Oenothera biennis	6.620	0.079	2.109	229.2	-34.71
468	Oenothera macrocarpa	9.135	0.136	2.659	261.9	-35.79
481	Packera plattensis	11.085	0.154	3.165	250.5	-29.00
482	Panicum capillare	19.000	0.157	3.620	180.0	-
485	Panicum virgatum	12.174	0.082	2.078	142.6	-32.67
488	Pascopyrum smithii	20.250	0.220	3.320	230.5	-30.00

Table A. 3 continued (3 of 4)

KUT Code		Max Photo Rate	Cond to $\mathrm{H}_{2} \mathrm{O}$	Transpiration Rate	Inter- cellular CO_{2}	Crit Water Potential (bars)
494	Penstemon cobaea	12.950	0.168	3.276	245.9	-41.88
495	Penstemon grandiflorus	11.035	0.125	2.540	222.5	-19.67
496	Penstemon tubiflorus	7.648	0.098	2.466	231.6	-39.38
504	Physalis pubescens	1.955	0.033	1.058	290.0	-35.25
513	Plantago rugelii	9.493	0.159	2.910	251.4	-63.67
516	Poa arida	10.179	0.127	2.704	216.2	-57.00
519	Poa pratensis	11.781	0.168	4.601	259.0	-73.00
534	Polygonum virginianum	7.122	0.077	1.708	215.8	-42.00
542	Prunella vulgaris	5.645	0.070	1.515	229.9	-64.17
547	Psoralidium tenuiflorum	11.615	0.201	3.559	276.6	-43.80
553	Ratibida pinnata	11.443	0.125	3.065	216.2	-40.00
565	Rudbeckia hirta	11.068	0.139	3.085	221.8	-37.00
566	Ruellia humilis	7.929	0.133	2.448	254.1	-33.66
575	Salvia azurea	6.818	0.087	1.920	242.9	-48.21
576	Salvia reflexa	7.017	0.105	3.206	270.3	-85.63
583	Schizachyrium scoparium	11.879	0.097	2.507	179.2	-69.80
591	Senna marilandica	8.628	0.080	2.011	183.2	-28.50
592	Setaria pumila	8.019	0.054	1.682	140.6	-38.89
598	Silphium integrifolium	9.353	0.095	2.103	211.5	-25.00
599	Silphium laciniatum	8.212	0.122	2.467	235.6	-30.33
603	Solanum carolinense	6.467	0.067	1.548	222.0	-48.75
605	Solanum rostratum	4.936	0.087	1.741	307.1	-83.80
606	Solidago canadensis	-	-	-	-	-
608	Solidago missouriensis	2.313	0.028	0.705	253.0	-29.50
609	Solidago mollis	8.020	0.167	2.860	303.0	-45.50
610	Solidago petiolaris	15.800	0.200	4.236	240.7	-26.50
613	Sorghastrum nutans	18.442	0.121	2.590	119.1	-78.73
622	Sporobolus heterolepis	5.630	0.064	1.460	241.0	-
625	Stellaria media	-	-	-	-	-
627	Stenosiphon linifolius	12.683	0.165	3.373	224.3	-27.20
633	Symphyotrichum laeve	12.200	0.192	3.477	250.7	-28.50
635	Symphyotrichum oblongifolium	13.618	0.178	3.218	226.2	-45.75
647	Tradescantia bracteata	10.084	0.110	2.669	200.5	-11.17
648	Tradescantia ohiensis	12.712	0.154	2.996	237.8	-
651	Tragopogon dubius	13.860	0.156	3.366	221.2	-15.50
674	Verbesina alternifolia	4.353	0.050	1.388	250.1	-87.67
675	Vernonia baldwinii	6.573	0.069	1.633	202.9	-35.83

Table A. 3 continued (4 of 4)

KUT Code	Genus species	Max Photo Rate	Cond to $\mathrm{H}_{2} \mathrm{O}$	Transpiration Rate	Intercellular CO_{2} Conc.	Crit Water Potential (bars)
687	Vulpia octoflora	6.068	0.107	2.236	270.0	-72.67
689	Xanthium strumarium	21.800	0.216	3.623	192.3	-
693	Zizia aurea	11.700	0.260	4.500	297.0	-
999.001	Baptisia alba	6.944	0.064	1.515	194.7	-32.60
999.002	Echinacea atrorubens	11.940	0.189	3.526	248.6	-55.67
999.003	Eryngium yuccifolium	12.494	0.265	4.091	258.9	-36.29
999.004	Eupatorium purpureum	5.131	0.054	1.257	199.3	-38.80
999.005	Helianthus salicifolius	6.423	0.070	1.580	203.6	-34.50
999.006	Liatris pycnostachya	8.155	0.083	2.153	222.5	-23.00
999.007	Penstemon digitalis	8.069	0.133	2.920	263.6	-35.90
999.008	Prenanthes aspera	13.997	0.303	5.450	294.0	-33.00
999.009	Rudbeckia lacinata	6.785	0.095	2.023	252.9	-48.00
999.010	Solidago nemoralis	9.830	0.148	2.809	247.3	-36.80
999.011	Solidago ulmifolia	7.214	0.076	1.720	204.3	-30.83
999.012	Asclepias incarnata	5.726	0.092	2.310	257.2	-25.50

Table A. 4 Field Comparison Data

KUT Code	Genus species	Field thickn ess (mm)	Field leaf angle (degr ees)	Field leaf tissue density ($\mathrm{g} \mathrm{cm}^{-3}$)	Field SLA (cm ${ }^{2}$ \mathbf{g}^{-1})	Leaf thick ness (mm)	Leaf Angle (degr ees)	Leaf tissue densit $\mathbf{y}(\mathrm{g}$ cm^{-3})	$\begin{aligned} & \text { SLA } \\ & \left(\mathrm{cm}^{2} \mathbf{g}^{2}\right. \\ & \left.{ }^{1}\right) \end{aligned}$
126	Ambrosia psilostachya	0.22	30	0.405	112.2	0.242	40.00	0.451	97.9
129	Amorpha canescens	0.13	45	0.598	128.6	0.124	3.83	0.314	261.3
133	Andropogon gerardii	0.1	75	0.777	128.7	0.136	68.75	0.862	135.1
137	Antennaria neglecta	0.18	60	0.327	170.0	0.206	52.40	0.324	151.5
148	Artemisia ludoviciana	0.12	45	0.690	120.7	0.186	45.00	0.419	146.8
166	Baptisia australis	0.3	90	0.276	120.9	0.253	70.00	0.317	143.4
179	Bouteloua curtipendula	0.12	65	0.691	120.5	0.117	35.00	0.548	162.5
181	Bouteloua gracilis	0.13	50	0.585	131.4	0.142	71.67	0.472	157.1
185	Bromus inermis	0.15	65	0.409	163.1	0.180	65.00	0.474	149.6
240	Chloris verticillata	0.12	50	0.428	194.7	0.081	55.00	0.519	273.3
260	Cucurbita foetidissima	0.95	50	0.066	160.1	0.290	20.00	0.304	122.9
288	Desmodium illinoense	0.25	45	0.335	119.6	0.182	75.00	0.357	157.9
304	Echinacea angustifolia	0.35	60	0.297	96.2	0.376	35.00	0.292	100.5
313	Eleusine indica	0.16	75	0.522	119.8	0.083	56.67	0.723	239.8
315	Elymus canadensis	0.13	10	0.464	166.0	0.143	35.00	0.466	159.3
334	Eupatorium altissimum	0.28	50	0.469	76.2	0.244	25.00	0.588	85.9
340	Euphorbia marginata	0.28	45	0.236	151.6	0.250	-	0.226	187.4
365	Helianthus annuus	0.37	20	0.246	109.8	0.286	15.00	0.410	95.0
380	Hordeum pusillum	0.1	60	0.547	182.9	0.099	70.00	0.558	192.5
396	Koeleria macrantha	0.15	75	0.475	140.2	0.144	73.38	0.487	160.7
408	Lepidium densiflorum	0.13	75	0.275	280.0	0.126	57.50	0.568	163.4
413	Lespedeza capitata	0.22	10	0.525	86.6	0.163	0.00	0.409	156.2
416	Lespedeza violacea	0.16	45	0.640	97.6	0.103	15.00	0.585	191.2
419	Liatris aspera	0.25	75	0.545	73.4	0.353	75.00	0.352	90.8
421	Liatris punctata	0.23	70	0.824	52.8	0.410	75.00	0.389	54.9
450	Monarda fistulosa	0.2	0	0.347	144.2	0.205	2.42	0.336	163.7
468	Oenothera macrocarpa	0.33	45	0.245	123.7	0.320	7.50	0.319	109.8
481	Packera plattensis	0.37	60	0.265	102.0	0.220	20.00	0.422	130.3
485	Panicum virgatum	0.15	60	0.570	116.9	0.151	58.00	0.435	164.1
488	Pascopyrum smithii	0.22	70	0.355	128.1	0.230	50.00	0.517	63.2
494	Penstemon cobaea	0.32	55	0.347	90.0	0.319	10.00	0.409	78.3
495	Penstemon grandiflorus	0.28	25	0.275	129.8	0.313	50.00	0.296	96.5
519	Poa pratensis	0.08	60	0.564	221.5	0.148	80.75	0.459	140.8
547	Psoralidium tenuiflorum	0.22	0	0.429	106.0	0.288	0.00	0.371	100.8
565	Rudbeckia hirta	0.24	55	0.171	244.3	0.393	50.00	0.226	119.1
566	Ruellia humilis	0.17	45	0.446	131.8	0.165	15.00	0.365	181.2

