/i MICROCOMPUTER IMPLEMENTATION OF QUERY-BY-EXAMPL9/
by .

Li-Ling Chen

B.S., Feng Chia University, 1980

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1986

Approved by :

Chh bk

Mijor Professor

LD

a6¢¢

-RY TABLE OF CONTENTS
1986

Cyyb A11202 97LLB0

Co &
CHAPTER 1 INTRODUCT ION
1.1 Background
1.2 Purpose
1.3 Organization of the report

CHAPTER 2 REVIEW OF LITERATURE

2.1 The Relational Language

2.2 Terminology and Definitions

2.3 Overview of IBM's Version of QBE
2.4 Brief Review of Related Research

CHAPTER 3 THE ALGORITHM FOR UTILIZATION OF QBE

3.1 Objective

3.2 Programming Language - dBase II
3.3 Description Of Algorithm

3.4 Sample Operation

3.5 Summary

CHAPTER 4 CONCLUSION

4.1 Limitation

4.2 Future Improvements

4.3 Project Conclusions
BIBLIOGRAPHY

APPENDIX A: The Zenith-150 QBE User's Manual
APPENDIX B: A Brief Introduction To The dB Complier
APPENDIX C: A Comparison of Two QBEs

APPENDIX D: Program Organization

APPENDIX E: Program Listing

= [N Y

Oh=J\n =

18
18
22
34
38
40
40

41
42

43

45
61
62
63
68

LIST OF FIGURES

Figure Page
2.1 A Table Skeleton 5
2.2 A Data Base Sample 8
3.1 Four Phases of Query Processing 23
3.2 Flowchart for Phase Three 27
3.3 Flowchart for Phase Four ‘ _ 32
A1 Retrieval Syntax 49
A.2 Condition Box 50
A.3 Result Table Syntax 51

C.1 Program's Hierarchical Diagram 63

CHAPTER 1
INTRODUCTION

1.1 Background

As the fields of information system have become increasingly
complex, there has arisen a need for improved formal data Dbase
models and formal languages to support them, Though originally
adequate, ‘'record-at-a-time' technology is no longer sufficient
for all users, and the need to perform complex operations on the
data base has become essential. This has become particularly
true as computers have gotten cheaper and therefore easier to
obtain, resulting in an increasing number of small businesses and
institutions automating their data storage and retrieval
operations. Thus, the age of the non-programmer professional,
i,e., the age of end users (e.g. secretaries, engineers, clerks)
is emerging. Many of these users, although professionals in
their own fields, have neither the time nor the motivation to
learn a conventional programming language. Therefore, in order
to address the non-programmer community, non=procedural,
flexible, and user-friendly query languages are becoming
important.

A query language may be defined as "a language suitable for
non=programmers and oriented towards retrieval of data with fast
response." [TAG81]. Since 1970 many such languages have
emerged; they have ranged from informal natural languages and
formally structured English to formal two-dimensional and

graphical languages.

One such formal 1language is Query-By-Example (QBE)
[DATT75,ZLO74,ZL0T77,ZLOT 8] which provides the wuser with the
ability to query, update, define, and manage a relational data
base. The first implementation of QBE was done by IBM on the
VM/370, and has since been used for such applications as the
management of library files, correspondence files, expense
accounts, and budgeting. The philosophy of QBE is to minimize
what the user must know for both getting started and the number
of concepts that the user subsequently has to learn. The results
of various psychological studies [THOT5] of the language show
that it requires less than three hours of instruction for non-
programmers to acquire skill in making fairly complicated

queries,
1.2 Purpose

The purpose of the effort in preparing this report is
twofold: 1) to implement QBE on an IBM compatible microcomputer,
the Zenith-150, and 2) to lay the groundwork for utilization of
QBE in a computer science class as an auxiliary teaching device.
Since dBase II is capable of solving almost any data processing
problem it was chosen as the programming language tool. Because
of time, manpower, and the inherent limitations of dBaseIl, only

the QBE operation of retrieval is dealt with in this report.
1.3 Organization of The Report

The remainder of this report is organized into three main
chapters: a review of related literature, a description of the

algorithm, and a conclusion, The literature review introduces

the relational languages and provides an overview of QBE and
research rélated to it; wuseful terminology is also defined. The
chapter dealing with the algorithm briefly introduces the dBase
II programming language and gives a detailed description of the
algrorithm, Also included are two examples which are used to
demonstrate the query process. The final chapter concludes the
report and supplies a discussion of the system's limitations and
its future possibilities for improvement,

There are, five appendices. Appendix A provides the table
skeleton syntax, a description of the general retrieval rules,
and the user's manual for operation of the QBE system. Appendix
B gives a brief introduction to the dB compiler. The differences
between the IBM's QBE and the QBE designed for the microcomputer
are summarized in Appendix C. The way in which program modules
are connected together is given in Appendix D, and a source

listing of the QBE implementation is given in Appendix E.

CHAPTER 2

REVIEW OF LITERATURE

2.1 The Relational Language

The introduction of the relational model [COD70] in the
early 1970's triggered the design of powerful yet easy-to-use
relational 1languages. These languages can be divided into two
major classes:

1. Relational algebra-based 1languages, where queries are
expressed by applying specialized operators to relations,

2. Relational calculus-based languages, where queries describe
the desired result by giving the conditions which the result

tuples have to meet.

QBE can be thought of as graphic version of a relational
calculus language which provides users with the ability ¢to
manipulate data stored in a data base system. The user sees the
data presented in tables with rows and columns of information.
All operations (queries) performed on the data are defined using
tables, rows, and columns, (An alternative way to represent a
query in QBE is to use a linear syntax, which 1s a one-
dimensional string representation; this approach, however, is
not considered in this report.)

The following sections present an overview of QBE and
research related to it. First, relevant terminology will be

presented and defined.

2.2 Terminology and Definitions

This section defines the terminology used throughout the

remainder of this report.

2.2,1 Iables Primarily, a table consists of rows and columns
of information called data elements. A row is a set of logically
associated data elements, one element from each table column.
For example, data element JONES with associated data element
18456 (employee number), computer (department name), M (sex), and
30 (age), may constitute one row of a table. A given column will
have a name, and contain similar data elements. For example,
EMPLOYEE NAME could be the name for a column containing data

elements JONES, ADAMS, and SMITH.

2.2.2 TIable Skeleton A table skeleton is an empty two-
dimensional representation of a table. QBE presents a table
skeleton to the user so that the desired processing of the data
contained in the data base can be specified. The skeleton

contains four distinet types of areas, as shown in Figure 2.1:

table name column name o column name

area area area
row operator ses data entry
area area area

— T . E——— ——

— —— ———— ——— —— —

1
]
|
1
[}
|
data entry | ...
]
|
|

Figure 2.1 A Table Skeleton
The name of the table is given in the upper left box. A column
name area contains the name of a column in that table; some or

all of the «columns in a table may or may not be represented

depending upon the desires of the user. The row operator area
specifies an operation that can be used upon a row. Finally, the
data entry area contains column operators and/or entries which

define and qualify the processing to take place.

2.2.3 Example Element An example element is used to:
1) associate (i.e.,link) data among different tables or different

rows in the same table,
2) specify conditions, or
3) map data from one table to another.

No example element exists in the data base =~ it is merely

an example of a possible answer to a query. An example element
always begins with a leading underline, with the remainder being

any combination of letters and numbers,

2.2.4 Constant Element In contrast to an example element, a
constant element is used to specify selection criteria; that is,
it is used to qualify or limit the results to values matching the
constant elements. When wused, one must specify the constant

exactly as it appears in the actual data.

2.2.5 Condition Box A condition box is used to express one or
more desired conditions that are difficult to express in the
table. Like a table skeleton, it is a two-dimensional table,
containing the condition(s) to be applied to the operations
appearing 1in the table skeleton. Example elements are used to
link the condition with the corresponding table skeleton column.
When the condition box contains more than one condition, all

conditions must be met before the corresponding table data 1is

accepted as part of the solution.

2.2.6 Query A query specifies the processing to be performed on
the QBE data. This processing can involve the definition,
retrieval, or modification of data, Any query can contain table
skeleton and condition box components, and may utilize more than
one skeleton. When multiple skeletons are used, example elements

are needed to link the tables for processing purposes,
2.3 Overview of IBM's Version of QBE

Query-By-Example is a high level, non-procedural data base
language which provides the end user with a simplified and
consolidated interface for querying, updating, defining and
managing the data base. It is based on two fundamental factors.
First, programming is done within two-dimensional skeleton
tables. This is accomplished by filling in the appropriate table
cells with an example of the solution. Second, a distinction is
made between an example element and a constant element; an
example element is used to link data between different tables or
rows in the same table, to specify conditions, or to map data
from one table to another. A constant element, on the other
hand, is used to specify the criteria for selecting data that
matches the constant element. Given these two basic factors,

the user can express a wide variety of queries.

The major features of the QBE language as defined by
IBM,will Dbe presented using a number of examples which are built

on the following data base:

Figure 2.2 A Data Base Sample

EMP(NAME, SAL, MGR, DEPT)
- The EMP table specifies the name, salary, manager, and
department of each employee.
SALES(DEPT, ITEM)
- The SALES +table 1is a listing of +the items sold by
departments.
SUPPLY(SUPPLIER, ITEM)
- The SUPPLY table is a listing of the items provided by
suppliers.
A sample of the above data base is shown in Figure 2.2
EMP | NAME i SAL | MGR i DEPT
i JOHN | 8000 i DAVID { HOUSEHOLD
| ANDERSON | 6000 | MURPHY i TOY
| MORGAN | 10000 | LEE | COSMETICS
{ LEWIS | 12000 | LOw { STATIONERY
| NELSON i 6000 | MURPHY { TOY
{ HOFFMAN | 16000 | MORGAN i COSMETICS
| LOW { 7000 { MORGAN | COSMETICS
| MURPHY | 8000 i DAVID | HOUSEHOLD
{ DAVID i 12000 | HOFFMAN i STATIONERY
| HENRY i 9000 { DAVID i TOY
SALES | DEPT i ITEM SUPPLY | ITEM { SUPPLIER
| STATIONERY | DISH | PEN i PARKER
i HOUSEHOLD | PEN { PENCIL | BIC
i STATIONERY | PENCIL | INK i PARKER
| COSMETICS | LIPSTICK { PERFUME | REVLON
i TOY i PEN | INK i BIC
| TOY | PENCIL { DISH i DUPONT
i TOY | INK i LIPSTICK| REVLON
{ COSMETICS | PERFUME i DISH i BIC
i STATIONERY | INK i PEN | REVLON
{ HOUSEHOLD | DISH | PENCIL | PARKER
i STATIONERY | PEN
| HARDWARE | INK

2.3.1 Sample Queries

Q1. Print the names of all employees whose manager is David.

The user fills in the EMP table in the following manner.

Explapnation, The "P.%" (Print) indicates the target of the
query, 1i.e., the values that are to appear in the result. Since
the query 1is concerned with the manager DAVID, DAVID is a
constant element and is therefore not preceded by an underline.
On the other hand _LEWIS, which is preceded by an underline, is
the example element and is entered as an example of a possible
solution. Actually, Lewis may not necessarily be an element of
the data base and can be replaced with _SMITH, _MARY, or a
variable _N without altering the meaning of the query.

Later on it shall be shown that example elements are used to
establish 1links Dbetween two or more rows in the same table or
different tables. Where no links are necessary, one cah entirely
omit the example element; so, for the above query, P, under the
NAME column would have been sufficient.

For the sample data base, the answer to Q1 is:

Q2. Print the names, salaries, and managers of employees in the

Toy department.

i P._LOW | P._10000 | P._MORGAN | TOY
| l | |
ANSWER:
NAME i SAL | MGR
ANDERSON | 6000 i MURPHY
NELSON | 6000 i MURPHY
HENRY i 9000 { DAVID

Explanation. Here +the multiple ocutput was achieved by
placing P. before the example elements in the NAME, SAL, and MGR
columns., The only constant element is TOY, Since the example
elements _LOW, _10000, and _DAVID are not used for linkage

purposes, one could just write the function P., as before leaving

blank spaces in place of the example elements.

Q3. Find the department(s) that sells an item(s) supplied by

BIC.
SALES | DEPT i ITEM SUPPLY | ITEM i SUPPLIER
| P._TOY | _INK i —_INK i BIC
E ! i |
ANSWER:
i DEPT |
| STATIONERY|
| TOY |
i HOUSEHOLD |
| HARDWARE |

Explanation. The significance of the example element is

illustrated in this query. The same example element _INK must be

10

used in both tables. This query may be paraphrased as: print out
all of the departments that sell _INK (as an example) such that
_INK is supplied by BIC,

In Query-By-Example, the AND and OR operations are expressed
implicitly. We ANDed conditions together either by writing more
than two entries in the same row, or by linking different rows
with the same example element. Queries 4 and 5 demonstrate the

AND and OR operations as used implicitly.

Q4. Print the names of employees whose salary is between $10000

and $15000, provided it is not $13000.

EMP | NAME H SAL
{ P._JOHN { > 10000
i _JOHN | < 15000
| —JOHN | <> 13000
ANSWER:
! NAME i
| LEWIS |
| DAVID |

Explanation, The use of the same example element _JOHN in
all three rows implies that these three conditions are ANDed on
to the employee _JOHN, The output is the intersection of the
three sets of answers, One has the option of using any of the
following relational operators: >, >= , <, <=, and <> (not

equal). If no operator is used as a prefix, equality is implied.

11

Q5. Print the names of employees whose salary is either $10000,

$13000, or $16000.

ANSWER:
| NAME |
| MORGAN |
| HOFFMAN |
Explanation, Here different example elements are wused in

each row, so that the three lines express independent queries.

The output is the union of the three sets of answers.

There are seven built-in functions in the Query-By-Example
language namely SUM., ALL. (i.,e., include duplicates), CNT.
(count), UNQ. (unique), AVG., (average), MAX. (maximum), and MIN.
(minimum). The function UNQ. can be attached to the function
CNT., SUM., or AVG. Thus SUM.UNQ. means sum only the unique
values, Queries Q6 and Q7 illustrate the use of the built-in

functions.

Q6. Print the total salaries of the employees in the Toy

department.

EMP | SAL ! DEPT
| P.SUM.ALL._S | TOY
| |

ANSWER:
i SAL SUM i

| 21000 i
I |

12

Explanation. All._S is defined as the set of all salaries
matching the Toy department. The aggregate operator SUM. sums
this set and the P, prints the result. ALL., does not
automatically eliminate duplicates since it creates a multiset (a

set that retains duplicates).

Q7. Count the total number of departments in the SALES table.

ANSWER:

Explanation, Since there are duplicate departments in the
DEPT column, the function UNQ. is attached to eliminate
duplicates. Here again, one can use P.CNT.UNQ., omitting the

example element _J.

In Query-By-Example there are two two-dimensional objects.
The first is the two-dimensional table skeleton that has been
described. The second is the condition box, which is a box with
the heading CONDITIONS, and is used when one or more desired
conditions are difficult to express in the tables. A blank

condition box may be displayed at any time the user desires.

Q8. Print the names of the employees whose salaries are greater

than the sum of those of John and Low.

13

| P. i S
| JOHN i -S2
| LOW | 53
i CONDITIONS |

E HOFFMAN |

Explanation, This simple condition could have been
expressed by replacing _S1 by > (_S2 + _S83) in the first row of
the EMP table. An equality operator in a condition box should
not be confused with an assignment statement. An assignment
statement implies a procedure, and QBE 1is a non-procedural
language. Thus, assignment statements are not allowed; that is,
an expression like _M = _M+ 1 1is always false. Different
expressions in a condition box are entered on separate lines, but
all must hold simul taneously, i.e., all conditions in a condition

box are ANDed together.
2.3.2 Modification

To modify the data base, only three essential operators are
necessary: I., D., and U. (standing for "“insert", "delete", and
"update" respectively). With the same query syntax and the above
three operators the user can perform complicated modifications on

the data base. Deleting John's record from a table, for example,

14

is accomplished by entering D, against that row as follows:

Updating a group of records is achieved by means of a query
expression. For example, if we wish to replace manager DAVID by

LEWIS in all relevant employee records, we state:

EMP | NAME i MGR
_N DAVID

This is termed a 'query dependent update', since the system
must first query the data base to find all the emplcoyees under
the manager named DAVID and then update the manager name to

LEWIS.

The point to be made here is that with the introduction of
very 1little syntax, the user has the expressive gquery power to
modify the data base, Furthermore, since the output of a query
is itself a relation , the user can directly edit that output by

placing D., I., or U. before the attributes to be modified.
2.3.3 Table Creation

To 1interactively create tables, the user mimics the way he
would create tables manually, that is, starting with a blank
skeleton of table and then inserting the table name and the
column headings. In addition, to complete the definition of a
table, the wuser must use the system's keywords such as DOMAIN,
KEY, LENGTH, and TYPE. A domain is a QBE entity which specifies

value classes for one or more table columns. These value classes

15

are then used for describing the characteristics of the data for
thé table columns. A key is an optional specification. When
the values in this table column are to be used to uniquely
identify this row or record from any others in the table, the
keyword KEY is specified (K means key, NK means non-key).

With these keywords, then, one could define a table called

EMP follows:

I, EMP I. | NAME | SAL | MGR i DEPT

TYPE I. | CHAR | FIXED | CHAR | CHAR

LENGTH I. | 20 I 8 i 20 P12

KEY I, | K | NK | NK i NK

DOMAIN I. | NAMES | MONEY | NAMES | DEPTS
| I | |

(Placing I. in the ©beginning of the row 1is a shorthand
notation for prefixing every entry of that row with I.)

After a table is created, the user has the ability to update
any of the existing definitions in the same manner as a record is
updated. In addition to new base tables, the user can create a
'snapshot', a table whose data is mapped from already existing

ones, -
2.4 Brief Review of Related Research

SBA [DEJT77] (The System for Business Automation) and OBE
[ZL082] (Office-By-Example) are two IBM products which are
premised on the same data base concepts as QBE. An SBA program
is composed of a collection of Query-By-Example transactions over
the tables of more complex data objects such as forms, charts,
and reports. Further, the program uses examples for
specification of program invocation, parameters, triggers, and

user interaction. A business system consists of a collection of

16

programs and additional representations for user roles,
organization, business functions, and communications. So, QBE is
actually a subset of the SBA programming language.

Office By Example is a two-dimensional 1language, which
attempts to mimic manual procedures of business and office
systems. It is a superset and natural extension of the QBE while
containing features from SBA,

In closing, then, the 1language for OBE can be wused ¢to
combine and integrate aspects of word processing (including
editing and formatting), data processing, report writing,
graphics, and electronic mail. With such a language, end users
are able to specify and store complex OBE programs, thus
developing their own applications. OBE has been widely used in
such applications as finance, government, manufacturing, and

construction, among others,

54

CHAPTER 3
THE ALGORITHM FOR UTILIZATION OF QBE

3.1 Objective

This chapter describes an implementation algorithm for a
subset of Query-By-Example. Query-By-Example was designed ¢to
provide a conceptually simple, easy-to-use tool for the retrieval
of information from a relational data base. The algorithm will
be described with reference to dBase 1II,.

A query composed in QBE is entered in parallel; that is, the
order in which the various rows and columns are specified is not
necessarily related to the order in which the query is processed.
The algorithm uses a recursive serialization process to analyze
the query to indentify a processing order. This algorithm is
well-suited for implementation on the Zenith-150 microcomputer.

Before the algorithm is presented, the data base programming

language dBase II will be introduced in the following section.
3.2 Programming Language - dBase II

dBase II [ASH81], a product of Ashton-Tate,is a relational
data base management system that operates in two modes. In the
first or immediate mode, the user types a command and presses the
enter or carriage return key, and dBase II acts immediately ¢to
accomplish the requested function; that 1is, an interactive
manipulation of the data base takes place. The function might
involve creating data base structures, wupdating a file, or

displaying data contained in one or more records, This immediate

18

mode provides the quickest way to do simple, non-repetitive data
base operations.

The other mode corresponds to the execute or indirect mode
of a programming language, and requires the use of command files.
A command file is a sequence of dBase II instructions (including
all of those which may be used in the immediate mode) stored as a
disk file, The instructions are prepared in advance with an
editor provided as part of the dBase II system or with a separate
text editor, and stored as a disk file. All programming
operations such as decision-making, looping, sorting, searching,
selecting, displaying, and data manipulation can be used with
dBase Il It also provides "set" commands and macro
substitutions. Set commands change the configuration of dBase
II, while macro substitution allows an instruction to be replaced
by a defined sequence of instructions. The following 1lists
three basic programming structures and how they are implemented
in dBase 1II.

1. Decision Decisions are made in dBase II with the form
IF/ELSE/ENDIF. For a simple choice, one may drop the EL3SE and

use .

IF condition
S1
[s2]

L]

ENDIF

(where Si is any valid statement)

The ‘'Uecondition" can be a series of expressions (up to a

19

maximum of 254 characters) that can be logically evaluated as
being either true or false. The logical operators are used to
tie them together (e.g., condl .AND. cond2 .OR cond3).

In this simple form, if all the conditions are met, the
computer will perform the statements given between the IF and the
ENDIF sequentially, and then proceed to the next statement
following the ENDIF, If the conditions are not met, the computer
skips to the first statement following the ENDIF,

If multiple alternatives are needed, one may express it in

this manner:

IF conditioni
S1
ELSE
IF condition2
Se
ELSE
IF condition3
S3
ELSE

L]
.

*

ENDIF3
ENDIFZ2

ENDIF1

This nested structuring can be used when a choice among
alternatives has to be made. The computer does the first
statement (31) if conditionl is evaluated to be true, otherwise
the computer will skip to the statement following the ELSE, and
continuously evaluate the other conditions in the same manner
until one of the conditions is met or none of them are met.

An alternative way to express multiple choice in dBase II is

using DO CASE.

20

DO CASE
CASE expression!

S1
CASE expression2
S2

[OTHERWISE]
Sn

ENDCASE

Here, an expression may contain anything and the series of
CASEs need not have a tight relationship.

DO CASE is a structured procedure; dBase II will examipe the
expression in the individual CASEs and the first one that is true
will have the statement after it executed. When dBase II reaches
the next phrase beginning with a "CASE" it will exit to the
ENDCASE., This means that if more than one CASE is true, only the
first one will be executed.

There 1is no limit to the number of CASE phrases that a DO
CASE may contain. The OTHERWISE phrase is optional. If the
otherwise <clause is present and none of the CASEs is true, then
the Sn in the OTHERWISE clause will be executed. If there is no
OTHERWISE clause and none of the CASEs is true, then the DO CASE
will be exited with none of the Si statements executed.
2.Repetition Repetition is handled in dBase II with the DO WHILE
construction:

DO WHILE conditions

S1
[s2]

ENDDO

21

3.Procedure The ability to create standard procedures in a
language greatly simplifies programming. In BASIC these
procedures are called subroutines, while in PASCAL and PL/1 they
are called procedures, In dBase II they are command files that
can be called by a program, An example of calling command files
might be:
IF command = 'P.!
DO print

ELSE
IF command = 'D,?!

