Ly
2
el

/THE IMPLEMENTATION OF A SIMJLA COMPILER ON THE
" KANSAS STATE UNIVERSITY PERKIN-ELMER COMPUTERS /

by
LOWELL RICHARD LINDSTROM

B. S., University of Kansas, 1959

A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1986

Approved by:

/o UMb s

Majorf Professor

— e ——

gk%ﬁ ! m;E—U; LL3805
24 -
Q8L
& ble

o Bk TABLE OF CONTENTS

===

Introduction + « « o+ o s o o o s ¢« o s s v s o s ¢« s o« 1
1. THE SIMJLA LANGUAGE == AN OVERVIEW . . +« + ¢« &+ « o 2
2, THE S=-PORT SYSTEM .+ 4 ¢ « #+ « ¢« s ¢« s ¢« o s ¢« s ¢« 5
3. THE PROJECT == AN OVERVIEW . & + o « ¢ s o » o o & T
4, OVERVIEW OF PASSES 6, 7, 8, and 9. + + « ¢« + s« » « 9
PaSS 6 o ¢ ¢ ¢ ¢ ¢« 4 e s 4 s 0 e 0 a0 e s s a9
PASE T o o v w0 8 8 ¢ 0 0w om & & s & b owow T
Pass 8 4 o ¢+ s = ¢ ¢« 5 4 s 4 e s e s e u 0 s e 20
PESB G 4 s % & ® # % o s % @ ¥ & m & % ® % & 8 § w29
5. NEW AND MODIFIED PROCEDURES FOR SIMULA , 27
6., PROJECT STATUS AND FUTURE WORK + + « & « « « s« « o 44
Bibliography¥ . « o « « « o o ¢« ¢ o ¢ o s o s s o s o o U6
Appendix A: Coroutines . + « + +« « o o o s o s s o o o 47

Appendix B: A Sample Token Stream for Pass 6 51

-l

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Filgure
Figure
Figure
Figure
Figure

Figure

5.1
5.2
5.3
A

B.1
B.2
B.3
B.4
B.5
B.6
B.T
B.8

B.9

LIST OF FIGURES

New grahph stucture = DUP token, .

New graph structure - DCOPY token,

Save Objects ¢ « « ¢ o « o » o o o

COroutines o « o o « o + &
Treelement . . « « o+ &« &+ &
Beginning of Pass 6 stack.
STARTLIST tokén, . + + «
PARM token . « « & ¢ « « &
ENTER token. + + .
DEFLABEL token . + « + + «
PUSHADDR token . « « « » &
PUSHCONST token, » « « « o

FIELD token. . + « « « «

B.10 ADD token, « « « « ¢ « « &

B.11 PUSHIND token. . . . « - «

B.12 PUSHCONST token. . « « +

B.13 COMPARE token. . . . « .

B.14 NOT token. . . .

B.15 FALSEJUMP token.

-ii-

32
32
41
50
52
53
53
53
54
54
55
56
57
58
59
60
61
62
63

INTRODUCTION

During the Spring semester, 1983, I participated in a
project to dimplement a SIMILA [2] language compiler on the
Perkin=Elmer computers at Kansas State University. Dr. Rodney M.
Bates was the project director, At this time the project is not
complete in that the compiler is not operational. I have been
responsible for two of the five originally identified tasks,
During the initial semester my responsibilities were to modify
passes 6, 8, and 9 of the operational PAS32 Pascal compiler [4]
to accept the new SIMILA code and produce map.him instruetions,
One year later I became responaiple for modifying pass 7 of that
same compiler, in another course, The other three tasks were to
write the ENVIRONMENT INTERFACE, to develop testing and debugging
tools, and to write an INTERPASS for translating the S-CODE into

a token stream acceptable to pass 6 of the PAS32 compiler,

This report contains overviews of the SIMILA language,
the portable SIMILA compiler [2] obtained from the Norwegian Com-
puting Center, and the project itself, It then discusses in some
detall the data structures and processes used by the four passes
of the PAS32 compiler, Finally, the modifications to those
passes are discussed, enumerating each new compile time token in-
troduced by the SIMULA system and the resulting changes to exist-

ing code needed for each token,

CHAPTER I

THE SIMULA LANGUAGE =-- AN OVERVIEW

SIMULA is a block structured language based on ALGOL 60.
It has powerful list handling and sequential processing capabil i=-
ties, Its compiler precludes many run time errors and much run
time debugging by recognizing problems and not executing the in-
valid use of data through referencing based on wrong assumptions,
Because of its block structure, decomposition is easy. Decompo=
sition means dividing a large problem into smaller more manage=-
able problem components, rEach block of a SIMULA program is a
" ..formal description, or 'pattern', of an aggregated data
structure and the associated algorithms anq actions." [6] The
block is completely independent of the rest of the program as far
as local variables are concerned., This makes the block a small=-
er, more manageable component of the larger, less manageable

problem,

SIMULA's most distinctive features are its CLASS and OB=-
JECT, A CLASS is a block of code which is declared much like a
procedure, It contains local variables, some procedures which
operate on those variables, and probably some executable state-
ments, OBJECTS are instances of CLASSES, There may be many in-
stances of a CLASS in existence at one time. Unlike a block in-
stance in Pascal, a CLASS instance in SIMILA can remain in ex-
istence as 1long as there 1s a reference té it. It may even
remain in existence after the block - instance that called it,

s Dy

Even after the end of its block of code has been reached it will

survive as an item of data.

Identification of individual OBJECTS is through a REFER=
ENCE variable, That is, to allow reference to a generated object
the reference to that object must be stored in a variable,
Through REFERENCE variables the attributes of a CLASS instance
may be assigned to or inspected. An example of how referencing is

initiated is as follows:

CLASS C(.o.); .-.Class mw for‘ C.'l;
ref(C)X;

X := new C(...);

First the CLASS C is declared, with or without parame-
ters, The REF statement declares X as a reference variable for
the CLASS C., Then a2 new instance of the class C is assigned to

X, (":=M" is a SIMULA symbol denoting reference assignment,)

One of the strong features of SIMILA is its processing of
COROUTINES, COROUTINES do not have the master/subordinate relaw-
tionship of programs and subroutines, COROUTINES are two objects
operating at the same level. A typical CORCUTINE object may have

this history.

(1) The object is called by some other object. It is said to be
"operating and attached", At this point it is subordinate to the

calling object.

(2) The object issues a DETACH statement which returns control
to the calling object., Reentry to the calling object will be at
the point it was exited, The called object is said to be "de=

tached but not yet terminated®.

(3) Control returns to the object when a call statement or a
RESUME statement 1is executed, specifying this object by its
reference variable., It is said to be "reattached" to the calling
block instance if called or to the original caller if RESUMED.,
If RESUMED, execution will recommence at the statement after the

exit point of the DETACH.

(4) The object will also relimuish control when the end of its
code 1is reached, It cannot then be reactivated by a call or
RESUME; however, it may still be referenced as an item of data,
It is said to be "terminated", but as long as there is reference
to it in the program, it will not disappear. When all of the
references to it have been wused, it will disappear. At this
point garbage collection is necessary to reclaim memory. (A more

complete explanation of coroutines will be found in Appendix A.)

A series of RESUME statements activating one object after
another puts the object, "on the same level”, as opposed to the

master/subordinate relationship,

There are predefined system CLASSES for special purposes,
One such is SIMILATION which is intended to be used for discrete

event simulation modeling,.

