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Abstract 

Large cattle feedlots emit considerable amounts of particulate matter (PM), including 

TSP (total suspended particulates), PM10 (PM with equivalent aerodynamic diameter of 10 µm or 

less), and PM2.5 (PM with equivalent aerodynamic diameter of 2.5 µm or less).  Particulate 

emissions result from pen surface disturbance by cattle hoof action, vehicle traffic on unpaved 

roads and alleyways, and wind erosion.  Research is needed to determine concentrations of 

various size fractions, size distribution, and emission rates from various sources in feedlots.  This 

research was conducted to measure particle size distribution using laser diffraction method and 

estimate emissions from unpaved roads and wind erosion. 

Particle size distribution and concentrations of PM10 and PM2.5 at a commercial cattle 

feedlot in Kansas (Feedlot 1) were measured over a 2-yr period.  The feedlot had a capacity of 

30,000 head and total pen area of 50 ha and was equipped with a sprinkler system for dust 

control.  Collocated low-volume samplers for TSP, PM10, and PM2.5 were used to measure 

concentrations of TSP, PM10, and PM2.5 at the upwind and downwind edges of the feedlot.  Dust 

samples that were collected by TSP samplers were analyzed with a laser diffraction analyzer to 

determine particle size distribution.  Particle size distribution at the downwind edge of the 

feedlot was also measured with micro-orifice uniform deposit impactor (MOUDI).  The laser 

diffraction method and MOUDI did not differ significantly in mean geometric mean diameter 

(13.7 vs. 13.0 μm) but differed in mean geometric standard deviation (2.9 vs. 2.3).  From laser 

diffraction and TSP data, PM10 and PM2.5 concentrations were also calculated and were not 

significantly different from those measured by low-volume PM10 and PM2.5 samplers (122 vs. 

131 μg/m3 for PM10; 26 vs. 35 μg/m3 for PM2.5).  Both PM10 and PM2.5 fractions decreased as 

pen surface moisture contents increased, while the PM2.5/PM10 ratio did not change much with 

pen surface moisture content.   

Published emission models were used to estimate PM10 emissions from unpaved roads 

and wind erosion at Feedlot 1 and another nearby feedlot (Feedlot 2).  Feedlot 2 had a capacity 

of 30,000 head, total pen surface area of 59 ha, and used water trucks for dust control.  Estimated 

PM10 emissions from unpaved roads and wind erosion were less than 20% of total PM10 



 

emissions obtained from inverse dispersion modeling.  Further research is needed to establish the 

applicability of published emission estimation models for cattle feedlots. 
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CHAPTER 1 - Introduction 

1.1  Background 
There is increasing concern on air pollutant emissions from cattle feeding operations 

because of their increasing sizes and geographic concentrations (National Research Council, 

2003).  These operations generally involve feeding cattle in confined, open areas, with stocking 

densities of about 14 m2/hd or greater.  Each cattle produces about 900 kg of dry manure during 

its stay in the feedlot (Sweeten et al., 1998).  Warm temperatures, low humidity, and high wind 

speed promote rapid evaporation of water from the manure making it loose and more susceptible 

to suspension due to cattle hoof action and wind scouring (Amosson et al., 2006).   

Emitted PM is a concern because of potential adverse health and environmental effects 

(Cole et al., 2008).  PM, especially PM2.5 (PM with equivalent aerodynamic diameter of less than 

or equal to 2.5 µm), is readily inhaled and can be deposited in lung tissue, resulting in respiratory 

ailments (Saxton et al., 1999).  Six criteria air pollutants, including PM, and 187 air toxics are 

regulated by the US Clean Air Act (CAA) (US EPA, 1987) because of their risks to human 

health and environment.  National Ambient Air Quality Standards (NAAQS) were created for the 

criteria pollutants to help control emissions that pose great risk to human health and environment 

(US EPA, 1987).  Agricultural sources, including cattle feedlots, have not been included in the 

implementation of NAAQS.  Recently, however, US EPA has amended the rule for inclusion of 

agricultural operations (US EPA, 2004).  Also, limited information is available on emission rates 

from animal feeding operations (US EPA, 1995).   

Measuring and characterizing PM is necessary for effective implementation of air quality 

standards and development of abatement measures.  Two important PM characteristics are 

concentration and size distribution.  Measurements of PM concentrations in cattle feedlots have 

used federal reference method (FRM) samplers (Sweeten et al., 1988; Purdy et al., 2007) and 

federal equivalent method (FEM) samplers (Bonifacio, 2009; McGinn et al., 2010).  

Measurements have considered total suspended particulates (TSP), PM10 (PM with equivalent 

aerodynamic diameter of 10 µm or less), and PM2.5 (PM with equivalent aerodynamic diameter 

of 2.5 µm or less).  Purdy et al. (2007) used high volume reference samplers for PM10 and PM2.5 

in four feedlots in Southern High Plains.  Bonifacio (2009) used FEM tapered element oscillating 
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microbalance (TEOMTM) PM10 monitors to measure PM10 concentrations upwind and downwind 

of two large cattle feedlots in Kansas.  Guo et al. (2009) used FRM high-volume, FEM 

TEOMTM, and low-volume PM10 samplers in cattle feedlots in Kansas.  McGinn et al. (2010) 

measured PM10 concentrations in cattle feedlots in Australia using FEM beta attenuation mass 

monitors.   

Various techniques have been used to measure particle size distributions (PSDs) in cattle 

feedlots.  Coulter Counters (e.g., Wanjura et al., 2004; Purdy et al., 2007) and cascade impactors 

(Guo et al., 2011) have been used in several studies.  In related areas, laser diffraction has been 

used.  For example, Cao (2009) evaluated particle size distribution in a layer operation through 

several instruments, including laser scattering particle size analyzer, laser diffraction analyzers, 

and Coulter Counter. 

Laser diffraction has potential to enhance measurement of size distribution and 

concentrations of various size fractions in animal feeding operations, including cattle feedlots. 

This method is easier to use and presents a wider size range compared to conventional impactors.  

This wider size range will be helpful in evaluating concentrations and size distributions of 

particles more effectively.  

Limited studies have been conducted to establish contributions of unpaved roads on cattle 

feedlot PM emissions and none had reported emissions brought about by wind erosion in cattle 

feedlots.  Wanjura et al. (2004) reported about 80% of total emissions from cattle feedlots are 

brought about by unpaved roads, while Hamm (2005) reported 53% contribution of unpaved 

roads toward total emissions.  The San Joaquin Valley Air Pollution Control District (SJV 

APCD) reported an emission factor of 0.72 kg/hd-yr for unpaved roads from a cattle feedlot in 

San Joaquin Valley, CA. (Countess Environmental, 2006).  With limited data, studies on 

estimating such contributions are necessary to establish better understanding of their mechanisms 

and develop control methods.  

1.2  Objectives 
This study was conducted to:  

(1) Determine applicability of laser diffraction in measuring size distribution of particles 

emitted from cattle feedlots; and  



 3

(2) Estimate contributions of unpaved roads and wind erosion to total PM emission from 

cattle feedlots.   

 

Results of the first objective can be useful in deciding whether or not to use laser diffraction as 

alternative for measuring PSD and PM concentration in open cattle feedlots.  The second 

objective can be useful in estimating which of the miscellaneous sources are major contributors 

to PM emissions aside from cattle hoof action on pen surfaces. 

1.3  References 
Amosson, S.H., B. Guerrero, and L.K. Almas.  2006.  Economic analysis of solid-set sprinklers 

to control dust in feedlots.  Journal of Agricultural & Applied Economics 38.2 (August 
2006): 456. 

 
Bonifacio, H. F. 2009.  Particulate matter emissions from commercial beef cattle feedlots in 

Kansas.  MS Thesis. Manhattan, Kan.:  Kansas State University. 
 
Cao, Z.  2009.  Determination of particle size distribution of particulate matter emitted from a layer 

operation in Southeastern U.S.  MS Thesis.  Raleigh, N.C.:  North Carolina State University. 
 
Cole, N.A., R. Todd, B. Auvermann, and D. Parker.  2008.  Auditing and assessing air quality in 

concentrated feeding operations.  The Professional Animal Scientist 24: 1-22. 
 
Countess Environmental.  2006.  WRAP fugitive dust handbook. Prepared for Western 

Governor’s Association, Denver, Colo.  Available at   
http://www.wrapair.org/forums/dejf/fdh/content/FDHandbook_Rev_06.pdf.  Accessed 21 
March 2010. 
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Current knowledge, future needs.  Washington, D.C.: National Academies Press. 

 
Purdy, C.W., R.N. Clark, and D.C. Straus.  2007.  Analysis of aerosolized particulates of 

feedyards located in the Southern High Plains of Texas. Aerosol Science and Technology 
41(5): 497–509. 

 
Saxton, K., D. Chandler, and W. Schillinger.  1999.  Wind erosion and air quality research in the 

Northwest U.S. Columbia Plateau: Organization and progress.  In E.E. Stott, R.H. 
Mohtar, and G.C. Steinhardt (eds). Sustaining the Global Farm – Selected papers from 
the 10th International Soil Conservation Organization Meeting, 24-29 May, West 
Lafayette, Ind. 

 
Sweeten, J.M., C.B. Parnell, R.S. Etheredge, and D. Osborne.  1988.  Dust emissions in cattle 

feedlots.  Veterinary Clinics of North America, Food Animal Practice 4(3): 557-578. 
 
Sweeten, J.M., C.B. Parnell, B.W. Shaw, and B.W. Auvermann.  1998.  Particle size distribution 

of cattle feedlot dust emission. Transactions of the ASAE 41(5): 1477-1481. 
 
U.S. Environmental Protection Agency (US EPA).  1987.  National ambient air quality 

standards.  40 CFR Part 70.  Research Triangle Park, NC: US EPA.  Available at 
http://www.epa.gov/air/caa.  Accessed 10 July 2010. 

 
U.S. Environmental Protection Agency (US EPA).  1995.  AP-42: Chapter 9 Food and 

agricultural industries.  Research Triangle Park, NC: US EPA.  Available at 
http://www.epa.gov/ttn/chief/ap42/ch09/index.html.  Accessed 10 July 2010. 

 
U.S. Environmental Protection Agency (US EPA).  2004.  Use of a performance based approach 

to determine data quality needs for the PM-coarse (PMc) standard.  Research Triangle 
Park, NC: US EPA.  Available at http://www.epa.gov/airnow/particle/pm-color.pdf.  
Accessed 10 July 2010. 

 
Wanjura, J.D., C.B. Parnell, B.W. Shaw, and R.E. Lacey.  2004.  A protocol for determining a 

fugitive dust emission factor from a ground level area source.  ASAE/CSAE Paper No. 
044018. St. Joseph, Mich.: ASAE. 

 



 5

 
CHAPTER 2 - Literature Review 

2.1  Particulate Emissions from Cattle Feedlots 

2.1.1  Background 

In the U.S., there has been a steady increase in the number of beef cattle slaughtered from 

2004 to 2008, with a slight decrease in 2009 (USDA, 2009).  The number of cattle feedlots, 

however, has generally decreased, indicating greater stocking densities (USDA, 2009, 2005, 

2000).  A mixture of PM and gases emanate from these feedlots (Bunton et al., 2007), raising 

concerns on the health of nearby residents.   

Beef cattle feedlots are considered non-point or open sources because emissions do not 

originate from a specific source like a chimney, stack or vent (ARD-42, 2010).  Airborne 

particles that originate from cattle feedlots and other non-point sources (Table 2.1) are called 

fugitive dust emissions (Ferguson et al., 1999).    

 

Table 2.1  Typical Nonpoint Source Categories (US EPA, 2004) 

Fugitive Dust Construction 
Mining and Quarrying 
Paved and Unpaved Roads 
Agricultural Tillage 
Beef Cattle Feedlots 

Open Burning Open Burning (residential municipal solid 
waste, yard waste, and land clearing debris) 
Structure Fires 
Prescribed Fires 
Wildfires 
Agricultural Field Burning 

Fuel Combustion Residential Wood Combustion 
Other Residential Fuel Combustion 
Industrial Fuel Combustion 
Commercial/Institutional Fuel Combustion 

Ammonia Animal Husbandry 
Agricultural Fertilizer Application 
Agricultural Fertilizer Manufacturing 
Wastewater Treatment 
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2.1.2  Sources of Particulate Matter in Cattle Feedlots 

PM emissions in cattle feedlots come from various sources: cattle activity inside pens, 

vehicle movement along unpaved roads, feed mills, and wind erosion.  The major contributing 

source for feedlot emissions is cattle hoof action on the dry and loose pen surface, which is a 

mixture of soil and manure.  Figure 2.1 shows a schematic diagram of the pen surface in cattle 

feedlots (ACFA, 2002). The topmost layer of the pen surface (i.e., manure pack) consists of 

manure that acts as a sponge as it absorbs water from rain, snow, or urine.  It has capacity to hold 

enough water (up to 25 mm of precipitation) during dry periods, and water readily evaporates 

from the surface, making it loose.  The gleyed or second layer, about 5 to 10 cm thick, is 

impermeable because it hinders salt, nutrient, and water penetration to lower layers.  This layer is 

formed by the transformation of organic matter, gel, and slimes aided by poor drainage and lack 

of oxygen.  The third layer is compacted soil/manure layer, about 15 cm thick and made of soil 

mixed with organic matter from manure.  The last layer is natural soil, commonly loam- or clay-

based soil (ACFA, 2002). 

 

 
Figure 2.1  Four distinct layers of the pen surface (adapted from: ACFA, 2002)   

2.1.3  PM Regulations in Cattle Feedlots 

The NAAQS for PM10 and PM2.5 (Table 2.2, US EPA, 2006a) have been considered 

applicable to open cattle feedlots.  Emission factors for open cattle feedlots have also been 

published; for inventory purposes, a PM10 emission factor of 17 tons per 1000 head throughput 

per year (US EPA, 1997) can be used for cattle feedlots. 
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Table 2.2  National Ambient Air Quality Standards for Particulate Matter  
(Source:  http://www.epa.gov/air/criteria.html) 

Particle Size Primary Standard (μg/m3) Averaging Times 

PM10 150 24 h 

15 Annual (arithmetic mean) 
PM2.5 

35 24 h 

 

2.1.4  Measurement of PM and Size Distribution in Feedlots 

Limited information is available on concentrations of various size fractions and particle 

size distribution in cattle feedlots. Most published data have been from cattle feedlots in Texas.  

Sweeten et al. (1988) investigated three cattle feedlots in Texas and reported net total suspended 

particulate (TSP) concentration of 412 ± 271 μg/m3 and median particle diameter of 10.2 ± 1.2 

μm.  They also noted that dust concentrations were high during early evening and low during 

early morning.  In a related study, Sweeten et al. (1998) reported mean TSP concentration of 700 

± 484 μg/m3 and mean PM10 concentration of 285 ± 214 μg/m3 in three cattle feedlots in Texas.  

In addition, they observed mass median diameters of particles of 9.5 ± 1.5 μm for TSP samplers 

and 6.9 ± 0.8 μm for PM10 samplers.   

Hamm (2005) reported a range of 113 to 6000 μg/m3 during a summer sampling period in 

a feedlot in Texas.  The feedlot condition was dry with an average temperature of 38 ºC during 

the day and 21 ºC at night, such that relatively high concentrations of PM were expected. 

Purdy et al. (2007) measured PM from four large feedlots in Texas.  They reported that 

three of the four feedlots exceeded the 24-h PM10 NAAQS.  Mean PM10 particle sizes for the 

feedlots were measured using a laser strategic aerosol monitor.  Median PM10 size was 8.3 μm 

downwind and upwind of the feedlots.        

Razote et al. (2007) investigated a cattle feedlot in western Kansas using tapered element 

oscillating microbalances (TEOMs) and reported net PM10 concentrations of 115 ± 80 μg/m3 and 

mean geometric mean diameter (GMD) of 11.4 ± 2.1 μm.  In a related study, Guo et al. (2009) 

measured PM10 concentrations using high-volume, TEOMs, and low-volume PM10 samplers in 

two cattle feedlots in Kansas. 
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In two cattle feedlots in Australia, McGinn et al. (2010) reported mean 24-h PM10 

concentrations ranging from 9 to 61 μg/m3.  Feedlot PM10 24-h concentrations were close to or 

exceeded European Union (EU) and Australian standards twice during the 10-day sampling 

campaign but did not exceed the US EPA 24-h NAAQS for PM10..  

2.1.5  Control of PM Emissions 

Feedlot operators and managers have implemented abatement strategies to control dust 

emissions.  The most basic type of abatement is application of water.  Razote et al. (2006) 

indicated decrease in PM10 emission potential of a simulated pen surface from 19.2 mg (control) 

to 3.4 mg (at 3.2 mm water) and 2.3 mg (at 6.4 mm water).  Bonifacio et al. (2011) reported a 

control efficiency range of 32-80 % for PM10 of a water sprinkler system in a feedlot.   

Pen surface moisture content should be maintained at a level that minimizes both odor 

and dust emissions.  Davis et al. (1997) stated that the pen surface moisture content should be 

kept at 25 to 35 %. Too much moisture promotes fly and odor problems, while too dry of a pen 

can lead to significant dust problems.   

Another potential abatement strategy is application of materials, including wheat straw 

and saw dust, on the pen surface.  Other control methods include pen cleaning to reduce the 

amount of loose manure in the pen surface (Rahman et al., 2008).  The removed manure is 

placed in storage or composting area and sometimes covered with soil.   

Manipulation of the stocking density, the number of cattle inside the pen, is also a 

potential dust control measure.  Increasing stocking density results in moisture accumulation, 

causing the pen surface to be compact and less vulnerable to PM emissions (Romanillos and 

Auvermann, 1999).  Razote et al. (2006) mentioned that even without adding water, compacted 

surface layers could reduce potential emissions (with respect to vertical hoof action) by 30 %.  

For low and medium moisture contents (20-30 %), soil surface compaction is achieved through 

cattle trampling (Mullholland and Fullen, 1991; Scholefield and Hall, 1985). 