DO deletion
ELSE

IF command = 'U,?
DO update
ENDIF
ENDIF
ENDIF
Notice that print, deletion, and update are three other
command files which are specified elsewhere in the dBase 1II

program,
3.3 Description of algorithm

A query is processed by an algorithm which is divided- into
four phases (Figure 3.1). In phase one, each query is stored
into a file called SFILEi (where i is the number of the table).
In phase two, each SFILE is scanned to match up each entry with
an. appropriate table identification and column heading. Output
is produced consisting of an unordered collection of attribute-
value pairs. In phase three, the output from phase two 1is
treated as a tree, which is traversed to identify a precise
sequence in which the data base should be interrogated. A set of
data base instructions are placed on a last-in-first-out stack

called the CODE stack. Finally, phase four processes the CODE

22

Phase 1 - Store Query

Answer to Query

Figure 3.1 - Four Phases of Query Processing

23

stack by converting each instruction into a dBase II command, and
retrieves the information from the data base. All the retrieved
information will then be pushed onto another stack called a SAVE
stack. When phase four finds the CODE stack empty, the
information remaining on the SAVE stack is displayed as the
answer to the query.

The following four subsections will discuss each of the four
phases in detail; this 1is followed by some examples of how

different queries are processed by the four phases.
3.3.1 Phase One - Store query

Prior to entering a query, the user 1s shown the necessary
table skeletons on the screen of the CRT. The user then types a
query into the appropriate columns of one or more tables. When
the user finishes entering the query and signals the system by
pressing the letter 'R' (run), phase one begins. This phase
scans the screen and stores the query into a file called
SFILEi(or two files maximum, if the user has indicated such). At
the same time, the system will check each table or relation name
to see if that particular one exists in the data base. If a
table name is not found, the system will show an error message

and ask the user to enter another query.

3.3.2 Phase Two = Scan Query

In phase two, the system scans each SFILE from phase one and
builds an internal table which contains six columns called,
respectively, ATTR (attribute), VALUE, PREFIX, BUILTFUN (built=-in

funection), OPERATOR, and TABLEID, This table is called the

24

attribute-value or AV table. Each row of the AV table contains
information about a single field in the query which the user has
specified. The field entry itself appears in the VALUE column;
the name of the column in the query is placed in the ATTR column;
the PREFIX column holds the command (such as P.); any built-=in
function (such as SUM., AVG.) goes into the BUILTFUN column; the
relational operator (such as >, <, =) appeafs in the OPERATOR
column; and a numeric identifier for the table in the query
appears 1in the TABLEID column. In addition to being placed in
the AV table as it is being built, every field with a print
statement (a 1line containing a P.) is placed on a stack called

the PRINT stack.
3.3.3 Phase Three - Build Code

The purpose of phase three is to process the information
contained in the AV table in order to form the CODE stack. Phase
three, given in flow chart form in Figﬁre 3.2, 1is summarized as
follows:

1. Scan the PRINT stack. If an attribute appears more

than once in the PRINT stack, then set the union bit of that
associated attribute to true.

2., If the user employed a condition box then an attempt is made
to match up each condition statement with the appropriate VALUE
column in the AV table.

3. If there are arithmetic expressions in the VALUE column of the
AV table, then a result is calculated for each arithmetic
| expression, and the result, together with the corresponding

VALUE column of the AV table, is pushed onto the CODE stack.

25

b4,

If there are example elements existing in the VALUE column of

the AV table, then search the AV table again to match up another

VALUE with the same example element, Next,

5.

a.

Ce
d.

Scan

If one is found, then check the TABLEID. If the former
example element's TABLEID is different from the latter,
then set variable JOIN to true. If one is not found,
then check if the PREFIX has the value P., and if it
does, delete the whole row from the AV table and go to
step d; otherwise, display an error message to user, and
exit.

Move to the row that precedes the current one and check
the value in the VALUE column. If the value 1is a
constant push all the information onto the CODE stack
and delete the whole row from the AV table; otherwise
move to the row that is two lines below the current one
and repeat this same procedure of checking for a
constant.

Delete the two rows having the same example element,
Repeat step 4 until no example element is found.

the AV table again. If i is not empty, push the

remaining information onto the CODE stack.

26

SCAN :
PRINT STACK

MATCH COND,
WITH AV
TABLE'S VALUE

SCAN ENTRY
IN
AV TABLE

CALCULATE
RESULT

_>

PUSH RESULT
& AV COLUMN
TO CODE STACK

—)

DELETE
ENTRY FROM
AY TABLE

J

COND.
® ARITH.

EXP.

= Condition

Figure 3.2 Flowchart for Phase Three

27

= Arithmetic expression

©, D

AV
SCAN ENTRY DISPLAY
IN ERROR
AV TABLE MSG.

[

SEARCH 5E {ITH
ANOTHER —) SUCCESSFUL? R PREFIX P
EXAMPLE E.
SAME N SET JOIN ﬂ
ABLEID > TO TRUE
-
MATCH WITH
A
CONST. VALUE
PUSH CONST.
TO
CODE STACK
DELETE ENTRY
FROM
AV TABLE
< \"4
N
< LAST ENTRY
® CONST. - Constant
® MSG. = Message
® EXAMPLE E. - Example element
0 Figure 3.2 Flowchart for Phase Three (cont.)

28

AV TABLE
EMPTY

N | PUSH REMAINING
—— ENTRIES TO
CODE STACK

l

PHASE FOUR

Figure 3.2 Flowchart for Phase Three (cont.)

29

3.3.4 Phase Four = Process Code

The purpose of phase four is to sequentially process each
item on the CODE stack by translating each instruction into a
dBase II command and retrieving information from the data base.
This phase uses an additional stack called SAVE1 (or two if two
tables are used, thus using SAVE1 and SAVE2), and also one
temporary storage file called BUFFER1 (or two if two tables are
used, thus using BUFFER1 and BUFFER2). The final answer to the
query will be pushed onto another stack called SAVE and then
printed out.

A flow chart for phase four is shown in Figure 3.3. The
summary of this phase is as follows:
1. If the CODE stack is empty, then go to step 6.; otherwise
continue.
2. Pop one entry from the CODE stack and translate it (by means
of USE and COPY operations) into dBase II commands.
3. Retrieve information from the data base and push it into
the temporary storage file BUFFERI1.
4, If the SAVE1 stack is empty, then copy all of the information
in BUFFERT to SAVE1. Otherwise, check to see if the union bit is
true or not. If it is true, then combine (by means of a JOIN
operation) all the information in both BUFFER1 and SAVE1 and
push the result into SAVEl; otherwise intersect the information
in BUFFER1 and SAVE1, and push the result into SAVE1. (If the
user has entered two tables, there would be two SAVE files =-
SAVE1 and SAVE2 and two temporary storage files --BUFFER1 and

BUFFERZ2. In such a case, BUFFER2 would become incorpdrated into

30

SAVEZ2.)
5. Go back to step 1.

6. If two tables were used, check if variable JOIN is true. If
it 1is, Jjoin the information in SAVE1 and SAVE2 and push the

result onto the SAVE stack.
7. If only one table was used, copy SAVE1l into SAVE,
8. Print the result from the SAVE stack and exit.

31

POP ONE
ENTRY FROM
CODE STACK

!

TRANSLATE
TO dBASE II
COMMANDS

Y

RETRIEVE INFO,
FROM DATA BASE

AV

STORE RETRIEVED
INFO. TO
BUFFER1

UNION Y
TRUE ?

A

UNION BUFFERi
WITH SAVEL

COPY BUFFER1
TO SAVEL

INTERSECT
BUFFER1i WITH
SAVEL

A

Figure 3.3 Flowchart for Phase Four

32

Y
JOIN TRUE 7>

COPY CORR.
FILE TO
SAVEL ~

COPY CORR. PERFORM JOIN
FILE TO & PUSH RESULT
SAYE1L TO SAVE STACK
\4
COPY SAVEL
TO
SAVE STACK
<
hvi
PRINT ANSWER
FROM
SAVE STACK
CORR. - Corresponding
\

Figure 3.3 Flowchart for Phase Four (Cont.)

33

3.4 Sample Operation

In order to clarify the operation of the algorithm, two
examples will be followed through all four phases. The queries
and the explanations are premised on the data base shown in
Figure 2.2 (see page 8).

Example 1. Find the department(s) that sells an item(s) supplied
by BIC. '

In Query-By-Example, this could be entered as follows.

SALES | DEPT | ITEM SUPPLY { ITEM | SUPPLIER

After the query 1is entered phase one stores it into two
sfiles -- SFILE1 and SFILEZ. In phase two, the system creates
the following AV table by syntactically processing the display,
and pushes the attribute DEPT with the print (P,) statement onto

the PRINT stack.

ATTR VALUE PREFIX OPERATOR BUILTFUN TABLEID
DEPT ~T0Y P. 1
ITEM ~INK 1
ITEM —~INK 2
SUPPLIER BIC 2

This AV table is then used as input for the next phase,
phase three, In the third phase, the PRINT stack is scanned, and
since no attribute appears more then once no union bit is set.
Next, processing begins by scanning the AV table, which in this

case finds the example element _TOY in the first row. _TOY 1is

34

scanned for in the remainder of the AV table but it is not found.
Thus, the first row is deleted from the AV table (for clarity,
the number of the rows in this example remains unchanged). Next,
the system finds the example element _INK. _INK is then sought
in the VALUE column of the AV table and a match occurs with the
third row. The TABLEID in the second and third rows will then be
checked. JSince they are different, the variable JOIN is set to
true. Next, the VALUE column in the second row is checked, and
since it is not a constant element, the system then jumps to the
fourth row and checks the VALUE column again. This time the
value is a constant, so all the information will be pushed onto
the CODE stack. Finally, the last three rows in the AV table are
deleted and the AV table is now empty.

After phase three is finished, the CODE stack will contain

the following information:

ATTR VALUE OPERATOR BUILTFUN TABLEID UNION

sypPLIER BIC 2 P
Phase four begins ﬁrocessing by using the information in the
CODE stack to form dBase II commands, which are USE SUPPLY and
COPY TO BUFFER2 FOR SUPPLIER = “BIC", The SUPPLY information is
then searched for SUPPLIER = "BIC", and the items PENCIL, INK,
and DISH are pushed onto BUFFER2. Since the SAVE2 stack is still
empty, no union or intersection processing can be performed, and
BUFFER2 is copied onto SAVEZ,. The CODE stack is now empty, and
the JOIN variable is tested and found to be true. Now the system
joins SAVE1 and SAVE2 into one stack called SAVE, but since the

stack SAVE1 contains no information, all the information in the

35

SALES table is first copied onto SAVE1, and then the joining of
the SAVE1 and SAVEZ2 files is performed. Finally, the items
STATIONERY, STATIONERY, TOY, TOY, STATIONERY, HOUSEHOLD, and
HARDWARE on the SAVE stack are displayed as the answer to the
query. Notice here that STATIONERY and TOY are duplicate items.
This 1is because the system does not automatically eliminate the
duplicates from the answer unless the user indicates that it is
to do so. (by placing UNQ. in front of the _TOY under the DEPT

column.)

Example 2. Print the names of employees whose salaries are

greater than the sum of those of JOHN and LOW.

EMP | NAME { SAL
i P. I 81
| JOHN P82
| Low I _S3
CONDITIONS |

In phase one the system stores the query into two files
called SFILE1 and CONDITION. Phase two creates the AV table
containing the following information, and also pushes the

attribute NAME onto the PRINT stack.

ATTR VALUE PREFIX OPERATOR BUILTFUN TABLEID
NAME P. 1
SAL 31 1
NAME JOHN 1
SAL 52 1
NAME LOW 1
SAL 53 1

36

In phase three, the PRINT stack is scanned and since no
attribute appears more than once no union bit is set to true.
Next, the condition statement in the condition box is scanned and
used to replace the _S1 in the VALUE column of the AV table.

After the replacement, the AV table becomes:

ATTR VALUE PREFIX OPERATOR BUILTFUN TABLEID
NAME P. : 1
SAL (_s2 + _53) > 1
NAME JOHN 1
SAL -2 1
NAME LOw 1
SAL B3 1

The system then scans the AV table and finds the arithmetic
expression (_S82 + _S3) in the second row. It calculates the
result for the arithmetic expression in the following manner,
First, the example element _S2 is sought in the AV table and a
matech 1is found in the fourth row; the system then moves to the
third row, and finds the value JOHN, JOHN's salary of 8000 1is
then retrieved. Next, the example element _53 is sought and
a match is found in the sixth row} the value LOW in the fifth row
is then searched, and LOW's salary of 6000 is retrieved.
Finally the values 8000 and 6000 are summed and the result,
together with the information in the second row of the AV table,
are pushed onto the CODE stack. After calculating the result
for this arithmetic expression, the last five rows in the AV
table are deleted. Now the first row is the only one left in
the AV table. In this row the VALUE column contains nothing.
Although the PREFIX column has a P, in it, the system ignores it

and deletes it from the AV table. The AV table is now empty.

37

After the third phase is finished the CODE stack contains

the following information:

ATTR VALUE OPERATOR BUILTFUN TABLEID UNION

In phase four, this information is translated into the dBase
II commands USE EMP and COPY TO BUFFER1 FOR SAL > 14000, The EMP
information 1is then searched for SAL greater than 14000 and the
employee's name HOFFMAN is pushed into the BUFFER1 stack and then
copied into SAVEl, Since the code stack is now empty, the
variable JOIN is tested and is found to be false, Therefore, the
single item HOFFMAN on the SAVE1 is copied into stack SAVE and

then displayed as the answer to the query.

3.5 Summary

This chaﬁter has described an algorithm for translating
queries in QBE into dBase II commands. Four phases of query
processing were described: query storage, query scanning, code
generation and execution,

Since the four phases are complex, it may be helpful to
briefly restate the major steps in each phase., Phase one stores
the query into a file(s) called SFILEi. Each of the table names
is also validated during this phase,

In the second phase, the gquery is processed by scanning the
SFILE(s). The AV table is then created and each row of the AV
table contains information about a single field which the user
has specified in the query.

Phase three generates code. It treats the AV table as a

38

binary tree and traverses it in order to create an intermediate
data structure called the CODE stack.

The 1last phase analyzes each entry in the CODE stack in
order to direct the information retrieval process and format the

output for the user.

39

CHAPTER 4

CONCLUSION

This report has presented an overview of the Query-By-
Example language, and the details of how QBE queries could be
hosted by a dBase II system. The unique features of this
language are summarized as follows:

1« The wuser 1is presented with a graphic representation of a
table, thereby providing an image to aid in comprehension., Data
manipulation is done with this table.

2. The syntax is kept to a minimum and the format is simplified,
so that the user can easily understand and learn it.

3. The user can formulate a query in any sequence desired, since
the sequence of filling in the table and the rows within the
tables 1is immaterial., Thus, the thought processes of the
individual are easily captured.

4, The wuse of a table skeleton and the example and constant
elements allows the user to divide the query into segments,
making it highly non-procedural. In contrast, most other
languages require the user to first specify the information to be

outputed and then structure the query accordingly.

The algorithm described in chapter 3 has been implemented on
the Zenith-150 microcomputer, and the system has been tested using

different sets of data to confirm that it performs correctly.

4.1 Limitations

At this point, it seems appropriate to mention what appears

40

to be the main limitations of the implementation.

7. A user cannot formulate a query with a c¢yclical structure
(i,e., multiple 1link pathways to the same point). To do this
would require a different algorithm and a larger amount of
storage.

2. The number of columns per table wWere restricted to six because
the system does not supply a scroll function.

3. Column width is restricted to 12 characters., If the user
wants to enter a statment containing more than 12 characters,
then a condition box must be employed.

4, The number of table skeletons that a query can contain is
restricted to two, so that the user cannot link more than two
tables at a time.

5. The query cannot be modified if a mistake is found in it, the
user must re-type the entire query.

6. The average processing time of each query is about 5 minutes,
a long time to wait. This long processing delay is due to the
interpreting of large amount of codes and the frequent
simultaneous accessing to two files, The processing time might
be improved by using the dB Complier which is a product of
WordTech Systems, Inc. A brief introduction to the dB complier

is given in Appendix B.
4,2 Future Improvements

Corresponding to the above limitations are some possible

future improvements.

1. Allow the wuser to formulate more complicated queries,

including queries of a ecyclical nature,

41

2. Expand the table size.
3. Introduce a scroll function.
4., Supply a modification function for query mistakes.

5. Reduce query processing time.
4.3 Project Conclusions

It has been shown that a data base query system utilizing
QBE is feasible in the microcomputer environment. Although some
limitations are present, a useful and cost-effective
implementation has been created. The implementation has been
produced in a rather short amount of time and should be used as a

prototype and a guide for future implementation of QBE.

42

BIBLIOGRAPHY

[ASH81]

[DATT75]

[(DEJTTI

[LIN86]

[TAG81]

[(THOT75]

[ZLOT5]

(ZLOTT1

dBase II User Manual. California: Ashto-Tate Inc, 1981.

Date, C. J. An Introduction to Data Base Systems.
California: Addison-Wesley, 1975.

dedong, S. P. and M. M, Zloof, "The System for Business

Automation (SBA) - Programming Language, "
Communications of fthe ACM, Vol. 20, No. 6, 1977, pp.
385-396.

Jane, Lin. "The Usage of QBE On A Microcomputer,™®

Kansas State University, 1986.

Tagg, M. Roger. "Query Languages for Some Current
DBMS, " in Databases. Ed. S. M. Deen and P.

Hammersley. London: Pentach Press, 1981, pp. 99-118.

Thomas, J. C. and J. D. Gould. "A Psychological Study
of Query by Example," Rroc, National Computer
Conference, AFIPS press, Vol. 44, 1975, pp. 439=-445,

Zloof, M. M, "Query By Example," Proc. National
Conference, AFIPS press, Vol. 44, 1975, pp. 431-438,

Zloof, M. M., "Query-By-Example: A Data Base Language."®
IBM Systems Journal, Vol. 16, No. 4, 1977, pp. 324-342,

43

[ZLO78)

[ZLo82]

Zloof, M. M, "Design Aspects of The Query-By-Example
Data Base Management Language." in Databases:
Improving Usability and Responsiveness. Ed. Ben
Shneiderman, New York: Academic Press, 1978, pp. 29-

51.

Zloof, M, M. "Office-by~Example: A Business Language
that Unifies Data and Word Processing and Electronic
Mail," IBM System Journal, Vol. 21, No. 3, 1982, pp.
272=-304.

Yy

THE ZENITH-150 QBE USER'S MANUAL

Table of Contents

SECTION

A.1 Introduction

A.2 Getting Started

A.3 Language Components

A.4 Syntax

A.5 General Retrieval Rules
A.6 Sample Session

A.7 Query Maintenance

A.8 Error Messages

APPENDIX A

45

PAGE
46
46
46
48
52
53
55
57

A.1 Introduction

Query-By-Example is a query language that allows for easy
manipulation of data. With the QBE system one can create,
update, and query a data base. This manual only deals Wwith the
query operation.

The language has a minimal syntax and a graphic
representation of the user's data processing requests is used.
The interactive 1language facilities are designed for simple
formulation of requests.

QBE is a "user-friendly" query system. However, to get the
most out of it, please take the time to read the instructions

before you begin using it.

A.2 Getting Started

To start the sytem, one must follow three steps:
1.Insert the system disk into the upper (or right) floppy disk
drive and turn on the power to boot up the system.
2.Insert the working disk into the lower (or left) floppy disk
drive.
3.Type DBASE QBE (upper or lower case letters) and press RETURN.
The system will then display the messages, WELCOME TO THE QBE
QUERY SYSTEM and PLEASE ENTER TODAY'S DATE (MM/DD/YY): / / ‘
After entering the date, you are ready to formulate the query by

using the language components, discussed in the next section.

A.3 Language Components
The Query-By-Example contains three components: elements,

operators, and expressions. The following describes each

component in detail.

46

Elements

QBE provides two types of elements: a constant element and
an example element. A constant element is used to specify the
criteria for selection; that is, to qualify or limit the results
to values matching the constant element, An example element is
used to 1link data between different tables or rows in the same
table, to specify condition(s), or to map data from one table to
another. An example element always begins with an wunderline,

followed by a digit(s) or letter(s).

Operators

In QBE, operators are used to define processing and specify

conditions. The following lists the type of operators and their

meaning.
IIPE OPERATOR MEANING
Sy stem P. Print, display
AO, Sort in ascending order
DO. Sort in descending order
Built-in SUM. Sum
Functions CNT. Count
AVG., Average
MAX. Find the maximum
MIN. Find the minimum
ALL. Use the duplicate values
UNQ. Use the unique values only
Arithmetic + Addition
- Subtraction
* Multiplication
/ Division
Comparison = Equal to
<> Not, or not equal to
> Greater than
< Less than
>= Greater than or equal to
= Less than or equal to

47

IYPE OPERATOR MEANING

Or
& And

Logical

Expressions

An expression is composed of elements and operators, and is
used to qualify or limit the data., The QBE algorithm allows for
two types of expressions:
1. Arithmetic An arithmetic expression can contain constant
elements and/or example elements with any of the arithmetic
operators. Elements in the arithmetic expression can be
parenthesized in order to prioritize their evaluation. To
determine the order of evaluation of the coperators, the following
precedence is used: ¥, /, + , =, Two examples of QBE arithmetic
expressions are: (_S1 ¥ _8S2) / 2 and _S1 + _S32.
2. Logical A logical expression can only be used in the
condition box. A logical expression is evaluated from left
to right. Two examples of wvalid logical expressions are:

S1 = (>1000 | <3000) and _S1 = (1000 & 2000).

A4 Syntax

When you are ready to enter the query, the system will first
show you the message ENTER TABLE NAME (AND COMMAND IF ANY). This
asks you +to enter the name of the table that you are going to
manipulate. To retrieve table names or column headings of a
specific table, or both the table names and the corresponding
column names, You need to supply the system operator P. with the

table name. The syntax for each of the above retrieval cases is

48

as follows:

1+ To retrieve all the table names, enter simply P. or something
such as P._TAB, where _TAB is an example element. In this case,
names of example elements are arbitrary with respect to their use
and meaning.

2. To retrieve all of the column headings for a specific table,
enter <table name> P. The table name should be the name that you
created on a prior occassion.

3. To retrieve tabie names and their corresponding column

headings, type P._TAB P, or simply P. P. .

If you choose any one of the above cases, the system will
not show you a table skelton (a blank table), since the téble is

not needed in these.three cases.

| column T i wwe U . we boowe { column
| field | i | l | field
| name i | | i | name
row data | | | | }
operator entry] { | | |
field field f | | | |
[P.] (P.] [AO.]
[DO.]

i

i

|

|

I (SUM. {ALL. UNQ.}
I [AVG. {ALL. UNQ.}
| (MAX. {ALL. UNQ.}
f (MIN. {ALL. UMQ.}
l [=

l >
|

I

|

|

e ra
ANV ANV A
L--lJI--JI_ll_ll_ll—J

¥ [] Brackets indicate optional information; you can
omit any or all of the items inside the brackes.

* { } Braces indicate required information; you must
select one of the items inside the braces.

Figure A-1. Retrieval Syntax

49

To retrieve information from a table or tables, enter the
table name (you will then see a blank table skeleton displayed on
the screen) and construct the query according to the general
syntax as shown in Figure A-1,

If an expression is too long to fit into one data entry
field you must use the condition box (Figure A-2)., The condition
box contains only one type of entry, an arithmetic or a logical

expression, as previously discussed.

! CONDITIONS }

condition-entry

Figure A-2., Condition Box
Each condition-entry is specified on a separate line and all

lines are ANDed together.