CHAPTER II

THE S-PORT SYSTEM

To implement a SIMILA compiler on the Perkin-Elmer com-
puters it was necessary to obtain from the Norwegian Computing
Center a_portable SIMILA system. This system is called S=PORT.
It consists of a portable front-end compiler and a runtime sys-
tem, The front-end compiler translates SIMILA source code into a
language called S~CODE, S-CODE is an intermediate language meant
to be passed to a back-end which generates machine dependent
code, The runtime system is linked to the compiled program and
at run time provides such services as garbage collection and er-
ror handling., Both the front-end and the runtime system are dis-

tributed by the Norwegian Computing Center as S=CODE for porta-

bility.

The back-end of the compiler must be written specifically
for the computer on which the compiler is to be implemented., It
must consist of a code generator and an ENVIRONMENT INTERFACE.
The code generator is to take S-CdDE and translate it into
machine language. The ENVIRONMENT INTERFACE is 'completely
described by the Norwegian Computing Center, [3] It is a support
system which supplies an interface to the host operating system.
It provides workspace, the processing of control data, the
input/output routines, the initial interpretation of error condi-
tions, and the processing of diagnostic records., The S_CODE pro=
grams contain calls on the procedures in the E_NVIHONMENT INTER=
FACE so that the complled program can properly interface with the

=

runtime system and the operating system.

CHAPTER III

THE PROJECT - AN OVERVIEW

The Kansas State University project to implement a SIMULA
compiler on its Perkin-Elmer computers involved four major tasks,
These were to write the ENVIRONMENT INTERFACE, to write an INTER-
PASS for translating the S=CODE into a token stream acceptable to
pass 6 of the PAS32 compiler, to develop testing and debugging
tools, and to modify passes 6, 7, 8, and 9 of the PAS32 compiler,
The modification of the PAS32 passes were all accomplished by
this author during different semesters, The PAS3Z2 compiler is a
Pascal compiler already on the Perkin-Elmer computers, Passes 6,
T, 8, and 9 are the final major passes of that compiler and pro-

duce the machine code,

The ENVIRONMENT INTERFACE has been described in an ear=-
lier chapter,. This package of routines was written in the C
language to take advantage of C's ability to interface with the

UNIX operating system.

The INTERPASS was necessary to translate the S=CODE into
a token stream acceptable to pass 6 of the PAS32 compiler., A ma-
jor portion of INTERPASS was written in Syntax/Semantic Language

(S/5L). [5] The remainder was written in Pascal,

The testing and debugging tools were written in Paseal,

They include assemblers and dumpers for the token streams, The
assemblers take an input stream of tokens manually developed for

=T -

testing a pass and convert it into the binary numbers the com=-
piler expects. The dumpers perform the opposite task of convert=-
ing the binary mnumbers output by a pass into mnemonic token
streams. Thus test data may be created with mnemonics which are
more easily understandable than number strings and then converted
to "the language the compuier understands", -The output may be

converted from number strings to mnemonics for easier debugging.

CHAPTER IV
OVERVIEW OF PASSES 6, 7, 8, AND 9

The remainder of this report deals with that portion of
this project which were my responsibilities. This chapter
describes passes 6, 7, 8, and 9 of the PAS32 compiler., This is a
Pascal compiler already operational on the Perkin=Elmer comput=-
ers, The project design calls for modification of these passes

in lieu of writing new code generating passes for the back-end.
PASS 6

Pass 6 of the PAS32 compiler is designed to perform constant
folding, i.e., perform operations on constants at compile time
rather than run time, It also performs other optimizing opera=-
tions since it is the first pass of the compiler to build in-
memory data structures., We are concerned with those data strue-

tures.,

Pass 6 builds an in-memory data structure of one procedure
at a time, Most optimizations are performed as the data struce
ture is being built., Some optimization is performed as the data

structure is being traversed for output to pass 7.

The data structure used is a stack of lists of trees, The
basic element in the trees is the TREEELEMENT record. (See Fig-
ure B.1, Appendix B) This record contains a next pointer (NP) for
linkage on the linear list and left and right pointers (LP & RP)
which point to the respective substructures, The TREEELEMENT

-0=

record also contains the agruments for each token and the token
itself, One TREEELEMENT node is created for each input operator

including data item representations such as PUSHVAR or PUSHCONST.

The stack is an array -of' records, The fields of the records
contain pointers to the first and last elements of a list of
statements which have been linked with NEXT pointers, The basic
operations on the stack are PUSH, POP, APFEND, APPENDSTK and
LINK. The POSH procedure places a new stack element on top of
the stack, This element is a reeorgl whose fields are HEAD and
TAIL, HEAD and TAIL are pointers to the new TREEELEMENT. The
POP procedure removes n elements from the stack, APPEND sets the
NP of the TREEELEMENT pointed to by TAIL to point to the current
TREEELEMENT being processed. APPENDSTK causes the TAIL of the
second element on the stack (S08) to point to the TREEELEMENT
pointed to by the HEAD of the top element on the stack (TO0S3).
The TOS is then "popped™ leaving its element as part of the
linked 1l1list of S0S. The LINK procedure accepts the pointer to
the element being processed and a count of the number of stack
elements being involved in the current operation., If two ele-
ments are involved LINK causes the LP of the current operatiozi to
point to S0S and the RP tfo point to TOS. Two elements are popped

and the element of the current operation is pushed.,

The Basic operations on the lists of TREEELEMENTS are per=-
formed by UNARYTREE, BINARYTREE, UNARYAPPEND, BINARYAPPEND, AP=-
PENDINPUT and PUSHINPUT. Each of these procedures call or cause

to be called the READARGS procedure, which creates the rew

-10=

TREEELEMENT, places the constant token of the operation in the OP
field, initializes the NP, LP, and RP fields to nil, and reads
and loads the appropriate number of arguments into fields in the
element, UNARYTREE and BINARYTREE examine the elements pointed
to by TOS and SOS and the current operation to see if optimiza-
tions may be performed., If they do not perform optimizations,
UNARYTREE will perform a LINK(1). BINARYTREE will perform a
LINK(2). UNARYAPPEND and BINARYAPPEND first call UNARYTREE or
BINARYTREE respectively, and then perform an APPENDSTK. This
causes the tree to be built and it appends the tree to the stack
as the TAIL element. APPENDINPUT causes the NP of the TOS TAIL
element to point to the current operation, thus adding it as a
list member, PUSHINPUT simply pushes the current operation's

element on the stack,

Figures B.2 through B.15 in Appendix B illustrate the ac=-
tions taken by pass 6 as a sequence of tokens is input. Starting
with Figure B.2 there are no TREEELEMENTS present. The top of
the stack (TOS) is 0 and both HEAD and TAIL fields are initial-
ized to nil. The first token read is STARTLIST which pushes a
record onto the stack with its HEAD and TAIL fields at nil. The
next token is PARM (Figure B.4)., The call on APPENDINPUT causes
a rnew TREEELEMENT to be careated by READARGS., LP, RP, and NP are
ipitialized to nil and the five arguments associated with the
PARM token are read from the input file and placed in the argu-
ment fields of the TREEELEMENT record, Pointers to the PARM

TREEELEMENT are placed in TOS,

=-11=

In Figure B,5 the ENTER token has been processed. Again,
READARGS c¢reates a new TREEELEMENT record, initiates its LP, RP,
and NP and reads its associated arguments into its argument
fields. The UNARYTREE procedure places a pointer to the PARM
element into ENTER's LP, pops the TOS which pointed to PARM and
pushes a record with HEAD and TAIL pointing to ENTER. The AP=
PENDSTK procedure examines the second record on the stack (S0S).
Since both of S0S's fields are nil, pointers to ENTER are placed

in SOS's fields and TOS is popped. The stack is now at 0.

The next token in the input stream is DEFLABEL (Figure B.6).
After READARGS creates and initializes its TREEELEMENT fields,
the APPENDINPUT procedure calls APPEND which, since TOS's fields
are not | nil, places pointers to DEFLABEL into the TAIL field of

T0S and the NP field of ENTER.

