
 
 

 
 
 

PHREATOPHYTES IN SOUTHWEST KANSAS USED AS A TOOL FOR 
PREDICTING HYDROLOGIC PROPERTIES 

 
 

by 
 
 
 

TREVOR S. AHRING 
 
 
 

B. S., Kansas State University, 2007 
 
 
 

A THESIS 
 
 

submitted in partial fulfillment of the requirements for the degree 
 
 

 MASTER OF SCIENCE 
 
 

Department of Civil Engineering 
College of Engineering 

 
 
 
 

KANSAS STATE UNIVERSITY 
Manhattan, Kansas 

 
 

2009 
 

Approved by: 
 

Major Professor 
Dr. David Steward 



 
 

Copyright 

TREVOR AHRING 

2009 



 
 

Abstract 
 
 The Ogallala Aquifer is a supply of water for several municipalities in western 

Kansas, as well as an irrigation source for local farmers. Since the 1950’s, when the 

aquifer started to be pumped for irrigation, the region has seen steady declines of the 

groundwater table. These declines have reduced streamflow in the Arkansas and 

Cimarrron Rivers, and caused a redistribution of riparian phreatophytes. This thesis 

studies this redistribution of phreatophytes, and develops statistical relationships relating 

a phreatophyte’s location to depth to groundwater, increase in depth to groundwater, 

distance from a stream or river, and hydrologic soil group. Remote sensing was used to 

determine tree locations on predevelopment and post-development aerial photography. 

These locations were mapped using ArcGIS, and ArcAEM was used to model 

groundwater flow in six riparian regions taking root uptake into account. It was found 

that once the depth to groundwater becomes greater than about 3 m, tree population will 

decrease as depth to water increases. Trees were located within 700 m of the river. Areas 

with a dense tree population (>10% tree cover) occurred where the average depth to 

water ranged from 0.24-1.4 m. Areas with moderate tree density (5-10% tree cover) 

corresponded to an average depth to water ranging from 2.1-19 m. Areas with a low tree 

density (<5% tree cover) corresponded to an average depth to water ranging from 11-28 

m. It was found that phreatophytes have a high likelihood of growing on hydrologic soil 

group A and a low likelihood of growing on hydrologic soil group B. The number of 

trees located on hydrologic soil group D was what would be statistically expected if tree 

location were independent of soil type. It was also found that tree locations could be used 

as an indicator of good hydraulic connectivity between surface water and groundwater. 



 
 

This information can be used to help guide future installation of monitoring networks and 

expand research projects from central Kansas to western Kansas. 
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1. Introduction 

 The Ogallala Aquifer in western Kansas provides a stable foundation for irrigated 

agriculture as well as potable water for municipalities and some industry. This semiarid 

grassland ecosystem has limited precipitation and water demands exceed natural recharge 

rates. Consequently, streams have experienced declining flows and riparian habitat has 

experienced changes in species and composition. Since most of the riparian tree species 

are phreatophytic and use great quantities of water, it can be assumed that altering tree 

location and density would affect the local water table. This thesis studies how 

groundwater movement has changed since irrigation development (development) and the 

relationships between tree locations and depth to groundwater, distance from the river, 

and hydraulic connectivity. 

 The ecology of western Kansas has been altered by settlement patterns over the 

past century. When the settlers arrived, western Kansas was a short grass prairie 

ecosystem and the bison and antelope populations grazed to the near exclusion of trees. 

Once the native ungulates were replaced by farms and cattle, cottonwood tree populations 

expanded along the rivers. In the 1950’s, the Ogallala Aquifer began to be seen as a 

potential source of irrigation water. The water level over much of the aquifer has 

decreased significantly since the 1950’s (KGS 2006). The stream flows of the Cimarron 

and Arkansas Rivers have also declined (USGS 2008). The riparian ecology has been 

affected by these changes and the riparian zones, once dominated by cottonwood trees, 

now support fewer trees. The trees that remain are mostly saltcedar. This change in 

ecology may have an impact on the water balance because both species of trees are 

phreatophytic and can use great quantities of water. 
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The two dominant phreatophytic riparian tree species in the region are 

cottonwood (populus deltoides) and saltcedar (tamarix). These species have differences 

in water source, rooting depth, and tolerance to salinity (Butler 2007, Canadell 1996, 

Shafroth 2005). Only minimal differences were found in water usage, but several 

differences were found in the source of that water (Butler 2007, Busch 1992, Cleverly 

2006, Owens 2007). 

 When water is available in the vadose zone, cottonwood trees will use it. Field 

studies show that when the water table is shallow, a one meter strip of cottonwood trees 

extending across the riparian zone will consume 0.62 m3 of groundwater per day, which 

is equivalent to wells spaced 5.3 km apart continuously pumping 3.3E3 m3/day over the 

width of the riparian zone. If the water table is below the root network, less groundwater 

is consumed (Butler 2007).  

Tamarix trees generally maintain a high level of ET during periods of stress, 

unlike cottonwoods (Busch 1992). Water table depth seemingly has no effect on tamarix, 

even at depths below 10 m, and tamarix is not affected by moderately dry soil. Tamarix 

roots can grow at a rate that is faster than soil drains (Cleverly 2006). Early studies have 

found that a single saltcedar tree can use up to 757 L of water per day (Holdenbach 

1987). This has led to massive control and removal efforts. However, more recent studies 

conclude that a more reasonable estimate for a single tree is a maximum of 122 L of 

water per day. This 85% decrease in the estimated transpiration rate of tamarisk indicates 

that the benefits for the control and removal have been grossly overestimated (Owens 

2007). 
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Canadell et al (1996) conducted a study to determine the rooting depth of many 

species of trees, including cottonwood. It was determined that cottonwood trees in a 

deciduous forest have a maximum rooting depth of 2.6 m. Cooper et al (2003) later found 

that cottonwood trees root to the depth of the annual floodplain water table low. It was 

found that the roots would not penetrate deeper because the hydraulic conductivity was 

too low. 

 Cottonwood trees require floods to propagate, so they are typically found in flood 

plains and riparian zones (Nagler 2005). In western Montana, Law (2000) found that 

cottonwoods generally establish on sandy soils, on slopes ranging from 0.9o to 1.0o. The 

sandy texture is consistent with the finding of Cooper et al. (2003) that cottonwood roots 

do not penetrate soils with low hydraulic conductivity. 

Saltcedar leaves can contain a high salt content, so when these leaves drop onto 

the ground, soil salinity increases. Saltcedar is highly resistant to soil salinity, but some 

native species are not. This can make it difficult for a native species to thrive once 

saltcedar has invaded (Shafroth 2005). 

 The Ogallala Aquifer recharges at a very slow rate due to low annual precipitation 

and declining streamflows (Sophocleous 2005). Whenever an aquifer is not pumped or 

pumping is sustainable, the aquifer is at equilibrium and  

DPR +=   (1) 

where  

R = recharge 

P = pumping rate 

D = discharge 
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If the aquifer is pumped at a rate that is not sustainable, as is the case with the Ogallala 

Aquifer, then  

DPR +<  (2) 

It is difficult to estimate recharge in this case because pumping usually causes a decrease 

in discharge but occasionally causes an increase in recharge (Devlin 2004).  

 Sophocleous (2005) analyzed the results of multiple studies on recharge of the 

Kansas High Plains Aquifer. These studies included two major regional climatic soil-

water balance studies by the USGS, one for Kansas and one for the entire High Plains 

Aquifer, a study using a finite difference model to estimate recharge both prior to and 

after development, a county-scale groundwater study for Finney County, and a field-

based experimental recharge study. Analysis of data from all western Kansas Counties 

based on Kansas Geological Survey (KGS) bulletin publications provided an average 

recharge of nearly 8 mm/yr with a standard deviation of less than 4 mm/yr. A similar 

analysis using data from the Kansas Water Resources Board (KWRB) resulted in a mean 

recharge of nearly 7 mm/yr with a standard deviation of about 3 mm/yr. The regional 

climatic soil-water balance studies and regional groundwater modeling studies resulted in 

similar recharge values, both less than 10 mm/yr. The field-based studies resulted in 

variable recharge depending on the climatic-soil-vegetation system of the area. It is 

difficult to say which method provides the most accurate recharge, so a combination of 

the methodologies was chosen as the preferred way to deal with the issue. The overall 

consensus was that the average recharge of the Ogallala Aquifer in Kansas is less than 10 

mm/yr. This rate is not enough to support the irrigation pumping in the area, given 

current rates of extraction (Sophocleous 2005).  
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 The most important factors in predicting the locations of phreatophytes are 

proximity to a floodplain (Nagler 2005), soil type (Law 2000, Cooper 2003), and water 

availability (Butler 2007, Cleverly 2006, Owens 2007).  

 Very few studies have attempted to use tree locations for groundwater modeling 

purposes. Steward et al (2007) used the analytic element method to model groundwater 

uptake by phreatophytes in a small study area near Larned, KS. In this study, individual 

cottonwood trees were digitized on ArcMap by drawing circles around trees on aerial 

photography. The spatial data from these circles was then imported into a script that 

traced the source of each tree’s water supply and quantified water usage. 

 Brunke et al (1997) reviewed factors controlling connectivity between river and 

groundwater ecosystems, viewing them as linked components of the hydrologic 

ecosystem. Beneath any stream or river, a hyporheic zone exists. This zone is defined as 

“a saturated, subterranean matrix of interstitial spaces characterized by permanent 

darkness, low current velocities, and high substrate stability.” Unlike groundwater, it is 

partially composed of surface water with other qualities. The permeability of the 

hyporheic zone depends on the hydraulic conductivity of the alluvium. 

The exchange process between groundwater and surface water is most influenced 

by geological and anthropogenic genesis of the catchment area, hydrology, climate, and 

geomorphology. The interaction between a river and groundwater will either be through 

infiltration or exfiltration into the saturated zones. The direction of the exchange is 

dependent on hydraulic head gradient, and the rate of flow is dependent on sediment 

permeability (Brunke 1997). With low precipitation, baseflow is typically composed 

primarily of groundwater because the groundwater will have a higher hydraulic head than 
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the surface water. With high precipitation, runoff and interflow increase, leading to 

higher hydraulic pressures in the lower stream reaches, and causing the river to infiltrate 

into the groundwater. Excessive pumping of an aquifer can lead to colmation, an 

excessive rate of fine sediment deposition into streambeds, which reduces the function of 

the hyporheic zone and makes infiltration less likely even with the presence of 

streamflow. Reducing the infiltration reduces recharge to the groundwater, causing the 

water table to decrease even further, possibly killing off riparian vegetation and 

increasing erosion (Brunke 1997). 

