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ABSTRACT 

Shah, D. A., Molineros, J. E., Paul, P. A., Willyerd, K. T., Madden, L. V., 
and De Wolf, E. D. 2013. Predicting Fusarium head blight epidemics with 
weather-driven pre- and post-anthesis logistic regression models. Phyto-
pathology 103:906-919. 

Our objective was to identify weather-based variables in pre- and post-
anthesis time windows for predicting major Fusarium head blight (FHB) 
epidemics (defined as FHB severity  10%) in the United States. A binary 
indicator of major epidemics for 527 unique observations (31% of which 
were major epidemics) was linked to 380 predictor variables summarizing 
temperature, relative humidity, and rainfall in 5-, 7-, 10-, 14-, or 15-day-
long windows either pre- or post-anthesis. Logistic regression models 
were built with a training data set (70% of the 527 observations) using the 
leaps-and-bounds algorithm, coupled with bootstrap variable and model 
selection methods. Misclassification rates were estimated on the training 

and remaining (test) data. The predictive performance of models with 
indicator variables for cultivar resistance, wheat type (spring or winter), 
and corn residue presence was improved by adding up to four weather-
based predictors. Because weather variables were intercorrelated, no 
single model or subset of predictor variables was best based on accuracy, 
model fit, and complexity. Weather-based predictors in the 15 final em-
pirical models selected were all derivatives of relative humidity or tem-
perature, except for one rainfall-based predictor, suggesting that relative 
humidity was better at characterizing moisture effects on FHB than other 
variables. The average test misclassification rate of the final models was 
19% lower than that of models currently used in a national FHB pre-
diction system. 

Additional keywords: additive logistic regression, data mining, multiple 
imputation. 

 
In the United States, Fusarium head blight (FHB) of wheat 

(Triticum aestivum L. em. Thell) is caused primarily by Fusarium 
graminearum sensu stricto of the F. graminearum species com-
plex (44). Major FHB epidemics have occurred somewhere in the 
United States in every decade since the disease was formally de-
scribed by W. G. Smith in 1884 (60) although, in any given loca-
tion, epidemics tend to occur sporadically. During the last two 
decades, U.S. wheat experienced large direct production losses 
because of FHB (35,36) and even larger indirect losses in other 
sectors of the economy (43), contributing to the characterization 
of FHB as a reemerging disease of importance (36,53). Increased 
corn (Zea mays) production in wheat-growing regions, concurrent 
with wider adoption of reduced tillage for soil conservation, were 
likely contributory factors to severe epidemics beginning in the 
latter part of the 19th century (36,60), as pathogen survival in corn 
residue is an acknowledged FHB risk factor (13,27). 

FHB epidemiological research includes (i) basic documentation 
of epidemics and observed weather conditions at the time, a 
mainly descriptive effort, followed by quantification of optimal 
(usually controlled) conditions for various epidemiologically rele-
vant processes (7,14,45,59,62,63); (ii) synthesis of basic epi-
demiological results into generalized, qualitative risk algorithms 
predicting FHB epidemics (47,59,63); and (iii) translation of the 
generalized risk algorithms into quantitative risk models (10,12, 
18,25,32,34,39,41,58), several of which were reviewed elsewhere 

(55). Within the United States, models originally developed by De 
Wolf and colleagues (12) and subsequently refined (39,40) are the 
central risk algorithms behind the Fusarium Head Blight Risk 
Assessment Tool (http://www.wheatscab.psu.edu), a publicly 
funded service providing local-level, empirical FHB predictions 
across 31 states (35). The models are simple, in that they contain 
a few easily calculated predictors, an asset when deploying models 
at the regional scale. The Risk Assessment Tool’s purpose is to 
provide growers enough advanced notification, if the forecasted 
risk of an FHB epidemic is high, to optionally apply a fungicide 
at anthesis (51,52), an effective mitigation strategy, especially 
when combined with cultivar resistance (2,67,69). 

The models driving the Risk Assessment Tool were created 
with a relatively small set of observations collected prior to 2006 
(12,40), which possibly limits inference to new data from a wider 
set of environmental permutations. In this article, we describe a 
larger data set of FHB observations, available because of active 
collaborator participation in U.S. Wheat & Barley Scab Initiative 
(USWBSI) projects (35). The objective of the present investiga-
tion was to identify, within a parsimonious logistic regression 
framework, weather-based predictors in pre- and post-anthesis 
windows of fixed length that were associated with FHB epidemics 
in this observational data set, and which could be used to improve 
the Risk Assessment Tool. Hence, this work expanded on previous 
modeling efforts (12,39,40) by considering a larger data set, an 
expanded set of potential predictors summarizing weather condi-
tions in ways not considered in the previous work, and some 
improved analytical techniques that have been shown to be of 
value in the development and testing of risk models in other 
disciplines (23,24,30). 
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MATERIALS AND METHODS 

The observational data matrix. FHB severity and incidence 
were rated in fungicide-untreated plots maintained by collabora-
tors participating in USWBSI-funded projects. FHB severity (S) 
is defined as the mean percentage of a wheat spike’s surface area 
with FHB symptoms, where the mean is estimated over all 
sampled spikes (n); if sh is the severity of FHB on an individual 
spike h, then 

                                  ܵ ൌ
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S is equivalently called the FHB index (61). Furthermore, let 

௛ݕ ൌ ൜
0	if	ݏ௛ ൌ 0
1	if	ݏ௛ ൐ 0 (1) 

Then, I is the mean incidence of spikes with FHB symptoms, and 
is given by  
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Note that I is on a 0-to-1 scale, and can be converted to a percent 
scale by multiplying I by 100. The related quantity X (diseased-
spike severity) (38) is defined as the conditional severity (mean 
FHB severity over only those spikes with FHB symptoms; asymp-
tomatic spikes are excluded), and is related to S and I by 