Table A. 4 continued (2 of 2)

$\begin{aligned} & \text { KUT } \\ & \text { Code } \end{aligned}$	Genus species	Field thick ness (mm)	Field leaf angle (deg)	Field leaf density ($\mathrm{g} \mathrm{cm}^{-3}$)	Field SLA $\left(\mathrm{cm}^{2}\right.$ g^{-1})	Leaf thick ness (mm)	Leaf Angle (deg)	Leaf tissue density $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	$\begin{aligned} & \text { SLA } \\ & \left(\mathbf{c m}^{2}\right. \\ & \left.\mathbf{g}^{-1}\right) \end{aligned}$
575	Salvia azurea	0.24	10	0.426	97.7	0.202	27.00	0.443	118.9
576	Salvia reflexa Schizachyrium	0.17	15	0.325	197.9	0.204	1.00	-	-
583	scoparium	0.1	70	0.770	129.8	0.103	78.86	0.677	176.3
591	Senna marilandica	0.15	90	0.519	128.4	0.138	0.00	0.646	129.5
592	Setaria pumila	0.09	60	0.346	320.8	0.107	72.17	0.443	259.2
598	Silphium integrifolium	0.41	55	0.239	101.9	0.340	30.00	0.398	98.6
599	Silphium laciniatum	0.45	90	0.312	71.2	0.568	75.39	0.494	60.2
603	Solanum carolinense	0.2	35	0.359	139.3	0.164	0.00	0.393	164.1
605	Solanum rostratum	0.18	60	0.241	230.2	0.163	10.00	0.640	115.1
606	Solidago canadensis	0.24	60	0.526	79.2	-	-	-	
608	Solidago missouriensis	0.26	40	0.507	75.9	0.290	40.00	0.260	133.3
613	Sorghastrum nutans	0.15	75	0.628	106.2	0.142	61.67	0.485	165.9
622	Sporobolus heterolepis	0.12	70	0.957	87.1	0.220	-	-	-
627	Stenosiphon linifolius	0.15	60	0.527	126.4	0.333	15.00	0.289	106.6
635	Symphyotrichum oblongifolium	0.22	30	0.434	104.8	0.203	25.00	0.462	136.6
651	Tragopogon dubius	0.15	70	0.561	118.9	0.262	70.00	0.377	110.2
675	Vernonia baldwinii	0.3	70	0.266	125.4	0.180	50.00	0.369	162.1
693	Zizia aurea	0.13	20	0.221	347.7	0.190	-	0.359	146.8

Table A. 5 Principal Components

UT		PCA	PCA	PCA
Code	Genus species	Axis 1	Axis 2	Axis 3
106	Achillea millefolium	-0.021	-0.507	0.133
112	Ageratina altissima	0.665	-0.718	-1.566
121	Amaranthus blitoides	0.052	-1.752	-1.356
123	Amaranthus retroflexus	-0.632	-0.598	-0.567
126	Ambrosia psilostachya	-0.689	-0.692	2.240
129	Amorpha canescens	-0.857	-2.278	-1.433
133	Andropogon gerardii	-1.807	0.727	0.913
137	Antennaria neglecta	0.092	0.401	-0.804
138	Apocynum cannabinum	-0.353	-0.435	-1.006
145	Aristida oligantha	-1.155	0.799	1.896
146	Aristida purpurea	-1.350	0.776	-0.912
148	Artemisia ludoviciana	-0.065	-0.524	-0.237
150	Asclepias speciosa	1.438	0.140	-1.002
152	Asclepias sullivantii	0.773	0.535	0.488
155	Asclepias verticillata	1.270	-0.235	-1.067
157	Asclepias viridis	0.963	-0.473	-1.160
160	Astragalus canadensis	0.232	0.224	-0.763
166	Baptisia australis	0.491	-0.854	-0.291
179	Bouteloua curtipendula	-1.837	1.304	0.408
181	Bouteloua gracilis	-1.589	0.296	0.746
185	Bromus inermis	-0.667	0.428	0.526
202	Carex annectens	-1.295	1.448	0.287
227	Chamaecrista fasciculata	-0.233	-0.864	-0.491
231	Chamaesyce nutans	-0.727	-1.984	0.949
240	Chloris verticillata	-1.695	1.076	0.118
243	Cirsium altissimum	0.957	0.467	2.172
260	Cucurbita foetidissima	1.275	0.525	3.648
285	Desmanthus illinoensis	-0.642	-0.982	-0.485
288	Desmodium illinoense	-0.415	-0.558	0.672
294	Dichanthelium acuminatum	-1.377	0.009	-1.315
304	Echinacea angustifolia	0.647	2.087	-0.465
305	Echinacea pallida	0.098	0.281	-1.402
307	Echinodorus berteroi	0.968	0.237	-1.297
313	Eleusine indica	-1.475	-0.444	0.512
315	Elymus canadensis	-0.869	0.093	-0.082
316	Elymus villosus	-1.638	-0.564	-0.843
317	Elymus virginicus	-1.381	0.816	-0.389

Table A. 5 continued (2 of 4)

KUT		PCA	PCA	PCA
Code	Genus species	Axis 1	Axis 2	Axis 3
323	Eragrostis pectinacea	-0.941	-0.054	2.253
326	Erigeron annuus	0.023	2.033	1.325
334	Eupatorium altissimum	0.476	-0.697	1.392
335	Euphorbia corollata	0.239	-0.179	-0.432
338	Euphorbia dentata	-0.255	-2.419	-0.467
340	Euphorbia marginata	0.938	0.105	-0.747
344	Festuca subverticillata	-1.899	-0.419	0.074
365	Helianthus annuus	0.891	0.846	0.539
369	Helianthus petiolaris	0.982	1.844	0.667
370	Helianthus tuberosus	1.361	-1.315	2.035
371	Heliopsis helianthoides	0.700	-0.013	-0.967
373	Hesperostipa spartea	-2.114	0.436	-0.425
379	Hordeum jubatum	-1.087	1.089	-0.260
380	Hordeum pusillum	-1.678	1.729	0.502
396	Koeleria macrantha	-1.757	1.536	-1.006
399	Lactuca canadensis	1.344	0.194	0.306
400	Lactuca ludoviciana	1.377	0.727	-1.268
408	Lepidium densiflorum	-2.045	-0.443	-0.868
410	Lepidium virginicum	-1.352	-1.168	0.134
413	Lespedeza capitata	0.378	-0.037	-1.304
416	Lespedeza violacea	-0.413	-1.285	-1.211
419	Liatris aspera	0.048	1.414	-0.339
420	Liatris mucronata	-0.075	1.776	-1.172
421	Liatris punctata	0.170	2.154	-1.125
447	Mirabilis linearis	-0.396	0.462	0.441
450	Monarda fistulosa	0.407	-1.434	0.759
466	Oenothera biennis	0.183	-0.750	0.896
468	Oenothera macrocarpa	1.066	-0.557	-0.028
481	Packera plattensis	0.858	-0.295	-1.517
482	Panicum capillare	0.023	1.247	-0.746
485	Panicum virgatum	-0.163	-0.107	1.183
488	Pascopyrum smithii	-0.256	1.651	-0.275
494	Penstemon cobaea	1.040	0.177	-0.354
495	Penstemon grandiflorus	1.090	-0.079	-1.007
496	Penstemon tubiflorus	0.278	-0.309	-0.056
504	Physalis pubescens	0.487	-1.620	0.420
513	Plantago rugelii	0.363	0.016	0.836
516	Poa arida	-0.977	0.361	0.809
519	Poa pratensis	-1.249	1.404	2.142

Table A. 5 continued (3 of 4)

KUT		PCA	PCA	PCA
Code	Genus species	Axis 1	Axis 2	Axis 3
534	Polygonum virginianum	-0.573	-1.096	-0.181
542	Prunella vulgaris	-0.738	-1.226	0.675
547	Psoralidium tenuiflorum	0.602	0.208	-0.711
553	Ratibida pinnata	1.003	0.307	0.214
565	Rudbeckia hirta	1.201	0.582	0.137
566	Ruellia humilis	0.648	-0.962	-0.328
575	Salvia azurea	-0.050	-0.880	0.598
576	Salvia reflexa	-0.715	-0.492	-0.471
583	Schizachyrium scoparium	-1.746	0.530	1.187
591	Senna marilandica	-0.034	-1.459	0.057
592	Setaria pumila	-0.864	-0.600	2.215
598	Silphium integrifolium	1.454	-0.369	1.649
599	Silphium laciniatum	1.338	0.687	1.444
603	Solanum carolinense	-0.143	-1.363	-0.664
605	Solanum rostratum	-1.219	-0.864	-0.455
606	Solidago canadensis	-0.002	0.012	-0.157
608	Solidago missouriensis	0.460	-1.696	0.145
609	Solidago mollis	0.383	-0.076	-1.356
610	Solidago petiolaris	0.269	0.606	-1.169
613	Sorghastrum nutans	-1.185	1.303	-0.151
622	Sporobolus heterolepis	-0.022	-0.969	0.063
625	Stellaria media	0.004	-0.023	0.293
627	Stenosiphon linifolius	1.113	0.181	-0.271
633	Symphyotrichum laeve Symphyotrichum	1.078	0.394	-0.890
635	oblongifolium	0.106	0.463	-0.305
647	Tradescantia bracteata	1.484	-0.063	0.274
648	Tradescantia ohiensis	0.624	1.030	-0.375
651	Tragopogon dubius	0.964	0.524	-0.104
674	Verbesina alternifolia	0.548	-0.362	1.558
675	Vernonia baldwinii	0.268	-0.846	0.701
687	Vulpia octoflora	-2.151	-0.081	-0.796
689	Xanthium strumarium	2.797	1.882	1.140
693	Zizia aurea	0.346	1.083	-1.773
999.001	Baptisia alba	0.464	-0.507	-0.024
999.002	Echinacea atrorubens	0.628	1.120	-0.120
999.003	Eryngium yuccifolium	1.541	1.709	0.141
999.004	Eupatorium purpureum	0.737	-1.634	0.745
999.005	Helianthus salicifolius	0.657	-1.462	-0.498