Emissions can also be reduced by feeding cattle during late afternoon or early evening –

periods of increased cattle activity (Sweeten et al., 1988).  Wilson et al. (2002) found significant 

reductions in dust concentrations in cattle feedlots by altering feeding strategies.  In their study, 

cattle in control pens were fed normal daily rations (33 %, 33 % and 34 % of total feed rations at 

7:10 AM, 10:00 AM, and 12:00 PM, respectively) while cattle in another set of pens were fed 



 9

30%, 20 %, and 50 % at 7:00 AM, 10:00 AM, and 6:30 PM, respectively.  Mean PM 

concentrations were 177 ± 2 μg/m3 for control pens and 97 ± 16 μg/m3 of dust for test pens. 

Use of shelterbelts and windbreaks can also help in managing dust emissions from open 

cattle feedlots. This method utilizes trees or vegetation to capture particulates downwind and 

reduce wind speed toward the site, reducing potential for wind erosion (Carter, 2006). 

2.2  Particle Size and Size Distribution 

2.2.1  Particle Size 

Particle size is one of the most important characteristics of particles.  Environmental 

concerns associated with exposure to PM can be narrowed down into particles being inhaled, 

which are deposited in different areas of the respiratory system based on their size.  Health-based 

particle-size selective sampling (TSI, 2009) classification of particles with respect to median 

aerodynamic diameter are as follows: 100 μm (inhalable fraction or fraction of particles that 

enter the respiratory system through the nose or mouth), 10 μm (thoracic fraction or portion of 

the inhalable fraction that passes through the larynx and penetrate into the trachea and the 

bronchial region of the lungs), and 4 μm (respirable fraction or portion of the inhalable fraction 

that enters the alveoli).   

In medical research, deposition pattern and bioavailability are defined using particle size 

of drug materials as it is allowed to penetrate through the respiratory system during inhalation 

(Pilcer et al., 2008).  A size range of about 1 to 5 μm is the optimum range for particles to 

deposit deep into the pulmonary system. Larger particles are trapped in the oro-pharynx, while 

submicrometer particles remain suspended in air for exhalation (Bosquillon et al., 2004).   

Vincent (2007) summarized the classification of typical aerosols.  Combustion sources 

such as fume dominate fine (diameter between 0.1 and 2.5 μm) and ultrafine particle regions 

(diameter < 0.1 μm), while soil dust, construction dust, and road dust are predominantly in the 

coarser region (diameter > 2.5 μm) (Watson et al., 2000; Lin et al., 2005).  

Particle characterization usually involves defining its equivalent diameter.  For a 

spherical particle, particle diameter is unique compared to a non-spherical particle, which does 

not possess a specific diameter.  The concept of equivalent diameter has been used to describe 

sizes of non-spherical particles.  This concept involves determining the size of an equivalent 
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sphere that embodies the same properties as the particle in question.  At times a single equivalent 

sphere can be used to represent the behavior of a non-spherical particle in a measurement 

technique like sieving, sedimentation and microscopy.  Some techniques require rigorous 

computations because the particle behaves differently in various orientations.  The laser 

diffraction method involves measurement of the light scattering of particles, which are usually 

different from one angle to another.  As such, the different scattering patterns are averaged 

during the analysis.   

Another important factor that affects particle behavior is particle density.  For 

instruments that measure volume percent, it is necessary to know particle density to compute the 

mass.  Particle density is also important in calculating and changing from the equivalent sphere 

diameter (dp) to its equivalent aerodynamic diameter (da).  Another critical parameter is particle 

shape.  Various descriptive terms can be applied to particle shape, but for ease of analysis, this 

property is captured by the incorporation of shape factor (χ) into equations for particle size 

analysis.  For spherical particles, χ = 1. 

2.2.2  Geometric Mean Diameter and Geometric Standard Deviation   

A size distribution is a collection of particles characterized by properties, such as 

aerodynamic diameter, number, mass or volume fraction.  A size distribution is considered 

monodisperse if 90 % of particles are within 5 % of the median size and polydisperse otherwise 

(Merkus, 2008).  In cattle feedlots, particle size distributions are polydisperse.   

For a given size distribution, characteristic parameters are geometric mean diameter 

(GMD) and geometric standard deviation (GSD) (US EPA, 2010).  The GMD (μm) gives the 

central tendency of a particle size distribution and is expressed as follows (Hinds, 1999): 

(2.1)                                                                                                    
ln 
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∑
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m
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where dpj  =  geometric mean of the jth size range, μm  

mj  =  mass fraction of particles in the jth size range 

The geometric standard deviation (GSD) describes how wide the size distribution is 

around the GMD and can be calculated as (Hinds, 1999): 
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2.2.3  Cascade Impactor 

Size distribution of airborne particles is typically measured using a cascade impactor.  In 

a cascade impactor, impaction is achieved though a jet of particle-laden air, which is allowed to 

make contact with a flat impaction plate (Figure 2.2).  Particles are separated by having large 

particles retained on the plate, while smaller particles are delivered with the airflow out of the 

impaction region, left uncollected.  Particles collected on an impaction plate are of specific 

aerodynamic diameter (Heyder et al., 1986; Marple et al., 1991).   The particle size distribution is 

determined based on the obtained mass fractions of specific size ranges.   

 

 

 
Figure 2.2  Microorifice Uniform Deposit Impactor (MOUDI):  (a) schematic diagram; (b) 

photograph 

 

Various types of cascade impactors are available commercially.  This study used the 

microorifice uniform deposit impactor (MOUDI model 100-R, MSP Corp., 2006), which has 

(a) (b) 
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been used in various research.  Kleeman et al. (1999) used the MOUDI in evaluating the particle 

size distribution of emissions from wood burning, meat charbroiling, and cigarette smoking.  

Wood smoke and meat charbroiling had dominant particles in the range of about 0.1 to 0.2 μm, 

while particles in cigarette smoke was in the range of 0.3 to 0.4 μm.  Kleeman et al. (2000) 

reported that the smoke from gasoline-powered, light-duty vehicles and light-duty diesel trucks 

did not differ with particle sizes ranging from 0.1 to 0.2 μm.  In a city with dense traffic, 

Martuzevicius et al. (2004) reported a significant amount of PM2.5 was contributed by particles 

with d50 = 0.32 to 1.0 μm.  Fang et al. (2005) evaluated the particle size distribution of 

atmospheric aerosols at a traffic site during the winter period using MOUDI and nano-MOUDI. 

The average mass median diameter (MMD) of particles was 0.99 μm.  The PM10 represented 

94.4 % of TSP, while PM2.5 was 68.9 % of TSP. 

Airborne bacteria and endotoxins were measured with the MOUDI (Kujundzic et al., 

2006).  An environmentally controlled chamber was used to simulate conditions in a home 

during winter and summer seasons.  Airborne bacteria were in the size range of 0.32 to 3.2 μm, 

while endotoxin ranged in size from 0.056 to 3.2 μm. 

In cotton production, Miller et al. (2006) measured the size distribution of dust generated 

from field preparation during harvesting of cotton seed using a MOUDI.  They reported that 

PM10 represented 96 % (disking) and 83 % (harvesting) of the total mass measured by the 

cascade impactor for disking and harvesting, respectively.  In addition, PM2.5 represented 51 % 

(disking) and 45 % (harvesting), respectively.  Use of a tractor in agricultural field operations 

was studied by Wang et al. (2009). They reported that 92 % of the TSP collected by the impactor 

represented PM10 particles.   

2.2.4  Laser Diffraction Method 

2.2.4.1  Light Scattering Theory 

Laser diffraction, in a strict sense, is not a true particle size measurement technique, 

rather it is a particulate system characterization technique (Xu, 2000).  Particle size distribution 

arises from the “best fit” model for light scattering data with the assumption of having spherical 

particles (Tinke et al., 2008).  Mühlenweg and Hirleman (1998) argued that there is not a unique 

size and shape related diffraction diameter that comes from a diffraction pattern of non-spherical 
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particle.  Merkus (2008) stated that laser diffraction is a model-based particle size distribution 

calculation from an angular pattern of scattered intensities, and the distribution generated is 

based on the volume of a collection of spherical particles that has identical light scattering 

patterns as that of the dispersed sample.  As the conditioned beam of light strikes the surface of a 

particle (Figure 2.3), four types of interactions exist between the particle and beam of light 

(Merkus, 2008): 

(a) Fraunhofer diffraction –diffraction of light at the contour of the particle; 

(b) reflection of light at the particle’s surface, both inside and outside the particle; 

(c) refraction of light at the interface of particle and dispersion medium; and 

(d) absorption of light inside the particle. 

 
Figure 2.3  Interactions between particle and light beam (adapted from: Merkus, 2008) 

 

The basic approximation for particle size that was developed as the first optical model 

was the Fraunhofer theory.  Assumptions of the theory include (1) interaction exists only 

between the light and the particle contour; (2) particles are opaque (i.e., without promoting 

secondary scattering), circular, and two-dimensional; (3) angle of scattered light is small; (4)  

wavelength of light is much smaller than particle size; and (5) refractive index difference is 

large. 
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2.2.4.2  Laser Diffraction Applications 

The laser diffraction technique is widely used in pharmaceutical and medical fields and 

has been standardized (ISO, 1999).  Kippax (2005) cited the following advantages: 

(a)  range of applicability – characterization of a wide variety of products/components 

can be done, from aerosols (sprays, dry powders) to suspension and other wet 

samples; 

(b) wide dynamic range – a single measurement can detect equally the well-dispersed 

and agglomerated particles; 

(c)   speed of measurement – single measurement done within 400 μs; 

(d)   measurement repeatability – allows a rapid acquisition of data within a single 

result that promotes multiple repetitive measurements to be averaged; 

(e)   ease of verification – no calibration needed and can be verified with readily 

available NIST-traceable standards. 

Tinke et al. (2008) noted that in measuring particle size distribution, it is important to 

consider (a) the orientation of non-spherical particles, (b) the limited angular resolution of 

detectors, and (c) the limited angular scattering information and intensities for small particles.  

Results from laser diffraction instruments may vary and are known to be affected by (a) 

sphericity assumption, (b) type of curve fitting, and (c) limitations of applied algorithms in the 

deconvolution/conversion of scattered data. 

Merkus (2008) stated that materials for analysis can undergo dispersion via a liquid or a 

gaseous media as long as the dispersion medium is transparent and that the refractive index of 

the media (dispersant) is different from that of particles.  Dry dispersion is used to prevent the 

dissolution of particles into the medium.  Air is the common medium for this type of dispersion.  

Steady streams of particles can be achieved using a vibrating tray and powder container, while 

zigzag channels are used for cohesive powders to minimize agglomeration of particles.  Very 

cohesive powders or particles that are already in a mixture with a liquid (suspensions, emulsions, 

pastes) require that they undergo analysis using wet dispersion.  This type of dispersion is 

advantageous because it allows for the analysis of the same sample aliquot and also promotes 

optimization of dispersion parameters, such as the dispersant amount, concentration of particles, 

time, and dispersion energy.   
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Numerous studies, particularly in the medical and pharmaceutical fields, have applied 

laser diffraction.  Different starch granules suspended in water were analyzed by Manek et al. 

(2005) using the Beckman Coulter LS 13 320 with the universal liquid module.  The same 

instrument was also used by Griffitt et al. (2008) in characterizing sizes of nanometallic particles 

in aquatic organisms.  Rodríguez and Uriarte (2009) compared the instrument with the dry-

sieving method and found an R2 = 0.76 between the two methods. 

Pilcer et al. (2008) investigated correlation between a laser diffraction analyzer 

(Mastersizer 2000 and Spraytec) and inertial impactors, such as the multi-stage liquid impinger 

(MsLI) and the new generation impactor (NGI), when applied to size distribution determination 

of aerosolized powder formulations.  Results showed linear relationships with R2 > 0.9. 

Cao (2009) studied particulate emissions from a layer operation in southeastern U.S and 

reported that different seasons affected particle size distribution.  The laser diffraction analyzer 

Beckman Coulter LS 13 320 measured particle size distributions of 19.2 ± 1.27 μm during the 

fall season, 17.1 ± 0.81 μm in winter, and 18.4 ± 1.44 μm during spring. 

Comparative studies of various methodologies have been well documented using a range 

of materials such as sediments, soils, industrial powders, and reference materials (Rodríguez and 

Uriarte, 2009).  Previous studies have compared dry-sieving methodology and laser diffraction 

(Rodríguez and Uriarte, 2009), sedimentation and laser diffraction (Di Stefano et al., 2010), 

cascade impaction and laser diffraction (Pilcer et al., 2008; Martin et al., 2006; Ziegler and 

Wachtel, 2005; Kwong et al., 2000), and laser diffraction and image analysis (Kelly et al., 2006).  

However, very few studies (Guo et al., 2009; Purdy et al., 2007) have used PM from cattle 

feedlots as media for comparison. 

2.3  Emissions from Unpaved Roads and Wind Erosion 

2.3.1  Unpaved Roads 

Unpaved roads are another major source of dust from agricultural areas (Table 2.1).  

Compared to paved roads in which a finite reservoir of particles is available for resuspension 

(Kuhns et al., 2010), there exists an infinite ensemble of PM ready for resuspension in unpaved 

roads (Gillies et al., 2005).  Large amounts of PM are generated through the action of the rolling 
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wheels of vehicles on roads composed of graded and compacted roadbeds.  Pulverization occurs 

after, thus creating much smaller particles that are easily ejected (US EPA, 2006b). 

Factors that affect the extent of dust generation from unpaved roads include the nature of 

the road surface (dirt or gravel roads) and traffic volume (Succarieh, 2000).  Thenoux et al. 

(2007) mentioned that the amount of dust emitted is dictated by the amount of fine particles that 

comprise the surface material, physicochemical properties (percentage of fine particles, particle 

size and plasticity), and state of the road (compaction and homogeneity).  Since emission from 

unpaved roads is contributed by the movement of vehicles, effects of this action are influenced 

most commonly by weather conditions and behavior of the operator driving the vehicle 

(Etyemezian et al., 2003).  

2.3.1.1  Control Strategies for Unpaved Roads 

Control of unpaved road dust emissions requires application of different materials that 

attract moisture, bind dust particles together, and/or seal the surface.  Ferguson et al. (1999) 

enumerated control strategies, including application of chloride salts that act as moisture 

attractants and application of organic or synthetic compounds that promote aggregation. The 

latter method provides a road surface much like that of a pavement, but at a lower cost. 

Application of water is the simplest method of suppressing dust particles in unpaved 

roads, although water must be applied more frequently during prolonged dry periods.  Reed and 

Organiscak (2007) observed TSP control efficiencies of 74 % for 3-4 h following water 

application at 2.08 L/m2 (0.46 gallons/yd2) and 95 % for 30 min after water application at 0.59 

L/m2 (0.13 gallons/yd2).  Critical time interval between two trucks was also studied and the 

maximum dust concentration existed at 20 s.  About a 41 % to 52 % reduction in airborne 

respirable dust was achieved when the critical time interval was exceeded. 

Freeman and Bowders (2007) reported that geotextile application was effective in 

lowering dust emission for a period of at most 6 months.  Dust emission rate from an untreated 

surface was around two to three times that from a surface with geotextile application.  Also, silt 

content, which was initially 3 % for both treated and untreated surfaces, increased for both 

surfaces.  The treated surface’s silt content increased after 6 months to a range of 6 to 12 %, 

while silt content of the untreated surface increased to about 23 %. 

Thenoux et al. (2007) stated that high costs are involved with frequent maintenance on 

unpaved roads; therefore it is necessary to maintain an effective road management method that 
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complies with minimum road standards.  Whether to control the generation of dust or maintain 

an unpaved road is a critical management decision.   

US EPA has published a control efficiency guide that was the basis for US EPA AP-42 

calculations for emissions on unpaved roads (Table 2.3).  The control efficiency guide was based 

on management practice, process change, control device, and reformulation of material for 

suppression (Countess Environmental, 2006).  

 

Table 2.3  Control efficiency guide (Countess Environmental, 2006) 

Control Measure PM10 Control Efficiency References/Comments 

Limit maximum speed on unpaved 

roads to 25 mph 

44 % Assumes linear relationship 

between PM10 emissions and 

vehicle speed and an 

uncontrolled speed of 45 mph 

Paved, unpaved roads and unpaved 

parking areas 

99 % Based on comparison of paved 

road and unpaved road PM10 

emission factors 

Implement watering twice a day for 

industrial unpaved roads 

55 % Midwest Research Institute 

(MRI), 2001 

Apply dust suppressant annually to 

unpaved parking areas 

84 % California Air Resources 

Board (CARB), 2002 

 

2.3.1.2  Previous Research on Unpaved Road Dust Emissions 

Pinnick et al. (1985) reported a bimodal size distribution for the dust generated by 

various types of vehicles (5-ton shop truck, US Army armored carrier, and US Army tank) on 

unpaved roadways.  Modal mass mean diameters of 4 μm and 45 μm were observed regardless 

of the type of vehicle or its speed, which ranged from 5 to 12 m/s.  The dust loading based on 

type of soil was also analyzed, with silty soil having predominantly smaller particles and sandy 

soil having predominantly large particles. 

Padgett et al. (2008) measured an hourly average of 6 μg/m3 for PM2.5 for off-highway 

vehicles traveling on unpaved roads.  Light winds were observed during the sampling day (0.9 



 18

m/s to 1.8 m/s) while an average of 3.7 m/s was measured for wind gusts during sampling.  TSP 

concentrations ranged from 50 to 300 μg/m3, indicating that most of the dust emitted by off-

highway vehicles were larger than PM2.5. 

Reed and Organiscak (2007) measured haul road dust emissions.  A particle size 

distribution with the majority (85.5 %) as coarse particles was obtained, with 14.5 % being PM10 

and 3.5 % were less than 3.5 μm in size.  Concentrations decreased dramatically 15 m from the 

haul road and back to background level 30 m away (respirable dust were at 0.05 to 0.04 mg/m3).  

Thenoux et al. (2007) devised a method that facilitated measurement of dust generated 

from unpaved roads via movement of vehicles.  Vehicle speed had the greatest influence on dust 

generation; size of truck (light vs. medium) and type of tires did not significantly influence dust 

emission.  At approximately 40 km/h, there was a sudden increase in amounts of PM10 and PM2.5 

emitted.  This speed can be considered as the speed below which dust emissions from unpaved 

roads can be minimized. 