Each of the remaining figures illustrate the state of the
stack and the state of the tree after each operation has been
processed, The procedures invoked by each operation are listed on
their respective illustrations, Note in Figure B,15 that when
the subtrees of FALSEJUMP are all linked, a pointer to FALSEJUMP
is in the TAIL field of TOS, and & pointer to ENTER is in the
HEAD field. Always, when a tree is complete, the HEAD fileld will
point to the beginning of the list and the TAIL field will point

to the end of the list.

When the data structure has been built, it is traversed by
the TRAVERSETREE and WALKTREE recursive procedures. Because of
the NP in the structure this is a modified postorder f{raversal,

B

Each node is visited first by visiting the node pointed to by LP.
Then the list pointed.to by RP is visited The node itself is out=-
put and the NP of the node is visited along with all of its
nodes, The result is that the input to pass 7 will be the same
as that for pass 6 except where optimizations have occurred to

alter the token stream.

PASS T

Pass 7 generates the machine instructions, with the excep-
tion that it can not choose the best form for some of the in-
structions, in which case that decision is deferred to pass 8.
Pass 7 handles register allocation and assignment, and it gen-
erates symbolic references to code, procedure, and statement la-

bels, to literal constants and to stack depths,

The output of the generation of machine instructions con-
sists of an instruction op code, a short set which represents any
of eight diffgr'ent operation types, and the various fields of the
instruction, The instruction op code is one of the Perkin-Elmer
machine codes, The different operation types are RX, RR, and RI,
which are standard instruction formats, and RXL, RXR, RXC, RXU,
and RIS. RXL is an RX instruction which references a code label.
RXR is an RYX instruction which references a procedure label.
(These are referred to in the code as routine labels.) RXC is an
RX instruction which refers to a long constant. RXU is an RX in-
struction which refers to a usér def‘;ued statement label. RIS is
an RI instruction which references a routine's maximum local

stack depth,

There are eleven data types which may appear in the out=-
put stream in the short set. BYTE indicates a constant of one
. byte, BHALFWORD is a constant of two bytes wh.{ch must be halfword
aligned, FULLWORD is a constant of four bytes which is to be

fullword aligned. TWQ_REGS and THREE_REGS indicate that an in-

-1l=

struction contains two or three registers, STACK REF says that
the displacement field of the instruction is a stack reference,
ABSOLUTE says that the displacement field of the instruction is
an absolute value, LITERAL indicates that the displacement field
is a long constant reference, CODE_LABEL says that a displace-
ment field is a code label reference. STMI_LABEL says the dis=

placement field is an inter-procedural label reference,.

To facilitate code generation there are three instruction
mapping tables used. The BASE OP table maps an op code into its
base code, For example, L is the base op code for all of the
load instructions and ST is the base op code of all the store ine
structions. The BASE TYPE table maps data types into instruction
types. For example WORD _BASE is the base type for a word type,
set type or structured type instruction, The BASE FORM table
maps instruction types into base instruction forms, For example,
RX_BASE is the base instruction form for RX, RKL, and RXR in-

structions.

The INIT_SPECIFIC OP procedure initializes each of these
| tables to their sets of specific values. Thus if L represents a
constant of value 1, BASE OP[L] := L_BASE, i.e., BASE OP[1] :l=
L__BASE. Similarly WORD_TYPE has a constant value of 2; there-
fore, BASE TYPE[2] := WORD_BASE. An RX instruction has a
BASE_FORM Rx; RX has a constant value of zero; -therefor-e,
BASE _FORM[O] := RX_BASE. The values in these three tables are

used to index a three dimensional array, SPEC_OP.

The SPEC_OP table is initialized in the procedures

-15=

INIT SPECIFIC COP2 and INIT SPECIFIC 0P, This table contains the
constant values of the Perkin=Elmer instruction set. Using the
examples above, a -SPEC_OP with an index of L_BASE, WORD_BASE,
RX_BASE (SPEC_OP[L_BASE, WORD_BASE, R¥_BASE]) will have a value of
1 which is the L instruction, The SPEG OP table is used to gen-
erate instructions which have both RX and RR versions, or which

have different versions for different register sets,

The SPEC_OP table is referenced by the SPECIFIC_OP func-
tion which has been called by the PUT_GEN_OP procedure, which may
have been called by any number of procedures, one of which is
PUT_RX, These three procedures will be discussed later, First

it will be beneficial to know more about the attribute vstack.

The attribute stack generally simulates the contents of
the virtual stack at runtime, It is implemented as a linked list
of ATTRIBUT records. Two pointers, TOP and SECOND are maintained

to point to the top and second records on the stack.

Each attribute record contains a link field pointing to=-
ward the bottom of the stack, a type field and a kind field, The
type field will identify the type of object this attribute
desecribes, i.e., byte, halfword, word, shortreal, real, or struc-
tured. The kind field describes ﬁhe kind of object. If the kind
is expression, then the expressicn value is contained in a regis-

ter EREG.

If the kind is variable the fields of the attribute are

contents, state, register, displacement, and level. The contents

G

field designates whether the stack element contains the address
or value of the variable being described, The state field tells
how the object is to be addressed. This can be direct, indexed,
or indirect, The register field designates the addressing or in-
dex register to be used for addressing the object, The displace-
ment field is the displacement for addressing the object, and the

level is the absolute, global, or local addressing level,

If the kind is constant there are two fields to designate
the size of a constant, A short constant will be an integer
value and a long constant will be a displacement with a value

coming from CONST INDEX.

Code generation is effected by three different pro-
cedures. PUT _CODE is the lowesi; level of these, It is called
with the instruction type, op code, three registers, and dis-
placement as arguments, This procedure writes the instruction on
its short set into the intermediate output without modification.

It outputs the op code exactly as it was received.

PUT_GEN_OP calls PUT_CODE, but before it does it ealls
the SPECIFIC_OP function so that the right op code will be out=
put., The parameters passed to PUT _GEN-OP are op code, operand
type, instruction form, three registers, aﬁd displacement, As an
example of this sequence PUT_GEN_OP(A2,WORD_TYPE,RX,R1, R2,00)

will generate PUT_CODE(RX,A2,R1,R2,0,0).

PUT_RX is a higher level routine in that it is passed a

base op oode, a register, and an attribute, It uses the kind

=] T

field of the attribute to determine whether the object is a vari-
able, set expression or constant. If it is either of the first _
two, it uses the level field to determine whether to use the glo=-
bal base, procedure base, or local base register, It then uses
the state field tc determine the index registers, PUT_RX calls
PUT_GEN_OP which then calls PUT_CODE to output the completed in-

struction,

There are three sets of registers avallable on the
Perkin=Elmer: general purpose, real and shortreal, Whether a
specific register is available for use at a given time is deter=-
mined by its state as recorded in the REG_STATE table. This
table is two demensional, register types by register numbers.
Each register set contains 16 registers. The state of each regis=-
ter is "free" or "assigned". Except registers which are never
available to the programmer, all registers are initialized as
"free®, The procedure NEW_REG is used to locate available regis-
ters, It searches whichever register set that was asked for un=
til it finds a free register. It then calls MARK_REG which will
change the registér- to assigned. The procedure FREE REG marks
assigned registers as free when it Iis passed the register number

and set by a calling procedure.