Table A. 5 continued (4 of 4)

KUT		PCA	PCA	PCA
Code	Genus species	Axis 1	Axis 2	Axis 3
$\mathbf{9 9 9 . 0 0 6}$	Liatris pycnostachya	1.063	-0.475	-0.160
$\mathbf{9 9 9 . 0 0 7}$	Penstemon digitalis	0.739	-0.134	0.964
$\mathbf{9 9 9 . 0 0 8}$	Prenanthes aspera	0.327	1.706	-1.382
$\mathbf{9 9 9 . 0 0 9}$	Rudbeckia lacinata	0.688	-0.294	0.398
$\mathbf{9 9 9 . 0 1 0}$	Solidago nemoralis	0.297	-0.184	-0.712
$\mathbf{9 9 9 . 0 1 1}$	Solidago ulmifolia	-0.343	-1.133	0.111
$\mathbf{9 9 9 . 0 1 2}$	Asclepias incarnata	0.735	-1.303	0.432

Table A. 6 Leaf and Root Morphology

KUT
Code Genus species
106 Achillea millefolium
112 Ageratina altissima
121 Amaranthus blitoides
123 Amaranthus retroflexus
126 Ambrosia psilostachya
129 Amorpha canescens
133 Andropogon gerardii
137 Antennaria neglecta
138 Apocynum cannabinum
145 Aristida oligantha
146 Aristida purpurea
148 Artemisia ludoviciana
150 Asclepias speciosa
152 Asclepias sullivantii
155 Asclepias verticillata
157 Asclepias viridis
160 Astragalus canadensis
166 Baptisia australis
179 Bouteloua curtipendula
181 Bouteloua gracilis
185 Bromus inermis
202 Carex annectens
227 Chamaecrista fasciculata
231 Chamaesyce nutans
240 Chloris verticillata
243 Cirsium altissimum
260 Cucurbita foetidissima
285 Desmanthus illinoensis
288 Desmodium illinoense
294 Dichanthelium acuminatum
304 Echinacea angustifolia
305 Echinacea pallida
307 Echinodorus berteroi
313 Eleusine indica
315 Elymus canadensis
316 Elymus villosus
317 Elymus virginicus

Leaf
Thickness
(mm) (mm)
0.274
0.183
0.192
0.190
0.242
0.124
0.136
0.206
0.152
0.126
0.120
0.186
0.194
0.311
0.173
0.198
0.170
0.170
0.253
0.117
0.142
0.180
0.154
0.106
0.102
0.081
0.344
0.108
0.182
0.087
0.376

- 0.200
0.083
0.143
0.110
0.130

Total

Root
Length
(cm)

Avg Root	Root Volume
Dia	(mm) $(\mathrm{cm} 3)$

0.209
0.182
0.071
0.124
0.225
0.127
0.197
0.207
0.175
0.166
0.187
0.238
0.334
0.282
0.340
0.081
0.186
0.219
0.121
0.166
0.227
0.144
0.169
0.217
0.148
0.273
0.195
0.163
0.272
0.098
0.115
0.135
0.339
0.149
56.67
1259.0
0.125
0.154
0.131
0.179

Table A. 6 continued (2 of 4)

KUT Code	Genus species	Leaf Thickness (mm)	Leaf Angle (deg)	Total Root Length (cm)	Avg Root Dia (mm)	Root Volume (cm3)
326	Erigeron annuus	-	-	315.6	0.248	0.153
334	Eupatorium altissimum	0.244	25.00	388.4	0.352	0.361
335	Euphorbia corollata	-	-	315.5	0.375	0.348
338	Euphorbia dentata	0.117	10.00	553.5	0.209	0.173
340	Euphorbia marginata	0.250	-	209.2	0.344	0.197
344	Festuca subverticillata	0.087	80.00	648.9	0.174	0.148
365	Helianthus annuus	0.286	15.00	397.7	0.296	0.257
369	Helianthus petiolaris	0.371	0.00	475.4	0.234	0.188
370	Helianthus tuberosus	0.303	5.00	270.6	0.396	0.338
371	Heliopsis helianthoides	0.211	10.00	249.5	0.382	0.283
373	Hesperostipa spartea	0.116	70.00	742.8	0.149	0.125
379	Hordeum jubatum	0.129	75.00	738.5	0.185	0.183
380	Hordeum pusillum	0.099	70.00	800.7	0.183	0.197
396	Koeleria macrantha	0.144	73.38	968.8	0.127	0.109
399	Lactuca canadensis	0.180	15.00	208.3	0.399	0.258
400	Lactuca ludoviciana	0.225	-	100.9	0.418	0.139
408	Lepidium densiflorum	0.126	57.50	1689.1	0.097	0.109
410	Lepidium virginicum	0.190	20.00	939.3	0.118	0.102
413	Lespedeza capitata	0.163	0.00	343.7	0.297	0.238
416	Lespedeza violacea	0.103	15.00	223.3	0.315	0.171
419	Liatris aspera	0.353	75.00	398.5	0.222	0.155
420	Liatris mucronata	0.375	90.00	161.9	0.245	0.055
421	Liatris punctata	0.410	75.00	98.2	0.304	0.075
447	Mirabilis linearis	0.320	35.00	331.1	0.203	0.103
450	Monarda fistulosa	0.205	2.42	663.2	0.234	0.266
466	Oenothera biennis	0.256	39.79	971.2	0.184	0.272
468	Oenothera macrocarpa	0.320	7.50	238.8	0.348	0.189
481	Packera plattensis	0.220	20.00	166.6	0.418	0.206
482	Panicum capillare	0.150	-	553.6	0.183	0.146
485	Panicum virgatum	0.151	58.00	506.5	0.266	0.249
488	Pascopyrum smithii	0.230	50.00	566.7	0.195	0.168
494	Penstemon cobaea	0.319	10.00	152.8	0.420	0.202
495	Penstemon grandiflorus	0.313	50.00	194.1	0.364	0.178
496	Penstemon tubiflorus	0.276	49.29	566.0	0.249	0.259
504	Physalis pubescens	0.335	20.00	808.0	0.173	0.189
513	Plantago rugelii	0.253	0.00	455.3	0.254	0.220
516	Poa arida	0.197	60.00	1212.9	0.135	0.170

Table A. 6 continued (3 of 4)

$\begin{aligned} & \text { KUT } \\ & \text { Code } \end{aligned}$	Genus species	Leaf Thickness (mm)	Leaf Angle (deg)	Total Root Length (cm)	Avg Root Dia (mm)	Root Volume (cm3)
519	Poa pratensis	0.148	80.75	1534.1	0.143	0.185
534	Polygonum virginianum	0.165	22.50	730.9	0.149	0.125
542	Prunella vulgaris	0.214	0.00	400.0	0.256	0.208
547	Psoralidium tenuiflorum	0.288	0.00	87.6	0.318	0.062
553	Ratibida pinnata	0.316	50.00	239.7	0.369	0.236
565	Rudbeckia hirta	0.393	50.00	522.7	0.275	0.293
566	Ruellia humilis	0.165	15.00	194.3	0.425	0.258
575	Salvia azurea	0.202	27.00	355.4	0.305	0.241
576	Salvia reflexa	0.204	1.00	943.7	0.172	0.217
583	Schizachyrium scoparium	0.103	78.86	552.1	0.217	0.199
591	Senna marilandica	0.138	0.00	301.0	0.328	0.245
592	Setaria pumila	0.107	72.17	903.6	0.175	0.210
598	Silphium integrifolium	0.340	30.00	229.5	0.393	0.277
599	Silphium laciniatum	0.568	75.39	314.8	0.329	0.256
603	Solanum carolinense	0.164	0.00	518.0	0.227	0.208
605	Solanum rostratum	0.163	10.00	517.0	0.195	0.147
606	Solidago canadensis	-	-	-	-	-
608	Solidago missouriensis	0.290	40.00	323.3	0.262	0.150
609	Solidago mollis	0.165	40.00	154.8	0.384	0.178
610	Solidago petiolaris	0.158	35.00	191.9	0.331	0.159
613	Sorghastrum nutans	0.142	61.67	420.7	0.237	0.182
622	Sporobolus heterolepis	0.220	-	-	-	-
625	Stellaria media	-	-	-	-	-
627	Stenosiphon linifolius	0.333	15.00	370.8	0.292	0.177
633	Symphyotrichum laeve Symphyotrichum	0.258	25.00	343.5	0.322	0.269
635	oblongifolium	0.203	25.00	361.5	0.315	0.270
647	Tradescantia bracteata	0.325	65.00	220.3	0.371	0.176
648	Tradescantia ohiensis	0.273	75.00	256.3	0.329	0.227
651	Tragopogon dubius	0.262	70.00	190.9	0.435	0.233
674	Verbesina alternifolia	0.312	60.67	331.4	0.454	0.382
675	Vernonia baldwinii	0.180	50.00	292.3	0.332	0.238
687	Vulpia octoflora	0.106	70.00	1230.5	0.112	0.117
689	Xanthium strumarium	0.550	0.00	238.9	0.455	0.323
693	Zizia aurea	0.190	-	297.8	0.311	0.226
999.001	Baptisia alba	0.211	80.00	181.0	0.379	0.221
999.002	Echinacea atrorubens	0.448	55.00	319.6	0.300	0.203
999.003	Eryngium yuccifolium	0.434	60.00	288.8	0.370	0.325