Padgett et al. (2008) monitored fugitive dust emissions of vehicles traveling on dry, 

unpaved roads.  The dust plume was heterogeneous, with predominantly smaller particles in the 

upper portion of the plume and predominantly larger particles in the lower portion.  

Kuhns et al. (2010) determined the ratio of emission factor (measured in g PM10 per km 

traveled) to vehicle momentum (product of mass and speed, kg-m/s).  They found ratios of 0.004 

to 0.006 (g PM10/vkt)/(kg-m/s) for a field in Colorado that consisted of a Hueco loamy fine sand 

(79 % sand, 16 % silt, and 5 % clay) and a value of 0.38 (g PM10/vkt)/(kg-m/s) for a field in 

Washington that consisted of Selah silt loam and Benwy silt loam (35 % sand, 48 % silt, and 17 

% clay).  The discrepancy in emission factors was attributed to the unique volcanic ash soil type 

in the field in Washington.  Also, they found that wheeled vehicles (i.e., Heavy Expanded 

Mobility Tactical Trucks) emitted more PM10 than tracked vehicles (i.e., tanks). This difference 

can be caused by the relative presence of a number of tires for the wheeled vehicle as compared 

to a tank in which the weight is distributed only to two threads, thereby having more sections or 

portions of the vehicle for fine particle emission. 
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2.3.1.3  Unpaved Road Dust Emission Models 

Empirical models for estimating emission factors from unpaved roads have been 

developed.  Calculation of emission factors of vehicles traveling on haul roads neglects the effect 

of vehicle speed (US EPA, 2003).  Vehicles traveling at industrial sites follow the equation:  

(2.3)                                                                                        M29s    /vkt)PM EF(g 0.450.9
10 =

where  s = silt content of the surface material 

M = vehicle mass (metric tons) 

vkt = vehicle kilometers traveled per day (vehicle-km/day) 

 

US EPA AP-42 presented the following empirical equation (Countess Environmental, 

2006): 
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where  E = PM10 emission factor (tons/yr) 

s = surface material silt content (%) 

W = mean vehicle weight (short tons) 

VMT = vehicle miles traveled per day (vehicle-miles/day) 

2.3.2  Wind Erosion 

Wind erosion generally removes the finest particles on the top surface of the parent 

material.  It can cause loss of soil nutrients (Gomes et al., 2003) and water, which makes for a 

drier environment, degrades sedimentation crusts on the surface of stripped soils, and/or causes 

abrasion, weathering of rocks at their base where they are in contact with the soil (FAO, 1996).  

Wind erosion is dominant in arid, exposed areas with insufficient plant cover.  Soil erodibility is 

dictated by topography and texture.  Ferguson et al. (1999) stated that, in general, heavy clay 

soils are less susceptible to wind erosion than loamy soils and that rolling slopes are less 

vulnerable to wind erosion compared to flat areas or long, gentle slopes. 

2.3.2.1  Mechanism of Wind Erosion 

Initiation of particle mobilization by wind is governed by different forces acting on 

particles.  Forces such as weight, friction, wind shear stress, and size-dependent inter-particle 
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cohesion forces determine the extent through which the particle will move.  Wind momentum 

transfer to the erodible surface is brought about by shear stress, which is further dependent on 

roughness of the particle surface.  Threshold wind stress necessary to particle motion initiation is 

determined by momentum transfer that occurs.  The square root of wind shear stress divided by 

the air density is termed friction velocity, u*.  It is therefore necessary to obtain the roughness 

length and u* in order to compute the amount of wind erosion (Gomes et al., 2003). 

Shi et al. (2004) stated that forces acting on soil surface particles are classified into 

external and internal forces.  External forces include frontal drag and lifting caused by wind 

action and impact forces caused by saltating particles as they fall back to the ground. Gravity, 

attractive force (electrostatic force between particles), water-film, and biological adhesive forces 

govern internal forces acting upon particles. 

Simultaneous processes occurring during wind erosion are shown in Figure 2.4 and are 

described by Saxton et al. (1999).  Particles >500 μm in diameter, too large to be carried away by 

wind, move along the soil surface via surface creep.  Medium-sized particles, about 70-500 μm 

in diameter, are detached and partially transported with wind, but are then pulled back to the soil 

surface by gravity in a process called saltation.  Continuous saltation tends to set other particles 

in motion.  Both surface creep and saltation become constant at a distance downwind of a non-

eroding surface, because these processes are dictated by wind energy.  Particles < 100 μm 

(commonly <50 μm) are liberated and remain suspended as a result of saltation.  Such particles 

can be transported great distances (Saxton et al., 1999).  Although wind energy controls the 

processes, the volume of suspended particles is dictated by PM availability at the soil surface 

(Gillette, 1977). 

 

 
Figure 2.4  Soil erosion by wind (source:  http://www.weru.ksu.edu/weps/wepshome.html) 

 



 21

Factors that affect the extent of wind erosion include aridity of climate, soil texture, soil 

structure, state of the soil surface, vegetation, and soil moisture (FAO, 1996).  Climate dryness 

coupled with the relative strength of prevailing wind is one of the major factors that trigger wind 

erosion, because these stresses cause the soil to become barren, resulting in the ready ejection of 

fine particles from the parent surface material.  Type of soil dictates the extent to which wind 

erosion can carry particles from one location to another. If the soil is sticky (clay type), particles 

resist ejection from the surface; if the soil is composed of coarse particles, on the other hand, 

particles may be too heavy to be removed by wind erosion.  To initiate wind erosion, particles 

should be at most 80 μm in diameter.  Presence of structure-improving materials (i.e., organic 

matter, iron, lime) makes the soil less fragile and less vulnerable to wind erosion. Presence of 

sodium or salt leads to a dust layer formation, which is vulnerable to erosion by wind.  Presence 

of stubble and crop residues minimizes wind speed at ground level, inhibiting the action of wind 

on the soil surface.  Soil water content is also important in retarding particle ejection by wind by 

increasing cohesion of sand and loam (FAO, 1996). 

2.3.2.2  Control Strategies for Wind Erosion 

Wind erosion is generally controlled by increasing soil cohesion, reducing wind speed at 

ground level by intercepting some of the wind, reducing amount of exposed bare soil, and 

reducing amount of time the soil is exposed.  Control can be achieved by application of water 

and organic matter, which can effectively improve soil structure.  Alteration of soil properties 

such as roughness is also effective in reducing wind speed at ground level.  A practice 

considered to be costly is windbreak establishment.  Vegetation protects downwind land for 

approximately ten times its height.  Trees are considered to be the most effective windbreaks as 

they provide the widest area of protection (Ferguson et al., 1999).  Aside from trees, small 

grains, corn, sorghum, sudangrass, sunflowers, tall wheatgrass, sugarcane, and rye strips could 

also be effective (Skidmore, 1986). 

Carter (2006) indicated that since soil particles greater than about 0.5 mm cannot be 

picked up by wind, soil can be aggregated to a size greater than 0.5 mm.  Adequate aggregation 

is needed if no ground covers exists especially for water repellent sands.  Ground covers such as 

straw and other dry residues are effective if at least 50% of the surface is covered by non-

movable residues.  Since wind speeds cannot be controlled mechanically as it is naturally 
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occurring, its impact on the soil surface can be reduced by windbreaks.  A 10-m windbreak of 

two row pines can prevent erosion of up to 100 to 150 m downwind. 

2.3.2.3  Wind Erosion Models 

Stetler and Saxton (1997) presented the analysis of meteorological data for the 

calculation of soil loss due to wind.  Wind speed was the major factor influencing soil loss, 

although other factors such as wind direction, precipitation, and temperature also affected soil 

loss.  Stetler and Saxton (1997) reported that variation of wind energy is great at 1-min interval 

wind speed data than those at 15-min or 60-min intervals.  They recommended that 15-min 

averages of wind speed could provide reasonable estimates for wind energy.  Fryrear (1995) 

presented an equation to calculate wind erosive energy, W*
e, energy contained in a specific 

period wind that is readily vulnerable for transport as the threshold condition is exceeded: 

      ( ) (2.5)                                                                                                          2*
te uuuW −=  

where  u  =  average wind speed for each 1-, 15-, and 60-min period (m/s) 

ut  =  event threshold wind speed (m/s) 

W*
e  =  erosive wind energy (m3/s3) 

 

According to US EPA AP-42 (Countess Environmental, 2006), emissions due to wind 

erosion on a dry exposed surface can be computed using the following empirical equations: 
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where  E  = PM10 emission factor (g/m2)  

N = number of disturbances per year (total number of days excluding rainy days – a rainy  

       day is a day with at least 0.254 mm of rain – per year) 

P = erosion potential (%) 

u* = friction velocity (m/s) 

u*
t = threshold friction velocity (m/s) 
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Friction velocity is calculated from measured velocity assuming a logarithmic 

distribution at the surface boundary layer: 

(2.8)                                                                                                         
z
zln    u(z)
oκ

*u
=  

where  u(z) = wind speed (m/s) 

z  = height (m) 

zo = surface roughness (m) 

κ = von Karman’s constant (0.4) 

 

Friction velocity, u*, obtained from equation 2.8 is assessed whether it exceeds u*
t  and if it 

indeed exceeds, then it is regarded as an erosion potential which is then computed using equation 

2.7.  The corresponding emission factor is computed using equation 2.6.  The annual PM10 

emission is estimated using the following equation (Countess Environmental, 2006):     

Annual PM10 Emission  = (E)(field size in m2)                       (2.9) 

 

The emission factor for PM2.5 is assumed to be 15% of PM10 emission factor.  Also, 

different values of control efficiency are given in the literature and controlled PM emissions are 

estimated by the following equation (Countess Environmental, 2006): 

Controlled E = (Uncontrolled E)(1- Control Efficiency)   (2.10) 

 

Several wind erosion models have been developed to quantify soil loss and PM emissions 

(Webb and McGowan, 2009).  One of the modeling systems is the process-based Wind Erosion 

Prediction System (WEPS) model developed by USDA-ARS.  WEPS has a stand-alone sub-

model program, Single-event Wind Erosion Evaluation Program (SWEEP).  SWEEP includes 

the erosion sub-model of WEPS and has a graphic interface that enables a single high wind 

event, wind erosion simulation (Feng and Sharratt, 2009).  Input parameters include field, crop, 

soil, and weather parameters.  SWEEP is used to simulate components of soil loss/deposition 

over a rectangular field as influenced by surface conditions, field orientation, wind direction, and 

hourly wind speeds (USDA ARS, 2008).  Calculated within the model is the u*
t, which when 

exceeded promotes soil loss.  The model computes soil loss over a series of individual grid cells.  

The SWEEP model was developed mainly for agricultural lands and croplands; it has not been 
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tested for open feedlots.  McCullough et al. (2001) mentioned that common natural soil profiles 

are completely different from that of the soil surface profile of feedlots.  They added that 

vegetation is not sustained in feedlots; thereby inhibiting soil water extraction by plant roots.  

Mielke et al. (1974) stated that uniform moisture content can be found on cattle feedlot profiles. 

2.3.2.4  Threshold Friction Velocity 

An important factor in wind erosion is u*
t because it controls both erosion frequency and 

intensity.  This velocity is the capacity of an aeolian surface to resist wind erosion and is the 

minimum value required for wind erosion to occur.  Several factors affect u*
t: soil moisture, soil 

salt content, soil texture, surface crust, vegetation distribution, and roughness elements (Shao and 

Lu, 2000). 

Empirical equations for u*
t are available. For dry, well-sorted sand, Bagnold (1941) came 

up with the following equation: 
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where A  =  empirical coefficient of turbulence approximately equal to 1.0 for particle friction 

Reynolds number > 3.5 

ρp  =  particle density (kg/m3) 

ρa  =  air density (1.22 k/m3) 

g  =  acceleration due to gravity (9.80 m/s2) 

dp  =  mean particle diameter (m) 

 

Bagnold (1941) also provided an equation for calculating wind speed at different heights 

in the form of a Prandtl equation: 
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where u*  =  threshold shear velocity (u* = 0.326 m/s) 

z  =  height for which calculated wind speed is required (m) 

zo  =  surface roughness based on field data (m) 

u  =  wind speed at height z (m/s) 
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Shao and Lu (2000) recommended the equation from Greeley and Iversen (1985) based 

on wind tunnel measurements: 
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where  AN  =  0.0123 

γ  =  constant (3x10-4 kg/s2) 

    

In addition to aerodynamic drag and gravity forces considered by Bagnold (1941), 

cohesive forces and aerodynamic lift were incorporated in equation 2.13.  Such was taken into 

account because equation 2.12 failed to predict existence of the minimum u*
t for particles with 

diameters of about 75 μm and further increase of u*
t  with decreasing particle size, making 

equation 2.13 an accepted predictor for u*
t  for the entire particle size range.  Increase of u*

t with 

decreasing particle size is attributed to the stronger effect of cohesive forces compared to that of 

gravitational forces.  For particles with d < 50 μm, cohesive force is at least 100 times the 

gravitational force. 

Marticorena et al. (1997) presented the following equations relating u*
t with soil dp and 

ρp, depending on the value of Reynolds number (Re):  
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where  a  =  1331 

 b  =  0.38 

 x  =  1.56 
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Equations 2.14 – 2.16 are valid for a large set of experimental threshold velocities 

obtained using a wind tunnel, with particle densities ranging from 0.21 to 11.35 g/cm3 and 

particle diameters ranging from 12 to 1290 μm. 

Li et al. (2010) used a simple method to estimate u*
t for wind erosion in a field in Moab, 

southeastern Utah.  Though the method used the wind tunnel procedures done by Marticorena et 

al. (1997) and Belnap et al. (2007), this model focused on obtaining the soil surface resistance to 

disturbance instead of relying mostly on measurement of soil texture or surface roughness.  It 

was also suggested that model inputs normally derived from wind tunnel experiments require 

assumptions that can be inappropriate for field use, especially for conditions in which soil and 

roughness elements are heterogeneous.   

2.4  Summary 
Large cattle feedlots are faced with environmental challenges, including emissions of 

particulate matter.  Research is needed to establish health and environmental effects of 

particulate matter from cattle feedlots.  Measurement, characterization, and modeling of 

particulate emissions also are important in developing a better understanding of the magnitude of 

emissions and their sources.  Various methods, including laser diffraction, need to be evaluated 

in reference with more common measurement devices (e.g., cascade impactors) to determine 

their appropriateness in feedlots.  Current standards do not address particulate emissions 

specifically from cattle feedlots. There exists a need to characterize and identify particulate 

emissions from cattle feedlots and from what types of sources they originate. 

2.5  References 
 
Alberta Cattle Feeders’ Association (ACFA).  2002.  Beneficial management practices – 

Environmental manual for feedlot producers in Alberta.  Calgary, Alberta: ACFA. 
Available at   
http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/epw5837/$FILE/bmp_feedlot.
pdf.  Accessed 15 May 2010. 

 
ARD-42. 2010.  Environmental fact sheet:  Fugitive dust.  New Hampshire Department of 

Environmental Services Air Resources Division.  Available at   
http://des.nh.gov/organization/commissioner/pip/factsheets/ard/documents/ard-42.pdf.  
Accessed 10 July 2010. 

 



 27

Bagnold, R.A.  1941.  The physics of blown sand and desert dunes. London: Methuen. 
 
Belnap, J., S.L. Phillips, J.E. Herrick, and J.R. Johansen.  2007.  Wind erodibility of soils at Fort 

Irwin, California (Mojave Desert), USA, before and after trampling disturbance: 
Implications for land management.  Earth Surface Processes Landforms 32: 75-84. 

 
Bonifacio, H., R. G. Maghirang, E. B. Razote, B. W. Auvermann, J. P. Harner, J. P. Murphy, L. 

Guo, J. W. Sweeten, and W. L.Hargrove.  2011.  Particulate control efficiency of a water 
sprinkler system at a beef cattle feedlot in Kansas.  Transactions of the ASABE (In press). 

 
Bosquillon, C., P. Rouxhet, F. Ahimou, D. Simon, C. Culot, V. Préat, and R. Vanbever.  2004.  

Aerosolization properties, surface composition and physical state of spray-dried protein 
powders.  Journal of Controlled Release 99: 357-367. 

 
Bunton, B., P. O’Shaughnessy, S. Fitzsimmons, J. Gering, S. Hoff, M. Lyngbye, P.S. Thorne, J. 

Wasson and M. Werner.  2007.  Monitoring and modeling of emissions from 
concentrated animal feeding operations: Overview of methods.  Environmental Health 
Perspectives 115(2): 303-307. 

 
Cao, Z.  2009.  Determination of particle size distribution of particulate matter emitted from a 

layer operation in Southeastern U.S.  MS Thesis.  Raleigh, N.C.:  North Carolina State 
University. 

 
Carter, D.  2006.  Wind erosion – prevention and management.  Department of Agriculture and 

Food, Government of Western Australia.  Available at  
http://www.agric.wa.gov.au/PC_92240.html?s=1001.  Accessed 15 May 2010. 

 
Countess Environmental.  2006.  WRAP fugitive dust handbook. Prepared for Western 

Governor’s Association, Denver, Colo.  Available at   
http://www.wrapair.org/forums/dejf/fdh/content/FDHandbook_Rev_06.pdf.  Accessed 21 
March 2010. 

 
Davis, J.G., T.L. Stanton, and T. Haren.  1997.  Feedlot manure management.  Livestock Series 

No. 1.220, Colorado State University Cooperative Extension.  Available at 
http://www.cde.state.co.us/artemis/UCSU20/UCSU2062212202002INTERNET.pdf. 

 Accessed July 10, 2010. 
 
Di Stefano, C., V. Ferro, and S. Mirabile.  2010. Comparison between grain-size analyses using 

laser diffraction and sedimentation methods.  Biosystems Engineering 106(2): 205-215. 
 
Etyemezian, V., H. Kuhns, J. Gillies, M. Green, M. Pitchford, and J. Watson.  2003.  Vehicle-

based road dust emission measurement: I – Methods and calibration.  Atmospheric 
Environment 37: 4559-4571. 

 
Fang, G., Y. Wu, J. Rau, and S. Huang.  2005.  Traffic aerosols (18 nm ≤ particle size ≤ 18 μm) 

source apportionment during the winter period.  Atmospheric Research 80: 294-308. 



