This is the author's final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher's web site or your institution's library.

Identification of two new cytochrome P450 genes and RNA interference to evaluate their roles in detoxification of commonly used insecticides in Locusta migratoria manilensis

Yanqiong Guo, Jianzhen Zhang, Rongrong Yu, Kun Yan Zhu, Yaping Guo, and Enbo Ma

How to cite this manuscript

If you make reference to this version of the manuscript, use the following information:
Guo, Y., Zhang, J., Yu, R., Zhu, K. Y., Guo, Y., \& Ma, E. (2012). Identification of two new cytochrome P450 genes and RNA interference to evaluate their roles in detoxification of commonly used insecticides in Locusta migratoria manilensis.
Retrieved from http://krex.ksu.edu

Published Version Information

Citation: Guo, Y., Zhang, J., Yu, R., Zhu, K. Y., Guo, Y., \& Ma, E. (2012). Identification of two new cytochrome P450 genes and RNA interference to evaluate their roles in detoxification of commonly used insecticides in Locusta migratoria. Chemosphere, 87(7), 709-717.

Copyright: © 2011 Elsevier Ltd

Digital Object Identifier (DOI): doi:10.1016/j.chemosphere.2011.12.061

Publisher's Link: http://www.sciencedirect.com/science/article/pii/S0045653511014421

This item was retrieved from the K-State Research Exchange (K-REx), the institutional repository of Kansas State University. K-REx is available at http://krex.ksu.edu

```
Identification of two new cytochrome P450 genes and RNA interference to evaluate their roles in detoxification of commonly used insecticides in Locusta migratoria manilensis
Ma a*
a}\mathrm{ Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
'b}\mathrm{ College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
c Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS
66506, USA
```

Running title: Guo et al. Two new cytochrome P450 genes in locust

Corresponding authors. Addresses: E. Ma, Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China, Tel: 86-351-701-8871, Fax: 86-351-701-1981; K.Y. Zhu, Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA, Tel: 1-785-532-4721, Fax: 1-785-532-6232.

E-mail addresses: maenbo2003@sxu.edu.cn (E. Ma); kzhu@ksu.edu (K.Y. Zhu)

Abstract

Cytochrome P450 monooxygenases (cytochrome P450s), found in virtually all living organisms, play an important role in the metabolism of xenobiotics such as drugs, pesticides, and plant toxins. We have previously evaluated the responses of the oriental migratory locust (Locusta migratoria manilensis) to the pyrethroid insecticide deltamethrin and revealed that increased cytochrome P450 enzyme activity was due to increased transcription of multiple cytochrome P450 genes. In this study, we identified for the first time two new cytochrome P450 genes, which belong to two novel cytochrome P450 gene families. CYP409A1 belongs to CYP409 family whereas CYP408B1 belongs to CYP408 family. Our molecular analysis indicated that CYP409A1 was mainly expressed in fatbodies, midgut, gastric caecum, foregut and Malpighian tubules of the third- and fourth-instar nymphs, whereas CYP408B1 was mainly expressed in foregut, hindgut and muscle of the insects at all developmental stages examined. The expression of these two cytochrome P450 genes were differentially affected by three representative insecticides, including carbaryl (carbamate), malathion (organophosphate) and deltamethrin (pyrethroid). The exposure of the locust to carbaryl, malathion and deltamethrin resulted in reduced, moderately increased and significantly increased transcript levels, respectively, of the two cytochrome P450 genes. Our further analysis of their detoxification roles by using RNA interference followed by deltamethrin bioassay showed increased nymph mortalities by 21.1 and 16.7%, respectively, after CYP409A1 and CYP408B1 were silenced. These results strongly support our notion that these two new cytochrome P450 genes play an important role in deltamethrin detoxification in the locust.

Keywords: Cytochrome P450; Locusta migratoria manilensis; gene expression; insecticides; RNA interference.

1. Introduction

Cytochrome P450 monooxygenases (cytochrome P450s), found in virtually all living organisms from bacteria to human (Feyereisen, 2006), are ubiquitous enzymes. These enzymes constitute an extremely important metabolic system because of their involvement in regulating the titers of endogenous compounds such as hormones, fatty acids, and steroids (Li et al., 2007; Feyereisen, 2011). Additionally, this enzyme system plays a central role in the metabolism of xenobiotics such as drugs, pesticides, and plant toxins (Scott, 2008; Schuler, 2011) by catalyzing oxidation reactions (Mizutani and Ohta, 2010; Nielsen and Moller, 2005). In insects, cytochrome P 450 s play a predominant role in the metabolism of insecticides, which often results in the development of insecticide resistance in insect populations (Zhou et al., 2010).

In insects, more than 1000 cytochrome P450 genes have been identified and this number is rapidly increasing due to recently increased insect genome sequences (Ai et al., 2011). Most insect cytochrome P450 genes belong to microsomal CYP4, CYP6, CYP9, CYP28, CYP321 and mitochondrial CYP12 families and many insect CYP genes have frequently been associated with detoxification processes allowing the insect to become tolerant or resistant to insecticides or host plant allelochemicals (Feyereisen, 2005; Li et al., 2007).

The oriental migratory locust, Locusta migratoria manilensis (Meyen), is a typical hemimetabolous insect and one of the most destructive agricultural pests in the world, due to its ability to form very high populations for highly mobile swarms that lead to severe plagues (Guo and Wang et al., 2011). In recent years, the destructive outbreaks of locusts had been increasing in China, both in frequency and scale, possibly because of environmental changes, such as warmer winters and droughts (Kang et al., 2004; Zhang et al., 2010). Synthetic insecticides are often used to control the locust in management programs. However, extensive
applications of insecticides have inevitably resulted in the development of resistance in natural populations of the locust (Ma et al., 2004).

Our previous studies have evaluated the effect of different insecticides, including carbaryl (carbamate), malathion (organophosphate) and deltamethrin (pyrethroid), on the expression of 15 cytochrome P450-like genes in L. migratoria migratoria (Guo and Zhang et al., 2011). We have found that the increased cytochrome P450 enzyme activity is likely due to increased transcription of multiple cytochrome P450 genes in response to deltamethrin exposures, whereas malathion and carbaryl did not have significant effect on cytochrome P450 deethylation activity. However, the effect of carbaryl and malathion on the expression of each of the cytochrome P450 genes at the transcriptional level has not been determined and the specific detoxification functions of these genes are still elusive.

In this paper, we report two novel cytochrome P450 genes (CYP409A1 and CYP408B1) identified from L. migratoria manilensis and their detoxification roles by using RNA interference (RNAi) to silence each of the two genes followed by insecticide bioassays. Our findings shed new light on functional importance of each of these two genes in the detoxification of insecticides. Such an approach may be applicable to other detoxification genes in other organisms exposed to various environmentally toxic chemicals.