S = I  X (2) 

The FHB observations were collected over several years and 
subsets of the data were used for different purposes (40). There-
fore, data verification and integrity checks were crucial. Some 
typical situations encountered are described. At the elementary 
level, some observations of S or I had been entered on a 0-to-1 
scale, whereas others were recorded as percentages. S was derived 
from equation 2 if collaborators recorded I and X only. More diffi-
cult cases required verifying whether values entered under the 
generic label “index” were truly S, or X instead; graphical repre-
sentations of the functional relationships between S and I (49) 
were exploited together with equation 2. The most difficult cases 
were the few in which X alone was reported. Briefly, one knows 
that S is an empirical function of I (49): 

S = f(I) (3) 

From equation 2, we have X = S/I. Plugging equation 3 into equa-
tion 2 gives 

X = [f(I)/I] = g(I) (4) 

X is now a function of I only and, because the relationship in 
equation 4 is monotonic, I can be estimated using the inverse 
function: 

I = g–1(X) (5) 

Hence, given X alone, an estimate ܫመ is obtained from equation 5 
and, hence, መܵ by equation 2. The above-described checks and 
verifications were applied to all FHB observations, but equations 
3 to 5 were needed in 5% of cases only. 

With S represented as a percentage, we considered observations 
with S  10% as major epidemics and <10% as non-major epi-
demics. The choice of a 10% discriminatory point between major 
and non-major epidemics was consistent with past logistic regres-
sion models (12,40), and is also used in the current models of the 
Risk Assessment Tool. The response variable of interest was a 
binary categorization of S: 

fhb௜ ൌ ൜
0 if	 ௜ܵ ൏ 10
1 if	 ௜ܵ			10

 (6) 

Thus, fhbi = 0 represented a non-major-epidemic observation,  
and fhbi = 1 a major epidemic of FHB, for all observations  
1,…, m. 

The fhbi were then linked to states in which plots were located 
and harvest year; and to categorical variables for wheat type 
(TYPE; binary variable, where 0 = spring wheat and 1 = winter 
wheat), cultivar resistance level (RESIST; ordinal variable, where 
0 = very susceptible, 1 = susceptible, 2 = moderately susceptible, 
and 3 = moderately resistant), and presence or absence of corn 
residue in plots (CORN; binary variable, where 0 = no residue 
and 1 = some level of residue present). A date variable repre-
sented flowering date (fdate; the calendar date on which at least 
50% of anthers were extruded). The completed observational data 
matrix consisted of 527 rows (m = 527). Observations were col-
lected in 1982 to 2009 in 15 U.S. states (Fig. 1). Most of the data 
were collected in 2003 to 2005 (37%) and 2009 (30%). In all, 
30% of the observations were made on spring wheat, with the 
remaining 70% coming from winter wheat. Spring wheat observa-
tions were mainly from Minnesota, North Dakota, and South 
Dakota (Fig. 1). Corn residue was present in 35% of the plots. 
The observations were collected over 150 site-years; multiple 
observations within a site-year were because of plot differences  
in cultivar resistance level, flowering date, or corn residue 
presence. 

Hourly meteorological time series data. Hourly temperature 
(t; °C), relative humidity (rh; %) and rainfall (r; mm) were re-
corded for each site-year either at the plot site or within 10 km of 
sites. Most weather data files were supplied by collaborators. The 
remainder were downloaded from weather data archives main-
tained by Wolfram Research via Mathematica scripts we wrote 
(version 7.0; Wolfram Research, Champaign, IL). Some weather 
stations collected other variables, but w = {t,rh,r} were common 
to all weather data sets; moreover, predictors associated with FHB 
epidemics in the United States (12,29,40,50) are related in one 
form or another to the elements of the vector w. All wj, j = 
1,…,150, were checked for out-of-range (e.g., rh > 100) and 
missing data (5). Time series plots identified values that were with-
in expected ranges but, nevertheless, were erroneous due to either 
instrument failure or transcriptional error (e.g., consecutive 12 h 
for which t = 15°C). Out-of-range or erroneous values were set to 
missing. There were 80 w vectors in which at least one value of t, 
rh, or r was missing. 

Hourly data imputations. Multiple imputations are superior to 
case-wise deletion and missing-indicator analysis (64). Missing 
values in a wj were multiply imputed using the R package Amelia 
II (version 1.2-14), with the following specified options: logistic 
transformation of rh (on a 0-to-1 scale); square root transforma-
tioin of r; a third-order polynomial over time; and a 1% ridge 
prior (assists with numerical stability by shrinking the covariances 
toward zero without affecting means or variances). Imputations 
were restricted to within the date-times defining the beginning (x) 
and end (y) of a time series; that is, no attempt was made to 
impute values outside of (x,y); for example, for day x – 1 or y + 1. 
Missing values were successfully imputed in all cases, within 
plausible ranges, and adhered to the distributions of the actual 
observed data. Each missing value was imputed 10 times, and the 
final imputed value was taken as the mean of the 10 individual 
imputations. 

Dewpoint depression and vapor pressure deficit. Dewpoint 
depression (dd; °C), and vapor pressure deficit (vpd; kPa) were 
computed from t and rh post-imputation of hourly data, thus 
expanding w to {t,rh,r,dd,vpd}. The dd was calculated by Bosen 
(3): 

dd = t – [(112 + 0.9t)rh0.125 – 112 + 0.1t] (7) 
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The vpd was estimated by Prenger and Ling (56): 

vpd = exp(–A/B) × C (8) 

where A = 2.60131 × 10–8[2.0365 × 106 + t(t – 2151.62)] × 
[170886 + t(354.342 + t)], B = 491.67 + 1.8t, and C = (1.46476 × 
10–10 – 1.46476 × 10–12rh) × (491.67 + 1.8t)6.456.  