If you want to print information from different tables then
you need to use the result table. This result table can also be
used if you want to create a snapshot (i.e., a new table for the
output). You will need to give the system a unique table name
for creating a snapshot. The syntax for a result table is shown

in Figure A-3.

50

RESULT TABLE ENTER NEW TABLE NAME (IF RESULT NEED TO BE SAVED):

i COlumn = L] { ae s i s e l [} i COlumn
1 field i | | H | field
| name ! I | 5 | name
row | data | | | | |
operator| entry I i | ! i
field | field | | | 1 i
{
[P. | <ee> 1%
1
1
| [P. <ee> 1=

* <{ee> - Example Element

¥ P. can be placed in the row operator field
with the example element appearing in the data
entry field, or both P, and the example
element can appear together in the data entry
field. These two different ways can not be
mixed during any given query, but yield the
same results.

Figure A-3. Result Table Syntax

51

A.5 General Retrieval Rules

The following general rules apply to the use of the Query-
By-Example language:
1. The print (P.) operator can only appear in the first table
skeleton or in the result table.
2. If the value in a column must match a value or range of values
known to exist in the data base, type in a constant element (with
or without a comparison operator).
3. If the value in a column must be specified but its exact value
in the data base is unknown, ¢type 1in an arbitrary example
element.
4, If the value in a column must be linked with a value in
another row, column, or table, the same example element must be
used in all parts of the link.
5. OSystem operators and built-in functions should end with a
period.
6. Any built-in function which is used should be qualified by the
system operators ALL. or UNQ.
7. No cyclical structure is allowed. That is, the same example
elements cannot be used to link to two different columns, whether
in the same or different tables, unless the row in which one of
the example elements appears contains a constant element.
8. If the result table is used for output purposes, the column
names should match those in the stored tables.
9. If the output information comes from different tables, the
result table must be used.

0. The name given to the snapshot (i.e., a saved result table)

52

must be unique within the data base.

117. Query-By-Example is not case sensitive, That is, it makes no
difference whether you use uppercase or lowercase letters.
However, if you enter the query using lowercase 1letters, the

system will automatically convert it to uppercase.

A,6 Sample Session

Now, let's find out how you can perform a simple query in
the QBE system. Once you understand this basic operating
procedure, Yyou should have no problem conducting more complex

queries.

Again, this sample is based on the data base shown in Figure
2.2 (see page 8).

Suppose you want to print all the employees' names and
salaries in the Toy department. The following will show you how

to enter the query step by step.
Step 1. When you boot up the system and type DBASE QBE, the

system will then display the messages as shown below.
skxukkdd® WELCOME TO THE QBE QUERY SYSTEM #¥=%xwx%
PLEASE ENTER TODAY'S DATE (MM/DD/YY): [/ /
Step 2. After you enter today's date and press RETURN, the

message 'ENTER TABLE NAME (AND COMMAND IF ANY): ' will Dbe

displ ayed. Type EMP in the blanks which follow the colon, and

then press RETURN.

ENTER TABLE NAME(AND COMMAND IF ANY): EMP

53

Step 2. After about thirty seconds, the system completes
validation of the table name that you just entered, and a table
skeleton is displayed. Enter the column headings NAME, SAL, and
DEPT into columns 2,3,and 4 respectively, and then type P._N,
P._S, and TOY, respectively, under the column headings. Since
the values of NAME and SAL are unknown, example elements _N and
_S are used. You can omit the example elements in this case. The
main concern in this query is the Toy department, so TOY should

be entered as a constant element. Now your screen should look

like the sample shown below:

Step 3. After you have finished entering the query, and pressing
the RETURN key -enough times so that the cousor is out of the
table, the system asks you to wait for a minute while it stores
the query. After that, a message will be displayed on the
screen, saying '(R)un (E)rase (Q)uit, PLEASE CHOOSE A LETTER
s==dT, If you want the system to process the query, type in R.
If you have found some mistakes in your query, enter E to let the
system erase the query before you re-type it. If you want to
quit, then enter Q for exit.

If R was entered, the system then displays the message
PLEASE WAIT FOR A WHILE. This message will stay on the screen
until the system finishes processing your query. Then, the
message "DO YOU NEED HARD COPY (Y/N)?" will appear. If you need

a hard copy, type in Y and turn on the printer, otherwise type in

54

N. Next, the system will display one employee's record at a time
as the answer, as shown below.

RECODR # 1

NAME: JOHN

SAL : 8000

DEPT: HOUSEHOLD

Hit <RETURN> to continue or Q to quit

If you want to see the next employee's record, simply hit RETURN
until the last employee record is reached, Then, the system will
show messages YOUR QUERY HAS BEEN DONE, DO YOU WANT TO (C)ONTINUE
OR (QUIT ====>. You can then type C for continue, or Q for
exit.

Now that you have seen how to conduct a simple query, try
some of the other examples described in chapter 2 for additional

practice.
A.7 Query Maintenance

If the system responds to a query with an error message, but
you believe that there is nothing wrong with the query, then the
system allows you to save that query for later review. This
feature permits potential bugs or limitations of this
implementation to be archived.

The file which contains all the error queries 1is called
REVIEW, and is stored in the working disk.,. To look at the REVIEW
file, one must perforﬁ the following steps:
1.Insert the system disk into the upper (right) floppy disk drive
and insert the working disk containing the REVIEW file into the

lower floppy disk drive.

55

2.Turn on the power to boot up the system.

3.Type in DBASE.

4,Type in USE B:REVIEW when a period shows on the screen,
5.Type in EDIT <n>, where n is the record number.

Each archived query will be stored in the REVIEW file, and
possibly may be referred to by multiple record numbers, depending
on the amount of storage required by the query. Now let's see
how each error query is stored in the REVIEW file.

Suppose the query shown below has been returned with the

error message 'Column SALARY does not exist in the file EMP!,

For this example, we will have this query stored in the REVIEW
file with three record numbers. If you issue EDIT 1 (suppqsing
the query is stored in first record) and use °C (control C) to
view other records, you would find the query stored in the

following manner:

RECORD 00001

FLD:NAME : EMP

ROW1 ¢ P

ROW2 -

ROW3 :

MESSAGES : Column SALARY does not exist in the table EMP

RECORD 00002

FLD:NAME : NAME
ROW1 : _N
ROWZ2 :

ROW3 .
MESSAGES

56

RECORD 0003

FLD:NAME : SALARY

ROW1 -

ROW2 ¢

ROW3 :

MESSAGES : END OF QUERY

FLD:NAME in the first record is the actual table name and P.
in ROW1 is the row operator corresponding to the table skeleton.
The error message is always put together with the first record of
the query.

Each of the remaining records (i.e., 2 and 3) in the REVIEW
file corresponds to a column in the table skeleton. For example,
record 2 contains the column heading NAME and a data entry _N.
To separate queries, the indicator END OF QUERY is placed in the
message field of the last record for each query.

If you continuously store error queries into the REVIEW file
without erasing some, the REVIEW file may grow so large that it
will eventually crash your working disk. Therefore, be sure to

erase the error queries that you have reviewed.
A.8 Error Messages
The following are error messages used by QBE:
<built=in function$ IS NOT FOLLOWED BY BLANK OR EXAMPLE ELEMENT
EXAMPLE ELEMENT DOES NOT HAVE A CONSTANT VALUE TO MATCH IT

EXAMPLE ELEMENT HAS CONFLICTING COLUMN HEADING
The example element is linked to different column headings.

EXAMPLE ELEMENT IS NOT MATCHED
Cannot find another element to match the example element.
(Used for linkage purposes,)

57

EXAMPLE ELEMENT UNDEFINED
An example element appears in the query, but the system does
not know for what purpose because of insufficient
information.

COLUMN <column name> IS NOT A NUMERICAL TYPE, CANNOT DO
COMPARISON

COLUMN <column name> IS NOT A NUMERICAL TYPE, CANNOT DO
CALCULATION

COLUMN <column name)> IS NOT EXISTING IN TABLE <table name>
The column name is not part of the table.

COLUMN <column name> OF THE RESULT TABLE IS NOT FOUND IN

OTHER TABLES '
The column heading that is placed in the result table does
not match the column heading having a print statement in
other table skeletons.

INCOMPLETE EXPRESSION

INCOMPLETE QUERY
The table is empty.

INSUFFICIENT DATA ENTRY IN RESULT TABLE

INVALID ARITHMETIC EXPRESSION

INVALID COMPARISON OPERATOR IN LOGICAL EXPRESSION
INVALID CONDITION EXPRESSION

INVALID LOGICAL OPERATOR IN <expression>

INVALID QUERY

INVALID SYMBOL
The data entry contains some notations which are unknown to

the system.
INVALID SYSTEM OPERATOR

58

MISSING ALL. OR UNQ. IN BUILT-IN FUNCTION

MISSING COLUMN NAME
A data entry does not have a corresponding column heading.

MISSING COLUMN NAME IN THE RESULT TABLE
The data entry in the result table does not have a
corresponding column.

MISSING LOGICAL OPERATOR OR USING INVALID LOGICAL OPERATOR 1IN
<expression>

MISSING P. OPERATOR IN RESULT TABLE

NO BLANK CAN BE EMBEDDED INTO EXAMPLE ELEMENT

NO RECORD AVAILABLE, CANNOT PROCEED <built-in function>
No record exists relevant to your query.

NUMBER CAN NOT BE ENDED WITH A DECIMAL POINT

P. SHOULD BE FOLLOWED BY AN EXAMPLE ELEMENT
In retrieval of table names and/or their corresponding
column heading, the P. operator can only be followed either
by an example element or blanks.

SORRY, THE SYSTEM CAN ONLY SORT ONE COLUMN
You have entered the system's operator AO. or DO. more than

once.

SYNTAX ERROR
Check each data entry, you may not have ended the system's
operator (such as P.) or built-in function with a period.

SYNTAX ERROR IN RESULT TABLE
The data entries in the result table should be all example

elements.

SYSTEM OPERATOR NOT SPECIFIED

TABLE <table name)>» DOES NOT EXIST

59

THE RESULT OF THE ARITHMETIC EXPRESSION IS OVERFLOW
The result of the arithmetic expression is tooc large to fit

into the column specified.

TOO MANY DATA ENTRIES WITH BUILT-IN FUNCTION

TOO MANY P. OPERATORS IN RESULT TABLE

TOO MANY SYSTEM OPERATORS
You have entered too many system's operators in the row

cperator area.

TOO MANY VALUES OR NO VALUE FOR EXAMPLE ELEMENT
Too many values match the example element, or no values
match it.

60

APPENDIX B

A BRIEF INTRODUCTION TO THE dB COMPILER

The dB complier is the first compiler for dBase II allowing
for the 1legal translation of dBase II programs into code that
will execute successfully without the dBase II system,

The dB <complier compiles the dBaseIl command files and
produces an independently executable program that occupies 20 -
30 percent less storage space than an uncompiled application and
dBase II combined. It also speeds up the execution time 1in
calculations, logical operations, and file access. However,
some of the dBase II commands are not suppgrted by the dB
Compilsr. These are listed as follows: APPEND , BROWSE, CHANGE,
CREATE , DISPLAY/LIST STATUS, EDIT, HELP, INSERT, MODIFY COMMAND,
MODIFY STRUCTURE, SET CARRY ON/OFF, SET DEBUG ON/OFF,* SET ECHO

ON/OFF, SET SCREEE ON/OFF, SET STEP ON/COFF, SET TALK ON and some

macro=-substitutes .

* asterisk indicates the command is used in the implementation
program.

61

APPENDIX C

A COMPARISON OF TWO QBES

This Appendix summarizes the differences between the IBM's

QBE and the implemented Zenith-150 microcomputer version of QBE

as follows:

FEATURE

Table name

Column names

Number of ceolumns
per table

Column width

Number of tables
available per

query

Horizontal and
vertical screen

scrolling function
Grouping
function

Cyclical
structure

Out put

IBM QBE

placed in the upper
left corner of the
table skeleton

entered either
by user or system

99

32 characters

no limit

supplied

supplied

allowed

displayed in
table form

62

MICROCOMPUTER QBE

e S T ST A SN ED En G G T S

placed above and
to the right of the
table skeleton

entered by user

12 characters

2 general tables,
1 result table,

any number of
condition boxes

not available
not available

not allowed

displayed in
linear form

APPENDIX D
PROGRAM ORGANIZATION

The implemented QBE program contains a main routine which
seryes as a driver, along with several subroutines. The

following diagram shows the hierarchical structure of the major

subroutines in the program,

e ——— +
| QBE |
fmm——————— +
|
| |
——————— + tmmm———— +
| DRAW i { RUN |
o ————— + o ——————— +
| I
I | | l
fmm———————— + temmmmm———— + e ———— + e ————— +
| DTABLE | | DCON | | PROCFILE] | PARSE1 |
fmmmm———— + Fmm———————— * fm——em————— + e ——————— +
| | |
frm——————— + o ———— + |
| STORE1 | | STORE2 | |
tmmm——————— + e —— + {
I | | i
o ——————— + dmmme-- + trrmem—- 4 Ammmm——— +
IDISPFILE] |RENAME| |CRTFILE| |DELFILE]
tm—————— + Amme—-- + Ammem—-- + Ammm———- +
tmm——————— +
| PARSE1 |
e m——————— +
!
| | | I i I
domm———+ | fmm—————— | fm————— + |
| CHKFLD | ! {AVTABLE | | {RETRIE] |
e ————— + | o ——————— + | b ————— + i
tmm————— + e ————— + o —————— +
IMAKEOUT | |SCANAV | |DISPANS|
——————— + o ——— + o —————— +

Figure C.1 Program's Hierarchical Diagram

63

This diagram reflects the nature of calls which take place
between the program's modules. If there is a direct path from
one module to another at a lower level, then the module at the
lower level 1is directly invoked by the other to perform a
function., Since dBase II does not supply parameter passing
mechanisms when a subroutine is invoked, all the variables are
used as global variables, so each subroutine 1is constructed

without a parameter list and invoked without an argument list.

A brief description of each major subroutine shown in the
diagram is given as follows. Program modules which are not

included can be found in another report [LIN86].

QBE
The QBE routine displays greeting messages and controls the

initial use of the QBE query system,

DRAW

The DRAW routine interacts with the user to determine what kind

of table (general, result, or condtion table) the user needs.

RUN
The RUN routine processes the user's query, and, after finishing,
continues the interaction with the user who decides at this point

whether to continue with another query or not.

DTABLE
The DTABLE routine displays either a general table or a result

table on the screen to allow the user to enter the query.

64

DCON
The DCON routine displays a condition box on the screen to 1let

the user enter the condition statement(s).

PROCFILE

The PROCFILE routine processes queries which are concerned with
file management. Examples of the query functions that are
supported include: displaying all the file names existing in the
user's disk, displaying the struéture of a specific file,

deleting a file, and creating a new file.

PARSE1

The PARSE1 routine parses the user's query so that information

from the data base can be retrieved.

STORE1
The STORE1 routine stores the user's query (entered in the

general or result table) into SFILEs.

STORE2

The STOREZ2 procedure stores the condition statements (entered in

the condition box) into a file.

DISPFILE
The DISPFILE routine displays answers for the query which concern
either displaying file names existing in the user's disk, or the

structure of a specific file.

RENAME
The RENAME routine (which is not included in the program listing)

¢

renames an existipg file.

65

CRTFILE
The CRTFILE routine (which is not included in the program

listing) creates a new file and inserts it into the data base.

DELFILE
The DELFILE routine (which is not included in the program

listing) deletes an existing file from the data base.

CHKFLD
The CHKFLD routine checks all the field names of a specified file

to find if they are all existing in the file.

MAKEOUT

The MAKEOUT routine (which is not wexisting in the program
listing) is a general name for two subroutines. One is MAKEOUT1,
which scans the general table and stores all field names having a
print statement onto the PRINT stack. The other subroutine is
MAKEOUT2, which scans the result table and stores all field names

having a print statment onto the PRINT stack.

AVTABLE

The AVTABLE routine scans the user's query and separates each
data entry into six categories: attributes, value, prefix,
operator, built-in function and tableid. They are then stored

into an avtable (attribute and variable table),.

SCANAV
The SCANAV routine (which is not existing in the program listing)
is a general name for three subroutine -~ SCANAV1, SCANAV2, and

SCANAV3. SCANAV1 scans the avtable and checks if there are any

66

values with arithmetic operators. SCANAV2 scans the avtable and
checks if any value contains the logical coperators 'AND'! or 'OR?',
SCANAV3 scans the avtable and stores all ¢the remaining

informatioon onto the CODE stack.

RETRIE
The RETRIE routine (which is not existing in the program listing)
is a general name for two subroutines -- RETRIE1 and RETRIEZ.

Both subroutines retrieve the information from the data base and

push the information onto the SAVE stack.

DISPANS
The DISPANS routine displays the result of a query either on the

screen or on a hard copy.

67

APPENDIX E

PROGRAM LISTING

A1 RE AR SRR R R 2R AR R R R 2R R X R R R]

¥ AVTABLE, PRG *
* This procedure, which is called by procedure PARSE1.prg, scans¥*
* the user's query and separates each data entry into six »
¥ categories: attribute, value,prefix,operator, built-in *
* function and tableid. They are then stored into an avtable .
% (attribute and variable table). *

(3223332222 RS XX 22222 AR AR R R 222222 R R R 2R

IF .NOT. OUTPUT
USE PRNSTACK
COPY TO B:PRNSTACK
ENDIF
USE AVTABLE
COPY TO B:AVTABLE
STORE 0 TO I
DO WHILE I < FILE:NUM
STORE I + 1 TO I
STORE 'SFILE' + STR(I,1) TO SFILE
SELECT PRIMARY
USE B:&SFILE
STORE 'FILE' + STR(I,1) TO FILE
STORE TRIM(FLD:NAME) TO &FILE
GOTO BOTTOM
STORE # TO MAX:REC
STORE 0 TO J
DO WHILE J < 3
STORE J + 1 TO J
STORE 'ROW' + STR(J,1) TO ROW:NO
STORE 1 TO K
DO WHILE K < MAX:REC
STORE K + 1 TO K

GOTO K
STORE F TO BLANK -
STORE * ' TO MPREFIX,MVALUE,MOPERATOR,MBUILTFUN

STORE TYPE TO MTYPE
STORE LEN TO MLEN
STORE DEC TO MDEC
STORE TRIM(FLD:NAME) TO FIELD:NAME
STORE &ROW:NO TO PARSER
IF PARSER = ' !
LOOP
ELSE
IF $(PARSER,1,2) = 'P.!
DO PARSEZ
ELSE
IF $(PARSER,1,2) = 'U,!
DO PROCUPDATE

68

ELSE
IF $(PARSER,1,1) = '_!
IF $(PARSER,1,2) = ' !
STORE '#*# ERROR - NO BLANK CAN BE'+;
'EMBEDDED INTO EXAMPLE ELEMENT!';
TO ERROR:MSG
STORE T TO ERROR
EL SE
STORE TRIM(PARSER) TO MVALUE
ENDIF
ELSE
IF $(PARSER,1,1) = '(!
STORE TRIM(PARSER) TO MVALUE

ELSE

IF $(PARSER,1,1) = '>' .OR. $(PARSER,1,1) = '<!
DO PARSE3
ELSE
IF $(PARSER,1,4) = 'ALL.' .OR. ;
$(PARSER,1,4) = 'UNQ.'
DO PARSEAL
ELSE
IF $(PARSER,1,4) = 'SUM.' .OR.;
$(PARSER,1,4) = 'CNT.'.OR.;
$(PARSER,1,4) = 'AVG.' .OR.;
$(PARSER,1,4) = 'MAX.'.OR. ;
$(PARSER,1,4) = 'MIN.'
DO PARSES
ELSE
IF $(PARSER,1,3) = 'AO.' ,OR, ;
$(PARSER,1,3) = 'DO,!