The allocation of storgga for temporaries on the runtime
stack is handled by the procedures NEW_TEMP, MARK_TEMP, and
SET_TEMP. NEW_TEMP is passed the length and alignment of the
temporary to be allocated. It finds the proper alignment for the

start of the temporary and returns that as its displacement, It

| e

also increments the global displacement variable TEMP_TOP.
TEMP_TOP marks the space allocated for temporaries at any time,
MARK_TEMP will return the current value of TEMP_TOP to a calling
procedure, SET TEMP sets TEMP_TOP to a specific value, SET-TEMP
is gererally considered done when a temporary has been used and
is to be released., A call on SET TEMP with the displacement

value of the beginning of this temporary will release the space.

SET_VAR_ATTR, SET_EXPR_ATTR, SET_CONST_ATTR, and

SET_SET_ATTR are used to place values in fields of attributes.,

GET_IN_REGISTER and GET_IN_GIVEN REGISTER work together
to load the data or address represented by a specified attribute
into a register (EREG), free any other registers used by the at-
tribute and update the attribute to reflect the expression,
GET_IN GIVEN_REGISTER actually generates the code to load the re-

gister,

The MARK_ADDR procedure uses the fields of an attribute

to generate an address,

PASS 8

Pass 8 accepts the code generated by pass 7 and performs
a variety of peephole optimizations., It also makes final choices
for the instruction sizes, Pass 8 is the first pass to know the
size of all machine instructions, It generates six tables to be
used in resolving addresses and in placing constants into the

constant area,

The basic data structure of pass 8 is a linked 1list,
Pass B8 accepts one block of oode at a time, In doing so it
builds in memory a list of elements with one element of the 1list
for each instruction input, The fields of the elements of the
list are NEXT and LAST pointers to the preceeding and succeeding
element respectively, the line number, and the kind of element,
Depending on the kind of element there will be a number of other
fields in the element, These filelds are the instruction field
passed from pass T as the op code and short set. When new ele=
ments are read by pass 8 they are always placed on the end of the

list.

For all but a few of the op codes, the elements and their
fields are immediately put on the list. Some of the exceptions
and th_e resulting actions are: 1) EOM which updates the stack
size -to be passed to pass 9, 2) DEF_LAB which checks to see if
the label has already been defined. If not, a new element ris
created and placed on the list, 3) DEFSTLAB which defines a

cross routine statement label and places the element on the list,

=20=

4) DEF_PROC which defines a new procedure entry and places an
element on the list. 5) EXT PROC which places on the STACKTABLE
the =size of an external or prefix routine, if this procedure's
size is greater than that already on the stack for this procedure
or if the size of this procedure had not already been entered,
6) LINE NO which reads into the current line number variable the
line number being processed, 7) LIT _CONST which places long con-
stants into the constant table and updates the LITTABLE with the
displacement of this constant, This will be discussed later in
more detail. 8) PROC_INSTANCE which increments the STACK_SIZE by
the length of this block, taking into account its aligmment. 9)
EXTID which adds an external name to the ESDTABLE at the dise
placement found as an argument with the op code. 10) PROC_STACK
which initiates most of the pertinent processing of this pass,

This will be discussed later,

The six tables used by this pass are the STACKTABLE,
BLOCKTABLE, STLABTABLE, ESDTABLE, CONSTTABLE, and LITTABLE,
These tables are all records of arrays of integers divided into
100 integer portions, Items are placed in the arrays and their
displacements tracked, Should more than 100 integers be placed

in one portion of a table, another portion is created.

The STACKTABLE contains the size of each block entered
intco the array at displacement "procedure number®, Each pro-
cedure has been identified by & unigue number assigned by a pre-
vious pass, These numbers start at 1 and are incremented for

each procedure identified. Since any procedure number may occur

-21=

more than once in the input te pass 8, this latest procedure's
size will be entered into the table only if it is the first time
pass 8 has seen this procedure or if the size is greater than

that previously entered.

The BLOCKTABLE records the value of the instruction
counter at the time the block or procedure is being written to
the intermediate output. This value is also placed at the dis-

placement of the procedure'!s number,

The STLABTABLE records the value of the instruction
counter as this statement label 1s being written to the inter=
mediate output. The displacement in the table is the statement

label's number,

The ESDTABLE is the external symbol dictionary. This
table records the symbol of an external procedure at the dis-

placement of the external procedure's number,

The CONSTTABLE holds all the long constants, They are
copled into this area from the input stream by either of two pro-
cedures, SORT_IN LIT or SORT_IN_LARGE LIT. SORT_IN-LIT accepts
the whole long constant as a parameter., It compares the long
constant with those already in the constant area, and if it finds
that this is a duplicate, it does not enter it, It uses the dis
placement of the already present long constant to enter inteo
LITTABLE for addressing, SORT_IN_LARGE LIT is used when the size
of the literal exceeds 20 digits, No optimization occurs and the

long constant is entered one digit at a time,

=Pl

The LITTABLE records the displacement of the long con-
stants within the CONSTTABLE., The displacements are placed into
LITTABLE at the displacement of the CONST_INDEX, which is like a

procedure number,

All of the procedure labels, statement labels, and con-
stants receive their label numbers, procedure numbers, or indexes
in a previous pass. This number has alsoc been placed as a field
in any instruction which will access one of these constants or
labels, Those numbers are used by pass 8 to resolve the final
addresses of those labels and constants, This occurs in the pro=-

cedure PROC_STACK.

The PROC_STACK instruction is received when the whole
bleck has been read into the 1linked list, This is when the
peephole coptimization occurs, The procedure first called 1is
TAKE PROC, TAKE_PROC first enters the size of the procedure in
the STACKTABLE, and updates the CURRENT _STACK variable to the
current size of the stack., It then calls FIX REFS. FIX REFS
scans the entire list and adjusts the addresses of all stack
references and long constants, For STACK_REF the address in the
list element is set to the value of -CURRENT_STACK. For long con-
stants the address in the list elanént is set to the value found
in LITTABLE for this long constant. The ADDR field of the ele-
ment in the list holds the CONST INDEX value for long constant
elements, Thus it is possible to find this long constant in

LITTABLE and change the value of ADDR accordingly.

TAKE,_PROC next calls OPTIMIZE PROC. This procedure will

-23=

in turn call PHASE1_OPT. Depending on the kind of the element
PHASE1_OPT will call one of four optimizing procedures, QPT_COLE,
OPT_CODELAB, OPT_BRANCH, and OPT_LAB. There are 21 different
procedures which may be called by any of these four, These 21
procedures perform ‘such optimizations as removing redundant and
extraneous code, changing op code forms to more efficient forms,
removing extraneous instructions, and altering branch chaining to

be more efficient,

When the whole list has been scanned for optimization it

is written to the intermediate output,

2l

PASS 9

Pass 9 uses the tables produced by pass § to replace the
label identifiers with addresses, It converts the code from
passes 7 and 8 into a format that will be acceptable to the link-
ing loader, The instructions from the previous passes are encod=-
ed in words, Pass 9 manipulates these so that they will be in
the appropriate format of the Perkin-Elmer instruction set,
There are 28 different operators which may appear in the pass 9
input stream. These operators are processed by any one of eleven

procedures,

Of those eleven procedures, six significantly affect the
final code and addresses, The principle difference between those
six procedures is in the type and/or length of the instruction
being processed. These procedures perform operations on data
types, instructions, or long constants, When called each pro=-
cedure is passed a parameter that tellg what kind of instruction
is being processed, i.e., LAB, PROCS, LIT, or ULAB., Four of the
six use the RELOC or RELOC2 procedures to handle the final reso=~

lution of addresses.

