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CHAPTER I

INTRODUCTION



Introduction

Corn (Zea mays L.), also correctly referred to as maize in other
lands, is often grown in areas which are subject to such environmental
stresses as heat and drought that can substantially reduce yields. Yet,
due to its long known culture, divergent genotypes, and a psychological
feeling about its yield potential, corn is and will probably continue to
be grown in areas with less than ideal eunvironmental conditioms. This
is particularly so in the developing countries where corn forms the
basic part of the human diet.

Promisingly enough, there szems to be a considerable variabpility in
the way certain corn genotypes respond and perform under stress condicions.
For instance, certain corn genotypes are relatively stable in overall
performance, and consequently, yield better than other genotypes under
moisture and heat stress. Such genotypes, if they can be identified and
incorporated into improved materials, may make great contribution toward
increasing cern grain production to meet the ever-increasing food and
feed demand. Thus, a practical procedure of identifying such corn genotypes
from corn populations will be a valuable tool to corn breeders and growers
as well.

The study reported here was initiated to:

(1) compare leaf water potential, leaf temperature and stomatal
diffusive resistance among particular corn genotypes under
soll moisture stress and well-watered conditions;

(2) to observe ear filling rates among the corn genotypes;

(3) to assess the possibility of utilizing leaf water potential,
stomatal diffusive resistance and leaf temperature as useful

indicators in selecting drought resistant corn genotypes
under field conditionms.



Literature Review

The literature on drought and heat stress is replete with reports
from a variety of researchers. For example, Russell (1959) reviewed the
reports on soil-plant water relations and conciuded that a better under-
standing of plant-water deficits and their influence on growth, develop-
ment, and yield is wvery essential for successful crop production both
on dry land and irrigated areas. Hyne and Bruson (1940), studying heat
and drought tolerance in corn, observed in many instances that corn hybrids
have shown less effect undar adverse drought and heat stress than their
respective inbred lines. They also pointed out that drought resistance
in corn is a complex character influenced by many genes.

Usually, plant growth is controlled directly by plant-water deficits
and indirectly by soil-water deficits. The plant-water deficitc that
develops in any particular situation is a result of complex and inter-
related combination of soil, plant, and atmospheric factors which interact
to influence the rate of water absorption, water use and water movements
in plants (Begg et al., 1976). Generally, water stress in plants would be
more evident under drought; drought being a period when water deficiency
aither acute or chronic is very likely to adversely affact plant's growth
and develcpment (Frankel, 1971). Although the term stress is more speci-
fically used in physics than in biological sciences, plant physiologists
use the term stress in a brcad sense to refer to any environmental factor
capable of inducing a potential injurious strain in a living organism
(Levict, 1972). Samson et al. (1378) pointed out that drought resistance

in crop plants can be expressed as:



(1) avoidance of plant tissue to water deficit by having efficient
water uptake or reduced water loss;

(2) tolerance for tissue water deficit without permanent tissue
damage; and

(3) ability to maintain adequate internal water during drought stress.
In this context, therefore, drought tolerance would refer to the extent to
which plant function is maintained during water deficit.

In order to be able to evaluate different cultivars for drought and
heat tolerance or resistance, one needs to observe and interpret the plant's
response to heat and drought stress. A practical procedure of measuring
and quantifying such indicators of stress would be extremely beneficial
in evaluating and screening plant genetic materials.

Several workers (Sullivanm, 1971; Levitt, 1973; and Kozlowski, 1976)
have indicated that measuring drought stress is complex because of the
complexity of many factors involved, including biochemical and physio-
chemical processes of the plant.

Kramer (1969) suggested that, depending on the degree of plant water
deficit and its duration, one could distinguish between incipient, temporary
and permanent wilting. However, this is purely descriptive and does not
quantify the stress.

Clark and Hiler (1973) suggested that knowledge of the symptoms both
displayed externally and those which can be determined quantitatively by
simple practical procedure will be wvaluable for effective and efficient
water use and management. They also emphasized that a combination of both
soil and plant-water status will 5e a better indicator of stress than either
one taken singly. The water status in the plant reflects an integrated
effect of the atmcspheric demand, soil water potential aund the plant rooting
characteristics. Bover (1969, 1979a) ipndicated that low lesaf-water potential

induces stomatal closure in light, resulting in increased canopy temperature,
=} = b,



elevating above air temperature. Therefore, leaf-water potential,
stomatal diffusive resistance and leaf-canopy temperature can be viewed
as possiblie signals of drought and heac stress.

Hurd (1971) suggested that parameters of drought stress, such as
water potential of plant-tisgue, photosynthetic rates, and yield tests
could be employed in breeding fcr drought resistance. Sanchez-Diaz and
Kramer (1971) also stated that plant-tissue water potential could play an
increasing role in screening for drought resistance. Williams et al.
(1967) indicated that the ultimate test of drought is a vield comparison
conducted under typical drought ccnditioms. Under natural conditiomns,
however, one might not have the drought conditioms at the time when best
desired. With no control over timing, intensity, or duration of drought,
results from yield comparisons are likely to be inconsistent from test to
test and from year to year. They argued that, vield comparison as a
screening technique would be useful in eliminating poor yielding cultivars,
thereby permitting large numbers of promising lines to be grown in the
yield tests.

Larson (1971) pointed out that certain plant cultivars may resist
drought stress due to their ability to maintain a high internal-water con-
tent, which would usually be reflected as high water potential (mors
positive). The cultivars that show low ianternal water content may also
survive drought stress. This is believed to be due to certain protoplasmic
properties that can tolerate low-internal water content. Larson (1%71)
refgrred to this kind of resistance as tolerance or hardiness, and such
tolerant genotypes exhibit the ability to recover and grow when soil mois-
ture is replenished. Begg (1973) pointed out that leaf-water potential in

corn varied over considerable range throughout the day; and this was in



response with the declining soil moisture. At low soil moisture, the
leaf-water potential declined to more negative values.

