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Abstract 

Big bluestem (Andropogon gerardii) is a wide-ranging dominant prairie grass of 

ecological and agricultural importance to the US Midwest while edaphic subspecies sand 

bluestem (A. gerardii ssp. Hallii) grows exclusively on sand dunes. Sand bluestem exhibits 

phenotypic divergence related to epicuticular properties and enhanced drought tolerance relative 

to big bluestem. Understanding the mechanisms underlying differential drought tolerance is 

relevant in the face of climate change. For bluestem subspecies, presence or absence of these 

phenotypes may be associated with RNA transcripts characterized by low number of read counts. 

So called low-count transcripts pose particular inferential challenges and are thus usually filtered 

out at early steps of data management protocols and ignored for analyses. In this study, we use a 

plasmode-based approach to assess the relative performance of alternative inferential strategies 

on RNA-seq transcripts, with special emphasis on low-count transcripts as motivated by 

differential bluestem phenotypes. Our dataset consists of RNA-seq read counts for 25,582 

transcripts (60% of which are classified as low-count) collected from leaf tissue of 4 individual 

plants of big bluestem and 4 of sand bluestem.  We also compare alternative ad-hoc data filtering 

techniques commonly used in RNA-seq pipelines and assess the performance of recently 

developed statistical methods for differential expression (DE) analysis, namely DESeq2 and 

edgeR robust. These methods attempt to overcome the inherently noisy behavior of low-count 

transcripts by either shrinkage or differential weighting of observations, respectively.    

Our results indicate that proper specification of DE methods can remove the need for ad-

hoc data filtering at arbitrary expression threshold, thus allowing for inference on low-count 

transcripts. Practical recommendations for inference are provided when low-count RNA-seq 

transcripts are of interest, as is the case in the comparison of subspecies of bluestem grasses. 



  

Insights from this study may also be relevant to other applications also focused on transcripts of 

low expression levels. 
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Chapter 1 - Inferential considerations for low-count RNA-seq 

transcripts: a case study on an edaphic subspecies of dominant 

prairie grass Andropogon gerardii 

 Introduction 
RNA sequencing (RNA-seq) technology has rapidly become the preferred choice for 

gene expression analysis as it allows for high throughput over a wide range of expression levels 

[1].  Yet, some features of RNA-seq data still pose considerable challenges for differential 

expression (DE) analysis, in particular related to transcripts characterized by low number of read 

counts [2, 3]. So called low-count transcripts often show large variability of logarithmic fold 

change (LFC) estimates and thus exhibit inherently noisier inferential behavior [2]. Thus, it is not 

surprising that low-count transcripts have received little attention. In fact, standard protocols for 

management of RNA-seq data call for removal of transcripts with read counts below 

predetermined, though arbitrary, expression thresholds [4]; this practice is often referred to as 

data filtering. As a consequence of data filtering, low-count transcripts are often excluded from 

DE analyses and ignored for the purpose of inference. This is problematic as filtering of RNA-

seq data can cause transcription factors of low expression levels to be overlooked, despite their 

key role as master regulators of downstream gene expression [5].  

Transcripts with low expression levels are often filtered out from data prior to DE 

analyses in an attempt to control noise and reduce the impact of multiple testing adjustments on 

power for DE detection by removal of uninformative or weakly expressed transcripts [4, 6].  

Recent advances in statistical methods available for DE analyses of RNA-seq data may provide 

alternative approaches to deal with weakly expressed transcripts without the need for data 
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filtering at arbitrary expression thresholds. More specifically, DESeq2 [2], edgeR [7] and edgeR 

robust [8] recently proposed alternative approaches to handle extreme observations, which may 

unwittingly also facilitate inference on low-count transcripts.  That is, rather than filtering out 

low-count transcripts at arbitrary threshold and excluding them from analysis, these statistical 

methods could be used to account for the increased uncertainty associated with low-count 

transcripts. As a common denominator, both DESeq2 and edgeR implement a generalized linear 

mixed models approach of the negative binomial family that efficiently borrows information 

across transcripts to moderate transcript-specific dispersion estimates [2, 8]. As an additional 

advantage, DESeq2 shrinks LFC estimates towards a common mean in a manner inversely 

proportional to the amount of information available for a transcript [2]. Little information, due to 

either a low level of expression or a high level of dispersion, cause transcript-specific estimates 

to shrink towards zero. In turn, the latest release of edgeR, namely edgeR robust, works by down 

weighting observations that deviate from the model fit [8], thereby dampening the effect that 

observations with very high or very low expression levels have on transcript-specific estimates 

of mean expression and dispersion. As a trade-off, edgeR robust requires explicit user 

specification of a shrinkage parameter, lets it default to a set predetermined value [8] that may be 

appropriate for some, but not all, data applications. No such user specification is required by 

DESeq2; rather, all necessary parameters are estimated from the data. Given these recent 

developments in statistical methodology, it is timely that guidelines for data filtering of low 

expression transcripts in protocols for RNA-seq data [4] be revisited, as the impact of this 

practice on  DE inference remains unclear.  

Our specific interest in low-count RNA-seq transcripts stems from our ongoing work 

with the wide-ranging dominant prairie grass big bluestem (Andropogon gerardii) and its 
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edaphic subspecies sand bluestem (A. gerardii ssp. Hallii). Big bluestem (BB) is a widely-

distributed dominant grass of North American grasslands [9] and constitutes the main native 

forage grass for cattle [10]. In contrast, sand bluestem’s (SB) habitat consists primarily of the 

Sand Hills in Nebraska [11]. Our preliminary studies [12]  provided evidence for morphological 

and physiological differences between bluestem subspecies that are consistent with enhanced 

drought tolerance of SB. For instance, we observed a greater quantity of epicuticular wax (ECW) 

on the leaf surface of SB plants relative to that of BB [12]. Further, analysis of ECW components 

showed presence of approximately ~20% β-diketones on SB leaves, whereas β-diketones were 

absent in ECW of BB leaves [12]. Differential quantity and quality of ECW on leaf surfaces 

could affect heat reflectance and transmittance, thus providing differential relative advantages to 

heat tolerance in dry conditions. Further, ECW decreased light absorbance in sand bluestem [12], 

thus potentially lowering internal leaf temperature and protecting against heat stress. Taken 

together, our preliminary studies indicate that adaptation of SB to water-limited conditions may 

involve adaptation of leaf cuticle chemistry, morphology, and function. Sand bluestem’s 

enhanced tolerance to dry conditions relative to BB [12] is of interest due to the expected 

increase in extreme droughts throughout Midwest grasslands [13]. 