Table A. 6 continued (4 of 4)

KUT Code	Genus species	Leaf Thickness (mm)	Leaf Angle (deg)	Total Root Length (cm)	Avg Root Dia (mm)	Root Volume (cm3)
999.004	Eupatorium purpureum	0.164	0.00	427.4	0.316	0.331
999.005	Helianthus salicifolius	0.202	0.00	335.1	0.324	0.232
999.006	Liatris pycnostachya	0.277	50.00	412.3	0.280	0.239
999.007	Penstemon digitalis	0.297	42.33	429.0	0.316	0.325
999.008	Prenanthes aspera	0.207	45.00	613.7	0.215	0.223
999.009	Rudbeckia lacinata	0.228	53.38	381.9	0.337	0.280
999.010	Solidago nemoralis	0.127	-	199.1	0.376	0.202
999.011	Solidago ulmifolia	0.120	-	371.0	0.309	0.266
999.012	Asclepias incarnata	0.180	11.43	516.7	0.320	0.328

Table A. 7 Mycorrhizal data. Wilson and Hartnett, 1998.

| KUT
 Code | Mencorrhizal
 Responsiveness* (\%) | Mycorrhizal Root
 Colonization* (\%) | |
| :--- | :--- | :--- | :--- | ---: |
| $\mathbf{1 8 5}$ | Bromus inermis | -33.3 | 10.4 |
| $\mathbf{3 8 0}$ | Hordeum pusillum | -16.7 | 14.4 |
| $\mathbf{3 9 6}$ | Koeleria macrantha | -16.7 | 26.2 |
| $\mathbf{3 7 9}$ | Hordeum jubatum | -8.8 | 19 |
| $\mathbf{4 1 9}$ | Liatris aspera | -0.4 | 59.2 |
| $\mathbf{3 1 5}$ | Elymus canadensis | 5.3 | 15.1 |
| $\mathbf{1 0 6}$ | Achillea millefolium | 22.9 | 35.3 |
| $\mathbf{4 6 6}$ | Oenothera biennis | 29.6 | 40.8 |
| $\mathbf{1 4 8}$ | Artemisia ludoviciana | 44.3 | 30.7 |
| $\mathbf{1 8 1}$ | Bouteloua gracilis | 67.9 | 32.8 |
| $\mathbf{2 8 5}$ | Desmanthus illinoensis | 75.8 | 32 |
| $\mathbf{1 6 6}$ | Baptisia australis | 85.2 | 37.4 |
| $\mathbf{1 7 9}$ | Bouteloua curtipendula | 86.5 | 54.3 |
| $\mathbf{5 7 5}$ | Salvia azurea | 87.8 | 58.4 |
| $\mathbf{3 0 4}$ | Echinacea angustifolia | 89.3 | 24.8 |
| $\mathbf{9 9 9 . 0 1 0}$ | Solidago nemoralis | 93 | 57.7 |
| $\mathbf{5 5 3}$ | Ratibida pinnata | 96 | 37.8 |
| $\mathbf{1 5 5}$ | Asclepias verticillata | 97.2 | 51.7 |
| $\mathbf{5 6 5}$ | Rudbeckia hirta | 97.8 | 24.8 |
| $\mathbf{4 1 3}$ | Lespedeza capitata | 98 | 24.4 |
| $\mathbf{4 8 5}$ | Panicum virgatum | 98.2 | 61.4 |
| $\mathbf{1 3 3}$ | Andropogon gerardii | 99.1 | 50.2 |
| $\mathbf{5 8 3}$ | Schizachyrium scoparium | 99.4 | 51.2 |
| $\mathbf{6 1 3}$ | Sorghastrum nutans | 99.5 | 44.7 |

Table A. 8 Calculated traits.

KUT Code	Genus species	$\begin{aligned} & \text { SLA } \\ & \left(\mathbf{c m}^{2}\right. \\ & \left.\mathbf{g}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { SRL } \\ & \left(\mathbf{m ~ g}^{-}\right. \\ & \left.{ }^{1}\right) \end{aligned}$	Leaf Densit y (g cm^{-3})	Root Density ($\mathrm{g} \mathrm{cm}^{-3}$)	Fracti on Root	Root: Shoot	Water use efficien y	Date first bloo m
106	Achillea millefolium	146.0	65.51	0.279	0.351	0.352	0.552	3.189	129.6
112	Ageratina altissima	257.8	168.97	0.281	0.161	0.258	0.332	2.694	223
121	Amaranthus blitoides Amaranthus	215.7	64.61	0.244	0.534	0.126	0.125	5.202	
123	retroflexus Ambrosia	155.6	181.45	0.410	0.492	0.216	0.313	5.713	-
126	psilostachya	97.9	109.24	0.451	0.374	0.348	0.549	2.652	208
129	Amorpha canescens	261.3	73.78	0.314	0.586	0.343	0.479	2.657	156.2
133	Andropogon gerardii	135.1	45.70	0.862	0.400	0.477	1.026	4.439	200.2
137	Antennaria neglecta Apocynum	151.5	104.49	0.324	0.226	0.215	0.275	1.517	93.4
138	cannabinum	146.6	54.04	0.555	0.327	0.302	0.361	4.586	139.6
145	Aristida oligantha	173.6	126.95	0.517	0.303	0.237	0.348	6.248	
146	Aristida purpurea Artemisia	188.9	68.76	0.461	0.327	0.372	0.586	6.709	
148	ludoviciana	146.8	62.04	0.419	0.295	0.248	0.323	4.342	244
150	Asclepias speciosa	208.0	35.06	0.272	0.233	0.453	0.679	4.097	
152	Asclepias sullivantii	146.0	80.13	0.223	0.184	0.697	2.408	2.990	157.3
155	Asclepias verticillata	172.5	29.21	0.308	0.266	0.592	1.079	3.718	168.7
157	Asclepias viridis Astragalus	219.7	41.57	0.265	0.321	0.579	1.146	4.872	131.4
160	canadensi	146.3	59.02	0.432	0.308	0.251	0.321	4.204	
166	Baptisia australis Bouteloua	143.4	38.02	0.317	0.313	0.307	0.425	4.788	121.7
179	curtipendula	162.5	100.63	0.548	0.551	0.385	0.628	5.590	183.8
181	Bouteloua gracilis	157.1	149.71	0.472	0.384	0.416	0.469	6.596	202.7
185	Bromus inermis	149.6	97.60	0.474	0.254	0.493	0.985	3.246	141
202	Carex annectens Chamaecrista	182.4	146.37	0.480	0.418	0.519	1.041	2.055	-
227	fasciculata	163.9	128.35	0.633	0.165	0.122	0.162	4.420	206.3
231	Chamaesyce nutans	124.7	112.10	0.713	0.336	0.217	0.284	4.367	
240	Chloris verticillata	273.3	74.34	0.519	0.405	0.333	0.849	6.523	174
243	Cirsium altissimum Cucurbita	102.2	119.68	0.326	0.206	0.485	1.001	4.054	221
260	foetidissima	122.9	67.42	0.304	0.399	0.649	1.867	4.207	160.8
285	Desmanthus illinoensis	140.9	53.50	-	0.417	0.310	0.455	4.378	172.9
	Desmodium								
288	illinoense	157.9	137.82	0.357	0.263	0.539	1.485	3.820	167.8
294	Dichanthelium acuminatum	309.4	180.90	0.337	0.264	0.292	0.490	2.564	-

Table A. 8 continued (2 of 4)