As a result of reduced lear-wacter pocential beyond a certain thresnolda,
increased leaf diffusive resistance results (Begg and Turner, 1978).
Sanchez-Diaz and Kramer (1971) also mentioned that when the rate of water
uptake is less than that transpired, an internal water deficit occurs,
resulting into loss of turgor in the guard cells, causing the stomata to
close. Since changes in turgor relations of the guard cells influence
stomatal movement, stomatal conductance may also be considered as a good
indicator of leaf-water status (Turner, 1973). Studies by Neumann et al.,
(1973), Turner and Begg (1975), relating stomatal resistance and leaf-water
potential of field crops like corn, sorghum, sunflower, and tobacco, pointed
out that there is no unique value of leaf-water potentials for stomatal
closure. However, Turner (1974b) indicated that leaf-water potential for
stomatal closure varies with the position of the leaf, crop cultivar and
environmental factors like air and leaf canopy temperature, relative humid-
ity, wind, carbon dioxide concentration, and growth conditions such as
cycles of stress, severity and duration. Henzell et al. (1973) compared
the stomatal response to soil moisture depletion in 23 sorghum genotvpes
and reported a marked diversity in response. Blum (1974) also observed
variation in stomatal conductance in 14 sorghum genotypes grown under field
conditions when the soil and leaf water deficits developed. Turner (1974)
stated that there is a range of high leaf-water potential over which
potential has little influence on stomatal resistance. Kanemasu and
Tanner (1968) have suggested that there is effectively an on-off response
in which stomata close almost complately once a critical potential Is

reached.



Burrows and Milthorpe (1976) also agree with the suggestion of an
on-off system in response to water deficits. Turner and Begz (1973)
concluded that the critical leaf-water potential for corn was around =17
bars. They also pcinted out that the stomata on the adaxial epidermis
may close at a higher leaf-water potential than the abaxial epidermis.

It suffices to generalize that most of the reports ia the literature tend
to reveal that as drought predominates, there is an increased stomatal
resistance in response to a decline in leaf-water potential and this will
consequently result into increased plant temperature.

Gates (1964) stated that the energy load of the leaf is dissipated
by three major mechanisms namely reradiation, sensible heat, and latent
heat transfer. When one counsiders the amount of latent heat required to
evaporate one gram of water, it becomes evident that tramnspiration plays
an inportant role in heat dissipation in plants. Gates (1968) showed that
the flow of sensible heat is either toward or away from vegetative surface
depending on whether the surface is cooler or warmer than air. With the
recent development of advanced infrared thermometry, leaf-canopy tempera-
ture can be remotely measured under field conditions. The emitted thermal
radiation from all plant surfaces in the field-of-view gives an integrated
temperature measurement which is an important indicator of the plant re-
sponse to the environmental factors such as solar radiation, air temperature,
air movements and water availability (Gates, 1964). Turner (1963) also
indicated that plant temperature is useful in relating plant and its sur-
rounding enviromment; and leaf temperature could also be useful in detecting

moisture stress differences among plant genotypes.
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Chapter 1

Comparisons of Plant Water Status Among Corn

(Zea mays L.) Hybrids and Their Inbred Parents

Abstract:

Praétical means of identifying and quantifying the differential
response of corn genotypes to environmental factors, such as heat and
drought stress, will be valuable in screening corn genotypes. A study
was therefore initiated im which six corn genotypes Mol7 x B73, A619 x
A632, including their respective inbred parents Mol7, B73, A619, and A632
were compared relative to their leaf-water potential, stomatal diffusive
resistance, and canopy temperatures under irrigated (IRR) and non-irrigated
(NON-IRR) conditions. Soil moisture measurements, leaf area, and ear
filling rates were also taken. Leaf-water potential and canopy temperaturs
data showed that the hybrids had cooler cancpy temperatures and higher
leaf-water potentials than the inbreds. The seasonal trends of leaf-water
potentials were similar to those of available soil moisture depletiom.

The stomatal diffusive resistance data did not show a consistent crend

for particular corn genotypes. The changes in ear weight were more pro-
nounced on the IRR compared to NON-IRR conditions. The hybrids showed
higher ear dry weight accumulation than their inbred parents. This was
alsc maintained in the final yield components, kernel weight and harvested

grain yield.
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Introduction

Genotypic variation to environmental stress factors like drought
and heat stress has been noticed in many field crops (Blum, 1974; Boyer,
1970; Dedid, 1975; Samson et al., 1978). Hyne and Burson (19403) observed
that corn hybrids showed less effect under adverse drought and temperature
stress than their inbred parents. Since the response of plants to drought
and temperature stress involves genotype-enviromment interactions, one
needs to know, identify, and measure the differential respomnse displayed
by the plant genotypes so as to be able to distinguish the susceptible
genotypes from the resistant or the tolerant ones.

Plant zrowth and development is influenced by water uptake and supply
from the so0il, water expenditure by the plant which is largely controlled
by the transpirational resistance of the canopy and atmospheric demand.
Plant water status will, therefore, depend on soil moisture conditions,
the atmospheric water demand, and plant characteristics. As the soil
moisture becomes severely depleted without recharge, soil moisture tension
increases, resistance of water movement through the rhizosphere increases,
and water absorption tends to lag behind transpiration. This will result
in reduced leaf-water potential, stomatal conductance, and transpirational
cooling which leads to elevated leaf canopy temperature (Boyer 1969, 1970a;
Gates 1968). Plants response in terms of leaf-water potential, canopy
temperature, and stomatal diffusive resistance can be useful indicators
of stress under field conditiomns.

We conductsd 2 study with the objectives to ccmpare measurable indi-
cators of stress (leaf-water potential, stomatal diffusive resistance,

and canopy temperature) amcng particular corn genotypes.



