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iii
SYNOPSIS

Methods of analyzing a concrete cantilever stailrcase
comprising two straight flights and a landing and supported
onlv on the upper and the leoewer floors are presented herein,

The method developed by A, Siev includes the determina-
tion of the primary moments considering the whole structure as
a simple statically indeterminate system and the secondary
moments resulting from the consistent deformation at the
intersection between the flights and the landing.,

A, R, Cusens and J, G. Kuang developed a method of
analysis by assuming that the space structure, which is
composecd of plates or slabs, can be replaced by straight
beams and that the method of least work can be used to solve
this highly indeterminate structure,

W. Fuchsteiner's assumptions are similar to those of
Cusens and Kuang with the exception that the landing slab
is replaced by a curved bar element, '

The results from previously reported tests are in good

agreement with the above-mentioned methods which have already

been employed in the practical design of staircases of this

type.



INTRODUCTION

The use of cantilever straight multiflight staircases
has hecome popular with architects in the past few years,
The stress analvsis of thils type of structure is of consid-
erable interest to structural engineers,

Theoretical analyses have been published by W, Fuchstei-
ner (1), G. Szabo (2), A, C. Liebenberg (3), A. Siev (4),
P. L. Gould (5), A, R, Cusens and J. G. Kuang (6), and F.
Sauter (7).

Liebenberg first introduced the concept of space in-
teraction of plates, His method of analysis is based on
the stalrcase treated as a statically indeterminate struc-—
ture with the assumption that the torsional restraining
moment in the landing may be neglected-

Siev has extended Liebenberg's theory to include the
‘determination of the torsiomal restraining moment resulting
from the compatibility of deformatioms between‘the fiights
and the landing, His method shows that this moment is
usually small and may be considered as a secondary effect,

| Cusens and Xuang's method is based on the application
of the principle of least work with the assumpticns that
the flight plates can be reduced to bar elements which

coincide with their longitudinal axes, The landing bar

Numbers in parentheses refer to references listed in
the Bibliogranhv,



element will be a stvraight line to be located in a position
near the line of intersection,

Fuchsteiner is the first person who suggested the space
bar method which is similar to that of Cusens and Kuang with
the only difference being that the landing is replaced by a
curved bar instead of a straight one,

Siev, Cusens and Kuang, and Fuchsteiner's approaches
have shown good correlation with test results and hence only
these three methods will be described in detail in the £fcl-
lowing sections, A numerical example is also given to illus-

trate the procedure of calculation for each approach,



NOTATICN

a,b,c,g,h,1 Dimensions of the staircase

A = Cross—sectional area of the flight

E = Modulus of elasticity

G = Modulus of elasticity in shear

H = Reaction in the X-direction

I = Moment of inertia

Ib = Moment of inertia of beam C-H about the X-axis
J = Polar moment of fnertia (For a rectangular

section, the value depends on the magnitude of
the width~depth ratio of the section)
M = Redundant moment at point 0 about the X-axis
M = Bending moment about the horlizontal axis of

s
the section

Ms = Bending moment about the vertical axis of thea
section

Mt = Torsional moment of the section

Hx = Total torsional restraining moment in the landing

or moment about the X-axis

My = Moment about the Y-axis

Mz = Moment about the Z-axis

H; = Torsional moment in the flight

H; = Bending moment in the flight abou: the axis

perpendicular to the flight surface

r = Radius
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Total reactive force or reactive force in the
Y-direction
Reactive force resisted by primary stresses
Reactive force resisted by secondary stresses
Stress

Overall depth of slab

Total strain energy

Reactive force in the Z-direction

Uniformly distributed load in psf,
Displacement normal to the flight surface
Dead lcad

of flight and landing

Live load of lower and upper flight and landing

Direction of the axes
Direction of
nal axis of the flight

DPirection of the axis perpendicular to the
flighf surface

Thrust in upper and lower flight

Angle of slope of the flight

Angle

Vertical deflection

Strain

Torsional shear stress

Elongation or contraction of end fiber

o=

the axis parallel to the longitudi-



SIEV'S ANAIYTICAL METHOD

Free straight multiflight stairs without a landing sup-
port are attractive (Fig. 1) and have become increasiugly
prevalent as a design feature with architects during the
past few years, The elimination of columns under the landing
frequently has both structural and aesthetic advantages.

In the following the analysis of such stairs by Siev's
method is first introduced,

€iev approaches the problem of the free straight multi-
flight staircase in a procedure similar to that of folded
plate analysis, The stress analysia for this structure will
be accomplished in stages and only the case of symmetrical

lecading is considered,
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Fig. 1 = Free straight multiflight stair without

landing sunport,
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Initially, as din the case sf folded plates, an imaginary
support is assumed along the line C-D and G~H of Fig, 2 (i.e.,
the line of intersection between the flights and the landing,)
The stair is then analyzed as two separate slabs being fixed
at ong-end and hinged at the intersection, It ig obvicus
that the support moments of the slabs under various possible
loading conditions can be easily obtained by using any clas—
sical method of solving statically indeterminate structure,

The reactions at C=D and G-H are then determined,
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Fig. 2 = Loading on slabs with imaginary supports

Since the calculation of the support moments is an elemen-
tary problem, the details of finding them will be left out of
this discussions It is necessary to consider, however, the
behavior of the structure as a whole when subjected to the
reactive forces, (The reactions at the imaginary supports
due to external loads will be regarded as loads acting

along the line of intersectiorn of the slab structure,)



Siev conceived the total reactive force R to be composed
of two kinds of forces: 1) The forces resisted by primary
stresses as denoted by R' and 2) The forces resisted by sscon-
dary stresses as denoted by R", This relation can be written

as

R = R' + R" {1)

ﬁowever, it will be shown later that R" is much less than
R' and therefore
R = R’ (2)
Then, in the second step, assume a load R' acting along CD

and GH as shown in Fig, 3., (8) The resultant of this load 2bR' is

Fig, 3 - Stresses resulting from symmetrical loading



resolved into forces which act on a section through the
center of the landing parallel to the longitudinal axis of
each flight or through point 0, Thus each ccnponent will
have the wvalue

- b R' %

X=X = %" e (3)

It is obvious that the upper flight is subjected to zn
axlial tensile force in addition to a bending moment about
its own plane, The lower flight is subjected to an axlal
conpressive force plus a bending moment about its own plane.,

The corresponding fiber stresses at the end of each flight

will be
8L, = = B, = g HRlE
- b-ft (1 + 3 225
/
ey ol R (4)
and = s;a -y Sﬂk = E - iib;;)b
R' b+e