The weather-based predictor matrix. Each complete w (with 
the imputed values substituted for any missing values) was subset 
into fixed-length pre- and post-anthesis “windows” using 0800 h 
on fdate as the reference point. The pre-anthesis windows were 
periods prior to 50% of anthers extruded, and the post-anthesis 
windows were the periods beginning after 50% of the anthers 
have been extruded (and thus covered the flowering and early 

grain development stages). Let the symbols pre.x and post.x 
represent series of x days pre- and post-anthesis, respectively, 
anchored at fdate. Then, for example, wpre.7 represented the hourly 
time series counting chronologically back 7 days from fdate, and 
wpost.7 represented the hourly time series counting chronologically 
forward starting from fdate. It follows that wpre.5 is a subset of 
wpre.7 and, likewise, wpre.7 is a subset of wpre.10. Fixed-length win-
dows of 5, 7, 10, 14, and 15 days pre- and post-anthesis were 
created, the decision being influenced by previous research (6,7, 
12,28,29,40,41,50,71). The windows were discrete, a subset of all 
possible windows, and were nested on either side of fdate. Pre-
anthesis windows were independent of post-anthesis windows. 

The hourly time series of t and rh within windows contained 
typical diurnal patterns. A 24-h day was defined as 0800 h to 

Fig. 1. Number of Fusarium head blight observations in the data matrix, described by wheat type, year, and U.S. state in which the observation was made. 
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0800 h so that overnight events would not be broken. Some pre-
dictors were defined on a 12-h daily period, from 2000 h to 0800 h, 
which also kept overnight events unbroken. 

Previous research (7,12,28,29,40,41,50,71) guided the creation 
of 380 weather-based predictors from wpre.5, wpre.7, wpre.10, wpre.14, 
wpre.15, wpost.5, wpost.7, wpost.10, wpost.14, and wpost.15 (Table 1). Some 
predictors were simple summaries, such as the number of hours 
per day in which rh  90%; others summarized two target 
conditions being met simultaneously, such as the number of hours 
in a window in which both 15  t  30 and rh  90%. 

Weather-based predictor imputations. Ideally, all w would have 
been a minimum of 30 days in length, having 15 days on either 
side of fdate. However, 20 of the pre-anthesis hourly weather 

series were shorter than 15 days; likewise, 15 of the post-anthesis 
hourly weather series were <15 days long. Shorter-than-required 
w created missing values in the weather-based predictor matrix 
(minimum = 7, maximum = 55, and mean = 24 missing values per 
predictor), with predictors created from wpre.15 and wpost.15 affected 
most. The missing values warranted a second round of imputa-
tions (with Amelia II; this time for weather-based predictors not 
hourly data values). Imputation algorithms took advantage of the 
fact that any predictor was part of a correlated series (of five 
points) across nested subsets of w (Table 1). All imputed values 
were verified post-imputation to be within a variable’s theoretical 
bounds. Five imputed versions of the weather-based predictor 
matrix were created. 

TABLE 1. Weather-based predictor set considered as input for models of Fusarium head blight epidemics 

Predictor class, acronyma Description Groupb 

Vapor pressure deficit (vpd; kPa)   
VPD.A.w.12H Mean vpd per overnight period 1 
VPD.L20.w.12H Number of h vpd  0.20 kPa overnight 2 
VPD.L45.w.12H Number of h vpd  0.45 kPa overnight 3 

Dewpoint depression (dd; °C)   
DD.A.w.12H Mean dd per overnight period 4 
DD.L1.w.12H Number of h dd < 1ºC overnight 5 

Relative humidity (rh; %)   
RH.A.w.12H Mean rh per overnight period 6 
RH.A.w.24H Mean rh per day 7 
RH.G80.w.12H Number of h rh  80% overnight 8 
RH.G90.w.12H Number of h rh  90% overnight 9 
RH.MXRLG80.w.12H Maximum[rl (number of h rh  80%)] overnightc 10 
RH.MXRLG90.w.12H Maximum[rl (number of h rh  90%)] overnight 11 
RH.MXRLG80.w.24H Maximum[rl (number of h rh  80%)] 12 
RH.MXRLG90.w.24H Maximum[rl (number of h rh  90%)] 13 
RH.C6RLG80.w.24H Count[rl (number of h rh  80%)  6] 14 
RH.C6RLG90.w.24H Count[rl (number of h rh  90%)  6] 15 

Temperature (t; °C)   
T.A.w.24H Mean t per day 16 
T.9T30.w.24H Number of h (9°C  t  30°C) 17 
T.15T30.w.24H Number of h (15°C  t  30°C) 18 
T.L9.w.24H Number of h (t < 9°C) 19 
T.L15.w.24H Number of h (t < 15°C) 20 
T.G30.w.24H Number of h (t > 30°C) 21 

Rainfall(r; mm)   
R.PA.w.24H 0 = no rain, 1 = rain 22 
R.S.w.24H Total rainfall 23 
R.D.w.24H Number of days with rain 24 
R.H.w.24H Number of h with rain 25 
R.AD.w.24H Mean rainfall per day 26 
R.PD.w.24H Mean proportion of days with rain 27 
R.AH.w.24H Mean number of h with rain per day 28 