In this study, we further characterize differences between bluestem subspecies at the 

transcriptome level. Following from the qualitative phenotype differences observed between SB 

and BB, we initially focused on RNA transcripts that were expressed in only one of the bluestem 

subspecies, while expression was absent in the other. More specifically,  SB-only transcripts 

where expressed in sand bluestem samples but were absent (i.e. read counts = 0 for all samples)  

in big bluestem samples. The reverse was true for BB-only transcripts. We further noticed that 

these transcripts were characterized by few read counts, indicating overall low levels of 
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expression.  Thus, for this study, we purposely defined so called low-count transcripts following 

the descriptive approach proposed by Bullard [14]. In total we have 25,582 transcripts. Here, 

low-count transcripts are transcripts below the 60th percentile of least relative abundance and 

account for approximately 3% of total read counts (Figure 1.1). For contrast, we also defined so-

called high-count transcripts, corresponding to transcripts with the top 3% relative abundance, 

which accounted for 60 % of total read counts (Figure 1.1). So defined, low-count transcripts and 

high-count transcripts were transcripts with a total read count below 462 or above 12,893, 

respectively, across all samples in the dataset. Transcripts expressed in one, but not the other, 

bluestem subspecies were all identified as low-count transcripts (Table 1.1), thus providing 

specific motivation to study transcripts with low expression levels.  

In order to study transcripts with low expression levels, we consider new statistical 

methods that may account for the additional uncertainty with low-count transcripts. Both edgeR 

robust and DESeq2 have shown promising results in simulation studies and in selected real 

datasets [2, 8]. However, relative performance of these methods has often been shown to be data 

dependent and results may differ [8].  Thus, it is unclear how one might decide between these 

statistical methods for DE analysis of a specific dataset. Plasmodes have been proposed as a 

strategy to validate statistical methods or even assess relative performance of competing methods 

on a given -omics dataset [15]. Thus far, plasmodes have been successfully applied to microarray 

[16] and qPCR data [17], and have most recently been adapted for RNA-Seq data [18]. Probably 

one of the main advantages of plasmodes is that some characteristics of experimental data can be 

preserved, including the overall distribution of the data as well as any potential gene-to-gene 

correlation structure [18]. In particular, an RNA-Seq dataset can be used to generate a null 

plasmode dataset by randomly partitioning samples of the same treatment condition into two new 
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arbitrary groups. Reshuffling of samples creates a null dataset where no differential expression 

between groups is to be expected beyond sample-to-sample variation [18]. DE analysis of null 

plasmodes can then be implemented to compare Type I error between methods, since any 

transcripts identified as DE on a null plasmode would be considered a false positive.  In addition, 

plasmodes allow for introduction of some known truth, as it happens in data simulation.  As such 

, selected transcripts within a null plasmode can be “spiked” with fold changes of known 

magnitude to create DE transcripts, and thus evaluate statistical power and other performance 

metrics under the alternative hypothesis [18].     

In this study, we use a plasmode-based approach to assess inferential performance of 

statistical methods for DE analysis of RNA-seq data with a special focus on low-count 

transcripts, as motivated by our case study on subspecies of bluestem prairie grass.  We further 

evaluate the impact of alternative data filtering strategies that are commonly reported in the 

literature and discuss their implications for inference on low-count transcripts.  

 Results 

 Plasmodes 

All plasmodes were generated using data from big bluestem samples only, given its 

benchmark status as a widely distributed dominant prairie grass. To evaluate inferential 

performance of statistical methods under the null hypothesis, big bluestem samples were 

randomly partitioned into 2 groups of 2 samples each, yielding a total of 3 null plasmodes. In 

turn, performance under the alternative hypothesis was evaluated using DE plasmodes, that is 

modified null plasmodes for which one of the groups had a known proportion of transcripts 

spiked with estimates of effect sizes of transcripts called DE from a preliminary analysis [18].  A 

total of 15 DE plasmodes were generated.  



6 

On each plasmode, we conducted DE analyses using DESeq2, edgeR classic, and edgeR 

robust. All of the methods model read counts assuming a negative binomial distribution and 

apply shrinkage to moderate the estimation of dispersion parameters. For edgeR robust, we 

specified degrees of freedom (DF) to be 4, 10 and 50, to reflect increasing levels of arbitrarily 

specified shrinkage. We note that DF = 10 is the default DF specification in edgeR robust. We 

also evaluated the performance of edgeR robust with DF specified using an estimate obtained 

from the classic edgeR software   (i.e. DF =𝐷𝐹). We note that a quantile-adjusted conditional 

maximum likelihood approach for estimation of the DF parameter is available in the classic 

edgeR software for simple, completely randomized, design structures such as that in our 

motivating problem on bluestem subspecies [19]. Estimates of DF ranged from approximately 

3.21 to 3.30 across null plasmodes. To compare performance of the various DE analyses 

methods, we computed false positive rate (FPR), true positive rate (TPR) or power, positive 

predictive value (PPV) or precision, negative predictive value (NPV), and accuracy, as defined in 

Table 1.2.  

We first assessed Type I error of DE methods in null plasmodes using false positive rate 

(FPR).  Since both groups pertain to the same subspecies, we do not expect any difference in 

expression levels beyond sampling variability. Table 1.3 contains estimated FPR for DE 

methods, after adjustment to a false discovery rate (FDR) of 0.05. Overall, all methods seemed to 

adequately control FPR below a 0.05 FDR nominal value for both all transcripts as well as low-

count transcripts. Nevertheless, DESeq2 had the lowest FPR and was thus the most conservative 

of the methods evaluated, followed closely by edgeR classic and then by edgeR robust. Within 

edgeR robust, FPR increased with more degrees of freedom, thus indicating more liberal 
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inference with greater DF specifications. These patterns in FDR performance between DE 

methods were apparent when either all transcripts or only low-count transcripts were considered.  

Next, we used DE plasmodes to compare inferential performance of statistical methods 

under the alternative hypothesis to detect true differences in expression levels of transcripts. 