$\begin{aligned} & \text { KUT } \\ & \text { Code } \end{aligned}$	Genus species	$\begin{aligned} & \text { SLA } \\ & \left(\mathbf{c m}^{2}\right. \\ & \left.\mathbf{g}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { SRL } \\ & \left(\mathbf{m ~ g ~ g}^{-}\right. \\ & \left.{ }^{1}\right) \end{aligned}$	Leaf Densit y (g cm^{-3})	Root Density ${ }_{3}{ }_{3} \mathrm{~g} \mathrm{~cm}^{-}$	Frac tion Root	Root: Shoot	Water use efficie ny	$\begin{array}{r} \text { Date } \\ \text { first } \\ \text { bloom } \end{array}$
304	Echinacea angustifolia	100.5	87.82	0.292	0.343	0.541	1.051	3.451	149
305	Echinacea pallida	103.4	47.96	-	0.333	0.344	0.523	4.041	
307	Echinodorus berteroi	189.8	17.10	0.263	0.402	0.486	0.944	3.616	
313	Eleusine indica	239.8	271.47	0.723	0.314	0.232	0.357	4.432	208
315	Elymus canadensis	159.3	100.33	0.466	0.293	0.329	0.545	3.243	165.7
316	Elymus villosus	180.6	148.17	0.407	0.404	0.245	0.333	2.351	
317	Elymus virginicus	167.4	167.05	0.544	0.278	0.300	0.439	3.773	-
323	Eragrostis pectinacea	-	128.74	-	0.372	0.264	0.355	4.744	
326	Erigeron annuus	242.2	62.75	-	0.329	0.383	0.621	4.776	138.7
334	Eupatorium altissimum	85.9	57.35	0.588	0.226	0.347	0.497	3.700	
335	Euphorbia corollata		25.90	-	0.350				210.4
338	Euphorbia dentata	177.6	121.35	0.542	0.278	0.162	0.182	3.137	
340	Euphorbia marginata	187.4	110.69	0.226	0.105	0.225	0.313	3.688	192.1
344	Festuca subverticillata	163.9	177.38	0.673	0.269	0.296	0.422	3.066	
365	Helianthus annuus	95.0	98.98	0.410	0.185	0.199	0.249	4.917	179
369	Helianthus petiolaris	84.4	107.60	0.346	0.262	0.153	0.201	4.442	
370	Helianthus tuberosus	79.5	38.30	0.429	0.254	0.323	0.446	5.213	241.2
371	Heliopsis helianthoides	143.2	58.61	0.407	0.171	0.304	0.377	3.423	200.6
373	Hesperostipa spartea	287.3	141.63	0.623	0.435	0.443	1.576	2.609	142
379	Hordeum jubatum	280.5	150.89	0.373	0.271	0.284	0.425	3.547	
380	Hordeum pusillum	192.5	157.16	0.558	0.279	0.405	1.834	3.031	149
396	Koeleria macrantha	160.7	283.30	0.487	0.334	0.478	0.923	2.975	145.9
399	Lactuca canadensis	247.6	37.44	0.228	0.228	0.489	0.941	4.184	
400	Lactuca ludoviciana	274.7	28.44	0.163	0.266	0.374	0.515	3.223	
408	Lepidium densiflorum	163.4	361.83	0.568	0.451	0.175	0.208	2.841	134
410	Lepidium virginicum	129.2	198.05	0.570	0.554	0.225	0.369	3.897	-
413	Lespedeza capitata	156.2	46.38	0.409	0.358	0.296	0.428	2.614	224.6
416	Lespedeza violacea	191.2	51.67	0.585	0.288	0.247	0.500	3.971	244
419	Liatris aspera	90.8	144.06	0.352	0.191	0.581	1.300	2.978	235.8
420	Liatris mucronata	69.0	92.39	0.402	0.286	0.764	4.061	2.516	227.7
421	Liatris punctata	54.9	118.81	0.389	0.168	0.695	3.059	2.218	233.3
447	Mirabilis linearis	85.8	86.22	0.434	0.509	0.594	1.419	5.166	
450	Monarda fistulosa	163.7	91.96	0.336	0.274	0.357	0.629	3.904	162.2
466	Oenothera biennis	121.5	160.43	0.328	0.267	0.274	0.390	3.139	220.1
468	Oenothera macrocarpa	109.8	44.69	0.319	0.311	0.163	0.195	3.435	128.3
481	Packera plattensis	130.3	35.29	0.422	0.270	0.460	0.785	3.502	108.8
482	Panicum capillare	315.5	185.16	0.211	0.205	-	-	5.249	-
485	Panicum virgatum	164.1	56.76	0.435	0.358	0.487	0.928	5.857	208.7

Table A. 8 continued (3 of 4)

$\begin{aligned} & \text { KUT } \\ & \text { Code } \end{aligned}$	Genus species	$\begin{aligned} & \text { SLA } \\ & \left(\mathbf{c m}^{2}\right. \\ & \left.\mathbf{g}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { SRL } \\ & \left(\mathbf{m ~ g}^{-}\right. \\ & \left.{ }^{1}\right) \end{aligned}$	Leaf Densit $y(g$ $\mathbf{c m}^{-3}$)	Root Densit $y(g$ $\mathbf{c m}^{-3}$)	Frac tion Root	Root: Shoot	Water use efficie ny	$\begin{array}{r} \text { Date } \\ \text { first } \\ \text { bloom } \end{array}$
488	Pascopyrum smithii	63.2	122.15	0.517	0.285	0.247	0.565	6.099	171.5
494	Penstemon cobaea	78.3	23.10	0.409	0.343	0.413	0.434	3.953	135.9
495	Penstemon grandiflorus	96.5	35.95	0.296	0.288	0.314	0.467	4.344	135.1
496	Penstemon tubiflorus	132.4	83.70	0.337	0.293	0.522	0.226	3.102	159.7
504	Physalis pubescens	119.3	116.22	0.253	0.386	0.614	1.459	1.848	
513	Plantago rugelii	128.2	128.42	0.373	0.176	0.272	0.578	3.262	
516	Poa arida	110.1	258.71	0.487	0.296	0.292	0.451	3.765	
519	Poa pratensis	140.8	302.77	0.459	0.343	0.557	1.362	2.560	125.2
534	Polygonum virginianum	165.5	192.06	0.398	0.358	0.193	0.261	4.169	
542	Prunella vulgaris Psoralidium	83.4	113.25	0.831	0.177	0.202	0.225	3.727	205.6
547	tenuiflorum	100.8	34.26	0.371	0.426	0.835	6.482	3.264	135.8
553	Ratibida pinnata	118.1	49.98	0.302	0.217	0.347	0.446	3.733	
565	Rudbeckia hirta	119.1	138.57	0.226	0.134	0.316	0.441	3.588	166
566	Ruellia humilis	181.2	19.06	0.365	0.413	0.332	0.517	3.239	154.1
575	Salvia azurea	118.9	45.56	0.443	0.404	0.434	0.733	3.551	183
576	Salvia reflexa Schizachyrium	-	187.07	-	0.246	-		2.189	74
583	scoparium	176.3	75.63	0.677	0.426	0.549	6.456	4.739	232.1
591	Senna marilandica	129.5	51.81	0.646	0.330	0.278	0.342	4.290	200.3
592	Setaria pumila	259.2	122.98	0.443	0.387	0.349	0.508	4.766	182
598	Silphium integrifolium	98.6	32.96	0.398	0.257	0.537	1.146	4.447	179.6
599	Silphium laciniatum	60.2	65.88	0.494	0.225	0.659	1.977	3.329	168.1
603	Solanum carolinense	164.1	90.13	0.393	0.309	0.390	0.646	4.177	149.4
605	Solanum rostratum	115.1	170.32	0.640	0.225	0.270	0.453	2.835	159.4
606	Solidago canadensis	.-							219
608	Solidago missouriensis	133.3	83.99	0.260	0.455	0.528	1.178	3.282	196.1
609	Solidago mollis	154.3	43.37	0.386	0.205	0.592	0.755	2.804	
610	Solidago petiolaris	162.4	36.81	0.413	0.331	0.367	0.540	3.730	
613	Sorghastrum nutans	165.9	78.73	0.485	0.320	0.405	0.858	7.120	230.6
622	Sporobolus heterolepis	-	-	-		-	-	3.856	269
625	Stellaria media	169.8	-	-					
627	Stenosiphon linifolius	106.6	71.67	0.289	0.293	0.362	0.534	3.760	174.2
633	Symphyotrichum laeve Symphyotrichum	163.6	86.72	0.265	0.200	0.410	1.429	3.509	241.2
635	oblongifolium	136.6	44.80	0.462	0.324	0.460	0.808	4.232	252.2
647	Tradescantia bracteata	188.3	92.01	0.176	0.337	0.611	1.714	3.778	136.4
648	Tradescantia ohiensis	194.4	84.37	0.203	0.239	0.654	2.327	4.243	142.7
651	Tragopogon dubius	110.2	22.84	0.377	0.371	0.547	1.105	4.118	131.3

Table A. 8 continued (4 of 4)