Interaction (t and rh)   
TRH.9T30nRHG80.w.12H Number of h (9°C  t  30°C & rh  80%) overnight 29 
TRH.9T30nRHG90.w.12H Number of h (9°C  t  30°C & rh  90%) overnight 30 
TRH.15T30nRHG80.w.12H Number of h (15°C  t 30°C & rh  80%)overnight 31 
TRH.15T30nRHG90.w.12H Number of h (15°C  t  30°C & rh  90%)overnight 32 

Interaction (rh and r)   
RHR.RHG80nR.w.24H Number of days (mean(rh)  80% & rain) 33 
RHR.RHG90nR.w.24H Number of days (mean(rh)  90% & rain) 34 

Interaction (t and rh)d   
TRH.9T30nRHG80.w.24H Number of h (9°C  t  30°C & rh  80%) 35 
TRH.9T30nRHG90.w.24H Number of h (9°C  t  30°C & rh  90%) 36 
TRH.15T30nRHG80.w.24H Number of h (15°C  t 30°C & rh  80%) 37 
TRH.15T30nRHG90.w.24H Number of h (15°C  t  30°C & rh  90%) 38 

a Acronyms follow the naming convention a.b.w.c, where a indicates whether the variable summarizing vapor pressure deficit (VPD), dewpoint depression (DD), 
relative humidity (RH), temperature (T), rainfall (R), or pairwise interactions between temperature and relative humidity (TRH) or between relative humidity and 
rainfall (RHR); b indicates the type of summary measure (see the Description column), such as A for average (mean), L for less than, and so on; w is a
placeholder for 1 of 10 vectors of hourly time series weather data (wpre.5, wpre.7, wpre.10, wpre.14, wpre.15, wpost.5, wpost.7, wpost.10, wpost.14, and wpost.15), where the 
subscript in the preceding list indicates if the weather data span 5, 7, 10, 14, or 15 days pre- or post-anthesis; and c indicates a 24-h day (24H: 0800 to 0800 h) or 
a 12-h overnight period (12H: 2000 to 0800 h). 

b Within groups, predictors vary only over the defining window. For example, group 1 contains predictors measuring mean vpd per day, with five in the pre-
anthesis period (5-, 7-, 10-, 14-, and 15-day windows) and five in the post-anthesis period (5-, 7-, 10-, 14-, and 15-day windows). Therefore, there are 10 pre-
dictors per group and, hence, 380 total predictors. 

c Run length (rl) predictors are explained via a worked example in the Appendix. 
d These additional interactions between t and rh were added after the original predictor set had been conceptually formulated and parallel groups 29 to 32, except 

that groups 35 to 38 are estimated over a 24 h day period rather than a 12 h overnight period. 
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The FHB data matrix. Merging the FHB observation matrix 
with the weather-based predictor matrix created the FHB data 
matrix. The ordinal variable RESIST was expressed as binary 
indicator variables: res0 (= 1 if RESIST = 0, 0 otherwise), res1  
(= 1 if RESIST = 1, 0 otherwise), res2 (= 1 if RESIST = 2, 0 
otherwise), and res3 (= 1 if RESIST = 3, 0 otherwise). Additional 
binary predictors represented combinations of wheat type and 
corn residue presence: wc1 (= 1 if spring wheat, regardless of 
corn residue presence or absence, 0 otherwise), wc2 (= 1 if winter 
wheat and corn residue is absent, 0 otherwise), and wc3 (= 1 if 
winter wheat and corn residue is present, 0 otherwise). There 
were five versions of the FHB data matrix, each corresponding to 
a different imputed version of the weather-based predictor matrix. 

In all, 30 weather-based predictors were removed (leaving 350) 
because they were identified as having only a few unique values, 
often at or near zero, with some of those occurring at low fre-
quencies. These identified predictors can cause problems with 
analytical methods that use cross-validation or bootstrap sub-
sampling (23), which were part of the analysis described later. 
Removed predictors were all in groups 10, 11, and 22 (Table 1). 

Data exploration. We did two-way tabulations, mosaic plots of 
fhb against categorical predictors, and tests of the equality of the 
proportion of epidemics (42) in categorical groups (RESIST, 
TYPE, and CORN). Because the time series in each window were 
nested (i.e., wpre.5  wpre.7  wpre.10  wpre.14  wpre.15, and, simi-
larly, wpost.5  wpost.7  wpost.10  wpost.14  wpost.15, where  indi-
cates “is a subset of”), it was likely that some weather-based 
predictors were highly correlated; 15.7% of the 61,075 pair- 
wise correlations between the 350 weather-based predictors were 
> 0.5. 

Training and test data sets. Each version of the FHB data 
matrix was partitioned into training and test data sets, with 70% 
of the observations going into the training data and the remaining 
30% into the test data. The training data were used for model 
building. Test data were used to estimate the prediction error of 
finalized models. 

Base models. We wanted to identify predictors of FHB 
epidemics for both wheat types in a holistic model framework, in 
contrast to earlier efforts which developed independent spring and 
winter wheat models (12,40). There was no a priori model struc-
ture for the categorical predictors RESIST, TYPE, and CORN, 
and five different logistic regression models incorporating these 
three predictors were explored. Let µ(X) = Pr(fhb = 1X) be the 
probability of a major FHB epidemic given a linear combination 
of predictors X (dependent on the model), and logistic link func-
tion of the probability. Then the base models are given by the 
linear logistic equations: 

base.0: logit (µ) = 0 + 1res1 + 2res2 + 3res3 (9a) 

base.1: logit (µ) = 0 + 1res1 + 2res2 + 3res3 + 4wc2 + 5wc3 (9b) 

base.2: logit (µ) = 0 + 1res1 + 2res2 + 3res3 + 4TYPE (9c) 

base.3: logit (µ) = 0 + 1res1 + 2res2 + 3res3 + 4CORN (9d) 

base.4: logit (µ) = 0 + 1res1 + 2res2 + 3res3 + 4CORN + 
   5TYPE + 6CORN × TYPE 

(9e) 