Materials and Methods

During the summer of 1978, we conducted an experiment in which two
corn (Zea mays L.) hybrids namely Mol7 x B73 and A619 x A632 and their
respective inbred parents,--Mol7, B73, A619 and A632 were planted. These
corn materials were planted on 15 May at Ashland Agronomy Research Farm,
Evapotranspiraticn Site (14 km SW of Manhattan) in a split block design
with six replications, half of the block receiving irrigation and half
without irrigation. The intra- and inter-row plant spacing was approxi-
mately 30 cm and 75 cm respectively, with rows 5m in length; thus, the
approximate plant population was 44,444 plants per hectare. Full emergence
was observed on 25 May and harvesting was done on 5 September. Rcutine
observations such as development stagss, leaf area, ear dry weight, and
soil-water status were taken weekly., Estimates of canopy temperature,
leaf-water potential and stomatal diffusive resistance wers made at vari-
ous stages of growth as weather and stress conditions permitted. Irrigation
was applied on 16 June, 3 July, 10 July, 25 July and 14 August. Stomatal
resistance measurements were made with a diffusion porometer (Delta T-
Devices) on the exposed upper leaf and ear leaf of plants from the two
center rows of all six entries on the irrigated and non-irrigated block.
Two porometer readings were made on each side of the leal and the average
leaf rassistance (Rs) was calculated using the formula:

Rl - Rl + Rl where (1]
s ad ab

R 4 is the adaxial surface resistance and R b is the abaxial surface resis-
a a

tance. The lzaf-water potentials were estimated from the upper exposed
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leaves of each treatment with a pressure chamber method (Schelander et al,,
1965). Leaf area (green leaves only) from the corn plant samples were
measured using an opcical mecer (LiCor Inscrumenc Corp). <anopy tempera-
tures were measured on clear sunny days at mid-afternoon hours using an
infrared thermometer (Barmes, PRT-5) which viewed primarily vegetation.
Soil water content was measured weekly using neutron probe (Troxler,

mcdel 380) from 15 to 150 cm depth in soil profile, at 15 cm intervals.
Gravimetric soil samples were taken on 12 random plots (six from irrigated
block and six from non-irrigated block) to determine the water content in
the top 15 cm soil layer. Water use (ET) was estimated from soil-water

content measurements and precipitation.
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Results and Discussion

The trends of available soil moisture and rainfall (cm) received
during the growing season for hybrid Mol7 x B73 is shown on Fig. 1.0.
Early in the growing season when the crop water demand was low, the
available secil water percentage on both irrigated and non-irrigated
block were similar. As the active vegetative growth proceeded (Fig. 1.1
and Appendix Al), the percentage of available water began to deplete at
a rapid rate on both the irrigated and the non-irrigated block. Obviously,
the irrigated block had a higher available water content throughout the
growing season because of irrigation. During flowering (Fig. 1.1), the
percentage of available water on the non-irrigated block dropped to less
than 530%. Russell (1959) pointed cut that depletion of available soil
water reserves before grain filling without recharge either through irri-
gation or rainfall can result in reduced yields or crop failure.

Seasonal trends of leaf-water potentials appear in Figs. 1.2 to l.4.
Some apparent differences were observed among the corn genotypes, in parti-
cular inbred Mol7 (Fig. 1.2). 1In the afternoon (pm), the difference in
leaf-water potential between the Mol7 (IRR) and Mol7 (NON-IRR) was -3.0
bars on 27 July and 8 August, -3.3 and -3.6 bars on 21 August. Inbred
A619 (IRR) maintained slightly higﬁer leaf-water potential than inbred
A632 (IRR), and inbred B73 also showed a general tendency to have higher
leaf-wacrer potential than inbred Mol7. In general, the leaf-water potentials
were higher (less negative) early in the season, followed bv a general de-
crease, except after an irrigation or rainfall. The morning (am) lcaf-watar

potentials were higher than the afternoon (pm) values in both the moisture



ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
COPY AVAILABLE



% AVAILABLE MOISTURE

100 ¢ = i
S N :
30 - £ MANHATTAN, XS & 2
sl f ) . 1973 R
! i s CORN (MOI7 : 37T) |
o ! N, I IRR. APPLED 47 3
| . ‘.. TRANFALL e | S
80 - 1% 4
. -
50 b s 3
(Y z
" [ ‘\\\“~\,ﬁ\ E,ARRMATED j 4 E
. I
-L \\\\/'NONIRRIGATEO |
20| | ., J| 2
e I— Hl I “ | 1
o LAl I N 5

MAY

JUNE  JuLY AUG SEPT

Fig. 1.0. Trends of percentage available moisture
and rainfall (cm) received during corm
growing season. (summer, 1978)

CORN GROWTH AND CEVELOPMENT STAGES

(SUMMER :978)
| - :
| -
| z w = |
: = Z z 3 !
! < = oA =
i = = = <
: =z o F < = !
i W z I =
| ) S = |
? 2 S22 2gd % g |
! L w = wZzC =
2 dgz % g . '
x m=s £ z z 3 2 [
< —ahax F I 3 © = ;
zZ g T T X 0 = H
= T~ 2 0O Q9 X @ i
i 2 2 E
: < 2 VEGETATIVE & SiLK z
T - —> g
! = GROWTH — 3FLS 30 oM =
: s _
: | ) : : +
§ T -
3
MaY JUNE JuLe AuG szeT
Fig. 1.1. The main growth and development stages of

the cornm genotypes. (summer, 1978)

14



LEAF WATER POTENTIAL (BAKRS)

_ i. l-‘;‘_‘-r;-*-‘"““- K3 —e AM (WITH IRRIGATICN)
g T o---a :::: é‘MTHCMT IRRIGATION}
D WITH IRRIGATION}
a INBRED MOIT — — PM (WITHOUT IRRIGATION)
2 -of
= .
-
= £ el i
- e T STl
g = - T T
ba. g ™~ '3
o e
= .
g - I
g 20
'
&5
- '25r
|
'30‘ I /! 1 1 i A
T T 7, £ 8 l
7 7 , , 8, 8, 8 3
19 24 29 3 g i3 13 %3 %3

CATE
Fig. l1.2. Leaf-water potential trends of inbrad

Mol7. (summer, 1978)

0

E |

|

| iamemrran, xs -« AM (WITH IRRIGATION f
sk 578 >--a AM [WITHOUT IRRIGATION) |
| N  + AM (WITH IRRIGATICN) |

5 — — PM [WITHOUT !RRIGATION] i
-tQ - !