 No information documenting specific phreatophyte locations prior to development 

was readily available. Aerial photography was chosen as the method of determining 

phreatophyte locations prior to development. Several past studies have taken this 

approach to map tree locations using remote sensing software. Studies conducted by 

Akita et al (2008) and Suarez et al (2005) used the software package eCognition. Both 

studies used infrared imagery, which is unavailable for predevelopment photography. 

 The goal of this thesis is to explore the relationships between phreatophytes and 

the water balance in western Kansas by using aerial photography to determine both 

current and predevelopment phreatophyte locations. Remote sensing software is used to 

digitize tree locations. ArcGIS tools are used to determine statistical relationships 

between tree location and soil type, depth to water, and change in depth to water. 

ArcAEM is used to model groundwater uptake by phreatophytes. Prior studies used a 

remote sensing approach to investigate groundwater (Ahmad et al 2004, Becker 2006, 

Jiang et al 2008, Münch et al 2007, Rodell et al 2006), but no prior research has taken a 

remote sensing approach to investigate phreatophyte distribution. This thesis analyzes 
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hydrologic properties and interactions of locations that are populated with phreatophytes, 

and determines if these locations indicate hydraulic connectivity, hydraulic conductivity 

of soil, and groundwater table depth. 
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2. Methods 

 This section first overviews the methods used for this study; the specific steps 

follow. Statistical methods were used to determine the relationship between tree location, 

depth to water, and hydraulic connectivity. This is important because tree distributions 

could potentially be used to estimate hydrologic properties of an area. Depth to water, 

change in depth to water, soil type, and distance to a stream or river were chosen as 

parameters for the statistical comparison. These parameters were chosen based on a 

literature review (Butler 2007, Cleverly 2006, Cooper 2003, Law 2000, Nagler 2005, 

Owens 2007) and observing aerial photography taken by the United States Department of 

Agriculture (USDA) Commodity Stabilization Service (1957) and the USDA 

Agricultural Stabilization and Conservation Service (1965, 1967). 

 Aerial photography was used to determine both pre-development and current 

phreatophyte distributions. This was the chosen method because there are no detailed 

records of pre-development phreatophyte distribution in western Kansas, and while 

records do exist for current conditions, the photography was used to maintain consistency 

in the type of data being analyzed. Also, current technology allows for photography to be 

classified using remote sensing software that is compatible with GIS software. 

 Six study areas, all in different counties, were selected for a small scale 

examination of the role of phreatophytes in the hydrologic balance. These study areas all 

had differences in tree distribution, depth to water, increase in depth to water, and soil 

type. These regions can be seen in Fig. 1. 
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Figure 1: Locations of Study Areas along the Arkansas and Cimarron Rivers. 
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 Predevelopment photography was georeferenced into ArcGIS using roadways. 

Post-development photography was available already georeferenced from the Kansas 

Geospatial Commons. All photography was mosaicked and clipped along both the 

Arkansas and Cimarron River corridors, then exported as TIF files for use with remote 

sensing software. 

 Tree classification was performed by using remote sensing software on the aerial 

photography. This software works by segmenting an image into polygons by using 

different shape and scale factors input by the user. Then, a class hierarchy is developed 

for classification purposes, and samples are selected for each class. After a sufficient 

amount of samples have been selected, the entire photograph can be classified 

automatically using the fuzzy nearest neighbor method developed by Keller et al (1985). 

This data is then exported as a vector shapefile. 

 A continuous depth to water raster shapefile was used to obtain depth to water 

data for all areas of interest. To obtain this raster shapefile, points of diversion were 

downloaded from the Water Information Storage and Retrieval Database (WIZARD). 

This point vector shapefile was then converted to a continuous raster by kriging. See the 

methods section for more information on the kriging procedure. 

 Soils data was obtained from the Soil Survey Geographic (SSURGO) Database 

Data Mart. This data is available to the general public in database format, and can be used 

in ArcGIS by joining the desired table to the provided shapefile. Data was downloaded 

for Hamilton, Kearney, Finney, Morton, Stevens, Grant, Haskell, Seward, and Meade 

Counties. 



11 
 

 ArcAEM was used to model groundwater flow in each of the six study areas for 

both pre- and post-development. Recharge, root uptake from the trees, and the location 

and head of the river were modeled at each study site. Reverse tracking of groundwater 

particles was used to indicate the source of water for the trees at each location. 

 Four shapefiles were created, including pre- and post-development Arkansas 

River trees and pre- and post-development Cimarron River trees. These shapefiles were 

merged with depth to water data, soils data, and proximity to surface water data so that 

their attribute tables would reflect all considered parameters. These attribute tables were 

exported as .dbf files so that they could be used in Microsoft Excel. 

 Microsoft Excel was used to calculate the mean and standard deviation of depth to 

water, change in depth to water, and distance from a river for trees in all four tables. 

These values were all weighted by the areas of their related polygons. The standard 

deviation was used to develop a range of expected values using a Gaussian distribution 

curve. The total areas of soils belonging to Hydrologic Soil Groups A, B, C, and D were 

also calculated.  

Georeferencing of Photography 

 Pre- irrigation development (predevelopment) aerial photography taken by the 

USDA Commodity Stabilization Service (1957) and the USDA Stabilization and 

Conservation Service (1965, 1967) was available in Hale Library as 8 x 10 photographs 

for every county in Kansas. Due to storage constraints and the fact that phreatophytes are 

riparian trees, these photographs were sorted and only photographs that showed riparian 

regions of Hamilton, Kearney, Finney, Morton, Stevens, and Seward counties were 

scanned and saved as 360 dpi jpeg files using Adobe Photoshop. Complete sets of 
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photography were not available for each year, so the oldest complete set was used for 

each county. The dates that the predevelopment photography was taken are as follows: 

• Photography for Hamilton County was from September, 1957. 

• Photography from Kearney County was from July, 1965.  

• Photography for Finney County was from August, 1957.  

• Photography from Morton, Stevens, and Seward Counties was from May, 1967. 

Post-development photography for every county in Kansas from September, 2006 

was available at the Kansas Geospatial Community Commons website. This photography 

was taken by the Farm Service Agency (FSA) National Agriculture Imagery Program. It 

was available in MrSID format and was already georeferenced. Photography for 

Hamilton, Kearney, Finney, Morton, Stevens, and Seward Counties was downloaded. 

 In order to georeference the old photography, the shapefile tiger_2000_roadways 

was downloaded from the Kansas Geospatial Community Commons website. This 

shapefile was created by the U.S. Census Bureau and shows Kansas roadways in 2000. It 

was then imported into ArcMap. A photograph was then imported into ArcMap and, 

using the georeferencing toolbar, it was fit to the display. Then, the “Add Control Points” 

button was selected, and road intersections were lined up with the intersections on the 

tiger_2000_roadways shapefile. After the photograph was spatially accurate, it was 

rectified and saved under the GRID format. This process was repeated for each 

photograph. In some instances, there was not enough roadway data to accurately 

georeference a photograph. In this case, the photographs were skipped. Then, the overlap 

between photographs was used for georeferencing. Since the recent photography had 
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already been georeferenced, it only needed to be imported into ArcMap. An example of 

photography lining up with the roadway shapefile can be seen in Fig. 2. 

 

Figure 2: A Typical Overlay of an Aerial Photograph with the tiger_2000_roadways 
Shapefile. 

 
Obtaining and Merging Data 
 
 Soils data was downloaded as databases from the Soils Data Mart created by the 

SSURGO Database.  Data for Hamilton, Kearney, Finney, Morton, Stevens, Gray, 

Haskell, Seward, and Meade Counties was downloaded. These databases were imported 
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into ArcMap, along with shapefiles that were downloaded from the SSURGO Soils Data 

Mart. The table “muaggatt” in each database was joined to the corresponding county 

shapefile using the field “mukey”. The soil shapefiles for each county were then imported 

into ArcMap. The Merge tool, located in the Data Management Tools toolbox, was used 

to combine soils data for Morton, Stevens, Gray, Seward and Meade Counties, as well as 

Hamilton, Kearney, and Finney Counties.  

 Streamflow data was taken at the nearest gauging stations to each study area. This 

data was available at the United States Geological Survey (USGS) website. Graphs of 

this data can be found in Fig. 3. 
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Figure 3: Locations of Gauging Stations near Study Sites and their Respective 
Discharges. 

 
The WIZARD database was used to determine the location of observation wells 

and depths to water in those wells. A 30 m Digital Elevation Model (DEM) was 

downloaded from the USGS website. The Extract Values to Points Tool, located in the 

Spatial Analyst Tools toolbox was used to get the surface elevation at WIZARD well 
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locations. Kriging was used to create a raster showing water table elevation across all of 

western Kansas. To do this, four rectangular polygons were created and overlapped so 

that each area would have enough wells in it to create accurate Kriging results. The 

Geostatistical Wizard toolbar was then used to calculate water table elevation across each 

rectangular polygon using kriging. These results were then mosaicked into a single grid 

using the Mosaic to New Raster Tool, located in the Data Management Tools toolbox. 

The raster calculator was used to create a depth to water raster by subtracting the water 

table elevation from the surface elevation provided by the DEM. Kriging is applicable for 

generating a groundwater depth raster because groundwater level generally changes 

smoothly without any sudden jumps. The accuracy of the groundwater depths obtained 

from kriging decreases as the distance from the nearest well increases. See Fig. 4 for  

maps of all wells used for the kriging in 1965 and 2005. This work was completed by Dr. 

Xiaoying Yang, a Post-Doctoral Research Associate working for Dr. David Steward at 

Kansas State University. 
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a 
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Figure 4: Distribution of Wells used for Kriging in (a) 1965 and (b) 2005. 

Water level data for 1965 and 2000 and the 30 m DEM from USGS were then 

imported into ArcMap. Depth to water in both 1965 and 2000 was calculated by 

subtracting the water level elevation from the DEM. Increase in depth to water was 

calculated by subtracting the 1965 depth to water from the 2000 depth to water. To ease 

future computation, rectangular polygon shapefiles were created and drawn around the 

extent of both the Arkansas and Cimarron River corridors. These shapefiles were used to 

clip the depth to water and increase in depth to water raster files by using the Clip Raster 

tool in the Data Management Toolbox.  
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Selection of Study Areas 

One study area was selected in each county. Emphasis was placed on study areas 

displaying differences in soil type, depth to water, increase in depth to water, and tree 

distribution. Locations of study areas are shown in Fig. 1. Study areas were chosen to fit 

within one of the old photographs to avoid potential problems due to the overlap and 

trying to clip multiple raster files.  

Remote Sensing 

Remote sensing software was used to create shapefiles that show tree locations in 

each study area. At first, an entire study area was attempted, achieving poor results. It 

was noted that the software accurately determined tree locations near the river, where 

trees were prevalent, but produced many false positives away from the river, where trees 

were nonexistent. To fix this problem, the photographs were clipped so that nothing 

beyond the boundary of the tree locations was shown. This process is delineated in the 

following steps: 

1. Six polygons, one for each study area, were created using ArcCatalog and 

imported into ArcMap. 