The operations on data are performed by TAKE DATA2 or
TAKE_DATAY, The numbers appended to the procedure labels indi=-
cate the length of the instruction in bytes. If- "the parameter
passed is NONE or LAB, there is no address resolution to take
place, and the instruction is output to the intermediate file as
is. If the kind is PROCS, then BLOCKTABLE is accessed by the
called RELOC procedure, and the final address is arrived at using

D5

the displacement returned from BLOCKTABLE and a displacement from
the instruection., If kind is LIT, then the data is a long con-
stant and, the final address is the displacement field in the ine
struction plus LITOFF. LITOFF has the value of the code length
as calculated by pass 8. This puts the long constant table at
the end of the code and this long constant at - some displacement

within it.

The TAKE_INSTR2, TAKE_INSTR4, and TAKE INSTR6 procedures
are very similar to the procedures just described, The differ-
ence between these procedures is in the length of the instruce-
tions. Since the form of the instructions they receive is dif-
ferent, they each will perform the same operations on different
fields. These procedures also use RELOC AND RELOC2 for address

resolution,

The TAKE _EOM procedure writes the long constants to the
LITERALTABLE, As stated before this is at the end of the code

file., The long constants are written into this table without al-

teration,

Pass 9 also prints the source code, the external symbol

dictionary, the statement, and data area maps.

=26

CHAPTER V
NEW AND MODIFIED PROCEDURES FOR SIMULA

This chapter contains an explanation of the modifications
necessary to each of the four passes of the PAS32 compiler to
make it accept S~-CODE as modified by INTERPASS, and output

machine code for a SIMILA program,

FRAGMENT TABLE HANDLING

Pass 6 of the PAS32 compiler handles one procedure at a
time., A procedure begins with an argument list or an ENTER token
and ends with an EOM token, Pass 6 is not equipped to handle the
nested procedures of S-Code, Nor is it equipped to handle stack
entries that are not at the top of the stack, as S-Code allows.
Pass 6 expects a polish postfix token stream, It was decided
that it would be impractical to alter pass 6 to the extent neces-
sary for it to be able to handle the sequence of an unaltered S-

Code token stream,

The solution was to have INTERPASS produce two output files
instead of one, The f‘irst is the token stream in the S-Code se-
quence, The second is a table of pairs, each pair pointing to
the beginning and end of a fragment of the token stream. This
"f'ragment® table is sorted so that fragments selected sequential-
ly will cause the properly ordered tokens and arguments to be
read by pass 6. By reading the fragmeﬁt table and =stepping
through the fragments one at a time pass 6 is able to receive the

POl ish postfix token stream it expects.

-2T=

The modifications to pass 6 involved creating a new pro-
cedure, FRAGMENTTABLE, and altering the existing READIFL pro=-
cedure, The FRAGMENTTABLE procedure reads the fragment table and
initializes two global variables, STARTFRAG and ENDFRAG. It
steps through the fragment input, one pair each time it is called
by READIFL, thus making avallable the beginning and ending dis-
placements of each fragment, READIFL can determine the page it
needs by "startfrag div 128" and the word it meeds by "startfrag
mod 128", ENDFRAG is used to determine when a new pair of ad=-

dresses are needed from the fragment table.

THE ALLOCATESAVELONGTEMP TOKEN
Certain temporaries in S Code cannot be held in a register
and therefore pass 7 had to be altered so that these could be

stored in memory.

Interpass passes the ALLOCATESAVELONGTEMP token to pass 6
with size and alignment arguments. Pas# 6 adds a temporary-id
number as an argument, which i1s the next temporary number in se-
quence using the same series of numbers as the other temporaries,
Pass 6 also maintains a stack of records of each of these tokens,
This is necessary so that when the corresponding RELEASELONGTEMP

token is processed it will receive same the temporary=-id number,

Pass 7 must allocate a temporary of the given length and
alignment, generate code to copy from the area pointed to by the
top of stack to the allocated temporary and then have the top of
stack point to that temporary. This is accomplished by using a
routine similar to that in the existing ALLOC _TEMP procedure to

~28=

allocate the temporary, From the length argument, the number of
words can be computed and the number of registers needed for the
load multiple and store multiple instructions can be determined.
The starting register is determined because pass T already knows
the highest numbered register available., Code is gererated for
the load multiple (LM) and store multiple (STM) instructions us-
ing the PUT RX procedure, The starting register mmber and the
displacement of the temporary are placed in the attribute record

so that a MAKE_ADDR procedure may determine the address of the

temporary,

THE RELEASELO‘NGTEH} TOKEN

The RELEASELONGTEMP token is created to correspond to the
ALLOCATESAVELONGTEMP and LONGFUNCVALUE tokens, This token comes
into pass 6 with size and alignment agruments and has added the
temporary-id number, Since long temporaries are allocated and
released in a last-in first-out order, the temporary-id is easily
matched with that assigned to the last ALLOCATESAVELONGTEMP to=
ken, After being assigned thi= number the token is passed
through to pass 7. Pass 7 uses the existing RELEASETEMP pro-

cedure to free the long temporary space,

THE CALLTOS TOEKEN
CALLTOS differs from the existing CALL token in that it will

get the address of the routine to call from the stack, instead of
of computing that address from a procedure label. It has three
arguments: mode, parameter length and level, The latter two up-

date the global variables, CALL PARMLEN and CALL_LEVEL, which

-20=

track the call lengths and levels,

Pass 6 passes this token through without alteration., Pass 7
computes the address wusing the MAKE ADDR procedure on the top
element on the attribute stack. The PUT_CODE procedure is used

to generate code for a branch and link (BAL) instruction.

THE GOTOTOS TOKEN

This token is to cause an unconditional branch to the ad=-
dress in the top of the stack. It has no arguments and is pa'ssed
through pass 6 without alteration. In pass 7 the GOTQTOS pro-
cedure causes the address of the top attribute to be computed us=-
ing the MAKE ADDR procedure, The PUT _GEN OP procedure is then

used to generate code to branch unconditionally to that address,

THE DUP AND NEWPOP TOKENS

The S-Code DUP token requires that the top item on the stack
be duplicated, Because pass 6 and pass 7 are designed for Polish
postfix token streams which use each result operand only once,
the DUP token has made it necessary to introduce an acyeclic graph
structure which is not a tree to pass 6. For pass 7 this means
that some method of keeping registers assigned, and not aﬁtomati-

cally freed after being used, had to be implemented.

For pass 6 when the DUP token is encountered a2 new node is
created. The first argument of the token is é. refer"enee count to
be incremented and decremented as the this token and its related
tokens are processed, This DUP node is interposed between what

‘was on the top of the pass 6 stack and its TREEELEMENT, The

-30=-

LINK(1) procedure is used for this, The reference count is set
to one., A DCOPY node is created and made to point to the 'DUP
node. The reference count is incremented by one, A pointer to

the DCOPY node is pushed on the pass 6 stack.

At this point the structure is: T0S points to the DCOPY
node; the DCOPY node points to the DUP node; SOS points to the
DUP node; the DUP node points to the expression which started on

the top of the stack; and, the reference count is 2, (Figure

5.1).

Should another DUP token be encountered before EOM or
NEWPOP, another DCOPY node is created and pushed onto the stack,
with its pointer again to the DUP node, The reference count is

incremented by one. (Figure 5.2).

The NEWPOP token from S-Code is meant to pop the top item on
the stack, Because of the possible existence of a DUP node the
subtree(s) of the node pointed to by TOS must be traversed, re=
cursively pruning its elements, ID. this traversal, should a DUP
node be visited its subtree is not pruned unless its reference
count is zero. In that case the subtree is pruned and the DUP
node discarded. Should a DCOPY node be visited the reference
eouz;t, of the DUP node is decremented by one and the DCOPY node is

discarded.

In the example above, should a NEWPOP token be encountered
while a second DCOPY node is at TCS, the reference count is de=-

¢remented by one and that DCOPY node is discarded by popping TOS.