Estimated TPR or power, PPV or precision, NPV and accuracy based on DE plasmodes are 

displayed in Table 1.4. Estimated power across methods ranged from approximately 0.54 to 0.65 

for all transcripts, and from 0.17 to 0.39 for low-count transcripts. In both cases, DESeq2 showed 

the lowest power of all methods evaluated, followed by a modest power increase with edgeR 

classic and more substantial power boost with edgeR robust. Within specifications of edgeR 

robust, there was no evidence for differences in power when DF were specified to be 10 or less, 

but a DF=50 specification caused a significant inflation of power for both all transcripts and low-

count transcripts.  Not surprisingly, results on power mirrored those obtained on FPR based on 

the null plasmodes; that is, methods with the lowest FPR were also methods with the highest 

number of false negatives and thus, the lowest power. Precision, or PPV, was maximum using 

DESeq2 and was estimated at 0.66 and 0.39 for all transcripts and low-count transcripts, 

respectively (Table 1.4). In both cases, a significant drop in precision of at least 2 to 3 percentage 

points was apparent with edgeR classic relative to DESeq2, whereas the estimated drop in power 

was of 10 percentage points or more with edgeR robust. As the specification of DF on edgeR 

robust increased from 4 to 50, precision decreased further and was nearly halved by DF=50 

relative to DESeq2. Noteworthy, for both all transcripts and low-count transcripts, inferential 

precision using edgeR robust was greater when DF were estimated as opposed to specified by 

default (i.e. DF=10; Table 1.4). In turn, estimated NPV for all DE methods was high in 

magnitude and ranged from 0.989 to 0.992 for all transcripts as well as low-count transcripts 
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(Table 1.4). Overall inferential accuracy of DE analyses ranged from 0.972 to 0.986 for all 

transcripts and from 0.968 to 0.985 for low-count transcripts. In both cases, maximum accuracy 

was observed using DESeq2, followed in decreasing order by edgeR classic and then by edgeR 

robust, with decreasing accuracy as DF increased (Table 1.4). Overall accuracy of DE calling 

using edgeR robust was greater when DF were estimated as opposed to specified by default (i.e. 

DF=10), though the absolute magnitude of the difference was small (approximately half a 

percentage point). All methods appear to control FPR rate in DE plasmodes below the nominal 

value (Table 1.4), though DESeq2 was more conservative than any of the edgeR methods, 

particularly for low-count transcripts. 

 Case study: Comparison of bluestem subspecies 
Next, we conducted DE analyses to explore the transcriptomic basis for differences 

between subspecies of bluestem prairie grass (see Materials and Methods).  Our dataset consisted 

of 4 samples of big bluestem and 4 of sand bluestem, for which read counts on a total of 25,582 

transcripts were obtained. Differential expression analyses between subspecies was conducted 

using DESeq2 and edgeR robust. The specification of degrees of freedom for edgeR-robust was 

based on quantile-adjusted conditional maximum likelihood estimates using edgeR classic [19], 

such that 𝐷𝐹 = 3.02.  Figure 1.2 A and D contains MA plots of estimated logarithmic fold 

changes in the complete dataset (i.e. no filtering) using DESeq2 and edgeR robust, respectively. 

Overall, edgeR robust declared 12.4% of transcripts as DE (Table 1.5) whereas DESeq2 declared 

only 9.0% of transcripts as DE (Table 1.6). This is consistent with the more conservative Type I 

error performance of DESeq2 relative to edgeR robust, coupled with greater power of the latter, 

as previously observed using a plasmode approach. We note that the difference in DE calling 

between statistical methods may be partially attributed to inference on low-count transcripts, 
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whereby 14.6% of low-count transcripts were declared DE by edgeR robust but only 9.1% by 

DESeq2 (Tables 1.5 and 1.6). Instead, DE calling amongst high-count transcripts was 4.8 and 

4.6% for edgeR robust and DESeq2, respectively (Tables 1.5 and 1.6).  

A considerable amount of overlap in DE calling was apparent between methods. In 

particular, approximately 91.2% of all transcripts declared DE by DESeq2 were also declared 

DE using edgeR robust (Figure 1.4.A).  For low-count transcripts, edgeR robust declared DE 

approximately 96.8% those also declared DE by DESeq2 (Figure 1.4.D).  

We further considered SB-only and BB-only transcripts, which were expressed in only 

one bluestem subspecies and absent in the other. Recall that all such transcripts were classified as 

low-count transcripts due to low expression levels. EdgeR robust identified 80.4% of such 

transcripts as DE (Table 1.5), whereas DESeq2 called DE only 39.8% (Table 1.6). Yet, 

approximately 99% of transcripts expressed in only one bluestem subspecies and declared DE 

based on DESeq2 were also declared DE by edgeR robust, again indicating a substantial amount 

of overlap between the methods.   

 

 Filtering Strategies 
We further assessed inferential implications of two commonly used filtering approaches. 

For this purpose, our bluestem data set was subjected to filtering defined in terms of mapped 

reads present (RP) [20] and of read counts per million (CPM) [18]. The RP filtering approach 

removes transcripts if the overall number of samples with mapped reads present (i.e. samples 

with read counts greater than zero for a given transcript) is smaller than the number of samples 

per treatment group [20].  In turn, CPM-based filtering removes transcripts if a pre-selected 

number of samples have counts per million (CPM) smaller than a certain value [18],  which for 
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our dataset was specified at 1 CPM.  Table 1.1 shows a breakdown of transcripts available for 

DE analyses after RP-based and CPM-based filtering. Most notably, RP-based filtering excluded 

only 129 transcripts (i.e. approximately 0.5%) from the unfiltered dataset, none of which were 

low-count transcripts or transcripts present in only one of the subspecies. In contrast, when 

CPM-based filtering was implemented, a total of 10,734 transcripts (i.e. almost 42% of the total) 

were excluded. More specifically, CPM filtering removed from the data 10,280 low-count 

transcripts, amongst which were all 455 transcripts present in only one of the bluestem 

subspecies (Table 1.1). As such, only approximately 29% low-count transcripts, and none of the 

transcripts present in only one of the bluestem subspecies, were available for DE analyses 

following CPM-based filtering.  