2. An editing session was created for one of the polygons, and the sketch tool was 

used to draw a boundary around the outermost tree locations in Study Area 1. 

3.  The toolbox “Hawth’s Analysis Tools for ArcGIS” was downloaded from the 

website www.spatialecology.com. The Clip Raster by Polygons function of this 

tool was used to clip each black and white photograph to the drawn polygon 

shapefiles. In each case, a horizontal line came across the screen from the top of 

the polygon to the right edge of the original raster. This was not an issue because 



20 
 

although remote sensing results were produced along this line, these results would 

be outside of the polygon shapefile and could easily be deleted. The process was 

repeated with new polygons for the color photographs. In this case, Hawth’s 

Tools changed the colors and produced diagonal bands across the clipped raster. 

This caused some trees to be different colors than other trees, and since color is 

important when categorizing photography, it was deemed unacceptable.  

4. As an alternative to Hawth’s Tools for post-development photography, White 

boxes with white borders were drawn along the edges of the riparian zone with 

trees, essentially creating a clipped polygon. Then, maps displaying each study 

area were exported as tiff files from ArcMap. The Convert Raster to Other Format 

(multiple) tool located in the Conversion Tools toolbox was used to convert the 

black and white polygons to tiff files while keeping their spatial reference. Paint 

was used to turn everything on the outside of the photo completely white. 

5. All of the area clipped from the photography using Hawth’s Tools was given a 

value of “NoData”. Because the software package used for remote sensing, 

eCognition, cannot handle the value “NoData”, the Reclassify button in the 

Spatial Analyst Toolbar was used to reclassify all fields containing “NoData” to 

zero. 

 All images were imported into remote sensing software, which was used to 

classify tree locations. This process involved a lot of trial and error using various 

parameters until desired results were achieved. The method and values used for each 

study area are delineated below. 
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1. Shape factor, compactness, smoothness, and scale parameter were required inputs 

to perform multiresolution segmentation, and these values were determined via 

trial and error until polygons were created that effectively delineated boundaries 

of tree areas. See Table 1 for these values and Fig. 5 for a visual sample of remote 

sensing results. 

Table 1: Parameters Used to Determine Multiresolution Segmentation in Study 
Areas for Predevelopment Photography. 

Study Area Shape Factor Compactness Smoothness Scale Parameter 
1 0.5 0.5 0.5 10 
2 0.5 0.5 0.5 10 
3 0.5 0.5 0.5 20 
4 0.5 0.5 0.5 20 
5 0.5 0.5 0.5 10 
6 0.5 0.5 0.5 10 
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Figure 5: A Sample of the Multiresolution Segmentation Produced by the Remote 
Sensing Software. 

 
2. A class hierarchy was originally created with classes named Bare Ground, Black, 

Sand Bar, Shrub, Tree, and Water. The Bare Ground and Sand Bar classes were 

meant to classify locations without trees or water. Darker ground was classified as 

Bare Ground, and the white ground near the river was classified as sand bar. Also, 

darker cropland was classified as bare ground and very light cropland was 

classified as sand bar. The reason for two separate classes for ground was to focus 

the bare ground class to darker areas, which kept the darker areas from being 

classified as trees. The Black class was created to classify the black background 
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outside of the study area so that it would not be classified as trees. The Tree class 

was used to identify tall trees, and the shrub class was used to identify short trees. 

The reason for having two different tree classes was to eliminate false positives 

by keeping the class from becoming too diverse. The water class was used to 

identify the river. It was determined that all classes could be differentiated based 

on color, nearest neighbor, and homogeneity. For each class, the operator mean 

(arithm.) was used. The expression Gray-Level Co-Occurrence Matrix (GLCM) 

Homogeneity (all dir.) was added with default values, and the expression standard 

nearest neighbor (generated) was also used. For the Shrub class, the expression 

similarity to class: tree was used. These expression values were determined based 

upon trial and error with more expressions being added until desirable results 

were achieved.  

3. The sample editor was set to display the features standard nearest neighbor and 

GLCM Homogeneity (all dir.). This made it possible to see similarities between 

classes and helped to determine if other classes needed to be created or existing 

classes needed to be modified.  

4. Several samples were taken for each class, and then the fuzzy nearest neighbor 

method (Keller 1985) was used to automatically classify the entire photograph 

based on these samples.  

5. When desirable results were obtained, polygons were created and the image 

objects were exported as a vector shapefile.  

The post-development images were classified similarly to the predevelopment 

images. Since they were modified in Paint and not exported as georeferenced TIF files, 
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there was no issue with unclassified cells in eCognition. Unlike the predevelopment 

photography, not all study areas used the same class hierarchy. The process and 

parameters used for segmentation and classification are delineated below. 

Multiresolution segmentation parameters were determined by trial and error until the 

created polygons accurately delineated tree areas. The parameters used for each study 

area can be found in Table 2.  

Table 2: Parameters Used to Determine Multiresolution Segmentation in Study 
Areas for Post-Development Photography 

Study Area Shape Factor Compactness Smoothness Scale Parameter 
1 0.5 0.5 0.5 10 
2 0.5 0.5 0.5 5 
3 0.5 0.5 0.5 10 
4 0.5 0.5 0.5 10 
5 0.5 0.5 0.5 10 
6 0.5 0.5 0.5 10 

 
2. Class hierarchies were created for each county to properly classify tree locations. 

Each study area did not use the same class hierarchy because some study areas 

had different features than others, such as different-colored grass, varying tree 

thicknesses, etc. Each class in all study areas used the operator mean (arithm.), 

and the expressions GLCM Homogeneity (all dir.) and Standard Nearest 

Neighbor (generated). The classes Cropland, Ground, Tree, and Water were 

created for study areas 1, 3, 4, 5, and 6. The classes Grass, Tree, Ground, and 

Water were created for study area 2.  

3. Samples were taken in each study area, and then the samples in each study area 

were classified using the fuzzy nearest neighbor method. 

4. Polygons were created, and the image objects were exported as a vector shapefile. 
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Remote Sensing Output 

Remote sensing results were imported into ArcMap. Surprisingly, the results from the 

predevelopment photographs were not properly georeferenced when they were imported. 

This should not have been the case since they were exported with a geographic reference 

and the cause of the problem could not be determined. The Spatial Adjustment Toolbar 

was attached to ArcMap in order to properly georeference each set of image objects. All 

corners of the results were lined up with their corresponding corners on the polygon that 

was created for the initial clip. The post-development results were adjusted in the same 

manner. 

Statistical analysis was conducted on the remote sensing results for each study 

area to determine the accuracy of the results. A sample size of 204 was chosen to be 

taken for each study area. This was based on the formula for the binomial probability 

theory: 

( )( )
2

2

E

qpZ
N =   (3) 

Where: 

N = sample size 

Z = 2 from the standard normal deviate of 1.96 for the 95% two-sided confidence 

level 

p = expected percent accuracy of the entire map 

q = 100 – p 

E = allowable error 

For this project, the values of these coefficients were chosen as follows: 

Z = 2 



26 
 

p = 85 

q = 15 

E = 5 

Kappa Analysis, a discrete multivariate technique of use in accuracy assessment, 

was conducted on the remote sensing results. An error matrix was constructed as shown 

in Fig. 6. 

Class 1 2 3 k Row Total

Remote 1 x1,1 x1,2 x1,3 x1,k x1+

Sensing 2 x2,1 x2,2 x2,3 x2,k x2+

Classification 3 x3,1 x3,2 x3,3 x3,k x3+

k xk,1 xk,2 xk,3 xk,k xk+

Column Total x+1 x+2 x+3 x+k N

Ground Reference Test Information

 Figure 6: Calculation of the Khat Coefficient 

  

 

From this error matrix, a Khat coefficient of agreement was calculated as follows: 
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Where 

k = number of rows in the matrix 

xii = the number of observations in row i and column i,  

xi+ and x+i = marginal totals for row i and column i, respectively 

N = total number of observations 

According to Jensen (2005), Khat values >0.80 represent strong agreement or accuracy 

between the classification map and ground reference. Values between 0.40 and 0.80 
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represent moderate agreement, and values <0.40 represent poor agreement. The 

calculated Khat values showed that in most cases, moderate agreement existed between the 

classification map and ground reference. However, because tree locations were the only 

classification that was important, a second error matrix was constructed combining all 

classifications other than trees into one field. This provided a better Khat result in every 

case. Specific error matrices and Khat values for each study area can be found in 

Appendix A. Remote sensing tree locations can be found in Figs. B4, B7, B10, B13, B16, 

and B19. 

Modeling 

 ArcAEM was used to model groundwater uptake by phreatophytes in each study 

area, both pre- and post-development. 10 x 10 grids of particles were created for tracking 

at locations within each study area. Due to limitations in the SPLIT script utilized by 

ArcAEM, tree polygons were simplified. Up to six groups of trees in each study area 

were chosen for modeling. Post-development Study Area 6 had so few trees that no 

polygons were created for modeling, and tree uptake was ignored. A rectangular polygon 

was drawn around each study area and assigned a recharge value based upon Hansen 

(1991). Modeling parameters input for each area are shown in Table 3. The root uptake of 

40 cm/yr was obtained from Steward et al (2009), and the hydraulic conductivity of 30 

m/day and variable recharge rates were obtained from Gutentag et al (1984) and Hansen 

(1991), respectively. An aquifer thickness of 200 m was used at every location because 

the aquifer is unconfined, and as long as the aquifer thickness modeled is greater than or 

equal to actual aquifer thickness, the model will not be affected by its value. Aquifer base 

elevation was found by Kriging the bedrock elevations in the Enhanced Ogallala Bedrock 
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Database provided by Dr. Xiaoying Yang. The default porosity of 0.3 was used in every 

case. Qx and Qy were determined by Darcy’s Law, which states 

dx

d
kHQx

φ−= , (5) 

and 

dy

d
kHQy

φ−=  (6) 

where 

Qx = Uniform Flow in the x-Direction 

Qy = Uniform Flow in the y-Direction 

k = Hydraulic Conductivity 

H = Saturated Thickness of the Aquifer 

φ = Hydraulic Head 
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Table 3: Modeling Parameters for Study Sites 1-6, Pre- and Post-Development, for 
Use in ArcAEM. 