KUT Code	Genus species	$\begin{aligned} & \text { SLA } \\ & \left(\mathbf{c m}^{2}\right. \\ & \left.\mathbf{g}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { SRL } \\ & \left(\mathbf{m ~ g}^{-}\right. \\ & \left.\mathbf{1}^{-}\right) \end{aligned}$	Leaf Densit y (g cm^{-3})	Root Densit $y(g$ cm^{-3})	Frac tion Root	Root: Shoot	Water use efficie ny	$\begin{array}{r} \text { Date } \\ \text { first } \\ \text { bloom } \end{array}$
674	Verbesina alternifolia	135.3	26.56	0.249	0.312	0.422	0.826	3.137	211.6
675	Vernonia baldwinii	162.1	45.46	0.369	0.349	0.528	1.042	4.026	190.4
687	Vulpia octoflora	233.5	437.35	0.731	0.244	0.330	0.939	2.714	
689	Xanthium strumarium	166.6	43.08	0.100	0.161	0.201	0.410	6.017	
693	Zizia aurea	146.8	99.26	0.359	0.133	0.257	0.345	2.600	128.6
999.001	Baptisia alba	133.7	47.42	0.373	0.216	0.419	0.691	4.583	
999.002	Echinacea atrorubens	107.9	35.08	0.225	0.489	0.612	1.621	3.386	
999.003	Eryngium yuccifolium	98.6	57.28	0.242	0.216	0.419	0.658	3.054	
999.004	Eupatorium purpureum	237.9	67.92	0.312	0.217	0.351	0.480	4.081	
999.005	Helianthus salicifolius	148.7	62.00	0.374	0.266	0.404	0.642	4.066	
999.006	Liatris pycnostachya	177.2	126.91	0.214	0.137	0.307	0.419	3.789	
999.007	Penstemon digitalis	112.4	59.37	0.344	0.308	0.422	0.620	2.764	
999.008	Prenanthes aspera	161.3	191.78	0.330	0.143	0.630	0.641	2.568	
999.009	Rudbeckia lacinata	218.5	66.38	0.214	0.224	0.493	0.969	3.354	
999.010	Solidago nemoralis	150.3	53.38	0.452	0.202	0.409	0.610	3.499	-
999.011	Solidago ulmifolia	157.9	45.69	0.606	0.315	0.335	0.473	4.194	-
999.012	Asclepias incarnata	166.2	50.03	0.342	0.330	0.550	1.208	2.479	

Table A. 9 Konza species abundance, contrasts. (Log 10 transformed)

KUT Code	Genus species	Konza Avg Abd	Upland (f)	Lowland (t)	$\begin{gathered} \text { Graze } \\ \mathbf{d} \\ (\mathbf{G}) \end{gathered}$	Ungra zed (U)	Freque nt (1)	Infreq uent (20)
106	Achillea millefolium	-0.374	-0.371	-0.414	-0.421	-0.990	-0.856	-0.548
112	Ageratina altissima	-4.276	-	-3.993	-4.139	-	-	-4.276
121	Amaranthus blitoides	-	-	-	-	-	-	-
123	Amaranthus retroflexus	-3.975	-3.692	-	-3.838	-	-	-3.975
126	Ambrosia psilostachya	0.981	0.928	0.996	0.776	0.621	0.797	0.521
129	Amorpha canescens	0.736	0.715	0.720	0.477	0.511	0.579	0.216
133	Andropogon gerardii	1.646	1.559	1.688	1.074	1.463	1.509	1.080
137	Antennaria neglecta	-1.069	-1.008	-1.184	-1.120	-1.715	-1.353	-1.388
138	Apocynum cannabinum	-0.508	-1.997	-0.233	-0.394	-1.961	-1.308	-0.583
145	Aristida oligantha	-2.294	-2.502	-2.180	-2.339	-2.620	-2.757	-2.477
146	Aristida purpurea	-	-	-	-	-	-	-
148	Artemisia ludoviciana	0.284	0.275	0.256	0.112	-0.109	-0.130	0.072
150	Asclepias speciosa	-	-	-	-	-	-	-
152	Asclepias sullivantii	-1.265	-	-0.982	-3.139	-1.932	-1.278	-2.799
155	Asclepias verticillata	-0.244	-0.431	-0.142	-0.879	-0.243	-0.281	-1.332
157	Asclepias viridis	-0.190	-0.298	-0.134	-0.524	-0.379	-0.284	-0.903
160	Astragalus canadensis	-	-	-	-	-	-	-
166	Baptisia australis	-0.916	-0.760	-1.228	-1.989	-0.956	-0.994	-1.696
179	Bouteloua curtipendula	0.306	0.507	-0.176	0.011	0.088	0.180	-0.295
181	Bouteloua gracilis	-0.409	-0.127	-2.613	-0.530	-0.788	-0.588	-0.879
185	Bromus inermis	-0.406	-0.240	-0.749	-0.334	-1.123	-1.576	-0.436
202	Carex annectens Chamaecrista	-	-	-	-	-	-	-
227	fasciculata	-	-	-	-	-	-	-
231	Chamaesyce nutans	-1.500	-2.671	-1.233	-1.499	-1.936	-1.568	-2.342
240	Chloris verticillata	-2.829	-2.578	-3.692	-2.707	-4.139	-3.373	-2.975
243	Cirsium altissimum	-0.655	-1.160	-0.449	-1.233	-0.654	-1.401	-0.741
260	Cucurbita foetidissima	-	-	-	-	-	-	-
285	Desmanthus illinoensis	-1.656	-2.222	-1.440	-1.597	-2.418	-1.751	-2.365
288	Desmodium illinoense	-1.233	-1.717	-1.032	-1.866	-1.793	-1.323	-1.962
294	Dichanthelium acuminatum	-	-	-	-	-	-	-
304	Echinacea angustifolia	-1.396	-1.182	-1.944	-1.358	-2.069	-1.948	-1.539
305	Echinacea pallida	-	-	-	-	-	-	-
307	Echinodorus berteroi	-	-	-	-	-	-	-
313	Eleusine indica	-	-	-	-	-	-	-

Table A. 9 continued (2 of 4)

$\begin{aligned} & \text { KUT } \\ & \text { Code } \end{aligned}$	Genus species	Konza Average Abd	Upland (f)	Lowland (t)	Grazed (G)	Ungrazed (U)	Fre quent (1)	Infre quent (20)
315	Elymus canadensis	-0.739	-0.894	-0.654	-0.667	-1.587	-1.283	-0.886
316	Elymus villosus	-	-	-	-			
317	Elymus virginicus	-2.072	-2.952	-1.820	-1.965	-3.139	-2.702	-2.188
323	Eragrostis pectinacea			-				
326	Erigeron annuus	-2.255	-3.993	-1.976	-2.122	-4.139	-2.255	
334	Eupatorium altissimum	-0.667	-1.348	-0.434	-0.782	-0.928	-1.348	-0.768
335	Euphorbia corollata	-1.760	-	-1.477	-	-1.623	-2.155	-1.984
338	Euphorbia dentata	-2.509	-2.726	-2.391	-2.620	-2.732	-2.997	-2.679
340	Euphorbia marginata	-1.393	-1.842	-1.199	-1.688	-1.498	-1.827	-1.593
344	Festuca subverticillata	-	-	-	-	-	-	-
365	Helianthus annuus	-1.199	-2.481	-0.928	-1.081	-2.431	-1.403	-1.626
369	Helianthus petiolaris	-	-	-	-	-	-	
370	Helianthus tuberosus	-	-	-	-	-	-	
371	Heliopsis helianthoides	-	-	-	-			
373	Hesperostipa spartea	-2.986	-	-2.703	-2.849	-		-2.986
379	Hordeum jubatum	-	-	-	-			
380	Hordeum pusillum	-0.920	-0.680	-1.664	-0.784	-3.294	-1.268	-1.179
396	Koeleria macrantha	0.055	0.324	-1.157	-0.599	-0.632	-0.016	-0.768
399	Lactuca canadensis	-4.276		-3.993	-4.139	-		-4.276
400	Lactuca ludoviciana	-2.416	-2.437	-2.431	-3.139	-2.364	-3.235	-2.487
408	Lepidium densiflorum	-0.921	-0.732	-1.347	-0.841	-2.124	-1.106	-1.381
410	Lepidium virginicum	-	-	-	-	-	-	-
413	Lespedeza capitata	-0.128	-0.621	0.076	-1.022	-0.376	-0.169	-1.170
416	Lespedeza violacea	0.700	-1.993	0.983	-0.459	0.417	0.620	-0.072
419	Liatris aspera	-	-	-	-	-	-	-
420	Liatris mucronata	-	-	-	-	-		
421	Liatris punctata	-0.533	-0.255	-2.257	-0.397	-3.537	-1.986	-0.549
447	Mirabilis linearis	-2.532	-2.380	-2.832	-2.977	-2.548	-2.643	-3.179
450	Monarda fistulosa	-1.124	-1.636	-0.917	-1.054	-1.859	-1.964	-1.192
466	Oenothera biennis	-3.799		-3.516	-3.838	-4.139	-3.975	-4.276
468	Oenothera macrocarpa	-2.270	-1.987	-	-2.136	-4.139	-3.322	-2.310
481	Packera plattensis	-1.768	-1.557	-2.303	-1.989	-2.287	-1.868	-2.456
482	Panicum capillare	-1.752	-2.932	-1.485	-2.390	-1.696	-1.905	-2.280
485	Panicum virgatum	0.734	0.349	0.912	-0.157	0.636	0.675	-0.163
488	Pascopyrum smithii	-1.087	-0.804	-	-1.557	-1.072	-1.550	-1.270
494	Penstemon cobaea	-2.334	-2.061	-3.692	-2.255	-3.139	-2.845	-2.494

Table A. 9 continued (3 of 4)