 28

 
Feng, G. and B. Sharratt.  2009.  Evaluation of the SWEEP model during high winds on the 

Columbia Plateau.  Earth Surface Processes and Landforms 34: 1461-1468. 
 
Ferguson, J.H., H.W. Williams, and D.L.Pfost.  1999.  Fugitive dust: Nonpoint sources.  

Columbia, Miss.: University of Missouri-Columbia.  Available at   
http://extension.missouri.edu/explorepdf/agguides/agengin/g01885.pdf.  Accessed 15 
May 2010. 

 
Food and Agriculture Organization (FAO).  1996.  Land husbandry – Components and strategy.  

FAO Soils Bulletin – 70.  Available at http://www.fao.org/docrep/t1765e/t1765e0t.htm.  
Accessed 15 May 2010. 

 
Freeman, E.A. and J.J. Bowders.  2007.  Geotextiles for dust control on unpaved roads.  

Geosynthetics, January16-19, 2007, Washington, DC.  Available at  
http://www.geotech.missouri.edu/pdf/Freeman-Bowders-Dust-GT-Geosyn07-
11.21.06DistrCopy.pdf.  Accessed 15 May 2010. 

 
Fryrear, D.W.  1995.  Soil loss by wind erosion.  Soil Science Society of America Journal 59:  

668-672. 
 
Gillette, D.A.  1977.  Fine particulate emissions due to wind erosion.  Transactions of the ASABE 

20(5): 890-897. 
 
Gillies, J.A., V. Etyemezian, H. Kuhns, D. Nicolich, and D. Gillette.  2005.  Effect of vehicle 

characteristics on unpaved road dust emissions.  Atmospheric Environment 39: 2341-
2347. 

 
Gomes, L., J.L. Arŕue, M.V. Lόpez, G. Sterk, D. Richard, R. Gracia, M. Sabre, A. Gaudichet, 

and J.P. Frangi.  2003.  Wind erosion in a semiarid agricultural area of Spain: the 
WELSONS project.  Catena 52: 235-256.  

 
Greeley, R. and J.D. Iversen.  1985.  Wind as a geological process on earth, mars, venus and 

titan. New York: Cambridge University Press. 
 
Griffitt, R.J., J. Luo, J. Gao, J.C. Bonzongo, and D.S. Barber.  2008.  Effects of particle 

composition and species on toxicity of metallic nanomaterials in aquatic organisms.  
Environmental Toxicology and Chemistry 27(9): 1972-1978.  

 
Guo, L., R. G. Maghirang, E. B. Razote, J. Tallada, J. P. Harner, and W. Hargrove.  2009.  Field 

comparison of PM10 samplers.  Applied Engineering in Agriculture 25(5): 737-744. 
 
Hamm, L.B.  2005. Engineering analysis of fugitive particulate matter emissions from cattle 

feedyards. MS thesis. College Station, Tex.: Texas A&M University. 
 



 29

Heyder, J., J. Gebhart, G. Rudolf, C.F. Schiller, and W. Stahlhofen.  1986.  Deposition of 
particles in the human respiratory tract in the size range 0.005-15 μm.  Journal of Aerosol 
Science 17(5): 811-825.   

 
Hinds, W.C. 1999.  Aerosol technology: properties, behavior, and measurement of airborne 

particles. 2nd ed.  New York: John Wiley & Sons. 
 
ISO, 1999.  ISO13320-1 Particle size analysis – Laser diffraction methods, part 1: General 

principles.  ISO Standards Authority.  Available at http://www.iso.org.  Accessed 15 May 
2010. 

 
Kelly, R.N., K.J. DiSante, E. Stranzl, J.A. Kazanjian, P. Bowen, T. Matsuyama, and N. Gabas.  

2006.  Graphical comparison of image analysis and laser diffraction particle size analysis 
data obtained from the measurements of nonspherical particle systems.  American 
Association of Pharmaceutical Scientists 7(3): E1-E14. 

 
Kippax, P.  2005.  Appraisal of the laser diffraction particle-sizing technique.  Pharmaceutical 

Technology 29(3): 88-96. 
 
Kleeman, M.J., J.J. Schauer, and G.R. Cass.  1999.  Size and composition distribution of fine 

particulate matter emitted from wood burning, meat charbroiling and cigarettes.  
Environmental Science & Technology 33(20): 3516-3523. 

 
Kleeman, M.J., J.J. Schauer, and G.R. Cass.  2000.  Size and composition distribution of fine 

particulate matter emitted from motor vehicles.  Environmental Science & Technology 
34(7): 1132-1142. 

 
Kuhns, H., J. Gillies, V. Etyemezian, G. Nikolich, J. King, D. Zhu, S. Uppapalli, J. Engelbrecht, 

and S. Kohl.  2010.  Effect of soil type and momentum on unpaved road particulate 
matter emissions from wheeled and tracked vehicles.  Aerosol Science and Technology 
44: 187-196. 

 
Kujundzic, E., M. Hernandez, and S. Miller.  2006.  Particle size distributions and concentrations 

of airborne endotoxin using novel collection methods in homes during winter and 
summer seasons.  Indoor Air 16(3): 216-226. 

 
Kwong, W.T.J., S.L. Ho, and A.L. Coates.  2000.  Comparison of nebulized particle size 

distribution with Malvern laser diffraction analyzer versus Andersen cascade impactor 
and low-flow Marple personal cascade impactor.  Journal of Aerosol Medicine 13(4):  
303-314. 

 
Li, J., G.S. Okin, J.E. Herrick, J. Belnap, S.M. Munson, and M.E. Miller.  2010.  A simple 

method to estimate threshold friction velocity of wind erosion in the field.  Geophysical 
Research Letters 37(L10402): 1-5. 

 



 30

Lin, C., S. Chen, and K. Huang.  2005.  Characteristics of metals in nano/ultrafine/fine/coarse 
particles collected beside a heavily trafficked road.  Environmental Science & 
Technology 39(21): 8113-8122. 

 
Manek, R. V., O. O. Kunle, M. O. Emeje, P. Builders, G. V. Rama, and G.P. Lopez.  2005. 

Physical, thermal and sorption profile of starch obtained from Tacca leontopetaloides. 
Starch/Stärke 57(2): 55–61. 

 
Marple, V.A., K.L. Rubow, and S.M. Behm.  1991.  A microorifice uniform deposit impactor 

(MOUDI): Description, calibration and use.  Aerosol Science and Technology 14(4):  
434-446. 

 
Marticorena, B., G. Bergametti, D. Gillette, and J. Belnap.  1997.  Factors controlling threshold 

friction velocity in semiarid and arid areas of the United States.  Journal of Geophysical 
Research 102(D19): 23,277-23,287. 

 
Martin, G.P., H.B. MacRitchie, C. Marriott, and X.M. Zeng.  2006.  Characterisation of a carrier-

free dry powder aerosol formulation using inertial impaction and laser diffraction.  
Pharmaceutical Research 23(9): 2210-2219. 

 
Martuzevicius, D., S. Grinshpun, T. Reponen, R. Górny, R. Shukla, J. Lockey, S. Hu, R. 

McDonald, P. Biswas, L. Kliucininkas, and G. LeMasters.  2004.  Spatial and temporal 
variations of PM2.5 concentration and composition throughout an urban area with high 
freeway density – the Greater Cincinnati study.  Atmospheric Environment 38: 1091-
1105. 

 
McCollough, M.C., D.B. Parker, C.A. Robinson, and B.W. Auvermann.  2001.  Hydraulic 

conductivity, bulk density, moisture content, and electrical conductivity of a new sandy 
loam feedlot surface. Applied Engineering in Agriculture 17(4): 539-544. 

 
McGinn, S.M., T.K. Flesch, D. Chen, B. Crenna, O.T. Denmead, T. Naylor, and D. Rowell.  

2010.  Coarse particulate matter emissions from cattle feedlots in Australia.  Journal of 
Environmental Quality 39(3): 791-798.   

 
Merkus, H.G.  2008.  Particle size measurements:  Fundamentals, practice, quality.  Particle 

Technology Series Volume 17.  The Netherlands: Springer. 
 
Mielke, L.N., N.P. Swanson, and T.M. McCalla.  1974.  Soil profile conditions of cattle feedlots.  

Journal of Environmental Quality 3(1): 14-17. 
 
Miller, D., B. Holmen, A. Hiscox, W. Yang, J. Wang, T. Sammis, and R. Bottoms.  2006.  Dust 

emissions from cotton farming operations.  ASABE Paper No. 064024.  St. Joseph, 
Mich.: ASABE. 

 
MSP Corporation. 2006. Model 100/110 MOUDI™ user guide. Shoreview, Minn.: MSP Corp. 
 



 31

Mühlenweg, H. and E.D. Hirleman.  1998. Laser diffraction spectroscopy: Influence of particle 
shape and a shape adaptation technique.  Particle & Particle Systems Characterization 
15: 163-169.   

 
Mulholland, B. and M.A. Fullen.  1991.  Cattle trampling and soil compaction on loamy sands.  

Soil Use and Management 7(4): 189-193. 
 
Padgett, P.E., D. Meadows, E. Eubanks, and W.E. Ryan.  2008.  Monitoring fugitive dust 

emissions from off-highway vehicles traveling on unpaved roads and trails using passive 
samplers.  Environmental Monitoring and Assessment 144(1-3): 93-103. 

 
Pilcer, G., F. Vanderbist, and K. Amighi.  2008.  Correlations between cascade impactor analysis 

and laser diffraction techniques for the determination of the particle size of aerosolized 
powder formulations.  International Journal of Pharmaceutics 358: 75-81. 

 
Pinnick, R.G., G. Fernandez, B.D. Hinds, C.W. Bruce, R.W. Schaefer, and J.D. Pendleton.  

1985.  Dust generated by vehicular traffic on unpaved roadways:  Sizes and infrared 
extinction characteristics.  Aerosol Science and Technology 4(1): 99-121. 

 
Purdy, C.W., R.N. Clark, and D.C. Straus.  2007.  Analysis of aerosolized particulates of 

feedyards located in the Southern High Plains of Texas. Aerosol Science and Technology 
41(5): 497–509. 

 
Rahman, S., S. Mukhtar, and R. Wiederholt.  2008.  Managing odor nuisance and dust from 

cattle feedlots. NM-1391.  Fargo, N.D.: North Dakota State University. 
Available at http://www.ag.ndsu.edu/pubs/h2oqual/watnut/nm1391.html.  Accessed 10 
July 2010. 

 
Razote, E.B., R.G. Maghirang, B.Z. Predicala, J.P. Murphy, B.W. Auvermann, J.P. Harner III, 

and W.L. Hargrove.  2006.  Laboratory Evaluation of the dust-emission potential of cattle 
feedlot surfaces.  Transactions of the ASABE 49(4): 1117-1124. 

 
Razote, E.B., R.G. Maghirang, J.P. Murphy, B.W. Auvermann, J.P. Harner III, D.L. Oard, D.B. 

Parker, W.L. Hargrove, and J.M. Sweeten.  2007.  Air quality measurements from a 
water-sprinkled beef cattle feedlot in Kansas.  ASABE Paper No. 074108.  St. Joseph, 
Mich.: ASABE. 

 
Reed, W.R. and J.A. Organiscak.  2007.  Haul dust control: Fugitive dust characteristics from 

surface mine haul roads and methods of control.  Coal Age:  34-37.  Available at   
http://www.cdc.gov/niosh/mining/pubs/pdfs/hrdcf.pdf.  Accessed 21 March 2010. 

 
Rodríguez, J.G. and A. Uriarte.  2009.  Laser diffraction and dry-sieving grain size analyses 

undertaken on fine- and medium-grained sandy marine sediments: A note.  Journal of 
Coastal Research 25(1): 257-264. 

 



 32

Romanillos, A. and B.W. Auvermann.  1999.  Effect of stocking density on fugitive PM10 
emissions from a cattle feedyard.  ASABE Paper No. 994192. St. Joseph, Mich.: ASABE. 

 
Saxton, K., D. Chandler, and W. Schillinger.  1999.  Wind erosion and air quality research in the 

northwest U.S. Columbia plateau: Organization and progress.  In E.E. Stott, R.H. Mohtar, 
and G.C. Steinhardt (eds). Sustaining the Global Farm – Selected papers from the 10th 
International Soil Conservation Organization Meeting, 24-29 May, West Lafayette, Ind. 

 
Scholefield D. and D.M. Hall.  1985.  A method to measure the susceptibility of pasture soils to 

poaching by cattle.  Soil Use and Management 1(4): 134-138. 
 
Shao, Y. and H. Lu.  2000.  A simple expression for wind erosion threshold friction velocity.  

Journal of Geophysical Research 105(D17):  22,437-22,443. 
 
Shi, P., P. Yan, Y. Yuan, and M.A. Nearing.  2004.  Wind erosion research in China: past, 

present, and future.  Progress in Physical Geography 28(3): 366-386.              
 
Skidmore, E.L.  1986.  Wind erosion control.  Climatic Change 9: 209-218.   
 
Stetler, L.D. and K.E. Saxton.  1997.  Analysis of wind data used for predicting soil erosion.  In 

Proc. Wind Erosion:  An International Symposium/Workshop, 3-5 June 1997.  
Manhattan, Kan.: USDA-ARS. 

 
Succarieh, M.  2000.  Final report:  Control of dust emissions from unpaved roads.  Alaska 

Cooperative Transportation and Public Facilities Research Program.  Available at 
http://www.dot.state.ak.us/stwddes/research/assets/pdf/fhwa_ak_rd_92_05.pdf.  Accessed 
15 May 2010. 

 
Sweeten, J.M., C.B. Parnell, R.S. Etheredge, and D. Osborne.  1988.  Dust emissions in cattle 

feedlots.  Veterinary Clinics of North America. Food Animal Practice 4(3): 557-578. 
 
Sweeten, J.M., C.B. Parnell, B.W. Shaw, and B.W. Auvermann.  1998.  Particle size distribution 

of cattle feedlot dust emission. Transactions of the ASAE 41(5): 1477-1481. 
 
Thenoux, G., J.P. Bellolio, and F. Halles.  2007.  Development of a methodology for 

measurement of vehicle dust generation on unpaved roads. Transportation Research 
Record: Journal of the Transportation Research Board 1989(1):  299-304. 

 
Tinke, A.P., A. Carnicer, R. Govoreanu, G. Scheltjens, L. Lauwerysen, N. Mertens, K. 

Vanhoutte, and M.E. Brewster.  2008.  Particle shape and orientation in laser diffraction 
and static image analysis size distribution analysis of micrometer sized rectangular 
particles.  Powder Technology 186(2): 154-167. 

 
TSI.  2009.  Health-based particle-size-selective sampling.  Application Note ITI-050.  Available 

at 



 33

http://www.tsi.com/uploadedFiles/Product_Information/Literature/Application_Notes/ITI
-050.pdf.  Accessed 15 May 2010. 

 
U.S. Department of Agriculture (USDA).  2000.  2000 Agricultural statistics annual.  National 

Agricultural Statistics Service.  Available at 
http://www.nass.usda.gov/Publications/Ag_Statistics/2005/00_ch7.pdf.  Accessed 10 July 
2010. 

 
U.S. Department of Agriculture (USDA).  2005.  2005 Agricultural statistics annual.  National 

Agricultural Statistics Service.  Available at   
http://www.nass.usda.gov/Publications/Ag_Statistics/2005/05_ch7.pdf.  Accessed 10 July 
2010. 

 
U.S. Department of Agriculture (USDA).  2009.  2009 Agricultural statistics annual.  National 

Agricultural Statistics Service.  Available at   
http://www.nass.usda.gov/Publications/Ag_Statistics/2009/chp07.pdf.  Accessed 10 July 
2010. 

 
U.S. Department of Agriculture – Agricultural Research Service (USDA-ARS).  2008.  SWEEP 

user manual draft.  Manhattan, Kan.: USDA ARS. 
 
U.S. Environmental Protection Agency (US EPA). 1997.  Emission inventory improvement 

program.  Available at 
http://www.epa.gov/ttn/chief/eiip/techreport/volume09/feedlots.pdf.  Accessed 15 May 
2010. 

 
U.S. Environmental Protection Agency (US EPA).  2003.  AP-42, 5th ed., Vol. 1, Miscellaneous 

Sources. Research Triangle Park, N.C.: US EPA.  Available at 
http://www.epa.gov/ttn/chief/ap42/ch13/final/c13s0202.pdf.  Accessed 21 March 2010. 

 
U.S. Environmental Protection Agency (US EPA). 2004.  Preparation of fine particulate 

emission inventories: Student manual APTI Course 419B.  Research Triangle Park, N.C.: 
US EPA.  Available at 
http://www.epa.gov/apti/course419b/studentmanual/sm_chapter_6.pdf.  Accessed 15 
May 2010. 

 
U.S. Environmental Protection Agency (US EPA). 2006a.  PM Standards.  Available at 

http://www.epa.gov/pm/standards.html.  Accessed 15 May 2010. 
 
U.S. Environmental Protection Agency (US EPA).  2006b.  Unpaved roads. Available at 

http://www.epa.gov/ttn/chief/ap42/ch13/final/c13s0202.pdf.  Accessed 21 March 2010. 
 
U.S. Environmental Protection Agency (US EPA). 2010.  Module 3:  Characteristics of particle 

size distribution.  US EPA, Air Pollution Training Institute Virtual Training Course.   
Available at http://www.epa.gov/eogapti1/bces/module3/distribu/distribu.htm.  Accessed 
10 July 2010. 



 34

 
Vincent, J.H.  2007.  Aerosol sampling:  Science, standards, instrumentation and applications.  

England: John Wiley & Sons Ltd. 
 
Watson, J.G., J.C. Chow and T.G. Pace.  2000.  Fugitive dust emissions.  In:  W.T. Davis (ed), 

Air Pollution Engineering Manual. 2nd ed.  New York: John Wiley & Sons, Inc., pp. 117-
135. 

 
Wang, J., A. Hiscox, D. Miller, T. Sammis, W. Yang, and B. Holmen.  2009.  A note on the 

measurement of dust emissions from moving sources in agricultural field operations.  
New Mexico State University.  Research Report 767.  Available at   
http://aces.nmsu.edu/pubs/research/weather_climate/RR-767.pdf.  Accessed 15 May 
2010. 