" Tt stma 73 Vil

In which t represents the thickness of the flight plate, A
is the cross-sectional area of the flight and I; denctes the
moment of inertia about the Z axis (the axis perpendicular
to the plate surface). The resuitant of the vertical ccm=-
ponents of these stresses gives the reaction on the landing
CEFH which can be considered as a beam (beam CH) because the

slab is usually so designed that the section tapered to the



end will have the centroid close to the inner edge. The

reactions at points D and C, respectively, are

AT R e
5
and R'(1+3b:°

It is now necessary to consider the primary bending
moments in Beam C-~H, As shown in Fige. 4, in addition to the
ioad R', the beam is subjected to the reactive forces from
the flights, It is apparent that the resultant of these
ferces will pass through point 0, Owing to the symmetrical
forces on the beam, it is therefore possible to calculate

the bending moment in beam C-H taking it as free at the ends

and fixed at point 0, Thét is
'-l '-b_tg- ..‘2. e
Mo 2 b 3R' ( 5 ) ( ’+ 2)
. v (bte 2b
7 b 3R G (F AP
= - 1 g
3 R' b (b + ¢)
Rl

Rl
IRTREREE ffllllll}

H GOD

] Ffﬂ’a\“*"‘ .

%R-( 144 bM)
b+c

WA R\w;ﬂl (b+c
A'R' b(b+c)

T2

Fig.
on beam C-H

(6)

Loan R' on beam C-H

Reactions from flights
on beam C-H

Besultant of forces on
beam C-H

Primary bending moment
for beam C-H

4 - Loading and primary bending moment
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The horizontal component of X is X cosa., From Eq. 3

- Pl '
Xn3cosq=—mm—

= ' ;
Sioh cosa b R' cota (7)
Substituting X into Eqs, similar to Eqs, 4 and 5, and multi-
plying by t, the horizontal loads on the landiag at points D

and C (Fig. 3), respectively, are

- = R' btc
t Sd R' cota (1 + 3 =
and t §_= R' cota (-1 + 3 -‘3%‘-’-

where a positive sign represents the tensile force and a nega-
tive sign the compressive fbrce.

It is seen that, from symmetry in loading, Mz and My
(moments about Z and Y axis) are both equal to zero,

At this stage, all primary moments have been known. Sub-

sequently, the secondary moment; will be calculated and shown
to be small, Therefore, the calculations to the present stage
are sufficient for most practical design use, especially if an
approximate result is desired,
) The displacements caused by the primary stresses are pro-
duced by deformation of the flights and the landing., For sim-
piification, the effect of shear deformation will be neglected
in the following caleculations,

Flight ends ﬁndergo displacements in the Y and X direc-

tions {(directions of the longitudinal axis of the landing and

each flight), From Fig., 5, if the flights are equal in length,
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4 5" ca
- plates

displacement
in lower flight

Fige 5 - Stresses hnd displacements resulting from
deformation in flight plates

both flight ends have equal displacements in the Y direction,
there will be no change in stresses in the plate system and
therefore, the magnitude of this deformation is of no further
interest to the discussion, It is worth while to note, however,
the strains of the end fibers of each flight in the X direction.

From Hooke's law

and €

in which E is Young's Modulus of Elasticity. Hence the total

elongations and contractions of the end fibers are

R' a b+e
I R ' 3 e B bre
53 4 (s / E} a t E sina (1 +3 b ) (8)

d el
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and s'
f = - y --—--E-g-- = --_._R....'—._f'-u—- - kis
L Sy " g ) &~ T ins LI (9)

If the deformed lines C-D and G~H are extended to the

.central point, the additional extensions Gu and & at

20 1,0

point O can be determined by simple geometric relatiomns,

That is

o+ leil

1
[8s] + [5u'°l b+ e

(10)

Substituting the corresponding values of 6; and §! in Eq. 10,

h
5 - ” R' a b+ec, 2
5u,o 51,0 t E sina (1 + 3¢ b )71 (11

A Williot diagram (Fig. 5) is now drawn for the projec-
tion of all point displacements in the flights on the X-Z
plane, and the vertical deflection 00' of point 0 is found to
be |

B = ﬁu,o / sina (12)

Introducing the known value of 6“ & in Eq. 12,
]

80 = —R—2— 1+ 3282 (13)

— t E sin“a

The final step in the analysis of the cantilever stair-
case is to calculate the torsional restraining moment by
substituting all related displacements of the flights and the
landing into the compatibility equation. As shown in Fig, 5,
the difference between the displacements of point C and point

D normal to the £flight is

{ - = il ¥
v: e ¥ ¢l sdl+la;i) tana (14)
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Substituting Eqs. 8 and 9 intoc 14,

: 6 R' a (bt+e)
L W =
wc Wd E bt cosa (13)

The difference between the verticsl displacements of
points C and D in the landing will now be considered, As
previously stated, the beam C-H is subjected to the load R
and the vertical reactions from the flights; thus the beam
will deflect as though it were fixed at midspan or point O and
free at either end as shown in Fig, 6, However, this clearly
shows that the deflection of point C is greater than that of
point D, the flight plate is therefore twisted, and a torsional
moment M; is introduced therein, As a result of this effect,
it can be visualized that the beam C-H, in addition to the
negative bending, is restrained at the center by a positive
moment Mx which tends to decrea;e the deflection of the beam

shown in Fig. 6.

b
/(11,’ é[?w\ Resultant of forces on beam

HU)/ G D {UJ)C
3Rl b_;:£
—_— ' Positive restraining moment
.t“4~LllJ_LhE}JJ’LLJJ’ M on beam C~=H
x
M
X
- f‘=bEpD S— g Deflection of beam C-H
-— —
--‘". \"\..

Fige 6 - Loading, torsional restraining moment and
deflection of beam C-H
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Thus the difference between the vertical deflections cf points

C and D may be obtained as

2 b M
R' b7 (bte) X
ty LI B - —
A Ad T 1 {c + 0.7b) GEL (3¢ + 2b) (16)
b b
where Ib is the moment of inertia of beam CH. The relative

displacement, W'', in the direction normal to the flight

plane (Fig., 7) is

ol B (17)

Fig, 7 -~ Displacement of the plates due to bending
of beam CH

The third term of the relative displacement, W''', causad
by the torsional moment M; (compenent of Mx) in the flight,

can be easily found by Castigliano's theoren
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M-i Hx cosa ba Mx b 1
TeY o oggtes oo - -
W W B s ¢ J g (18)

in which G 1is the modulus of elasticity in shear, GJ is the
torsional rigidity and 1 is the horizontal projection of
the plate length.