DO PARSE6
ELSE
IF $(PARSER,1,1)$'0123456789!
STORE TRIM(PARSER) TO MVALUE
ELSE
IF $(PARSER,1,1)$'ABCDEFGHIJKLMNOP!;
+.OR. $(PARSER,1,1)$'QRSTUVWXYZ®
STORE TRIM(PARSER) TO MVALUE
ELSE
STORE '###3YNTAX ERROR - INVALID';
* SYMBOL' TO ERROR:MSG
STORE T TO ERROR
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
IF ERROR
RETURN

69

ELSE
IF .NOT. BLANK
SELECT SECONDARY
USE B:AVTABLE
APPEND BLANK
REPLACE ATTR WITH FIELD:NAME, VALUE WITH MVALUE;
TYPE WITH MTYPE,LEN WITH MLEN, DEC WITH MDEC;
PREFIX WITH MPREFIX,OPERATOR WITH MOPERATOR;
REPLACE TABLEID WITH STR(I,1);
BUILTFUN WITH MBUILTFUN
ENDIF
ENDIF
SELECT PRIMARY
ENDDO
ENDDO
ENDDO
RELEASE MTYPE,FIELD:NAME,MVALUE, MPREFIX,MBUILTFUN, MOPERATOR, I, J;
RELEASE K, MAX:REC,PARSER,FILE, SFILE, ROW:NO, BLANK
SELECT PRIMARY
USE
SELECT SECONDARY
USE
RETURN

2L XS X EREE2 2R 2220222222222 222 R AR R R R AR R R 2L

* BUILTANS. PRG *
#* This procedure, which is called by procedure DISPANS.prg, b
¥ displays the result for a query which 1is related to the ®

¥ bpuilt-in function. L
RN R AN AR AR R R R R R R R R A RN AR RN RN R R R R RN RN R R RN R RN RN R R R RN R R R RN

ERASE
IF PRINTING = 'Y!
SET PRINT ON
SET FORMAT TO PRINT
ENDIF
@ 2,3 SAY 'The answer to your query is shown as follows:'!
USE B:BUILTFUN
COPY STRUCTURE EXTENDED TO B:STRU
USE B:STRU
STORE FIELD:NAME TO FLD:NAME
STORE * ' & '&FLD:NAME' + ' ' TO FLD:NAME
STORE FIELD:LEN + 4 TO FLD:LEN
@ 5,20 SAY ' ¢
@€ 5,21 SAY FLD:NAME
STORE FLD:LEN + 21 TO COL
@ 5,COL SAY '}
STORE FLD:LEN + 2 TO FLD:LEN
STORE 0 TO I
STORE 19 TO COL
DO WHILE I < FLD:LEN
STORE I + 1 TO I
STORE COL + 1 TO CoOL
IFI=1 .0R, I= FLD:LEN

70

@ 6,COL SAY '4!
ELSE
@ 6,C0L SAY '-!
ENDIF
ENDDO
STORE FLD:LEN - 2 TO FLD:LEN
STORE 6 TO ROW
USE B:BUILTFUN
DO WHILE .NOT. EOF
STORE ROW + 1 TO ROW
@ ROW,20 SAY '}!
€ ROW,23 SAY &FLD:NAME
STORE FLD:LEN + 20 TO COL
@ ROW,COL + 1 SAY '|!
@ ROW,COL + 3 SAY FUNCTION
SKIP
ENDDO
IF PRINTING = 'Y!
SET FORMAT TO SCREEN
SET PRINT OFF
ENDIF
@ 22,1 SAY 'YOUR QUERY HAS BEEN DONE'
RETURN

t 22222222222 AR 222 a2 X222 RS2 RRRRRRRR2RRRRRRRRRXR 2]

* BUILTFUN, PRG

* This procedure, which is called by procedure RETRIE1.prg,
¥ processes all the system supported built-in functions: AO.
¥ (sort field into ascending order), DO. (sort file into
#
*
*
%

w N W % W

descending order),MIN, (find the minimum value) MAX. (find
the maximum value) SUM. (summation), AVG., (average) and CNT,.*

(count the record numbers of a file). #
B o6 0 OO0 000 B0 00 00 0 06 0600 06 060 0 06 06 96 36 96 06 00 0 906 00 90 36 00 06 96 00 06 06 96 3 96 0 o0 06 06 9 O 00 3 36 9 96 06 O 6

USE B:CODESTACK
STORE TRIM(ATTR) TO MATTR,OATTR
STORE TRIM(BUILTFUN) TO MBUILTFUN
IF $(MBUILTFUN,1,3) = 'A0.!
IF MAX:CODE > 1
STORE '%*=*ERROR - SORRY,THE SYSTEM CAN ONLY SORT ONE's+;
' COLUMN' TO ERROR:MSG
STORE T TO ERROR
ELSE
USE B:SAVE
SORT ON &MATTR TO B:BUFFER1 ASCENDING
USE B:BUFFERT
COPY TO B:SAVE
ENDIF
RETURN
ELSE
IF $(MBUILTFUN,1,3) = 'DO.!
IF MAX:CODE > 1
STORE '¥=% ERROR - SORRY, THE SYSTEM CAN ONLY SORT ONE'+;
' COLUMN' TO ERROR:MSG '

71

STORE T TO ERROR
ELSE
USE B:SAVE
SORT ON &MATTR TO B:BUFFER1 DESCENDING
USE B:BUFFER1
COPY TO B:SAVE
ENDIF
RETURN
ELSE
IF LEN(MBUILTFUN) = 4
IF $(MBUILTFUN,1,4) = 'UNQ.'
DO UNIQUE
USE B:SAVE1
COPY TO B:SAVE
ENDIF
RETURN
ELSE
STORE T TO BUILDFUN
USE B:SAVE
COPY STRUCTURE EXTENDED TO B:STRU
USE B:STRU
LOCATE FOR FIELD:NAME = '&MATTR!
STORE FIELD:LEN + 3 TO FLD:LEN
STORE FIELD:DEC TO FLD:DEC
USE OUTSTRU
COPY TO B:STRU
USE B:STRU
APPEND BLANK
REPLACE FIELD:NAME WITH MATTR, FIELD:TYPE WITH 'N';
FIELD:LEN WITH FLD:LEN, FIELD:DEC WITH FLD:DEC
APPEND BLANK
REPLACE FIELD:NAME WITH 'FUNCTION', FIELD:TYPE WITH 'C';
FIELD:LEN WITH 8
CREATE B:BUILTFUN FROM B:STRU
DO WHILE MAX:CODE > 0
USE B:CODESTACK
GOTO MAX:CODE
STORE TRIM(ATTR) TO MATTR
STORE TRIM(BUILTFUN) TO MBUILTFUN
IF MATTR = OATTR
STORE 'SAVE' TO FILE
STORE €('UNQ.',MBUILTFUN) TO FOUND
IF FOUND > O
USE B:SAVE
GOTO BOTTOM
IF # > 1
DO UNIQUE
STORE 'SAVE1' TO FILE
ENDIF
ENDIF
IF $(MBUILTFUN,1,4) = 'SUM.' .OR.;
$(MBUILTFUN,1,4) = 'AVG.'
DO SUMORAVG
ELSE
IF $(MBUILTFUN,1,4) = 'CNT.'

72

DO COUNT
ELSE
IF $(MBUILTFUN,1,4) = 'MAX.' .OR.;
$(MBUILTFUN,1,4) = 'MIN,®
DO MAXORMIN
ENDIF
ENDIF
ENDIF
ENDIF
ELSE
STORE '%%% ERROR = TOO MANY DATA ENTRIES WITH' +;
' BUILT-IN FUNCTION' TO ERROR:MSG
STORE T TO ERROR
RETURN
ENDIF
IF ERROR
RETURN
ENDIF
USE B:BUILTFUN
APPEND BLANK
REPLACE &MATTR WITH RESULT, FUNCTION WITH MBUILTFUN
STORE MAX:CODE - 1 TO MAX:CODE
ENDDO
RELEASE FLD:LEN, FLD:DEC
ENDIF
ENDIF
RELEASE MATTR, MBUILTFUN, OATTR
RETURN

AR AR R R R R R R AR RN R RN R R RN AR AR R TR RN AR R AR RN AR ERRRERRTARERTN

* CALCULATE. PRG *
* This procedure, which is called by procedure SCANAV1.prg, »
* parses an arithmetic expression to see if it is valid or not. *
* If the expression is valid, the procedure will then calculate *
#*
]

*¥ the result.
1 23 R R R R R R R R a2 A R R R R R R R R R R R R R R N R R R R R R R R X R R 2 X222 EEEER2E22iERE)

USE PSTACK
COPY TO B:PSTACK
USE VSTACK
COPY TO B:VSTACK
DO WHILE $(EXPRESSION,1,1) <> ' ¢
IF $(EXPRESSION,1,1) = '(*
STORE '(' TO MVAL
DO PUSHP
DO PUSHV
ELSETORE $(EXPRESSION,2) TO EXPRESSION
IF $(EXPRESSION,1,1) = '+' .OR. $(EXPRESSION,1,1) = '=!
.OR. $(EXPRESSION,1,1) = '/' ,OR, $(EXPRESSION,1,1) =
STORE $(EXPRESSION,1,1) TO MVAL
DO PUSHV
STORE $(EXPRESSION,2) TO EXPRESSION

® 1t

ELSE

73

IF $(EXPRESSION,1,1)$'0123456789"
DO CONSTANT
IF ERROR
RETURN
ENDIF
DO PUSHY
ELSE
IF $(EXPRESSION,1,1) = '_t
IF NO:VALUE
STORE '#=# ERROR - INVALID ARITHMETIC'+;
' EXPRESSION' TO ERROR:MSG
STORE T TC ERROR
RETURN
ELSE
DO VARIABLE
IF ERROR
RETURN
ENDIF
DO PUSHV
ENDIF
ELSE
IF $(EXPRESSION,1,1) = ')
STORE ')' TO MVAL
DO POPP
IF ERROR
RETURN
ENDIF
DO PUSHV
STORE $(EXPRESSION,2) TO EXPRESSION
ELSE
STORE '*##% ERROR - INVALID ARITHMETIC'+;
! EXPRESSION' TO ERROR:MSG
STORE T TO ERROR
RETURN
ENDIF (*expression = ')1#%)
ENDIF (¥expression = '_' ¥)
ENDIF(* expression $'0123456789 *)
ENDIF (* expression = '+'or '=!" or '/!' or '®1#%)
ENDIF(* expression = '(!' #)
IF $(EXPRESSION,1,1) = ' !
STORE EXPRESSION TO UNPURGED
DO PURGEBLANK
STORE PURGED TO EXPRESSION
ENDIF
ENDDO (*while expression <> ' ' %)
USE B:PSTACK
GOTO BOTTOM
IF # > 0
STORE 'ERROR - INVALID ARITHMETIC EXPRESSION' TO ERROR:MSG
STORE T TO ERROR
RETURN
ELSE
STORE ' ' TO EXP
USE B:VSTACK
DO WHILE .NOT, EOF

T4

STORE EXP + TRIM(VALUE) TO EXP
SKIP
ENDDO
IF NO:VALUE
DO REPLACE1
ELSE
STORE &EXP TO MRESULT
STORE '9' TO BASE
STORE 1 TO LEN
DO WHILE MRESULT - VAL(BASE) >= 1
STORE '9' + '&BASE' TO BASE
STORE LEN + 1 TO LEN
ENDDO
STORE LEN + MDEC + 1 TO LEN
STORE STR(MRESULT,LEN,MDEC) TO RESULT
USE B:AVTABLE
GOTO I
REPLACE VALUE WITH RESULT
RELEASE MRESULT,BASE,LEN, RESULT, EXP
ENDIF (* no:value ¥)
ENDIF (¥ # > O %)

I I R R I EZ SRR SRRRR 2SR R AR AR R R R R R RRRRRRD R}

* CHKFILE. PRG L
This procedure, which is called by procedure SCANFN.prg, *
¥ checks a new file name to see if it is valid or not. ®

XTSRS R SRR RRR AR ARAAR RS2 R R RRRRRARd R

STORE F TO OK
IF LEN(FNAME) = 1 .AND. FNAME = ' !
STORE t#%=% ERROR - MISSING FILE NAME' TO ERROR:MSG
RETURN
ELSE
IF LEN(FNAME) > 8
STORE '### ERROR - FILE NAME CANNOT EXCEEDS 8 CHARACTERS';
TO ERROR:MSG
RETURN
ELSE
IF FILE (*B:&FNAME')
STORE '#*% ERROR - &FNAME file already exit ';
TO ERROR:MSG
RETURN
ELSE
IF €e('* ',FNAME) <> ¢
STORE '#=% ERROR - EMBEDDED BLANKS ARE NOT'+;
' PERMITTED IN THE FILE NAME' TO ERROR:MSG
RETURN
ELSE
IF $(FNAME,1,1) < 'A' ,OR. $(FNAME,1,1) > 'Z!
STORE '#*%+# ERROR - FILE NAME SHOULD BEGIN WITH'+;
' A LETTER' TO ERROR:MSG
RETURN
ELSE
STORE LEN(FNAME) TO STR:LEN

75

STORE 0 TO 1
DO WHILE I < STR:LEN
STORE I + 1 TO I
IF ($(FNAME,I,1) < 'A' .OR. $(FNAME,I,1) > 'Z1');
.AND., ($(FNAME,I,1) < '0' .OR. $(FNAME,I,1) > '9!)
STORE '##»% ERROR -~ FILE NAME CAN ONLY'+;
' CONSIST OF LETTER OR DIGIT';
TO ERROR:MSG
RETURN
ENDIF (* invalid symbol in file name *)
ENDDO (* i < str:len ¥%)
RELEASE I, STR:LEN
ENDIF (*# file name not begin with letter®)
ENDIF (* file name consist of a space#)
ENDIF (* file already exist #¥)
ENDIF (¥file name too long %)
ENDIF (#missing file name *¥)
STORE T TO OK
RETURN

A2 AR AR AR RS SRR R AR 222 R 2R 2222222222222

* CHKFLD. PRG *
* This procedure, which is called by procedure PARSEl.prg, *
* checks all field names of a specified file to see if they are #
¥ all existing in the file or not. *

A AR S AR R X AR AR AR R 2R R 22X RS R 2RSS AR SR SRR 2R R

STORE 0 TO I

DO WHILE I < FILE:NUM
STORE I + 1 TO I
STORE 'SFILE' + STR(I,1) TO SFILE
USE B:&SFILE

GOTO 2
DO WHILE .NOT. EOF
IF FLD:NAME = ' !
IF ROW1 = * v AND, ROW2 = ' ' _AND. ROW3 = ' !
DELETE
PACK
ELSE
STORE '##% ERROR -~ MISSING FIELD NAME' TO ERROR:MSG
STORE T TO ERROR
RETURN
ENDIF
ENDIF
SKIP

ENDDO (®*while not eof#)
ENDDO (* while i < file:num #)
STORE 0 TO I
DO WHILE I < FILE:NUM
STORE I + 1 TO I
STORE 'SFILE' + STR(I,1) TO SFILE
USE B:&SFILE
GOTO BOTTOM
IF # <= 1

76

STORE '#=% ERROR - INCOMPLETE QUERY' TO ERROR:MSG
STORE T TO ERROR
RETURN
ELSE
GOTO 1
STORE FLD:NAME TO FNAME
USE B:&FNAME
COPY STRUCTURE EXTENDED TO B:FIELDS
USE B:FIELDS
INDEX ON FIELD:NAME TO B:FLDNX
SELECT PRIMARY
USE B:&SFILE
GOTO 2
DO WHILE (.NOT, EOF) .AND. (.NOT. ERROR) .AND. ;
(.NOT. FINISHED)
STORE FLD:NAME TO FIELD:NAM
STORE €(',.',FIELD:NAM) TO FOUND
IF FOUND <> 0
IF FOUND <> 2
STORE '##% ERROR - SYNTAX ERROR' TO ERROR:MSG
ELSE
STORE $(FIELD:NAM,1,1) TO COMMAND
IF COMMAND <> 1t
STORE '#x#%# ERROR - INVALID COMMAND' TO ERROR:MSG
STORE T TO ERROR
ELSE
DO INSERTION
STORE T TO FINISHED
ENDIF
ENDIF
LOOP
ELSE
STORE TRIM(FIELD:NAM) TO FIELD:NAM
SELECT SECONDARY
USE B:FIELDS INDEX B:FLDNX
FIND &FIELD:NAM
IF # = 0
STORE v##%# ERROR - COLUMN &field:nam IS NOT "+;
WEXISTING IN TABLE &fname" TO ERROR:MSG
STORE T TO ERROR
LOOP
ELSE
SELECT PRIMARY
REPLACE P.LEN WITH S.FIELD:LEN;
P.TYPE WITH S.FIELD:TYPE, P.DEC WITH S.FIELD:DEC
ENDIF
ENDIF
SKIP
ENDDO (* not eof and not error and not finished =)
SELECT SECONDARY
USE
SELECT PRIMARY
USE
IF ERROR .OR. FINISHED
USE

77

DELETE FILE B:FIELDS

DELETE FILE B:FLDNX. NDX

RETURN

ENDIF (* error .or. finished %)
ENDIF (* # <= 1 %)

ENDDO (% i < file:num #)
RELEASE FNAME, SFILE,FIELD:NAM, FOUND, MAX:REC
DELETE FILE B:FIELDS
DELETE FILE B:FLDNX.NDX
RETURN

REEREE AR RRERRERRR A TR RRRRNRGER RN REE NN NN KK N KK RN oI w3350 ok

* CLEARFILE. PRG *
¥ This procedure, which is called by procedure RUN.prg and *
* QBE.prg, deletes all the files that are used as temporary ®
* storage files. *

2222 E 22222 AR SRR R AR R R AR AR SRR AR R R R

USE FILES
DO WHILE .NOT. EOF
STORE TRIM(FNAME) TO MFNAME
IF FILE('B:&MFNAME!)
DELETE FILE B:&MFNAME
ENDIF
SKIP
ENDDO
RETURN

R R TR R R RN RN R R RN R RN R N RN RN RN LR R AR RNRTR RN RT RN

* CONSTANT. PRG #
This procedure, which is called by procedure CALCULATE.prg, *
#*

¥ checks if a constant value is valid or not.
(3 22 222222222222 2222222222222 8382222 X223 2232222222222 2

STORE $(EXPRESSION,1,1) TO CONSTANT
STORE $(EXPRESSION,2) TO EXPRESSION
DO WHILE $(EXPRESSION,1,1)$t0123456789."
STORE CONSTANT + $(EXPRESSION,1,1) TO CONSTANT
STORE $(EXPRESSION,2) TO EXPRESSION
ENDDO
IF $(CONSTANT, LEN(CONSTANT) ,1) = '.!
STORE "##% ERROR - NUMBER CANNOT BE ENDED WITH DECIMALY +;
m POINT" TO ERROR:MSG
STORE T TO ERROR
RETURN

ELSE ,
STORE CONSTANT TO MVAL

ENDIF
RELEASE CONSTANT
RETURN

78

L 2RISR AR R R 22222222222 2222 R R]2 2]

¥ COUNT. PRG ®
This procedure, which is called by procedure BUILTFUN., prg, :

¥ counts the record numbers of a file.
I I 2 e R 222 ER 23 882 2 222222 2223 23X 22X 2222228223222 2R R 22

USE B:&FILE
GOTO BOTTOM

IF # = 0
STORE 0 TO RESULT

ELSE

COUNT TO RESULT
ENDIF
RETURN

R R R R R R R R RSN R RN RN R NN R RN RN R AR RN AR AR AR RN AR AR R RN R TRRRERR

* DCON. PRG *
* This procedure, which is called by procedure DRAW.prg, ®
* displays a condition table on the screen to let the user enter#*
% the condition statement(s). ¥

t AR 2RSSR 2R R 2 222222 222222222 R R R REZ]

STORE T TO C:EXIST
IF MAXROW = 6
STORE ROW + 1 TO ROW
ELSE
STORE ROW + 2 TO ROW
ENDIF (* maxrow = 6%)
STORE O TO ROW:COUNT
STORE 15 TO COL
@ ROW,COL SAY '1 C 0O N DI T I O N 8 1
STORE ROW + 1 TO ROW
DO WHILE ROW <= MAXROW
IF ROW = MAXROW - 3
€ ROW, COL SAY '4-crecmrrmmrmrcccccm e ccccccc e e e e +1!
ELSE
STORE ROW:COUNT + 1 TO ROW:COUNT
STORE 1 TO COL:COUNT
STORE '"ROW'+STR(ROW:COUNT,1)+':COL'+STR(COL :COUNT, 1) ;
TO PARSER
STORE ! 1 TO &PARSER
€ ROW,COL SAY ' ¢
€ ROW,COL + 1 GET &PARSER;
PICTURE *1yprYrptyreppyrepepperapespetenrgtyn
€ ROW,COL + 40 SAY ' |¢
ENDIF (* row = maxrow = 3%)
STORE ROW + 1 TO ROW
ENDDO (* row <= maxrow ¥)
READ
DO STOREZ2
RETURN

79

222222 R 2 R 22 RS R AR AR AR R 2222222222222 2SR 2R KL

® DISPANS. PRG *
* This procedure,which is called by procedure PARSE1.prg, »
* displays the result of a query either on the screen or on a *
* hard copy. *
HER RN RE RN R RN RN R R AR AR AR RN R R AN RN R R R AR AR RN R T A AN NERNRCRR
ERASE
IF .NOT. BUILDFUN

USE B:SAVE

GOTC BOTTOM

IF # = 0

@ 1,10 SAY '#=»% NO RECORD IS QUALIFIED TO YOUR QUERY w=w1
STORE T TO NO:REC
STORE 'NO RECORD IS QUALIFIED TO YOUR QUERY' TO ERROR:MSG
RETURN
ENDIF
USE
ENDIF
STORE F TO OK
DO WHILE .NOT., OK
STORE ' ' TO PRINTING

€ 1,10
€ 1,10 SAY 'Do you want hard copy (Y/N)?' GET PRINTING ;
PICTURE I
READ
IF PRINTING <> 'Y' .AND. PRINTING <> 'N!
LOOP
ELSE

STORE T TO OK
ENDIF (% printing <> ¥ or N ¥)
ENDDO (* not ok ¥)
STORE 'N' TO TABLE
IF PRINTING = 'Y?
STORE F TO OK
DO WHILE ,.NOT. OK
STORE t* * TO TABLE
€ 2,10
€ 2,10 SAY 'Report in table format? (Y/N)' GET TABLE;
PICTURE '!?
READ
IF I1(TABLE) <> 'Y' .AND. !(TABLE) <> 'N!
LOOP
ELSE
STORE T TO OK
ENDIF (®* table <> 'I' and 'N'*¥)
ENDDO (* ok *)

ERASE
SET TALK ON

6 1,15 SAY '*## BE SURE YOUR PRINTER IS ON *¥=' 4 CHR(T)
€ 2,15

ACCEPT Hit <RETURN> when ready' TO ACTION

RELEASE ACTION

SET TALK OFF
ENDIF (®*printing = Y #)

80

ERASE
€ 1,5 SAY 'WAIT (!
IF BUILDFUN
DO BUILTANS
ELSE
IF TABLE = 'Y!
DO TABFORM
ELSE
DO NTABFORM
ENDIF
ENDIF

RERA R AR R R R R AR R R R AN R AR AR AR AT RN AN AR AR A A AR T A A AR RN AR AR RN

¥ DISPFILE. PRG *
* This procedure, which is called by procedure PROCFILE,prg, »
¥ displays answers which concern file names existing in the *
¥ user's disk, or the structure of a specific file. *

ER R RN R R AR R RN RN WA N F AR RN RARRAARA AR TR RN R AR ARRN X R AR A AN TER

ERASE
STORE F TO OK
DO WHILE .NOT. 0K

ST?R$Ol ' TO PRINTING
H
€ 1,10 SAY 'Do you want hard copy (Y/N)?' GET PRINTING ;
PICTURE '!!
READ
IF PRINTING <> 'Y' ,AND, PRINTING <> 'N!
LOOP
ELSE

STORE T TO OK
ENDIF (* printing <> Y or N ¥)
ENDDO (* not ok *)
IF PRINTING = 'Y¢
SET FPRINT ON
ENDIF
ERASE
SET EXACT ON
DO CASE
CASE COMMAND = P
*#% display all the file names that are created by user w¥#
7?7 'The following file(s) is (are) created by you:'
Vi
USE B:COLFILES
DISP ALL OFF

CASE COMMAND = ',P!?
*=# display the structure of a file name which is ww#

*¥% specified by user =##

?7 'The structure of file &fname is shown as following:®
?

USE B:&FNAME

DISP STRUCTURE

RELEASE FNAME

81

CASE COMMAND = t'P, P!
=% display all the file name and their corresponding ®¥¥

B¥# strutures #w#

? 'All the files and their corresponding structures are!
?? ' shown as following:'!

SELECT PRIMARY
USE B:COLFILES
DO WHILE .NOT. EOF

STORE FNAME TO FILE:NAME

SELECT SECONDARY

gSE B:&FILE:NAME

?

DISP STRUCTURE

IF I(PRINTING) = 'Y
SET PRINT OFF

ENDIF (¥*printing = Y #)

?

ACCEPT 'Hit <RETURN> to continue or Q to quit!