2. Materials and Methods

2.1. Insects

Eggs of L. migratoria manilensis were provided by the Insect Protein Co., Ltd. Cangzhou, China and were incubated in a growth chamber (MGC-350NR2, Shanghai Permanent Science and Technology Co., Ltd., China) at $28 \pm 1^{\circ} \mathrm{C}$ and 50% relative humidity (RH) with a 14:10-h light: dark photoperiod. After hatching, locust nymphs were reared on fresh wheat sprouts under the same temperature and light conditions.

2.2. cDNA cloning and sequence analysis of CYP409A1 and CYP408B1

Based on the conserved motifs of cytochrome P450 genes in insects, the database of expressed sequence tags (ESTs) of L. migratoria manilensis was analyzed using bioinformatics methods. Two cDNA fragments, LMC_001998 and LMC_003797, were selected for subsequent work. Specifically, the midguts of fifth-instar nymphs were used to extract total RNA by using RNAiso ${ }^{\text {TM }}$ Plus (Takara, Dalian, China). mRNA was isolated using PolyATtract ${ }^{\circledR}$ mRNA isolation systems (Promega, Madison, WI, USA). cDNA was synthesized from $1 \mu \mathrm{~g}$ mRNA using the SMART ${ }^{\mathrm{TM}}$ RACE cDNA amplification kit (Clontech, Mountain View, CA , USA) according to the manufacturer's instructions. For amplification of 3'-end and 5'-end cDNA sequences, SMART ${ }^{\mathrm{TM}}$ RACE cDNA amplification kit (Clontech) was applied according to the manufacturer's protocol. Amplified products from each reaction were purified using Gel Mini purification kit (Tiangen, Beijing, China), and the isolated amplification products were quantified and subcloned into pGEM-T easy vector (Promega) and then sequenced.

To confirm that the sequences generated by RACE-PCR were from the same gene, the full-length cDNA was amplified using gene-specific primers complementary to the 5^{\prime} - and 3'- ends of the cDNA sequence using first-strand cDNA as template. The PCR primer sequences are shown in the Supplementary Information. The following cycling parameters were used: $94^{\circ} \mathrm{C}$ for 1 min followed by 35 cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 55^{\circ} \mathrm{C}$ for 30 s and $72{ }^{\circ} \mathrm{C}$ for 2 min , followed by a final extension step of $72^{\circ} \mathrm{C}$ for 7 min . PCR products were purified by 1% agarose gel, subcloned into pGEM-T easy vector (Promega) and then sequenced in both directions by Beijing AuGCT Biotechnology Co., Ltd (Beijing, China).

2.3. Sequence characterization and phylogenetic analysis

The prediction of the open reading frames (ORFs) and the translation of the cDNA
sequences into amino acid sequences were performed using the translation tool in ExPaSy (http://www.expasy.org/tools/dna.html). The molecular mass and isoelectric point (pI) were predicted based on their amino acid sequences. The deduced amino acid sequences of the two new locust cytochrome P450 genes (CYP409A1 and CYP408B1) were aligned with CYP6H1 (AF115777), the only known cytochrome P450 gene of the locust, and CYP408A1 (GQ911996.1) of Nilaparvata lugens by using GENEDOC software (Nicholas et al., 1997)

2.4. Analysis of tissue- and stage-dependent expression patterns

Total RNA from various tissues and developmental stages of the locust were prepared by using RNAisoTM Plus (Takara). Tissues used for RNA extraction were foregut, midgut, gastric caecum, hindgut, Malpighian tubules, fatbodies, muscles, ovary and testis from fifth-instar nymphs. Total RNA were collected from seven developmental stages, including eggs, first-, second-, third-, fourth-, and fifth-instar nymphs and adults; all were 3-day old of their developmental stages. To remove potential genomic DNA contaminations, the extracts were treated with RNase-free DNase I (Promega). Subsequently, the first-strand cDNA was synthesized from 4μ RNA with an oligo(dT) primer using MLV reverse transcriptase (Takara).

The sequences of the primers used for semi-quantitative PCR analysis are shown in the Supplementary Information. The PCR amplifications were carried out in a final volume of a $25-\mu \mathrm{L}$ reaction mixture containing $2 \mu \mathrm{~L}$ of $10 \times$ diluted template $\mathrm{cDNA}, 12.5 \mu \mathrm{~L}$ Taq Master Mix (Tiangen), $0.3 \mu \mathrm{~L}(10 \mu \mathrm{M})$ of each primer, and sterilized water to reach the final volume. β-actin was used as a reference gene for its implication with the same templates. The experiment was repeated with three biological replications. The thermal cycling profile consisted of initial denaturation at $94{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 28$ cycles (22 cycles for β-actin) of $94{ }^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 60^{\circ} \mathrm{C}$ for 30 s, and $72{ }^{\circ} \mathrm{C}$ for 45 s , followed by a final extension step of $72{ }^{\circ} \mathrm{C}$ for 5 \min. Aliquots of $7.5-\mu \mathrm{L}$ PCR products were analyzed on 2% agarose gel.

2.5. Insecticide exposures

Three insecticides, carbaryl, deltamethrin and malathion, each with three doses $\left(\mathrm{LD}_{10}\right.$, LD_{30} and LD_{50}), were used in this study as described by Guo and Zhang et al. (2011). In each treatment, 15-20 third-instar nymphs were topically applied with $3 \mu \mathrm{~L}$ of each dose or acetone (control) in the abdomen between the second and third sterna. Each treatment was repeated three times. After 24 h , surviving locusts were quickly frozen in liquid nitrogen for subsequent experiments.

For time-dependent study, four time points $(6,12,24$ and 48 h$)$ were used to examine the effect of each insecticide on the expression of CYP409A1 and CYP408B1 in the locust after exposed to each of three insecticides at the dose of LD_{15}. The locusts treated with acetone were used as controls. After the treatments, the surviving locusts were collected to determine the expression of the two genes at each time point. Three biological replicates were used for each treatment.

2.6. Real-time quantitative $P C R(q P C R)$ analysis

The transcript levels of CYP409A1 and CYP408B1 were quantified by qPCR using a Biosystems 7300 real-time PCR system (Applied Biosystems Inc, Foster, CA, USA) and SYBR® Premix Ex Taq TM II kit (Takara). The thermal cycling profile consisted of initial step at $95^{\circ} \mathrm{C}$ for 10 s followed by 40 cycles of $95^{\circ} \mathrm{C}$ for 5 s and $60^{\circ} \mathrm{C}$ for 31 s . The primers were the same as those used for semi-quantitative PCR analyses. The PCR mixture ($20 \mu \mathrm{~L}$) contained of $10 \mu \mathrm{~L}$ SYBR GREEN PCR mix (Takara), $0.4 \mu \mathrm{~L}$ ROX reference Dye II, $0.8 \mu \mathrm{~L}$ of each primer, and $2 \mu \mathrm{~L}$ of 1:20 diluted cDNA templates, according to the manufacturer's instructions. Each qPCR experiment consisted of three independent biological replicates, each with two technical replicates. β-actin was used as a reference gene to normalize the target gene expression levels among the samples.