The last relative displacement "

in the flight plate
caused by M;, the component of restraining moment Mx' will
be obtained in a way similar to the first term, but in

the opposite sense, The stresses due to M; are

6 M-
. S < P S, - z

ca db g3 nk © 2

(19)
tb

and the total elongations and contractions of the end fibers

are
1v IV _ IV _ LIV 4 g :
6c=-5d=6 -6h--—2 (20)
' g Ethb
1v
The relative deflection W™  is
. 12 M= a
Wiv - Wﬁv = (|51v|+|-6§v[) tana = - zz tana ,
| . Eth
but, since H; = Mx sine , and h = a sina ,
. 12 M_ h
therefore WIV - WIV = « —%— tana (21)
c d E ¢t bZ

At this stage, all displacements in the same direction
are known, All that must be done in the final step is
to apply the compatibility condition which can be accounted

for as follows: along the line of intersection, the deflection



of each flight and the landing, which are caused by both the
prinary aud the secondary stresses, should coincide with
each other, Thus the compatibility equation will be of the

form

(W - WY+ W oWy -l =t - ) (22)

As W", W"' and i are represented in téxms of the restraining
moment Mx,.solve the above equation and the moment Mx is then
obtained,

The effect of the vertical deflection 600, ocbtained fromr
Eq. 13 is similar to that of the settlement of the supports
and is governed by specific con;itions. If the flights are
completely fixed at both floors, this effect may be consid-
ered by introducing an additioagl load R" acting on the liane
of intersection, producing the same amount of deflection Goo'

in the cantilevered plates, Hence

R"b 33 4 R" 33
§ ., = — = | (23)
o= 3E %—~ E t> :

By equating Eq. 23 with Eq., 13 and rearranging,

2

4 a~ sin“a

b+c

BleyZge (24)

and the additional negative bending moment at the floor sup=-

poert is

M = R" b 1 (25)
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As t is nmuch smaller than a, it can be concluded that the
fraction t2/a2 in Eq. 24 will lead R" to be only a very small

portion of R', Thus, Eq. 2 1s a reasonably good approximation

of Eq. 1,

Numerical Example 1

The concrete staircase shown in Fig. 8 will be analyzed

for the full-load condition, Nominal dimensions are given as

follows:
a = 9,503 ft. 1l =28,5 ft, h = 4,253 ft, g = 3.5 f¢t,
b = 4,0 ft, c =1,0 ft, t = 4,5 in, for flights
a = 26°34" t = 8,0 in., tapered to 4.0
sina = 0,4472 cosa = 0,8944 ine for landing
tanoe = 0,5000 ‘

4.-6"

9@6"'?4'-6"

{-4,}: 1 = 812" + 0'=p"= 8'—-§" e=3' 6"

Fig, 8 = Elevational section of the staircase
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1, Loading
Live load = 100 psf for both flights and landing

Total weight of one flight

4e35 6 x 12

= 9,503 x -3 % 4 x 150 + 8‘x 2 % 147 ¥ 4 x 150

= 2,140 + 1,200 = 3,340 1lbs,

Dead load of the flight = E%%%%T = 98,2 psf
say 98 psf

Dead load of the landing = f% x 150 = 75 psf

w, = DL, of the flight = 98 psf

1
w, = D.L. of the landing = 75 psf
Wy =W, = L.L. on lower or upper flight = 100 psf
we = L.L. on the landing = 100 psf
Vi3 © DeL. + L.L, on the lower fiight = 198 psf

Vits = DL, + L.L. on the upper flight = 198 psf

w = D,L, + L.L. on the landing = 175 PSf

2+5

2, Moment of inertia of the flights and the landing

1 3 4
Il = 17 x 42 x 6 = 756 in,
11 17 X 427x 6 37,044 in,
1 3 4
I2 =37 ¥ 48 x 4,57 = 365 in, (neglect the effect of
step portions)
" | 3 - 4
Iz """12 x 48 X 4.5 41.’072 in,

where 11, Ii = moment of inertia of the landing section

about heorizontal and vertical axes, respectively
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12' Ii = moment of inertia of flight section about hori-
zontal and vertical axes, respectively,
For finding the torsional rigidity of a rectangular
section, use Saint-Venant formula (10) when b/t>2.5

1

¢J, =+b t? (1-0.63¢t/m)6= x 42 x 6°(1-0.63 36

1
173
= 2,752 G lb-in?

3

CJ, =3 x 48 x 6,57 (1 -0.63 366 = 1,372 G 1b-in’

2
vhere GJ,, GJZ = torsional rigidity of the landing and the
flight sections, respectively,
3, Homents in slab structure
a) Maximum cantilever moment in the landing
2

M B e

1 Wyes (b + 30 g

s N

(175) (4 + D (3.5)% = - 4,825 fe-1p

b) Minimum cantilever moment in the landing

M, = - (b + %c) gz

2 w

2

s |

(75)(4.5)(3.5)% = = 2,070 ft=1b

¢) Maximum negative moment at the floor supports assuning
that the flights are completely fixed at floor beams

i, = b 1% @ % M

3 w

oolm=

1+3 2

- % x 198 % & % 8.5~ + %-(z,oro)

= -7,150 + 1,035 = -6,115 ft=-1b,



d)

e)

Negative moument at the floor supports for

in the landing

1
M4 = -3 W

= -7,150 + %(4,825) - =k,738 ft=Ib.,

Maximum positive moment in each flight

By using the notations shown in Fig.‘B

20

full load

&HHA)%

v,

for computing

1 My - Mg

V1=-§'W1+ 1
» W=wb

o ﬁ(intnu

W x l

V2 ‘ Vl 1 |
M ::—1- _.];..M
5 2 W 1 Fig. 9 - Notatioams
positive moments in

the flights

For both flights and landing loaded

M, = M, = 4,738 ft-1b

1 4
M = Ml = 4,825 ft-1b
W o= Vi43 b = 792 plif

_ 792 x 8,5 , 4,738 - 4,825
oy 3 » 8.5

= 3,356 lbs

V_ - 792 x 8,5 - 3,356 = 3,376 1bs

_ _(3,356)°
5 2 x 792

-~ 4,738 = 2,373 ft-1b

-3_‘-3_5_'6; = 4.24 ft-

the moment occurs at x = 792

support,

from left



£)
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For dead load on landing only

M) = My o= 6,115 fr-1b

=
]