Study Area Bedrock 
Elevation 

Aquifer 
Thickness 

Qx Qy Porosity Recharge 

Study Area 1, 
Predevelopment 

950 m 200 m 1.0 
m/day 

0.23 
m/day 

0.3 3.5E-5 
m/day 

Study Area 1, Post-
Development 

950 m 200 m 0.99 
m/day 

0.69 
m/day 

0.3 3.5E-5 
m/day 

Study Area 2, 
Predevelopment 

840 m 200 m 3.0 
m/day 

-0.75 
m/day 

0.3 5.6E-5 
m/day 

Study Area 2, Post-
Development 

840 m 200 m 4.4 
m/day 

-2.3 
m/day 

0.3 5.6E-5 
m/day 

Study Area 3, 
Predevelopment 

780 m 200 m 5.5 
m/day 

1.4 
m/day 

0.3 6.3E-5 
m/day 

Study Area 3, Post-
Development 

780 m 200 m 6.4 
m/day 

-0.11 
m/day 

0.3 6.3E-5 
m/day 

Study Area 4, 
Predevelopment 

1000 m 200 m 2.3 
m/day 

-0.66 
m/day 

0.3 3.5E-5 
m/day 

Study Area 4, Post-
Development 

1000 m 200 m 2.8 
m/day 

-0.64 
m/day 

0.3 3.5E-5 
m/day 

Study Area 5, 
Predevelopment 

880 m 200 m 2.9 
m/day 

1.9 
m/day 

0.3 5.2E-5 
m/day 

Study Area 5, Post-
Development 

880 m 200 m 3.9 
m/day 

4.4 
m/day 

0.3 5.2E-5 
m/day 

Study Area 6, 
Predevelopment 

750 m 200 m 2.2 
m/day 

-2.5 
m/day 

0.3 7.0E-5 
m/day 

Study Area 6, Post-
Development 

750 m 200 m 1.8 
m/day 

-0.63 
m/day 

0.3 7.0E-5 
m/day 

 
 The model created a grid which was used to create head contour lines spread at 

0.5 m intervals and track particles using backward tracing (See Figs. 8-19). These particle 

traces showed the source of water for phreatophytes. The head contour lines and particle 

traces also showed if the stream was gaining or losing. 

Tree Locations for Extent of Cimarron and Arkansas Rivers 

 Aerial photography was used to determine pre- and post-development tree 

locations along the Arkansas and Cimarron Rivers. Predeveolpment photography was 

mosaicked using the Mosaic tool located in the Data Management Tools toolbox in 

ArcMap. Polygons were drawn around the extent of riparian trees for both rivers, both for 
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predevelopment and post-development. To reduce the size of the files that computations 

would be run on, six polygons, each with a slight overlap, were created along the 

Cimarron River, and four polygons were created along the Arkansas River.  

Each polygon was selected as the Spatial Analyst Mask and used to clip the 

photography by entering the raster into the raster calculator. Due to computation 

limitations, only Band 1 of the 2006 aerial photography was clipped. This caused the 

output to be black and white. All cells in these new rasters with the value “NoData” were 

reclassified to “0” using the Reclassify button on the Spatial Analyst Toolbar. All of 

these rasters were then exported as tiff files. These images were then imported into 

remote sensing software. 

Once in the remote sensing software, all photographs were subjected to 

multiresolution segmentation and classification. The steps involved in these processes are 

delineated below. 

1. For multiresolution segmentation, all images used a shape factor of 0.5, 

compactness of 0.5, smoothness of 0.5, and scale parameter of 20. This scale 

parameter produced good results in some locations, but in others, it caused the 

polygons to be bigger than tree areas. This could not be fixed because due to the 

size of the imagery being used, 20 was the smallest scale parameter that could be 

used without memory errors. 

2. The same class hierarchy was used for all 20 images. This hierarchy included the 

operator mean (arithm.) with the expressions GLCM Homogeneity (all dir.), 

Standard Nearest Neighbor (all dir.), and Shape: Area Compactness (all dir.). 

Classes included Tree, Light Tree, Ground, Light Ground, Ditch, and Water.  
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3. Samples were taken for each class, and the fuzzy nearest neighbor (Keller 1985) 

method was used to automatically classify each image.  

4. Polygons were created and the image objects were exported as vector shapefiles. 

This process was repeated for each image. 

The vector shapefiles created by the remote sensing software were imported into 

ArcMap. They each maintained the geospatial data of the exported TIF file, so the Spatial 

Adjustment Toolbar was not needed. All data along the Cimarron and Arkansas Rivers 

for both pre-and post-development was merged into four new shapefiles using the Merge 

tool in the Data Management Tools toolbox.  

Statistical analysis was conducted to determine the validity of the results. A 

sample size of 204 was selected using Eqn. 3, and the process shown in Fig. 6 and Eq. 4 

was used to calculate Khat coefficients. Khat coefficient calculations for all sets of results 

can be found in Appendix A. 

Working with Remote Sensing Results 

In the attribute table, “Select by Attributes” was used under the options button to 

select all polygons where the BestClass field contained either the value “Tree” or “Light 

Tree”. The selected data was then exported as a new shapefile which was then imported 

into ArcMap. This created a shapefile that only included data for tree locations, and not 

the other classifications. This process was repeated for all four shapefiles. 

The depth to water and change in depth to water rasters were converted to 

polygon shapefiles. To do this, the raster calculator was used to multiply the values by 

1000. Then, the Int tool, located in the Spatial Analysit Tools toolbox, was used to 

convert all values to integers. The Raster to Polygon tool in the Conversion Tools toolbox 
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was used to create the polygon shapefile. A new field was created in the attribute table of 

the polygon shapefile of type “Float”. Then, the field calculator was used to divide the 

integer output from the rasters by 1000. This gave the original values from the depth to 

water rasters.  

The Near tool in the Analysis Tools toolbox was used to calculate the distance of 

each tree polygon to the nearest stream or river. NHD Flowlines were used for stream and 

river locations. This process was repeated for each tree location shapefile. 

The intersect tool in the Analysis Tools toolbox was used to create a single 

shapefile with tree locations, soils data, depth to water, change in depth to water (for 

post-development shapefiles), and distance from a stream or river in its attribute table. 

This attribute table was then exported as a .dbf file for use with Microsoft Excel. This 

process was repeated for each river, both predevelopment and post-development. 

 Total available soil areas within 700 m of each river were calculated by creating a 

buffer around the river shapefile in ArcMap by using the Buffer tool in the Analysis 

Tools toolbox. Buffers were also made for areas with 620 m of the river segment at each 

study area. The distance values were chosen based on the extent of the 95% confidence 

intervals for tree distance in the river, shown in Tables 5 and 6. 

Statistical Analysis 

Some polygons contained multiple trees. Therefore, it was decided that all 

statistical analysis should be weighted by the area of the polygon. Weighted mean and 

weighted standard deviation of depth to water and change in depth to water was 

calculated for each case. The weighted mean depth and change in depth were defined as 

follows: 
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Where 

wD  = Weighted Mean Depth to Water 

An = Area of the nth Polygon 

Dn = Depth to Water of the nth Polygon 

The weighted standard deviation was calculated by: 
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Where 

wσ  = Weighted Standard Deviation 

An = Area of the nth Polygon 

Dn = Depth to Water of the nth Polygon 

wD  = Weighted Mean Depth to Water 

N = Total Number of Samples 

The weighted mean and standard deviation distance to a stream or river were also 

calculated using eqs. 7 and 8, only D stood for distance instead of depth. 

 The total areas of tree cover over hydrologic soil groups A, B, C, and D were 

calculated. These hydrologic soil groups are defined by chapter 3 of the Soil Survey 

Manual (Soil Survey Division Staff 1993) as follows: 
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• Soil Group A: Saturated hydraulic conductivity is very high or in the upper half of 

high and internal free water occurrence is very deep. 

• Soil Group B: Saturated hydraulic conductivity is in the lower half of high or in the 

upper half of moderately high and free water occurrence is deep or very deep. 

• Soil Group C: Soil hydraulic conductivity is in the lower half of moderately high or in 

the upper half of moderately low and internal free water occurrence is deeper than 

shallow. 

• Soil Group D: Saturated hydraulic conductivity is below the upper half of moderately 

low, and/or internal free water occurrence is shallow or very shallow and transitory 

through permanent. 

Soil Group A is usually sand, loamy sand, or sandy loam, Soil Group B is usually silt 

loam or loam, Soil Group C is usually sandy clay loam, and Soil Group D is usually clay 

loam, silty clay loam, sandy clay, silty clay, or clay. 

 All data was fit to the probability density function for a normal distribution, given 

by: 
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Where 

p(x) = The Probability Density Function 

σ  = The Standard Deviation 

µ  = The mean 
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An example of a normal distribution curve, using the weighted mean and standard 

deviation for depth to water along the Arkansas River post-development can be seen in 

Fig. 7. 

 
Figure 7. The Normal Distribution Curve. Created Using Scilab with Weighted 

Mean and Standard Deviation of Depth to Water Data along the Arkansas River 
Post-Development 

 
This distribution was used to create a range that encompasses 95% of all values for depth 

to water, change in depth to water, and distance from a stream or river. 
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3. Results 
 
 The modeling Results for pre- and post-development Study Areas 1-6 show that 

the trees get their water from the river. These results indicate a losing stream because the 

head contours cross the river opening concavely toward the upstream end of the river. It 

should also be noted that in every case, a greater head gradient exists around the stream, 

as is evidenced by the contour intervals being closer together. Modeling results can be 

seen in Figs. 8-19. It should be noted that the particle tracks trace backwards in time, but 

do not take depth into consideration; i.e., they are traced at the bottom of the aquifer and 

stay at the base. 
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Figure 8: Modeling Results for Predevelopment Study Site 1. 
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Figure 9: Modeling Results for Post-Development Study Site 1. 
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Figure 10: Modeling Results for Predevelopment Study Site 2. 
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Figure 11: Modeling Results for Post-Development Study Site 2. 
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Figure 12: Modeling Results for Predevelopment Study Site 3. 
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Figure 13: Modeling Results for Post-Development Study Site 3. 
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Figure 14: Modeling Results for Predevelopment Study Site 4. 
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Figure 15: Modeling Results for Post-Development Study Site 4. 
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Figure 16: Modeling Results for Predevelopment Study Site 5. 
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Figure 17: Modeling Results for Post-Development Study Site 5. 
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Figure 18: Modeling Results for Predevelopment Study Site 6. 
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Figure 19: Modeling Results for Post-Development Study Site 6. 
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The remaining portion of this section gives data in tabular format with brief 

explanations as to what data is shown. This section does not include an interpretation of 

data. All data will be interpreted in the discussion. 

Table 4 shows pre- and post-development total tree canopy areas along the 

Cimarron and Arkansas River corridors. This information shows that tree canopy areas 

declined along the Cimarron and Arkansas Rivers by 46% and 60%, respectively.  