2.7. Functional analysis of CYP409A1 and CYP408B1 by RNAi

To explore biological functions of CYP409A1 and CYP408B1, RNAi was performed by injecting sequence-specific dsRNA to second-instar locust nymphs followed by insecticide bioassay. In order to obtain specific RNAi effects for each target gene, we designed PCR primers for dsRNA syntheses based on the sequences of two different domains of CYP409A1 and CYP408B1, where showed low similarities between the two genes. Templates for in vitro transcription reactions were prepared by PCR amplification using dsRNA synthesis primers of CYP409A1 and CYP408B1 as shown in the Supplementary Information. The PCR products of CYP409A1 and CYP408B1 were subcloned and sequenced to confirm their identities. Then the expected fragments were examined by 1% agarose gel and excised and purified with Wizard ${ }^{\circledR}$ SV gel and PCR clean-up system (Promega). After the concentration of the purified fragments was determined by a SpectraMax 190 microplate reader and SOFTmax software (Molecular Devices, Sunnyvale, CA, USA), they were used for in vitro transcription with T7 RNA polymerase. Double-stranded RNA (dsRNA) was synthesized using T7 RiboMAX ${ }^{\text {T }}$ Express RNAi System (Promega) following the manufacturer's instructions. The synthesized dsRNAs were dissolved in nuclease-free water, and examined by 1.5% agarose gel. The final concentration of dsRNA was adjusted to $1.5 \mu \mathrm{~g} / \mu \mathrm{L}$.

Second-instar nymphs (2-day old) were used for dsRNA injection experiments. In each treatment or control, each of 15 nymphs was injected with $2 \mu \mathrm{~L}$ dsRNA ($3 \mu \mathrm{~g} / \mathrm{insect}$) of each gene or nuclease-free water (control) into the abdomen between the second and third abdominal segments using a microinjector (Ningbo, China). Because our preliminary studies did not show any visible difference between the locusts injected with $2 \mu \mathrm{~L}$ of the green fluorescent protein (GFP) dsRNA and nuclease-free water (Zhang et al., 2010), the locusts injected with deionized water were used as negative controls for our RNAi experiment. Each treatment or control was repeated three times. To assess the transcript level of each gene in
the dsRNA-injected or control locusts, the whole body of the nymphs was used for subsequent RNA extraction. For each group, five nymphs were used for RNAi efficiency test at each of three different time points (12, 24 and 48 h) after injection by using semi-quantitative PCR and qPCR as described in Section 2.4 and 2.6.

For insecticide bioassays after RNAi, 60 nymphs from each dsRNA-injected group or the control group at the time point showing highest RNAi efficency were separated into three subgroups as replicates and were topically applied with $3 \mu \mathrm{~L}$ of each insecticide solution to the abdomen between the second and third sterna. The mortalities of the treated nymphs were assessed at 24 h after the insecticide treatment.

2.8. Statistical analysis

The gene expression data were analyzed by using unpaired Student's t-test and one-way analysis of variance (ANOVA) in combination with a Fisher's least significant difference (LSD) multiple comparison test by using the SPSS statistics program (Chicago, IL, USA). All data were expressed as mean \pm SE and statistical differences were considered significant at $P<0.05$.

3. Results

3.1. Identification of two new cytochrome P450 genes in L. migratoria manilensis

Two full-length cDNAs putatively encoding cytochrome P450 proteins were sequenced by using 5^{\prime} and 3^{\prime} RACE with the primers designed based on the two putative cytochrome P450 cDNA fragments from LocustDB. These cytochrome P450 genes were named CYP409A1 and CYP408B1 (GenBank accession numbers: HM153425 and HM153426, respectively) by the P450 Nomenclature Committee (Dr. D. Nelson, personal communication). The cDNA sequences of CYP409A1 and CYP408B1 have open reading
frames of 1548 and 1536 nucleotides encoding proteins of 516 and 512 amino acid residues, respectively.

Based on the translated amino acid sequence, CYP409A1 has a theoretical pI value of 7.14 and molecular mass of 58485.5 Da . It is the first member of CYP409 family in locust. The longest ORF began with the first ATG codon at position 159 and ended with a TGA termination codon at nucleotide (nt) 1707 (Fig. 1A). A polyadenylation signal, AATAAA, was present in the 3^{\prime} untranslated region. The 5'-UTR and 3'-UTR of CYP409A1 were 158 and 188 bp , respectively. The heme-binding sequence motif was FGLGARTCLG by amino acid residues 450-460. Other conserved motifs of the cytochrome P450 superfamily were also identified.

The putative protein of CYP408B1 showed a predicted molecular mass of 57152.6 Da with a theoretical pI of 6.09 . Further analysis of the CYP408B1 nucleotide sequence indicated that the start codon, ATG, was located at positions 62-64 and the termination codon, TGA, at positions 1,598-1,600 (Fig. 1B). The 5'-UTR and 3'-UTR of CYP408B1 were 61 and 317 bp , respectively. Although the putative polyadenylation signal, AATAAA, was not shown in its cDNA sequence, it does not necessarily indicate the lack of such a signal sequence. Because the mRNA that we used to synthesize the cDNA was isolated by using PolyATtract ${ }^{\circledR}$ mRNA isolation systems, its cDNA sequence is expected to contain a poly(A) sequence. Thus, the lack of a polyadenylation signal in the Cyp408B1 cDNA sequence could be due to a long 3'-UTR, which make it difficult to be obtained by 3'-RACE. In addition, this family is special in that it does not have a Cys at the heme signature region $\mathrm{F} \times \times \mathrm{G} \times \mathrm{R} \times \mathrm{C} \times \mathrm{G}$, but has a sequence of FGLAGSNTAN. The sequence motif of $\mathrm{P} \times \times \mathrm{F} \times \mathrm{P}$ and a K-helix motif $\mathrm{E} \times \mathrm{R} \times \times \mathrm{P}$ were also identified.

CYP409A1 and CYP408B1 share only 19% identity in their deduced amino acid sequences with each other but 34 and 21% with that of CYP6H1, the only known cytochrome

P450 gene of the locust (Fig. 2). On the other hand, CYP408B1 is relatively similar to a N. lugens cytochrome P450 gene, CYP408A1 (GQ911996.1) with an amino acid identity of 38%. Although its overall identity to CYP408A1 is less than 40%, they are consigned to the same family because of its conserved sequence in heme signature region (Dr. D. Nelson, personal communication).