]
L - |
20+ ™~ °‘°'\\ '
S " |
——a
i N . :
25+ S .'
: .
30 ! ?
- - - —
; 7 7 3, 3 3, 3 3 F:
3 24 23 3 3 13 ‘8 33 28
cats

Fig. 1.3. Leaf-water potential trends of Mol7 x
B73. (summer, 1978)



LEAF WATER POTENTIAL (BARS)
»

MANHATTAN, KS —s AM (WITH [(RRIGATION)
1978 =---3 AM (WITHOUT IRRIGATION)
CORN *PM (WITH [RRIGATICN)

AGI9 x AG32 = — PN (WITHQUT I(RRIGATIONI

B R q';\
¥ —_—— — N .-"\-...‘_
i - ~—
o e . 3
—t— ‘:-':" -a_‘ ‘.,“
o T~ A
Nua
v
\
- a
% 7 / a a 8
e he he K% PO PR TR
DATE
1.4. Leaf-water potential trends of A619 x A632.

(summer, 1978)

16



17

conditions, indicating higher turgor during the morning hours, the nearly
parallel lines of IRR and NON-IRR, treatments indicate little temporal
change in osmotic potential for tne stress treatment. The hybrids con-
sistently showed higher leaf-water potemtial than the inbred parents both
under IRR and NON-IRR, again pointing out the superior ability of the
hybrids to extract soil moisture and maintain high plant water content.
As presented in Figs. 1.5 and 1.6 the soil water extraction pattern for
the hybrids and inbred parents in the upper 60 cm of the soil profile was
similar. The hybrids were more effective than the inbred parents in ex-
tracting the soil water from deep in the profile. Although there were
some trend differences in leaf-water potential among the inbreds parents,
the overall leaf-water potential trends obsarved were similar to those of
Turner and Begg (1973).

Although several workers (Hiechel, 1971; Neuménn et al., 1923; Turner,
1969; and Kanemasu et al., 1973) were able to observe trends with stomatal
diffusive resistance values among varietal genotvpes, stomatal resistance
data {Table 1.0) do not show clear and consistent trends upon which one
can associate the stomatal behavior of particular corn genotypes under
the varying field conditions. There was, however, a general tendency for
the corn genotypes to show low resistance values early in the growing sea-
son. Stomatal resistance values were also lower on the IRR than on the
NON-IRR conditions. For example, ou 8 and 17 August, the hybrids had
lower stomatal resistance values than the inbreds; but this was not con-
sistent enough to warrant one to conclude that the hybrids in our study
exhibited lower stomatal resistance than the inbreds. Hagan et al., (1959)
pointed out that the observed plant responses are integrated effects of
plant grewth and envirommental effects, some of the responses become more

detectable than others. In our case, the stomatal resistance values as
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Table 1.0. Stomatal resiscance values (sec cm ) of
the corn genctypes under irrigatad (IRR)
and non-irrigated (NON-IRR) conditious.
(summer, 19783)

-

Rs (asec cm-L) Rs (sec cm-l)
Intry NON-IRR IRR

Date: 7/24 1300 hours CDT

Mol7 x B73 by 2 2.8
373 3.8 3.0
Mol7 3.8 2.3
AB32 5.8 2.3
AB19 4.5 Jul
A6l9 x a632 L/ 3.4
Data: 8/8 1400 hours CDT

Mol? x B73 3.2 2.7
373 3.3 3.9
Mol7 5.0 3.7
48632 15 3.2
ABLY A 3.3
A6lS x A632 3.6 44 2

Date: 3/17 1400 4hours CDT

Mol7 x 373 4.9 3.8
B73 3.5 33
Mol7 7.4 7.0
A632 10.8 9.4
A619 8.2 Faik
A6l9% x a632 7.4 4.3
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estimated by diffusive porometer did not enable us to clearly distinguish
among the corn genotypes. This implies that the estimation of stomatal
resistance by the diffusive porometer was not as sensitive as the leai-
water potential. This might have been due to sampling error, poor poro-
meter sensitivity and_some complications by such environmental factors as
light intemnsity, relative humidity and carbon dioxide concentration.

The canopy-air temperature values (AT) appear in Figs. 1.7 and 1.8
and Appendix Al. The irrigated plots appeared to have cooler canopy
temperatures than the non-irrigated. This is presumably due to partial
stomatal closure on water stress (NON-IRR) plots. Under non-irrigated
condition, the hybrids' canopy appeared cooler than the inbreds, indicating
a lower transpirational resistance which is consistent with the water use
data (Table 1.1).

The total water use (ET) and water use efficiency (WUE) expressed as
a ratio of grain yield (kg/ha) to the amount of water used (cm) appear on
Table 1.1. Both the inbreds and hybrids showed increased total water use
under irrigated condition (IRR). Hybrid A619 x A632 and Mol7 x B73 used
about the same amount of water, 35.4 cm and 53.8 ecm, respectively, under
irrigation, which was about 14.2 cm higher than the non-irrigated block.

In all cases, the hybrids used more water than the inbreds.

Observations on the ear dry weight (EDWT) taken approximately on
weekly intervals, starting two weeks after silking (WAS), are shown in
Table 1.2 and Figs. 1.9 and 1.10. Under IRR and NON-IRR conditions, the
hybrids A619 x A632 and Mol7 x B73, showed significant difference in EDWT
throughout the sampling periods. At 4WAS (a period of rapid grain Eilling),
all corn genotypes showed significant trends in dry ear weight (Table 1.2).

The changes in EDWT under IRR were about twice those under NON-IRR condi-



Table 1.1. Cumulative water use (cm), water use efficiency (WUE)

(kg/ha/cm) under irrigasted (IRR) non-~irrigated (NON-IRR)

conditions.