In equations 9a to 9e, the reference levels are res0 = 1, wc1 = 1, 
TYPE = 0 (i.e., spring wheat), and CORN = 0 (i.e., corn residue 
absent). Equations 9a to 9e were called “base” models because 
the goal was to add weather-based predictors to the logistic linear 
equation, given that those categorical predictors were already pres-
ent, with the goal of further improving the predictive performance 
of the base models. Three models (equations 9a to 9c) were 
selected, after checking model coefficients, residual plots, model 
fit (Akaike’s information criterion [AIC] and receiver operating 

characteristic [ROC] curves), and classification performance on 
the training data. These types of model checks are described in 
more detail in later sections.  

Dimension reduction in modeling. Some form of variable 
selection was desirable to adhere to the objective of creating parsi-
monious models. Forward and backward stepwise regression 
methods violate several statistical principles (22,46,68) and are 
now highly discouraged for model development (23). Subset 
selection is a more statistically principled option. If all possible 
subsets of a full logistic model were fitted, information-theoretic 
methods could be used to select the “best” models. This approach 
becomes computationally impossible as the number of predictors 
grows. For example, a full logistic model with 350 predictors (no 
interactions) means fitting (2350 – 1) candidate subset models. 

To address the collinearity and large predictor set issues, the 
FHB data matrix was partitioned so that logistic regression models 
were fitted separately in each pre- and post-anthesis window. The 
partitioning reduced the input weather-based predictor set from 
the full 350 to 35 within each time window, mitigating the 
predictor correlation problem. Fitting logistic regression models 
(base model plus 35 weather-based predictors) within each win-
dow led to 50 more predictors being dropped (5 per window, all in 
groups 20, 21, 26, 27, and 28) (Table 1), due to problems with 
singularity (perfect correlation between predictors in the data 
matrix). With 30 weather-based predictors per window, the num-
ber of possible model subsets is >1 billion but is within the 
operable range of the leaps-and-bounds subset-selection algorithm 
(17). 

Some variable selection algorithms are susceptible to including 
predictors not correlated with the outcome (i.e., noise variables) 
(11). The tendency of the leaps-and-bounds algorithm to include 
noise variables was confirmed by applying the algorithm to 
bootstrapped samples of a simulated data set, in which three pre-
dictors were truly correlated with a binary outcome and seven 
other predictors were noise (data not shown). With these limi-
tations in mind, the leaps-and-bounds algorithm was used in two 
rounds: to select a subset of weather variables and then a subset of 
possible models. For each base model and window combination, 
the algorithm was run on bootstrapped samples of the training 
data (200 bootstrapped samples from each of the five imputed 
training sets), requesting the best model with k weather-based 
predictors out of the 30 available in each window, added to the 
base model. Building on exploratory analyses (not shown), k = 8 
for all pre-anthesis models and k = 9 for post-anthesis models. 
The number of times a weather-based predictor was selected, over 
all 1,000 runs of the algorithm, was tabulated and summarized 
graphically. The process with base.0 and the 10-day pre-anthesis 
window is illustrated in Figure 2, showing that all 30 available 
weather-based predictors appeared at least once in a selected model; 
however, there were six predictors (RH.C6RLG90.PRE10.24H, 
RH.A.PRE10.24H, TRH.9T30nRHG80.PRE10.24H, RH.G90. 
PRE10.12H, T.L9.PRE10.24H, and T.A.PRE10.24H; Table 1 
provides explanations of the acronyms) which were selected in 
>50% of the algorithm runs. Repeating the process on the other 
combinations of base models and windows generated selection 
frequency profiles like Figure 2; by culling those predictors with a 
selection frequency <50%, the candidate weather-based predictor 
set in each base model–window combination was reduced from 
30 to 2 to 8. 

A second round of subset selection used the reduced set of 
weather-based predictors as the input candidate predictor set, and 
requested k = 1,…,4 weather-based predictors added to a base 
model. The leaps-and-bounds algorithm was run 1,000 times on 
bootstrapped samples of the training data as input (200 boot-
strapped samples for each of the five imputed training data sets). 
Model selection frequencies were tabulated (as opposed to indi-
vidual predictor selection frequencies in the previous stage). 
Figure 3 continues with the base.0, 10-day pre-anthesis window 
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combination as the illustrative example. In this particular case, 
models with k = 3 weather-based predictors were selected from all 
such models which could be built from a set of six weather-based 
predictors (Fig. 2). Twelve different models were returned; however, 
only one model (with weather-based predictors RH.A.PRE10.24H, 
RH.G90.PRE10.12H, and RH.C6RLG90.PRE10.24H added to 
base.0) would be considered further; the other models were 
selected too infrequently, indicating relative unimportance. The 
process was repeated for all 30 base model-window combina-
tions, giving 37, 38, and 38 candidate models for base.0, base.1, 
and base.2, respectively, or 113 candidate models total. 

Combining across multiple imputations. Coefficients for 
each model were adjusted to their respective means over the five 
versions returned from fitting to each of the imputed data sets 
(57). Coefficient-adjusted models were used to get the predicted 
probability of a FHB epidemic for an input observation row in each 
imputed training and test data set, and these individual predictions 
were averaged to obtain a final predicted probability adjusted for 
the multiply imputed data. This process was done before evalu-
ating the candidate models for accuracy (measured in several 
different ways) and goodness of fit. 

