EFFECTS OF A FRUIT AND NUT DIET

MARIE R. BARDSHAR

Introduction
Discussion
Nuts
Description of nuts
Composition of nuts
Fruits
Uses of fruit to the body
Composition of fruit
Experiment
Chemical composition of fruits and nuts used
Menus and amounts eaten
Amounts and cost of fruits and nuts used
Physical condition of persons while on the diet
Measurements and tests made
Conclusion

References

Wiley
Food and Dietetics
Text Book of Physiology
Bulletin, Nuts and Their Uses as Food
Bulletin No. 54, Nuts as Food

Bulletin 132, Fruitarians
Bulletin No. 107, Fruitarians and Chinese
Michigan Pom. Society, 1873
Dietetic and Hygiene Gazette
Good Housekeeping magazine
Nichigan Horticultural Society, 1888

Hutchinson

Schafer

M. E. Jaffa

Maine Agricultural Expt. Station

EFFECTS OF A FRUIT AND NUT DIET

Fruits and nuts have been considered as accessory or supplementary foods, and to be eaten out of hand at odd times, but this idea is rapidly passing away. Because they were not eaten for the nutritive value which they contained, very little scientific study has been given the fruits and nuts compared with the investigations which have been carried on in connection with the more commonly used foods.

The term "nut" is not a definite one botanically speaking, but is applied indiscriminately to a variety of certain fruits, or parts of fruits, and implies a more or less hard, woody covering surrounding a meat or kernel. The peanut which is usually classed with the nuts, strictly speaking is not a nut, but the fruit of a leguminous plant and is closely related with the pea and bean.

The flavor of nuts depends upon the oils which they contain. In case the oil becomes rancid a very disagreeable flavor is produced. If rancid nuts are eaten in large quantities they will cause sickness, due to the irritating quality of the fatty acids.

The chestnut has a starchy taste as well as the nutty flavor; most almonds are mild in flavor; they contain hydrocyanic acid which with the glucose forms amygdalin.

Some nuts, as the peanuts, are roasted before eating.

In the case of the peanut the flavor depends upon the browned oil and carbohydrates. As a rule, nuts native to America are more highly flavored than the Italian or Japanese nuts.

The edible portion of nuts is very concentrated.
That is, contains little water and a large amount of fat. In general, concentrated foods are a cheaper source of nutrients. In the case of nuts they are considered as a cheap food, not only because they are concentrated, but because they require little preparation, no fuel, and there is only a small amount of waste.

The average nuts contain fifty times as much fat and less than one fifth as much carbohydrate, as wheat flour; one pound of unshelled nuts will furnish about one half as much proteid and the same amount of energy as a pound of flour.

Nuts are generally considered as being hard to digest, and it is true that in some cases there is great discomfort after eating them. But this is usualiy due to the fact that they are not well masticated, or eaten when they are not needed.

Nuts are made more palatable to most people by the addition of salt. This does not in any hinder their digestion.

Fruits have held in past years about the same place in the diet that nuts have, merely as an accessory food. At the present time fruit furnishes 5.6 per cent of total food, 4.9 per cent of the total carbohydrate of the average American diet. The uses of fruit in the diet have been summed up in the following:-

Tempt the appetite

Gratify the appetite
Furnish variety to the diet
Relieve thirst
Furnish nutriment
Supply organic salts
Stimulate kidneys
Act as a laxative
Fruit contains about eighty per cent of water. The solid matter consists of cellulose, sugars, gums, organic acids, and mineral matter. In addition to this, fruit contains aromatic substances belonging to the class of essential oils and compound ethers, which give them the agreeable odor which adds much to their flavor; colors of fruits are due to the different condition of chlorophyll.

Albuminous matters are present in so small quantities that their tissue forming value is of no importance. Thus, to obtain an anount of albumin matter equivalent to the contents of one egg, there must be eaten more than a pound of cherries, nearly one and one half pounds of grapes, two pounds of strawberries, more than two pounds of apples or four pounds of pears. One pound of starch, which is equivalent to about 5.5 pounds of potatoes, may be replaced by the carbohydrate of 5.4 pounds of grapes, 6.7 pounds of cherries or apples, 10.8 pounds of currants, or 12.3 pounds of strawberries.

The different berries contain, as a general rule, a larger proportion of free acid than stone fruits, apples or pears. The malic acid of the apples, the tartaric acid of
grapes and berries, the citric acid of lemons, etc., consist largely of oxygen, the element of combustion, therefore it is thought that fruits directly aid in maintaining the essential equilibrium of heat in the system.

In eating fruits a large amount of water is taken into the system and in this way cleanses it. The body readily absorbs the organic salts of potassium, sodium and calcium which are held in solution by the fruit juice.

As a whole, fruits are valuable and should not be omitted from the diet.