KUT Code	Genus species	Konza Avg Abd	Upland (f)	Lowland (t)	Graze d (G)	Ungrazed (U)	Fre quent (1)	Infre quent (20)
495	Penstemon grandiflorus	-2.392	-2.109	-	-2.777	-2.410	-2.548	-2.914
496	Penstemon tubiflorus	-3.146	-2.863	-	-3.008	-	-	-3.146
504	Physalis pubescens	-3.401	-	-3.118	-	-	-3.401	-
513	Plantago rugelii	-	-	-				
516	Poa arida	-		-				
519	Poa pratensis	0.815	0.844	0.744	0.518	0.727	-0.346	0.784
534	Polygonum virginianum	-	-	-	-	-		
542	Prunella vulgaris	-4.276		-3.993	-4.139		-4.276	
547	Psoralidium tenuiflorum	-0.633	-0.631	-0.673	-3.661	-0.825	-0.727	-1.346
553	Ratibida pinnata	-	-	-	-	-		
565	Rudbeckia hirta	-	-	-	-	-	-	-
566	Ruellia humilis	0.078	-0.176	0.212	-0.621	0.083	-0.164	-0.291
575	Salvia azurea	0.399	0.652	-0.488	-0.017	0.230	0.337	-0.475
576	Salvia reflexa	-4.276	-	-3.993	-4.139	-	-4.276	-
583	Schizachyrium scoparium	1.054	1.129	0.917	0.264	0.905	1.009	0.047
591	Senna marilandica	-2.986	-	-2.703	-2.849	-	-3.401	-3.197
592	Setaria pumila	-2.869	-2.803	-2.993	-2.749	-4.139	-2.905	-3.975
598	Silphium integrifolium	-2.329	-3.993	-2.051	-2.197	-4.139	-2.329	-
599	Silphium laciniatum	-1.095	-2.789	-0.817	-0.962	-2.934	-1.136	-2.138
603	Solanum carolinense	-1.168	-1.593	-0.980	-1.326	-1.337	-1.695	-1.321
605	Solanum rostratum	-2.975	-2.879	-3.148	-2.883	-3.838	-3.276	-3.276
606	Solidago canadensis	0.746	-0.639	1.019	-0.005	0.671	0.470	0.418
608	Solidago missouriensis	0.122	0.072	0.133	-0.450	-0.031	-0.075	-0.317
609	Solidago mollis	-	-	-	-	-	-	-
610	Solidago petiolaris	-	-	-		-		
613	Sorghastrum nutans	1.152	1.042	1.209	0.551	1.046	1.080	0.335
622	Sporobolus heterolepis	0.120	0.198	-0.022	-0.952	0.088	-0.118	-0.256
625	Stellaria media	-				-		-
627	Stenosiphon linifolius	-2.450	-2.355	-2.622	-2.500	-	-2.887	-2.648
633	Symphyotrichum laeve	-2.460	-2.570	-2.402	-2.329	-	-2.837	-2.696
635	Symphyotrichum oblongifolium	0.402	0.674	-0.932	-0.398	-0.002	0.250	-0.129
647	Tradescantia bracteata	-2.679	-	-2.396	-2.654	-4.139	-2.691	-4.276
648	Tradescantia ohiensis	-	-	-	-	-	-	-
651	Tragopogon dubius	-1.882	-1.673	-2.408	-1.968	-2.141	-2.785	-1.941
674	Verbesina alternifolia	-	-	-	-	-	-	-
675	Vernonia baldwinii	0.074	0.016	0.093	-0.032	-0.298	-0.159	-0.306

Table A. 9 continued (4 of 4)
$\left.\begin{array}{llccccccc}\text { KUT } & & \begin{array}{c}\text { Konza } \\ \text { Avg }\end{array} & \begin{array}{c}\text { Up- } \\ \text { land } \\ \text { (f) }\end{array} & \begin{array}{c}\text { Low- } \\ \text { land } \\ (\mathbf{t})\end{array} & \begin{array}{c}\text { Grazed } \\ (\mathbf{G})\end{array} & \begin{array}{c}\text { Un- } \\ \text { grazed } \\ (\mathbf{U})\end{array} & \begin{array}{c}\text { Fre } \\ \text { quent } \\ (\mathbf{1})\end{array} & \begin{array}{c}\text { Infre } \\ \text { quent }\end{array} \\ \mathbf{(2 0)}\end{array}\right)$

Table A.10 Konza Abundance, treatment combinations. (Log 10 transformed)

KUT									
Code	Genus species	G1f	G1t	G20f	G20t	U1f	U1t	U20f	U20t
106	Achillea millefolium	0.633	0.048	1.333	1.822	0.082	0.049	0.397	0.347
112	Ageratina altissima	-	-	-	0.001	-	-	-	-
121	Amaranthus blitoides	-	-	-	-	-	-	-	
123	Amaranthus retroflexus	-	-	0.001	-	-			
126	Ambrosia psilostachya	17.08	15.65	17.15	10.58	5.450	6.46	8.47	8.77
129	Amorpha canescens	14.15	6.09	8.87	1.247	4.022	5.90	3.79	7.65
133	Andropogon gerardii	25.38	33.05	30.43	31.20	42.43	51.23	53.84	46.59
137	Antennaria neglecta	0.224	0.002	0.232	0.310	0.032	0.051	0.028	0.001
138	Apocynum cannabinum	0.072	0.473	-	3.536	-	0.011	0.001	0.071
145	Aristida oligantha	-	-	-	0.046	0.012	0.001	-	-
146	Aristida purpurea	-	-	-	-	-	-	-	-
148	Artemisia ludoviciana	2.450	0.895	4.186	5.551	0.372	0.244	4.080	2.433
150	Asclepias speciosa	-	-	-	-	-	-	-	-
152	Asclepias sullivantii	-	0.001	-	0.007	-	0.048	-	0.013
155	Asclepias verticillata	0.259	0.681	0.035	0.363	1.010	1.708	0.039	0.177
157	Asclepias viridis	0.916	0.937	0.784	0.393	0.471	1.302	0.300	0.238
160	Astragalus canadensis	-	-	-	-	-	-	-	-
166	Baptisia australis	0.061	0.043	-	-	0.315	0.119	0.292	0.012
179	Bouteloua curtipendula	3.594	2.450	3.499	0.846	4.706	0.450	2.673	0.209
181	Bouteloua gracilis	1.146	0.013	1.828	-	0.884	0.002	0.008	-
185	Bromus inermis	0.257	0.055	3.143	1.233	0.030	-	0.772	0.001
202	Carex annectens Chamaecrista	-	-	-	-	-	-	-	-
227	fasciculata	-	-	-	-	-	-	-	-
231	Chamaesyce nutans	0.007	0.287	0.002	0.024	0.002	0.036	0.002	0.029
240	Chloris verticillata	0.004	0.001	0.015	-	0.000	-	-	-
243	Cirsium altissimum	0.004	0.009	0.044	0.535	0.007	0.135	0.467	1.257
260	Cucurbita foetidissima	-	-	-	-	-	-	-	-
285	Desmanthus illinoensis	0.018	0.206	0.001	0.031	-	0.005	0.026	0.004
288	Desmodium illinoense	-	0.035	0.003	0.100	0.009	0.045	0.046	0.005
294	Dichanthelium acuminatum	-	-	-	-	-	-	-	-
304	Echinacea angustifolia	0.058	0.051	0.303	0.032	0.011	-	0.073	-
305	Echinacea pallida	-	-	-	-	-	-	-	-
307	Echinodorus berteroi	-	-	-	-	-	-	-	-
313	Eleusine indica	-	-	-	-	-	-	-	-

Table A. 10 continued (2 of 4)

$\begin{aligned} & \text { KUT } \\ & \text { Code } \end{aligned}$	Genus species	G1f	G1t	G20f	G20t	U1f	U1t	U20f	U20t
315	Elymus canadensis	0.344	0.234	0.442	1.156	0.008	0.018	0.104	0.094
316	Elymus villosus	-	-	-	-	-	-	-	
317	Elymus virginicus	0.004	0.019	0.001	0.086	0.002	0.000	-	0.003
323	Eragrostis pectinacea	-	-	-	-	-	-	-	
326	Erigeron annuus	0.001	0.076	-	-	-	0.000	-	
334	Eupatorium altissimum	0.007	0.141	0.064	1.460	0.024	0.142	0.219	0.535
335	Euphorbia corollata	-	-	-	-	-	0.045	-	0.120
338	Euphorbia dentata	-	0.013	-	0.012	0.001	-	0.013	0.004
340	Euphorbia marginata	0.013	0.081	0.037	0.076	0.004	0.034	0.040	0.170
344	Festuca subverticillata	-	-	-	-	-	-	-	
365	Helianthus annuus	0.013	0.529	0.005	0.292	0.003	-	-	0.027
369	Helianthus petiolaris	-	-	-	-	-	-	-	-
370	Helianthus tuberosus	-	-	-	-	-	-	-	
371	Heliopsis helianthoides	-	-	-	-	-	-	-	-
373	Hesperostipa spartea	-	-	-	0.014	-	-	-	-
379	Hordeum jubatum	-	-	-	-	-	-	-	-
380	Hordeum pusillum	0.595	0.147	0.914	0.006	0.001	0.002	-	-
396	Koeleria macrantha	0.590	0.007	1.905	0.046	0.992	0.049	0.391	0.048
399	Lactuca canadensis	-	-	-	0.001	-	-	-	-
400	Lactuca ludoviciana	0.004	0.001	-	0.002	-	0.000	0.025	0.017
408	Lepidium densiflorum	0.648	0.270	0.505	0.038	0.015	0.005	0.032	0.005
410	Lepidium virginicum	-	-	-	-	-	-	-	-
413	Lespedeza capitata	0.145	0.444	0.138	0.235	0.177	1.566	0.226	0.299
416	Lespedeza violacea	0.002	0.007	-	3.507	0.015	8.467	0.001	6.838
419	Liatris aspera	-	-	-	-	-	-	-	-
420	Liatris mucronata	-	-	-	-	-	-	-	-
421	Liatris punctata	0.121	0.018	3.899	0.022	0.001	0.000	-	-
447	Mirabilis linearis	-	0.002	-	0.008	0.015	-	0.001	-
450	Monarda fistulosa	0.001	-	0.017	0.875	0.075	0.000	-	-
466	Oenothera biennis	-	0.001	-	-	-	-	-	0.001
468	Oenothera macrocarpa	0.006	-	0.068	-	0.000	-	-	-
481	Packera plattensis	0.057	0.006	0.040	0.001	0.017	0.006	0.002	0.005
482	Panicum capillare	-	0.040	0.001	0.001	0.004	0.058		0.059
485	Panicum virgatum	1.055	2.311	1.401	2.281	4.026	14.19	1.432	3.767
488	Pascopyrum smithii	-	-	0.281	-	0.211	-	0.510	-
494	Penstemon cobaea	0.010	0.001	0.044	-	0.004	-	-	-
495	Penstemon grandiflorus	-	-	0.017	-	0.021	-	-	