 
Webb N.P. and H.A. McGowan. 2009.  Approaches to modeling land erodibility by wind.  

Progress in Physical Geography 33(5): 587-613. 
 
Wilson, S.C., J. Morrow-Tesch, D.C. Straus, J.D. Cooley, W.C. Wong, F.M. Mitlöhner, and J.J. 

McGlone.  2002.  Airborne microbial flora in a cattle feedlot.  Applied and 
Environmental Microbiology 68(7): 3238-3242.  

 
Xu, R.  2000.  Particle characterization: light scattering methods.  Particle Technology Series.  

The Netherlands: Kluwer Academic Publishers. 
 
Ziegler, J. and H. Wachtel.  2005.  Comparison of cascade impaction and laser diffraction for 

particle size distribution measurements.  Journal of Aerosol Medicine 18(3):  311-324. 
 
 

 

 

 



 35

 

CHAPTER 3 - Laser Diffraction Analysis of Cattle Feedlot Dust 

3.1  Introduction 
Open beef cattle feedlots emit various air pollutants, including particulate matter (PM).  

Recent research has characterized PM emissions from cattle feedlots.  Sweeten et al. (1988) 

reported a mean mass median diameter (MMD) of 10.9 ± 1.4 μm for total suspended particulates 

(TSP) in a cattle feedlot in Texas using a Coulter counter (model TAII).  In a related study in 

three cattle feedlots in Texas, Sweeten et al. (1998) reported MMDs of 9.5 ± 1.5 μm for TSP 

samplers and 6.9 ± 0.8 μm for PM10 samplers.  Using a Coulter Counter Multisizer 3, Hamm 

(2005) observed mean MMD of 16.0 μm, geometric standard deviation (GSD) of 2.1, and 

PM10/TSP ratio of 0.28 for a cattle feedlot in Texas.  Guo et al. (2011) measured particle size 

distribution downwind of a feedlot in Kansas using micro-orifice uniform deposit impactor and 

reported geometric mean diameters ranging from 7 to 18 µm.  McGinn et al. (2010) measured 

PM10 concentrations in two cattle feedlots in Australia using beta attenuation mass monitors; 

feedlot PM10 24-h concentrations were close to or exceeded European Union (EU) and 

Australian standards twice during the 10-day sampling period but did not exceed the US EPA 

24-h NAAQS for PM10. 

Laser diffraction is one of the most widely used instruments in determining particle size 

distribution in the medical field because of its relative ease of operation, high speed, and wide 

range of size determination (Xu, 2000).  The performance of the laser diffraction technique has 

been compared with that of other techniques.  Kwong et al. (2000) used nebulized aerosols to 

compare a Malvern Mastersizer X laser diffraction analyzer and the Marple Personal Cascade 

Impactor.  Their results showed the Malvern Mastersizer had significantly (p < 0.05) higher 

MMD and smaller GSD than the Marple Personal Cascade Impactor.  Ziegler and Wachtel 

(2005) compared a Sympatec HELOS laser diffraction analyzer with an Andersen Mark II 

cascade impactor and reported high correlation (R2 = 0.99) in cumulative fractions of particles 

between the two instruments. 

Martin et al. (2006) used powder aerosols in comparing a Malvern 2600 laser diffraction 

analyzer and Andersen impactor.  The two instruments did not significantly differ in particle size 

distribution, especially for the fine particle size range.  Pilcer et al. (2008) compared the laser 
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diffraction-based Malvern Spraytec, multi-stage liquid impinger (MsLI), and cascade impactor 

using aerosolized powder formulations. High correlations were observed with R2 values ranging 

from 0.90 to 0.98 between the instruments. 

In agricultural operations, Cao (2009) compared a laser diffraction particle size analyzer 

(LS 13 320), laser scattering particle size analyzer (LA-300), Coulter Counter Multisizer 3 

(CCM 3), and laser diffraction particle size analyzer (LS 320) in measuring the particle size 

distribution in a layer operation.  There was no significant difference between the values 

obtained using the LS 13 320 and LS 320.  The greatest mean MMD value was from the LA-300 

(22.6 ± 2.7 μm), while the smallest mean MMD was from the CCM 3 (14.0 ± 0.7 μm).  Mean 

GSDs were 2.67 ± 0.11 μm (for LS 13 320), 1.99 ± 0.15 μm (for LA-300), 1.84 ± 0.04 μm (for 

CCM 3) and 2.65 ± 0.22 μm (for LS 230).  

Cattle feedlot emissions were rarely used as media for comparing the performance of 

different instruments in determining particle size distribution.  Purdy et al. (2007) quantified PM 

emissions from cattle feedlots using Reference Ambient Air Sampler (RAAS) PM10 and PM2.5 

samplers and particle size distribution instruments and compared them to the Elzone 112 

electrozone analyzer and scanning electron microscope.  Similarities in reported PM10 and PM2.5 

mass concentrations and size distribution data were observed for the RAAS PM10 and PM2.5 

samplers and electrozone analyzer.  Also, comparison of the electrozone analyzer with the 

scanning electron microsope revealed similar size distribution.  With limited data on 

performance comparisons of laser diffraction analyzers with other instruments (i.e., cascade 

impactor), it is best to apply laser diffraction in emissions in cattle feedlots, because laser 

diffraction uses a wide size range that enables researchers to pinpoint specific sizes at specific 

concentrations.  

With the current state of regulating emissions from the agricultural industry, there exists a 

debate as to whether or not US EPA has done its part in protecting people living and working in 

rural areas (Crutchfield, 2010).  More stringent regulations could be on the horizon. It will be 

better for operators and managers of the cattle feedlot industry to learn more about the state and 

magnitude of dust emissions. 

As for dust regulations, particle size characterization plays an integral part in determining 

risks involved.  Epidemiologic researchers have noted that PM2.5 promotes greater risk to human 

health, resulting in vascular inflammation and atherosclerosis (Pope et al., 2002), incidence of 
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asthma (Gilmour et al., 2006), and other respiratory infections (Dockery et al., 1993; Gordian et 

al., 1996; Schwartz and Dockery 1992).  There is a need to better quantify and characterize PM 

emissions to provide science-based data for developing air quality standards and/or management 

practices for mitigating emissions.  

The objectives of this research were to: 

1) Determine the applicability of laser diffraction (LD) method in measuring particle size 

distribution in feedlots.  

2) Compare PM10 and PM2.5 concentration measurements using the LD method and 

gravimetric samplers. 

3) Determine effects of meteorological factors and sampling period on particle size 

distribution. 

3.2  Materials and Methods 

3.2.1  Feedlot Description 

This research was conducted on a commercial cattle feedlot in Kansas (Feedlot 1) from 

July 2007 to July 2009.  The feedlot had approximately 30,000 head with 50 ha pen area.  It had 

a water sprinkler system (Fig. 3.1) for controlling dust that was normally operated from April to 

October and during prolonged dry periods.  Pens were cleaned two to three times per year and 

manure was removed at least once per year. 

 

 
Figure 3.1  Feedlot 1 equipped with a water sprinkler system 
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Cattle were fed three times a day.  In general, it took about 2.5 h per truck to feed a 

section of the feedlot and there were three feed trucks used for the feedlot.   

 During the course of the 3-year measurement period (2007-2009), average annual 

precipitation was 540 mm.  Daily temperatures ranged from -16 to 31 °C with a daily mean of 12 

°C.  Average daily wind speed was about 4.6 m/s ranging from 0.55 to 12.9 m/s.  On average, 

64% of the time the wind came from the south, 8% from the north, 14% from the east, and 14% 

from the west. 

 3.2.2  Particulate Sampling and Measurement 

Low-volume (LV) samplers were used to collect PM at north and south edges of    

Feedlot 1 (Fig. 3.2).  Samplers were equipped with size-selective inlets for TSP, PM10, and 

PM2.5.  The north and south sampling locations were approximately 3 m and 30 m, respectively, 

from the closest pens.  These sampling locations were selected based on feedlot layout, power 

availability, and access. 

Before field sampling, each sampler was flow-audited and tested for leaks.  Each sampler 

had a cartridge equipped with polytetrafluoroethylene (PTFE) filter (Whatman, Inc., Clifton, NJ) 

that was placed in a conditioning chamber (at 25 °C and 40% RH) for 24 h prior to weighing 

before and after sampling.  During sampling, samplers were operated for 12 h at a flow rate of 5 

Lpm.   

Mass of dust was obtained by the difference of the masses of the conditioned filter before 

sampling and used filter after sampling and conditioning.  Concentrations were obtained by 

dividing the mass of dust collected by the total volume of air sampled. 
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Figure 3.2  Schematic diagram of the feedlot showing relative locations of samplers and 

weather station (not drawn to scale).  

 3.2.3  Particle Size Distribution 

Particle size distribution at the north sampling location (typically the downwind location) 

was measured using a Micro-Orifice Uniform Deposit Impactor or MOUDI (Model M100/110R, 

Thermo Fisher Scientific, Inc., Franklin, MA) that was collocated with the LV samplers.  In 

addition, particles collected on filters of TSP samplers were analyzed with a laser diffraction 

analyzer (Model LS 13 320, Beckman Coulter, Inc., Fullerton, CA).   
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The MOUDI was operated with six stages with cut point diameters of 18, 9.9, 6.2, 3.1, 

1.8, 1.0, and 0.9 μm.  The bottom filter of the MOUDI was Teflon, while the upper 5 stages had 

aluminum foil substrates.  The Teflon filter was conditioned for 24 h before weighing and after 

sampling while the aluminum foil substrates were greased and dried in an oven prior to weighing 

before sampling.  The grease was necessary to prevent particle bounce.  The MOUDI was 

operated for 24 h at a flow rate of 30 Lpm.  Filter cartridges with PTFE filters were used to 

collect particles that were operated simultaneously with the MOUDI (24 h) at a flowrate of 20 

Lpm.  The geometric mean diameter (GMD) and the geometric standard deviation (GSD) were 

calculated using (Hinds, 1999): 
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where  mj = mass fraction of particles in the jth stage of the MOUDI  

dj = geometric mean diameter of particles in the jth stage of the MOUDI (µm).  

 

Measurements by the MOUDI were corrected for particle losses/bounce according to 

manufacturer’s specifications.  

The laser diffraction analyzer had an operating size range of 0.4 to 2000 μm.  The 

instrument had a universal liquid module that can be used for different dispersing medium 

(dispersant). Use of this instrument first involved conditioning a monochromatic beam (laser) 

that is allowed to pass through an ensemble of particles along the sample module (Fig. 3.3).  

Patterns of scattered light are then measured by a series of detector elements positioned at 

various angles.  Using a model-based matrix, which contains the calculated signals at every 

detector per unit volume of spherical particles, signals detected were converted to particle size 

distribution.   
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Figure 3.3  Beckman Coulter LS 13 320 Operation   

(adapted from: http://www.beckmancoulter.com) 

 

Based on preliminary work, the instrument requires at least 1 mg of particles to achieve 

the desired obscuration range of 8 to 12 % (Beckman Coulter, 2003).  Too many particles will 

promote multiple scattering, that is, there is a high probability of scattering the light again and 

again from one particle to another before reaching the detectors.  On the other hand, too low of a 

concentration could lead to low signal-to-noise ratio and poor repeatability.   

Filters used for LD analyses were those from TSP samplers.  PM from each filter was 

first extracted by washing the filter with isopropyl alcohol, which was used as the dispersant to 

minimize aggregation of dust particles.  The resulting dust-isopropyl alcohol mixture was then 

transferred to a 50 mL plastic centrifuge tube and was centrifuged for 5 min at 4000 rpm using 

the Durafuge (Model Precision Durafuge 300, Thermo-Fisher Scientific, Inc., Waltham, Mass.).  

Excess isopropyl alcohol was decanted leaving about 15 mL of dust suspension, which was then 

agitated using a vortex mixer (Model Sybron Thermolyne Maxi Mix, Thermolyne Corp., 

Dubuque, Iowa) prior to analysis in the LD analyzer. 

Drops of the subsample dust suspension were added into the LD analyzer wet module 

until until the recommended 8 to 12% obscuration was attained.  A 90-sec sonication was done 

before analysis to minimize formation of clumps of dust subsamples.  Duplication of the 60-sec 

analysis time for each subsample was done by the instrument (Pearson et al., 2007; Boac et al., 

2009). 

Size distribution statistics based on equivalent sphere diameter and volume distribution 

were obtained with the bundled software for the instrument.  Output data included GMD and 
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GSD of equivalent sphere particles.  The equivalent aerodynamic diameter (da) was calculated 

using the relationship (Hinds, 1999): 
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where  ρo = unit density (1.0 g/cm3) 

ρp = particle density (g/cm3) 

 

Mean particle density was 1.8 ± 0.1 g/cm3, based on measurements with a multipycnometer 

(Model MVP-1, Quantachrome Corp., Syosset, N.Y.).   

From the LD data, the following empirical expression (Hinds, 1999) was used to 

calculate the fraction of particles of diameter da that are included in the PM2.5 fraction, PF2.5: 
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Also, the fraction of particles of diameter da in the PM10 fraction, PF10, was obtained using 

(Hinds, 1999):    
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On the basis of the equivalent aerodynamic diameter, cumulative volume percentages 

corresponding to PF2.5 and PF10 fractions were used to determine PM2.5 and PM10 concentrations, 
respectively. 

3.2.4  Weather Conditions and Pen Surface Moisture Content 

The feedlot was equipped with a weather station (Campbell Scientific, Inc., Logan, UT) 

to measure and record at 20-min intervals atmospheric pressure (Model CS100), air temperature 

and relative humidity (Model HMP45C), precipitation (Model TE525), and wind speed and 

direction (Model 05103-5).   

For each sampling period, manure samples were collected from three randomly selected 

pens for moisture content (MC) determination.  For each pen, loose manure (approximately 2-3 
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cm) was collected at various points from the center of the pen to the feed apron using a trowel 

and then placed in a sealed plastic bag.  The sample MC was determined in accordance with 

ASTM D 2216-98 oven-drying method (ASTM, 2002). 

3.2.5  Statistical Analysis 

Data on concentrations and particle size distributions were screened based on wind 

direction.  Since samplers were located at north and south edges of the feedlot, an angle of 45º 

within the centerline of north and south directions was chosen to be acceptable data points.  For 

the MOUDI, when concentrations were small, negative PM mass readings were observed. Those 

measurements were not considered in the analysis.  Data sets were also tested for outliers in 

which data points that had vertical distances exceeding four times the standard error were 

eliminated (Cornbleet and Gochman, 1979; Lee et al., 2005). Two outliers (out of 16 total data 

points) for comparison of the MOUDI and LD analyzer were not considered.   

In comparing mean values (e.g., MOUDI vs. LD analyzer), assumptions of normality and 

homogeneity of variances were first tested.  If assumptions were satisfied, standard statistical 

tests (e.g., analysis of variance, paired t-test) were applied.  If assumptions were not satisfied, 

nonparametric statistical methods were used together with standard tests.  In general, both tests 

showed similar results; as such, results of standard tests are presented here (Montgomery, 1984; 

Weaver, 2002).  

Paired t-tests (Microsoft Excel, Microsoft Corp., Redmond, WA) were used to compare 

the MOUDI and LD method in measuring particle size distribution and the LD and LV samplers 

for PM concentration measurement.  Effects of meteorological factors on size distribution were 

analyzed using the Mixed procedure in SAS (SAS 9.1.3, SAS Institute, Inc., Cary, NC).  Effects 

of pen surface MC on size distribution, PM concentrations, and PM fractions were also examined 

using the same procedure.  In all cases, a 5% level of significance was used. 

3.3  Results and Discussion 
Of the chosen data points used for analysis, 78% were associated with south wind 

directions (south was the upwind site while north was the downwind site) and 22% were 

associated with north wind directions (north was the upwind site while south was the downwind 

site).  During these periods, daily temperatures ranged from -3.5 to 33.7 °C with an average of 
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17.6 °C; daily precipitations ranged from 0.00 to 0.31 mm with an average of 0.0084 mm; and 

daily wind speeds ranged from 1.47 to 12.9 m/s with an average of 4.51 m/s. 

3.3.1  Laser Diffraction vs. Cascade Impactor 

For comparison of MOUDI and LD, 14 data points were acceptable.  For those 14 points, 

GMDs from MOUDI ranged from 7.2 to 18.2 µm, with an overall mean of 13.0 µm, and those 

from LD analyzer ranged from 8.3 to 28.0 µm, with an overall mean of 13.7 µm (Table 3.1).  

Relatively coarse particles were emitted from the feedlot as indicated by the GMD range. The 

GMD values in this study were within the range of published values.  GMDs in this study were 

higher than those measured by Sweeten et al. (1988) of 8.5 ± 2.1 μm and also those reported by 

Sweeten et al. (1998) of 9.5 ± 1.5 μm. Difference in methodology, type of samplers, and feedlot 

characteristics (e.g., soil type [Miller and Woodbury, 2003]) could help explain this difference.  

GMDs in this study were close to that measured by Sweeten et al. (1998) (14.2 ± 0.8 μm). 

 Paired t-tests did not show any significant (P > 0.5) difference in GMD between MOUDI 

and LD analyzer.  Figure 3.4 shows strong correlation between measurements with the LD 

method and MOUDI.  The R2 value is an indication that there exists a good linear fit between 

measurements of the MOUDI and LD method.  Also, the regression coefficient was close to 

unity, implying strong agreement between MOUDI and LD values. 

    

Table 3.1  Comparison of laser diffraction and cascade impactor in geometric mean 

diameter and geometric standard deviation  

Method n 
Geometric Mean Diameter 

(GMD) (μm) ± SEM 

Geometric Standard 

Deviation (GSD) ± SEM 

Laser Diffraction (LD) 14 13.7 ± 1.3 2.9  ± 0.1 

MOUDI 14 13.0 ± 0.9 2.3  ± 0.1 
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Figure 3.4  Comparison of the MOUDI and LD in geometric mean diameters (GMDs) 

 

Note that the MOUDI is a gravimetric method, while the LD method is an indirect 

method.  For the LD method, there were particle losses during filter washing as indicated by 

mean percent recovery for extraction of 93.7 ± 1.1 %, ranging from 78 % to 99 %.  Percent 

recovery was calculated by dividing the washed particulate mass (obtained by mass difference of 

filter with dust and filter after washing off the dust) by the total mass collected during sampling.   