~31=

Expr | Dup Dcopy
Expr | Dup Dcopy
Dup Dcopy
z
Expr
Figure 5.1
Expr | Dup Deopy | Dcopy
Expr | Dup Dcopy | Dcopy
Dup Dcopy Dcopy
3
Expr

Figure 5.2

=B

Should two more NEWPOP tokens be input before another DUP token,

then this reference count would go to zero the DUP node's subtree

would be pruned and the node discarded by popping TOS.

In pass 7 when the DUP token is input the object on the top
of the attribute stack is duplicated by creating a new object,
copying the attributes from the top object to the new object and

pushing the new object on the stack,

The presence of the DUP token in pass 7 means that any regis-
ters used by the token can not be released until both the DUP to-
ken and the object it duplicated have been used. This is accom=-
plished by adding a new array to pass 7, REGS_USED. The array is
indexed by the type of register and the register number, Each
time the MARK_REG procedure is called the appropriate use count
is incremented by one. Whenever the FREE REG procedure is
called, the use count of the appropriate register is decremented
by one, The FREE REG procedure is not allowed to mark the regis-

ter free unless its use count is zero,

In this respect it is a good time to point out that general
purpose register 7 is used by UNIX and is never avallable to the

compiler, Code has been inserted to protect register 7.

THE DUMMYARGLIST TOKEN

The DUMMYARGLIST token's purpcse is to take up space at com-
pile time, to skip over parameters which will not actually be
passed, That is, to maintain alignment when there is no actual

parameter to match a formal parameter,

-33-

This token has the same arguments as the existing ARGLIST
token, The arguments are mode, displacement, context, type and
length. Pass 6 passes DUMMYARGLIST and its arguments through to
pass T. The UNARYAPPEND procedure is used for this, Pass 7
treats this token the same as ARGLIST except in the ARGUMENT LIST
procedure, all code is bypassed after the offset and length have
been determined, until the SET TEMP procedure 1s called, This

will occupy space at runtime in the activation record.

THE LONGFUNCVALUE AND ENDLONGFUNC TOKENS

These two tokens are similar to the existing FUNCVALUE and
ENDFUNC tokens. Coming into pass 6 the arguments of the LOI'.\I‘G-
FUNCVALUE token are mode, type, size and alignment. Pass 6 re-
places the type argument with a temporary=id number. This is
done so that the results of function call may be placed in the
temporary area instead of a register, Pass 6 simply places the
next sequential temporary number into argument two of the token,

and the token is pushed onto the stack,

The ENDLONGFUNC token is not input to pass 6 but is oareated
while the tree structure is being traversed for output, When the
WALKTREE procedure recognizes a LONGFUNCVALUE element, it calls
the PUTBEGINOP procedure, In this procedure the LONGFUNCVALUE
element is output before its subtree is traversed, The token
remains in the stream and the traversal of the subtree continues,
When all of its nodes have been visited and output, the element
is output; however, the table of output tokens causes the

ENDLONGFUNC token to be placed in the stream instead of another

-34-

LONGFUNCV AL UE.

This process will eventually leave a temporary on the com-
pile time stack, Therefo;-e at the time these two tokens are out=-
put an additional RELEASELONGTEMP token is also output, This to=-
ken will have the corresponding temporary-id number as its second

argument.,

Pass T handles these tokens in much the same manner as the
FUNCVALUE and ENDFUNC tokens, except the function result can not
be stored in a register, The LONGFUNCVALUE procedure allocates
space for a temporary, and the ENDLONGFUNC procedure generates

code to push the address of the temporary,

THE LONGCONSTADDR TOKEN
For SIMULA long constants can be or can contain addresses of
machine instructions, This requires new procedures because the

PAS32 compiler is not equipped to handle any such occurrence,

This new token is input to pass 6 with four arguments: lo=
cation mode, location displacement, value mode, and value, The
first argument indicates into which area, global or constaat,
Vt.hat the address is to be placed, The second argument is the
displacement within this area at which the address is to be
pl aced, The third argument indicates how the address is to be
computed, The forth argument is a either a label or a displace-

ment from which the address is to be computed.

Pass 6 will add the constant index argument to these four
arguments, This will be used in pass 8 to resolve the location

-35-

displacement, Pass 7 will pass thils token through unal tered. In
pass 8 the true displacement of the constant in which the address
is to be placed is resolved. This is done using the constant in-
dex, the LITTABLE, which contains the constant area displacement
for that constant index, and the ENTR function, which uses the
first two to return the desired displacement. The constant index

is not used again,

In pass 9 the four arguments are used to locate or compute
the address and to place it in the designated area, in the iden=
tified constant, at the right displacement. The location mode
tells which area contains the constant to be overlayed, The true
displacement within that area was computed in pass 8. If the
value mode is LCONST or ABSOLUTE, the value argument is the value
of the constant which is an address of something else within the
constant area or global area, respectively, It may be retrieved
using the ENTR function and placed appropriately with the ENTER
procedure. If the value mode is PLABR or STLAB, the value argu=-
ment is a label, The address of the label is retrieved from the
BLOCKTABLE with the ENTR function and placed by the ENTER pro-

cedure,

THE NEWLONGCONST TOKEN

S-Code has both variables with initial ized values and con-
stants, PAS32 can handle constants but not initialized variables
as constants, In addition, ﬁass 8, in optimizing the constant
area, eliminates duplicates as they are received to be sorted

into the constant table, This could mean the elimination of some

=36

initialized variables. The solution to this is the creation of a

new constant area by pass 8 where the initialized variables will

be placed,

Coming from interpass the long constants will have a mode ar-
gument, If the mode is LCONST, it is a true constant, If the
mode is ABSOLUTE, it is an initialized variable. HNew procedures
for passing the tokens through passes 6 and 7 are identical to
existing procedures with the exception of being able to handle

the additional argument.

Pass 8 must not only place the constants into their designat-
ed areas, it must put the displacements of those constants into
the address fields of the instructions which access the con=
stants, This is complicated by the fact that the mode is mever
known to those instructions or the tokens that oreated them,
Only the constant index, i.e.,, serial number, of the constant is
known., Therefore, at the time the displacement is placed in ;he
instruction, it is not known which area that displacement per=-

tains to,

To overcome this, these changes are made: 1) The accumulat~
ed length of gll constants is passed to pass 6 by interpass,
Pass 6 determines the lengths of long constants and initialized
variables by subtracting the length of each initialized variable
from the constant length and accumulating a GLCBALLENGTH, This
GLOBALLENGTH is passed through to pass 8. 2) Pass § uses oude-
only slightly modified from the existing SORT_IN_LARGE LIT pro=-
ceédure to sort the initialized variables intc their area, the

=37

CLOBALTABLE, The displacement of the variable in that area is
computed to be its displacement from the beginning of the GLO=
BALTABLE plus the total length of the true constants, This com=-
puted displacement is placed in LITTABLE and subsequently will be
returned as the address of the constant when the FIX REFS pro-
cedure resolves addresses, The address in the iﬁstruction will

already contain all the offset needed for final address resolu-

tion by pass 9.

Pass 9 already initializes a variable, LITOFF, to the code
length, It then uses that variable as the base address of the
constant area. The base address of the GLOBALAREA will thus be

LITOFF plus the constant length,

The constant length at the beginning of pass 8 will change
as pass 8 eliminates duplicate constants, This difference in
lengths is already available to pass 9 because the variables
CONST_A and CONST_B are passed from pass 8 to pass 9. CONST_A is
length of the constant area after optimization and CONST_B is the
length before optimization, This being known, the resolved dis=
placement of initialized variables may be adjusted by pass 9. If
the GLOBALAREA is created after the constant area, the address of

the GLOBALAREA is LITOFF plus CONST_A.