, = M, = 2,070 fe-1b

_ 792 x 8,5 , 6,115 - 2,070
vy 2 ¥ 8.5

= 3,842 lbs

<
8

6,732 - 3,842 = 2,890 1bs

2
Mt = $32842) o 415 0 3204 £E-1b

5 2 x 792
. : 3,842
the moment occurs at x = —%35— = 4,85 ft, from the

left support,
Maximum reaction along the line of intersection

- 1
b R Vr + Wo.s 8 (b + zc)

= 3,376 + 175 x 3,5 x 4.5 = 6,132 1lbs

Therefore R= 6,132/(4 x 12) = 128 1lbs per in.,

4
whéere R is the total reactive force in the fictitious

support and is equal to the sum of R' and R", 1In
the case of symmetrical loading, from Eq. 24

tz b + ¢

R" = [1 + 3(-;——)213'

4 a° sin“o

2
: 45 a5 2
= 5 (1 + 3(—=—) IR

4(114)2(0.4472)

= 0,00195(1 + 4,69) R' = 0,0111 R’

the ratio between the secondary and the total reactive

force is

R" A L 0.,0111 R' _
R R' + R" 1,0111 R' 0.0110



or R" = 1,1 % of R
g) Minimum reaction along the line of intersection

- 1
b R vr + W, g (b + 5 c)

7 2
= 2,820 + 75 (3.,5) (4.5) = 4,071 1bs
R= 4,071/48 = 85 1lb/in,
h) Additional negative moment at the floor support
- Due to full load:
Mo = - 0,011 RDb 1
= - 0,011 (6,132) (8,5) = = 573 ft~1b
~ Due to liverload on flights only:
Mé = - 0,011 (4,071) (8,5) = - 381 ft-1b

i) Total negative moment at floor support

Mo =M, + M

;= Mg + M, = - 4,738 - 573 = - 5,311 fr-1b

/

M! = M, + M! = = 6,115 - 381 = - 6,496 ft-1b

7 3 6

4, Computation of the torsional restraining moment Mx

From item 3(f), it is clear that R" is only a very
small portion of R; therefore neglecting the effect of R" is
permissible, The following calculations are thus based
on the full load R equal to 128 1b per in, acting on the
plate system, Replacing R' by R in those equations con-
taining R', the displacement terms can be cbtained as
follows:

a) Due to deformation of the flight plates caused by

primary stresses



b)

c)

d)

23

From Eq. 15

6 R'a (b + ¢)
b t cosa

E(H; -"WA) =

6 x 128 x 114 x (5 = 12)
(4 x 12)(4,5)(0.8944)

= 27,192 1b/in,

Due to twist of the f£lights caused by the torsional
moment M;. From Eq. 18

ey _ T .,_..___bl
(Wc wd ) G J2 Mx
For concrete Popisson's ratio u = 0,15

(%) = 2 G(1 4 ) =2 (1 +0.15) G =2.3¢

or G = (1/2,3) E = 0,435 E

' ' (4 x 12)(8,5 x 12)
BTt = Wy = 107335 (1,37D)

M_ = 8,21 M_ 1lb/in,
X x

Due to bending of the flights caused by the moment
M; ¢ Fi:om Eq. 21

E(wiv _ W;V) o 12 2 tana - M
bt ‘
- 12(4,25 x 12)(0,5000)

(4 x 12)% (4.5)

M
b4

= -~ 0,0295 M
X

Due to bending of the landing caused by load R' and

Mx e« From Eq. 17

‘e 2
" "y - 1 R'b(b + c) - b§3c+2b)
E(wc - Wa) ey [ 7 11 (e + 0.7b) 3 11 Mxl

1 [123(43)3c5 x 12)

0.8944 % x J56 (12 + 0.7 x 48)

_ 48(3 x 12 + 2 x 48) M ]
6 x 756 x

~ 298,328 - 1.562 M_
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Substituting the corresponding terms into the compati-
bility equation 22, thus

27,192 + 8.21 Mx - 0,0295 Hx = 298,328 - 1,562 M
9.7425 Hx = 271,136
and Mx = 27,830 in-1b = 2,320 it=1b
The torsional moment M; = Mx cosa
= 27,830 x 0,8944 = 24,891 in~1b

By using Saint-Venant's formula (10) for less narrow
eross-sections, the maximum torsional shear stress on

the flight is

HT

T =
2

in which MT is the torsionﬁl moment and kz is 2 numerical

factor which 1is related to the b/t ratio.

b 48
For el 1 e 1,068, k2 = 0,212
therefore T = 24,891

€(0.212) (48) (4.5)2

= 121 psi-
The computation above is based on full load condition,
Computation of torsional restraining moment in case of live

load on flights only

Tl o WY DD -
a) E(Wc Wd) 128 (27,192) 18,035 1b/in.

vt gty
b) E(Wc w3 ) 8.21 M_
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iv

v
c) E(Wc - Wd } = =0,0295 Mx

= DU e el 85 _
&) B - WY = 55577 [735¢(266,825)~1.397 M ]

= 197,689 ~ 1,562 Mx

Substituting the corresponding terms into the

compatibility equation, thus
18,035 + 8,21 Mx - 0,0295 Mx = 197,689 - 1,562 Mx
9,7425 Mx = 179,654

ot M_ = 18,440 in-1b

6. Bending moments in the landing

The total bending moment about the horizontal axis in the
iandihg section at point 0 is equal to the primary moment

(Eq. 6) minus the torsional restraining moment M_

=For full load condition:

M =N e

]
. R'b (b + ¢c) + M

M= Pl

= - = (128)(48)(5 x 12) + 27,830

= - 156,490 in=1b = - 13,041 ft-1b,

=For live load on flights only:

M_ = = 3(4,071)(60) + 18,440

= - 103,700 in-1lb = - 8,642 ft-1b,
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7. Bending moments in the flights about the vertical axis
The total bending moment abecut the vertical axis in the
flight section at point M in Fig, 3 is equal to the primary

monment minus the moment M;

= For full load conditicn:

b R'

X=X sina

1-xu-

6,132
= 7 = 13,712 lbs,

= L 1y -
Mm X (2b + 2c) Mz
= 13,712 (2 + §) - 2,320(0.4472)
= 33,243 ft-1b,

- For live load on flight§ only:

=y =g = 4071

1 o = BTz = 9,100 1bs

M_ = 9,100 (2.5) - 1,537(0.4472)
= 22,063 ft-1lb,

A summary of the moments computed for the more important
sections of the stair is shown in Table 1. The position
of the points at which the moments are computed and the

sign convention used for all moments are shown in Fig. 10,
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Fig. 10 - Plane of stair and sign convention for

moments,
’
 Moments Mr (ft-1b) Hs Ht
(ft-1b) {(ft-1b)
Points N M 0 K M~N M=N
With both
flights and
S anftoe -5,311 | ~4,825 |-13,041|+2,373 |+33,243 |-2,074
loaded
With live
load on both |-6,496 |-2,070 (- 8,642|+3,204 |+22,063 (-1,375
flights only

Table 1 - Primary and secondary mcments in staircase




ANALYSIS OF THE STAIRCASE BY THE METHOD OF LEAST
WORK BASED ON CUSENS AND KUANG'S ASSUMPTIONS

It is widely known that the principle of least work is
a powerful tool in solving statically indeterminate
structural problems. This is true especially when the
structure is a three-dimensional frame of which the members
are subjected to torsional stresses in addition to the con-
ventional bending and the axial stresses.