3.2. Tissue dependent expression patterns of CYP409A1 and CYP408B1

The relative expression profiles of the L. migratoria manilensis CYP409A1 and CYP408B1 genes were determined in different tissues of the fifth-instar nymphs by using semi-quantitative PCR (Fig. 3A). β-actin was used as an internal reference gene. The relatively high expression of CYP409A1 was observed in the fatbodies, followed by the midgut, gastric caecum, foregut and Malpighian tubules of the nymphs, but its expression was relatively low in the hindgut, muscle, ovary and testis. In contrast, the expression of CYP408B1 was relatively high in the foregut, hindgut and muscle, low in the ovary, testis, Malpighian tubules and fatbodies, and lowest in the midgut and gastric caecum of the nymphs.

3.3. Stage-dependent expression patterns of CYP409A1 and CYP408B1

The expression patterns of CYP409A1 and CYP408B1 at different developmental stages of the locust were examined in whole body by using semi-quantitative PCR (Fig. 3B). The expression was relatively high in the third- and fourth-instar nymphs and low in the first-instar nymphs, but no expression was detected in eggs. Furthermore, the expression pattern of CYP408B1 was different from that of CYP409A1. Specifically, CYP408B1 transcript can be detected and remained to be highly expressed in all developmental stages.

3.4. Expression response of CYP409A1 and CYP408B1 to insecticide exposures

All the three insecticides influenced the expression of CYP409A1 and CYP408B1,
ranging from induction to repression (Fig. 4). Deltamethrin at all tested concentrations increased gene expression of CYP409A1 and CYP408B1 by 1.22- to 2.86 -fold and 1.12- to 1.69 -fold ($P<0.05$), respectively. The maximum effect of deltamethrin on the expression of the two cytochrome P 450 genes occurred at the dose of LD_{30} (2.4 ng per gram of body weight). However, similar treatments with malathion and carbaryl show different results. Exposures of the insects to malathion at the concentrations of $\mathrm{LD}_{10}, \mathrm{LD}_{30}$ and LD_{50} for 24 h did not show significant effect on the expression of the two genes. However, exposures of the insects to carbaryl at the concentration of LD_{50} for 24 h suppressed the expressions of CYP409A1 by about 65% and CYP408B1 by 37%.

In contrast, the transcript levels of CYP409A1 and CYP408B1 varied significantly among different insecticide exposure times (Fig. 5). For example, the two genes were induced at various levels in deltamethrin and malathion treated locusts as compared with acetone treated control locusts. Significant increases (1.4- to 3.0-fold for CYP409A1 and 2.0- to 2.7-fold for CYP408B1) were observed when the locusts were treated with deltamethrin at all the exposure times. Malathion at the concentration of LD_{15} induced the expression of CYP409A1 at the exposure times of 6 h (2.0-fold), 12 h (2.2-fold) and 24 h (1.5-fold) but did not significantly induce its expression at 48 h . However, malathion induced the expression of CYP408B1 at the exposure times of $6 \mathrm{~h}(1.6$-fold), 24 h (1.6-fold) and 48 h (1.7-fold) but did not significantly induce its expression at $12 \mathrm{~h}(P<0.05)$. However, carbaryl at the concentration of LD_{15} did not show significant effect on the expression of the two cytochrome P450 genes in L. migratoria manilensis (Fig. 5).

3.5. Functional analysis of CYP409A1 and CYP408B1 by RNAi

To evaluate the RNAi efficiency of CYP409A1 and CYP408B1, the corresponding sequence-specific dsRNA for CYP409A1 and CYP408B1 were synthesized in vitro and injected into the second-instar nymphs of the locust. Semi-quantitative PCR and qPCR
analyses at different time points (12, 24 and 48h) after the injection of dsRNA for each target gene showed significantly decreased transcript levels of CYP409A1 and CYP408B1 (Fig. 6A and B). The different expression levels of CYP409A1 at different time points after injection of $\mathrm{ddH}_{2} \mathrm{O}$ were observed, suggesting its possible development-related expression changes. The transcript levels of CYP409A1 and CYP408B1 were reduced by about 99% in the nymphs injected with respective dsRNA as compared with those in the controls at 24 h . These results indicate an extremely high efficiency of silencing these two cytochrome P450 genes by RNAi.

As both the CYP409A1 and CYP408B1 transcripts were significantly repressed in the locusts by RNAi, we assessed the susceptibility of the dsRNA-injected locusts to different insecticides. The mortalities of the locusts injected with nuclease-free water (control), dsRNA of CYP409A1 and dsRNA of CYP408B1 after exposed to deltamethrin at the dose of 1.0 ng per gram of body weight were $22.9,44.0$ and 39.6%, respectively (Fig. 6C). These results represent an increased mortality of the locusts to deltamethrin by approximately 2 -fold after the repression of each of the two cytochrome P450 genes by RNAi. In contrast, similar treatments with malathion and carbaryl in the locusts after RNAi for these genes did not show significant effects on the susceptibility of the locusts to these insecticides (data not shown).

4. Discussion

In insects, cytochrome P450s enzymes are known to be involved in the metabolism of plant allelochemicals and insecticides, resulting in bioactivation or detoxification of these compounds (Feyereisen, 1999). Therefore, identification and characterization of new cytochrome P450 genes have become a very attractive research area. To date, however, only a single cytochrome P450 gene (CYP6H1) from L. migratoria manilensis has been reported. This gene has been functionally characterized as a microsomal ecdysone 20-hydroxylase of
the locust (Winter et al., 1999). By searching the EST database of L. migratoria manilensis, sequencing the cDNAs after RACE-PCR and analyzing the cDNA and deduced amino acid sequences, we obtained the full-length cDNA sequences of two new cytochrome P450 genes (CYP409A1 and CYP408B1). Phylogenetic analysis showed that these two genes were clustered in the CYP3 clade that mainly includes CYP6 and CYP9 gene families that are known to play important roles in xenobiotic metabolism and insecticide resistance, and are inducible by phenobarbital, pesticides and natural products (Feyereisen, 2006). The CYP6 genes in this clade are related to the vertebrate CYP3 and CYP5 families. By using BLASTp, we found that CYP408B1 is very closely related to CYP3 family from mammals (Feyereisen, 2006). CYP408B1 belongs to the family with a slightly different but conserved sequence in heme signature region and missing domain WxxxR. Although the lack of the CYS residue and domain WxxxR may affect the function of these enzymes, our RNAi experiment clearly indicated that CYP408A1 should be functional.