{ summer,

1978)

Mo
ro

Water use (cm)

(WUE kg/ha/cm)

Entry NON-IRR IRR NON-IRR IRR
A632 37.6 50. 27 .4 41.7
A619 36.2 49, 50.2 53.1
ABl9 x A632 40.4 53. 78.6 106.8
Mol7 351 5. 51.5 51.7
B73 35.3 43. 56.3 61.3
Mol7 x B73 40.4 55.4 99.8 128.2




ions. This empnasizes the importance of having ZIavorable environmentzl
conditions (e.g. adequatre moisture and nutrisentcs supply and also favorable
tamperature} to allow photosynthesis, transiccation and portitioning of
the photesynthatas cto take place unrestricted and without interferesnce,

so as zo enable the genetic sotantial to be axpressed. Inbrad 373
showed no subscantial gain in ZIDWT ac 2WAS, 3WAS, and 6WAS, whereas inbred
A632 and AHLl9 snowed no significanc zain ia EDWT at 4WAS. This could te
possibly due to low genetic abilicy for these genocypes to make full

use of che faverable moisture supply in the case of IRR condition. Later
in the zrain filling, the leaf area indices (LAI) of these corn genotypes
(Figs. 1.11 and 1.12 and Table Al.2) weres considerably reducad as a rasult
of rapid semescence of the lower leaves. This not only rasulced in a
decrease in the photosyuthetic orgam of cthe corm oslants (source strength)
but reduced leaf area duration and, consequencly, the nhotosynthetic capa-
city and the dry maccer (DM) accumulation im the ears. The hybrids om the
other hand, actained and maintained higher LAI and longer leaf Jdurarion
than the imbreds and, hence, their improved capacicy to photosvnthesize
and accurulars higher DM in the ears zhan che inbreds, which was subse-
quencly raflectad in high grain yield.

Rasules for kernel weight (KXWI), chat is weight (gm/1300 kermnels),
and grain yield (GYLD), weight kg/ha of shelled zraim. doth ad

moisture conrant appezar on Table 1.3, A
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CcoTm ganocypes
IRR conditionms performed better in carms of XWT and GYLD than those undar
NON-IRR condizions {(Table 1.3). The GYLD for inbrad A632 under TRR did
not differ significantly Zrom that under non—irrigaced conditioms. This

was ia par: dee to less chan coctimum scand as a rasul of DOOr 2mergencs.

However, inbred A532 showed a significant difference in {WI when the Iwo
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Table 1.3. Kernel weight (FWT) and grain yield (GYLD)} (at 15.5% MC)
of the corn genotypes under irrigated (IRR) and non-irrigated
(NON-IRR) conditions. (summer, 1978)
KWT (gm/1000 kernels) GYLD (kg/ha)

Entry NON-IRR IRR Entry NON-IRR IRR
A632 202.34*aT 252,83%c AB32 1394,98f 2057 .05h
Mol7 211.65%a° 249.73%c A619 1689.50%F 2611.51%*h
B73 235.48%)b 252.09%c B73 1908.73*¢f 2745.27%h
A619 240.30b 246.80%¢ Mol7 1923.67*f 2597.15*h
A619 x A632 243.36%b 265.37*%c ABlY9 x AB32 2945.37%g 4233.72%1
Mol7 x B73 252.09%b 271.65%ce Mol7 x B73 3563.55%¢g 5393.31%;

* Means with * sign (compared horizontally across) differ significantly
at 0.05 probability level as determined by Duncan'’'s multiple-range test.

§ Mean values sharing the same lecter(s)
not differ significantly at 0.05 probability level as determined by

Duncan's multiple-range test.

{vertically down the column) do



as a result of favorable moisture supply during grain filling which
enhances nutrients translocation and accumulation, resulting in well-filled
kernels and, hence, the significant difrerence in KWTI. Inbred A819 showed
gignificant difference in GYLD between the two moisture conditions,
however, it did not show a similar respounse in terms of KWI. When the
corn genotypes are compared separately under the two moisture conditions,
the performance of the inbreds did not differ significantly between or
among each other. However, the two hybrids ranked as superior performers
and significantly outyielded the inbreds, Mol7 x B73 performed best in
both KWL and GYLD. These results are in agreement with those reported

by Tanaka and Yamaguchi (1972) who concluded that there is obviously
varietal difference in performance and yielding ability among corn geno-

types, hybrids yielding better than their respective inbreds.
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Conclusion

The results from this study indicate the existance of genetic
differences among corn genotypes in terms of their responses and perform-
ance under such envirommental condicions like heat and moisture stress.
Leaf-water potential and cancpy temperature measurements as indicators
of stress were more sensitive in distinguishing the corn genotypes than
stomatal diffusive resistance. Generally, the hybrids showed higher
leaf-water potential, cooler canopy tamperatures than the inbreds, thus
indicating superior ability to withstand moisture stress. Canopy tempera-
ture and leaf~water potentials may therefore be a potential screening

indicator for drought resistance.
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Chapter II

Comparison of Canopy Temperature and

Water Use of Seven Corn (Zea mays L.) Genotypes

Abstract:

To isolate plant genotypes that can withstand environmental factors
such as heat and drought stress, it is desirable to describe and measure
characteristics of plants for possible resistance to heat and drought. A
field study was conducted in which seven corn genotypes, Kansas White
Synthetic KW(SYN)}, hybrids Mol7 x B73, A619 x 4632 and their respective
inbrads (Mol7, B73, A619, A632) were compared in terms of their canopy-
air temperature differential (AT) under irrigatiom (IRR) and without
irrigation (NON-IRR). Measurements on canopy and air temperatures, soil
moisture, leaf area, leaf-water potential, stomatal diffusive resistance
and ear dry weights were measured. The results indicated that the canopy
temperatures were sensitive enough to distinguish among the corn genotypes
both under IRR and NON-IRR conditions. For instance on 22 August, 1300
CDT, KW(SYN) indicated a canopy temperature of about 3°C cooler than
inbred Mol? and, the two hybrids and the KW(SYN) were consistently ccoler
than the inbreds. DMNeither the leaf-water potential nor the stomatal
resistance values showed a consistent trend or variation which could
clearly be associated with or distinguish between the genotypes. KW(3YN)
and two hybrids Mol7 x B73 and A619 x A632 showed higher WUE than the
ipbreds and this was also reflected in their ear dry weight trends, kermel

weights and grain yields.
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Introduction