Other potential sources of error include aggregation/deaggregation of particles during the 

sonication process for the LD method, particle losses/bounce on the MOUDI, and sampling 

errors associated with MOUDI and TSP samplers. 

Paired t-test showed a significant difference (P<0.05) between the MOUDI and LD in 

mean GSD.  GSD values for the LD method ranged from 2.3 to 3.6, with an overall mean of 2.9.  

Those for the MOUDI, on the other hand, ranged from 2.1 to 2.9, with an overall mean of 2.3 

(Fig. 3.5).  The broader range of GSD values for the LD can be attributed to its wider operating 

size range and the sonication process. During sonication, some aggregates might have been 

broken down into much smaller particles.  On the other hand, although the MOUDI has a sharp 

cutpoint, aggregation cannot be prevented, especially for moist air with particles being sampled 

from the source. Collision between particles could also have stimulated the aggregation process 

between smaller particles, resulting in narrower size range.  Note that errors in measurements 
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using cascade impactors are mainly attributed to particle bounce (Dzubay et al., 1975), in which 

particles bounce from the top stage to bottom stages, increasing the mass of smaller particles.  

Based on measured GMD and GSD values from the two instruments, particle bounce was likely 

minimized for the MOUDI as indicated by a much lower GSD.   
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Figure 3.5  Comparison of MOUDI and LD in geometric standard deviations (GSDs) 

 

3.3.2  Cumulative Fraction vs. Particle Fraction Method 

From the LD data, fractions of PM10 (PF10) and PM2.5 (PF2.5) and corresponding 

concentrations can be obtained using equations 3.4 and 3.5 (particle fraction method) or 

determining the cumulative fraction of particles ≤ 2.5 µm and ≤ 10 µm (cumulative fraction 

method).  Table 3.2 summarizes fractions and concentrations from the two methods for the 

upwind and downwind sampling locations.  Paired t-tests did not show any significant difference 

(P > 0.05) between the two methods in PM2.5 and PM10 fractions and concentrations, indicating 

that either method can be used to determine PF10 and PF2.5 fractions and concentrations.   
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Table 3.2  Comparison of cumulative fraction and particle fraction methods in determining 

PM fractions and concentrations. 

Downwind (n = 39) Upwind (n = 18) 

Type of Method Fraction ± 

SEM 

Concentration 

(µg/m3) ± SEM 

Fraction ± 

SEM 

Concentration 

(µg/m3) ± SEM 

PM10 0.33 ± 0.01 129 ± 31 0.35 ± 0.02 99 ± 19 Cumulative 

Fraction Method PM2.5 0.07 ± 0.00 29 ± 7 0.07 ± 0.00 20 ± 4 

PM10 0.31 ± 0.01 123 ± 29 0.33 ± 0.02 92 ± 17 Particle Fraction 

Method PM2.5 0.07 ± 0.00 27 ± 6 0.07 ± 0.00 18 ± 3 

 

3.3.3  Laser Diffraction vs. Low-Volume Sampler 

Tables 3.3 and 3.4 summarize the PM2.5 and PM10 concentrations from the LD method 

and LV samplers for the downwind and upwind sampling locations, respectively.  For each 

method, as expected, downwind concentrations were greater than upwind concentrations.  Paired 

t-tests did not show any significant (P > 0.05) difference between the LD and LV samplers in 

both downwind and upwind PM10 and PM2.5 concentrations.  For upwind concentrations, only 18 

events were obtained to compare the LD method and LV samplers, because the LD method 

required at least 1 mg of sample to achieve the required obscuration level. 

 

Table 3.3  Downwind 24-h mass concentrations (μg/m3) - laser diffraction vs. low-volume 

samplers 

 n Min. Max. Mean SEM 

PM10 39 3 679 122 20 Laser Diffraction 

(LD) PM2.5 39 1 133 26 4 

PM10 39 14 380 131 15 
Low-Volume 

PM2.5 39 7 136 35 5 
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Table 3.4  Upwind 24-h mass concentrations (μg/m3) - laser diffraction vs. low-volume 

samplers 

 n Min. Max. Mean SEM 

PM10 18 1 223 92 17 
Laser Diffraction 

PM2.5 18 0.4 43 19 3 

PM10 18 29 212 94 13 
Low-Volume 

PM2.5 18 6 119 28 6 

 

The slight discrepancies with the values can be attributed also to losses during filter 

washing before LD analysis.  As for LD measurements being slightly less than those of LV 

samplers, agglomeration might have been encountered, which could have shifted particle size 

distribution to a larger size range, thereby decreasing computed PM2.5 and PM10 concentration 

values.   

3.3.4  Factors Affecting Size Distribution 

Analysis of LD GMD data with the PROC Mixed procedure in SAS showed that the two 

main factors affecting GMD were wind speed and time of sampling.  Other factors such as 

temperature, precipitation, and relative humidity did not significantly affect GMD.  Figure 3.6 

shows that mean GMD values from the LD method increased slightly with increasing mean wind 

speed.  This result is expected, because as wind speed increases, coarse PM are generated 

through wind-induced resuspension (Jones et al., 2010), rendering a greater mass of large 

suspended particles.  With low wind speed, on the other hand, there would be less resuspension 

of particles.  Also, most of the large particles would settle out after only a short distance causing 

a shift towards smaller particle sizes, decreasing mean GMD (Lundgren et al., 1984).   
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Figure 3.6  Effect of wind speed on geometric mean diameter (GMD) obtained from LD 

method 

 

Analysis using F-test showed that mean GMD values were significantly higher during the 

daytime sampling period (6 AM to 6 PM) than during the nighttime sampling period (6 PM to 6 

AM).  Summarized in Table 3.5 are mean GMD values for daytime and nighttime sampling 

periods downwind of the feedlot. Only 4 samples were considered as day sampling events, 

because of filtering of LD data based on obscuration level and wind directions.   

 

Table 3.5  Effect of sampling period (day vs night) on geometric mean diameter (from LD 

method) 

Time of Sampling  

(Warm Months 

Considered) 

n 
Geometric Mean 

Diameter (μm) 
Wind Speed (m/s) 

6 AM – 6 PM 4 18.2 ± 2.7 5.9 ± 0.9 

6 PM – 6 AM 16 14.4 ± 1.0 4.1 ± 0.7 
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Although increased cattle activity (i.e., antagonistic interactions, walking and running 

behavior [Gonyou and Stricklin, 1984]) during the night causes peaks in dust concentration 

(Bonifacio, 2009), the average wind speed was smaller during the evening than during the day 

(Table 3.5).  The same phenomenon was also observed by Auvermann et al. (2000), who 

indicated that wind speed decreased during the evening and the dust plume floated above the 

feedlot.  Note that measurements considered were during warmer months in which water on the 

pen surface evaporates during the late afternoon due to the day’s temperature and cattle activity 

increases because of cooler temperatures during the evening (Amosson et al., 2006).  With a 

difference of greater than 1 m/s in wind speed, such phenomenon could have affected measured 

PM concentrations during the day and night sampling.  Padgett et al. (2008) reported that large 

particles occurred in the lower portion of the plume and deposition occurred closer to the source 

and that smaller particles existed at the upper portion of the plume and traveled at least 100 m 

away from the source.  Since the samplers were about 3 m away from the closest pen (north site), 

GMD was expected large in this study. 

3.3.5  Warm vs. Cold Months 

Measurements with the LD method during warm months (April to October) and cold 

months (November to March) were compared.  Classification of warm and cold months was 

based on operation of the sprinkler system.  During warm months (April to October), GMD 

ranged from 9.2 μm to 37.5 μm, while during cold months, particle GMD ranged from 10.2 μm 

to 21.8 μm.  Figure 3.7 shows the mean volume percent of different sizes of particles based on 

the type of month.  Mean values for GMD and GSD are tabulated in Table 3.6.  Analysis using 

an F-test showed no significant difference (P > 0.05) between measured values during warm and 

cold months. 
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Figure 3.7  Mean volume percent at different aerodynamic diameters 

 

Table 3.6  Comparison of mean geometric mean diameter and mean geometric standard 

deviation between the warm and cold months 

Month Type n GMD (μm) GSD 

Warm Months (April to October) 31 16.3 ± 1.0 2.8 ± 0.1 

Cold Months (November to March) 8 13.7 ± 1.2 2.9 ± 0.1 

 

3.3.6  Effect of Pen Surface Moisture Content 

There was difficulty in correlating the actual amount of water applied using the sprinklers 

to the pen surface before, during, or even after sampling since there was no continuous monitor 

of parameters with which particle size distribution was being measured.  Only a limited amount 

of data was correlated for the events having water application as compared to events without 

water application.  The effect of an event with water application was standardized by choosing 

days in which water was applied to the pen and making sure that previous to and after there was 

no water applied.  Events without water application included those without water application 

before, during, and after sampling.  Figure 3.8 shows a slight shift into larger particles as water 

was applied to the pens.  This implies that emission of larger particles was minimized and was 
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impacted by application of water, lowering the mean GMD.  Statistical analysis, however, did 

not show any significant (P > 0.05) effect of water application on GMD and GSD (Table 3.7). 
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Figure 3.8  Particle size distribution comparison between events with water application and 

events without water application 

 

Table 3.7  Effects of water application on geometric mean diameter and geometric 

standard deviation. 

Condition n GMD (μm) GSD 

With Water Application 15 13.7 ± 1.0 3.0 ± 0.1 

Without Water Application 10 14.3 ± 1.3 2.8 ± 0.1 

 

PM2.5 and PM10 concentrations were correlated with pen surface MC.  Figure 3.9 shows 

concentrations of both PM10 and PM2.5 decreased as pen surface MC increased.  Concentrations 

generally tapered off starting at 20 % MC; this MC level could be considered the threshold MC 

for dust control.  The 20 % threshold MC for the feedlot surface was within what Funk et al. 

(2008) has reported for organic soils and was close to the 25-30% threshold MC reported by 

Sweeten et al. (1988) for cattle feedlot in Texas.  Too much water in the pen surface increases 
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odor problems and fly presence, while too little water promotes dust generation (Davis et al., 

1997; Amosson et al., 2006).    

 
(a)       (b)    

Figure 3.9  Effects of pen surface moisture content on PM concentrations measured using 

the LD method: (a) PM10 and (b) PM2.5. 

  

PM fractions serve as basis of predicting long-term emissions from a source (Countess 

Environmental, 2006).  The level of pen surface MC was also correlated with parameters that 

reflect size distribution, namely, PF10 and PF2.5 fractions and PM2.5/PM10 ratio.  Figure 3.10 

shows PF10 and PF2.5 fractions decreased as pen surface MC increased.   
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(a)       (b)     

Figure 3.10  Pen surface moisture content dependence of PM fractions measured using the 

LD method: (a) PM10 fraction and (b) PM2.5 fraction. 
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A weak correlation (R2 = 0.05) was obtained when PM2.5/PM10 ratio was plotted against 

pen surface MC (Fig. 3.11).  This was expected because the data showed decrease in both the 

PF10 and PF2.5 fractions with increasing pen surface MC.   
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Figure 3.11  Effect of pen surface moisture content on PM2.5/PM10 ratio measured using the 

LD method 

 

The mean GMD obtained from the LD method was also plotted against pen surface MC 

(Fig. 3.12).  The GMD decreased slightly as pen surface MC increased; R2 value, however, was 

close to zero.   
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Figure 3.12  Effect of pen surface moisture content on mean geometric mean diameter 

measured using the LD method 

3.4  Summary and Conclusions 
This study measured particle size distribution and concentrations of PM10 and PM2.5 at a 

commercial cattle feedlot in Kansas (Feedlot 1).  The feedlot had a capacity of 30,000 head and 

total pen area of 50 ha and was equipped with a sprinkler system for dust control.  Collocated 

low-volume samplers for TSP, PM10, and PM2.5 were used to measure concentrations of TSP, 

PM10, and PM2.5 at upwind and downwind edges of the feedlot.  Dust samples that were collected 

by TSP samplers were analyzed with a laser diffraction analyzer to determine particle size 

distribution.  Particle size distribution at the downwind edge of the feedlot was also measured 

with a micro-orifice uniform deposit impactor (MOUDI).  The laser diffraction method and 

MOUDI did not differ significantly in  mean geometric mean diameter (13.7 vs. 13.0 μm), but 

differed significantly in geometric standard deviation.  From the laser diffraction data and TSP 

data, PM10 and PM2.5 concentrations were also calculated and were not significantly different 

from those measured by low-volume PM10 and PM2.5 samplers (122 vs. 131 μg/m3 for PM10; 26 

vs. 35 μg/m3 for PM2.5).  Both PF10 and PF2.5 fractions decreased as pen surface moisture content 

increased, while the PM2.5/PM10 ratio did not change much with pen surface moisture content.   
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CHAPTER 4 - Estimating Particulate Emissions from Unpaved 

Roads and Wind Erosion in Cattle Feedlots 

4.1  Introduction 
Particulate matter (PM) emissions from cattle feedlots result from pen surface 

disturbance by cattle hoof action.  Vehicle traffic on unpaved roads and alleyways also produces 

significant PM emissions.  Particulate emissions from unpaved roads could create problems, 

including impairment in visibility and hindrance to plant transpiration/photosynthesis.   

Considerable research has been conducted to determine particulate emissions from 

unpaved roads; however, little is known about the contribution of vehicle traffic on unpaved 

roads to total emissions for cattle feedlots.  As much as 10 million tons of PM is emitted each 

year due to disturbance of unpaved roads in the U.S. (Ferguson et al., 1999; Williams et al., 

2008).  Gillies et al. (2005) reported PM10 emission factors (grams PM10 emitted per vehicle 

kilometer traveled) for unpaved roads ranging from 0.8 g/km-h (for light passenger vehicles ~ 

1200 kg) to 48 g/km-h (for heavy military vehicles ~18000 kg).  Wanjura et al. (2004) reported 

an emission factor of 16 kg/1000 hd-day from unpaved roads using inverse dispersion modeling 

and assuming that emissions from unpaved roads represented the difference between nighttime 

and daytime emission rates.  Such emission factors represented about 80% of total emissions 

from the cattle feedlot.  Using similar method and assumption, Hamm (2005) reported 53% 

contribution from unpaved roads to total emissions from a cattle feedlot.  An emission factor of 

0.72 kg/hd-yr from unpaved roads was reported by the San Joaquin Valley Air Pollution Control 

District (SJV APCD) based on California Air Resources Board’s (CARB) PM10 emissions 

methodology (Countess Environmental, 2006).  

With large, exposed pen areas in cattle feedlots, wind erosion can also be a major source 

of PM emissions.  Much research has been conducted on open, agricultural lands; however, little 

information is available on the contribution of wind erosion to total cattle feedlot emissions.  

This study was conducted to (1) estimate PM10 emission rates in cattle feedlots due to 

vehicle movement on unpaved roads and wind erosion and (2) determine contributions of 

unpaved roads and wind erosion to total PM10 emissions in the feedlots.   
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4.2  Materials and Methods 

4.2.1  Site Description 

Two commercial cattle feedlots in Kansas (i.e., Feedlot 1 and Feedlot 2) were considered.  

Feedlot 1 had approximately 30,000 head of cattle, total pen area of about 50 ha, and total feedlot 

area of about 80 ha.  It had a water sprinkling system (maximum application rate of 5.0 mm/day), 

which was operated from April to October and during prolonged dry periods.  Manure harvesting 

was done at least once a year and pens were cleaned two to three times each year.  Feedlot 2 also 

had 30,000 head, total pen area of about 59 ha, and total feedlot area of about 81 ha.  Similar to 

Feedlot 1, manure harvesting and pen cleaning were done at Feedlot 2.  Water trucks were used 

during dry periods to control dust from roads and pens.   

Meteorological data were recorded at 20-min intervals using a weather station (Campbell 

Scientific, Inc., Logan, UT) that was located at the south sampling location at Feedlot 1.  Feedlot 

2 is about 2 km from Feedlot 1 therefore the same weather data were used in analysis.  The 

weather station was equipped with sensors to monitor atmospheric pressure (Model CS100), air 

temperature and relative humidity (Model HMP45C), precipitation (Model TE525), and wind 

speed and direction (Model 05103-5).  Rainfall events throughout the two year span of 2008-

2009 were accounted for during the warm months (April to October).  There were 52 “wet days” 

in 2008 and 56 “wet days” in 2009.  A day was considered wet when there was at least 0.254 mm 

of precipitation (Bonifacio, 2009; Countess Environmental, 2006). 

4.2.2  Field Measurement of Surface Characteristics 

Samples of loose surface material by the roadside and inside the pens were collected in 

accordance with US EPA procedure for sampling surface/bulk dust loading (US EPA, 1993).  At 

least 500 g for each sample was collected from the topmost layer with a whisk broom and pan 

and then transferred to a sealed plastic bag.  Sampling was done randomly throughout the feedlot 

with at least two samples taken from various areas (i.e., unpaved road near the PM samplers, 

unpaved road near the feeding apron, and center and near the edges of the pen).  

Samples were analyzed for texture at the KSU Soil Testing Laboratory.  Samples were 

first dried overnight in an oven at 500°C.  Dried samples were then ground using a 2-mm sieve.  

Fifty grams of sieved sample was subjected to texture analysis, which was done using the 

hydrometer method (Gee and Bauder, 1979) to determine sand, silt, and clay contents.  Organic 
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matter content was determined using the Walkley-Black procedure (Walkley and Black, 1934).  

The two feedlots were compared in sand, silt, clay, and organic matter contents of surface 

materials. 