It has been known that the expression profiles of cytochrome P450 genes are highly diverse in insects (Scott and Wen, 2001). Because different developmental stage or tissue-specific expression patterns of cytochrome P450 genes in animals may imply their specific functions (Chung et al., 2009), we used semi-quantitative PCR to analyze expression patterns of the two genes in different tissues of the fifth-instar nymphs and in different developmental stages. CYP409A1 was mainly distributed in midgut and Malpighian tubules, whereas CYP408B1 mRNA was detected in foregut, hindgut and muscle of nymph and mainly in the fifth-instar nymphs. Several studies have demonstrated that the midgut of insects to be one of the major organs involved in detoxification of xenobiotics (Cohen et al., 1992; Snyder et al., 1995). Our results of tissue-specific expression patterns are consistent with this notion for CYP409A1 but not so much for CYP408B1.

Furthermore, we found that the expression of CYP409A1 was higher in fourth-instar
nymphs than the locusts of other developmental stages. In particular, we did not detect the expression of CYP409A1 in eggs. The gradually increased expression of this gene from the egg to adult may imply an adaptive ability of the insect to metabolize xenobiotics upon exposure (Gong et al., 2005). On the other hand, however, the expression of CYP408B1 was detected at high levels in all life stages examined, suggesting that this gene probably plays other roles in insect physiology. Indeed, although cytochrome P450 enzyme can generally metabolize many different substrates, individual cytochrome P450 enzyme has multiple roles during insect development (Feyereisen, 1999).

The induction of cytochrome P450 enzymes by various chemicals has been reported in a number of insect species (Fuchs et al., 1994). Indeed, the normal regulatory network would be changed through mutations for an inducible cytochrome P450 gene, which could cause higher constitutive expression of the gene, and therefore lead to resistance (Le Goff et al., 2006). Thus, the inducibility of a detoxification enzyme by xenobiotics may represent a risk factor for developing resistance to insecticides in insect populations. Nevertheless, due to their toxicity, insecticides generally are unlikely to cause the induction (Ranasinghe et al., 1997). For example, a study in D. melanogaster showed that six chemically distinct insecticides did not induce the expression of cytochrome P450 genes with an exception of DDT. Even with DDT, only a marginal induction of a single cytochrome P450 gene was observed (Willoughby et al., 2006).

In our study, we found significantly different responses of CYP409A1 and CYP408B1 at the transcriptional level to the exposures of L. migratoria manilensis to three different insecticides including malathion (organophosphate), carbaryl (cabamate) and deltamethrin (pyrethroid). Deltamethrin significantly induced the expression of the two cytochrome P450 genes at 12 h and LD_{30}, which is in agreement with the maximum induction of the cytochrome P450 enzyme activity by the same insecticide as observed in other insect species
(Fisher et al., 2003; Scott et al., 1996; Stevens et al., 2000). However, the induction is less pronounced at LD_{50}. Under such a high concentration, deltamethrin could play an important role in intoxication rather than induction. Furthermore, the induction of cytochrome P450 enzyme activity by deltamethrin appears to be due to the increased expression of its gene through a mechanism that is largely controlled at the transcriptional level (Batard et al., 1997; Gong et al., 2005). If the two deltamethrin-inducible genes CYP409A1 and CYP408B1 are involved in the detoxification of the same or other insecticides, such an induction could lead to an elevated tolerance to these insecticides, which consequently contributes to a difficulty in controlling L. migratoria manilensis in the field.

Malathion appeared to induce the expressions of CYP409A1 and CYP408B1 when its concentration was relatively low $\left(\mathrm{LD}_{15}\right)$ (Fig. 5). However, the induction status and level in malathion-treated L. migratoria manilensis were relatively less consistent than those in deltamethrin-treated insects among the different treatments. These inconsistencies are probably due to relatively low levels of the induction in malathion-treated L. migratoria manilensis. In contrast, carbaryl appeared to repress the expressions of CYP409A1 and CYP408B1 at high concentration $\left(\mathrm{LD}_{50}\right)$ (Fig. 4). Generally, however, carbaryl at low concentration $\left(\mathrm{LD}_{15}\right)$ did not affect the expression of CYP409A1 and CYP408B1 (Fig. 5).

Although our results were based on studies with three commonly used insecticides which belong to three different major classes of insecticides, we should not make any assumption that other insecticides within the same class have similar abilities to induce the orthologs of these cytochrome P450 genes in other insect species. Furthermore, although it has been suggested that the induction profiling of insect detoxification enzymes could serve as a means to identifying the major enzymes involved in insecticide detoxification (Poupardin et al., 2008), the results based on our induction studies can not pinpoint whether or not these two cytochrome P450 genes are involved in insecticide metabolism, as experienced by other
researchers. This is mainly due to the diversity, rapid evolution, and little information about the substrate specificity of cytochrome P450 enzymes (Willoughby et al., 2006).

To clarify whether or not the two deltamethrin-inducible genes CYP409A1 and CYP408B1 are involved in the detoxification of deltamethrin, we performed RNAi to silence each of the two genes by injecting sequence-specific dsRNA to second-instar locust nymphs followed by deltamethrin bioassay. The mortalities of the locusts injected with nuclease-free water (control), dsRNA of CYP409A1 and dsRNA of CYP408B1 after exposed to deltamethrin at the dose of 2.0 ng per gram of body weight were $22.9,44.0$ and 39.6%, respectively. Thus, our results showed increased mortality of the locusts after each of the two cytochrome P450 genes was silenced by RNAi. These two new cytochrome P450 genes are likely to be involved in deltamethrin detoxification in the locust.

In summary, we identified and characterized two new cytochrome P450 genes, which belong to two novel families of the cytochrome P450 gene superfamily, from a major agricultural insect pest L. migratoria maniensis. CYP409A1 belongs to the CYP409 family whereas CYP408B1 belongs to the CYP408 family. Our findings of these highly evolved detoxification genes in L. migratoria manilensis suggest that there may be more extensive diversification within the cytochrome P450 superfamily in organisms (Sasabe et al., 2004). We further demonstrated that both CYP408B1 and CYP409A1 were involved in deltamethrin detoxification in the locust by using RNAi for each of the two genes followed by deltamethrin bioassay. Our study may help us better understand functions of the insect cytochrome P450 genes and their interactions with pesticides at molecular levels and provide researchers with very much needed genetic information to assess potential consequences of insecticide exposures in insects and other organism.

Acknowledgments

This research was supported by National Natural Science Foundation of China (International Cooperation and Exchange Program Grant No. 30810103907 and Research Grant No. 30870302), and Public Welfare Fund for Agriculture (Grant No. 200903021). The authors give special thanks to Dr. D. Nelson for help in the nomenclature of the two new cytochrome P450 genes and to Prof. Yuanhuai Han (Shanxi Agricultural University) for helping with the manuscript preparation.

References

Ai, J.W., Zhu, Y., Duan, J., Yu, Q.Y., Zhang, G.J., Wan, F., Xiang, Z.H., 2011. Genome-wide analysis of cytochrome P450 monooxygenase genes in the silkworm, Bombyx mori. Gene 480-40545, 42-50.