Evaluating candidate models. Each of the 113 candidate 
models (with anywhere from one to four weather-based predic-
tors) was compared with the corresponding base model (no 
weather-based predictors), where such comparisons were made 
qualitatively and statistically. The goal was to cull any model that 
was no better at classifying FHB epidemics than the underlying 
base model. At the qualitative level, the ROC curve (21) of each 

base model was compared visually with the respective curve of 
any candidate model built on that base (not shown). Descriptive 
measures included (i) area under the ROC curve (AUC) (21); (ii) 
the H (an alternative to AUC) measure (20); (iii) the Youden Index 
(YI), defined as the maximum difference between the true posi-
tive and false positive predictive rates (30), which is a global 
measure of classification accuracy and is used widely as an opti-
mal cut-point (16,26); (iv) the Kolmogorov-Smirnov (K-S) test 
statistic, which is equivalent to the estimate of the maximum 
vertical distance between the ROC curve and the chance diagonal 
line (30); (v) net reclassification index (NRI) (54); and (vi) inte-
grated discrimination improvement (IDI) (54). Each of these global 
measures individually captures certain features of the model (AUC 
versus H, for example) (20) but, together, give a more complete 
comparison of models, albeit at the expense of some overlap. 

Statistical tests further culled models which either gave no 
improved classification performance over the underlying base 
model or gave no improved classification performance when com-
pared with a simpler version with fewer weather-based predictors. 
Pairwise tests accounted for correlated ROC curves (as they were 
fit to the same data) and included comparisons of (i) AUCs (8), 
(ii) entire ROC curves (65), (iii) a paired-sample test of K-S 
statistics (31), and (iv) P values for the NRI and IDI comparing 
model classification performance. Model selection relied on a 
combined assessment of the P value-based tests for entire ROC 
curves, K-S statistics, NRI, and IDI. We found the DeLong test 
(8) to be overly sensitive to minor differences between ROC 
curves. 

Fig. 2. Weather-based predictor selection frequencies in the 10-day pre-anthe-
sis window after subset selection on 1,000 bootstrapped samples of the train-
ing data. The subset selection algorithm was asked to return models with eight
weather-based predictors added to base.0 (a model with binary indicators for
resistance level). All 30 available weather-based predictors were selected in at
least one model returned by the algorithm. The vertical dashed line indicates a
selection frequency of 50%, below which a predictor was culled from further
consideration. Table 1 provides full descriptions of predictor acronyms.  

Fig. 3. Model selection frequencies in the 10-day pre-anthesis window after 
subset selection on 1,000 bootstrapped samples of the training data. The algo-
rithm requested models with three weather-based predictors added to base.0, 
out of six such predictors to choose from (Fig. 2). Twelve different models 
were selected over all algorithm runs; the top seven are shown. The vertical
dashed line indicates a selection frequency of 50%. Each horizontal bar refers
to a different model, and the variables listed on the vertical axis are the
weather-based predictors that comprise the models. Table 1 provides variable 
naming conventions.  
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Logistic regression diagnostics. The evaluation procedures 
described above narrowed the field from 113 to 15 candidate 
models. We then turned our attention to diagnostics of whether 
the 15 remaining models adhered to the assumptions of logistic 
regression, and to identify potential problems (such as outliers). 
Three types of diagnostics were done: (i) a check of model co-
efficients, (ii) residual plots, and (iii) tests of the linearity-of-the-
logit assumption. Model coefficients were examined for sign and 
magnitude, and simple odds ratios calculated as a check that model 
parameters were consistent with established biological under-
standing of FHB epidemics (e.g., reduced odds of FHB epidemics 
with increasing levels of genetic resistance). Residual checking in 
binary-response logistic regression models is not as straight-
forward as with Gaussian-distributed data, and residual plots must 
be interpreted carefully (70). For binary data residual checking, 
one common recommendation is to simulate data from a given 
model, then use the simulated data to examine how residuals 
should behave when the distributional assumption is correct and 
the data are really independent (70). Following this suggestion, 
each of the 15 models was assumed to be a “correct” model (with 
a binomial distribution for fhb), data were simulated from the model 
(using the estimated parameters as the true ones), and the logistic 
regression model was refitted to the simulated data. The resulting 
residual plots then showed what patterns could be expected with 
binary data in a data set of this size and in which model assump-
tions were met. These simulation results (not shown) helped in 
interpreting the actual residuals for each of the 15 fitted models. 

Residual plots examined were (i) residuals versus fitted prob-
abilities, (ii) Q-Q plots, (iii) scale-location plots, (iv) Cook’s 
distance, (v) residuals versus leverage, (vi) Cook’s distance versus 
leverage, (vii) Anscombe residuals, (viii) Studentized residuals 
versus hat values, and (ix) DFFITS versus predicted probabilities 
(24). Residual plots i to vi are the default in base R. Anscombe 
residuals were estimated with the surveillance package (ver. 1.2-
1). R code was written to produce residual plots viii and ix. 
Residual plots were graphed (lattice package ver. 0.19-33) with 
separate labels for each wheat type as a check for potential pattern 
discrepancies between spring and winter wheat. 