4.2.3  Estimation of Emissions from Unpaved Roads 

 The PM10 emission factor brought about by vehicle travel on unpaved roads in the 

feedlots was determined using (Countess Environmental, 2006):  
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where  E = PM10 emission factor (tons/yr) 

s = silt content (%) 

 W = vehicle weight (short tons) 

 VMT = vehicle-miles traveled (vehicle-miles/day)  

 

Each feedlot had three feed trucks, each weighing 19,000 kg without feed and 30,000 kg 

with feed.  Each feed truck had 6 feed loads per day and feeding for the feedlot occurred three 

times a day with each feed truck taking 2.5 h to finish each feeding.  To estimate VMT, truck 

routes were randomly selected and distances traveled by each truck were estimated based on the 

shortest distance a truck could travel from the feed mill to the feed bunkers/troughs.  Feed trucks 

were estimated to travel 9.85 mi per feeding and 14.6 mi per feeding for Feedlot 1 and Feedlot 2, 

respectively.  Maintenance trucks weighing 3,600 kg surveyed each feedlot three times a day 

were assumed to pass by the entirety of each feedlot once every time of survey.   Maintenance 

trucks were estimated to travel 4.88 mi per survey and 4.93 mi per survey for Feedlot 1 and 

Feedlot 2, respectively.       

Mean vehicle weight, W, was determined from the sum of the product of the weight of 

each vehicle with its relative frequency of travel: 

W  =  (% travel)*(wt. of feed truck) + (% travel)*(wt. of maintenance truck)              (4.2) 

 

The weight of feed truck used for calculation was the mean weight of the feed truck with and 

without feed. 
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Estimated VMTs of feed trucks and maintenance trucks were 44.2 mi/day for Feedlot 1 

and 58.6 mi/day for Feedlot 2.  Emission days considered for the calculation of unpaved roads 

emissions was during warm months only (April to October) to be consistent with months used 

for wind erosion computations.  Also, it was assumed that during the months of November to 

March, the road surface was damp due to snow thereby emissions are minimized.   

4.2.4  Wind Erosion Emissions Calculation 

PM10 emissions due to wind erosion were calculated using two methods: (1) US EPA AP-

42 method and (2) Single-event Wind Erosion Evaluation Program (SWEEP) program.  

4.2.4.1  EPA AP-42 Open Area Wind Erosion 

With no field measurement of threshold friction velocity (u*
t) at the feedlots, this research 

assumed the EPA-recommended value of 0.54 m/s (Countess Environmental, 2006).  The 

corresponding friction velocity (u*) was then calculated using equation 4.3 and erosion potential 

was calculated using equation 4.4.  

(4.3)                                                                                                         
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where   P = erosion potential (%) 

u* = friction velocity (m/s) 

u*
t = threshold friction velocity (m/s). 

u(z) = wind speed (m/s) 

z  = height (m) 

κ = von Karman’s constant (0.4) 

zo = surface roughness (m) 

 

Surface roughness (zo) is a measure of irregularities of the surface landscape (Turner and 

Schulze, 2007).  Based on US EPA (2010) land classification tables, zo was assumed equal to 

0.05 m.  US EPA AP-42 required the use of wind speeds at z = 10 m which was obtained by 
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using equation 4.3 and computing the corresponding 10 m height wind speeds from the known 

wind speeds at z = 2.5 m (actual height of anemometer). 

Erosion potential (Pi) was computed for events exceeding the assumed threshold friction 

velocity of 0.54 m/s, while the corresponding emission factor (E) was computed using:   

(4.5)                                                                                                                  P 0.5   E
N

1    i
i∑=

=
 

where E  = PM10 emission factor (g/m2)  

N = number of disturbances per year 

 

N represents total number of days excluding rainy days; a rainy day is a day with at least 0.254 

mm of rain.    

4.2.4.2  SWEEP Model for Wind Erosion 

SWEEP is a process-based simulator for wind erosion for a single day event.  It is a 

stand-alone program that is the same as the erosion sub-model of Wind Erosion Prediction 

System (WEPS).  It computes erosion based on soil surface roughness, crust and rock cover, flat 

and standing biomass, aggregate size distribution, soil surface wetness, and loose erodible 

material on the crust (Hagen, 1996a). 

Simulation is done for a rectangular area on a sub-hourly basis and soil loss/deposition is 

propagated on the basis of different parameter inputs, including wind speed, wind direction, soil 

surface characteristics, and soil condition.  The program computes u* and u*
t.  Soil characteristics 

are updated as soil movement occurs over a certain period of time.  The program computes soil 

losses due to saltation, creep, and suspension, and PM10 loss, a component of suspension loss.  

Output information for the soil loss is converted into .emit files, while u*
t and u* are shown in the 

pop-up interface (Appendix C). 

SWEEP is based on the following conservation of mass by suspension is (Hagen, 1996b): 
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where Css = mean concentration of suspension particles (mg/m3) 

t = time (s) 

qss = suspension discharge (kg/ms) 

Hss = height of suspension region over simulation region field (m) 
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x, y = horizontal distances in perpendicular directions parallel to simulation 

region boundaries (m) 

 Gssen = net vertical flux of suspension from emission of loose soil (kg/m2s) 

Gssan = net vertical flux of suspension from abrasion of clods and crust (kg/m2s) 

Gss = net vertical flux of suspension from breakdown of saltation and creep 

(kg/m2s) 

Gsstp = net vertical flux of suspension from trapping of suspension (kg/m2s) 

 

PM10 emission is based on conservation of mass for PM10 (Hagen, 1996b): 
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where C10 = mean concentration of PM10 particles (mg/m3) 

H10 = height of PM10 region over simulation region (m) 

q10 = PM10 discharge (kg/ms) 

G10en = net vertical flux of PM10 from emission of loose soil (kg/m2s) 

G10an = net vertical flux of PM10 from abrasion of clods and crust (kg/m2s) 

G10ss = net vertical flux of PM10 from breakdown of saltation and creep (kg/m2s) 

 

SWEEP requires input of soil properties and wind speed within the area of simulation.  

For this research, soil properties were obtained by finding the “best” soil parameters that 

approximate the threshold wind speed, ut, calculated from results using the Tapered Element 

Oscillating Microbalance (TEOMTM) PM10 monitoring.  Details of TEOM measurements are 

presented in Bonifacio (2009).  The ut value was calculated by using TEOM data that did not 

include times with expected surface disturbances brought about by cattle activity (late afternoon 

and early evening) and vehicular activity (morning in which feeding starts at 6 AM until evening 

up to 8 PM) within the feedlot.  Data that had minimal emissions (concentrations < 20-50 µg/m3) 

at high wind speed (> 9 m/s) were also excluded, since they were believed to be affected by high 

pen surface moisture contents.  Selected TEOM data were assumed to be under dry conditions, in 

which it was more appropriate to estimate ut  for both feedlots.  Then, the flux (i.e., product of 

wind speed and net concentration) was plotted against wind speed and a curve was fitted using 

TableCurve 2D program (Systat Software, Inc., San Jose, CA).  The following saltation flux 
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equation was used to determine the threshold velocity (Loosemore and Hunt, 2000; Gillette, 

1974): 

Flux  =  Au2(u – ut)         (4.8) 

where A = coefficient of proportionality.   

Since the SWEEP program was used for feedlots, field and surface profile inputs into the 

SWEEP simulator were chosen in order to fit the feedlot description.  A pen area of 2,500 m2 (50 

m x 50 m) was chosen as a representative area to minimize effects of feed troughs and fences.  

Barriers were not considered because fences and cattle provided little obstruction to wind.  Crop 

parameters were set at zero.  The surface moisture content was assumed constant and unchanged 

during individual event simulation (Feng and Sharratt, 2009).  Surface moisture was assumed to 

be zero for SWEEP runs for dates with no measured pen surface moisture contents. Data were 

filtered from the effect of rain, snow, and high moisture content, so the whole simulation was run 

during dry periods. 

The SWEEP model was used to calculate total, saltation/creep, suspension, and PM10 

losses based on aggregate sizes for saltation, suspension, and PM10 generation processes (USDA 

ARS, 2008).  For this research, only PM10 losses were considered and compared with those from 

US EPA AP-42 method for open area wind erosion. 

4.3  Results and Discussion 

4.3.1  Surface Material Texture Analysis 

Table 4.1 summarizes the mean values of sand, silt, clay, and organic matter contents for 

pen surface and road surface materials. For each feedlot, the pen surface contained more clay and 

organic matter than unpaved roads.  The road surface material in Feedlot 2 had higher silt 

content and smaller sand content than that at Feedlot 1.  Statistical analysis showed that sand and 

silt contents from unpaved roads were significantly different (P < 0.05) between the two feedlots, 

while there was no significant difference (P > 0.05) in unpaved road clay and organic matter 

contents.  The two feedlots did not differ significantly (P>0.05) in pen surface material contents. 

Ashbaugh et al. (2003) examined soil dust and investigated different sources, including 

agricultural fields, public unpaved roads, and unpaved agricultural roads adjacent to fields.  In 

their study, road dust was sandier than agricultural soils, even for agricultural roads adjacent to 

the field.  This was due to frequent vehicle travel along unpaved roads and roads adjacent to the 



 67

field, which causes removal of fine particles, making roads exposed for a longer period of time 

with an enriched amount of sand as the surface material.  The same is true for the observed 

higher percentage of sand for Feedlot 1 and Feedlot 2, where frequent movement of feed and 

maintenance trucks caused exposure of the sandier portion of the surface material. 

 

Table 4.1  Mean percent surface material components for the two feedlots 

Source n Sand Silt Clay 
Organic 

Matter 

Roads 4 81.5 ± 1.3 11.0 ± 1.0 7.5 ± 1.0 2.7 ± 0.8 
Feedlot 1 

Pen Surface 2 70.5 ± 1.7 15.5 ± 2.8 14 ± 2.0 6.6 ± 0.1 

Roads 4 68.8 ± 7.3 22.0 ± 6.2 9.2 ± 1.4 1.8 ± 0.5 
Feedlot 2 

Pen Surface 2 72.0 ± 2.0 8.0 ± 2.3 20.0 ± 7.4 6.6 ± 2.4 

 

Based on the soil texture chart (USDA SCS, 1987), the surface material for both feedlots 

can be classified as loamy sand (~70-80 % sand, ~10-20% silt and ~10-20% clay).  On the other 

hand, based on the web soil survey on the USDA National Resources Conservation Service 

(USDA NRCS, 2010), Feedlot 1 is composed mainly of Pratt loamy fine sand (5-12 % slopes), 

which is about 89 % of the entire feedlot.  Feedlot 2 is composed of 44% Pratt loamy fine sand 

(1-5 % slopes), 31 % Carwile fine sandy loam (0-1 % slopes) and 22 % Attica fine sandy loam 

(1-3 % slopes). 

4.3.2  Emissions from Unpaved Roads 

Uncontrolled fugitive emissions from unpaved roads were estimated.  Emissions from 

unpaved roads can be controlled by watering or treatment with chemicals or other dust 

suppressants.  Feedlot 1 used water sprinklers, while Feedlot 2 used water trucks to control PM 

emissions from pens and unpaved roads.  Uncontrolled emission rates were used because for 

Feedlot 1, the water sprinkler system suppresses the dust coming only from pens and for Feedlot 

2, water was applied on unpaved roads only on certain days.  Also, the wetness of unpaved roads 

for both feedlots was not monitored so a worst case scenario of being dry was assumed. 

Calculated PM10 emissions from unpaved roads were 13 and 17 tons/yr for Feedlot 1 and 

Feedlot 2, respectively.  PM2.5 emission rates for unpaved roads were assumed to be 10% of 
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above values (Countess Environmental, 2006).  Feedlot 2 had greater PM emissions than  

Feedlot 1, because of greater mean VMT and silt contents. This is consistent with results by 

Kuhns et al. (2010), who reported greater PM10 emission from a field with silt content of 48 % 

than a field with silt content of 16 %.  Kuhns et al. (2010) stated that the surface texture affects 

the amount of particles that are vulnerable for emission due to disturbance by vehicle movement, 

where surface materials are continuously compressed, lifted, and transported to the air.  PM10 

emission rates were 0.39 kg/hd-yr for Feedlot 1 and 0.51 kg/hd-yr for Feedlot 2; both values are 

smaller than the 0.72 kg/hd-yr for cattle feedlots in San Joaquin Valley (Countess 

Environmental, 2006).  Emission rates in this study were based on April to October period, 

whereas the 0.72 kg/hd-yr was presumably based on the whole year.  In addition, differences in 

climatic conditions, silt contents, feedlot layout, and feeding patterns can account for differences 

in calculated emission rates. 

4.3.3  Emissions Due to Wind Erosion 

4.3.3.1  US EPA AP-42 Method 

Table 4.2 summarizes calculated PM10 and PM2.5 emissions based on EPA AP-42 wind 

erosion equations.  PM2.5 emission rates for wind erosion were assumed to be 15% of PM10 

emission rates (Countess Environmental, 2006).  Emission rates were greater at Feedlot 2 than at 

Feedlot 1, largely because Feedlot 2 had a larger area than Feedlot 1 (59 vs 50 ha).  The area is 

the only parameter that dictates the difference between values for Feedlot 1 and Feedlot 2, since 

all weather data came from the weather station at Feedlot 1. 

 

Table 4.2  Annual emission rates (metric tons/year) from the two feedlots using US EPA 

AP-42 wind erosion on a dry exposed surface 

Feedlot 1 Feedlot 2 
Year 

PM10 PM2.5 PM10 PM2.5 

2008 37.0 5.6 44.2 6.6 

2009 10.7 1.6 12.7 1.9 

Mean 24.0 3.6 28.4 4.3 
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Emission rates were significantly greater in 2008 than in 2009, primarily because there 

were 29 wind erosion events in 2008 and 13 wind erosion events in 2009 (Table 4.3).  The mean 

wind speed was higher in 2008 than in 2009, indicating that the pen surface was more 

susceptible to wind erosion in 2008 than in 2009.  The mean friction velocity was also high in 

2008, which denotes that the threshold friction velocity was exceeded, thereby initiating greater 

movement of aggregates or particles on the pen surface than in 2009.  Also, the number of wet 

days was greater in 2009 (47) than in 2008 (45). 

 

Table 4.3  Comparison of wind erosion parameters determined using US EPA AP-42 

between 2008 and 2009 

Wind speed (m/s) Friction velocity (m/s) Year n 

Min Max Mean Min  Max Mean 

2008 29 7.2 12 8.9 ± 0.2 0.54 0.91 0.67 ± 0.02 

2009 13 7.2 11 8.3 ± 0.4 0.54 0.83 0.62 ± 0.03 

 

Figure 4.1 shows monthly PM10 emissions for both feedlots.  As mentioned, Feedlot 2 

had slightly higher emissions than Feedlot 1 because of greater total pen area.  There were more 

emissions in 2008 (only July and August had minimal if no emission), while for 2009, only 

during the month of April was there an observed peak for wind erosion emissions. Other months 

in 2009 had minimal emissions.  
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Figure 4.1  Monthly PM10 emissions (metric tons) using the US EPA AP-42 model.  Error 

bars represent standard deviation of the PM10 measurements from the mean PM10 

emissions. 

  

4.3.3.2  SWEEP model 

Figures 4.2 and 4.3 show the net PM10 fluxes from the TEOM data plotted against wind 

speed.  Curve fitting showed threshold wind velocities of 4.0 m/s for Feedlot 1 and 3.9 m/s for 

Feedlot 2.   Based on these threshold velocities, soil characteristic inputs for the SWEEP 

program were identified.    
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Figure 4.2  Feedlot 1 net PM10 flux vs. wind speed using TEOM data 
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Figure 4.3  Feedlot 2 net PM10 flux vs. wind speed using TEOM data 

 

Figure 4.4 summarizes the calculated monthly PM10 emissions for both feedlots.    

Feedlot 2 had higher emissions than Feedlot 1 due to its greater total pen surface area.  Higher 

emissions in 2008 generally occurred during the months of April to June and October, while in 

2009, emissions were higher in April only.  This could have been due to the difference in the 

number of wet days between the two years considered as discussed previously.  Also, higher 

emissions were expected during spring and fall periods since greater wind speeds existed during 

both periods (Fig. 4.5).  Emissions were smaller during the summer even with high wind speeds 

possibly due to rainfall events. 
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Figure 4.4  Monthly PM10 emissions (metric tons) using the SWEEP model.  Error bars 

represent standard deviation of PM10 measurements from the mean PM10 emissions. 
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Figure 4.5  Monthly mean wind speed from 2008 – 2009.  Error bars represent standard 

deviation of wind speeds from the mean monthly wind speed. 

 

Total PM10 emission rates for the April to October period are summarized in Table 4.4.  

PM10 emission rates due to wind erosion using the SWEEP model for the two feedlots did not 

show any significant difference (P > 0.05).  Estimated total PM10 emission rate due to wind 

erosion in 2009 was slightly smaller than but not significantly different from that in 2008.  This 

can be explained by weather conditions during the two year span (Table 4.5). 

 

Table 4.4  Estimated PM10 emission rates using the SWEEP model 

PM10 Emissions (metric tons/yr) 
Year 

Feedlot 1 Feedlot 2 

2008 32.5 41.3 

2009 25.6 32.0 

Mean 29.1 36.7 
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Table 4.5  Summary of the meteorological conditions 

Year Mean Temp 

(ºC) 

Mean Wind Speed 

(m/s) 

Total Precipitation 

(mm) 

2008 11.9 ± 3.9 4.9 ± 0.2 455 

2009 11.6 ± 3.7 4.2 ± 0.3 429 

Mean 11.8 4.6 442 

 

Only one weather data set was used for both feedlots since they were close to each other, 

so comparison was on a yearly basis only.  Mean wind speed was higher in 2008 than in 2009 by 

about 0.7 m/s.  As such, estimated emission rate was expected to be higher in 2008.  Another 

parameter that could also have contributed to the lower wind erosion emission rate in 2009, 

although minimally, was temperature. It was lower than in 2008 and “longer” winter days were 

encountered and more winter days were discarded in calculating emissions brought about by 

wind erosion.  The number of days considered for 2008 (April 1 to November 20) was 10 days 

more than that for 2009 (April 1 to November 10).  

Table 4.6 summarizes wind speeds and friction velocities obtained from the SWEEP 

simulation.  The mean wind speed and mean friction velocity for both years were almost 

identical in value.  Note that since only one weather data set was used for running the SWEEP 

simulations (also taking into account the findings previously that Feedlot 1 and Feedlot 2 had 

almost similar soil characteristics), it was expected that values would greatly be affected by the 

total pen surface area. 