A well balanced ration can be worked out, using fruits and nuts only. The fruits furnish the bulk, orgenic salts, some carbohydrate and liquid, while the nuts are the concentrated food furnishing fat and proteid.

As an experiment of the fruit and nut diet, two college students attending the Kansas Agricultural College took up the diet. They were strong, healthy young women, taking the regular senior studies and playing basket ball. They lived exclusively on fruits and nuts. Neither the fruits or nuts were prepared in any way.

Table I. Chemical Composition of Fruits and

| | Nuts Used | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Refuse Water Protein | Fat Carbo- | Ash Fuel |

Friday	Oranges	1.3	"	2000	1:10	Not satisfied
Mar. 6	Peanuts	. 36	"			thing else to eat.
	Raisins	. 64	"			
Saturday	Peanuts	. 82	"	2000	1:10	
Mar. 7	Figs	. 18	"			
	Oranges	. 74	"			
SundayMar. 8	Oranges	2.9	"	2000	1:10	Found it difficult to
	Bananas	3.1	"			eat 3.1 Ib . banana.
	Peanuts	. 27	"			
Monday	Bananas	. 9	"	2000	1:10	Appetite gone
Mar. 9	Almonds	. 63	"			
	Figs	. 45	"			
Tuesday	Oranges	1.6	"	2000	1:10	
Mar. 10	Almonds	. 6				
	Dates	. 4				
WednesdayMar. 11	Figs	. 2		2000	1:10	English walnuts found
	Eng. Walnuts	. 7				hard to
	Apples	2.4				
Thursday	Peanuts			2000	1:10	
Mar. 12	Dates					
	Apples					

Friday	Dates	. 55 "		2000	1:10	Subject II sick.
Mar. 13	Peanuts	. 58				
	Apples	.38 '	"			
Saturday Mar. 14	Peanuts	. 82	"	2000	1:10	Subject III took place
	Figs	. 18	"			of II in dietary.
	Oranges	. 74	"			
Sunday	Oranges	2.9	"	2000	1:10	
Mar. 15	Bananas	3.1	"			
	Peanuts	. 27	"			
Monday Mar. 16	Peanuts	. 58	"	2000	1:10	
	Dates	. 55	"			
	Apples	. 38	"			
Tuesday Mar. 17	Peanuts	. 62	"	2000	1:10	
	Coc oanuts	. 4	"			
	Apples	. 7	"			
Wednesday Mar. 18	Dates	. 41	"	2000	1:10	
	Almonds	. 61				
	Oranges	1.6	"			
Thursday Mar. 19	Apples	. 30	"	2000	1:10	
	Alm onds	. 94				
	Figs	. 24				

Friday	Oranges	3.8	"	2000	1:10	Subject I
Mar. 20	Bananas	1.3	"			sick.
	Almonds	. 5	"			
Saturday Mar. 21	Peanut	. 58	"	2000	1:10	Subject IV took place
	Dates	. 55	"			$\begin{aligned} & \text { of I in } \\ & \text { dietary } \end{aligned}$
	Apples	. 38	"			
Sunday Mar. 22	Oranges	3.8	"	2000	1:10	
	Bananas	1.3				
	Almonds	. 5	"			
Monday Mar. 23	Peanuts	. 82	"	2000	1:10	
	Figs	. 18	"			
	Oranges	. 74	"			
Tuesday Mar. 24	Apples	. 30	"	2000	1:10	
	Almonds	. 94	"			
	Figs	. 24	"			
Wednesday Mar. 25	Peanuts	. 51	"	2000	1:10	
	Oranges	. 64	"			
	Figs	. 08	"			
	Raisins	. 32	"			
Thursday Mar. 26	Figs	. 23	"	2000	1:10	
	Eng. Walnuts	. 37	"			
	Apples	1.33	"			
	Alm onds	. 46				

Friday	Bananas	.45	"
Mar. 27	Almonds	.31	$"$
	Figs	.11	$"$
	English walnuts	.44	$"$
	Apples	.13	"

Table III

Materials	Amounts	Cost per pound	Total cost
Oranges	25 lbs.	. 08 ¢	\$2.00
English walnuts	4.08 "	. 20	. 82
Raisins	1.76 "	. 10	. 176
Apples	6.79 "	. 08	. 543
Almonds	6.71 "	. 25	1.67
Peanuts	$6.24{ }^{\prime \prime}$. 10	. 624
Dates	$3.98{ }^{\prime \prime}$. 10	. 398
Figs	$2.31{ }^{\prime \prime}$. 25	. 577
Bananas	14.51	. 06	. 87
Cocoenuts			
Total cost of dietary			\$15. 256
			. 282