Filtered datasets were subjected to DE analysis using edgeR robust and DESeq2, as 

described in the previous section. Tables 1.5 and 1.6 show the breakdown of transcripts declared 

DE on the filtered datasets based by each of the statistical methods. Based on either DESeq2 or 

edgeR robust, transcripts declared DE in RP-filtered data were essentially the same transcripts as 

those declared DE in the unfiltered data (i.e. over 99% overlap). Exceptions included 4 (edgeR 

robust) or 7 (DESeq2) additional transcripts declared DE in the RP-filtered data, but not in 

unfiltered data.  Instead, CPM filtering reduced the number of transcripts declared DE based on 

edgeR robust and DESeq2 by 68.4% ((3173-1002)/3173, Table 1.5) and 58.4% ((2290-

952)/2290, Table 1.6), respectively, relative to unfiltered data. The impact of CPM filtering on 

DE calling was primarily driven by low-count transcripts, for which DE calling was reduced by 

88.8% ((2135-239)/2135, Table 1.5) and 84.6% ((1325-204)/1325, Table 1.6) based on edgeR 

robust and DESeq2, respectively. Most notably, all 455 transcripts present in only one of the 
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bluestem subspecies were lost to DE inference as CPM-based filtering excluded them from the 

data prior to analyses.  

Figure 1.2 shows MA-plots obtained from fitting DESeq2 or edgeR robust to RNA-seq 

data subjected to no filtering, RP-based filtering or CPM-based filtering. Within each DE 

method, the overall shape of the MA-plots on RP-filtered data resembled that of the unfiltered 

data. This is not surprising as RP filtering removed only a small number of transcripts from the 

dataset. In contrast, MA-plots on the CPM-filtered dataset showed a drastically modified pattern 

relative to unfiltered data, particularly on the left size of each plot, due to exclusion of low-count 

transcripts, which were also transcripts with more extreme fold-changes. 

 Approximate tests for DE inference based on DESeq2 
The most recent release of the DESeq package, namely DESeq2 [2],  implemented a 

Wald test approach as the default strategy for DE testing on individual transcripts. This approach 

differs from that of previous versions of DESeq, which specified a likelihood ratio test (LRT) as 

the default instead [21]. The rationale behind using a Wald test approach as a default relies on its 

flexibility for testing individual coefficients or functions thereof, without the need to fit a 

reduced model [2]. Both LRT and Wald are approximate tests that rely on asymptotic chi-square 

and normal distributions, respectively, under the null hypothesis [22].  

  Motivated by our interest in low-count transcripts, we further compared the 

relative performance of LRT and Wald tests for DE inference. Figure 1.3 shows scatterplots of 

unadjusted p-values for DE inference obtained from Wald tests and LRT for both high-count 

transcripts and low-count transcripts in unfiltered or filtered datasets. Regardless of data filtering, 

LRT and Wald tests showed considerable inferential agreement for DE calling on high-count 

transcripts, as indicated by most points falling along the identity line (Figure 1.3 D, E, F). In 
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contrast, for low-count transcripts, the Wald test seemed to underestimate P-values for DE 

inference relative to the LRT approach, particularly in the 0 to 0.20 range (Figure 1.3 A, B, C). 

This difference between Wald test-based and LRT-based P-values on low-count transcripts was 

particularly noticeably in unfiltered or RP-filtered data but it was even apparent, though only 

slightly, in CPM-filtered data, for which most low-count transcripts had already been excluded. 

 Discussion 
In this study, we used plasmodes generated from our RNA-seq data on bluestem 

subspecies to compare inferential performance on differential expression between alternative 

statistical methods. This study is one of few to use a plasmode based approach to compare 

statistical methods in RNA-Seq data [18]. It is important to note that with plasmodes the null 

distribution can be sensitive to the random division of the original control group into the two new 

plasmode groups when there are systematic differences such as variation due to technology or 

operator, especially if the number of samples in the control group is small [16]. However this is 

more of an attribute rather than a limitation since the goal of the plasmode is to reflect the actual 

structure of a real dataset including any systematic effects [16].  We were particularly interested 

in transcripts of low expression levels, as motivated by observed differences in phenotypes 

between subspecies of bluestem prairie grass. We also considered data filtering strategies that, 

while often implemented in RNA-seq data pipelines, impose arbitrary criteria for data exclusion 

with unknown impact on DE inference.  

Our plasmode approach indicated adequate control of Type I error within nominal levels 

using either DESeq2 or edgeR robust, regardless of specification of DF, both for all transcripts 

and for low-count transcripts. Still, false positive rates increased with greater DF specifications 

under edgeR robust, indicating the need for careful consideration of this specification. In turn, 
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edgeR robust showed greater power than DESeq2, which is consistent with previous simulation 

studies [8] and is hereby shown to also apply to transcripts of low expression levels.  

Interestingly, within specifications of edgeR robust, there was no evidence for any changes in 

power when DF were specified to be at default (i.e. DF=10) or at a much smaller value estimated 

from the data (i.e. DF = [3.21, 3.30], though power was increased at DF=50. Nevertheless, the 

observed increase in power with increasing DF in edgeR robust came at the expense of an 

increase in false positives. Not unexpectedly, power for DE calling of low-count transcripts was 

decreased relative to that of all transcripts, regardless of method chosen for DE inference. This is 

to be expected as low levels of expression indicate little information available for inference, as 

shown with previous simulations studies [8]. Furthermore, DESeq2 showed the greatest 

precision and accuracy of all methods evaluated not only for all transcripts, as already shown by 

other simulation studies [2], but especially for low-count transcripts.  

Our results from the plasmode approach to assess inferential performance suggest that the 

specification of DF for edgeR robust can impact DE inference of RNA-seq data, particularly that 

of low-count transcripts and thus, should be considered carefully. Most relevant to our dataset, 

the default DF specification (i.e. DF=10) was not optimal and lead to a decrease in inferential 

precision and accuracy relative to using an estimated DF value. The default value of the 

shrinkage parameter for edgeR robust (i.e. DF = 10) seems to be based on an array of simulation 

studies [7]. However, it is unclear whether such arbitrarily specified DF value is justified for any 

particular RNA-seq dataset, for which the amount of dispersion, the correlation structure 

between transcripts and the sample size may not be aligned with those of simulated conditions 

[18, 20].  This is further supported by our plasmode approach and suggests that the specification 

of DF on edgeR robust should be informed carefully and estimated from the data whenever 
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possible.  Alternatively, if complexity of the experimental design prevented proper estimation of 

the DF parameter, a researcher might consider relying more heavily on inference from DESeq2, 

for which no arbitrary specification of DF is needed. Regardless, for any given dataset, DE 

inference based on multiple analysis methods seems to be a standard recommendation [1, 20]. 

For instance, researchers may consider declaring DE only those transcripts that show low FDR-

adjusted P-values by both edgeR robust and DESeq2. This recommendation is further supported 

by the high level of overlap in DE calling observed between the methods, when properly 

specified.  