Batard, Y., Schalk, M., Pierrel, M.A., Zimmerlin, A., Durst, F., Werck-Reichhart, D., 1997. Regulation of the cinnamate 4-hydroxylase (CYP73A1) in Jerusalem artichoke tubers in response to wounding and chemical treatments. Plant Physiol. 113, 951-959.

Chung, H., Sztal, T., Pasricha, S., Sridhar, M., Batterham, P., Daborn, P.J., 2009. Characterization of Drosophila melanogaster cytochrome P450 genes. PNAS 106, 57315736.

Cohen, M.B., Schuler, M.A., Berenbaum, M.R., 1992. A host-inducible cytochrome P450 from a host-specific caterpillar: Molecular cloning and evolution. PNAS 89, 1092010924.

Feyereisen, R., 1999. Insect P450 enzymes. Annu. Rev. Entomol. 44, 507-533.

Feyereisen, R., 2011. Insect CYP Genes and P450 Enzymes, in: Gilbert, L.I. (Eds), Insect Molecular Biology and Biochemistry. Elsevier Oxford, pp. 236-295.

Feyereisen, R., 2006. Evolution of insect P450. Biochem. Soc. Trans. 34, 1252-1255.
Feyereisen, R., 2005. Insect cytochrome P450. Comprehensive Molecular Insect Science (eds. Gilbert, L.I., Iatrou, K., and Gill, S.S.), vol. 4. Elsevier, Oxford, pp. 1-77.

Fisher, T., Crane, M., Callaghan, A., 2003. Induction of cytochromeP450 activity in individual Chironomus riparius Meigen larvae exposed to xenobiotics. Ecotoxicol. Environ. Saf. 54, 1-6.

Fuchs, S.Y., Spiegelman, V.S., Belitsky, G.A., 1994. Inducibility of various cytochrome-P450 isozymes by phenobarbital and some other xenobiotics in Drosophila melanogaster. Biochem. Pharmacol. 47, 1867-1873.

Gong, M.Q., Gu, Y., Hu, X.B., Sun, Y., Ma, L., Li, X.L., Sun, L.X., Qian, J., Zhu, C.L., 2005. Cloning and overexpression of CYP6F1, a cytochrome P450 gene, from deltamethrin-resistant Culex pipiens pallens. Acta. Biochim. Biophys. Sin. 37, 317-326. Guo, W., Wang, X., Ma, Z., Xue, L., Han, J., Yu, D., Kang, L., 2011. CSP and Takeout genes modulate the switch between attraction and repulsion during behavioral phase change in the Migratory Locust. PLoS Genet. 7, e1001291.

DOI:10.1371/journal.pgen. 1001291.
Guo, Y.Q., Zhang, J.Z., Yang, M.L., Yan, L.Z., Zhu, K.Y., Guo, Y.P., Ma, E.B., 2011. Comparative analysis of cytochrome P450-like genes from Locusta migratoria manilensis (Meyen): Expression profiling and response to insecticide exposure. Insect Sci. DOI 10.1111/j.1744-7917.2011.01450.x

Kang, L., Chen, X.Y., Zhou, Y., Liu, B.W., Zheng, W., Li, R.Q., Wang, J., Yu, J., 2004. The analysis of large-scale gene expression correlated to the phase changes of the migratory locust. PNAS 101, 17611-17615.

Le Goff, G., Hilliou, F., Siegfried, B.D., Boundy, S., Wajnberg, E., Sofer, L., Audant, P.,_ ffrench-Constant, R.H., Feyereisen, R., 2006. Xenobiotic response in Drosophila melanogaster: Sex dependence of P450 and GST gene induction. Insect Biochem. Mol. Biol. 36, 674-682.

Li, X., Schuler, M.A., Berenbaum, M.R., 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52, 231-253.

Ma, E.B., He, Y.P., Zhu, K.Y., 2004. Comparative studies of acetylcholinesterases purified from two field populations of the oriental migratory locust (Locusta migratoria manilensis): implications of insecticide resistance. Pestic. Biochem. Phys. 78, 67-77.

Mizutani, M., Ohta, D., 2010. Diversification of P450 genes during land plant evolution. Annu. Rev. Plant Biol. 61, 291-315.

Nelson, D.R., 2009. The Cytochrome P450 Homepage. Human Genomics 4, 59-65. Nicholas, K.B., Nicholas Jr., H.B., Deerfield II., D.W., 1997. GeneDoc: analysis and visualization of genetic variation. Embnew. News. 4,14.

Nielsen, K.A., Moller, B.L., 2005. Cytochrome P450s in Plants. In: de Montellano P.R. (Eds). Cytochrome P450: Structure, Mechanism, and Biochemistry, 3rd ed. Kluwer Academic/Plenum Publishers, New York, pp. 553-583.

Poupardin, R., Reynaud, S., Strode, C., Ranson, H., Vontas, J., David, J.P., 2008. Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: Impact on larval tolerance to chemical insecticides. Insect Biochem. Mol. Biol. 38, 540-551.

Ranasinghe, C., Headlam, M., Hobbs, A.A., 1997. Induction of the mRNA for CYP6B2, a pyrethroid inducible cytochrome P450, in Helicoverpa armigera (Hubner) by dietary monoterpenes. Arch. Insect Biochem. Physiol. 34, 99-109.

Sasabe, M., Wen, Z.M., Berenbaum, M.R., Schuler, M.A., 2004. Molecular analysis of CYP321A1, a novel cytochrome P450 involved in metabolism of plant allelochemicals (furanocoumarins) and insecticides (cypermethrin) in Helicoverpa zea. Gene 338, 163-175.

Schuler, M.A., 2011. P450s in plant-insect interactions. Biochim. Biophys. Acta. 1814, 36-45.

Scott, J.G., Sridhar, P., Liu, N., 1996. Adult specific expression and induction of cytochrome P450 in house flies. Arch. Insect Biochem. Physiol. 31, 313-323.

Scott, J.G., Wen, Z., 2001. Cytochromes P450 of insects: The tip of the iceberg. Pest Manag. Sci. 57, 958-967.

Scott, J.G., 2008. Insect cytochrome P450s: Thinking beyond detoxification, in: Liu, N. (Eds), Recent Advances in Insect Physiology, Toxicology and Molecular Biology. Research

Signpost, Kerala, India, pp. 117-124.

Snyder, M.J., Stevens, J.L., Andersen, J.F., Feyereisen, R., 1995. Expression of cytochrome P450 genes of the CYP4 family in midgut and fat body of the tobacco hornworm, Manduca sexta. Arch. Biochem. Biophys. 321, 13-20.

Stevens, J.L., Snyder, M.J., Koener, J.F., Feyereisen, R., 2000. Inducible P450s of the CYP9 family from larval Manduca sexta midgut. Insect Biochem. Mol. Biol. 30, 559-568.