Table A. 10 continued ($\mathbf{3}$ of 4)

KUT									
Code	Genus species	G1f	G1t	G20f	G20t	U1f	U1t	U20f	U20t
496	Penstemon tubiflorus	-	-	0.010	-	-	-	-	-
504	Physalis pubescens	-	-	-	-	-	-	-	-
513	Plantago rugelii	-	-	-	-	-	-	-	-
516	Poa arida	-	-	-	-	-	-	-	-
519	Poa pratensis	1.293	0.712	18.77	12.55	0.184	0.274	31.87	19.91
534	Polygonum virginianum	-	-	-	-	-	-	-	-
542	Prunella vulgaris	-	0.001	-	-	-	-	-	-
547	Psoralidium tenuiflorum	-	0.001	-	0.001	0.238	0.209	0.330	0.269
553	Ratibida pinnata	-	-	-	-	-	-	-	-
565	Rudbeckia hirta	-	-	-	-	-	-	-	-
566	Ruellia humilis	0.772	0.707	0.322	0.618	0.892	2.065	1.380	4.063
575	Salvia azurea	6.418	0.913	1.961	0.428	7.677	0.331	2.262	0.164
576	Salvia reflexa	-	0.001	-	-	-	-	-	-
583	Schizachyrium scoparium	6.623	4.091	5.505	2.352	21.19	16.05	2.702	4.282
591	Senna marilandica	-	0.006	-	0.009	-	-	-	-
592	Setaria pumila	0.011	0.006	-	0.001	0.000	-	-	-
598	Silphium integrifolium	-	0.064	-	-	0.000	-	-	-
599	Silphium laciniatum	-	1.003	-	0.101	0.006	-	-	-
603	Solanum carolinense	0.001	0.231	0.001	0.245	0.004	0.019	0.192	0.200
605	Solanum rostratum	0.001	0.005	0.007	-	0.001	-	-	-
606	Solidago canadensis	0.043	4.704	0.060	5.190	0.224	7.417	1.240	24.83
608	Solidago missouriensis	1.396	0.798	0.288	1.109	0.762	1.269	4.013	1.355
609	Solidago mollis	-	-	-	-	-	-	-	-
610	Solidago petiolaris	-	-	-	-	-	-	-	-
613	Sorghastrum nutans	9.220	11.35	6.931	8.507	20.30	28.04	6.644	7.062
622	Sporobolus heterolepis	0.334	0.031	0.301	0.463	1.506	1.237	4.258	2.528
625	Stellaria media	-	-	-	-	-	-	-	-
627	Stenosiphon linifolius	0.001	-	0.031	-	-	-	-	-
633	Symphyotrichum laeve	0.019	-	-	0.028	-	-	-	-
635	Symphyotrichum oblongifolium	0.550	0.022	3.443	0.031	1.502	0.215	7.135	0.271
647	Tradescantia bracteata	-	0.022	-	-	-	-	-	0.001
648	Tradescantia ohiensis	-	-	-	-	-	-	-	-
651	Tragopogon dubius	0.018	0.001	0.064	0.026	0.002	0.000	0.075	0.001
674	Verbesina alternifolia	-	-	-	-	-	-	-	-
675	Vernonia baldwinii	1.402	2.907	2.767	2.324	0.941	0.737	1.041	0.676
687	Vulpia octoflora	0.177	0.017	0.051	0.015	-	-	0.014	-
689	Xanthium strumarium	-	-	-	0.001	-	-	-	-

Table A. 10 continued (4 of 4)

KUT Code	Genus species	G1f	G1t	G20f	G20t	U1f	U1t	U20f	U20t
$\mathbf{6 9 3}$	Zizia aurea	-	-	-	-	-	0.0003	-	-
$\mathbf{9 9 9 . 0 0 1}$	Baptisia alba	-	-	-	-	-	-	-	-
$\mathbf{9 9 9 . 0 0 2}$	Echinacea atrorubens	-	-	-	-	-	-	-	-
$\mathbf{9 9 9 . 0 0 3}$	Eryngium yuccifolium	-	-	-	-	-	-	-	-
$\mathbf{9 9 9 . 0 0 4}$	Eupatorium purpureum	-	-	-	-	-	-	-	-
$\mathbf{9 9 9 . 0 0 5}$	Helianthus salicifolius	-	-	-	-	-	-	-	-
$\mathbf{9 9 9 . 0 0 6}$	Liatris pycnostachya	-	-	-	-	-	-	-	-
$\mathbf{9 9 9 . 0 0 7}$	Penstemon digitalis	-	-	-	-	-	-	-	-
$\mathbf{9 9 9 . 0 0 8}$	Prenanthes aspera	-	-	-	-	-	-	-	-
$\mathbf{9 9 9 . 0 0 9}$	Rudbeckia lacinata	-	-	-	-	-	-	-	-
$\mathbf{9 9 9 . 0 1 0}$	Solidago nemoralis	-	-	-	-	-	-	-	-
$\mathbf{9 9 9 . 0 1 1}$	Solidago ulmifolia	-	-	-	-	-	-	-	-
$\mathbf{9 9 9 . 0 1 2}$	Asclepias incarnata	-	-	-	-	-	-	-	-

Table A. 11 Univariate statistics. $\mathbf{n}=121$

	$\begin{aligned} & \mathrm{A}_{\max } \\ & \left(\mu \operatorname{mol} \mathrm{CO}_{2}\right. \\ & \left.\mathrm{m}^{-2} \mathbf{s}^{-1}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{g}_{\mathrm{s}} \\ & \left(\mathbf{m o l ~ H}_{2} \mathrm{O}\right. \\ & \left.\mathbf{m}^{-2} \mathbf{s}^{-1}\right) \\ & \hline \end{aligned}$	Intercellular CO_{2} Concentration	Water Use Efficiency $\left(A_{\max } / g_{s}\right)$	$\begin{aligned} & \Psi_{\text {crit }} \\ & (\text { bars }) \end{aligned}$	Leaf Thickness (mm)	Leaf Angle (degrees)	Total Root Length (cm)	Avg. Root Diameter (mm)	Root Volume (cm3)
Mean	10.3	0.13	231.2	3.84	-46.7	0.22	38.6	469.5	0.27	0.20
Standard										
Deviation	4.3	0.06	41.8	1.07	20.6	0.10	27.2	294.9	0.09	0.07
Max	24.5	0.30	307.1	7.12	-11.2	0.57	90.0	1689.1	0.45	0.38
Median	10.2	0.12	232.3	3.75	-40.0	0.20	40.0	393.1	0.27	0.20
Min	2.0	0.03	108.7	1.52	-89.0	0.08	0.0	80.4	0.10	0.05

	$\begin{aligned} & \text { SLA } \\ & \left(\mathrm{cm}^{2} \mathrm{~g}^{-1}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SRL } \\ & \left(\mathrm{mg}^{-1}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \boldsymbol{\rho}_{\mathrm{L}}\left(\mathrm{~g} \mathrm{~cm}^{-}-1\right. \\ & \hline \end{aligned}$	$\begin{aligned} & \rho_{\mathrm{R}} \\ & \left(\mathrm{~g} \mathrm{~cm}^{-3}\right) \\ & \hline \end{aligned}$	Shoot Mass (g)	Root Mass (g)	Root: Shoot	Fraction Root	Date of First Bloom	Mycorrhizal Responsiveness (\%)	Mycorrhizal Root Colonization (\%)
Mean Standard Deviation	156.1	99.1	0.41	0.30	860.5	524.0	0.86	0.39	178.6	58.2	37.3
	54.1	70.6	0.14	0.10	522.3	343.5	0.96	0.15	39.6	46.8	15.6
Max	315.5	437.4	0.86	0.59	2479.7	2297.1	6.48	0.84	269.0	99.5	61.4
Median	152.9	81.9	0.39	0.30	771.9	446.8	0.55	0.36	174.0	85.9	36.4
Min	54.9	17.1	0.10	0.11	33.1	59.0	0.13	0.12	93.4	-33.3	10.4