Data filtering is a common processing step in the RNA-seq pipeline [4], though its 

implications have not been thoroughly explored. Filtering was original proposed with the goal of 

reducing the impact of multiple testing adjustment on power for DE detection [4, 6].  However, 

our results indicate only a small difference in DE calling following RP-based filtering compared 

to no filtering, with 99% overlap between the two, regardless of DE method.  This suggests that 

both edgeR robust and DESeq2 retained similar number of transcripts declared as DE regardless 

of whether the data has been RP-filtered or not, thus questioning the need to impose arbitrary 

filtering rules on the data.  

In turn, more extreme filtering rules such as those based on a CPM criterion can cause a 

drastic reduction in the number of transcripts available for DE analyses. In our case, CPM 

filtering excluded almost 42% of the original transcripts, most of which were low-count 

transcripts. Filtering by CPM criterion was originally designed to remove transcripts considered 

challenging for inference due to shortage of available information [4]. However, we showed that 

CPM-based filtering also excluded from the data all transcripts expressed in only one of the 

bluestem subspecies and absent in the other, which were of particular interest to researchers in 
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this case. Removal of these transcripts may impair understanding of the transcriptomic basis for 

phenotypic differences between bluestem subspecies and misinform further exploration of 

candidate genes. Moreover, CPM-based filtering also reduced both the total number and the 

proportion of transcripts called DE relative to no filtering, whereas little gain was obtained in 

uniquely identified DE-declared transcripts (i.e. approximately 0.3% and 0.1% gain with 

DESeq2 and edgeR robust, respectively). On a more general note, data exclusion based on CPM 

filtering may have even more serious implications for inference on transcription factors, which 

have low expression levels despite their key role as master switches that regulate gene expression 

[5].  

Overall, the rationale for arbitrary filtering RNA-seq data based on either an RP or CPM 

criteria, seems unclear, particularly given the availability of powerful state-of-the-art statistical 

methodology that can deal with most of the challenges in RNA-seq data. Instead, researchers 

may consider using the complete unfiltered RNA-seq data for DE analyses, ensuring use of 

modern statistical methods to properly borrow information across transcripts and moderate (i.e. 

shrink or weigh) DE inference based on expression levels. In particular, DESeq2 and edgeR 

robust have shown promising inferential performance in handling low-count transcripts with 

minimal effect on the DE analysis for the remaining transcripts. Forgoing the use of data filtering 

at arbitrary thresholds in favor of more elegant approaches to deal with the inherent challenges of 

RNA-seq data may be particularly relevant for research questions focused on transcripts of low 

expression levels.  

Finally, when implementing DESeq2, differential expression assessments for low-count 

transcripts based on the default Wald-test may be rather liberal relative to those based on 

likelihood ratio tests. For small sample sizes, the performance of these approximations is known 
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to deteriorate rapidly, particularly for Wald tests [23]. In addition, both tests assume certain 

regularity conditions hold, but are often not verified in practice [22]. Both tests implemented by 

DESeq2 constitute approximations that may require careful attention to and consideration of the 

assumptions made on a case-by-case basis, in order to ensure sound inference.  

 Conclusions 
We implemented a recently adapted plasmode approach to compare inferential 

performance of modern statistical methods, namely DESeq2 and edgeR robust, on RNA-seq 

data, with a special focus on low-count transcripts as motivated by bluestem grass species. 

Implications of these results may be relevant to biological applications beyond our study 

involving transcripts of low expression levels, such as transcription factors. Both DESeq2 and 

edgeR robust seemed to properly control family-wise type 1 error on all transcripts as well as on 

low-count transcripts.  For low-count transcripts, edgeR robust showed greater power whereas 

DESeq2 showed greater precision and accuracy. Overall, both methods showed promising 

inferential performance on low-count transcripts and yielded a substantial amount of overlap in 

DE calling. Still, a note of caution is in order regarding the approximate nature of DE tests, 

particularly when applied to low-count transcripts, in particular those of DESeq2.  

The specification of DF under edgeR robust was non-trivial as it impacted precision and 

accuracy of DE inference. This finding questions the use of a default DF value that may not be 

appropriate for all datasets and that was certainly not optimal in our case study. Whenever 

possible, the DF should be estimated from the data.  

Filtering of RNA-seq data can have serious implications for inference as mostly low-

count transcripts are removed from the data and excluded from DE analyses. Researchers may 

reconsider standard RNA-Seq data pipelines that call for filtering at arbitrary thresholds. Instead, 
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researchers may implement modern statistical methodologies specifically developed to deal with 

the inherent challenges of RNA-seq data.  

 Materials and Methods 

 Data collection 
RNA was extracted from leaf tissue of 4 individual plants of each of two phenotypically 

divergent bluestem subspecies, namely big bluestem (Andropogon gerardii, Saline population) 

and sand bluestem (A. gerardii ssp. Hallii, Arapahoe population). All plants were grown under 

greenhouse conditions.    Samples were sequenced using the Illumina HighSeq 2000 and Roche 

454 sequencers on a single flow cell using multiplexed sequencing. Reads were mapped to a de-

novo reference transcriptome assembly (described next) [24] and number of aligned reads were 

counted on putative transcripts.  

 Transcriptome Assembly 
All reads were stringently cleaned to remove tags, ambiguous bases, duplicates, and low 

quality bases. The resultant Illumina and 454 assemblies were merged with miraEST v3.4.11 

[25] to produce the final merged transcriptome.  Assemblies were evaluated on the basis of N25, 

N50, N75, cumulative length of contigs, and number of contigs. Ortholog Hit Ratio (OHR) [26] 

was calculated. N-values and OHR values suggest that the merged assembly was more 

contiguous and complete than either the Illumina or the 454 assemblies individually. A larger 

proportion of BLASTX [27] hits was identified in the merged assembly than in any of the single-

k-mer Illumina assemblies indicating that the contigs in the merged assembly may be more 

complete in addition to having higher N-values. Cleaned Illumina reads were mapped to the final 

emerged assembly using Bowtie2 v.2.1.0 [28] in the best mapping mode.  Two reference 
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transcriptomes were used for alignment.  The final transcriptome used for analysis contained 

transcripts with greater than or equal to 400 base pairs.   