Table 4: Total Tree Canopy Areas along the Cimarron and Arkansas River 
Corridors Pre- and Post-Development 

Study Site Predevelopment Area Post-Development Area 
Cimarron River 5200 acres 3300 acres 
Arkansas River 4000 acres 3700 acres 

 
 Table 5 shows the weighted means and standard deviations, as well as a 95% 

confidence interval for distance to a stream or river for trees along the Arkansas and 

Cimarron River corridors. Fig. 20 is a histogram showing the distribution of distance to 

the river for all trees. While this data shows that the average distance between trees and 

surface water has increased, it has not increased by much along either the Cimarron or 

Arkansas River corridors. Also, the 95% confidence interval for the Arkansas extends 

further post-development than it did prior to development. 

Table 5: Weighted Mean, Standard Deviation, and 95% Confidence Interval for 
Tree Distance from a Stream or River along the Cimarron and Arkansas River 

Corridors. 
 Study Site Weighted Mean Weighted Standard 

Deviation 
95% Confidence 

Interval 
Predevelopment 

Cimarron 
260 m 220 m 0-700 m 

Predevelopment 
Arkansas 

210 m 200 m 0-600 m 

Post-Development 
Cimarron 

230 m 190 m 0-600 m 

Post-Development 
Arkansas 

190 m 250 m 0-685 m 
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Figure 20: Distribution of Distance from the River for all Trees (a) along the 
Cimarron River and (b) along the Arkansas River. 

 
Weighted mean and standard deviation, as well as a 95% confidence interval for tree 

distance to the river at study sites 1-6, pre- and post-development are shown in Table 6. 

Histograms showing the distance from the river of all trees at each study area are shown 

in Fig. 21. This data shows that in study areas 2-4, the trees have moved closer to the 



51 
 

river since development. Trees have moved further away from the river in study areas 1, 

5, and 6 since development. 

Table 6: Weighted Mean, Standard Deviation, and 95% Confidence Interval for 
Tree Distance to Stream or River for Study Sites 1-6, Pre- and Post-Development. 

Study Area Weighted Mean Weighted Standard 
Deviation 

95% Confidence 
Interval 

1 
Predevelopment 

110 m 75 m 0-260 m 

1 
Post-Development 

170 m 91 m 0-350 m 

2 
Predevelopment 

190 m 130 m 0-450 m 

2 
Post-Development 

140 m 96 m 0-330 m 

3 
Predevelopment 

81 m 83 m 0-250 m 

3 
Post-Development 

48 m 26 m 0-99 m 

4 
Predevelopment 

280 m 170 m 0-620 m 

4 
Post-Development 

250 m 180 m 0-600 m 

5 
Predevelopment 

190 m 120 m 0-430 m 

5 
Post-Development 

200 m 120 m 0-440 m 

6 
Predevelopment 

160 m 120 m 0-400 m 

6 
Post-Development 

180 m 130 m 0-440 m 
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Figure 21: Distribution of Distance from the River for Trees at (a) Study Area 1, (b) 
Study Area 2, (c) Study Area 3, (d) Study Area 4, (e) Study Area 5, (f) Study Area 6. 

 
 Table 7 shows the weighted means and standard deviations, as well as a 95% 

confidence interval, for depth to water along the Cimarron and Arkansas River corridors, 

both pre- and post-development. Fig. 22 shows histograms detailing the distribution of 

root depth to water along the Cimarron and Arkansas River corridors. This data shows 

that along the Cimarron River, both the average depth to water and 95% confidence 



55 
 

interval have decreased over time. The opposite is true for the Arkansas River, where the 

average depth to water has increased by over 2 m and the 95% confidence interval has 

increased as well. 

Table 7: Weighted Mean, Standard Deviation, and 95% Confidence Interval for 
Root Depth to Water along the Cimarron and Arkansas River Corridors, Pre- and 

Post-Development. 
Study Site Weighted Mean Weighted Standard 

Deviation 
95% Confidence 

Interval 
Predevelopment 

Cimarron 
3.5 m 4.9 m 0-13 m 

Predevelopment 
Arkansas 

1.6 m 1.4 m 0-4.4 m 

Post-Development 
Cimarron 

8.8 m 14 m 0-37 m 

Post-Development 
Arkansas 

6.0 m 6.3 m 0-18 m 
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Figure 22: Distribution of Root Depth to Water for Trees along (a) the Cimarron 
River and (b) the Arkansas River. 

 
 Table 8 shows the weighted means, standard deviations, and 95% confidence 

intervals for depth to water under tree canopy at study areas 1-6, pre- and post-

development. Fig. 23 shows histograms detailing the distribution of root depth to water 

for trees at study areas 1-6, pre- and post-development. At every study area except for 

Study Area 4, the mean depth to water increased after development. 

Table 8: Weighted Mean, Standard Deviation, and 95% Confidence Interval for 
Root Depth to Water at Study Sites 1-6, Pre- and Post-Development 

Study Area Weighted Mean Weighted Standard 
Deviation 

95% Confidence 
Interval 

1 – Predevelopment 1.4 m 0.78 m 0-2.9 m 
1 – Post-Development 2.1 m 0.97 m 0.18-4.0 m 
2 – Predevelopment 1.1 m 0.90 m 0-2.8 m 

2 – Post-Development 12 m 1.1 m 9.8-14 m 
3 – Predevelopment 0.96 m 0.55 m 0-2.0 m 

3 – Post-Development 19 m 0.35 m 18-20 m 
4 – Predevelopment 0.90 m 1.2 m 0-3.3 m 

4 – Post-Development 0.24 m 0.63 m 0-1.5 m 
5 – Predevelopment 11 m 2.1 m 6.8-15.2 m 

5 – Post-Development 21 m 2.6 m 16-26 m 
6 – Predevelopment 7.1 m 2.2 m 2.7-11 m 

6 – Post-Development 28 m 3.3 m 21-35 m 
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Figure 23: Distribution of Root Depth to Water for Trees at (a) Study Site 1, (b) 
Study Site 2, (c) Study Site 3, (d) Study Site 4, (e) Study Site 5, and (f) Study Site 6. 

 
 Table 9 shows the weighted means and standard deviations, as well as a 95% 

confidence interval for increase in depth to water along the Cimarron and Arkansas River 

corridors. This data shows that trees along the Cimarron River corridor are located in 

areas where the water table rose by an average of 7.6 m, while trees along the Arkansas 

River are located in areas where the water table rose by an average of 1.6 m. The 
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confidence intervals for each corridor are inclusive of both rising and declining water 

tables, but the Cimarron River trees show a definite skew toward rising water tables, 

while the Arkansas River trees show a skew toward declining water tables. 

Table 9: Weighted Mean, Standard Deviation, and 95% Confidence Interval for 
Increase in Tree Depth to Water along the Cimarron and Arkansas River 

Corridors. 
Study Area Weighted Mean Weighted Standard 

Deviation 
95% Confidence 

Interval 
Cimarron River -7.6 m 9.7 m -27-12 m 
Arkansas River 2.8 m 4.4 m -5.9-12 m 

 
 The weighted means, standard deviations, and 95% confidence intervals for 

increase in depth to water under tree canopy for study areas 1-6 are reported in Table 10. 

Study Area 1 had no change in depth to water, so all values for it are zero. The average 

depth to water beneath tree canopy decreased at Study Area 4. 

Table 10: Weighted Mean, Standard Deviation, and 95% Confidence Interval for 
Increase in Depth to Water Under Tree Canopy Areas at Study Sites 1-6. 

Study Area Weighted Mean Weighted Standard 
Deviation 

95% Confidence 
Interval 

1 0 0 0 
2 11 m 0.74 m 9.5-12.5 m 
3 19 m 0.13 m 19 m 
4 (-)2.2 m 0.60 m (-)3.4-(-)1.012 m 
5 11 m 1.2 m 8.6-13 m 
6 19 m 0.91 m 17-21 m 

 
 Areas of each hydrologic soil group within 700 m of the Cimarron and Arkansas 

Rivers are shown in Table x. These data show that within 700 m of the Cimarron River, 

soil groups A, B, C, and D consist of 52%, 41%, 3.5%, and 4.2%, respectively, of the 

total land area. For the space within 700 m of the Arkansas River, soil groups A, B, C, 

and D make up 20%, 14%, 50%, and 16%, respectively. It should be noted that the areas 

in Table 11 do not always agree with Table 4 because a hydrologic soil group is not 

assigned when the value in the “muname” field of the SSURGO database is “River”. 
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Table 11: Total Areas of Hydrologic Soil Groups A, B, C, and D within 700 m of the 
Cimarron and Arkansas Rivers 

Study Site Soil Group A Soil Group B Soil Group C Soil Group D 
Cimarron River 38 000 acres 30 000 acres 2600 acres 3100 acres 
Arkansas River 10 000 acres 7000 acres 25 000 acres 8000 acres 

 
 Table 12 shows expected tree canopy areas over hydrologic soil groups A, B, C, 

and D along both the Cimarron and Arkansas River corridors for pre- and post-

development. Expected areas of soil groups A, B, C, and D were calculated based on the 

percentage of each soil group within 700 m of the river. Actual tree canopy areas, as well 

as their percent difference from the expected area, are shown in Table 13. Figs. 24 and 25 

show the information in Tables 12 and 13 graphically. 

Table 12: Expected Tree Canopy Areas over Hydrologic Soil Groups A, B, C, and D 
for Pre- and Post-Development Cimarron and Arkansas River Corridors Assuming 

Tree Location is Independent of Soil Type. 
Study Site Soil Group A 

Area 
Soil Group B 

Area 
Soil Group C 

Area 
Soil Group D 

Area 
Predevelopment 

Cimarron 
2700 acres 2100 acres 180 acres 220 acres 

Predevelopment 
Arkansas 

800 acres 560 acres 2000 acres 640 acres 

Post-
Development 

Cimarron 

1700 acres 1300 acres 120 acres 140 acres 

Post-
Development 

Arkansas 

740 acres 520 acres 1900 acres 590 acres 
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Table 13: Actual Tree Canopy Areas over Soil Groups A, B, C, and D (and Percent 
Difference) for Pre- and Post-Development Cimarron and Arkansas River 

Corridors. 
Study Site Soil Group A 

Area 
Soil Group B 

Area 
Soil Group C 

Area 
Soil Group D 

Area 
Predevelopment 

Cimarron 
3300 acres 

(+22%) 
920 acres 
(-56%) 

360 acres 
(+100%) 

250 acres 
(+14%) 

Predevelopment 
Arkansas 

1400 acres 
(+75%) 

79 acres 
(-86%) 

1600 acres 
(-20%) 

440 acres 
(-31%) 

Post-
Development 

Cimarron 

2300 acres 
(+35%) 

510 acres 
(-61%) 

150 acres 
(+25%) 

170 acres 
(+21%) 

Post-
Development 

Arkansas 

1700 acres 
(+130%) 

190 acres 
(-63%) 

1200 acres 
(-37%) 

620 acres 
(+5.1%) 
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2005 Cimarron River Corridor
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Figure 24: Actual and Expected Total Areas of Soil Groups A-D under Tree Cover 
along the Cimarron River Corridor (a) in 1965 and (b) in 2005. 