The basic structure of the staircase, as previously de-
scribed, with two flights fixed at the floors and an unsup-
ported intermediate laﬁding, is indeterminate to the sixth
degree (three reactions and three moments at one end).
According to Cusens and Kuang's assumptions (6), the stair-~
case can be analyzed by reducing the plates to beam elements.
Thus the stair will be in the form of a space frame consisting
of the beams located in a position coincident withrtheir
longitudinal axes. The following analysis will be based on
the application of these assumptions and the method of least
work. |

Fig. 11 shows the staircase with the beam elements repre-
sented by heavy lines. A statically determinate base structure
is then selected by removing all the redundant forces and
moments at end Q, which in turn will be regarded a? external
loads acting on the base structure when the moment expressions
for each member are computed. Notation and sign conventions

for all moments are shown in Fig. 12. The bending and torsional
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Fig. 11 - Skeletal rigid frame representing

the cantilever staircase

4
~ H
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Z Ib
Plan - 0 2 Ms
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Positive vectors for
moments with right-
hand rule
Section

Ioum——
i

Fig. 12 - Plan, Section and Sign conventions for moments

of the staircase



moments along the members of the space frame are listed in

Table 2 and Table 3, respectively.

C-~P and P-M

Member Q-P c-P P-M
Oriegin Q C C
Limit s=0 to _s=a y=0 to y=bj | y=b, to y=bji+tb,
V (cosa s —HJ i v o =
q( ) q(s no q(y by) Rq(h)
M s)- 1w (cosa 5)2 - lW y2 - M - W 1(y-b.)
r 2" 1+3 2" 245 xq 1+3 “Y9™™
- ‘ 1 2
yd “2 Y45 7
- R (s) - M i H - -
y q( ) - sina . q(y bl) Rq(l)
8
+ qu cosa + qu
- qu ew— - vq(l) + Hq(h) + Myq
1
M - 5(g)¥,. .y 1 2
5 - M__ sina 1 2 2457 |+ 3 Wy
zq
1
=3 Waus(8) y
Table 2 - Bending and torsional moments of members Q-P,
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Hember M-H M-N
Origin c M
Limit y=b,+b, to y=b,+2b, -8=0 to s=a
—Vq(l) + Hq(sinm s) + Vq(cosu
+ =
s) + Hq(h) Myq Wl+3(l)(C05u
1 2 1, 1
Mr 2 2+5(Zb +b -y) s) W1+3(1)(21) 3 W1+a(cosa
' 2
s) ?2+5(b2+2b1)(cnsa s)
“Vo45(58) (by*2by)
-Vq(b2 sina) + Hq(b2 cosa)
+ Rq(s) - Rq(l cosa) -+ Rq(h
Ms 0 sina) + qu sinc + qu cosa
Ex W1+3(1)(b2 sina) + W2+5(b
1
+ ZbI){zbgzsina
-Vq(b2 cosa) - Hq(b2 gina)
4 Rq(l sina) + Ru{h cosa) +
1 | )
M, 7 2+5(2b 1o v) qu cosa - qu sine + W1+3(1)
(bz cosa) + W2+5(b +2b )( 2)
(cosa)
Table 3 - Bending and torsional mements of member M-H
and M-N (Continued)
wherea
ﬂ1+5 = dead load + live load on the lower flight (plf)
H1+& = dead load + live load on the upper flight (plf)
W = dead load + live load cn the landing (plf)

2+5
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Since the floor supports are assumed to be perfectly
rigid, it can be concluded that no defléctions or rotations

occur at the end support Q. Then from the theorem of least

work it follows that

3Y_ o9 A0, . - 0
3V > 3 R
q q q
(26)
2 U _ 2 U _ 2 U _
3 M g 3 M 0 M 0
xq yq zq

where U is the total strain energy due to flexure and torsion
in all members (the strain energy due to shearing and direct
forces may be neglected in this case(ll)). The complete expres-

sion for the total strain energy of the frame will be

) ; Mr Hr
U = f —=L— ds + j —— dy
L 251, L 2EL,
M M
+ J. — ds + J ——— dy . (27)
L 2EI2 L 2211
2 2
+ J ————da + J = ananell - 4
L ZGJ2 L ZGJI
where E,G; Il’ 12; Ii,Ii; and Jl,Jz have the same meaning as

in the preceding section.

Differentiating the total strain energy U in Eq. 27 with
respect to Vq, Hq, Rq’ qu, Myq and qu, respectively, and
" substituting the corresponding moment expressions shown in

Table Z'and Table 3 into Eq. 26; integrating and simplifying,

gix linear equations will be obtained as follows:
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2 iy . . Lty 1°
TV (2 17) - H (ah 1) - (al)+gp(a 10)(-50,,