 

Table 4.6  Comparison of wind erosion parameters for the SWEEP model between 2008 

and 2009 

Wind speed (m/s) Friction velocity (m/s) Year n 

Min Max Mean Min  Max Mean 

2008 189 5.5 13 7.1 ± 0.1 0.41 0.97 0.49 ± 0.01 

2009 165 5.5 11 6.9 ± 0.1 0.41 0.81 0.48 ± 0.01 
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4.3.3.3  Comparison of the EPA AP-42 and SWEEP Model for Wind Erosion 

Values obtained using US EPA AP-42 and SWEEP models were significantly different 

from each other (P<0.05).  As noted earlier, threshold friction velocity was assumed equal to 

0.54 m/s for the US EPA AP-42 method. The threshold wind speed (at 10 m) corresponding to 

that threshold friction velocity was about 7.1 m/s.  For the SWEEP model, on the other, 

estimated threshold wind speeds were around 4 m/s for both feedlots and calculated threshold 

friction velocity was 0.41.  With greater threshold wind speed and threshold friction velocity, US 

EPA AP-42 method was expected to result in smaller emissions than the SWEEP model (Tables 

4.2 and 4.4), since higher threshold speed means greater tolerance for the soil before being swept 

away from wind erosion, that is, soil is less susceptible from wind erosion at low wind speeds 

(De Oro and Buschiazzo, 2009).   

4.3.4  Contributions to Total Emissions 

Bonifacio et al. (2011), using inverse modeling with AERMOD, determined an average 

PM10 emission factor of 23 kg/1000 hd-day for Feedlot 1 for April - October 2008.  Assuming 

this value as the total PM10 emission factor for Feedlot 1, emissions from unpaved roads 

represented about 5 % of total emissions and those due to wind erosion represented about 13-

13.5 % of total emissions.  Contribution from unpaved roads in this study was considerably 

smaller than those reported by Wanjura et al (2004) at 80% and Hamm (2005) at 53%.  The 

difference could be accounted for by differences in methodology and feedlot conditions and 

locations.  This study used empirical equations for unpaved roads.  Values in Wanjura et al. 

(2004) and Hamm (2005), on the other hand, were based on inverse dispersion modeling 

combined with the assumption that the emission factor for unpaved roads can be represented by 

the difference between nighttime and daytime emission factors.     

Results indicate that, on an annual basis, less than 20% of total emissions can be 

attributed to emissions from unpaved roads and wind erosion and that the major component of 

emissions is likely due to pen surface disturbance by cattle activity.  Note, however, that in cases 

with high wind speeds and dry surface conditions (e.g., month of April), estimated emissions due 

to wind erosion were considerable and could be the major component of total feedlot emissions.   
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Table 4.7  Comparison of emission factors (kg/1000hd-day) for the two-year span  

Estimated Total 

Emissionsa 

Unpaved Roads 

(US EPA AP-42) 

Wind Erosion 

(US EPA AP-42) 

Wind Erosion 

(SWEEP) Year 

Feedlot 1 Feedlot 1 Feedlot 2 Feedlot 1 Feedlot 2 Feedlot 1 Feedlot 2 

2008 23 1.1 1.4 3.1 3.7 3.0 3.8 

2009 - 1.1 1.4 0.9 1.0 2.3 2.9 

Mean  1.1 1.4 2.0 2.4 2.7 3.4 
aFrom inverse dispersion modeling for April to October 2008 (Bonifacio et al., 2011). 

 

There were several limitations in this study that relate to emission estimation methods.  

Emission estimates were based on empirical models with their inherent limitations and 

assumptions.  For example, US EPA AP-42 method was developed for industrial wind erosion 

and SWEEP was developed for agricultural areas.  Further research is needed to establish the 

applicability of those models for cattle feedlots.  

4.4  Summary and Conclusion 
Emission rates of particulate matter associated with wind erosion from pen surfaces and 

vehicle traffic on unpaved roads were estimated for two cattle feedlots in Kansas using published 

empirical models.  With greater silt content on unpaved roads and greater total pen area,   

Feedlot 2 had higher estimated PM10 emission rates than Feedlot 1.  PM10 emission rates from 

unpaved roads and wind erosion were less than 20% of annual feedlot emissions, suggesting that 

pen surface disturbance due to cattle activity could be the major source of dust generation in 

feedlots.  Further research is needed to establish the applicability of those empirical models in 

cattle feedlots. 
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CHAPTER 5 - Conclusions and Recommendations 

5.1  Conclusions 
This research was conducted to (1) determine the applicability of laser diffraction method 

combined with TSP sampling in measuring particle size distribution and concentration of various 

size fractions; and (2) determine contributions of unpaved roads and wind erosion to total 

particulate emissions in cattle feedlots.  Results showed the following: 

o The laser diffraction method can be used to measure size distribution and 

concentration of PM in cattle feedlots.  It was highly correlated with the Micro-orifice 

Uniform Deposit Impactor (MOUDI) in determining the geometric mean diameter of 

particles.  Measured geometric mean diameters ranged from 9.2 to 37.5 µm, 

indicating that particles generated from feedlots are generally large in size.  The laser 

diffraction method also agreed well with low-volume samplers in determining 

fractions of PM10 and PM2.5.  

o Empirical models showed that for the feedlots in this study, estimated PM10 emissions 

from unpaved roads due to vehicle traffic and from pen surfaces due to wind erosion 

contributed about 5% and 13%, respectively, to total PM10 emissions.   

5.2  Recommendations for Further Study 
A. For laser diffraction method, determine the following 

1. Optical properties (e.g., refractive index) of feedlot dust. 

2. Effects of different dispersants. 

3. Effects of particle size  

B. For estimating emissions from unpaved roads and wind erosion 

1. Measure directly or indirectly emissions from unpaved roads in cattle feedlots and 

compare with estimates from empirical models. 

2. Evaluate the applicability of wind erosion models in cattle feedlots. 

3. Monitor feeding schedules (time/duration) and vehicle traffic to assess actual vehicle 

miles traveled within the feedlot. 
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4. Determine effects of meteorological variables (e.g., RH) on emissions from wind erosion 

and unpaved roads. 

5. Monitor pen surface moisture content and road surface moisture content. 

6. Track cattle activity to determine times when cattle are active, which could influence 

sourcing of dust, especially during night and early morning periods. 
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Appendix A - Supporting Data for Chapter 2 

Table A.1  Cattle on feed 1000+ capacity feedlots (USDA NASS, [2009, 2005, 2000]) 

State 2000 2005 2009 
AZ 272 335 358 
AR 11 10 2 
CA 415 535 490 
CO 1,200 1,100 1,020 
ID 315 300 230 
IL 230 210 180 
IN 120 125 120 
IA 1,100 920 1,300 
KS 2,350 2,460 2,370 
KY 15 10 10 
MD 17 12 12 
MI 200 190 165 
MN 285 290 280 
MO 100 70 60 
MT 70 60 45 
NE 2,440 2,470 2,500 
NV 21 10 6 
NM 116 126 165 
NY 30 23 29 
NC 5 4 2 
ND 70 60 70 
OH 190 200 195 
OK 435 355 350 
OR 50 80 75 
PA 75 75 75 
SD 350 400 390 
TN 10 5 4 
TX 2,910 2,720 2,800 
UT 35 35 25 
VA 27 30 29 
WA 235 195 160 
WV 7 7 9 
WI 160 225 240 
WY 90 80 70 

Other States* 28 21 14.7 
US Total 13,983 13,748 13,850.7 
*AL, AK, CT, DE, FL, GA, HI, LA, MA, ME, MS, NH, NJ, RI, SC and VT. 
Source:  http://www.nass.usda.gov/Publications/Ag_Statistics/2009/chp07.pdf 
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Appendix B - Supporting Data for Chapter 3 

Table B.1  Sample data from laser diffraction analysis 

 Channel  Average     
Channel Diameter da Vol (%) di = [(dn*dn+1)]0.5 vi*di vi*[ln(di)] vi*((ln(di/dg))2) 
Number (Lower) (lower) vi     

 um       
1 0.38 0.50 0.05 0.39 0.02 -0.05 0.61 
2 0.41 0.55 0.10 0.43 0.04 -0.09 1.08 
3 0.45 0.61 0.16 0.47 0.08 -0.12 1.64 
4 0.50 0.67 0.22 0.52 0.12 -0.15 2.09 
5 0.54 0.73 0.27 0.57 0.15 -0.15 2.40 
6 0.60 0.80 0.31 0.63 0.19 -0.15 2.57 
7 0.66 0.88 0.34 0.69 0.23 -0.13 2.63 
8 0.72 0.97 0.36 0.76 0.27 -0.10 2.61 
9 0.79 1.06 0.37 0.83 0.31 -0.07 2.52 

10 0.87 1.17 0.38 0.91 0.35 -0.04 2.40 
11 0.95 1.28 0.39 1.00 0.39 0.00 2.29 
12 1.05 1.40 0.42 1.10 0.46 0.04 2.23 
13 1.15 1.54 0.45 1.20 0.54 0.08 2.23 
14 1.26 1.69 0.50 1.32 0.67 0.14 2.29 
15 1.38 1.86 0.58 1.45 0.84 0.21 2.40 
16 1.52 2.04 0.67 1.59 1.06 0.31 2.52 
17 1.67 2.24 0.77 1.75 1.34 0.43 2.63 
18 1.83 2.46 0.87 1.92 1.68 0.57 2.70 
19 2.01 2.70 0.97 2.11 2.04 0.72 2.69 
20 2.21 2.96 1.04 2.31 2.41 0.87 2.58 
21 2.42 3.25 1.08 2.54 2.75 1.01 2.37 
22 2.66 3.57 1.09 2.79 3.03 1.11 2.08 
23 2.92 3.92 1.08 3.06 3.30 1.21 1.80 
24 3.21 4.30 1.11 3.36 3.72 1.34 1.59 
25 3.52 4.72 1.20 3.69 4.42 1.57 1.47 
26 3.86 5.18 1.37 4.05 5.53 1.91 1.40 
27 4.24 5.69 1.59 4.44 7.05 2.37 1.34 
28 4.66 6.25 1.84 4.88 8.97 2.91 1.25 
29 5.11 6.86 2.12 5.35 11.34 3.55 1.14 
30 5.61 7.53 2.43 5.88 14.26 4.30 0.99 
31 6.16 8.26 2.75 6.45 17.76 5.13 0.82 
32 6.76 9.07 3.07 7.08 21.72 6.00 0.63 
33 7.42 9.96 3.38 7.78 26.31 6.94 0.44 
34 8.15 10.93 3.75 8.54 31.97 8.03 0.27 
35 8.94 12.00 4.05 9.37 37.96 9.07 0.12 
36 9.82 13.17 4.14 10.29 42.63 9.66 0.03 
37 10.78 14.46 4.23 11.29 47.74 10.25 0.00 
38 11.83 15.87 4.43 12.40 54.88 11.15 0.05 
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39 12.99 17.43 4.61 13.61 62.74 12.04 0.19 
40 14.26 19.13 4.74 14.94 70.83 12.82 0.41 
41 15.65 21.00 4.35 16.40 71.40 12.18 0.65 
42 17.18 23.05 3.21 18.00 57.85 9.29 0.74 
43 18.86 25.30 2.28 19.76 45.00 6.79 0.75 
44 20.71 27.78 2.08 21.69 45.17 6.41 0.93 
45 22.73 30.49 2.60 23.81 61.90 8.24 1.50 
46 24.95 33.48 3.65 26.14 95.44 11.91 2.66 
47 27.39 36.75 3.56 28.70 102.13 11.95 3.19 
48 30.07 40.34 2.33 31.50 73.40 8.04 2.52 
49 33.01 44.28 1.62 34.58 55.96 5.73 2.08 
50 36.24 48.61 1.51 37.97 57.16 5.48 2.26 
51 39.78 53.37 1.31 41.68 54.40 4.87 2.27 
52 43.67 58.59 0.80 45.75 36.78 3.07 1.61 
53 47.94 64.31 0.44 50.22 22.18 1.73 1.00 
54 52.62 70.60 0.41 55.13 22.48 1.63 1.04 
55 57.77 77.50 0.75 60.52 45.25 3.07 2.14 
56 63.41 85.08 1.51 66.44 100.18 6.33 4.81 
57 69.61 93.40 1.67 72.94 121.99 7.17 5.91 
58 76.42 102.53 0.85 80.07 68.24 3.74 3.32 
59 83.89 112.55 0.33 87.90 29.08 1.48 1.41 
60 92.09 123.55 0.16 96.49 14.98 0.71 0.72 
61 101.10 135.64 0.08 105.92 8.68 0.38 0.42 
62 110.98 148.90 0.07 116.28 8.60 0.35 0.41 
63 121.83 163.45 0.15 127.65 18.73 0.71 0.87 
64 133.74 179.43 0.32 140.12 44.55 1.57 2.04 
65 146.81 196.97 0.32 153.82 48.97 1.60 2.19 
66 161.17 216.23 0.17 168.86 28.60 0.87 1.25 
67 176.92 237.36 0.08 185.37 15.21 0.43 0.65 
68 194.22 260.57 0.03 203.49 6.55 0.17 0.27 
69 213.21 286.05 0.01 223.39 3.29 0.08 0.13 
70 234.05 314.01 0.02 245.23 5.13 0.12 0.20 
71 256.94 344.72 0.03 269.21 7.42 0.15 0.28 
72 282.06 378.42 0.01 295.52 3.23 0.06 0.12 
73 309.63 415.41 0.00 324.41 0.30 0.01 0.01 
74 339.90 456.02 0.00 356.13 0.01 0.00 0.00 
75 373.13 500.61 0.00 390.94 0.00 0.00 0.00 
76 409.61 549.55 0.00 429.17 0.00 0.00 0.00 
77 449.66 603.28 0.00 471.13 0.00 0.00 0.00 
78 493.62 662.26 0.00 517.19 0.00 0.00 0.00 
79 541.88 727.01 0.00 567.75 0.00 0.00 0.00 
80 594.85 798.08 0.00 623.25 0.00 0.00 0.00 
81 653.01 876.10 0.00 684.19 0.00 0.00 0.00 
82 716.85 961.76 0.00 751.07 0.00 0.00 0.00 
83 786.93 1055.78 0.00 824.50 0.00 0.00 0.00 
84 863.87 1159.00 0.00 905.11 0.00 0.00 0.00 
85 948.32 1272.30 0.00 993.58 0.00 0.00 0.00 
86 1041.00 1396.65 0.00 1090.71 0.00 0.00 0.00 
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87 1142.80 1533.23 0.00 1197.35 0.00 0.00 0.00 
88 1254.50 1683.09 0.00 1314.42 0.00 0.00 0.00 
89 1377.20 1847.71 0.00 1442.93 0.00 0.00 0.00 
90 1511.80 2028.29 0.00 1583.98 0.00 0.00 0.00 
91 1659.60 2226.59 0.00 1738.86 0.00 0.00 0.00 
92 1821.90 2444.34 0.00 1908.87 0.00 0.00 0.00 

SUM   100   241.03 113.85 
 

( ) diameter) caerodynamit (equivalen m 14.94     1.8*11.13    

diameter)spheret (equivalenm 11.13    /100)EXP(241.03    

μ

μ

==

==

GMD

GMD
 

 2.91    )5/100)EXP((113.8    0.5 ==GSD  
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Table B.2  Geometric mean diameter (GMD) and geometric standard deviation (GSD) 

values for comparing LD and MOUDI 

MOUDI Laser Diffraction (LD) 

GMD (µm) GSD GMD (µm) GSD 

10.00 2.72 16.07 2.86 
12.74 2.17 8.80 2.46 
16.64 2.17 12.04 2.74 
18.18 2.67 27.98 2.26 
9.00 2.61 14.46 3.04 
6.99 2.87 10.65 2.52 
11.39 2.35 12.64 3.01 
15.17 2.19 14.74 3.56 
10.42 2.07 14.66 2.84 
11.25 2.14 8.28 2.65 
16.51 2.18 16.25 3.52 
14.05 2.15 15.77 3.12 
14.63 2.15 9.72 2.55 
15.41 2.15 10.28 3.11 
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Table B.3  Geometric mean diameter (GMD) and geometric standard deviation (GSD) 

values for Feedlot 1 (downwind) during warm months (April to October) 

Event Temp (°C) GMD (µm) * GSD 
1 21.9 12.5 2.5 
2 27.5 15.0 2.7 
3 16.0 11.6 2.5 
4 24.0 25.2 3.0 
5 12.3 13.9 2.5 
6 14.1 12.8 2.8 
7 18.4 21.4 3.1 
8 20.6 9.2 2.4 
9 20.3 11.8 2.5 
10 14.9 12.8 2.5 
11 22.9 16.2 2.7 
12 20.2 21.1 3.7 
13 21.9 37.5 2.3 
14 26.8 19.4 3.0 
15 25.7 14.3 2.5 
16 27.7 17.0 3.0 
17 25.5 22.2 2.7 
18 21.4 15.6 2.5 
19 20.1 16.1 2.6 
20 23.0 15.1 2.5 
21 20.6 14.2 2.7 
22 25.3 19.8 3.6 
23 24.2 12.0 2.5 
24 17.7 19.7 2.8 
25 17.8 16.7 3.3 
26 21.5 13.0 2.6 
27 19.0 13.3 2.7 
28 23.5 14.2 2.9 
29 29.7 14.8 2.8 
30 33.7 13.8 3.1 
31 26.3 12.6 3.2 

*based on aerodynamic diameter 
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Table B.4  Geometric mean diameter (GMD) and geometric standard deviation (GSD) 

values for Feedlot 1 (downwind) during cold months (November to March) 

Event Temp (°C) GMD (µm) * GSD 

1 13.6 10.8 2.4 

2 12.3 12.0 3.0 

3 11.4 10.2 2.4 

4 11.7 11.3 2.6 

5 4.3 11.3 2.5 

6 2.8 11.1 2.7 

7 -2.2 21.8 3.5 

8 16.7 21.2 3.1 

*based on aerodynamic diameter 

 

 

 

 



 89

Appendix C - Supporting Information for Chapter 4 

 
Figure C.1  SWEEP "Field Tab" Interface 
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Figure C.2  Daily output information showing the scroll down option to choose between 

calculated friction velocities and threshold friction velocity. 

 

 

 

 

 

 



 91

 

 
Figure C.3  Sample output from SWEEP showing soil loss parameters 

 