Willoughby, L., Chung, H., Lumb, C., Robin, C., Batterham, P., Daborn, P.J., 2006. A comparison of Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and Phenobarbital. Insect Biochem. Mol. Biol. 36, 934-942.

Winter, J., Bilbe, G., Richener, H., Sehringer, B., Kayser, H., 1999. Cloning of a cDNA encoding a novel cytochrome P450 from the insect Locusta migratoria: CYP6H1, a putative ecdysone 20-hydroxylase. Biochem. Biophys. Res. Commun. 259, 305-310.

Zhang, J.Z., Liu, X.J., Zhang, J.Q., Li, D.Q., Sun, Y., Guo, Y.P., Ma, E.B., Zhu, K.Y., 2010. Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen). Insect Biochem. Mol. Biol. 40, 824-833.

Zhou, X.J., Ma, C.X., Li, M., Sheng, C.F., Liu, H.X., Qiu, X.H., 2010. CYP9A12 and CYP9A17 in the cotton bollworm Helicoverpa armigera: sequence similarity, expression profile and xenobiotic response. Pest Manag. Sci. 66, 65-73.

Figure Legends:

Fig. 1. Nucleotide and deduced amino acid sequences of the two cytochrome P450 cDNAs of L. migratorria manilensis. The start codon (ATG) and stop codon (TGA) are highlighted in black. The two cytochrome P450 signature motifs ($\mathrm{W} \times \times \times \mathrm{R}, \mathrm{E} \times \times \mathrm{R} \times \times \mathrm{P}$ and $\mathrm{P} \times \times \mathrm{F} \times \mathrm{PERF}$) are highlighted in blue, and the heme signature regions $\mathrm{F} \times \times \mathrm{G} \times \mathrm{R} \times \mathrm{C} \times \mathrm{G}$ and FGLAGSNYAN are underlined in black. The sequences were deposited in the GenBank (accession numbers: HM153425 and HM153426).

Fig. 2. Comparison of amino acid sequences of CYP409A1 (HM153425), CYP408B1 (HM153426) and CYP6H1 (AF115777) from L. migratorria manilensis and CYP408A1 (GQ911996.1) of Nilaparvata lugens using GENEDOC. Several conserved motifs of these cytochrome P450 proteins are boxed.

Fig. 3. Expression profiles of L. migratoria manilensis CYP409A1 and CYP408B1 genes in different tissues of the fifth-instar nymphs and different developmental stages in the whole body as evaluated by semi-quantitative PCR. (A) Their expression patterns were examined in seven different tissues including foregut (FG), midgut (MG), gastric caecum (GC), hindgut (HG), Malpighian tubules (MT), fatbody (FB), muscles (MC), ovary (OV) and testis (TE). (B) Their expression patterns were examined in seven different developmental stages including egg (EG); first-instar (N1), second-instar (N2), third-instar (N3), fourth-instar (N4) and fifth-instar (N5) nymphs; and adult (AD). β-actin was used as an internal reference gene.

Fig. 4. Effect of three insecticides (deltamethrin, malathion and carbaryl) on the expression of CYP409A1 and CYP408B1 after the locust nymphs treated with each insecticide at three
different doses and analyzed at 24 h by qPCR . Three doses $\left(\mathrm{LD}_{10}, \mathrm{LD}_{30}\right.$ and $\left.\mathrm{LD}_{50}\right)$ used for each insecticide are: 1.2, 2.4 and $3.6 \mathrm{ng} \mathrm{g}^{-1}$ (nanogram per gram of body weight) for deltamethrin, 60,120 and $180 \mathrm{ng} \mathrm{g}^{-1}$ for malathion, and 300,600 and $900 \mathrm{ng} \mathrm{g}^{-1}$ for carbaryl. The relative level of gene expression shown in Y axis is the ratio of the gene expression in each treatment in comparison with that of control in which acetone alone was used to treat insects. The dashed line shows the relative activity for the control. Vertical bars indicate standard errors of the mean $(\mathrm{n}=3)$. One or two asterisks on the standard error bar indicate significant difference between the mean of the treatments with a particular insecticide for 24 h and the mean of the control at $P<0.05$ or $P<0.01$, respectively, based on unpaired Student's t-test. Because the same control was used for the comparisons, it was normalized as 1.0 (shown by the dash line). Different letters on the bars indicate that the means are significantly different among the three exposure doses of the same insecticide based on Fisher's LSD multiple comparison test ($P<0.05$).

Fig. 5. Effect of three insecticides (deltamethrin, malathion and carbaryl) on the expression of CYP409A1 and CYP408B1 after the locust nymphs treated with each insecticide at the LD_{15} concentration and analyzed at four different time points ($6,12,24$ and 48 h) using qPCR. β -actin was used as an internal reference gene. Vertical bars indicate standard errors of the mean $(\mathrm{n}=3)$. One or two asterisks on the standard error bar indicate significant difference between the mean of the treatment with a particular insecticide and the mean of the control at $P<0.05$ or $P<0.01$, respectively, within the same exposure time point based on unpaired Student's t-test. Different letters on the bars indicate that the means are significantly different among the four exposure times of the same insecticide treatment or the control based on Fisher's LSD multiple comparison test ($p<0.05$).

Fig. 6. Changes in the transcript levels of CYP409A1 and CYP408B1 after the locust nymphs were injected with their corresponding dsRNA. The 2nd-instar nymphs of 2-day old were used for injection experiments. RNA was extracted and quantified by semi-quantitative PCR and qPCR at 12, 24 and 48h. Control nymphs were injected with equivalent volumes of nuclease-free water. Different letters next to the standard deviation bars indicate statistically significant differences in gene transcript levels between dsRNA treated and control nymphs (t-test, $P<0.05$). (A and B) The transcript of CYP409A1/CYP408B1 was examined by both semi-quantitative PCR and qPCR. (C) Changes in the susceptibility of the locusts to deltamethrin after the injection of CYP409A1/CYP408B1 dsRNA in 2nd-instar nymphs. The control locusts were injected with the same volumes of deionized water. Deltamethrin bioassays were conducted 24 h after the injections by topical application. The mortalities of the locusts were assessed 24 h after the deltamethrin treatments at the dose of 1.0 ng per gram of body weight. Results are mean and standard errors of three biological replications $(n=3)$. An asterisk next to the standard deviation bars indicate significant differences in the mortalities among the control, CYP409A1 or CYP408B1 dsRNA based on LSD multiple comparison test ($P<0.05$).

Fig. 1.