 RNA-seq data 
Prior to analysis, any transcripts with zero reads present on all samples were removed.  The final 

dataset used for analysis consisted of a total of 25,582 transcripts. We first defined transcripts 

with expression levels present in sand bluestem and absent (i.e. read counts = 0 for all samples)  

in big bluestem as SB-only transcripts. In turn, BB-only transcripts were defined as transcripts 

with expression levels present in big bluestem and absent (i.e. read counts = 0 for all samples) in 

sand bluestem.  

We then organized and partitioned data based on relative abundance of transcripts. In 

brief, transcripts were ranked from largest to smallest number of total mapped reads across all 

samples.  We adapted the approach proposed by Bullard [14] and defined high-count transcripts 

as the top 3 % transcripts with the highest relative abundance, which accounted for 60 % of total 

read counts (Figure 1.1). We also defined low-count transcripts as transcripts within the 60th 

percentile of least relative abundance and accounting for approximately 3% of total read counts 

(Figure 1.1). So defined, high-count transcripts and low-count transcripts were transcripts with at 

least 12,893 read counts or at most 462 read counts, respectively, across all samples in the 

dataset. We note that the proposed definitions of high-count and low-count transcripts are 

specific to our motivating problem and the corresponding structure of our data. Table 1.1 shows 

the breakdown of transcripts into high-count and low-count categories in the filtered and 

unfiltered data.  
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 Construction of plasmode datasets 
All plasmodes were generated using data from big bluestem samples only, given its 

benchmark status as a widely distributed dominant prairie grass. 

Null plasmode datasets were constructed as previously described [18]. Briefly, for each 

null plasmode, samples of big bluestem were randomly partitioned into two arbitrary groups. A 

total of 3 unique null plasmodes were created, reflecting the 3 possible unique combinations of 4 

samples in groups of 2. So defined, no differential expression is to be expected between groups 

other than sample-to-sample variation.  Thus, null plasmodes allow for evaluation of analysis 

models under the null hypothesis [18].  

A total of 5 DE plasmodes were generated from each null plasmode for a total of 15 DE 

plasmodes, as previously described [18]. The proportion of differentially expressed transcripts in 

each DE plasmode was set at π = 0.2.  We used edgeR classic [19] to obtain a list of estimated 

effect sizes for transcripts declared DE at FDR = 0.05.  Estimates of effect sizes were sampled 

without replacement and added to log-transformed counts of randomly selected transcripts on all 

samples of one of the arbitrary groups in the null plasmode dataset, then back transformed to the 

count scale.  As such, DE plasmodes combine random reshuffling of data with known effects 

estimated from real data and added to known transcripts. Thus, DE plasmodes allow for 

evaluation of analysis models in identifying truly DE as well as non-DE transcripts [18].  

 Differential expression analyses 

 DESeq2 

The R package DESeq2 [2] for which the read count Kij for transcript i in sample j is 

described with a generalized linear model of the Negative Binomial family with logarithmic link, 

such that 𝐾!"~𝑁𝐵(𝑚𝑒𝑎𝑛 = 𝜇!" ,𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 = 𝛼!   ) with mean 𝜇!" = 𝑠!𝑞!" and link function 
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log 𝑞!" = 𝑥!𝛽!. Where sj  is the normalized library size for sample j as previously defined [21]. 

Where 𝛼! is the variability between samples for transcript i, 𝑥!as the design matrix elements, and 

𝛽! as the design matrix coeffcients. Estimation of the dispersion parameter is conducted in 3 

steps [2]. First, gene-wise dispersion estimates are obtained using maximization of the Cox-Reid 

adjusted conditional likelihood of the dispersion. Then, a dispersion trend is estimated using a 

Gamma-family generalized linear model regression. Last, a maximum a-posteriori (MAP) 

dispersion estimate is obtained by shrinking the gene-wise dispersion estimates toward the 

overall dispersion trend using an empirical Bayes approach that enables borrowing of 

information across transcripts. DESeq2 further incorporates empirical Bayes shrinkage of 

logarithmic fold changes, thus enabling further borrowing of information and stable estimation 

for gene expression fold changes to count data, particularly for low-count genes [2]. More 

specifically, maximum-likelihood estimates of logarithmic fold changes are shrunk towards a 

zero-centered normal prior distribution to yield the final MAP estimates. The amount of 

shrinkage is inversely proportional to the amount of information an experiment provides for a 

given log fold change coefficient, so that transcripts with low estimated mean values 𝜇!" and 

high dispersion 𝛼! in small datasets are pulled more strongly toward zero. Default DE testing on 

the shrunken LFCs is based on a Wald test, whereas a likelihood ratio test (LRT) alternative is 

also available [2].   

 EdgeR robust 

R package edgeR robust [8] for which the read count Yij for transcript i in sample j is 

described with a generalized linear model of the Negative Binomial family with logarithmic link, 

such that 𝑌!"~𝑁𝐵 𝑚𝑒𝑎𝑛 = 𝜇!" ,𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 = 𝜙!    with link function log 𝜇!" = 𝑋𝛽! +

log  (𝑁!)  . Where X is the design matrix containing the covariates, βi is a vector of regression 
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parameters, Nj is the library size for sample j, and 𝜙!  is the square of the biological coefficient of 

variation for transcript i. Dispersion parameters are estimated as follows. First, initial gene-wise 

dispersion is estimated using adjusted penalized likelihood (APL). These estimates are then 

moderated by shrinkage towards a common dispersion estimate obtained by maximizing a 

common likelihood function. Shrinkage is determined by a prior degree of freedom parameter 

afforded to the shared likelihood and specified arbitrarily by the researcher [4]. Unless explicitly 

specified, the default value for the prior degrees of freedom is equal to 10 [29]. In turn, 

regression parameters βi are estimated using maximum likelihood that incorporates working 

weights attached to each observation. Weights are attached to each observation so observations 

that deviate strongly from model fit are given a lower weight. Observations weights are defined 

as functions of a Pearson residual [8] that are iteratively updated during estimation.  The 

dispersion estimation machinery also receives the same observation weights, so that the 

influence of outliers is dampened on both regression and dispersion estimates. Testing for DE is 

conducted using a LRT-based approach. 

 Specification of the shrinkage parameter for edgeR robust 

As previously indicated, edgeR robust uses DF = 10 as a default to specify the amount of 

shrinkage applied to dispersion parameters [7]. While the default value for degrees of freedom is 

provided in the edgeR robust package as a “rule of thumb”, there is little guidance available to 

accurately inform specification of the DF parameter in a given dataset. Greater values of DF 

indicate greater shrinkage of tagwise dispersion estimates towards an overall dispersion 

parameter common to all transcripts.  