Breadth neck " shoulders	$\begin{aligned} & 3.9 \text { inches } \\ & 14.4 \text { " } \end{aligned}$	$\begin{aligned} & 3.8 \text { inches } \\ & 14.2 \mathrm{"} \end{aligned}$
m waist	8	7.5
Depth chest	7.1	7
" abdanen	6.2	5.1
Capacity of lungs	194	173
Muscles	115 lbs.	107-3/4 los.
Pulse, sitting	80	96
" standing	88	100
" on exertion	100	128
Respiration, sitting	24	24
" standing	28	28
Urinalysis		
Albumin	none	none
Sugar		
After diet there was a large deposit of urates and phosphates.		
Subject III	On diet fourteen days	
	Before	After
	22 years	22 years
Age	177-1/2 lbs	169.5 lbs .
Weight	22-1/2 in.	22-1/2 in.
Girth head" neck		
	13	13
	41-3/4"	40-1/2
" " full	43-1/4"	42-1/2

Girth waist
＂hips
＂calf，right
＂＂left
＂upper arm，right
＂＂left
＂fore arm，right
＂＂＂left

Breadth of head

＂neck	
＂	shoulders
＂	waist
＂hips	

Depth chest
＂abdomen

Capacity lungs
Muscles
Pulse，sitting
＂standing
＂on exertion

Urinalysis
Specific gravity

Sugar

Albumin

30 inche		29－1／2 in．	
45－1／4	＂	44－3／4	＂
15－1／2	＂	15	＂
15－1／2	＂	15	＂
14－1／2	＂	14	\cdots
14－1／4	＂	13－1／2	＂
10－1／4		10－1／2	＂
10	＂	10	＂
6	＂	6	＂
4.4	＂	3.9	＂
15.5	＂	15.3	＂
8.5	＂	8.3	＂
15.5	＂	14.8	＂
9.1	＂	8.5	＂
8.3	＂	7.6	＂

$$
165 \quad 187
$$

$$
90-1 / 2 \text { 1bs. } \quad 100.5 \mathrm{lbs} .
$$

$$
88
$$

$$
100
$$

20
248884

$$
120
$$

124
20
20

	Before		After	
Age	23		23	
Weight	114-3/4	lbs.	114 libs.	
Girth neck	12-3/4		12-3/4	in.
" chest, normal	34-1/2	"	34	"
" " full	37	"	36-1/4	"
" waist	24-1/2	"	24	"
" hips	37	"	36-1/2	"
" calf, right	13-1/4	"	13-1/4	"
" " left	12-3/4	"	12-1/4	"
" upper arm, right	10-3/4	"	10-3/4	"
" " " left	10-3/4	"	10-3/4	"
Breadth neck	3.9	"	3.9	"
" shoulders	14.6	"	14.5	"
" waist	7.9	"	7.3	"
" hips	12	"	12	"
Depth chest	7.1	"	7.1	"
" abdomen	6.2	"	5.7	"
Capacity lungs	201		194	
Muscles	187-1/4		185-1/4	
Breadth fore arm, right	9-1/4		$9-1 / 2$	
" " " left	$9-1 / 4$		9-1/4	
Pulse, sitting	84		84	
" standing	84		100	
" on exertion	100		104	
Respiration, sitting	12		16	
" standing	16		16	

On March 2nd subjects I and II began the diet. At the end of the fifth day subject II had lost three pounds in weight. Subject I had lost $4-3 / 4 \mathrm{lbs}$. The first day or two there was a feeling of hunger and a longing for something else to eat. By the ninth day this feeling had entirely disappeared.

The abrupt change from the mixed diet to the fruits and nuts caused diarrhoea for the first few days.
. By the 14 th day of the diet subject I had lost five pounds in weight; subject had lost 6-3/4 pounds. Subject II was unable to attend college. She was weak, pain in head, and unable to properly digest the fruits and nuts. Stomach and bowels were sore on pressure. Therefore subject II went off the diet and subject III took it for the remaining fourteen days.

By the 2lst day subject I was greatly lessened in vitality, pale and no appetite. Subject IV took her place in the dietary. At the end of the month subjects III and IV had lost in weight and were weaker.

In changing from the fruit and nut diet back to the mixed diet, it was found that the stomach was very sensitive to materials that were either hot or cold. The change had to be made very gradually.

The results obtained from this diet would have been quite different if fruits and nuts had been gradually introduced in the diet for a month or two before, thereby avoiding the abrupt change of diet.

The difficulty that is met with in the absolute fruit
and nut diet, is that it is impossible to eat enough of the fruits and nuts to produce the required number of calories which the body demands.

In order to digest nuts they must be masticated thoroughly. When eating such large quantities of nuts the jaws become tired and one is apt not to masticate the nuts thoroughly, then digestive disorders will occur. The liability of the nuts being rancid is great and this will also cause digestive disorder.

It is true that our knowledge of fruits and nuts is very limited, but enough work has been done along this line to show that they are quite thoroughly digested and have much higher nutritive value than is popularly attributed to them.

In view of this it is certainly an error to consider nuts merely as an accessory to an already heavy meal, and to regard fruits as something of value for their pleasant flavor.