ERASE
IF I(ACTION) = 'Q!
SELECT PRIMARY
USE
SELECT SECONDARY
USE
RETURN
ELSE
IF !(PRINTING) = !
SET PRINT ON
ENDIF (* printing
ENDIF (%action = Q #)
SELECT PRIMARY
SKIP
ENDDO (* not eof ¥%)
SELECT PRIMARY
USE
SELECT SECONDARY
USE
RELEASE FILE:NAME, ACTION

ENDCASE

SET PR

€ 22,1 SAY 'YOUR QUERY HAS BEEN DONE f

INT OFF

SET EXACT OFF

RETURN

Y

82

Y ¥)

TO ACTION

B AR R R R AR AR R R RN AR R R R RN R R R RN RN RN R R A AR RN RN R RN R F SR
* DRAW. PRG #
¥ This procedure, which is called by procedure QBE.pr%, =
interactes with the user to see what kind of table (general, =

% result or condition table) the user needs. *
R R R AR AR R R RRRRE N R RN AR AN B RS RN BRSNS R ENE NN % RN

SET TALK OFF
ERASE
STORE 6 TO MAXROW
STORE 1 TO ROW
STORE 0 TO FILE:NUM
STORE F TO R:EXIST
STORE F TO C:EXIST
STORE 'G' TO ANSWER
STORE T TO MORE
DO DTABLE
USE CONDITION
COPY TO B:CONDITION
@ 23, 1
DO WHILE MORE

STORE F TO OK

DO WHILE ,NOT., OK

STORE * ' TO ANSWER

€ 23,0 SAY 'DO YOU NEED ANOTHER TABLE (Y/N)?' GET ANSWER ;
PICTURE "I

READ

STORE 0 TO TIMER
DO WHILE TIMER <= 5
STORE TIMER + 1 TO TIMER
ENDDO (* timer <= 5 ¥)
e 23,0
IF ANSWER <> 'Yt _AND, ANSWER <> 'N!
LOOP
ELSE
STORE T TO 0K
ENDIF
ENDDO (¥ ok =)
RELEASE OK
IF ANSWER = 'Y!
IF FILE:NUM € 2
IF R:EXIST
STORE '(G)ENERAL TABLE (C)ONDITION BOX, (EJXIT ,'+;
'CHOOSE A LETTER' TO QUESTION
STORE “ANSWER = 'G'.OR. ANSWER = 'C'.OR. ANSWER = 'E'";
TO CORRECT
ELSE

STORE '"(G)ENERAL TABLE (R)ESULT TABLE <(C)ONDITION T+
' BOX (E)XIT, CHOOSE A LETTER ===>' TO QUESTION
STORE "ANSWER = 'G' .OR. ANSWER = 'R' .OR."+;
" ANSWER = 'C' ,OR. ANSWER = 'E'" TO CORRECT
ENDIF (*result:exit®)

ELSE
IF R:EXIST

83

STORE '(C)ONDITION BOX (E)XIT, CHOOSE A LETTER ===>1;
TC QUESTION .
STORE “ANSWER = 'C' ,OR. ANSWER = 'E'™ TO CORRECT
ELSE
STORE '(R)ESULT TABLE (C)ONDITION BOX, (E)XIT,CHOOSE'+;
' A LETTER ===>'" TO QUESTION
STORE “ANSWER = 'R* ,OR., ANSWER = 'C' ,OR.V +;
" ANSWER = 'Et% TO CORRECT
ENDIF (* result:exit *)
ENDIF (*# file:num <= 2 ¥)
DO GETANS
RELEASE QUESTION, CORRECT
@ 23,1
IF ROW >= 22
##% screen is full #w=#
ERASE
STORE 6 TO MAXROW
STORE 1 TO ROW
ELSE
STORE MAXROW + 8 TO MAXROW
STORE ROW + 1 TO ROW
ENDIF (* row >z 22 #)
IF ANSWER = 'G* ,OR, ANSWER = 1'R?

DO DTABLE
ELSE
IF ANSWER = 'Ct!
DO DCON
ENDIF
ENDIF(* answer = 'G' .or. 'R'#)

ELSE
RELEASE MAXROW,MAXCOL, ROW, COL
STORE F TO MORE
ENDIF (*answer = 1'y' %)
ENDDO (* more ¥)
RETURN

Rk R R R N R NN RN R RN R RN R R TR R R R RN R AR RN E R R R AR R R AR R NN

* DTABLE, PRG *
* This procedure,which is called by procedure DRAW.prg, displays#
¥ either a general table or a result table on the screen to *
* allow the user to enter the query. ¥

R R R R RN R R N R R R RN R R R R R R R RN R R RN AR R AR R RN R R E R RN R AR R AR RR RN EW

SET TALK OFF
STORE 0 TO COL
IF ANSWER = 'G'
STORE F TO 0K
DO WHILE .NOT. OK
STORE ! ' TO FILE:NAME
SET COLON ON
€ ROW,COL SAY 'ENTER TABLE NAME (AND COMMAND IF ANY)';
GET FILE:NAME PICTURE 'lilillttILLy?
READ
SET COLON OFF

84

DO SCANFN
e 23, 1
IF OK
IF FILE:QONLY
STORE F TO MORE
RETURN
ENDIF (* command <> ' ' #%)
ELSE
6 23,1 SAY ERROR:MSG
STORE 0 TO TIMER
DO WHILE TIMER <= 100
STORE TIMER + 1 TO TIMER
ENDDO (* while timer <= 100%)
e 23,1
RELEASE TIMER, ERROR:MSG
ENDIF (®* ok *)
ENDDO (* not ok *)
STORE FILE:NUM + 1 TO FILE:NUM
ENDIF (¥ answer = 'G'¥)
IF ANSWER = 'R!
STORE T TO R:EXIST
€ ROW, COL SAY '"RESULT TABLE!
STORE F TO 0K
DO WHILE .NOT. OK
STORE ! ' TO FNAME
SET COLON ON
@ ROW,COL+17 SAY 'ENTER A NEW TABLE NAME (IF RESULT NEED'+;
' TO BE SAVED)!'! GET FNAME PICTURE tiiipttpt
SET COLON OFF
READ
IF FNAME = ! !
STORE F TO SNAPSHOT
STORE T TO OK
LOOP
ELSE
STORE TRIM(FNAME) TO FNAME
IF $(FNAME,1,1) = ' 1
STORE FNAME TO UNPURGED
DO PURGEBLANK
STORE PURGED TO FNAME
ENDIF
DO CHKFILE
IF .NOT, 0K
@ 23,1 SAY ERROR:MSG
STORE 0 TO TIMER
DO WHILE TIMER <= 100
STORE TIMER + 1 TO TIMER
ENDDO (* timer <= 100 #)
e 23,1
RELEASE ERROR:MSG
LOQP
ELSE
STORE T TO SNAPSHOT
STORE FNAME TO SNAP:NAME
ENDIF(* not ok)

85

ENDIF (*fname = ! %)
ENDDO (* not ok®*)
ENDIF (* answer = 'R'¥)

IF MAXROW =

6

STORE ROW + 1 TO ROW ‘

ELSE

STORE ROW + 2 TO ROW
ENDIF (* maxrow = 6%)
STORE 1 TO ROW:COUNT
STORE 0 TO COL:COUNT
STORE 7 TO MAXCOL
DO WHILE ROW <= MAXROW

IF ROW = MAXROW -~ 3
@ ROW,COL SAY 'eejemcocmcceaa- e m—m—m—————— o —————— '+
e trmcm e ———— termm e ——————— !
ELSE

DO WHILE COL:COUNT < MAXCOL
STORE COL:COUNT + 1 TO COL:COUNT
IF ROW:COUNT <> 1 .OR. COL:COUNT <> 1

STORE ' ROW'+STR(ROW : COUNT, 1) +':COL'+STR(COL : COUNT, 1) ;
TO PARSER
IF COL:COUNT = 1

STORE * ' TO &PARSER

ELSE
STORE 1 ' TO &PARSER
ENDIF (®* col:count = 1 #)
@ ROW,COL GET &PARSER PICTURE *prtriprteayge

ENDIF (* row:count <> 1 or col:count <> 1%)

IF COL:COUNT = 1

STORE COL + 2 TO coL

ELSE

STORE COL + 12 TO cCOL

ENDIF (* col:count = 1 #)

IF COL:COUNT <> MAXCOL

€ ROW,COL SAY '|!

ENDIF (* col:count <> maxcol ¥*)
STORE COL + 1 TO COL
ENDDO (¥ col:count < maxcol #)
STORE ROW:COUNT + 1 TO ROW:COUNT
ENDIF (¥ row = maxrow = 3 #)
STORE ROW + 1 TO ROW
STORE 0 TO COL, COL:COUNT
ENDDO (* row < maxrow ¥)

READ
DO STORE1

86

\ 222328 X SRR 220 AR 2222222222 22222222 iR R T

¥ GETANS, PRG b
* This procedure, which is called by procedure DRAW.prg, *
* obtains the user's answer from the keyboard, *

2 XX L R AR A R AR R2 AR AR RS2 R0 SRR] R

STORE F TO OK
DO WHILE .NOT,., OK
STORE ' ' TO ANSWER
€ 23,0 SAY QUESTION GET ANSWER PICTURE *1¢
READ
STORE 0 TO TIMER
DO WHILE TIMER <= 10
STORE TIMER + 1 TO TIMER
ENDDO (* timer <= 5 *®)
@ 23,0
IF &CORRECT
STORE T TO OK
ELSE
LOOP
ENDIF
ENDDO (* not ok ¥*)
RETURN

t 22 R R XA XRRR AR AR AR R R R R R R Z D)

* MAKEOUT1.PRG *
This procedure, which is called by procedure PARSE1.prg, scans¥
* the general table and stores all the field names with a print #*

¥ statement (i.e., P.) onto the PRINT stack. "
12282222 X222 2232222222222 222X 2R 2R RS2 R R 222

USE PRNSTACK

COPY TO B:PRNSTACK

SELECT PRIMARY

USE B:SFILE1

GOTO 2

DO WHILE .NOT. EOF
SELECT SECONDARY
USE B:PRNSTACK
APPEND BLANK
REPLACE S.ATTR WITH P.FLD:NAME
SELECT PRIMARY
SKIP

ENDDO

SELECT PRIMARY

USE

SELECT SECONDARY

USE

87

FER NN RN R R RN AN RN AR AR RN R NER N AR AR NN Rtttk

* MAKEOUTZ2.PRG *
¥ This procedure, which is called by procedure PARSEl.prg, scans®
¥ the result table and stores all the field names with a print *

¥ statement (i.e., P.) onto the PRINT stack. *
s R E R R R R R R R R R R R AR AR R R R AR R R R XN R RXXERNRRERARREEESER SRR AR AR 2 2

USE PRNSTACK
COPY TO B:PRNSTACK
SELECT PRIMARY
USE B:RESULT
GOTO 2
DO WHILE .NOT. EOF
IF FLD:NAME = " !
IF ROW1 = ' ' ,AND, ROW2 = ' ' AND. ROW3 = '
DELETE
PACK

ELSE
STORE '#=#ERROR - MISSING COLUMN NAME IN THE RESULT!;

' TABLE' TO ERROR:MSG
STORE T TO ERROR

RETURN
ENDIF (* rowl = ' ' and row2 = ' ' and row3 = ' ' #)
ENDIF (¥ fld:name = ' ' ¥)

SKIP
ENDDO (* while not eof #)
GOTO BOTTOM
IF # <= 1
STORE '#=*¥ERROR - INSUFFICIENT DATA ENTRY IN RESULT TABLE!';
TO ERROR:MSG
STORE T TO ERROR
RETURN
ELSE
GOTO 1
STORE F TO P:ALL
DO WHILE .NOT. EOF
IF $(ROW1,1,1) = 'P' .OR. $(ROW2,1,1) = 'P' .OR. ;
$(ROW3,1,1) = 'P!
STORE "P' TO OPERATOR
STORE ',' TO SYMBOL
DO CHKOTHER
IF ERROR
RETURN
ENDIF
IF # = 1
STORE T TO P:ALL, OUTPUT
ELSE

IF P:ALL
STORE '#*%*#% ERROR - TOO MANY P. OPERATORS IN'+;

' RESULT TABLE' TO ERROR:MSG
STORE T TO ERROR
RETURN
ELSE
STORE T TO OQUTPUT
STORE TRIM(FLD:NAME) TO FIELD:NAME

88

DO SEARCH
IF ERROR
RETURN
ENDIF
STORE 'ROW' + STR(NUM,1) TO ROW:NO
STORE $(&ROW:NO,3) TO VARIABLE
IF $(VARIABLE,1,1) = t ¢
STORE VARIABLE TO UNPURGED
DO PURGEBLANK
STOR PURGED TO VARIABLE
ENDIF
IF $(VARIABLE,1,1) <> '
STORE '#*#ERROR - SYNTAX ERROR IN RESULT'+;
' TABLE' TO ERROR:MSG
STORE T TO ERROR
RETURN
ELSE
SELECT SECONDARY
USE B:PRNSTACK
APPEND BLANK
REPLACE S.ATTR WITH P.FLD:NAME;
S.VARIABLE WITH VARIABLE
ENDIF (*variable <> '_! %)
ENDIF (®p: all #)
ENDIF(* # = 1 %)
ELSE
IF # <> 1
IF .NOT. P:ALL
STORE '#%#ERROR - MISSING P, OPERATOR IN RESULT!'+;
' TABLE! TO ERROR:MSG
STORE T TO ERROR
RETURN
ELSE
STORE TRIM(FLD:NAME) TO FIELD:NAME
DO SEARCH
IF ERROR
RETURN
ENDIF
STORE 0 TO I
DO WHILE I < 3
STORE I + 1 TO I
STORE '"ROW' + STR(I,1) TO ROW:NO
IF &ROW:NO <> ' !
IF $(&ROW:NO,1,1) = '_!
SELECT SECONDARY
USE B:PRNSTACK
"APPEND BLANK
REPLACE S.ATTR WITH P,FLD:NAME;
S.VARIABLE WITH &ROW:NO
STORE 3 TO I
LOOP
ELSE .
STORE '#=#ERROR - SYNTAX ERROR!';
TO ERROR:MSG
STORE T TO ERROR

89

RETURN
ENDIF
ENDIF
ENDDO
ENDIF
SELECT SECONDARY
USE
ENDIF
ENDIF
SELECT PRIMARY
SKIP
ENDDO
ENDIF
SELECT PRIMARY
USE
SELECT SECONDARY
USE
RELEASE ROW:NO, OPERATOR, SYMBOL, NUM, P:ALL

AR R RN R RN N R AR R E RN R R RN AR RN AR RN AR R RS AR RN RN TR RS

* MAXORMIN. PRG L
* This procedure, which is called by procedure BUILTFUN.prg, .
¥ finds the maximum or minimum value of a numerical field. *

00 0k O 00 O O 0 O B Ok O 0GP U O O 3 0 00 00 e O O U 0 O O U 06 00 B30 6 O U6 06 e o O O U 0000 O NN RN

USE B:&FILE
GOTO BOTTOM
IF # = 0
STORE '#*#ERROR - NO RECORD AVAILABLE, CANNOT PROCEED'+;
' &mbuil tfun' TO ERROR:MSG
STORE T TO ERROR
RETURN
ELSE
GOTO TOP
STORE &MATTR TO TARGET
IF $(MBUILTFUN,1,4) = 'MAX,'
STORE '>' TO OPERATOR
ELSE
STORE '<' TO OPERATOR
ENDIF
DO WHILE ,NOT. EOF
IF &MATTR &OPERATOR TARGET
STORE &MATTR TO TARGET
ENDIF
SKIP
ENDDO (®*not eof¥)
STORE TARGET TO RESULT
ENDIF(¥* # = Q0 #)
RELEASE TARGET, OPERATOR
RETURN

90

R R R AR R R RN R RN R R R REERERERRRN RN RR R R RERR R RR NN E TR R ®EE

* NTABFORM. PRG LA
* This procedure, which is called by procedures DISPANS.prg and *
* TABFORM.prg, displays the result of a query in linear format ¥

* on the screen. *®
Y R R R 2 X222 2222222222223 3222232328222 2222322222222 2]

ERASE
IF PRINTING = 'Y?
SET PRINT ON
ENDIF
?
? 'The answer to your query is shown as follows:!'.
SELECT PRIMARY
USE B:SAVE
COPY STRUCTURE EXTENDED TO B:STRU
STORE 0 TO I
#¥x djsplay each record's content #¥#¥
DO WHILE .NOT. EOF
STORE I + 1 TO I
STORE STR(I,5) TO NUM
'
f
? 'RECORD# &NUM!
?

#¥x djisplay each field's content ###
SELECT SECONDARY
USE B:STRU
GOTO BOTTOM
STORE # TO MAX:REC
STORE 0 TO J
DO WHILE J < MAX:REC
STORE J + 1 TO J
GOTO J
STORE FIELD:NAME TO FLD:NAME
##% check if the field length is more than 65 charactersw»#*#
#%%¥ if so display rest content to the next line bl
STORE 65 TO MAX:LEN
IF FIELD:TYPE <> 'N!
SELECT PRIMARY
STORE TRIM(&FLD:NAME) TO CONTENT
STORE LEN(CONTENT) TO C:LEN
IF C:LEN > MAX:LEN
STORE $(CONTENT,1,MAX:LEN) TO SUB:CONT
7?7 '&FLD:NAME : &SUB:CONT!
STORE $(CONTENT,MAX:LEN + 1) TO SUB:CONT
STORE LEN(SUB:CONT) TO C:LEN
STORE (C:LEN / MAX:LEN) TO LINE:NEED
STORE INT(LINE:NEED) TO LINE:NEED
STORE C:LEN - LINE:NEED # MAX:LEN TO REMAINDER
IF REMAINDER > O
- STORE LINE:NEED + 1 TO LINE:NEED
ENDIF (* remainder > 0 ¥)
STORE 1 TO BEGIN

91

STORE 0 TO K
DO WHILE K < LINE:NEED
STORE $(SUB:CONT,BEGIN,MAX:LEN) TO SUB:CONT
Y &SUB :CONT!
STORE K + 1 TO K
STORE MAX:LEN + BEGIN TC BEGIN
ENDDO (* k < line:need ¥)
ELSE
7 '&FLD:NAME : &CONTENT?
ENDIF (* c:len > max:len #¥)
ELSE
STORE FIELD:LEN TO FLD:LEN
STORE FIELD:DEC TO FLD:DEC
SELECT PRIMARY
?7 '&FLD:NAME : '+ STR(&FLD:NAME,FLD:LEN,FLD:DEC)
ENDIF (* p.type <> 'N' ¥)
SELECT SECONDARY
SKIP
ENDDO (* j <= no ¥)
IF I(PRINTING) = 'Y
SET PRINT OFF
ENDIF
?

ACCEPT 'Hit <RETURN> to continue or Q to quit' TO ACTION

IF !(ACTION) = 'Q!
SELECT PRIMARY
USE
SELECT SECONDARY
USE
RETURN
ELSE
ERASE
ENDIF (* action = 'Q'%)
IF I(PRINTING) = 'Y!
SET PRINT ON
ENDIF
SELECT PRIMARY
SKIP
ENDDO
SELECT PRIMARY
USE
SELECT SECONDARY
USE
SET PRINT OFF
€ 22,1 SAY *YOUR QUERY HAS BEEN DONE'
RETURN

92

2SS RSS2SR RRRRRRR 2R R R R 2R R 2 &)

® PARSE1 . PRG *
* This procedure, which is called by procedure RUN.prg, parses®
% the wuser's query so that information from the data base *

* can be retrieved. #
X P R AR 2222222222222 2 22X 2 iR RS2 X222 22222 2222222222222

€ 23,1 SAY 'RUNNING, PLEASE WAIT FOR A WHILE !
STORE F TO ERROR, FINISHED, OUTPUT,UNION, JOIN,BUILDFUN, NO:REC
DO CHKFLD
IF ERROR ,OR, FINISHED
RETURN
ENDIF
USE B:SFILE1
IF $(ROW1,1,1)$'ID' ,OR. $(ROW2,1,1) $ 'ID' .OR. ;
$(ROW3,1,1) & 'ID!
STORE 'ID' TO OPERATOR
STORE '.! TO SYMBOL
DO CHKOTHER
IF ERROR
RETURN
ELSE
STORE 'ROW' + STR(NUM,1) TO ROW:NO
STORE $(&ROW:NO,1,2) TO COMMAND
ENDIF
RELEASE OPERATOR, SYMBOL, NUM
DO CONSQUERY
DO DOCOM
RETURN
ELSE
IF $(ROW1,1,1) = 'P' .OR. $(ROW2,1,1) = 'P' .OR. ;
$(ROW3,1,1) = 'P!
STORE 'P* TO OPERATOR
STORE ',! TO SYMBOL
DO CHKOTHER
RELEASE OPERATOR, SYMBOL, NUM

IF ERROR
RETURN
ENDIF
STORE T TO OUTPUT
DO MAKEOUTI
ELSE
IF $(ROW1,1,1) = ' ' ,OR. $(ROW2,1,1) = ' ' ,OR. ;
$(ROW3,1,1) = ' ¢
STORE ' ' TO OPERATOR
STORE ' ' TO SYMBOL
DO CHKOTHER
IF ERROR
RETURN
ENDIF
RELEASE OPERATOR, SYMBOL, NUM
ELSE

STORE '#*¥ERROR - INVALID SYSTEM OPERATOR!' TO ERROR:MSG

STORE T TO ERROR
RETURN

a3

ENDIF
ENDIF

ENDIF
IF R:EXIST

IF OUTPUT
STORE '### ERROR - TOO MANY SYSTEM OPERATORS' TO ERROR:MSG

STORE T TO ERROR
RETURN
ELSE
DO MAKEOUT2
IF ERROR
RETURN
ENDIF
ENDIF
ENDIF
DO AVTABLE
IF .NOT. OUTPUT
STORE '¥=# ERROR - SYSTEM OPERATOR NOT SPECIFIED' TO ERROR:MSG
STORE T TO ERROR
ENDIF
IF ERROR
RETURN
ENDIF
DO SCANPRN
USE B:AVTABLE
GOTO BOTTOM
STORE # TO MAX:AV
IF MAX:AV > 0
USE CODESTACK
COPY TO B:CODESTACK
STORE 0 TO I
DO WHILE I < FILE:NUM
STORE I + 1 TO I
STORE 'FILE' + STR(I,1) TO FILE
STORE &FILE TO FILE
STORE 'TEMP' + STR(I,1) TO TEMP
USE B:&FILE
COPY TO B:&TEMP
ENDDO
USE
IF C:EXIST
DO SCANCOND
ENDIF
DO SCANAVY
IF ERROR
RETURN
ENDIF
IF MAX:AV > O
DO SCANAV2
IF ERROR
RETURN
ENDIF
ENDIF
IF MAX:AV > O
DO SCANAV3

94

IF ERROR
RETURN
ENDIF
ENDIF
DO RETRIE1
IF ERROR
RETURN
ENDIF
ELSE
USE B:&FILE1
COPY FIELD &OUT:FLDS TO B:SAVE
ENDIF
IF R:EXIST
IF SNAPSHOT
USE B:SAVE
COPY TO B:&SNAP:NAME
ENDIF
ENDIF
DO DISPANS
RETURN

LA RS R R s R 2222221222

* PARSE2.PRG ®
* This procedure, which is called by procedure AVTABLE, prg, *
% parses the string which follows a P, operator. *

LA A R R R R R R R R e R R R Y R Y R R A X R X2 2222222

IF OUTPUT
STORE '###% ERROR- TOO MANY SYSTEM OPERATORS' TO ERROR:MSG
STORE T TO ERROR
RETURN
ENDIF
ENDIF
STORE T TO OUTPUT
SELECT SECONDARY
USE B:PRNSTACK
APPEND BLANK
REPLACE ATTR WITH FIELD:NAME
SELECT SECONDARY
USE
STORE $(PARSER,1,2) TO MPREFIX
STORE $(PARSER,3) TO PARSER
IF $(PARSER,1,1) = ! !
STORE PARSER TO UNPURGED
DO PURGEBLANK
STORE PURGED TO PARSER
ENDIF
IF PARSER = ' !
STORE T TO BLANK
RETURN
ELSE
IF $(PARSER,1,1) =
IF $(PARSER,1,2)

95

STORE '#x* ERROR - NO BLANK CAN BE EMBEDDED INTO'+;
' EXAMPLE ELEMENT' TO ERROR:MSG
STORE T TO ERROR
ELSE
STORE TRIM(PARSER) TO MVALUE
ENDIF
ELSE
IF $(PARSER,1,1) = (!
STORE TRIM(PARSER) TO MVALUE
ELSE
IF $(PARSER,1,1) = '>' .OR. $(PARSER,1,1) = '<!
DO PARSE3 _
ELSE
IF $(PARSER,1,4) = 'ALL.' .OR. $(PARSER,1,4) = 'UNQ.!
DO PARSE4
ELSE
IF $(PARSER,1,4) = 'SUM.' .OR. $(PARSER,1,4) = 'CNT.';
.OR. $(PARSER,1,4) = 'AVG.'.OR. $(PARSER,1,4) = 'MAX.'
.OR. $(PARSER,1,4) = 'MIN.'
DO PARSES

ELSE
IF $(PARSER,1,3)
DO PARSE6
ELSE
IF $(PARSER,1,1)$'0123456789"
STORE TRIM(PARSER) TO MVALUE
ELSE
IF $(PARSER,1,1)$'ABCDEFGHIJKLMNOPQRSTUVWXYZ®
STORE TRIM(PARSER) TO MVALUE
ELSE
STORE '¥%*SYNTAX ERROR ' TO ERROR:MSG
STORE T TO ERROR
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF

'AO.' uoRo $(PARSER,1’3) = 'DO"

ENDIF

I 2222 RS RARR AR AR R R R R RRGRRRRRRRRRRRRE

*
#*
*
*

PARSE3.PRG
This procedure, which is called by procedures AVTABLE.prg
or PARSEZ2.prg, parses the string having binary operator >,
<’ >=’ (:, or <>o

#
®
=
#*

\ 2233222222222 2222222222222 2222222 22222222 R iR 2]

IF MTYPE <> 'N!