The final check was on the linearity-of-the-logit assumption. 
Three different linearity-of-the-logit tests (one P value-based and 
two graphically based) were used for the continuous, weather-
based predictors, because each test has its own strengths and 
nuances (no omnibus procedure is foolproof) (24). The first was 
the Tukey-Pregnibon test. If the P value of the test is significant, 
the linearity-of-the-logit assumption for that predictor has been 
violated. The first graphically based test was with partial residual 
plots (24). In this test, the continuous predictor is evaluated in 
terms of its linearity in the logit when other predictors are present 
in the model (the Tukey-Pregnibon test is a univariate test). A 
smoothed line that is (approximately) linear with slope of 1 or –1 
indicates adherence to the linearity-of-the-logit assumption. The 
second graphically based test was built on a generalized additive 
model (GAM) (see Appendix for more details) version of the 
logistic model and smoothing spline fit of the GAM residuals 
(24,70). Again, a straight smoothed line of slope 1 or –1 indicated 
adherence to the linearity-of-the-logit assumption. For both graphi-
cally based tests, data points were distinguished by the factors 
TYPE, CORN, and RESIST as checks into potential violations of 
the linearity-of-the-logit assumption within subsets of the training 
data. None of the residual plots indicated any potential problems 
or outliers of concern with either wheat type (not shown). 
Linearity-of-the-logit diagnostics did indicate potential curvature 
with several (mainly rh–type) weather-based predictors. The 
nonlinearity-in-the-logit issues were solved by using additive 
logistic regression models (Appendix), with smooth functions for 
those weather-based predictors so indicated. 

Model performance. The AIC, sensitivity (proportion of major 
epidemics classified correctly), specificity (proportion of non-

major epidemics classified correctly), and overall misclassifica-
tion rate (proportion of fhb observations classified incorrectly) of 
the logistic and additive logistic (Appendix) versions of each 
model were compared (not shown), resulting in 7 of the 15 logis-
tic regression models being replaced by their additive logistic 
regression counterparts (Table 2). Note that, in models with more 
than one weather-based predictor, not all such terms were neces-
sarily represented by smooth functions (Table 2). 

For a given model, any observation with predicted probability 
>YI for that model was classified as a major epidemic, whereas 
any predicted probability YI was classified as a non-major 
epidemic. That is, YI was used as the optimal cut-point for clas-
sifying epidemics from model-predicted probabilities. Each of the 
final 15 models (Table 2) was evaluated for sensitivity, specificity, 
and the overall misclassification rate on the training set. Those 
same evaluations were done on the test data not used in model 
development, thereby enabling estimation of the expected error 
when applied to new data (23). 

We made two-way tables summarizing the number of test data 
observations correctly or incorrectly classified for all pairwise 
combinations of the 15 models. The tables were used to compare 
the discordant errors (model A makes an error while model B is 
correct, and vice versa) by the McNemar test (1). 

Comparison with currently deployed models. Two separate 
models (one for spring wheat, the other for winter wheat), built 
with data collected before 2006, are used in forecasting the risk of 
FHB epidemics in the United States (http://www.wheatscab. 
psu.edu). The models use weather-based predictors derived from 
hourly t and rh within the 7-day pre-anthesis window, where each 
day is defined on a 24-h midnight-to-midnight cycle (note the 
difference from the 0800-to-0800 h 24-h cycle on which the 
weather-based predictors in the current article were defined). The 
model equations (not previously reported in peer-reviewed litera-
ture) are 

logit (µ) = –16.9369 – 0.71704 RESISTC + 0.23839 H1 (10a) 

for spring wheat, and 

logit (µ) = –6.3906 + 0.0746 TH2 (10b) 

for winter wheat, where RESISTC is a continuous version of 
RESIST (the ordinal levels 0, 1, 2, and 3 are treated as real num-
bers within the 0-to-3 range, not as categories as in our current 
models), H1 is the mean hourly rh, and TH2 is the number of 
hours during which the following two conditions are met simul-
taneously within a given hour: t is 9 to 30°C and rh  90%. 

It was unrealistic to expect a low test error with the current 
models, which were developed on a far more limited subset of the 
now-available data. Therefore, the coefficients of equations 10a 
and 10b were updated by fitting to the appropriate (spring or 
winter wheat) training data subset accordingly. The updated 
spring wheat model was 

logit (µ) = –11.008 – 0.9578 RESISTC + 0.1516 H1 (10c) 

with standard errors of 3.4717, 0.3008, and 0.0469 for the inter-
cept, RESISTC and H1, respectively. 

The updated winter wheat model was 

logit (µ) = –1.7954 + 0.0245 TH2 (10d) 

with standard errors of 0.2798 and 0.0055 for the intercept and 
TH2, respectively. The YI (used as optimal cut-points) were 0.37 
for the spring wheat model (equation 10c) and 0.23 for the winter 
wheat model (equation 10d). Performances of both updated models 
were evaluated on the training and test sets. 
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Software. SAS 9.2 (SAS Institute, Cary, NC) was used for 
importing weather time series data from Excel 2002 spreadsheets 
(Microsoft Corporation, Redmond, WA), checking for missing 
and out-of-range values (5), and visualizing time series plots. The 
weather data were then exported from SAS to R (version 2.13.1; 
R Foundation for Statistical Computing, Vienna, Austria), where 
several add-on packages were used in the analysis. These in-
cluded Hmisc (ver. 3.8-3) for reading SAS xpt data files into R; 
chron (ver. 2.3-42) for handling date-time data; reshape (ver. 
0.8.4) for flexibly manipulating data between long and wide 
formats, and for some data processing; Amelia II (ver. 1.2-14) for 
multiple imputations of missing values in weather hourly time 
series, and for multiple imputations of missing values in the 

weather-based predictors; epicalc (ver. 2.11.1.0) for testing the 
equality of proportions of epidemics in categorical variable groups; 
the nearZeroVar function in the caret package (ver. 5.13-20) for 
identifying zero and near-zero predictors; vcd (ver. 1.2-12) for 
visualizing mosaic plots; subselect (ver. 0.10-1) for implementing 
the leaps-and-bounds algorithm in subset selection; mitools (ver. 
2.0.1) for combining parameter estimates from models fit on 
multiply imputed data sets; pROC (ver. 1.4.4) for plotting ROC 
curves and for implementing the DeLong and Venkatraman tests; 
PredictABEL (ver. 1.1) for calculating the NRI and IDI statistics 
and the P values for these tests; PresenceAbsence (ver. 1.1.5) for 
calculating the YI and classification matrices; and mgcv (1.7-6) 
for fitting GAMs. 