Search for plant genotypes that can withstand high temperature and
water stress is being intensified in several of the field crops (Kilen
and Andrew, 1969; Kinbancher, 1969; and Aron, 1972). Corn (Zsa mays L.)
is extensively grown in areas where high temperature and water deficits
are likely to occur and cause considerable yield reduction (Aronm 1972,
Gupta, 1975). It is unfortunate that corn is grown and also flowers
during the warmest season of the year, when extremes of high temperatures
intensified by moisture deficit will adversely affect pollination, ferti-
lization, grain setting and development resulting in shrivelled kermnels
and, consequently, reduced grain yields (Denmead and Shaw, 1960). 1In
several instances, however, certain corn genotypes have been observed toc
withstand considerable heat and drought stress and yield better than others
under the same stress conditions. Practical procedure of isolating such
genotypes from populations, followed by further genetic improvement,
will be very valuable in stabilizing corn grain production in marginal
areas to satisfy the growing world grain demand. The study reported here
was conducted with the objective of comparing the canopy-air temperature

(AT) and water use of the corn genotypes.



36

Materials and Methods

In summer 1979, an experiment was conducted in which two corn hybrids
(Mol7 x B73 and A619 x A632), their respective parent inbreds (Mol7, B73,
A619, A632), and KW(SYN) corn materials, a total of seven entries, were
planted. These were planted on 18 May at Ashland Agronomy Research Farm,
Evapotranspiration Field Research Site (14 km SW of Manhattan, KS) in a
split-block design with eight replications, half the block receiving irri-
gation and the remaining half without irrigation. The spacing between
plants was apprcximately 30 cm and 75 cm between rows > m in length, thus,
the approximate plant population was 44,444 plants per hectars. Full
emergence was observed on 29 May and harvesting was done on 21 September.
Irrigation was applied on 16 June, 3 July, 25 July, 8 August and 14 Augusrc.
Weekly observations and measurements such as leaf area, ear dry wetghts,
growth stage and soil water content were taken. Canopy temperature, leaf-
water potential and stomatal diffusive resistance measurements were taken
at various stages of growth as weather conditions permitted. Stomatal re-
sistance measurements were estimated with a diffusive porometer (Delta
T-Devices) on the exposed upper and ear leaf of plants from the two center
rows of all seven entries on the irrigated (IRR) and non—irrigated (NON-IRR)
block. Two porometer readings were made on each side of the leaf and the

average leaf stomatal resistance (Rs) was calculated using the formula,

1l =1 + 1 [1]

R R
8 ad ab

wnere R d is the adaxial surface resistance and Rab is the abaxial surrace
a

resistance. Leaf-water potentials were estimated from the upper exposed
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leaves of each treatment with a pressure chamber method (Scholander et.
al., 1965). Leaf area (green leaf only) was estimated in the field by
measuring the length and maximum width of all green leaves on a corn
plant, using the formula, plant leaf area = I(leaf length x maximum
width).75.

Canopy temperatures were measured on clear sunny days at 0900, 1000,
1300, 1400 and 1600 CDT, using an infrared thermometer (Telatemp Model
42) which is capable of measuring the leaf canopy and the air temperature
concurrently. Soil water content was measured weekly using neutran probe
(Troxler, Model 380) from 15 to 150 cm in the soil profile at 15 cm inter-
vals. Gravimetric soil samples were taken on 14 random plots, seven from
irrigated block and seven from non-irrigated block, to determine the water
content in the top 15 cm. Water use (ET) was estimated from the soil

moisture measurements and precipitation.
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Results and Discussion

Presented in Figs. 2.0 to 2.2b (also Appendix A2) are the hourly
trends of the canopy-air temperature (AT} for the seven corn genotypes
under IRR and NON-IRR‘conditions. From these trends it is evident that
the canopy temperatures were generally cooler than ailr temperature, indi-
cating low transpirational cooling resistance. For instance, on 22" August
1300 CDT the canopy temperature of (IRR) KW(SYN) was about 5°C cooler
than the air temperature. The KW(SYN), which was genetically more diversed
than the other corn genotypes, showed a general tendency of having coocler
canopy temperature than the rest of the corn materials. The two hyHrids
{(Mol7 x B73 and A619 x A632) consistently showed cooler canopy temperature
than the inbred parents (Figs. 2.0 and 2.1), thus, indicating a lower
transpirational cooling resistance than the inbred parents. This is in
agreement with the total water use by the respective coran genotypes as
summarized in Table 2.0. Usually, plant temperature is an integrated
result of all the energy absorption and dissipation mechanisms acting
singly or in combination with the crcp environment. As the intermal-plant
water content declines, and water uptake lags behind evapotranspirational
demand, transpiratiomnal cooling is reduced due to stomatal closure (partial
or complete closure).

Shown in Fig. 2.2a and 2.2b are the AT values on several sampling
dates taken at 1300 CDT, the canopy temperatures were cooler than the air
temperature. The AT values were more negative for IRR than NON-IRR condi-
tions. Linacre (1964) indicated that there is a temndency for the difference
between canopy and air temperature (AT) to be positive during cool weather

and negative during hot weather. Our AT trends are in general agreement
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with Linacre's suggestion.