We compared the performance of edgeR robust at varying DF specifications. In 

particular, we considered DF = 4, 10 and 50, to indicate a range of shrinkage around the default 
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specification. Further, we considered using the classical edgeR software [19] to estimate DF 

using a quantile-adjusted conditional maximum likelihood [19]. Estimation of DF is facilitated 

by the simple design structure of our bluestem dataset, in which only 2 groups are being 

compared (i.e. BB vs SB) and no blocking or nesting design structure is apparent. We refer to 

this scenario as a DF=classic specification under edgeR robust.  

 Multiple testing adjustments 
Following DE analyses based on either DESeq2 or EdgeR robust, transcripts were called DE 

based on a FDR = 0.05 using the Benjamini-Hochberg procedure [30]. 

 Performance metrics 

Table 1.2 defines performance metrics used to compare inferential performance of 

statistical methods. More specifically, we defined false positive rate (FPR) as the number of false 

positives over the sum of false positives and true negatives.  Power was defined as the number of 

true positives over the sum of true positives and false negatives. In turn, precision was the 

number of true positives over the sum of true positives and false positives, and it is also referred 

to as positive predictive value. Further, negative predictive value (NPV) was the number of true 

negatives over the sum of the true negatives and false negatives. Finally, accuracy was defined as 

the sum of true positives and true negatives over the total number of transcripts.  

Performance metrics were computed on each plasmode dataset fitted with each statistical 

method for DE analyses. Each metric was then fitted with a general linear mixed model to 

compare methods for DE analysis accounting for plasmode dataset as a random blocking factor. 

Models were fitted using the GLIMMIX procedure of SAS (Version 9.3, SAS Institute Inc., 

Cary, NC). Residual assumptions were evaluated using studentized residuals. Pairwise 
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comparisons in performance metrics between analyses methods were conducted using a Tukey-

Kramer adjustment to prevent the inflation of type 1 error rate. 

 Filtering strategies 
Filtering criteria are often applied to RNA-set datasets prior to DE analyses. A relatively 

common filtering criterion removes transcripts from a dataset if the number of samples with 

mapped reads present (RP) is smaller than the number of samples per treatment [20].  For our 

data, RP filtering removes transcripts with fewer than a total of 4 mapped reads across all 

samples.  Another common filtering alternative strategy removes transcripts if two or more 

samples have counts per million (CPM) smaller than an arbitrary number [18]. For our data 

CPM-based filtering removed transcripts if two or more samples have CPM less than 1 CPM. 

This was analogous to removing any transcripts with fewer than 80 mapped reads across all 

samples.  The number of transcripts remaining in the dataset after applying RP filtering or CPM 

filtering is shown in Table 1.1, along with the total number of transcripts in the unfiltered 

dataset, whereby all transcripts with at least one read count in any of the samples is included.   
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Figure 1.1 Partitioning of high-count transcripts and low-count transcripts 

 

Cumulative percentage of total read counts (y-axis) as a function of cumulative percentage of 

transcripts (x-axis), starting on the left with transcripts of highest read counts. Solid colored lines 

indicate cumulative read counts for the 3rd percentile (red line) most highly expressed transcripts 

and for the 60th percentile (blue line) least expressed transcripts thereby defining high-count 

transcripts (to the left of the vertical red line) and low-count transcripts (to the right of the 

vertical  blue line), respectively.  
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Figure 1.2 MA-Plots for edgeR robust and DESeq2 with and without filtering  

 
 

Estimated fold-change in expression of RNA-seq transcripts for SB relative to BB as a function 

of transcript abundance following differential expression analyses with DESeq2 or edgeR robust 

(DF = Classic) on data subjected to no filtering or to filtering with CPM or RP methods. For 

DESeq2, fold-changes are plotted over mean transcript expression on a log scale. For edgeR 

robust, fold-changes are plotted against counts per million on a log scale.  Transcripts declared 

DE at FDR=0.05 are colored in red. 

 

 

 
 
  

 

0 5 10

-4
-2

0
2

4
A

0 5 10

-4
-2

0
2

4

B

0 5 10

-4
-2

0
2

4

C

0 5 10

-1
0
-5

0
5

10

D

0 5 10

-1
0
-5

0
5

10
E

0 5 10
-1
0
-5

0
5

10

E

LF
C

 

Log(Mean Expression) 

Log(CPM) 
 

No Filtering RP Filtering CPM Filtering 
D

ESeq2 
edgeR

 robust 



26 

Figure 1.3 Comparison of P-values for DESeq2 tests on differential expression 

 
Scatterplot of p-values for differential expression obtained using DESeq2’s likelihood ratio test 

(LRT) and Wald test on low-count and high-count transcripts subjected to no filtering or to 

filtering with CPM or RP methods. Diagonal identity line is indicated in red. 
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Figure 1.4 Transcripts declared differentially expressed (DE) using edgeR robust and 
DESeq2 

 
Venn diagrams of sets of all transcripts and of low-count transcripts declared DE using edgeR 

robust (with degrees of freedom specified based on the corresponding estimate obtained using 

classical edgeR software) and DESeq2 on unfiltered data or on data filtered on reads-present 

(RP) or counts per million (CPM) criteria. 
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Table 1.1 Number of transcripts in the dataset 
  All Transcripts High Count Transcripts Low Count Transcripts 
  Total SB only BB only Total SB only BB only Total SB only BB only 
No Filter 25,582 323 132 831 0 0 14,588 323 132 
RP 25,453 323 132 831 0 0 14,588 323 132 
CPM 14,848 0 0 828 0 0 4308 0 0 

The table contains the number of total-transcripts, high-count transcripts and low-count 

transcripts available for differential expression analyses following either no data filtering or 

filtering based on a reads-present (RP) or a counts per million (CPM) criteria. Also listed are 

number of transcripts with expression levels present in sand bluestem and absent in big bluestem 

(SB-only transcripts), and transcripts with expression levels present in big bluestem and absent in 

sand bluestem (BB-only transcripts). 
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Table 1.2 Classification rules to compute performance metrics 
 