P 1.3
W) G Wy (e D(b#2b) (5 + D))
1 3 1 2 1 : 3 3
1 1.2.2 2 31 .4
2 Wo45(5 byby + 3 byby + 7 byl
bg n? bg b1 b, h 3
{Vq( ) w Hq( e Bl Rq(a b, h) + Rq( ===3
b, 3 b, 5? b, h 1 b§ n? 1
- Rq( 2 ) T M) - qu( ) = Vs
1 : b§ h?
5 W2+5(2b1+b2)( = )] -
[V (b, 12) = H (b, h 1) = M (b, 1) - 2w, (b, 1) +
q 2 q 2 yq' 2 2 14372
1. (g 1D(2b.b +’bz)]
4 "2+45'8 1°2 2
b2 12 b h 1 b2 b 17 b, 17
v (Z—) + 1 E—) - 2 R ¢ SIRRINE =
b, h 1 b§ 13 5 b§ 1%
+ qu(—T*—) = W3 (5) = 5 W, g (2b4b,) ()
8 2 1 2
{- Vq(a h 1) + 3 Hq(a h°) + 2 Myq(a h) + 24(a h 1)
1 51, 3z
(Wipq = 7 Wopy) = 5 Wyus(a B)(2by4b,) (57 + 573 ]
1 2 1 2 1 2
(3 B (b))% - Z R (b 1D + 5 (b3)]
bg h1 bg 12 " b, 13
” o i -
[ Vq‘ = ) + aq( Z )+ 5 Rq(b2 al) Rq( = )
b, h 1 b, K 1 ®, 2
$ RS B () F M Y F Wy,
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bg h 12 . bg b 1
27 + 3 ¥y (2bjb ) (=) ]
ey o ¥ 5. & 1) + H (b, B2) + M (b, b) + 2w, (b, h 1)
q'P2 gty E yq'P2 2 V343(b,
1 2
bg hol bg w2 b, r? 1 b, b1
—————— + - N -
AT R - 2 R ) M qt )
b, h2 b§ h 12 . bg h 1
M) m W T - g W5 (24 ()]
1 2 2 1 2
[- F V(b h) + R (b, hY) + M (b, h) + Z W, (6] h 1)

1 3 3
+ % H2+5(h)((b1+b2) - bl)]

1

2 2
- 3 H, G310 + R G, 1% - u (b, 1]
]
i b, b 12 b, 3 .
[- 3 Vq(a bz h) + Vq(——a"——) - Vq( = ) + 3 Hq(h2 a l)
b, 13 b, n? 1 ; 5 ;
- Eq(—-;—-—) + Hq(——-—-é—“) + 3 Rq(a) + Rq(a h™) -
2 .2 4 A
he 1 h 1 g
2R CT)FR D) F R ) ~ R (L) +E (e W)
3 2 3 2
> B 1% I R 1 1
% qu(a) - qu( 2 ) qu( a).*t qu( a )t 7 Vi,
b, h 13 b, n3 1 1
(8 Dy B 1) = Wyeql D Vs T Vs
1 b, h 1? 1
(2b1+b2)(a hz ) - 3 W2+5(2b1+b2)(—' ) 4+ 3 W2+5
b, 3
(2b1+b2)( = )1
2 2
b, h 1 B, B° 1 .

-2 Vq("—*a—"_) ~ B B =g==) # 4 R =753 &
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3
2 2 b. h 1
B B% - 1 2
B W R W e K
. b, h 12 |
Wowg (2ol gl = 0 : (30)
3 U 1 1 2 1 2
s M T EI] [ =3 Vo)™ + B (by W) + B, (by) + 3 Hyalhy 1) +
1 3 3
2 |
b, h 5, b 1 2 3
1 2 ) h 1 ™
X b, 6 i " b, ht
+2 M ) F W CS) G Wy 5(2D,40,)) ( )]
2
b, 1 b. h 1 2 2
2 2 h 1 1
; [ vq( ) Hq( e ) + 2 Rq( = ) + 2 qu( a)
b, 13 : b, 12
+ w1+3(—T—) + 3 W2+5(2b1+b2)( = )] =0 (31)
2 U 1 1 2 )
5 Myq = EIZ [ Vq(a 1) + 2 Hq(a h) + 2 qu(a) + % (a 1 )(W1+3
Wiea) = 5 Wous(a)(2b 4b)) (g + 1))
- (b. 1) + H (b, h) + ¥ (b.) + % w.. (b, 12) -
GJ1 q 2 q" 2 ‘yq 2 "2 T1¥3T2
1y  _(2)(2b.b. +b2)] =0 (32)
2 Va4s 1°2 2
3 U 1,1
i - EIT 3 B (b, §* o R (b, 1) +2M=q(b2)]
b, h 1 b, 1 3 2
1 2 1.7 hf 1
+'§'I—;;[-V( )+Hq( )"Rq(a)+Rq(a)+
.2 b, h 12 % b, h 1
2 M, () + W T ) g Wy s (2b¥b ) ()]
2
b. h 1 b. h 2 2
1 2 2 Wt 1 nl
+GJ2 [vq( = )+Hq( z )—211‘1(ﬂ )+2qu(a)
b, h 12 : b, h 1
Vigat— T = § Vgualobghli—g—il 0 3



following numerical example.

17)
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The details of the procedure will be illustrated in the

NUMERICAL EXAMPLE 2

The concrete cantilever staircase shown in Fig, 8 (Page
will be analyzed by the method described in this section.
additional dimensions for the landing are:
= 5 ft.

b, = 2 f¢t. b

1 2
Case 1l: Unsymmetrical loading

a)-loading

Consider the case where only the lower flight and the
landing are subjected to an imposed load of 100 psf,

W, = 98 psf. x 4 = 392 plf,

1
14

“2 = 75 psf. x 3.5 -_263 plf.
Wy = 100 psf. x 4 = 400 plf.
W4 = 0
Ws = 100 psE. x 3.5 = 350 plf.
Wi,y = 392 + 400 = 792 plf.
Wiag ™ 392 plf.
W,,5 = 263 + 350 = 613 pl€,

b)-Moment of inertia of the flights and the landing

As previously shown in Pages 18 and 19

I, = 756 int
1] = 37,044 in?
I, = 365 in+

2



Iy

Iy

4
4

= 2,752 in,

4

= 1,372 in.

c)-Computation of the redundants in the structure

306,5229Vq

-148,3711V

q

- 97.0416V

q9

- 40,7742V_ +
q

- 12,7748V
: q

4,9838V + 2,7274H - 8,9639R
q q q
Solving,
Vq = 8732.65 1bs
Hq = 10598,03 1lbs
Rq = - 648,15 1bs
M = 6154,43 ft~1b
¥4q
qu- 11206,92 ft-1b
M ==28358,50 fc-1b
z2q

Substituting the appropriate values into Eq, 28

through Eq., 33, six simultaneous equations will be

obtained as follows:

37.9557H_ + 0, R
q , 4

-148,3711H_ -97,0416R
q q
+224,63750_ =~43,5909R
q q

43.5909Hq+168.0524Rq

4,9838H  +21,7171R
q q

-40,7742K
¥yq
+ 4,9838M
zq
+37.9557M
¥4
+ 2,7274M
zq
+ 0, M
yq
- 8.9639M

+ 8,9308M
yq

+ 0, M
zq
+ 0, M
v
+ 0. Mo
+0, M

¥q

 + 1,0910M
zq

-12.7748qu
= 631769.64
Xxq
= 1213694.4
+ 21.,7171M
xq
= -920745,48
+ 0. qu
= 101153,85
+ 5.,1099M
xq
=-121185,29
+ 0. qu
= 47298,745

37



2, Case 2: Symmetrical loading
a)-Loading

Consider the case where both flights and landing

108ded.
Wi ™ Wy, = 792 plf,
W,.s = 613 plf,

b)-Computation of the redundants in the structure
The cpefficients of the unknowns in the simultaneous
equations are exactly the same as case l. The constant
terms for each equation, respectively, are:
589458,46 1361783,7 =920745,48 121065,01 -121185,29
47298,745
Solving the six linear equations

v, - 9490.50 1bs

!