Fig. 2.3a and 2.3b (also Appendix A2) shows the seasonal trends of
leaf-vater pUtEﬂCidi for IKR A5.9 x 4632 and its respective inbred parencs.
In contrast to the trends in leaf-water potentials we observed in summer
1978 (Chapter I), the 1979 trends had less distinct variation among the
cern genmotypes, and generally the two hybrids showed higher
leaf-water potential than the inbreds in both summers. Similar *to 1978,
the 1979 stomatal resistance values showed no consistent trend (Appendix
A2) to which one can associate or generalize about the corn genotypes.
However, the resistances were lower in 1979 than in 1978; this being in
part due to improved rainfall and available soil moisture distribution in
1979 corn growing season (Appendix A2).

The cumulative water use (cm) and water use efficiency (WUE = grain
yield/water use) of the individual corn genotypes are summarized in Table
2.0. 1t is evident that the KW(SYN), the two hybrids and their inbred
parents used more water under IRR than under NON-IRR conditioms. KW(SYIN),
AB619 x A632 and Mol7 x B73 used more water than the inbreds, indicating
their greater ability to make use of favorable available soil moisture than
the inbreds, and this was also reflected in their water use efficiency.

For instance, Mol7 x B73 indicated about three times higher WUE value than
its respective inbred parents——Mol7 and B73. The WUE values for A619 x A632
and KW(SYN) were about the same, but still higher {(about twice) than that

of any inbred. This is in agreement with the grain yield values of the

corn genotypes (Table 2.3). However, when the WUE for the two meisture
conditions are compared for an individual corn genotype the values are
similar.

Relative yield expressed as, yield from NON-IRR condition/yield from
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IRR condition referred to as actual yield/maximum yield in this text,
and relative evapotranspiratiomn, actual evapotranspiration/potential
evapotranspiration (AET/PET), appear in Table 2.1. The corn genotypes,
which had significant differences in grain yield between IRR and NON-IRR
conditions, showed smaller actual maximum/yield ratios in 1978 than in
1979. This is due to improved available moisture distribution during
grain filling and lower PET in 1979 compared to 1978 (Table 2.0 and
Appendix A2). Im 1979 corn growing season the AET/PET and actual yield/
maximum yield ratios were comparatively higher than in 1978 (Table 2.1),
indicating both increased water use efficiency and higher grain yield than
in 1978. The KW(SYN), Mol7 x B73, and A619 x A632 showed higher relative
ET and grain yield ratios than any of the corn genotypes and this was also
reflected in their ear dry weights, kernel weights and grain yield.
Daynard et al. (1971) pointed out that the rate and duration of grain
filling period are important in relation to final grain yield. Therefore,
ear dry weights (EDWT) were taken approximately on weekly intervals,
starting one week after silking (WAS) (Table 2.2). At sampling period
T4 (4WAS), nearly all corn genotypes showed significant differences in
EDWT between IRR and NON-IRR and among the corn genotypes. Inbred Mol7
showed no such significant difference in EDWT; and this was probably due
to poor genetic ability of this inbred to exploit its enviromment. In
nearly all sampling periods except Tl (1WAS) , T5 (5WAS), T6 (6WAS), T?
(7WAS), the KW(SYN), Mol7 x B73 and A619 x A632 showed significant differ-
ences in EDWT compared to the inbreds, and between IRR and NON-IRR con-
ditions, again illustrating their improved ability to photosynthesize,
translocate and accumulate their photosynthate into the sink (ear). The

high EDWT trends (Fig. 2.4 and 2.5) of the KW(SYN) and the two hybrids
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are also consistent with their higher leaf area indices (LAI) comparad

to the inbreds (Figs. 2.6 and 2.7). The KW(SYN) and hybrids maintained
their LAI for a longer duration than the inbreds, thus enabling greater
photosynthate and dry matter {DM) production (other factors being the
same). The KW(SYN) and hybrids Mol7 x B73, A619 x A632 which possessed
superior genetic ability to exploit and make efficient use of available
environmental resources, showed larger kernel weight (KWT) than any of
the inbreds (Table 2.4). When compared ameng themselves, neither KW(SYN)
nor the two hybrids showed a significant difference in KWI. This suggests
that under the conditions of our study they had about the same ability

in translocating and accumulating photosynthates in their kernels. With
an exception of inbred A632, inbreds A619, B73 and Mol7 showed no signi-
ficant difference in KWT among themselves. Although there were some
differences in KWT among genotypes when the two moisture conditions are
considered, these differences (except for Mol7 x B73 and inbreds Mol7?

and A632) were not statistically different. This could be, in part, due
to favorable moisture supply during grain filling. Tollenmaar and Daynatrd
(1978) pointed out that cereal plants have the potential to mediate and
adjust their grain yield to the prevailing environment in terms of kernel
number and kernel size (KWT). Thus, under favorable environmental con-
ditions, corn may set more kernels which are likely to be smaller than
those formed under less favorable conditions.

In analyzing the kernels within an ear into a bottom portion (BEWT),
middle portion (MKWT), and upper portion (UKWT) (Table 2.5), BKWT in all
genotypes was consistently much greater than MKWT and UKWT. This is in
agreement with the findings of Poneleit and Egli (1979), who pointed out

that there are variations in kernel development on the ear, the bottom
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kernels being formed first and the tip kernels formed last. Assuming the
rate of kernel growth being approximately the same at various locatioms
in the ear (Duncan et al., 1963), the bottom kernels will have a longer
duration of grain filling. In a simplified version, the grain yield can
be expressed as the product of average grain production (dry weight incre-
ment per unit time) and the duration of grain filling (Daynard et al.,
1971). The early formed kermels (bottom kernels) will have a better chance
than the middle or upper kernels to utilize the available enviromnmental
resources early in the grain filling before they become limiting--particu-
larly under heat and moisture stress. This will result into sound, well-
filled bottom kernels (Table 2.4). The KW(SYN) showed comparatively
higher BKWT, MDWT and UKWT wvalues than the inbreds. The UKWT of inbreds
were statistically different between IRR and NON-IRR which indicates a
source limitation during grain filling. The hybrids and KW(SYN) had
higher UDWT than the inbred parents under both IRR and NON-IRR conditioms.
The results of the grain yield (GYLD) appear on Table 2.3. To our
expectations the corn genotypes ranked themselves in terms of the overall
grain yield, Mol7 x B73 had the highest grain yield, followed by KW(SYN)
and A619 x A632 and then the hybrids. With the exception of inbred Mol7,
the corn genotypes showed a significant difference in GYLD between IRR and
NON-IRR conditions. This suggests the stability of grain yield of Mol7?
to water deficit. The corn genotypes under IRR made use of the available
soil moisture and set more kernels, subsequently, this was reflected in
greater grain yield, hence, the significant difference in GYLD between