 

1965 Arkansas River Corridor

0

500

1000

1500

2000

2500

3000

3500

Soil
Group A

Expected
Soil

Group A

Soil
Group B

Expected
Soil

Group B

Soil
Group C

Expected
Soil

Group C

Soil
Group D

Expected
Soil

Group D

A
re

a 
u

n
d

er
 T

re
e 

C
o

ve
r 

(a
cr

es
)

 
a 
 



64 
 

2005 Arkansas River Corridor

0

500

1000

1500

2000

2500

3000

3500

Soil
Group A

Expected
Soil

Group A

Soil
Group B

Expected
Soil

Group B

Soil
Group C

Expected
Soil

Group C

Soil
Group D

Expected
Soil

Group D

A
re

a 
u

n
d

er
 T

re
e 

C
o

ve
r 

(a
cr

es
)

 
b 

Figure 25: Actual and Expected Total Areas of Soil Groups A-D under Tree Cover 
along the Arkansas River (a) in 1965 and (b) in 2005. 

 
Table 14 shows the total areas of the six study areas, pre- and post-development, 

and Table 15 shows pre- and post-development tree canopy areas in the six study areas. 

Table 16 gives pre- and post-development percentage of land area under tree canopy for 

each study area. This data shows that the amount of tree cover has increased since 

development in study areas 1 and 4, and has decreased in all other study areas. 

Table 14: Areas of Study Sites 1-6. 
Study Area Area 

1 650 acres 
2 4300 acres 
3 310 acres 
4 3300 acres 
5 1300 acres 
6 4900 acres 
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Table 15: Pre- and Post-Development Tree Canopy Areas in Study Sites 1-6. 
Study Area Predevelopment Canopy 

Area 
Post-Development Canopy 

Area 
1 65 acres 96 acres 
2 178 acres 100 acres 
3 52 acres 23 acres 
4 170 acres 240 acres 
5 46 acres 25 acres 
6 120 acres 50 acres 

 

Table 16: Percentage of Land Area within 620 m of the River under Tree Canopy 
Cover, Pre- and Post-Development, in Study Sites 1-6. 

Study Area Predevelopment % Post-Development % 
1 14 % 20% 
2 6.6% 3.7% 
3 17% 7.7% 
4 6.5% 9.2% 
5 1.8% 1.0% 
6 2.8% 1.2% 

 
Table 17: Total Areas of Hydrologic Soil Groups A, B, C, and D in Study Sites 1-6. 
Study Area Soil Group A Soil Group B Soil Group C Soil Group D 

1 42 acres 1.8 acres 330 acres 100 acres 
2 840 acres 180 acres 1400 acres 280 acres 
3 48 acres 8.2 acres 170 acres 74 acres 
4 1500 acres 1100 acres 0 acres 0 acres 
5 2600 acres 2.2 acres 0 acres 0 acres 
6 2800 acres 1500 acres 25 acres 0 acres 

 
 Expected tree canopy areas, assuming tree location is independent of soil type, are 

given in Table 18. These values were calculated based upon the total areas of soil groups 

in each study area presented in Table 17 and the total areas of tree canopy cover 

presented in Table 15. The actual area of each soil group in each study area, pre- and 

post-development, as well as the percent difference from the expected values, are 

presented in Table 19. 
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Table 18: Expected Areas of Tree Canopy over Hydrologic Soil Groups A, B, C, and 
D assuming that Tree Location is Independent of Soil Type. 

Study Area Soil Group A Soil Group B Soil Group C Soil Group D 
1 

Predevelopment 
5.8 acres 0.25 acres 45 acres 14 acres 

1 
Post-Development 

8.5 acres 0.36 acres 67 acres 20 acres 

2 
Predevelopment 

55 acres 12 acres 92 acres 18 acres 

2 
Post-Development 

31 acres 6.7 acres 52 acres 10 acres 

3 
Predevelopment 

8.3 acres 1.4 acres 29 acres 13 acres 

3 
Post-Development 

3.7 acres 0.62 acres 13 acres 5.7 acres 

4 
Predevelopment 

98 acres 72 acres 0 acres 0 acres 

4 
Post-Development 

140 acres 100 acres 0 acres 0 acres 

5 
Predevelopment 

46 acres 0.039 acres 0 acres 0 acres 

5 
Post-Development 

25 acres 0.021 acres 0 acres 0 acres 

6 
Predevelopment 

78 acres 42 acres 0.69 acres 0 acres 

6 
Post-Development 

32 acres 17 acres 0.29 acres 0 acres 
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Table 19: Actual Areas of Tree Canopy over Hydrologic Soil Groups A, B, C, and D 
(and Percent Difference from Expected) at Study Sites 1-6, Pre- and Post-

Development. 
Study Area Soil Group A Soil Group B Soil Group C Soil Group D 

1 
Predevelopment 

6.6 acres 
(+14%) 

0 acres 
(-100%) 

53 acres (+18%) 1.7 acres 
(-88%) 

1 
Post-Development 

5.3 acres 
(-38%) 

0 acres 
(-100%) 

60 acres 
(-10%) 

14 acres 
(-30%) 

2 
Predevelopment 

92 acres 
(+67%) 

0 acres 
(-100%) 

65 acres 
(-29%) 

7.2 acres 
(-60%) 

2 
Post-Development 

52 acres 
(+67%) 

0.32 acres 
(-95%) 

42 acres 
(-19%) 

0.82 acres 
(-92%) 

3 
Predevelopment 

14 acres 
(+69%) 

0 acres 
(-100%) 

31 acres 
(+6.9%) 

0 acres 
(-100%) 

3 
Post-Development 

0.031 acres 
(-99%) 

0 acres 
(-100%) 

23 acres 
(+1.8%) 

0 acres 
(-100%) 

4 
Predevelopment 

160 acres 
(+63%) 

12 acres 
(-83%) 

0 acres 
(+0%) 

0 acres 
(+0%) 

4 
Post-Development 

220 acres 
(+57%) 

19 acres 
(-81%) 

0 acres 
(+0%) 

0 acres 
(+0%) 

5 
Predevelopment 

46 acres 
(+0%) 

0 acres 
(-100%) 

0 acres 
(+0%) 

0 acres 
(+0%) 

5 
Post-Development 

25 acres 
(+0%) 

0 acres 
(-100%) 

0 acres 
(+0%) 

0 acres 
(+0%) 

6 
Predevelopment 

110 acres 
(+41%) 

18 acres 
(-57%) 

0 acres 
(-100%) 

0 acres 
(+0%) 

6 
Post-Development 

32 acres 
(+0%) 

18 acres 
(+5.8%) 

0 acres 
(-100%) 

0 acres 
(-100%) 
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4. Discussion 

Groundwater from the Ogallala is important for municipal water supplies for 

western Kansas communities, and also as a source of water for irrigation for local 

agriculture. The results of this study were analyzed to determine common properties 

regarding hydrologic soil group, depth to groundwater, increase in depth to groundwater, 

and distance from the river. These results were analyzed both at a large scale, stretching 

over the entire lengths of the Arkansas and Cimarron Rivers over the extent of Ogallala 

Aquifer in Kansas, and also at small scales, using study sites 1-6. The following is an 

interpretation of the results, as well as an analysis of how these results could be useful to 

expand current and future research projects and to help guide installation of future 

monitoring networks. 

The modeling results, shown in Figs. 8-19, indicate that the river is a losing 

stream in every case. However, the post-development head gradient is much steeper than 

the predevelopment gradient, so the river is losing water to infiltration at a faster rate now 

than it was prior to development. This increased infiltration helps explain why 

streamflow at the gauging stations shown in Fig. 3 have decreased over time. The results 

also show that for every case, the source of water for the trees is the river. This shows 

that under most conditions, phreatophytes uptake water that is infiltrated through 

streamflow.  

Due to the large variations in hydrologic conditions along the Arkansas and 

Cimarron River corridors from west to east, it is best to view the statistical analysis for 

the corridors alongside the results for the study sites to gain perspective on the 
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distribution of the results. This allows the study site results to be used as an interpolating 

factor, in a way.  

The average distance between trees and the river decreased after development 

along the Arkansas River corridor, but the standard deviation of distance increased, 

allowing for a greater range of distances in the 95% confidence interval. Based on the 

results from study areas 1-6, this increase in standard deviation is likely caused by the 

average distance to the river increasing at the far western part of the corridor, where the 

depth to groundwater did not decrease. This contrasts with a decrease in average distance 

to the river along the rest of the corridor, where depth to groundwater increased. The 

results are then further skewed because the tree densities in the west are much greater 

than those in the east.  

The same is true along the Cimarron River, so it is easy to presume that if Morton 

County were discounted, the decrease in average distance to the river would be much 

more profound. However, the average distance to the river increased at study areas 5 and 

6, while decreasing at study area 4. This is the case because even though the water table 

has risen at study area 4, streamflow has greatly decreased, allowing new trees to grow in 

areas that the river used to flow, which decreases the average distance to the river. At 

study sites 5 and 6, the trees did not redistribute closer to the river because the distance to 

groundwater beneath the river is greater than 20 m, so there is no significant advantage 

for a phreatophyte to grow there. It is presumed that the average distance to the river 

increased at these sites because a lot of cottonwood trees that were living close to the 

river prior to development, when the depth to groundwater was about 10 m, died off 

when the depth to groundwater increased after development. 
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When looking at the average depth to water along the entire Arkansas and 

Cimarron River corridors, it appears that as depth to water increases, the number of trees 

decreases. However, this is not always the case, as evidenced by study site 1. As long as 

the water table remains at a level that is easily accessed by the roots of the trees, the trees 

will not die off with a decline in the water table, and the number of trees can increase. 

Canadell et al (1996) found the maximum rooting depth of cottonwood trees in a forest to 

be 2.6 m. The average depth to water beneath tree canopy at Study Site 1 is less than 2.6 

m both prior to and post-development, so it seems that 2.6 m is probably close to the 

threshold where trees will start to die off with an increase in depth to water. This die-off 

trend is certainly not linear, and the introduction of tamarix further complicates the 

prediction of tree die-off because studies have shown that water table depths have little to 

no effect on tamarix, even at depths below 10 m (Cleverly 2006). 

The average depths to water along the Arkansas and Cimarron River corridors 

seem counter-intuitive when looked at alongside the average increase in depth to water. 