STORE '#=#% ERROR - COLUMN &field:name IS NOT A NUMERICAL '+;
'TYPE, CANNOT DO COMPARISION' TO ERROR:MSG

STORE T TO ERROCR
RETURN

ELSE

96

IF $(PARSER,2,1) = '=!
STORE $(PARSER,1,2) TO MOPERATOR
STORE $(PARSER,3) TO PARSER
ELSE
IF $(PARSER,1,1) = '<' .AND, $(PARSER,2,1) = '>!
STORE $(PARSER,1,2) TO MOPERATOR
STORE $(PARSER,3) TO PARSER
ELSE
STORE $(PARSER,1,1) TO MOPERATOR
STORE $(PARSER,2) TO PARSER
ENDIF
ENDIF
ENDIF
IF $(PARSER,1,1) = ' !
STORE PARSER TO UNPURGED
DO PURGEBLANK
STORE PURGED TO PARSER
ENDIF
IF $(PARSER,1,1) <> ' !
IF $(PARSER,1,1)$'_(0123456789"
STORE TRIM(PARSER) TO MVALUE
ELSE
STORE '#%% ERROR - SYNTAX ERROR ' TO ERROR:MSG
STORE T TO ERROR
ENDIF
ELSE
STORE !'#*¥ERROR - INCOMPLETE EXPRESSION' TO ERROR:MSG
STORE T TO ERROR
ENDIF
RETURN

AR R RN N A AR TR AR R RN KRR RN RN R RN ERERR RN RN AR RN RN

* PARSEY . PRG #
* This procedure, which is called by procedures AVTABLE.prg or *

¥ PARSEZ2.prg, parses the string having UNQ. or ALL. operator. *
Rk R RN NN RN RN RN RN R RN R E RN NN AR R R R RN RN R AN NN RNt

IF $(PARSER,1,4) = 'UNQ.'
STORE 'UNQ.' TO MBUILTFUN
ENDIF
STORE $(PARSER,5) TO PARSER
IF $(PARSER,1,1) = ' !
STORE PARSER TO UNPURGED
DO PURGEBLANK
STORE PURGED TO PARSER

ENDIF

IF $(PARSER,1,1) = '_* .OR., $(PARSER,1,1) = ' !
STORE TRIM(PARSER) TO MVALUE

ELSE

STORE '#=#% ERROR - INVALID QUERY' TO ERROR:M3G
STORE T TO ERROR

ENDIF

RETURN

g

23RS RSS2 R AR AR RRR R R R R R 222 T S 2]

* ' PARSES . PRG ¥
* This procedure, which is called by procedures AVTABLE.prg or =
* PARSE2.prg, parses the string having a built-in function *
(MAX., MIN., CNT., SUM., AVG.). *

2 X2 R R 22X X R R R RR 2R RS RS RS SRR R RS AR AR AR RS 2R L

IF $(PARSER,1,4) <> 'CNT.®
IF TYPE <> 'NY
STORE '#%% ERROR - COLUMN &field:name IS NOT A NUMERCIAL '+;
'TYPE, CANNOT DO CALCULATION' TO ERROR:MSG
STORE T TO ERROR
RETURN
ENDIF
ENDIF
STORE $(PARSER,1,4) TO MBUILTFUN
STORE $(PARSER,5) TO PARSER
IF $(PARSER,1,1) = ' !
STORE PARSER TO UNPURGED
DO PURGEBLANK
STORE PURGED TO PARSER
ENDIF
IF $(PARSER,1,4) = 'ALL.' ,OR. $(PARSER,1,4) = 'UNQ.®
STORE MBUILTFUN + $(PARSER,1,4) TQ MBUILTFUN
ELSE
STORE '#** ERROR - MISSING ALL. OR UNQ. IN BUILT-IN FUNCTION'+;
' gmbuil tfun' TO ERROR:MSG
STORE T TO ERROR
RETURN
ENDIF
STORE $(PARSER,5) TO PARSER
IF $(PARSER,1,1) = ' !
STORE PARSER TO UNPURGED
DO PURGEBLANK
STORE PURGED TO PARSER

ENDIF

IF $(PARSER,1,1) = ' ' ,OR, $(PARSER,1,1) = '_t
STORE TRIM(PARSER) TO MVALUE

ELSE

STORE '#*#ERROR- INVALID QUERY' TO ERROR:MSG
STORE T TO ERROR

ENDIF
RETURN
2 3222222222222 R AR 2R 2R RRR X2
* PARSE6 . PRG *
* This procedure, which is called by procedures AVTABLE.prg or ¥
% PARSE2.prg, parses a string having AO. or DO. built-in *

¥ functions. *
o 3% 3 9 % % 0 9 9 % 9% 9t 3 3 3 O 96 O 96 9 3 9k 36 9F 3 9% 96 9 9 96 9 9 3 o 9t 9 3% 0 % 9k 9 3% ¢ 9 9 9 9F 9 9 96 9 3 % 96 9 9% % 9 W W W % W RN

STORE $(PARSER,1,3) TO MBUILTFUN
STORE $(PARSER,4) TO PARSER

IF $(PARSER,1,1) = ' !
STORE PARSER TO UNPURGED

98

DO PURGEBLANK
STORE PURGED TO PARSER

ENDIF _

IF $(PARSER,1,1) = ' ' .OR. $(PARSER,1,1) = '_!
STORE TRIM(PARSER) TO MVALUE

ELSE

STORE '*=¥ERROR - INVALID QUERY'* TO ERROR:MSG
STORE T TO ERROR

ENDIF
RELEASE PURGED, UNPURGED

RETURN

s I R R RS R R R R R RS R AR R XA RS AR RA RS R L

* POPP. PRG *
* This procedure, which is called by procedure CALCULATE.prg, *
* pops a left parenthesis from a stack if a right parenthesis is¥

¥ matched. *
I I I I s I I T I s I N T I I I I ITTITITTTIITITITYTTYITYIIYITT]

USE B:PSTACK
GOTO BOTTOM
IF # >0
DELETE
PACK
ELSE
STORE '#=*% ERROR - INVALID ARITHMETIC EXPRESSION!;
TO ERROR:MSG
STORE T TO ERROR
ENDIF
RETURN

AW RN TR N R R R RN R AR AR TR RR RN A ER R AR AR AR AR RN SRR RN RA RN

* PROCFILE, PRG =
¥ This procedure, which is called by proecedure RUN.prg, *
¥ processes queries concerned with the file management, such as#
* displaying all the file names existing in the user's disk, *
*¥ displaying the structure of a specific file, deleting a file *
#*
*

and creating a file. *
I 22 R R R R X R R R R R R R R R R R R X R A R R X R R RN R R R R A XX 2R 2R3 REZ2I 22X RAXTZ 22 X

SET EXACT ON
DO CASE
CASE @('P',COMMAND) <> ©
*¥% retrieve data base file name or file structure *##
DO DISPFILE
CASE COMMAND = 'U!
*%#% rename a data base file ®i#¥
DO RENAME
CASE COMMAND = 'I, I
*%% create a new data base file #x#¥
€ 23,1 SAY " JUST A SECOND, YOUR QUERY IS PROCESSING "
DO CRTFILE
CASE COMMAND = 'D!
¥#% delete an existing data base file ##¥¥

99

STORE ' ' TO ANS
@ 23,1 SAY v ARE YOU SURE THAT YOU WANT TO DROP THE"+;
" TABLE ? Y/N " GET ANS PICTURE 'I!
READ '
DO CASE
CASE !I(ANS) = 'Y
DELETE FILE B:&FNAME
ERASE
? ' &FNAME IS DELETED '
RELEASE ANS,FNAME
RETURN
CASE I(ANS) = 'N!
ERASE
ENDCASE
ENDCASE (¥ COMMAND #)
SET EXACT OFF
RETURN

L i3 SRR L ARSI R 22222 R0 R,

* PURGEBLANK. PRG *
* This procedure, which is called by several precedures, deletes*

* all the unnecessary blanks from a string. *
I AZ SRR EZXXE SRR AR R AR R AR RR R AR SRR R AR R R R R X222 2]

STORE LEN(UNPURGED) TO MAX:LEN
STORE 1 TO MI
DO WHILE $(UNPURGED,MI,1) = ' ' ,AND, MI < MAX:LEN
STORE MI + 1 TO MI
ENDDO
IF $(UNPURGED,MI,1) = ' !
STORE ' ' TO PURGED

ELSE
STORE $(UNPURGED,MI) TO PURGED

ENDIF

RELEASE MI, MAX:LEN

RETU RN

I R P T T
* PUSHP. PRG ¥

* This procedure, which is called by proecedure CALCULATE.prg, *
®

% pushes a left parenthesis onto a stack.
ER R R R RN NN RN R R R AR RN R R RN E RN R R RN R RN AR R AR AR RN RN RN

USE B:PSTACK

APPEND BLANK

REPLACE PREN WITH MVAL
USE

RETURN

100

AR R R R SRR AR R R RRR AR SRR AR R R R X222 R 2R

% PUSHV. PRG *
* This procedure, which is called by procedure CALCULATE.prg, *
¥ pushes all the symbols and values of an arithmetic expression *

* onto a stack. b
T I I L e s I e e s I e e e e e e I I I

USE B:VSTACK

APPEND BLANK

REPLACE VALUE WITH MVAL
USE

RELEASE MVAL

RETURN

242 E22 2222222222222 222 RR222 2220222022 R iR 2Rt RRRERRE 2]

* QBE. PRG ¥
* This procedure displays greeting messages and controls the =
jnitial use of the QBE query system,

i 2222222222222 2222222 R iR R Rt s X222 R R 2R 2 2]

CLEAR
SET COLON OFF
SET COLOR TO 11,10,10
SET TALK OFF
ERASE
STORE T TO START
e 3,5 SAY wesxnkxns%% WE[. COME TO QBE QUERY SYSTEM ##Ewmxwsxxw¥kll
STORE 6 TO ROW
DO WHILE START
STORE ¢ ' TO DAT
@ ROW,5 SAY "PLEASE ENTER TODAY'S DATE (MM/DD/YY):";
GET DAT PICTURE »99/99/99"
READ
STORE $(DAT,1,2) TO MO
STORE $(DAT,4,2) TO DAY
IF MO < '01' .OR. MO > "12' ,OR. DAY < '01' .OR. DAY > 31!
STORE ROW + 1 TO ROW
STORE 0 TO TIMER
@ ROW,5 SAY '"INVALID DATE, PLEASE TRY AGAIN!
STORE ROW + 1 TO ROW
DO WHILE TIMER < 5
STORE TIMER + 1 TO TIMER
ENDDO
RELEASE DAT, MO, DAY, TIMER
LOOP ,
ENDIF (* invalid date ¥)
STORE ROW + 1 TO ROW
SET DATE TO &DAT
STORE F TO START
ENDDO (* start *)
RELEASE START,DAT, MO, DAY
STORE ' ' TO ACTION
€ ROW, 5 SAY 'Please insert your disk to drive B!
ACCEPT ¢ and press RETURN when ready' TO ACTION

101

RELEASE ROW, ACTION

¥¥* show up the table skeleton w®&#%
STORE T TO MORE
DO WHILE MORE
DO DRAW
STORE F TO OK
DO WHILE .NOT,OK
STORE ' ' TO ANSWER
€ 23,0 SAY '(R)UN, (E)RASE,(Q)UIT'+;
', PLEASE CHOOSE A LETTER ===>' GET ANSWER PICTURE 'l
READ
STORE 1 TO TIMER
DO WHILE TIMER <= 10
STORE TIMER + 1 TO TIMER
ENDDO (®* timer <= 10 *)
IF ANSWER <> 'R',AND., ANSWER <> 'E',AND. ANSWER <> 'Q!
LOOP
ELSE
STORE T TO 0K
ENDIF
ENDDO (* ok ¥)
RELEASE OK
DO CASE
CASE ANSWER = 'R!
e 23,0
DO RUN
CASE ANSWER = 'E!
STORE T TO MORE
ERASE
CASE ANSWER = 'Q¢
DO CLEARFILE
ERASE
€ 10,30 SAY 'G O ODBYE./l!
e 22,0
QUIT
ENDCASE
ENDDO (* more *)

t 22 R AR R 222 AR 2R AR 2220222202222 R R 22 220]

¥ REPLACE1.PRG ®
* This procedure, which is called by procedure CALCULATE.prg, *
®

* replaces the arithmetic expression with its result.
I R A R R A R R R R R R R R A R R R R R XX R RN R R X R R AR EARRRRAEA SRR E

STORE 'TEMP' + $(MTABLEID,1,1) TO TEMP
USE B:&TEMP
DO WHILE .NOT. EOF

STORE &EXP TO RESULT

STORE '$' TO BASE

STORE 1 TO LEN

DO WHILE RESULT - VAL(BASE) >= 1

STORE '9' +'&BASE' TO BASE

102

STORE LEN + 1 TO LEN
ENDDO
STORE LEN + MDEC + 1 TO LEN
IF LEN > MLEN
STORE '### ERROR - THE RESULT OF THE ARITHMETIC '+;
'EXPRESSION IS OVERFLOW' TO ERROR:MSG
STORE T TO ERROR
RETURN
ELSE
REPLACE &OATTR WITH RESULT
ENDIF
SKIP
ENDDO
RELEASE TEMP, RESULT, BASE, LEN, EXP
USE B:AVTABLE
GOTO I
DELETE
PACK
STORE I - 1 TO I
STORE MAX:AV - 1 TO MAX:AV
RETURN

R AR AR R RN R RN AR BT RR AR R R AR AR A TR AR T AR E R A RTINS RIARRNTERNTRRSES

* RETRIE1.PRG *
* This procedure, which is called by procedure PARSE1l.prg, *
* retrieves the information from the data base and pushes the ¥
* information onto the SAVE stack. *®

A2 RS2 2 AR e R i R R R R R R R R R R R R R R N YRR 2 L]

USE B:CODESTACK
GOTO BOTTOM
STORE # TO MAX:CODE
USE
STORE 'TEMP1' TO FILE1
STORE '"TEMP2' TO FILE2
IF MAX:CODE > 0
DO RETRIEZ
IF ERROR
RETURN
ENDIF
ENDIF
IF JOIN
SELECT PRIMARY
USE B:&FILE1
SELECT SECONDARY
USE B:&FILEZ
JOIN TO B:BUFFER1 FOR P.&FIELD = S,&FIELD
SELECT PRIMARY
USE
SELECT SECONDARY
USE
USE B:BUFFER1
COPY FIELD &OUT:FLDS TO B:SAVE
ELSE

103

USE B:&FILE1

COPY FIELD &OUT:FLDS TO B:SAVE
ENDIF
USE B:CODESTACK
GOTO BOTTOM
STORE # TO MAX:CODE
IF MAX:CODE > 0

DO BUILTFUN

IF ERROR

RETURN

ENDIF
ENDIF
RELEASE MAX:CODE,FILE1,FILEZ
RETURN

t I IR 2R AR 2222222222222 R RRRRR SRR 2R 2]

ol RETRIEZ.PRG

* This procedure, which is called by procedure RETRIEl.prg,
¥ retrieves information from the data base and pushes the

¥ information onto the SAVE stack.

*
4
®
*

LA A AR 222 X2 R AR AR R R RR R XRRRARRRR RS2SRRSR S

DO WHILE MAX:CODE > 0
USE B:CODESTACK
GOTO MAX:CODE
STORE TRIM(ATTR) TO MATTR
STORE TRIM(OPERATOR) TO MOPERATOR
STORE TRIM(VALUE) TO MVALUE
STORE TRIM(BUILTFUN) TO MBUILTFUN
STORE TABLEID TO MTABLEID
STORE UNION TO MUNION
STORE 'TEMP! + $(MTABLEID,1,1) TO TEMP
STORE 'BUFFER' + $(MTABLEID,1,1) TO BUFFER
STORE 'SAVE!' + $(MTABLEID,1,1) TO SAVE
IF $(MVALUE,1,1) = t ¢
STORE MVALUE TO UNPURGED
DO PURGEBLANK
STORE PURGED TO MVALUE
ENDIF
IF MVALUE = ' ¢
IF MOPERATOR <> ' !
STORE 'SAVE1!' TO FILE1
STORE 'SAVE2' T0 FILE2
IF FILE('B:&BUFFER')
USE B:&BUFFER
GOTO BOTTOM
IF # = 1
STORE &MATTR TO VALUE

COPY STRUCTURE EXTENDED TO B:STRU

USE B:STRU

LOCATE FOR FIELD:NAME = '&MATTR!

STORE FIELD:TYPE TO FLD:TYPE
STORE FIELD:LEN TO FLD:LEN
STORE FIELD:DEC TO FLD:DEC

104

IF FLD:TYPE = 'C!
STORE "#*##ERROR - COLUMN &mattr IS NOT A "+;
"NUMERICAL TYPE CANNOT DO COMPARISION";
TO ERROR:MSG
STORE T TO ERROR

RETURN

ELSE
STORE STR(VALUE,FLD:LEN,FLD:DEC) TO MVAL
STORE '&MATTR! + ' ' 4+ 1&MOPERATOR' + ' ' 4+ ;

1&§MVAL' TO CONDITION
ENDIF
RELEASE FLD:TYPE, FLD:LEN,FLD:DEC,MVAL,VALUE
ELSE

STORE '##* ERROR - TOO MANY VALUES OR NO VALUE'+;
' FOR COLUMN &mattr' TO ERROR:MSG
STORE T TO ERROR
RETURN
ENDIF
ELSE
STORE '%=# ERROR - NO VALUE FOR COLUMN &mattr' ;
TO ERROR:MSG
STORE T TO ERROR
RETURN
ENDIF
SET EXACT ON
IF .NOT. MUNION
USE B:&SAVE
GOTO BOTTOM
IF # > 1
COPY TO B:&BUFFER FOR &CONDITION
USE B:&BUFFER
COPY TO B:&SAVE
ELSE
USE B:&TEMP
COPY TO B:&BUFFER FOR &CONDITION
USE B:&BUFFER
COPY TO B:&SAVE
ENDIF
ELSE
USE B:&TEMP
COPY TO B:&BUFFER FOR &CONDITION
ENDIF
SET EXACT OFF
ENDIF
ELSE
STORE 'SAVE1' TO FILE1
STORE 'SAVEZ2' TO FILE2
IF MOPERATOR = ' !
STORE '=' TO MOPERATOR
ENDIF
USE B:&TEMP
IF TYPE (&MATTR) = 'C!
STORE '&MATTR' + ' ' + '&MOPERATOR' + ' ' + WigMVALUE'v;
TO CONDITION
ELSE

105

STORE '&MATTR' + ' ' + '&MOPERATOR' + ' ' + '&MVALUE!';
TO CONDITION
ENDIF

SET EXACT ON
IF .NOT. MUNION
IF FILE('B:&SAVE!)
USE B:&SAVE
COPY TO B:&BUFFER FOR &CONDITION
USE B:&BUFFER
COPY TO B:&SAVE
ELSE
USE B:&TEMP
COPY TO B:&BUFFER FOR &CONDITION
USE B:&BUFFER
COPY TO B:&SAVE
ENDIF
ELSE
USE B:&TEMP
COPY TO B:&BUFFER FOR &CONDITION
ENDIF
SET EXACT OFF
ENDIF
IF MVALUE <> ' ' ,OR., MOPERATOR <> ' !
IF MUNION
IF .NOT. FILE('B:&SAVE!')
USE B:&BUFFER
COPY TO B:&SAVE
ELSE
USE B:&BUFFER
COPY STRUCTURE EXTENDED TO B:STRU
USE B:STRU
STORE * ' TO CONDITION,MREPLACE
DO WHILE .NQOT. EOF
STORE TRIM(FIELD:NAME) TO FLD:NAME
STORE CONDITION + 'P.&FLD:NAME = S.&FLD:NAME'+;
' ,AND.' TO CONDITION
STORE MREPLACE + 'S,&FLD:NAME WITH P.&FLD:NAME,*;
TO MREPLACE
SKIP
ENDDO
STORE $(CONDITION,2,LEN(CONDITION) - 7) TO CONDITION
STORE $(MREPLACE,2,LEN(MREPLACE) - 2) TO MREPLACE
SELECT PRIMARY
USE B:&BUFFER
DO WHILE .NOT, EOF
SELECT SECONDARY
USE B:&SAVE
GOTO BOTTOM
STORE # TO MAX:REC
STORE 0 TO J
STORE F TO FOUND
DO WHILE J < MAX:REC .AND. .NOT, FOUND
STORE J + 1 TO J
GOTO J
IF &CONDITION

106

STORE T TO FOUND
LOOP
ENDIF
ENDDO
IF .NOT. FOUND
APPEND BLANK
REPLACE &MREPLACE
ENDIF
SELECT PRIMARY
SKIP
ENDDO
SELECT PRIMARY
USE
SELECT SECONDARY
USE
RELEASE MREPLACE,FLD:NAME, FOUND, J, MAX:REC
ENDIF
ENDIF
ENDIF
IF MBUILTFUN = '
USE B:CODESTACK
GOTO MAX:CODE
DELETE
PACK
ENDIF
STORE MAX:CODE - 1 TO MAX:CODE
ENDDO
IF JOIN
IF .NOT. FILE('B:SAVE1"')
USE B:TEMP1
COPY TO B:SAVET
ENDIF
IF .NOT. FILE ('B:SAVE2!')
USE B:TEMP2
COPY TO B:SAVE2
ENDIF
ENDIF
RETURN

A2 L A3 RS2 22 R22 2222222 a AR R AR AR R XSRS

* RUN, PRG *
* This procedure, which is called by preocedure QBE.prg, *
* processes the user's query, and, after finishing, continues *
: the interactions with the user who decides at this point ®

:
#* ®

whether to continue with another query or not.
R RN R R R R RN N R R R AR A R NN RN RN R R R R R AR R R NN NN R R R RN R RN