IRR and NON-IRR conditions.
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Conclusion

In our study, the canopy temperature measurements were sensitive
enough to distinguish the genotypes apart both under NON-IRR and IRR
conditions. The two hybrids (Mol7 x B73, A619 x A632) and the KW(S5YN)
showed cooler cancpy temperatures than the inbreds, illustrating their
improved ability to tramspire and, presumably, photosynthesize at a
greater rate than the inbreds. The stomatal diffusive resistance and
leaf-water potential data did not show a clear or comnsistent variation
to distinguish among the genotypes. Nevertheless, the leaf-water poten-
tials were higher, and the stomatal resistance were lower on IRR than on
the NON~IRR conditions. The KW(SYN) and the two hybrids showed higher
water use efficiency in terms of their ear dry weights and grain yield.
Although field testing for drought tolerance is complicated by genotype -
environment interactions, measurements of canopy temperature is relatively
easy to take and; when supplemented by other envirommental measurements
like soil moisture, air temperature, relative humidity, and solar radiatiom,

canopy temperature may prove useful in field screening of corn genotypes.
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Fig. A2.8. Leaf-water potential trends of Mol7 x B73,
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under non-irrigated condition. (summer, 1979)
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Table 22.]1 Mean stomatal resistance values (sec cm‘l) of the corn gemoctypes
under irrigated {IRR) and non-irrigaced (NCON-IRR) cornditioms.
{summer, 1979)

{sac cm_l) (sec cm“l) {sec cm‘l) (sec cm-l)
0900 Hours 1100 Hours 1400 Hours 1600 Hours

Encry NON-IRR IRR NON-IRR IRR NON-IRR IER NON-IRR IRR
Date: 18 June 79
AB32 2.1 1.6 1.8 1.1
ABl9 2.4 1.7 2.0 2.0
A619 x aB32 1.7 1.9 1.6 y -
Mol7 1.8 1«3 2.8 241
B73 2.8 1.6 2.2 Gk
Mol7 z B73 2.1 2,0 3.0 2.2
KW ({STN) 2.5 Ls7 2.3 2.4
Date: 27 July 79
AB32 3 .9 i .9
A619 1.8 1.5 2.5 1.3
4619 x A832 2.4 1.0 2.5 1.4
Mol7 1.9 1.2 2.1 1.6
B73 2.0 1.4 2.3 1.
Mol? x 373 2.4 Zal 245 b
KW(SYN) .0 %3 3.0 1
Date: 9 August 79
A632 .5 1.2 3.0 1.9 4,3 2.3 3.2 2.4
AB619 3.3 2.1 3.5 2.6 Fel 2.3 4.8 35
A619 x AB32 2.2 1.3 e 23 4.2 2.5 4.9 3.0
Mol? 2.3 1.4 2t 2.4 3.1 3.6 3.8 3.4
B73 25 2.2 3.0 2.9 4.2 2 3.9 4,2
Mol? x B73 2.4 240 3.7 2.9 4.0 3.0 3.9 .1
KW(5YN) 2.6 L.8 2.4 2.1 2.7 2.3 1.9 2.7
Date: 22 August 79
A632 3.5 2.3 1.5 1.2 2.8 2.1 3.2 2.3
ABL9 2.4 2.0 1.8 1.5 Zud 1.9 2.7 2.4
ABlY x A63Z 2.9 25 2.4 1.8 2.6 1.8 4.1 205
Mol7 4.4 3.7 2.5 1.9 3.0 1.5 3.4 2.8
B73 2.8 3.0 2.8 1.4 2.9 245 3.9 2.6
Mol7 x B73 2.4 0 4.0 1.6 2.8 2.0 3.0 25
KW (STH) .6 2.8 Z.8 1.5 5.2 1.8 i 2.5
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Indicators of Stress in Corn (Zea mays L.)

Genotypes Under Field Conditionms.

Abstract:

To isclate plant genotypes that can withstand environmental factors
such as heat and drought stress, it is desirable to describe and measure
characteristics of plants for possible resistance to heat and drought. A
field study was conducted during summer 78 and 79, in which the following
corn genotypes: Kansas White Synthetic KW(SYN), hybrids Mol7 x B73, A619
x A632 and their respective inbreds -- Mol7, B73, A619 and A632 were compared
in terms of their canopy-air temperature differential (AT), leaf-water
potentials, and stomatal diffusive resistance under irrigation (IRR) and
without irrigation (NON-IRR). Measurements on canopy and air temperatures,
goil moisture, leaf area, leaf-water potential, stomatal diffusive resis-
tance and ear dry weights were taken. The results indicated that the
canopy temperatures were sensitive enough to distinguish among the corn
genotypes both under IRR and NON-IRR conditions. For instance on 22 August
79, 1300 CDT, KW(SYN) indicated a canopy temperature of about 3°C cooler
than inbred Mol7 and, the two hybrids and the KW(SYN) were consistently
cooler than the inbreds. The leaf-water potentials for summer 78, showed
some distinct differences among the corn genotypes. However, the leaf-
water potential data for summer 79, showed no substantial differences among
the corn genotypes or between the two moisture conditions. The stomatal

resistance values showed no consistent trend or variation which could



clearly be associated with or distinguish between the genotypes. KW
(SYN) and two hybrids Mol7 x B73 and A619 x A632 showed higher WUE
than the inbreds and this was also reflected in their ear dry weight

trends, kernel weights, and grain yields.