This is because the average depth to groundwater beneath trees in both areas increased, 

but the average increase in depth to water for trees along the Cimarron River is a negative 

value. This is because along much of the Cimarron River corridor, the depth to 

groundwater has increased greatly, while the far western part of the corridor has 

experienced recharge. Most of the trees in the region where the water table has lowered 

have died off, so almost all of the trees along the Cimarron River corridor are clustered in 

the zones of recharge. There is an increase in average depth to water because some trees 

still exist at locations where the water table is very deep, and many new trees are located 

in areas that have experienced recharge, but have a depth to water that is greater than 
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what was beneath the entire Cimarron River prior to development. See Figs B11, B14, 

and B17 for depth to water at study sites 4-6. 

The soil analysis showed that in every case, more trees were located on 

hydrologic soil group A than would be expected if tree location were independent of soil 

type, and less trees were located on soil group B. In some cases, trees were more likely to 

be on soil groups C and D than expected, and in other cases, fewer trees were on those 

soils than expected. However, trees along both the Cimarron and Arkansas Rivers were 

more likely to be located on soil group D post-development than prior to development. It 

is not apparent what would cause this shift to soil group D because it has a low hydraulic 

conductivity, but one could speculate that this soil group might be more conducive to 

tamarix, which has increased in population since development and does not get water 

from the vadose zone (Busch 1992). It might be helpful to look at the shift to soil group 

D at a smaller scale, but almost none of these soils exist at the study sites along the 

Cimarron River. 

Phreatophyte distributions can be used as indicators for soil type, hydraulic 

connectivity, and depth to groundwater. In western Kansas, areas with good hydraulic 

connectivity are of interest because it is not economically feasible to create artificial 

recharge projects that use injection due to treatment costs. It would be feasible, however, 

to route ditches over land with good hydraulic connectivity to increase natural recharge. 

It is possible that phreatophyte locations could be used to indicate locations with good 

surface water/groundwater connectivity because of the likelihood of phreatophytes to be 

located on hydrologic soil group A. Phreatophyte locations cannot be used as the only 

means for this task, however, because they exist on all soil types. More research should 
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be completed to determine if cottonwood trees and saltcedar trees tend to populate 

different soil types. It seems that phreatophyte distributions are a better indicator of depth 

to groundwater than anything else, as a dense distribution of trees indicates a shallow 

water table, while a sparse distribution indicates a deep water table.
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5. Conclusions 

 The Ogallala Aquifer has been pumped for irrigation since the 1950’s. Since this 

time, some regions of western Kansas have experienced a water table decline of more 

than 40 m. In southwest Kansas, a sustainable groundwater supply is important for 

municipal water and the long-term viability of irrigation. The decline of the water table, 

as well as a change in overall land use, has caused a redistribution of riparian 

phreatophytes along the Cimarron and Arkansas Rivers. This thesis studies the impact 

that this redistribution has had on the hydrologic balance, and identifies characteristics 

that make phreatophytes more likely to exist at a location. This will allow for a better 

understanding of groundwater movement both prior to and post-development. 

To study the impact of phreatophytes on local hydrology, six study areas were 

chosen, and tree distributions were mapped using remote sensing on aerial photography. 

A map of these study areas can be seen in Fig. 1. ArcAEM was used to model the water 

table, as well as the point source for water from phreatophytes. These models, shown in 

Figs. 8-19, show that at every study site, the river is injecting water into the ground, i.e. is 

a losing stream. The head contour gradient at every site gets steeper post-development, 

showing that the river loses water faster than it did prior to development. This helps 

explain the declining flows that both rivers have experienced (see Fig. 3). These models 

also show that in every case but Pre-Development Study Site 1, the phreatophytes get 

their water from the river. At Study Site 1, they get water from the aquifer. 

 Tree locations at each study area and also along the entire Arkansas and Cimarron 

River Corridors were analyzed based on hydrologic soil group, depth to groundwater, 
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increase in depth to groundwater, and distance from a stream or river. The results of this 

analysis can be seen in Tables 5-10. All results were calculated based on Eqns. 7 and 9.  

The results for average depth to water vary spatially. In areas with a dense tree 

population (>10% tree cover), the average depth to water ranged from 0.24-1.4 m. In 

areas with moderate tree density (5-10% tree cover), the average depth to water ranged 

from 2.1-19 m. In areas with low tree density (<5% tree cover), the average depth to 

water ranged from 11-28 m. The large ranges of values are most likely due to the 

differences in rooting depths of cottonwood trees and saltcedars.  

The results for the increase in depth to water indicate that, in genereal, the amount 

of trees will decrease as depth to groundwater increases, but phreatopytes can still exist at 

depths up to, and possibly exceeding, 35 m. Conversely, the amount of trees increased in 

areas where the depth to groundwater decreased or stayed the same. The results for 

distance to a stream or river indicate that as the water table declines, trees will be 

redistributed closer to the river, as long as the water table near the river is shallow enough 

to be ideal for phreatophyte growth.  

Hydrologic soil group results along the entire river corridors were determined to 

be better for analysis than the results for the six study areas because there was a very low 

amount of soil belonging to groups C and D at the study sites along the Cimarron River. 

From the results pertaining to hydrologic soil group over the entire Arkansas and 

Cimarron River corridors, it seems that a disproportionately large amount of 

phreatophytes were located on hydrologic soil group A. Soils in group B seemed to not 

be conducive to phreatophyte growth, as a disproportionately low amount of trees were 

located on these soils in most cases. The results indicate that trees were more likely to be 
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located on soil group and D post-development than they were prior to development, and 

the same is true for soil group A. Trees are not likely to be located on soil group B in any 

case. 

Phreatophyte locations could possibly be used as an indicator for areas with good 

surface water/groundwater connectivity because they are more likely to be located on 

hydrologic soil group A than any other group. This soil group has a high hydraulic 

conductivity, which is one of the most important factors in determining the permeability 

of the hyporheic zone (Soil Survey Division Staff 1993, Brunke 1997). Tree locations 

cannot be used as the only means of determining surface water/groundwater connectivity, 

however, because they can exist on soil from any hydrologic group. 

Phreatophyte distributions have been altered over time with the pumping of the 

Ogallala Aquifer. This study analyzed possible causes for this redistribution, and through 

this analysis, developed a set of conditions under which phreatophytes are likely to exist. 

From this set of conditions, tree distributions can be used as a predictor for depth to 

water, soil type, and groundwater/surface water connectivity. The information learned in 

this study can be used to help guide the installation of future monitoring networks and 

expand current research projects from central Kansas to western Kansas. 

 Similar research should be conducted on the distribution of different species of 

phreatophytes in order to increase the accuracy of these predictions. Some regions, such 

as the city of Wichita, KS, are using artificial recharge as a means of maintaining its 

water supply.  Because treatment of water for artificial recharge is not an economically 

viable option is western Kansas, further research should also be conducted to determine if 
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phreatophytes are an indicator of water quality, and methods should be developed to 

make naturally infiltrated water cleaner without treatment. 
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Appendix A: Calculations for the Khat Coefficient 
 

Class Bare Ground Sand Bar Tree Water Row Total
Remote Bare Ground 94 4 4 0 102

Sensing Sand Bar 2 33 0 2 37

Classification Tree 7 0 37 0 44
Water 6 10 0 5 21

Column Total 109 47 41 7 204

Predevelopment Study Site 1 Test Information

a 
 

Khat = 73.4% 
 

Class Tree Not Tree Row Total
Remote Tree 37 7 44
Sensing Not Tree 4 156 160

Classification Column Total 41 163 204

Predevelopment Study Site 1 Test Information

 
b 

 
Khat = 83.7% 
 

Figure A1: Calculations for Khat Coefficient of Remote Sensing Accuracy at 
Predevelopment Study Site 1 (a) Using the Entire Dataset and (b) Using only Trees 

and Not Trees. 
 

Class Cropland/Ground Tree Water Row Total
Remote Cropland/Ground 57 16 32 105
Sensing Tree 1 86 9 96

Classification Water 1 0 2 3
Column Total 59 102 43 204

Post-Development Study Site 1 Test Information

 
a 
 

Khat = 52.8% 
 

Class Tree Not Tree Row Total
Remote Tree 86 10 96
Sensing Not Tree 16 92 108

Classification Column Total 102 102 204

Post-Development Study Site 1 Test Information

 
b 
 

Khat = 74.5% 
 

Figure A2: Calculations for Khat Coefficient of Remote Sensing Accuracy at Post-
Development Study Site 1 (a) Using the Entire Dataset and (b) Using only Trees and 

Not Trees 
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Class Bare Ground Sand Bar Tree Water Row Total
Remote Bare Ground 70 2 3 29 104
Sensing Sand Bar 13 27 0 11 51

Classification Tree 8 0 33 4 45
Water 1 0 1 2 4

Column Total 92 29 37 46 204

Predevelopment Study Site 2 Test Information

a 
 

Khat = 48.9% 
 

Class Tree Not Tree Row Total
Remote Tree 33 12 45
Sensing Not Tree 4 155 159

Classification Column Total 37 167 204

Predevelopment Study Site 2 Test Information

 
b 
 

Khat = 75.6% 
 

Figure A3: Calculations for Khat Coefficient of Remote Sensing Accuracy at 
Predevelopment Study Site 2 (a) Using the Entire Dataset and (b) Using only Trees 

and Not Trees 
 

Class Grass Ground Tree Water Row Total
Remote Grass 14 3 3 0 20
Sensing Ground 21 98 2 5 126

Classification Tree 8 4 37 0 49
Water 2 0 0 7 9

Column Total 45 105 42 12 204

Post-Development Study Site 2 Test Information

a 
 

Khat = 61.3% 
 

Class Tree Not Tree Row Total
Remote Tree 37 12 49
Sensing Not Tree 5 150 155

Classification Column Total 42 162 204

Post-Development Study Site 2 Test Information

 
b 
 

Khat = 76.0% 
 

Figure A4: Calculations for Khat Coefficient of Remote Sensing Accuracy at Post-
Development Study Site 2 (a) Using the Entire Dataset and (b) Using only Trees and 

Not Trees 
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Class Bare Ground Sand Bar Tree Water Row Total
Remote Bare Ground 95 23 7 5 130
Sensing Sand Bar 13 24 1 8 46

Classification Tree 1 1 23 0 25
Water 0 1 1 1 3

Column Total 109 49 32 14 204

Predevelopment Study Site 3 Test Information

a 
 

Khat = 48.8% 
 

Class Tree Not Tree Row Total
Remote Tree 23 2 25
Sensing Not Tree 9 170 179

Classification Column Total 32 172 204

Predevelopment Study Site 3 Test Information

 
b 
 

Khat = 77.6% 
 

Figure A5: Calculations for Khat Coefficient of Remote Sensing Accuracy at 
Predevelopment Study Site 3 (a) Using the Entire Dataset and (b) Using only Trees 

and Not Trees 
 

Class Cropland/Ground Tree Water Row Total
Remote Cropland/Ground 116 4 4 124
Sensing Tree 10 44 0 54