Hq = 11826.91 1lbs
R - .
q 0
M = 6621.29 ft-1lb
yq

M_= 11543,82 ft-1b
xq

M_ = =29564,20 ft-1b
zq

3, Case 3: Symmetrical loading with the landing unlcaded

a)~Loading
W1+3 - W1+4 = 792 plfl
Woss = 263 plf,

b)~Computation of the redundants in the structure

The constant terms for each rquation, respectively, are



765009.12

39449,26

777496,27

~768035,08

Solving the simultaneous equations

A &=
q

xq

M = -19629,70
zq

The corresponding

more important sections of the stair (Fig,

7915.50 1lbs

7852,69

0.

7367.96

7662,22

lbs

ft-«1lb
ft-1b

ft-1b

41108,27

39

-101095.66¢

bending and torsional moments for the

12) are listed

in Table 4.
| with bbth With the With upper| With lowerx
flights landing flight flight
Polints Moments | and unloaded and and

cre-mwy | Rendias i |y
M -10854 - 7366 - 9657 - 9657
0 Hs 0 0 - 3646 + 3646
M 0 0 - 752 ¥ 752
M. - 4827 - 2070 = 5580 - 4075
M-N M +31608 +20983 +24223 +32432
ﬁl - 2896 - 1925 - 2658 - 2530

L - 6621 - 7368 - 6154 |- 3083

N=-M M, -31608 -20983 -30381 -26273
M, - 2896 - 1925 - 2658 |- 2530

K Hs + 1429 + 2665 + 1285 - 39

Table 4 - Bending and torsional moments in staircase due

to symmetrical and unsymmetrical loadings
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From the results shown in Table 4, it is seen that the
moments due to unsymmetrical loads are only slightly greater
than those for full load at some particular sections. Con-
sequgntly, it should be sufficiently conservative to con-
sider only the symmetric loading condition for practical
design purposes, Furthermore, since Rq, Ms and Mt at point
0 are all zero in the case of symmetry, the analysis can
be- simplified by cutting the frame into two equal halves
at point 0, and each half of the structure will become a

simpler indeterminate structure having two redundants only.

This approach will be described in detail in the next section.
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ALTERNATE METHOD OF ANALYSIS OF THE STALRCASE
BASED ON FUCHSTEINER'S ASSUMPTIONS

The methed of analyzing the statically indeterminate
staircase formed by a series of bar elements was first de-
veloped by W, Fuchsteiner (1), The main difference in his
assunptions from those suggested by Cusens and Kuang (6) is
that the landing slab can be represented by a curved bar
element (Fig. 13) when the moments in the frame are computed,

It was previously found that the moments prodﬁced due
to unsyumetrical loads at some sectioﬁs of the staircase are
only slightly greater than those for symmetrical loads, There=-
fore the following analysis will be based on Fuchsteiner's
assumptions and only the cases of symmetrical loading condi-

tions will be considered,

Fig, 13 =~ Fuchsteiner's assumed form for the

cantilever staircase
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From geometric and loading symmetry of the staircase, it
is much simple; to solve this problem by cutting the whole
frame at the mid-point of the landing into two equal halves,
which will be treated as two separate cantilever beams, than
it is to solve the original structure. Thus each half of the
frame can be considered as a cantilever structure with only
twe unknown redundants, i,e., a bending moment Mo and a shear-

ing forcé H, both acting along the cut section (Fig., 14).

t
Positive vectors
for moments with
Section right=hand tule
7
- “'--\
“ ~
- \\
7 K | M, N I
Nz \1\ b . |b+se
7z . A 2
e r \ \
.//. 10 b
H
.Plan ——-M
o

Fige. 14 = Plan, section and moment sign conventiouns

of the half staircase

The bending and torsional moments along the members of

the upper half of the frame are:



43

)
Mewber oM
Origin: Point ©

Limit: © =0 to & = %

Mr = - Mo cos 8 = W2+5(r 8)(r sin %) (34)
Ms = H(r sin ©) (35)
. - 2] '

M, .Mo sin 8 + W2+5(r é)(r r cos 3) (36)

Member MN
Origin: Point M

Limit: 8 =0 ¢to s = a.

M, = H(s sina) - -;-(r) w2+5cf§— r) - -21 () W, 5(s cosa)
- % W1+4(s'cosu)2 (37)

/

Ms = H(r cosa) + % (r) W rig)sinu + Mo sina (38)

245¢F =

M = - H(r sina) +4% (r) W2+5(r - rig) cosa + Mo coso

t
(39)
where Wl+4 = D,L. + L,L. per unit length of the upper flight
W2+5 = D.L. + L.L. pef unit length along the curved

beam in the landing

Since the stair 1s assumed to be completely fixed at the
floor supports and the landing ié symmetrically loaded, it |
is evident that there will be neither horizontal movement {(X-
-direction) nor bar rotation at point 0, Consequently, by

applying the theorem of least work it follows that
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a U o U

Neglecting the effects of shearing'and direct forces (11),

the complete expression for the strain energy U of the half

frame is
ki1 a
J 3 Mi J Mf_
U= 40 + da
o ZEI; o ZET,
T a8
jz H: J‘ u;"
+ — O+ —— ds (&1}
o ZEI] o 2ELY
w a
5':? uzt | j ni
B | omekeer il @ || st @n
0 2691 o 264,

where E, G5 I,,I,; 11,15 and J,,J, have the same meanings as

before, i
Differentiating the total strain energy U in Eq. 41 with
‘respect to H and M, respectively, sﬁbstituting the corres-
ponding moment expfessions in Eq. 34 through Eg. 39, and
integrating and simplifying, two simultanecus equations will

be obtained as follows:

o U 1l 1 .2 /2 2 "
1y (a h 12)1
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¥ -E—j—; (78 (0?7
+ -ﬁl—{ [H (-ﬁ-;r—zw M -h——-i--z) + 7(2 =V2) W2+5(‘b"_'%_r3)]
(42)
g ;’{o - E%I [1;.- M_ + 0,22388008 W, . (r)?]
rpbr o ALn s B e ta - Gy, el
+ -5-}: X Mg + 0.16914005 Wy, o (n?]
*?;31“; -8 A5 + m, <l;-) +L a2 w2+5§3—2—afi)1 =0

(43)

/

The following example is worked out by the method dis-

cussed in this section,.