A

ACGCGGGAGTGGTGTGGGGACGTCCGCCGGCTGGTACA CGCTGTTGCTATCGCTACTGCTGCGAGACTGTCCATTACCTCATCACTGCCTGGGACCGCAGGGCCAGTTGTCTACGCCTGTCAGGCAGAAGGGCGTGGGAAACAGTCCATCCATCCATC ATGGCGGTCGACTGGTATACCACGGGCGCCCTGGTTGTGTTAGCTGCGTGGCTACTATGGAAGTACCTGTCATGGAACTACGGCTACTGGCAACGTTTGGGAGTGCCCTGTATCGAACC

 CAAGCAGCGCTGTTCGTGAGAGACGCCGAGCTTTTGCGCCAGATGATGATCAGCGACTTTGCTTCCTTCCACGACAACAACAACTACGTCAACGAAGACCAAGATCCTATATTCGCAAG

 GTACGAGTACTGGAACAGGAAGGACCAGAAGCGATGCCAGACGGGCTGGAGGCATGGCGCCTGTGCATGCGGTACACAACGGACGTGGTGTCGTCCTGCGCGCTGGGCGTCACGGGTCGA $\begin{array}{lllllllllllllllllllllllllllllllllllllll}\mathbf{V} & \mathbf{R} & \mathbf{V} & \mathbf{L} & \mathbf{E} & \mathbf{Q} & \mathbf{E} & \mathbf{G} & \mathbf{P} & \mathbf{E} & \mathbf{A} & \mathbf{M} & \mathbf{P} & \mathbf{D} & \mathbf{G} & \mathbf{L} & \mathbf{E} & \mathbf{A} & \mathbf{W} & \mathbf{R} & \mathbf{L} & \mathbf{C} & \mathbf{M} & \mathbf{R} & \mathbf{Y} & \mathbf{T} & \mathbf{T} & \mathbf{D} & \mathbf{V} & \mathbf{V} & \mathbf{S} & \mathbf{S} & \mathbf{C} & \mathbf{A} & \mathbf{L} & \mathbf{G} & \mathbf{V} & \mathbf{T} & \mathbf{G} \\ \mathbf{R}\end{array}$ ACTCTGGAGGACAAGGATTCTGTTCTGGCGGACATGTGTCGTAGGCTTCTTGCTCCAACCTTCATGACCAATTTGAAGATCGCCGTGGCTTTTACATCACCAACTTTAGCTGATGTTTTG
 CGTATTAGGATCATGCCTCTGGACGTGCACAACTTCGTGTACAAATGGGTGACGGAGACGGTCGCGCAGAGAGAACAGGGGAACGTGCAGCGCAAGGACTACCTGCAGCTGCTGGTGGAG

 GCCACGGCTATGTCGTTCGCTCTTTACGAACTGGCCCTGCATCCGGACATCCAGCATCGTTTACGAGAGAACCTCCGAGAAGCAGTGGACAAGCATGGCGGCCAACTGGGATATGACTCC
 ATCAACGAGTGTACCTACCTCGACATGGTCCTCTCAGAGGTGCTGCGGCTGCACCCGCCCATCGGACACCTGGAGAAGAAGTGCACGGCGGCCTACCCCATGACCACCGCCTCCGGTCGC GCCTTCACCGTGCAGCCGGGCACCGCCGTCGTCTTCTCCATCGCAGGCATACACAGAGACCCGCGATACTTCCGCAACCCGGACGTCTTCGACCCCGAACGCTTCTCGCCCGACAACAA
 GACCCCACCTCGATGGTGGCTTACATGCCTTTTGGATTGGGCGCTCGTACATGCTTGGGACAACGGTTCGCGCTGTCGCAGGTGAAGATGGGCGTCGCGTGCCTGGTGCTCAACTTCAG

 ACAGTGCGGTTGTACTCCCGTGTAAAACAACCCAGACCTCCAGGAACATACACACTGTGCTGAGATCGAAACAACATAGCGTGTTATAATGAATGTGGTATTTCACGAATGACAGTTCGT GACAAACACTCCTAATAAAGACATTTTTCTGTAAAAAAAAAAAAAAAAAAAAAAAAAAA

B

ATGGTGGAACTGCTCACCGCGGCCTGCGTCCTCGTGGCGCTGGTGGCCGTCGCCCTCGCTACGCGGGGACCGCACTACAAACGGAACCGACTGCAGCTACAGCTACAACTACAGCGGCACC

 CCCAACCTGGTTGTGGCGGACGCAGACCTGGCCAAGGCCATTCTGGACAAGGAGCGCGACCACTTCCGCAACAGGAGGTCTGCATCTGTCAAGAATCCTCTGGTGCAGAAGAGTCTTTCT
 ATTCTGGCAGGAGAAGTAAAAGGATCACCTGATGTAGTGGTAGCCCTCAGCCGTGAGAAACTTAGGAAGCTTACTCCAAGGATTCTGAAGTCACTGGAGTTTCTCACACAAAATCTTAAG
 AAATCTCTCGAAGCATCTGAACCAAGCATTGACATTACATACGCTGTCCGTAACTTCCTCGCTCATTCATTGGCTTTGACTCTTCTTGACAAGGATTCACAGGCAGAAGAGCCTAAGGTA
 GACCAGAATGCCTTTTCTGGAACACTAGAACAAGTTCTGAAAGTTGACAATCCAACTTATCCAGTTGCATCTTTCCCATTTGTTCTTCCTGCATTTTACTCTCAAGACTGCTTTGTTCTG
 CGAAACAGTGCTGCCAGGTACCTTATTCCTTTAATCCATTCCAGTGTTAAGGAAAAAATCAGTGCAGAAAAGTCATCGGACGAGAAGAAAGTTCCTGATCTGGTAGACATACTGCTCGAA

 GAGAAGGGAACTATAGTATCAATTCCACTGTATGCACTTCATCGTTTGGAAGACTACTATCCAGAGCCACATACTTTCAATCCAGACAGATTTTCTCCAGCCATAGCAGAAAAGCGTCAC
 CCATACACATACCTACCATTTGGTTTGGCTGGTTCGAATACGGCTAATGTCAGTGTTCAATATGGAATGCTGGTTACTAAGTTGACTGTTGCAACACTGATAAAGAACTTTAAGTTTGTG
 1621 $\mathbf{P} \quad \mathbf{A} \quad \mathbf{E} \quad \mathbf{E} \quad \mathbf{T} \quad \mathbf{Q}$
GACTTTTGTATTATCACATTCAGGACTTTTCAAGACTCAGTTTGCAGTTCTGATAAAATGOGAGAAATGTTTCAAGACTTTTGAAGTACAGTGTAATIAGT CACTTTTGTATTATCACATTCAAGACTTTTCAAGACTCAGTTTGCAGTTCTGATAAAATGGGAGAAATGTTTCAAGACTTTTGAAGTACAGTGTAATTATTGGTTTGACTAGATCAATTA СTTTTAAGAAGTGCCTATATTACTGAACATTCATAGAAGACATTCCACATTGCAGA

Fig. 2.

Fig. 3.

A

Fig. 4.

Fig. 5.

Fig. 6.