Classification Water 9 1 16 26
Column Total 135 49 20 204

Post-Development Study Site 3 Test Information

 
a 
 

Khat = 73.7% 
 

Class Tree Not Tree Row Total
Remote Tree 44 10 54
Sensing Not Tree 5 145 150

Classification Column Total 49 155 204

Post-Development Study Site 3 Test Information

 
b 
 

Khat = 80.5% 
 

Figure A6: Calculations for Khat Coefficient of Remote Sensing Accuracy at Post-
Development Study Site 3 (a) Using the Entire Dataset and (b) Using only Trees and 

Not Trees 
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Class Bare Ground Sand Bar Tree Water Row Total
Remote Bare Ground 95 3 4 0 102
Sensing Sand Bar 5 29 0 3 37

Classification Tree 5 0 40 0 45
Water 5 10 1 4 20

Column Total 110 42 45 7 204

Predevelopment Study Site 4 Test Information

a 
 

Khat = 72.5% 
 

Class Tree Not Tree Row Total
Remote Tree 40 5 45
Sensing Not Tree 5 154 159

Classification Column Total 45 159 204

Predevelopment Study Site 4 Test Information

 
b 
 

Khat = 85.7% 
 

Figure A7: Calculations for Khat Coefficient of Remote Sensing Accuracy at 
Predevelopment Study Site 4 (a) Using the Entire Dataset and (b) Using only Trees 

and Not Trees 
 

Class Cropland/Ground Tree Water Row Total
Remote Cropland/Ground 129 9 1 139
Sensing Tree 9 49 0 58

Classification Water 4 1 2 7
Column Total 142 59 3 204

Post-Development Study Site 4 Test Information

 
a 
 

Khat = 73.4% 
 

Class Tree Not Tree Row Total
Remote Tree 49 9 58
Sensing Not Tree 10 136 146

Classification Column Total 59 145 204

Post-Development Study Site 4 Test Information

 
b 
 

Khat = 77.2% 
 

Figure A8: Calculations for Khat Coefficient of Remote Sensing Accuracy at Post-
Development Study Site 4 (a) Using the Entire Dataset and (b) Using only Trees and 

Not Trees 
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Class Bare Ground Sand Bar Tree Water Row Total
Remote Bare Ground 104 0 4 30 138
Sensing Sand Bar 2 16 0 8 26

Classification Tree 1 0 17 0 18
Water 2 0 0 20 22

Column Total 109 16 21 58 204

Predevelopment Study Site 5 Test Information

a 
 

Khat = 60.8% 
 

Class Tree Not Tree Row Total
Remote Tree 17 1 18
Sensing Not Tree 4 182 186

Classification Column Total 21 183 204

Predevelopment Study Site 5 Test Information

 
b 
 

Khat = 85.8% 
 

Figure A9: Calculations for Khat Coefficient of Remote Sensing Accuracy at 
Predevelopment Study Site 5 (a) Using the Entire Dataset and (b) Using only Trees 

and Not Trees 
 

Class Cropland/Ground Tree Water Row Total
Remote Cropland/Ground 160 4 22 186
Sensing Tree 1 9 0 10

Classification Water 3 0 5 8
Column Total 164 13 27 204

Post-Development Study Site 5 Test Information

 
a 
 

Khat = 43.2% 
 

Class Tree Not Tree Row Total
Remote Tree 9 1 10
Sensing Not Tree 4 190 194

Classification Column Total 13 191 204

Post-Development Study Site 5 Test Information

 
b 
 

Khat = 77.0% 
 
Figure A10: Calculations for Khat Coefficient of Remote Sensing Accuracy at Post-

Development Study Site 5 (a) Using the Entire Dataset and (b) Using only Trees and 
Not Trees 
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Class Bare Ground Sand Bar Tree Water Row Total
Remote Bare Ground 100 3 4 28 138
Sensing Sand Bar 4 10 0 8 26

Classification Tree 2 0 20 0 18
Water 2 2 0 21 22

Column Total 109 16 21 58 204

Predevelopment Study Site 6 Test Information

a 
 

Khat = 55.9% 
 

Class Tree Not Tree Row Total
Remote Tree 20 2 22
Sensing Not Tree 4 178 182

Classification Column Total 24 180 204

Predevelopment Study Site 6 Test Information

 
b 
 

Khat = 85.3% 
 

Figure A11: Calculations for Khat Coefficient of Remote Sensing Accuracy at 
Predevelopment Study Site 6 (a) Using the Entire Dataset and (b) Using only Trees 

and Not Trees 
 

Class Cropland/Ground Tree Water Row Total
Remote Cropland/Ground 161 4 25 190
Sensing Tree 1 8 0 9

Classification Water 2 0 3 11
Column Total 164 12 28 204

Post-Development Study Site 6 Test Information

 
a 
 

Khat = 35.0% 
 

Class Tree Not Tree Row Total
Remote Tree 8 1 9
Sensing Not Tree 4 191 195

Classification Column Total 12 192 204

Predevelopment Study Site 6 Test Information

 
b 
 

Khat = 74.9% 
 
Figure A12: Calculations for Khat Coefficient of Remote Sensing Accuracy at Post-

Development Study Site 6 (a) Using the Entire Dataset and (b) Using only Trees and 
Not Trees 
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Class Bare Ground Sand Bar Tree Water Row Total
Remote Bare Ground 95 3 4 40 142
Sensing Sand Bar 2 8 1 6 17

Classification Tree 5 0 16 0 21
Water 5 6 0 13 24

Column Total 107 17 21 59 204

Predevelopment Arkansas River Corridor Test Information

a 
 

Khat = 39.5% 
 

Class Tree Not Tree Row Total
Remote Tree 16 5 21
Sensing Not Tree 5 178 183

Classification Column Total 21 183 204

Predevelopment Arkansas River Corridor Test Information

 
b 
 

Khat = 73.5% 
 
Figure A13: Calculations for Khat Coefficient of Remote Sensing Accuracy along the 

Predevelopment Arkansas River Corridor (a) Using the Entire Dataset and (b) 
Using only Trees and Not Trees 

 

Class Cropland/Ground Tree Water Row Total
Remote Cropland/Ground 118 5 31 154
Sensing Tree 10 33 2 45

Classification Water 2 1 2 5
Column Total 130 39 35 204

Post-Development Arkansas River Corridor Test Information

 
a 
 

Khat = 47.1% 
 

Class Tree Not Tree Row Total
Remote Tree 33 12 45
Sensing Not Tree 6 153 159

Classification Column Total 39 165 204

Post-Development Arkansas River Corridor Test Information

 
b 
 

Khat = 73.1% 
 
Figure A14: Calculations for Khat Coefficient of Remote Sensing Accuracy along the 

Post-Development Arkansas River Corridor (a) Using the Entire Dataset and (b) 
Using only Trees and Not Trees 
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Class Bare Ground Sand Bar Tree Water Row Total
Remote Bare Ground 100 0 4 30 134
Sensing Sand Bar 2 16 0 8 26

Classification Tree 1 0 21 0 22
Water 2 0 0 20 22

Column Total 105 16 25 58 204

Predevelopment Cimarron River Corridor Test Information

a 
 

Khat = 62.4% 
 

Class Tree Not Tree Row Total
Remote Tree 21 1 22
Sensing Not Tree 4 178 182

Classification Column Total 25 179 204

Post-Development Cimarron River Corridor Test Information

 
b 
 

Khat = 88.0% 
 
Figure A15: Calculations for Khat Coefficient of Remote Sensing Accuracy along the 

Predevelopment Cimarron River Corridor (a) Using the Entire Dataset and (b) 
Using only Trees and Not Trees 

 

Class Cropland/Ground Tree Water Row Total
Remote Cropland/Ground 148 6 20 174
Sensing Tree 3 17 2 22

Classification Water 7 1 0 8
Column Total 158 24 22 204

Post-Development Cimarron River Corridor Test Information

 
a 
 

Khat = 40.7% 
 

Class Tree Not Tree Row Total
Remote Tree 17 5 22
Sensing Not Tree 7 175 182

Classification Column Total 24 180 204

Post-Development Cimarron River Corridor Test Information

 
b 
 
 

Khat = 70.6% 
 
Figure A16: Calculations for Khat Coefficient of Remote Sensing Accuracy along the 

Post-Development Cimarron River Corridor (a) Using the Entire Dataset and (b) 
Using only Trees and Not Trees 
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Appendix B: Water Table Depth, Soil Type, and Remote 
Sensing Results 

 

 
Figure B1: Decrease in the Water Table in Western Kansas between 1965 and 2005. 
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Figure B2: Study Site 1 in (a) 1957 and (b) 2006. 
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b 

Figure B3: Depth to Groundwater, in m, at Study Site 1 in (a) 1965 and (b) 2005. 
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Figure B4: Remote Sensing Tree Locations at Study Site 1 in (a) 1957 and (b) 2006. 
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Figure B5: Study Site 2 in (a) 1965 and (b) 2006. 
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Figure B6: Depth to Groundwater, in m, at Study Site 2 (a) in 1965 and (b) in 2005. 
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Figure B7: Remote Sensing Tree Locations at Study Site 2 in (a) 1965 and (b) 2006. 
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Figure B8: Study Site 3 in (a) 1957 and (b) 2006. 
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Figure B9: Depth to Groundwater, in m, at Study Site 3 in (a) 1965 and (b) 2006. 
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Figure B10: Remote Sensing Tree Locations for Study Site 3 in (a) 1953 and (b) 
2006. 
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Figure B11: Study Site 4 in (a) 1967 and (b) 2006. 
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b 
Figure B12: Depth to Groundwater, in m, at Study Site 4 in (a) 1965 and (b) 2005. 
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Figure B13: Remote Sensing Tree Locations at Study Site 4 in (a) 1967 and (b) 2006. 
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Figure B14: Study Site 5 in (a) 1967 and (b) 2006. 
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Figure B15: Depth to Groundwater, in m, at Study Site 5 in (a) 1965 and (b) 2005. 
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Figure B16: Remote Sensing Tree Locations at Study Site 5 in (a) 1967 and (b) 2006. 
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Figure B17: Study Site 6 in (a) 1967 and (b) 2006. 
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Figure B18: Depth to Groundwater, in m, at Study Site 6 in (a) 1965 and (b) 2005. 
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Figure B19: Remote Sensing Tree Locations at Study Site 6 in (a) 1967 and (b) 2006. 
 
 