NUMERICAL EXAMPLE 3

Analyze the same concrete staircase shown in Fig. 8 by
the method of least work based on Fuchsteiner's assumptioms,

The additional dimension is: r = 2,5 ft,
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Case 1: With both flights and landing loaded
a) Loading

W = 175 psf

245
Total loads on the landing = 175 x 9' x 3,5' = 5,512,5#

Total length of the curved beam = 7w(2.3) = 7,8540 ft,

W = 5512,5/7.8540 = 702 plf.

245

W 4 = 792 plfc

1+
b) Moment of inertia of the flights and the landing

Neglecting the corner effect of the landing and using

the same I and J values as shown before

I. = 756 4n%

I

I &

37,044 in

365 in®

t
1

1

41,472 1in®

2,752 in®

= 1,372 4a*

Ne N
]

1
J

[T

J

¢) Computation of the redundants in the structure
‘Substituting the appropriate values into Eq., 42 and
Eq., 43, two simultaneous equations will be obtained

as follows:

28,2523 H -~ 2,4919 M, = 310728.09
« 2,4919 H + 2,2990 M, - - 4402,25
Solving,
H = 11974,203 lbs

“o‘” 11063.954 f£t-1b



Case 2:

a)

b)

With live lcad on both flights only
Leoading

W = 792 pif,

1+4

75

w ~175

Bs (702) = 301 plf

Computation of the redundants in the structure

Two simultaneous equations will be as follows:

28,2523 H

2.4919 M= 205015,.,0100
- 2,4919 H + 2,2990 Mo = = 1887.5744
Solving,

H = 7943,5897 lbs

M 7788.9907 £ft~-1b

o
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The corresponding bending gnd torsional moments for the

more important sections of the stair (Fig. 14) are listed

in Table 5.

Moments Mr (ft-1b) Ha Mt
(£t-1b) |(ft=1b)
Points N M 0 K M-N MeN
With both
flights and = - _ ' 1.
Yanding 6,027 4,873|-11,064| +1,703(+32,622 1,687
loaded
With live
load on both -6,985 | -2,089|~ 7,789| +2,819 |+21,633 -1,140
flights only

Table 5 - Bending and torsional moments in staircase

due to symmectrical loading




For comparison, =z
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summary of the results computed by

the three different methods discussed above are shown in the

following table,

Moments M_ (ft=-1b) M M,
(ft-1b) (£t-1b)
Points 0 M N K M-N M=N
With si 13,041|-4,825 | =5,311|+2,373 [ +33,243 |-2.074
both e =t g =% =2y ’ » -2,
flights
and
landing | Cusens gl _ N
loaded | and -10,854|~4,827 6,621 (+1,429 |+31,608 2,896
| Kuang
Fuchs~- N
teinorp |~115064|-4,873 | -6,027 (41,707 |+32,622 |-1,687
i si 8,642 |~2 496 204 |+22,063
live w = Ry =2,070 | -6,496 |+3, +22, ~1,375
load
'ggth Cusens
£lights | 204 - 7,366|-2,0670 | -7,368|+2,665 [+20,983 [-1,925
Kuang
only
Fuchs- ' :
t:fn:r - 7,789 (-2,089 | -6,985+2,819 |+21,633 |-1,140

Table 6 - Comparison of computed values of moments in the

staircase by three different méthodg
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COMCLUSIONS

From the summary of results shown in Table 6, it is
apparent that there exist some discrepancies between the
values obtained from the different methods, The reason for this
may be attributed chiefly to the use of different assumptions
made by each author, In reality, however, since the analysis
of stalrcase structures of the type considered in this report
involves the solution of a highly complex plate problem, any
attempt to obtain a more precise result by using only elementary
structural methods seems to be impracticable.' Therefore, for
the purpose of practical use, the application of a simple and
approximate approach is usually necessary.,

Siev's method of analysis is somewhaﬁ more difficult :6
comprehend and to apply in pra;;ice if secondary moments are
considered, Moreover, since his method mainly deals with
the symmetrical staircase by assuming that the whele struc-
ture czn be treated as two separate plates wi:ﬁ one end fixed
at the floor and the other end hung over the fictitious sup-
port at the line of intersection, this apparently will become
unjustifiable when the flights are unequal in length,
| The application of the theorem of least work to the
analysis of a staircase based on either Cusens and Kuang's or
Fuchsteiner's assumptions is preferable. In the case of only
symmetrical loads, both methods will be greatly simplified

if the stair itself is also symmetrical in its geometry, The
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tedious work described in the second section 18 a necessary
procedure when problems dealing with flexible supports and
unequal flights are involved.

It is seen from Table & that the method proposed by
Fuchsteiner gives results close to those of Siev with the
exception that the former yields lower forsional monments in
the flights than those of Cusens and Kuang.

A number of stairs of this type designed by the methods
discussed in this report have been constructed. (7) (12)

The behavior of cantilever staircases determined by these
analytical methods als§ correlates satisfactorily with exper-

imental results (13) (14&).
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ABSTRACT

The purpose of thilis report is to present the methods
of enalyzing a concrete cantilever staircase consisting of
two straight flights and a landing and supported only on the
upper and the lower floors.

Siev's analytical method is chiefly based on Liebenberg's
early theory that the staircase can be treated as two separate
plates with one end fixed on the floor and the other end hung
over an imaginary support at the line of intersection. He
also extended the method to include the determination of the
torsional restraining moment in the landing resulting from
the compatibility in deformation between the flights and the
landing. . ,

A. R. Cusens and J. G. Kuang developed the method of
analysis by applying the principle of least work and assuming
~that the space structure, which is composed of plates or slabs,
can be replaced by straight bar elements. ‘

W. Fuchsteiner was the first person who suggested the
space bar assumptions for the cantilever staircase. His
assumptions are similar to thoée of Cusens and Kuang with
the only difference being that the landing is replaced by a
curved bar instead of a straight one.

The resultsrf;om previously :eported tests give good
agreement with the above-mentioned methods of analysis.. These
methods have already bean employed in the practical design of

cantilever staircases.