THE NEWPUSHLABEL TOKEN
In the PAS3Z compiler the PUSHLABEL token is known to be a
routine label. 1In S=-Code the label may be a routine or a state-

ment label; therefore, a new NEWPUSHLABEL token i1s introduced,

having a mode argument,

Interpass will input the token to pass 6 with mode and the
label as arguments, Pass 6 does not alter this, but passes the
token through, Pass 7 uses the mode to determine whether to out-
put a DC instruction with a routine label type or statement label
type. The output of pass 7 will be the same as would have been
output from pass T of the PAS32 compiler, Thus no modifications

were made to passes 8 and 9.

THE NEXTCONSTDISPL, NEXTCONSTINDEX, and NEXTLABEL TOKENS

There are three variables in pass 6 which keep track of the
length of the constants used so far, the serial number of each
constant, and the numbers associated with the labels. These
variables were initialized in pass 6 by variables passed to it by
pass 5. Since interpass has "replaced" pass 5§, initialization of
variables does not occur in the same manner. These three tokens

have been introduced to initialize the variables mentioned above,

Each of these tokens has one argument, the value needed to
properly initialize its corresponding variable. When pass 6 re-
ceives one of these tokens, the new procedure INITCONSTVALUES is

called, which places the value in the appropriate variable,

THE PUSHLEN, SAVE, TINITO, TGETO, TSETO, and RESTORE TOKENS
These 6 tokens are made necessary by the way intermediate
results must be handled by the S-compiler. Because expression
evaluation by the S-compiler can cause the creation of new ob=-
jects, space management can be a problem, At anytime the runtime
system may invoke garbage mliectiou which will result in compac-
tion. Because some of the temporaries that exist at that time

=30=

may be pointers to existing objects, the garbage collector must
have access to them, The pointers may be in registers or long
temporaries. The garbage oolléctor must be able determine that
the objects they point to are accessible and adjust any pointers

to objects which are moved,

The PUSHLEN token is used to tell the runtime system how
much space wWill be necessary for the M"save object", This save
object is the object into which &ll temporaries will be stored
during the garbage collection., Pass 7 computes this quantity by
summing the space required for all registers, the space in use by
the temporaries (TEMP_TOP), the additional space required for re-
gisters containing pointers, and the space required for all

pocinters contained within long temporaries,

The pointers contained within long temporaries and in regis-
ters have been identified by appropriately placed POINTERTYPE ar-
guments and the LONGTEMPPOINTER tokens, Two new arrays have been
created in pass 7, to receive the displacement of pointers within
long temporaries and to record the register numbers which contain
pointers, If a token has a POINTERTYPE argument, the register
number assigned to that token will be made to be entry to the
register-pocinter array. When a LONGTEMPPOINTER token is re-
ceived, pass T records its displacement argument in the
temporary-pointer array. These twb arrays will be used latter to

place those pointers into the save object.

The SAVE token causes the creation of the save object, It
also causes pass 7 to make a copy of the compile time stack, The

=40~

Pointer Rgg ister

Area Store

Register values

Pointer values

Registers

SAVE OBJECT
Figure 5.3

-41=

runtime system has caused the address of the save object to be at
the top of the compile time stack, The PUSHLEN token has deter=-
mined its length, Pass 7 must now generate code to store the
values of each register containing a pointer to be placed at the
front of the save object. It must also generate the oode to
place the valueas of the pointers contained within long tem=
poraries next in the save object. Then load multiple and store
multiple instructions are generated to save all of the general

purpose, real, and short-real registers,

The first word of the save object contains two pointers, to
the beginning of the pointer area and to the beginning of the re=-
gister store. The displacements of the pointers within the tenm-
peraries and the beginning of the- tempeoraries within the save ob=-

ject are saved in global variables.

The entire attribute stack is copied to a new stack,
REMEMBER _STACK. The global variable TEMP_TOP and the two arrays
containing the descriptions of the pointers are also copied into

new global variables,

The TINITO token is used to initialize the scan of the save
object, The runtime system has provided the address of the save
object to be scanned, The variable SAVE INDEX is initialized ¢to

point to the pointers in the save object.

The TGETO token causes the pointer area of the save object
to be consecutively scanned, returning the value of a different

pointer with each call, This value, if not =zero, is replaced

U2

with the address then on the top of stack,

TSETO causes the value at TOS to be placed into the save
area in place of the one Jjust returned., When the value of
SAVE_INDEX reaches that of the beginning of the register save

area, this process is terminated.

The RESTORE token signals that garbage collection is fin-
ished, The registers are restored to their original values, The
temporary area is restored using load multiple and store multiple
instructions. Then the pointers which may have been altered by
the garbage collector are restored, overlaying whatever values
might have been restored in the two previous restore steps. The
pointers in the temporary area may be located by the displace-
ments in the remembered array and the local base register. The
register numbers of the pointers in registers is known from the
array which was remembered during the save operation, These two

arrays will be restored as will the attribute stack,

THE SIMPLEINDEX TOKEN

SIMPLEINDEX is similar to the existing :.l'.NDEX. token, except
that the pass 6 procedure for INDEX does a bounds check, For S-
Code no bounds checking is uanted-. Where INDEX had upper and
lower bounds arguments with an element size, SIMPLEINDEX will
have only the element size argument, Pass 6 is modified to
bypass the bounds checking, It is also altered to place a zero
in the lower bounds argument. The existing pass 7 procedure is

also altered to bypass bounds checking.

=-}3-

CHAPTER VI

PROJECT STATUS AND FUTURE WORK

At the time of this report the project has been in the test
stage for several months., Pass 6 has been able to accept some
ipput and produces some output, However, it appears that the to=-
ken stream coming from INTERPASS is not entirely in the order ex-
pected by pass 6. Therefore the amount of testing on the new

code has been very limited,

None of the new code for passes 7, 8, and 9 has been
tested, Reviewing the project as a result of writing this paper
has uncovered several errors and omissions which will have to be

corrected before any credible testing can take place on any of

these three passes,

The Norwegian Computing Center has been contacted about
some Iinconsistencies in the output of S=Code, Until we have
their reply, the changes in the input stream cannot be made with

any certainty that they will correct problems,

When the Norwegian Computing Center offers some solution
to the S=Code problems, testing will resume, Presumably changes
will have to be made to INTERPASS., Passes 6, 7, 8, and 9 will

have to be thoroughly tested.
CONCL USIONS
This project provided a learning experience which was more

i Ji s

than an academic exercise, One objective of the project was to
produce a functional compiler which could be become a useful tool
for solving problems, The project provided a better understand=-
ing of compiler construction in general and the code generation
passes in particular., It was also valuable in providing an ex-
perience in the problems of lower level software design and im=
plementation, It clearly demonstrated the problems involved in
writing such programs as opposed to higher level: applications

sof tware,

While there was little opportunity to learn to use the SIMI-
LA language, the project required the acguisition of some

knowledge of that language and its potential uses.

-45-

BIBLIOGRAPHY

[1] Dahl, Ole-Johan, and Hoare, C.A.R., "Hlerarchial Program
Structures", Structured Programming, A.P.I.C., Studies in Data

Processing, No. 8,(1972), Academic Press, pp. 175=220.

.[2] Jensen, Peter, Stein, Krogdahl, Ostein, Myhre, Robertson,
Peter S,, Syrrist, Gunnar, "Definition of S-Code", Norwegian Com=-
puting Center, (October, 1982), Forskningsvn, 1B,Blindern, Oslo,

Norway.

[3] Millard, Geoffrey E., Oystein, Myhre, Syrrist, Gunnar, "S-
Port, The Enviromment Interface", Norwegian Computing Center,

(June, 1981), Forskningsvn, 1B, Bilndern, Oslo 3, Norway.