IF FILE:ONLY
DO PROCFILE
ELSE
RELEASE FILE:ONLY
DO PARSE1
IF ERROR .OR. NO:REC
e 23,1

107

@ 23,1 SAY ERROR:MSG
ACCEPT 'HIT <RETURN> TO CONTINUE ' TO ACTION
RELEASE ACTION
ERASE
STORE F TO 0K
DO WHILE .NOT, OK
STORE ' * TO ANS
€ 23,71 SAY 'DO YOU WANT TO SAVE YOUR QUERY? (Y/N)' ;
GET ANS PICTURE It
READ
IF ANS <> 'Y ,AND, ANS <> 'N!
LOOP
ELSE
STORE T TO 0K
ENDIF
ENDDO
IF ANS = 'Y!
DO SAVEQ
ENDIF
ERASE
ENDIF (* error *)
ENDIF (# file:only %)
CLEAR
STORE F TO OK
DO WHILE ,NOT. OK
STORE ' ' TO ANS
€ 23,1 SAY "DO YOU WANT TO (Q)UIT OR (C)ONTINUE ===>¥v;
GET ANS PICTURE *1?
READ
IF ANS <> 'Q' .AND. ANS <> 1'Ct
LOOP
ELSE
STORE T TO OK
ENDIF
ENDDO
DO CLEARFILE
ERASE
DO CASE
CASE ANS = 'Q!
€ 10,30 SAY 'GOODBYEI"
e 22,0
QUIT
CASE ANS = 'C¢
CLEAR
STORE T TO MORE
RETURN
ENDCASE

108

23RS 222X RRRRA AR 2R AR R R R R RR R RRRRRRaRRE

* SAVEQ. PRG "
¥ This procedure, which is called by precodure RUN.prg, saves *
¥ the user's query having error messages in a file for later *
* review. ®

T R TR R A R R R AR AR R R AR R AR RS R R R X R

IF .,NOT. FILE('B:REVIEW')
USE REVIEW
COPY TO B:REVIEW
ENDIF
STORE T TO FIRST
STORE 0 TO I
DO WHILE I < FILE:NUM
STORE I + 1 TO I
STORE 'SFILE' + STR(I,1) TO SFILE
SELECT PRIMARY
USE B:&SFILE
DO WHILE ., NOT. EOF
SELECT SECONDARY
USE B:REVIEW
APPEND BLANK
REPLACE S,FLD:NAME WITH P.FLD:NAME ,S.ROW1 WITH P.ROW1;
S.ROW2 WITH P,ROW2, S.ROW3 WITH P.ROW3
REPLACE MESSAGES WITH ERROR:MSG
STORE F TO FIRST
ENDIF
SELECT PRIMARY
SKIP
ENDDO (* not eof ¥%)
ENDDO (* i < file:num #)
IF R:EXIST
SELECT SECONDARY
APPEND BLANK
REPLACE FLD:NAME WITH *RESULT!
SELECT PRIMARY
USE B:RESULT
DO WHILE ,NOT., EOF
SELECT SECONDARY
USE B:REVIEW
APPEND BLANK
REPLACE S.FLD:NAME WITH P.FLD:NAME, S.ROW1 WITH P,ROW1;
S.ROW2 WITH P.ROWe2, S.ROW3 WITH P.ROW3
SELECT PRIMARY
SKIP
ENDDO (* not eof #)
ENDIF (* r:exist ¥*)
SELECT PRIMARY
USE
SELECT SECONDARY
USE
IF C:EXIST
STORE T TO FIRST
USE B:CONDITION

109

GOTO BOTTOM
STORE # TO MAX:REC
STORE 0 TO I
DO WHILE I < MAX:REC
STORE I + 1 TO I
USE B:CONDITION
GOTOo I
STORE CONDITION TO MCONDITION
USE B:REVIEW
APPEND BLANK
IF I =1 ,AND. FIRST
REPLACE FLD:NAME WITH 'CONDITION?
STORE F TO FIRST
- ENDIF
STORE 0 TO J
DO WHILE J €< 3
USE B:REVIEW
GOTO BOTTOM
STORE J + 1 TO J
STORE 'ROW' + STR(J,1) TO ROW
REPLACE &ROW WITH MCONDITION
IFJ =3 .OR, I = MAX:REC
STORE 3 TO J
LOOP
ELSE
STORE I + 1 TO I
USE B:;CONDITION
GOTO I
STORE CONDITION TO MCONDITION
ENDIF
ENDDO (# while j < 3 #)
ENDDO (* i < max:rec *¥*)
ENDIF (% c:exist #)
USE B:REVIEW
GOTO BOTTOM
REPLACE MESSAGES WITH 'END OF QUERY!
SELECT PRIMARY
USE
SELECT SECONDARY
USE
RETURN

(22222222222 AR R AR AR RRRRRR2 R 222 R 22

SCANAV1.PRG .
¥ This procedure, which is called by procedure PARSEl.prg,scans¥*
* the avtable and checks if there are any value with arithmetic®
: operators, If so, procedure CALCULATE will be invoked. If =

not, then return to the calling procedure *
RN R R RN R R A RN R R RN AR RN R R R R R AR N RN NN NN NN RN TR

STORE 0 TO I
DO WHILE I < MAX:AV

STORE I + 1 TO I
USE B:AVTABLE

110

GOTO I
STORE €('+', VALUE) TO PLUS
STORE €('-', VALUE) TO MINUS
STORE €('/', VALUE) TO DIVIDE
STORE €('#', VALUE) TO MULTIPLY
IF PLUS <> O .OR. MINUS <> O .OR, DIVIDE <> 0 .OR. ;
MULTIPLY <> 0
IF TYPE = 'N
STORE TRIM(ATTR) TO MATTR, OATTR
STORE TABLEID TO MTABLEID
STORE VALUE TO EXPRESSION
STORE DEC TO MDEC
STORE LEN TO MLEN
STORE F TO NO:VALUE
DO CALCULATE

IF ERROR
RETURN
ENDIF
RELEASE MATTR,MTABLEID, EXPRESSION,MDEC, MLEN, NO:VALUE;
OATTR
ELSE
STORE w##%¥ ERROR - " + TRIM(ATTR) + " IS NOT A "4;

WNUMERICAL TYPE, CANNOT DO CALCULATION" ;
TO ERROR:MSG
STORE T TO ERROR
RETURN
ENDIF
ENDIF
ENDDO
RELEASE PLUS,MINUS,DIVIDE,MULTIPLY, I

WA A AR R R a2 2 A Y R R Y R R Y S R R R e

#* SCANAVZ2 .PRG X
* This procedure, which is called by procedure PARSE1.prg, scans®
®¥ the avtable and checks if any value contains the logical *
* operators 'AND' or 'OR!', *

AR AR AR 2 R A R R R R A R X R R A R R Y R R R R R R R X R R R R R S R R 22222t

STORE 0 TO I
DO WHILE I < MAX:AV
STORE I + 1 TO I
USE B:AVTABLE
GOTO I
IF $(VALUE,1,1) = '(?
STORE €(' AND ', VALUE) TO INVALID1
STORE €(' OR ', VALUE) TO INVALID2
IF INVALID1 <> O .OR. INVALID2 <> O
STORE '###% ERROR - INVALID LOGICAL OPERATOR IN '+;
TRIM(VALUE) TO ERROR:MSG
STORE T TO ERROR
RETURN
ENDIF
STORE $(VALUE,2) TO MVALUE

111

STORE TRIM(MVALUE) TO MVALUE
STORE ATTR TO MATTR
STORE TABLEID TO MTABLEID
STORE F TO END
STORE T TO START
DO WHILE .NOT. END
STORE €('|', MVALUE) TO LOGICAL
IF LOGICAL = O
STORE €('&',MVALUE) TO LOGICAL
IF LOGICAL = 0
IF START
STORE t'#=#%# ERROR - INVALID CONDITION '+;
'EXPRESSION' TO ERROR:MSG
STORE T TO ERROR
RETURN
ENDIF
STORE €(')', MVALUE) TO LOGICAL
STORE T TO END
IF LOGICAL = 0
STORE t#=# ERROR - MISSING LOGICAL OPERATOR'+;
' OR USING INVALID LOGICAL OPERATOR'+;
! IN CONDITION EXPRESSION' TO ERROR:MSG
STORE T TO ERROR
RETURN
ENDIF
ENDIF
ENDIF
STORE $(MVALUE,1,LOGICAL - 1) TO EXP
STORE TRIM(EXP) TO EXP
STORE $(MVALUE,LOGICAL,%) TO LOGICAL:OP
IF .NOT. END
STORE $(MVALUE,LOGICAL + 1) TO MVALUE
ENDIF
IF $(EXP,1,1) = '
STORE EXP TO UNPURGED
DO PURGEBLANK
STORE PURGED TO EXP
ENDIF
IF $(EXP,1,2) = '>=' .OR. $(EXP,1,2) = '<=' .OR. ;
$(EXP,1,2) = <!
STORE $(EXP,1,2) TO MOPERATOR
STORE $(EXP,3) TO EXP
ELSE
IF $(EXP,1,1) = '>' .OR. $(EXP,1,1) = '<' .OR. ;
$(EXP,1,1) = 1=
STORE $(EXP,1,1) TO MOPERATOR
STORE $(EXP,2) TO EXP
ELSE
STORE * * TO MOPERATOR
ENDIF
ENDIF
IF $(EXP,1,1) = ' ¢
STORE EXP TO UNPURGED
DO PURGEBLANK
STORE PURGED TO EXP

112

ENDIF
IF $(EXP,1,1)$'><="!
STORE '*=#%# ERROR - INVALID CONDITION EXPRESSION ';
TO ERROR:MSG ;
STORE T TO ERROR
RETUKN
ENDIF
IF LOGICAL:OP = '[!
STORE T TO MUNION
ELSE
STORE F TO MUNION
ENDIF
USE B:CODESTACK
APPEND BLANK
REPLACE ATTR WITH MATTR, VALUE WITH EXP;
UNION WITH MUNION, TABLEID WITH MTABLEID
IF MOPERATOR <> '=1!
REPLACE OPERATOR WITH MOPERATOR
ENDIF
IF .NOT. END
IF $(MVALUE,1,1) = ' ¢
STORE MVALUE TO UNPURGED
DO PURGEBLANK
STORE PURGED TO MVALUE
ENDIF
ENDIF
STORE F TO START

ENDDO
RELEASE MATTR, EXP, MUNION, MTABLEID, MOPERATOR, MVALUE

RELEASE LOGICAL:0P, INVALID1, INVALID2, START,END, LOGICAL
USE B:AVTABLE
GOTO I
DELETE
PACK
STORE MAX:AV - 1 TO MAX:AV
STORE I - 1 TO I
ENDIF

ENDDO

RELEASE I

RETURN

(222283 2222222222222 2222 R R R X R R R R R R R R AR R RS E RS R R R RS R.8
x SCANAV3 ., PRG .
* This procedure, which is called by procedure PARSE1l.prg,scans¥
* the avtable and stores all the remaining information onto the®

¥ CODE stack. *
BN RN N NN N R R AN RN AT AR RN RNk N NS

STORE 0 TO I

DO WHILE I < MAX:AV
STORE F TO OP:EXIST
STORE I + 1 TO I
USE B:AVTABLE
GOTO I

113

STORE VALUE TO MVARIABLE
STORE ATTR TO OMATTR,MATTR
STORE OPERATOR TO MOPERATOR
STORE BUILTFUN TO MBUILTFUN
STORE TABLEID TO MTABLEID
IF $(MVARIABLE,1,1) = '_!
STORE F TO FOUND
IF MOPERATOR <> ' !
STORE T TO OP:EXIST
USE B:CODESTACK
APPEND BLANK
REPLACE ATTR WITH MATTR, OPERATOR WITH MOPERATOR;
TABLEID WITH MTABLEID
ENDIF
USE
STORE I TO J
DO WHILE J < MAX:AV
STORE J + 1 TO J
USE B:AVTABLE
GOTO J
IF VALUE = MVARIABLE
IF ATTR = OMATTR
STORE T TO FOUND
STORE OPERATOR TO MOPERATOR
IF TABLEID <> MTABLEID
STORE T TO JOIN
STORE TRIM(ATTR) TO FIELD
ELSE
USE B:PRNSTACK INDEX B:PRNDX
STORE TRIM(OMATTR) TO OMATTR
FIND '&OMATTR!

IF # <> 0

STORE UNION TO MUNION
ELSE

STORE F TO MUNION
ENDIF

IF MOPERATOR <> ' !
STORE T TO OP:EXIST
USE B:CODESTACK
APPEND BLANK
REPLACE ATTR WITH MATTR;
OPERATOR WITH MOPERATOR, TABLEID WITH MTABLEID
ENDIF
ENDIF
USE
USE B:AVTABLE
GOTO J
DELETE
PACK
STORE MAX:AV - 1 TO MAX:AV
STORE J - 1 TO PREVIOUS
GOTO PREVIOUS
IF VALUE <> ' ' ,AND. $(VALUE,1,1) <> '_t
IF TABLEID = MTABLEID
STORE ATTR TO MATTR

114

STORE OPERATOR TO MOPERATOR
STORE BUILTFUN TO MBUILTFUN
STORE VALUE TO MVALUE
DELETE
PACK
STORE MAX:AV - 1 TO MAX:AV
SE B;CODESTACK
APPEND BLANK
REPLACE ATTR WITH MATTR;
OPERATOR WITH MOPERATOR, UNION WITH MUNION;
BUILTFUN WITH MBUILTFUN, VALUE WITH MVALUE;
REPLACE TABLEID WITH MTABLEID
ENDIF
ENDLF
IF .NOT. FOUND .AND. J < MAX:AV
GOTO J
IF VALUE <> ' ' .AND. $(VALUE,1,1) <> '_!
IF TABLEID = MTABLEID
STORE ATTR TO MATTR
STORE VALUE TO MVALUE
STORE OPERATOR TO MOPERATOR
STORE BUILTFUN TO MBUILTFUN
DELETE
PACK
STORE MAX:AV = 1 TO MAX:AV
USE B:CODESTACK
APPEND BLANK
REPLACE ATTR WITH MATTR;
OPERATOR WITH MOPERATOR, UNION WITH MUNION
REPLACE BUILTFUN WITH MBUILTFUN;
VALUE WITH MVALUE, TABLEID WITH MTABLEID
ENDIF
ENDIF
ENDIF
IF OP:EXIST ,AND. .NOT. FOUND :
STORE TRIM(MVARIABLE) TO MVARIABLE
STORE '¥%% ERROR - EXAMPLE ELEMENT &mvariable!+;
' DOES NOT HAVE A CONSTANT VALUE TO '+;
t MATCH IT' TO ERROR:MSG
STORE T TO ERROR
RETU RN
ENDIF
STORE J - 1 TO J
ELSE
STORE TRIM(MVARIABLE) TO MVARIABLE
STORE '#%% ERROR - EXAMPLE ELEMENT &mvariable's+;
' HAS CONFLICTING COLUMN NAMES' TO ERROR:MSG
STORE T TO ERROR
RETU RN
ENDIF
ENDIF
ENDDO
USE
USE B:AVTABLE
GOTO I

115

IF .NOT. FOUND
STORE TRIM(MVARIABLE) TO MVARIABLE
STORE TRIM(ATTR) TO MATTIR
USE B:PRNSTACK INDEX B:PRNDX
FIND '"&MATTR?
IF # = 0
STORE '#%% ERROR - EXAMPLE ELEMENT &mvariable'+;
' UNDEFINED' TO ERROR:MSG
STORE T TO ERROR
RETURN
ELSE
IF VARIABLE <> ' !
IF TRIM(VARIABLE) <> TRIM(MVARIABLE)
STORE '¥%# ERROR - EXAMPLE ELEMENT &mattr HAS'+;
' CONFILCTING COLUMN NAMES' TO ERROR:MSG
STORE T TO ERROR
RETURN
ENDIF
ENDIF
STORE UNION TO MUNION
IF MUNION
IF MBUILTFUN <> ' 1
USE B:CODESTACK
APPEND BLANK
REPLACE ATTR WITH MATTR, UNION WITH MUNION;
BUILTFUN WITH MBUILTFUN, TABLEID WITH MTABLEID
ELSE
IF I > 1
USE B:AVTABLE
STORE I - 1 TO PREVIOUS
GOTO PREVIOUS
IF TABLEID = MTABLEID
IF VALUE <> ' ', AND. $(VALUE,1,1) < 20
STORE ATTR TO MATTR
STORE VALUE TO MVALUE
STORE OPERATOR TO MOPERATOR
STORE BUILTFUN TO MBUILTFUN
DELETE
PACK
STORE MAX:AV - 1 TO MAX:AV
USE B:CODESTACK
APPEND BLANK
REPLACE ATTR WITH MATTR;
VALUE WITH MVALUE, UNION WITH MUNION;
OPERATOR WITH MOPERATOR
REPLACE BUILTFUN WITH MBUILTFUN;
TABLEID WITH MTABLEID
ENDIF
ENDIF
ELSE
IF I < MAX:AV
USE B:AVTABLE
STORE I + 1 TO NEXT
GOTO NEXT
IF TABLEID = MTABLEID

116

IF VALUE <> ' ' _AND. ;
$(VALUE,1,1) <> ¢
STORE ATTR TO MATTR
STORE VALUE TO MVALUE
STORE OPERATOR TO MOPERATOR
STORE BUILTFUN TO MBUILTFUN
DELETE
PACK
STORE MAX:AV - 1 TO MAX:AV
USE B:CODESTACK
APPEND BLANK
REPLACE ATTR WITH MATTR;
VALUE WITH MVALUE, UNION WITH MUNION
REPLACE OPERATOR WITH MOPERATOR;
BUILTFUN WITH MBUILTFUN;
TABLEID WITH MTABLEID
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ELSE
IF MBUILTFUN <> 1 ¢
USE B:CODESTACK
APPEND BLANK
REPLACE ATTR WITH MATTR, TABLEID WITH MTABLEID;
BUILTFUN WITH MBUILTFUN
ENDIF
ENDIF
ENDIF
ENDIF
USE
USE B:AVTABLE
GOTO 1
DELETE
PACK
STORE MAX:AV -1 TO MAX:AV
STORE I - 1 TO 1
ENDIF
ENDDO
USE
RELEASE MVARIABLE,MATTR, MOPERATOR,MBUILTFUN,MUNION,MTABLEID
RELEASE MVALUE,I,J,FOUND,OP:EXIST, OMATTR
IF MAX:AV > Q
SELECT PRIMARY
USE B:AVTABLE
DO WHILE .NOT, EOF
SELECT SECONDARY
USE B:CODESTACK
APPEND BLANK
REPLACE S,ATTR WITH P.,ATTR, S,VALUE WITH P,VALUE;
S.BUILTFUN WITH P.BUILTFUN, S.OPERATOR WITH P.OPERATOR;
S.TABLEID WITH P, TABLEID
SELECT PRIMARY
DELETE

117

PACK

ENDDO
ENDIF
SELECT PRIMARY
USE
SELECT SECONDARY
USE
RETURN

I 212 23 R R XX RS R R R R SRR R R R AR R R RS2 A2 A2 AR RSS2 RSN R SRR X
* SCANCOND. PRG ¥
* This procedure, which is called by procedure PARSE!l.prg,scans¥
¥ the condition box, and places each codition statement in the*

¥ corresponding row of value column of avtable. »
BE R RN R R R AR RN R RN N R R R AR R R RN RN R RN RN RN AR RN R Rk RN *

SELECT PRIMARY
USE B:CONDITION
GOTO BOTTOM
STORE # TO MAX:REC
STORE 0 TO I
DO WHILE I < MAX:REC
STORE I + 1 TO I
GOTO I
STORE CONDITION TO MCONDITION
IF $(MCONDITION,1,1) = '_!
IF $(MCONDITION,2,1) <> ' !
STORE '_' TO MVARIABLE
STORE $(MCONDITION,2) TO MCONDITION
DO WHILE ($(MCONDITION,1,1)$'0123456789' .OR.;
$(MCONDITION,1,1)$'ABCDEFGHIJKLMNOPQRSTUVWXYZ") ;
.AND, LEN(MCONDITION) > 1
STORE MVARIABLE + $(MCONDITION,1,1) TO MVARIABLE
STORE $(MCONDITION,2) TO MCONDITION
ENDDO
IF LEN(MCONDITION) > 1
IF $(MCONDITION,1,1) = ' !
STORE MCONDITION TO UNPURGED
DO PURGEBLANK
STORE PURGED TO MCONDITION
ENDIF
IF $(MCONDITION,1,1)$1<>="
STORE $(MCONDITION,1,1) TO MOPERATOR
IF $(MCONDITION,2,1)$'=>"
STORE MOPERATOR + $(MCONDITION,2,1);
TO MOPERATOR
STORE $(MCONDITION,3) TO MCONDITION
ELSE
IF MOPERATOR = 'z
STORE ' ' TO MOPERATOR
ENDIF
STORE $(MCONDITION,2) TO MCONDITION

118

ENDIF
IF $(MCONDITION,1,1) = ' !
STORE TRIM(MCONDITION) TO UNPURGED
DO PURGEBLANK
STORE PURGED TO MCONDITION
ENDIF
IF LEN(MCONDITION) > 1
STORE MCONDITION TO MVALUE
ELSE
IF MCONDITION <> ' !
STORE MCONDITION TO MVALUE
ELSE
STORE '##%¥ERROR - INVALID CONDITION '+;
'EXPRESSION' TC ERROR:MSG
STORE T TO ERROR
RETURN
ENDIF
ENDIF
ELSE
STORE '#=% ERROR - INVALID CONDITION EXPRESSION';
TO ERROR:MSG
STORE T TO ERROR
RETURN
ENDIF
ELSE
STORE '##% ERROR - INVALID CONDITION EXPRESSION';
TO ERROR:MSG
STORE T TO ERROR
RETURN
ENDIF
ELSE
STORE '%%# ERROR - NO BLANK CAN BE EMBEDDED INTO'+;
t EXAMPLE ELEMENT' TO ERROR:MSG
STORE T TO ERROR
RETURN
ENDIF
ELSE
STORE '#=# ERROR - INVALID CONDITION EXPRESSION' TO ERROR:M3G
STORE T TO ERROR
RETURN
ENDIF
SELECT SECONDARY
USE B:AVTABLE
STORE F TO FOUND
DO WHILE .NOT, EOF .AND. .NOT. FOUND
IF S.VALUE = MVARIABLE
REPLACE S,.VALUE WITH MVALUE, S.OPERATOR WITH MOPERATOR
STORE T TO FOUND
ENDIF
SKIP
ENDDO
IF .NOT. FOUND
STORE '#=*#% ERROR - EXAMPLE ELEMENT &mvariable IS NOT'+;
' MATCHED' TO ERROR:MSG
STORE T TO ERROR

119

RETURN

ENDIF

SELECT PRIMARY
ENDDO
SELECT PRIMARY
USE
SELECT SECONDARY
USE
RELEASE MVALUE, MVARIABLE, MOPERATOR, MAX:REC,I, MCONDITION,FOUND
RETURN

R E R AR R E R AR AN N AN RN R RRN RS F AN IR R RN AR R AR R ARl Ry

SCANFN. PRG

*

This procedure,which is called by procedure DTABLE.prg,parses¥

checks if they are valid or not., If invalid, the program will®¥

#*
*
¥ the file name and command which are entered by the user and
#
¥ display an error message and ask the user to re-enter.