 Transcripts not DE Transcripts spiked 
as DE Total 

Transcripts not declared 
significantly DE TN FN R0 

Transcripts declared 
significantly DE FP TP R1 

Total S0 S1 G 

FP, number of false positives (transcripts in S0 set declared differentially expressed); TP, number 

of true positives (transcripts in S1 set declared differentially expressed);TN, number of true 

negatives; FN, number of false negatives; FPR, false positive rate  = FP/S0; TPR, true positive 

rate or power = TP/S1; PPV, positive predictive value or precision = TP/R1; NPV, negative 

predictive value = TN/R0; accuracy = (TP+TN)/G. 
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Table 1.3 Estimated false positive rates (FPR) on null plasmodes 
edgeR 
robust 
DF=50 

edgeR 
robust 
DF=10 

edgeR 
robust 
DF=4 

edgeR 
robust 
DF=𝐷𝐹 

edgeR 
Classic 
DF=𝐷𝐹 

DESEQ2 

FPR All Transcripts 
0.0177 a 0.0093 b 0.0063 c 0.0061 c 0.0042 d 0.0031 e 
(0.00040) (0.00040) (0.00040) (0.00040) (0.00040) (0.00040) 

FPR Low-Count Transcripts 
0.0176 a 0.0094 b 0.0064 c 0.0063 c 0.0043 d 0.0032 e 
(0.00037) (0.00037) (0.00037) (0.00037) (0.00037) (0.00037) 

Least square mean estimates (and corresponding SEM, shown in parentheses) of FPR for 

differential expression at FDR = 0.05 on all transcripts and on low-count transcripts based on 

DESeq2, EdgeR classic and EdgeR robust, implemented on null plasmodes of RNA-seq data. 

a,b,c, ,e, indicate differences (Tukey-Kramer adjusted P<0.05) within a row.  
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Table 1.4 Performance metrics on differentially expressed (DE) plasmodes 
edgeR robust 

DF=50 
edgeR robust 

DF=10 
edgeR robust 

DF=4 
edgeR robust 

DF=𝐷𝐹 
edgeR Classic 

DF=𝐷𝐹 DESEQ2 

Power - All transcripts 
0.6495 a 0.6275 b 0.6215 b 0.6229 b 0.5704 c 0.5418 d 
(0.00610) (0.00610) (0.00463) (0.00463) (0.00435) (0.00435) 

Power - Low-count Transcripts 
0.3922 a 0.3692 b 0.3657 b 0.3677 b 0.2647 c 0.1785 d 
(0.00120) (0.00120) (0.00010) (0.00010) (0.00008) (0.00008) 

Precision - All Transcripts 
0.3607 a 0.4393 b 0.5218 c 0.5323 c 0.6321 d 0.6586 e 
(0.00792) (0.01153) (0.01192) (0.01114) (0.00589) (0.00371) 

Precision - Low-Count Transcripts 
0.1800 a 0.2289 b 0.2904 c 0.2963 c 0.3605 d 0.3915 e 
(0.00811) (0.01305) (0.01432) (0.01378) (0.01363) (0.01727) 

NPV - All Transcripts 
0.9917 a 0.9915 a 0.9915 a 0.9915 a 0.9902 b 0.9891 c 
(0.00016) (0.00016) (0.00016) (0.00016) (0.00016) (0.00016) 

NPV - Low-Count Transcripts 
0.9917 a 0.9915 a 0.9914 a 0.9915 a 0.9902 b 0.9891 c 
(0.00016) (0.00016) (0.00016) (0.00016) (0.00016) (0.00016) 

Accuracy - All Transcripts 
0.9718 a 0.9778 b 0.9821 b 0.9826 c 0.9858 d 0.9862 e 
(0.00080) (0.00080) (0.00024) (0.00024) (0.00012) (0.00014) 

Accuracy - Low-Count Transcripts 
0.9679 a 0.9744 b 0.9794 c 0.9798 c 0.9841 d 0.9855 e 
(0.00122) (0.00122) (0.00079) (0.00079) (0.00028) (0.00028) 

FPR - All Transcripts 
0.0221 a 0.0155 b 0.011 b 0.0106 c 0.0063 d 0.0053 e 
(0.00086) (0.00086) (0.00024) (0.00024) (0.00001) (0.00010) 

FPR - Low-Count Transcripts 
0.0244 a 0.0175 b 0.0124 c 0.0121 c 0.0063 d 0.0037 e 
(0.00128) (0.00128) (0.00082) (0.00082) (0.00019) (0.00019) 

Least square mean estimates (and corresponding SEM, shown in parentheses) for true positive 

rate (TPR; i.e. power), positive predictive value (PPV; i.e. precision), negative predictive value 

(NPV), accuracy and false positive rate (FPR) for differential expression at FDR = 0.05 on all 

transcripts and on low-count transcripts yielded by DESeq2, EdgeR classic or EdgeR robust, 

implemented on DE plasmodes of RNA-seq data. a,b,c,d,e, indicate differences within a row 

(Tukey-Kramer adjusted P<0.05).  
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Table 1.5 Number of transcripts declared differentially expressed (DE) using edgeR robust 
 All Transcripts High-Count Transcripts Low-Count Transcripts 

 Total SB only BB only Total Total SB only BB only 
No Filter 3,173 248 126 40 2,135 245 121 

RP 3,177 248 126 40 2,137 245 121 
CPM 1,002 0 0 23 239 0 0 

The table contains the number of total transcripts, high-count transcripts and low-count 

transcripts declared DE using edgeR robust (with degrees of freedom specified based on the 

corresponding estimate obtained using classical edgeR software) on unfiltered data or on data 

filtered based on reads-present (RP) or counts per million (CPM) criteria. Also listed are 

transcripts with expression levels present in sand bluestem and absent in big bluestem (SB-only 

transcripts) and transcripts with expression levels present in big bluestem and absent in sand 

bluestem (BB-only transcripts). 
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Table 1.6 Number of transcripts declared differentially expressed (DE) using DESeq2 
 All Transcripts High Count Transcripts Low Count Transcripts 

 Total SB only BB only Total Total SB only BB only 
No Filter 2,290 112 69 38 1,325 112 69 

RP 2,297 111 69 38 1,327 111 69 
CPM 952 0 0 30 204 0 0 

The table contains the number of total transcripts, high-count transcripts and low-count 

transcripts declared DE using DESeq2 on unfiltered data or on data filtered based on reads-

present (RP) or counts per million (CPM) criteria. Also listed are transcripts with expression 

levels present in sand bluestem and absent in big bluestem (SB-only transcripts) and transcripts 

with expression levels present in big bluestem and absent in sand bluestem (BB-only transcripts). 
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