[4] Robert Young, "Internal Documentation for the PASCAL/32 Com-

piler", manuscript, Kansas State University, Manhattan, EKansas,

1978.

[6] R. C, Holt, J. R. Cordy, and D, B. Wortman, "An Introduction
to S/SL: Syntax Semantic Language", ACM Transactions on Program-

ming Languages and Systems, 4 No, 2, pp. 149-178, (April, 1982).

[6] Robin Hills, "SIMOLA 6T, An Introduction", a compilation,

Robin Hills (Consultants) Limited, 24 Beaufont Road, Camberley,

Surrey, England, (1972).

b=

APPENDIX A

CORQUTINES

The following example contains an illustration of the use of
the SIMILA "call", "detach", and "resume" statements to create a
coroutine relationship beteen procedures, PFor this illustration
there will be four CLASSES: W, X, Y, and Z. The REFERENCE vari-

ables for these CLASSES are: A, B, C, and D respectively.
The CLASSES would be defined:

class W(ess); «..class body for W ...;
class X(...); ...class body for X ...;
class Y(eee); oesclass body for ¥ ,..;

class Z(+..)} +..class body for Z ...;
The REFERENCE variables would be defined:

ref(W)A;
ref(X)B;
ref(Y)C;

ref(Z)D;
The main program would be:

begin A :- new W;
B := new X;
C t= new Y;

D :=~ new Z;

call(A);

end

Within the body of A, A would immediately DETACH from M, the
main program, and RESUME(B) thus creating a couroutine relation-
ship with B and remaining in a subroutine relationship with M.,
As long as B has control by virtue of a RESUME command from A, B
is responsible for returning control to M if it issues a DETACH
or reaches the end of its code. According to the diagram (Figure
A) B issues a RESUME(C). C is then responsible for returning
control to M if it 1ssues a DETACH or reaches the end of its
code, C in turn contains a RESUME(D), D issues a DETACH which

returns control to M,

Throughout the operation of the program M remains in control
in that any of the coroutines receiving control directly or in=-
directly from A must accept the responsibility to return control
to M. 4, B, C, and D have a coroutine relationship in that they
operate on an equal level, Any of the coroutines could issue a
RESUME to any of the others, i.,e,, the flow does not have to be
in one direction as the diagram shows, In that sense M is not in
sole control of the flow of the program. Control may pass
between the coroutines with RESUME commands in an& required se-~
quence until one of the coroutines issues a DETACH or geoes

through the end of its code,

Any time a coroutine is called by a RESUME it will be en-

tered at the next instruction after its last RESUME or DETACH,

-1i8=

Each time a coroutine is entered by a RESUME statement, its
execution begins as the instruction following its last DETACH or

RESUME instruction.

-49=-

aunsay

yoeya(

H mg:m_m_

aunsay

=50=-

aunsay

yoeiaq

1183

APPENDIX B

4 SAMPLE INPUT TOKEN STREAM FOR PASS 6

The following is a sample of part of an input token stream
toc pass 6. On the pages that follow are diagrams of the list and

tree structures that would result from this partial stream, be-

fore being output to pass T.

STARTLIST, PARM, ENTER, DEFLABEL, PUSHADDR, PUSHCONST, FIELD,

ADD, PUSHIND, PUSHCONST, COMPARE, NOT, FALSEJUMP ...

-51=

Parm

LP RP NP

Mode| 8 Egg{ ype| 12

TREEELEMENT

Figure B.1

50~

Begin
HEAD| nil
(TAIL| nil

HERD| nil nil

(TAIL| nil nil

OPERATION,
Startlist

HERD| nil Parm

[TAIL] nil Parm

OPERATION:
Parm

Procedures invoked:
Appendinput

Append

Figure B.2

Figure B.3

Parm

Figure B.4

HEAD | Enter

TRIL | Enter

OPERRTION:
Enter

Procedures invoked:
Unarytree
Link(l)

Appendstk

HEARD { Enter

TRIL | Deflabel

OPERRTION:
Def label
Procedures invoked:

Appendinput
Append

Enter

Parm

Figure B.5

Enter

Deflabel

Parm

Figure B.6

HERD

Enter

Pushaddr |

TAIL

Def'label

Pushaddr

OPERATION:
Pushadadr

Procedures Invoked:
Push

Pushaddr

Enter

Def label

Parm

Figure B.7

HEAD | Enter | Pushaddr | Pushconst e Def 1abel
TRIL | Deflabel | Pushaddr | Pushconst

OPERAT 10N: Parm

Pushconstl

Procedures invoked;

Push

Pushaddr

Pushconst
Figure B.8

Enter

Def'label

HERD | Enter Pushaddr | Field
TRIL | Deflabel | Pushaddr | Field
DPERATIONs Parm

Field

Procedures invoked:

Unarytree

Link(1)

Pushaddr Field

Pushconst
Figure B.S

Enter

Def label

Parm

Field

HERD | Enier Add
TAIL | Deflabel | Add
OPERATI10N:
Add
Procedures invoked:
Binar?trae
Link(2)
Add
Pushaddr
Pushconsti

Figure B.10

Enter

Deflabsl

Parm

Pushind

Field

HEAD | Enler Pushind
TRIL | Deflabel | Pushind
OPERATION:
Pushind
Procedures invoked:
Unarytree
Link(l)
Add
Pushaddr
Pushconst

Figure B.11

Enler

Def'label

HERD | Enter Pushind | Pushconst
TAIL | Deflabel | Pushind | Pushconst
DPERAT IDN: Parm
Pushconst
Procedures invoked:
Pushinput
Push
Pushind
Add
Pushaddr Fiald
Pushconst

~60-

Figurse B.12

Pushconst

Def labe!l

HEAD | Enter Compare
TRIL | Deflabel | Compare
OPERAT10N:
Compare
Procedures invoked:
Binarytree
Link(2)
Add
Pushaddr
Pushconst

Enter
Parm
Compare
Pushind Pushconst.
Field
Figurse B.13

.

HERD | Enter Not

TAIL | Deflabel | Not

OPERATION:
Not

Procedures invoked:
Link(l)

Parm

Al

Pushind

Field

Pop(l)
Push
Add
Pushaddr
Pushconst.

Enter Deflabel
Not
Compare
Pushconst

Figure B.14

.

HEAD

Enter

TRIL

False jump

OPERATION:
FALSEJUMP

Procedures invoked:

Unarytree
Link(1)
Rppendstk

Parm

Pushind

Pushaddr

Enter

Def'label

Falsejump

Not

Compara

Field

Pushconst

Figure B.15

Pushconst

THE IMPLEMENTATION COF A SIMJLA COMPILER ON THE
KANSAS STATE UNIVERSITY PERKIN-ELMER COMPUTERS

by
LOWELL RICHARD LINDSTROM

B. S,, University of Kansas, 1959

AN ABSTRACT OF A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1986

ABSTRACT

THE IMPLEMENTATION COF A SIMJLA COMPILER ON THE

KANSAS STATE UNIVERSITY PEREKIN=ELMER COMPUTERS
This report describes a project to implement a portable
SIMULA compiler on the Kansas State University Perkin-Elmer com-
puters, Major portions of the report describe those tasks for
which the author was responsible. Those tasks were to modify the
code gt_-:zneration passes of an operational Pascal compiler to ac-
cept a token stream of a portable SIMILA compiler and to output a
executable SIMILA program, The report contains overviews of the
SIMULA language, the portable SIMILA compiler, and the project
itself, The data structures and processes used by the code gen=
eration passes and the modifications to those passes are

described in detail,

I 3e -2a7
CAte