#

*®

A SRR A SRR R RS2 R 222222222 R R X222 RE £

@ 23,1 SAY 'CHECKING DATA ENTRY, PLEASE WAIT A SECOND!!
STORE T TO FILE:ONLY
STORE T TO OK
STORE TRIM(FILE:NAME) TO FILE:NAME
STORE FILE:NAME TO UNPURGED
DO PURGEBLANK
STORE PURGED TO FILE:NAME
IF FILE:NAME = ' ¢
STORE w=#% ERROR - YOU DIDN'T ENTER ANYTHING" TO ERROR:MSG
STORE F TO OK
RETURN
ENDIF (* file:name = ' ' #%)

STORE T TO CHECKING
STORE T TO FILE:ONLY
STORE 0 TO HOW:MANY
STORE ' ' TO COMMAND
DO WHILE CHECKING
STORE €('.', FILE:NAME) TO FOUND:AT
STORE LEN(FILE:NAME) TO STR:LEN
IF FOUND:AT <> O
STORE HOW:MANY + 1 TO HOW:MANY
IF FOUND:AT = 2
IF HOW:MANY = 2
STORE COMMAND + ',' + $(FILE:NAME, 1,1) TO COMMAND
STORE ' ' TO FILE:NAME
ELSE
STORE COMMAND + $(FILE:NAME, FOUND:AT - 1 ,1);
TO COMMAND
IF STR:LEN > 2
STORE $(FILE:NAME,3,STR:LEN - 2) TO FILE:NAME
ELSE
STORE ' ' TO FILE:NAME
ENDIF (* str:len > 2 %)
ENDIF (* how:many = 2 ¥)

120

ELS3SE
IF FOUND:AT = STR:LEN
STORE COMMAND + ',' + $(FILE:NAME,FOUND:AT - 1,1);
TO COMMAND _
STORE TRIM ($(FILE:NAME,1,STR:LEN = 2)) TO FNAME
STORE F TO CHECKING
LOOP
ELSE
STORE t#=# SYNTAX ERROR *#=' TO ERROR:MSG
STORE F TO 0K
RETURN
ENDIF (* found:at = str:len #)
ENDIF (* found:at = 2 #)
ELSE
STORE FILE:NAME TO FNAME
STORE F TO CHECKING
IF HOW:MANY = O
STORE F TO FILE:ONLY
ENDIF (= how:many = 0 ¥)
ENDIF (*®*found:at <> 0 *)
ENDDO (# checking *)
RELEASE CHECKING, FOUND:AT, STR:LEN

IF HOW:MANY > O
STORE $(COMMAND,2, (LEN(COMMAND) - 1)) TO COMMAND
ENDIF (# how:many > 0 ¥)
RELEASE HOW :MANY
STORE FNAME TO UNPURGED
DO PURGEBLANK
STORE PURGED TO FNAME
RELEASE UNPURGED, PURGED

IF .NOT, FILE:ONLY
%% check if file name existing in the user's disk #*¥%
STORE é(' ',FNAME) TO FOUND
IF .NOT., FILE(*B:&FNAME') .OR. FOUND <> 0
STORE t#%=#% ERROR - TABLE &fname DOES NOT EXIST' TO ERRCR:MSG
STORE F TO OK
ENDIF
RELEASE COMMAND, FOUND
RETURN
ENDIF (¥ not file:only ¥)

SET EXACT ON
IF COMMAND <> 'P' .AND. COMMAND <> 'P,P' .AND., COMMAND <> 'I, I!
IF COMMAND <> ',P'.AND, COMMAND <> 'U' ,AND. COMMAND <> 'D!
STORE t%#%#% ERROR - INVALID SYSTEM OPERATOR' TO ERROR:MSG
STORE F TO OK
RETURN
ELSE
IF FNAME = ' !
STORE '#=#%* ERROR - MISSING TABLE NAME' TO ERROR:MSG
STORE F TO OK
RETURN

121

ELSE
STORE e(' ',FNAME) TO FOUND
IF .NOT. FILE('B:&FNAME') .OR. FOUND <> O
STORE t*#=% ERROR - TABLE &FNAME DOES NOT EXIST!';
TO ERROR:MSG
STORE F TO OK
RETURN
ENDIF (* not file exist #)
RELEASE FOUND
ENDIF (* missing file name!
ENDIF (* command <> ',P' and <> 'U' and ‘D' %)
ELSE
IF COMMAND = 'I, It
DO CHKFILE
ELSE
IF $(FNAME,1,1) <> '_' ,AND. FNAME <> ' !
STORE '###% ERROR - TABLE NAME SHOULD BE AN EXAMPLE'+;
' ELEMENT' TO ERROR:MSG
STORE F TO OK
RETURN
ENDIF (* not a variable file name#)
ENDIF (*®* command = 'I,I' ¥)
ENDIF (¥ command <> 'P'and <> 'I,I' and <> 'P,P! =)
SET EXACT OFF
RETURN

22X RS2 RR2Z AR AR RS2 AR R R R R R Rt R

* SCANPRN. PRG b
This procedure, which is called by procedure PARSE1.prg,scans ¥
¥ the print stack and deletes duplicate field name and orders *

* the remaining field names into a string. *
R R X X R R R R R A X R R R X2 AR A 222 2R R 2R g]]

USE B:PRNSTACK
GOTO BOTTOM
STORE # TO MAX:REC
STORE 0 TO I
DO WHILE I < MAX:REC
STORE I + 1 TO I
GOTO I
IF .NOT, *
STORE TRIM(ATTR) TO MATTR
LOCATE FOR ATTR = '&MATTR!
STORE F TO MUNION
STORE # TO REC:NO
DO WHILE .NOT. EOF
CONTINUE
IF EOF
STORE # TO LAST
IF ATTR = '&MATTR!
IF REC:NO <> LAST
STORE T TO MUNION
DELETE

122

ENDIF
ENDIF
ELSE
STORE T TO MUNION
DELETE
ENDIF
ENDDO
IF MUNION
GOTO REC:NO
REPLACE UNION WITH T
ENDIF
ENDIF
ENDDO
PACK
INDEX ON ATTR TO B:PRNDX
USE
STORE ' ' TO OUT:FLDS
USE B:PRNSTACK
DO WHILE .NOT, EOF
STORE OUT:FLDS + TRIM(ATTR)
SKIP
ENDDO

+ '," TO OUT:FLDS

STORE $(OUT:FLDS,2,LEN(OUT:FLDS) - 2) TO OUT:FLDS
RELEASE I, MAX:REC, MATTR, LAST, REC:NO, MUNION

A2 X322 AR R R AR R AR R RIS RS RRSE AR E S R

* SEARCH. PRG *
¥ This procedure, which is called by procedure MAKEOUTZ.prg, *

* checks if a field name that

exists in the general tables.

¥ displayed.

appears in the result table also *

If not, an error message will be*
%

AR RN R R RN R R RN RN R R R T RN R AR R AR N RN RN N R AT AR AR AR R AT R RN HE

STORE 0 TO I
STORE F TO FOUND
DO WHILE I < FILE:NUM
STORE I + 1 TO I
STORE 'SFILE' + STR(I,1) TO
SELECT SECONDARY
USE B:&SFILE

SFILE

INDEX ON FLD:NAME TO B:SINDEX

SET INDEX TO B:SINDEX
FIND &FIELD:NAME
IF # <> 0
STORE T TO FOUND
STORE FILE:NUM TO I
LOOP
ENDIF
SELECT SECONDARY
USE
ENDDO
IF .NOT. FOUND

STORE '#**ERROR - COLUUMN ' + TRIM(FIELD:NAME) +;

* OF THE RESULT TABLE

IS NOT FOUND IN OTHER TABLES!';

123

TO ERROR:M3G
STORE T TO ERROR

ENDIF
RELEASE FOUND, FIELD:NAME, I

t 222222222 22222222 R R R R R R R T)]

STORE1.PRG *
This procedure, which is called by procedure DTABLE, prg,stores*
* the user's query entered in the general table into SFILEs. *

2 X2 EX R IR R 2 AR R R R R R R R X R

€ 23,10 SAY *PLEASE WAIT A MINUTEI?
IF I(ANSWER) = 'G!
STORE 'SFILE' + STR(FILE:NUM,1) TO SFILE
USE SFILE
COPY TO B:&SFILE
USE B:&SFILE
APPEND BLANK
REPLACE FLD:NAME WITH '&FNAME!
ELSE
IF ! (ANSWER) = 'R!
STORE TRIM(FNAME) TO FNAME
STORE FNAME TO UNPURGED
DO PURGEBLANK
USE SFILE
COPY TO B:;RESULT
USE B:RESULT
APPEND BLANK
REPLACE FLD:NAME WITH '&PURGED'
ENDIF (®* answer = 'R'¥)
ENDIF (* answer = 'G'®¥)

*% connect query *+
STORE 0 TO ROW:COUNT
STORE 4 TO MAX:ROW
STORE 7 TO MAX:COL
DO WHILE ROW:COUNT < MAX:ROW
STORE ROW:COUNT + 1 TO ROW:COUNT
IF ROW:COQUNT = 1
STORE 1 TO COL :COUNT
ELSE
STORE 0 TO COL :COUNT
GOTO TOP
ENDIF
DO WHILE COL:COUNT < MAX:COL
STORE COL:COUNT + 1 TO COL:COUNT
STORE 'ROW' + STR(ROW:COUNT,1) + ':COL' + STR(COL:COUNT,1);
TCO PARSER
IF $(&PARSER,1,1) = ' !
STORE &PARSER TO UNPURGED
DO PURGEBLANK
STORE PURGED TO &PARSER
ENDIF
IF ROW:COUNT = 1

124

APPEND BLANK
REPLACE FLD:NAME WITH &PARSER

ELSE
STORE ROW:COUNT =1 TO ROW:NUM

STORE '"ROW' + STR(ROW:NUM,1) TO ROW:NO
REPLACE &ROW:NO WITH &PARSER
SKIP
ENDIF
RELEASE &PARSER
ENDDO (* col:count < max:col #)
ENDDO
RELEASE PARSER, MAX:COL,COL :COUNT, ROW:COUNT, MAX:ROW, ROW:NO
RELEASE ROW:NUM
€ 23,10
RETURN

HER R R RN R R RN R ER AR R RN AR RE RN R AR R R AR R AR ER AR A AR R R RN Nw

. STOREZ2 .PRG *
* This procedure, which is called by procedure DCON.prg, stores#*
% the user's condition statements into a file. b

RER RN NN RN NERR R RN NN R RN R R AR RER RN RS AR RN AN AR N

€ 23,10 SAY 'PLEASE WAIT A MINUTE!!
USE B:CONDITION
STORE 1 TO ROW:COUNT
STORE 3 TO MAX:ROW
DO WHILE ROW:COUNT <= MAX:ROW
STORE "ROW! + STR(ROW:COUNT,1) + ':COL1' TO PARSER
IF $(&PARSER,1,1) = ' !
STORE &PARSER TO UNPURGED
DO PURGEBLANK
STORE PURGED TO &PARSER
ENDIF (* $(&parser,1,1) = ' ' #)
IF &PARSER <> ' !
APPEND BLANK
REPLACE CONDITION WITH &PARSER
ENDIF (* &parse <> ' | #)
RELEASE &PARSER
STORE ROW:COUNT + 1 TO ROW:COUNT
ENDDO (* row:count <= max:row *)
RELEASE ROW:COUNT, MAX:ROW, PARSER
RETURN

R R R R T T eI T R L]
* SUMORAVG, PRG *

* This procedure, which is called by procedure BUILTFUN.prg, %

* calculates the total or average value for a numerical field., *
12 22222 A R R R A R X R R X R R R AR R R R R R R R R R R X R X2 X R R R XXX E2 2L 22222 222222 X

USE B:&FILE
GOTO BOTTOM
STORE # TO MAX:REC

125

IF MAX:REC = 0
STORE '***ERROR - NO RECORD AVAILABLE, CANNOT PROCEED '+;
'4mbuil tfun' TO ERROR:MSG
STORE T TO ERROR
RETURN
EL SE
GOTO TOP
SUM &MATTR TO RESULT
ENDIF
IF $(MBUILTFUN,1,4) = 1AVG,!
STORE RESULT / MAX:REC TO RESULT
ENDIF
RELEASE MAX:REC
RETURN

i 2222222222 AR AR AR RS R AR RR R RS R X 2R

* TABFORM. PRG *
¥ This procedure, which is called by procedure DISPANS.prg, »
* displays the result of user's query in table form and prints ¢
¥ it out. *

L3R 22 2SR A2 R AR 222 2R 22 R R 2R R R R 22 £

USE B:SAVE

COPY STRUCTURE EXTENDED TO B:STRU

USE B:STRU

GOTO BOTTOM

STORE # TO REC:NO

GOTO TOP

SUM FIELD:LEN TO TOTAL:LEN

STORE TOTAL:LEN + REC:NO TO TOTAL:LEN
IF TOTAL:LEN > 132

ERASE
€ 1,3 SAY nw##¥ TOTAL LENGTH OF EACH RECORD EXCEEDS 132¢

€ 2,3 SAY "CHARACTERS, CANN'T PRINT IN TABLE FORM #==n
STORE F TO OK
DO WHILE .NOT. OK
STORE ' ' TO ANS
@ 4,3 SAY 'Do you want to (Q)uit or (C)hange to '+;
'non-table form?! GET ANS PICTURE '|°!
READ
IF ANS <> 'Q' .AND. ANS <> (¢
LOOP
ELSE
STORE T TO OK
ENDIF
ENDDO
IF ANS = 'Q!
RETURN
ELSE
USE
DO NTABFORM
RETURN
ENDIF
ELSE

126

ERASE
SET FORMAT TO PRINT
SET PRINT ON
€ 1,1 SAY 'The answer to your query is shown as follows:!
STORE 2 TO COL
USE B:STRU
DO WHILE .NOT. EOF
STORE FIELD:LEN / 2 TO FLD:LEN
STORE INT(FLD:LEN) TO FLD:LEN
IF FLD:LEN > 5
STORE FLD:LEN - 5 TO BEGIN
STORE COL + BEGIN TO COL
@ 3,COL SAY FIELD:NAME
STORE FIELD:LEN - BEGIN TO END
STORE COL + END TO COL
ELSE
STORE FIELD:NAME TO FLD:NAME
@ 3,COL SAY FLD:NAME
STORE COL + FIELD:LEN TO COL
ENDIF
STORE COL + 1 TO COL
SKIP
ENDDO
STORE 1 TO COL
USE B:STRU
DO WHILE .NOT., EOF
STORE FIELD:LEN TO FLD:LEN
@ 4,COL SAY 14!
STORE 0 TO I
DO WHILE I < FLD:LEN
STORE I + 1 TO I
STORE COL + 1 TO COL

€ 4,COL SAY t-1
ENDDO
STORE COL + 1 TO CoL
SKIP

ENDDO
@ 4,COL SAY '4!
SELECT PRIMARY
USE B:SAVE
GOTO BOTTOM
STORE # TO MAX:REC
STORE 0 TO I
STORE 4 TO ROW
DO WHILE I < MAX:REC
STORE I + 1 TO I
STORE ROW + 1 TO ROW
GOTO I
@ ROW,1 SAY ']1
STORE 2 TO COL
SELECT SECONDARY
USE B:STRU
DO WHILE .NOT. EOF
STORE FIELD:NAME TO FLD:NAME
@ ROW, COL SAY P.&FLD:NAME

127

STORE COL + S.FIELD:LEN TO COL

€ ROW,COL SAY '

STORE COL + 1 TO COL

SKIP
ENDDO
SELECT PRIMARY
SKIP
ENDDO
SELECT PRIMARY
USE
SELECT SECONDARY
USE
SET PRINT OFF
SET FORMAT TO SCREEN

@ 22,1 SAY 'YOUR QUERY HAS BEEN DONE!

ENDIF
RETURN

R R AR R AR R RN R R R A R AR R AR R AR AR TR AR AR BRI N AR R TRRAAE AN TR U

* This procedure, which is called by procedure BUILTFUN.prg,
¥ deletes the duplicate records of a file.

UNIQUE. PRG

*
]

HE R AR R E RN R AR AR R R AR AR AR R ARAAA TR A ARE SRR R RRAN AR AR A AN RN

USE B:SAVE

COPY TO B:SAVE1

USE B:SAVE1

GOTO BOTTOM

STORE # TO MAX:REC

STORE 0 TO I

DO WHILE I < MAX:REC
STORE I + 1 TO 1
GOTO I
IF TYPE(&MATTR) = 'C!

STORE TRIM(&MATTR) TO

CONTENT

LOCATE FOR &MATTR = “&CONTENT"

ELSE

STORE &MATTR TO CONTENT
LOCATE FOR &MATTR = CONTENT

ENDIF
STORE # TO REC:NO
DO WHILE .NOT. EOF
CONTINUE
IF EOF
STORE # TO LAST
STORE F TO MDELETE
IF TYPE(&MATIR) =

1

IF &MATTR = "&CONTENT*Hv
STORE T TO MDELETE

ENDIF
ELSE

IF &MATTR = CONTENT
STORE T TO MDELETE

ENDIF

128

ENDIF
IF MDELETE
IF REC:NO <> LAST
DELETE
PACK
STORE MAX:REC - 1 TO MAX:REC
ENDIF
ENDIF
ELSE
IF # <> REC:NO
DELETE
PACK
STORE MAX:REC - 1 TO MAX:REC
ENDIF
ENDIF
ENDDO
ENDDO
USE
RELEASE I, MAX:REC, LAST, REC:NO,CONTENT,CONDITION,MDELETE

(123 2222222222222 AR R0 RRRRRXR L

* VARIABLE., PRG #
¥ This procedure, which is called by procedure CALCULATE.prg, w

*# finds a constant value for an example element in the avtable. ¥
233332 R XXX RRXXR S RAREARER AR AR 222 AR SRR 2R RRER 2R R X

STORE $(EXPRESSION,1,1) TO VARIABLE
STORE $(EXPRESSION,2) TO EXPRESSION
IF $(EXPRESSION,1,1) = 1 ¢
STORE '#*% ERROR - NO BLANK CAN BE EMBEDDED INTO EXAMPLE'+;
' ELEMENT' TO ERROR:MSG
STORE T TO ERROR
RETURN
ELSE
DO WHILE $(EXPRESSION,1,1)$'0123456789' .OR.
$(EXPRESSION,1,1)$'ABCDEFGHIJKLMNOPQRSTUVWXYZ !
STORE VARIABLE + $(EXPRESSION,1,1) TO VARIABLE
STORE $(EXPRESSION,2) TO EXPRESSION
ENDDO
USE B:AVTABLE
STORE F TO FOUND
DO WHILE ,NOT, EOF ,AND, .NOT. FOUND
SET EXACT ON
IF VALUE = VARIABLE
STORE TRIM(ATTR) TO MATTR
IF TYPE <> 'N!
STORE n#%##% ERROR - COLUMN &mattr IS NOT A NUMERICAL"+;
" TYPE, CANNOT DO CALCULATION" TO ERROR:MSG
STORE T TO ERROR
RETURN
ELSE
STORE T TO FOUND
STORE TABLEID TO MTABLEID
STORE DEC TO VDEC

129

STORE LEN TO VLEN
STORE # TO REC:NO
DELETE
PACK
STORE MAX:AV - 1 TO MAX:AV
IF REC:NO < I
'STORE I - 1 TO I
ENDIF
STORE F TO FIND:VAL
IF REC:NO > 1
STORE REC:NO - 1 TO PREVIOUS
GOTO PREVIOUS
IF TABLEID = MTABLEID
IF VALUE <> ' ' ,AND. $(VALUE,1,1) <> '_';
JAND. $(VALUE,1,1) <> (!
STORE T TO FIND:VAL
IF TYPE = 'C!

STORE TRIM(ATTR) + '="' 4+ 1wy 4 &
TRIM(VALUE) + '"' TO CONDITION
ELSE
STORE TRIM(ATTR) + '=' + TRIM(VALUE) ;
TO CONDITION
ENDIF
DELETE
PACK

IF PREVIOUS < I
STORE I - 1 TO I
ENDIF
STORE MAX:AV - 1 TO MAX:AV
STORE REC:NO - 1 TO REC:NO
RELEASE PREVIOUS
LOOP
ENDIF
ENDIF
ENDIF
IF REC:NO <= MAX:AV
STORE REC:NO TO NEXT

GOTO NEXT
IF TABLEID = MTABLEID
IF VALUE <> ' ' LAND. $(VALUE,1,1) <> '_';

.AND. $(VALUE,1,1) <> (!
STORE T TO FIND:VAL

IF TYPE = 'C!
STORE TRIM(ATTR) + '=!' + '4' 4
TRIM(VALUE) + '"' TO CONDITION
ELSE
STORE TRIM(ATTR) + '=' + TRIM(VALUE) ;
TO CONDITION
ENDIF
DELETE
PACK
IF NEXT < I
STORE I - 1 TO I
ENDIF

130

STORE MAX:AV - 1 TO MAX:AV
STORE REC:NO = 1 TO REC:NO
RELEASE NEXT
LOOP
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
SKIP
ENDDO
SET EXACT OFF
IF .NOT. FOUND
STORE T TO NO:VALUE
STORE MATTR TO MVAL
ELSE
IF ,NOT., FIND:VAL :
STORE vw##%#% ERROR - EXAMPLE ELEMENT &variable CAN NOT"+;
" FIND A CONSTANT TO MATCH ITw TO ERROR:MSG
STORE T TO ERROR
RETURN
ELSE
STORE 'TEMP* + $(MTABLEID,1,1) TO TEMP
USE B:&TEMP
COPY TO B:BUFFER FOR &CONDITION
USE B:BUFFER
GOTO BOTTOM
IF # = 1
STORE &MATTR TO MRESULT
STORE STR(MRESULT, VLEN,VDEC) TO RESULT
STORE RESULT TO MVAL
RELEASE MRESULT, RESULT
ELSE
STORE w##¥ERROR - TOO MANY VALUES OR NO VALUE FOR "4
WEXAMPLE ELEMENT" TO ERROR:MSG
STORE T TO ERROR
ENDIF
RELEASE CONDITION, TEMP
ENDIF
RELEASE FIND:VAL,VDEC, VLEN, REC:NO
ENDIF
ENDIF
RELEASE VARIABLE, FOUND
RETURN

131

A MICROCOMPUTER IMPLEMENTATION OF QUERY-BY-EXAMPLE
by

Li-Ling Chen

B.S., Feng Chia University, 1980

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1986

ABSTRACT

Query-By-Example (QBE) 1is a relational data base query
language that provides the end user with a simplified approach to
manipulating data. It is a high~level language that is simple
to learn and use while also providing a powerful capability for
defining, retrieving, updating, inserting, and deleting data.
The main philosophy behind QBE is to keep the number of objects
and concepts at a minimum so that a user can begin wusing the
language after just a brief introduction.

Using a series of examples, an overview of QBE is presented
first. A description of the programming language dBase II 1is
also given. The prototype implementation of QBE, accompanied by
an analysis of the algorithm that interprets queries, 1is also
presented. This algorithm was programmed in dBase II
programming language and was implemented on the Zenith-150
microcomputer. The algorithm utilizes four phases of
interpreting or processing queries and it relies on dBase 1II

system to carry out actions specified by a QBE query.