TABLE 2. Final 15 weather-based logistic and additive logistic regression models of Fusarium head blight epidemics 

  Training data measuresc Test data measuresd 

IDa Weather-based predictorsb AIC AUC YI Kappa fp fn mc Kappa fp fn mc 

Base.0e  445 0.63 0.25 0.13 0.67 0.16 0.51 0.03 0.68 0.27 0.55 
1 RH.A.PRE7.24H 394 0.77 0.38 0.39 0.26 0.32 0.28 0.24 0.28 0.47 0.34 
2 RH.A.PRE10.24H … … … … … … … … … … … 
 RH.G90.PRE10.12H … … … … … … … … … … … 
 RH.C6RLG90.PRE10.24H 389 0.78 0.29 0.37 0.34 0.23 0.31 0.28 0.40 0.27 0.36 
3 RH.A.PRE14.24H 383 0.80 0.31 0.40 0.33 0.21 0.30 0.26 0.42 0.27 0.37 
4 TRH.15T30nRHG80.POST7.12H … … … … … … … … … … … 
 RH.A.POST7.12H … … … … … … … … … … … 
 T.A.POST7.24H 369 0.82 0.34 0.48 0.24 0.24 0.24 0.29 0.30 0.39 0.33 
5 TRH.15T30nRHG80.POST10.12H … … … … … … … … … … … 
 RH.A.POST10.12H … … … … … … … … … … … 
 T.A.POST10.24H 365 0.82 0.26 0.46 0.32 0.13 0.27 0.29 0.36 0.31 0.35 

Base.1  425 0.70 0.25 0.24 0.46 0.26 0.40 0.13 0.56 0.27 0.47 
6 RHR.RHG90nR.PRE7.24H … … … … … … … … … … … 
 RH.A.PRE7.24H … … … … … … … … … … … 
 T.A.PRE7.24H … … … … … … … … … … … 
 T.L9.PRE7.24H 366 0.83 0.27 0.47 0.33 0.12 0.26 0.34 0.39 0.22 0.34 
7 TRH.15T30nRHG80.POST5.12H … … … … … … … … … … … 
 RH.A.POST5.12H … … … … … … … … … … … 
 T.A.POST5.24H 369 0.82 0.40 0.50 0.17 0.33 0.22 0.27 0.27 0.45 0.33 
8 TRH.15T30nRHG80.POST7.12H … … … … … … … … … … … 
 RH.A.POST7.12H … … … … … … … … … … … 
 T.A.POST7.24H 351 0.84 0.33 0.49 0.24 0.23 0.24 0.24 0.33 0.41 0.35 
9 TRH.15T30nRHG80.POST10.12H … … … … … … … … … … … 
 RH.A.POST10.12H … … … … … … … … … … … 
 T.A.POST10.24H 350 0.84 0.31 0.51 0.25 0.19 0.23 0.31 0.31 0.35 0.32 

Base.2  447 0.62 0.25 0.13 0.67 0.16 0.51 0.03 0.68 0.27 0.55 
10 RH.A.PRE10.24H 385 0.78 0.33 0.36 0.38 0.20 0.32 0.30 0.41 0.24 0.35 
11 RH.A.PRE14.24H 385 0.80 0.32 0.41 0.32 0.21 0.29 0.27 0.41 0.27 0.37 
12 TRH.15T30nRHG80.PRE15.24H … … … … … … … … … … … 
 T.A.PRE15.24H … … … … … … … … … … … 
 T.L9.PRE15.24H 402 0.77 0.34 0.41 0.25 0.31 0.27 0.36 0.28 0.33 0.30 
13 TRH.15T30nRHG80.POST5.12H … … … … … … … … … … … 
 RH.A.POST5.12H … … … … … … … … … … … 
 T.A.POST5.24H 370 0.85 0.25 0.49 0.32 0.10 0.25 0.29 0.39 0.27 0.35 
14 TRH.15T30nRHG80.POST7.12H … … … … … … … … … … … 
 RH.A.POST7.12H … … … … … … … … … … … 
 T.A.POST7.24H 367 0.82 0.29 0.48 0.27 0.19 0.24 0.23 0.37 0.37 0.37 
15 TRH.15T30nRHG80.POST10.12H … … … … … … … … … … … 
 RH.A.POST10.12H … … … … … … … … … … … 
 RH.C6RLG90.POST10.24H … … … … … … … … … … … 
 T.A.POST10.24H 333 0.88 0.28 0.50 0.28 0.15 0.24 0.45 0.26 0.25 0.26 

a A simple way of identifying a model.  
b Predictor coefficients represented by a smooth function are shown in bold. Any model with at least one smooth function is an additive logistic regression model 

(i.e., IDs 1, 3, 6, 10, 11, 13, and 15). The others are logistic regression models. 
c AIC = Akaike’s information criterion; AUC = area under the receiver operating characteristic curve; YI = the Youden index, defined as the maximum difference 

between the true positive and false positive rates (YI is used here as an optimal cut-point for classifying observations as major or non-major Fusarium head 
blight epidemics); Kappa = Cohen’s kappa statistic, a measure of agreement between model-predicted and actual classification of major and non-major 
epidemics, taking into account chance agreement; fp = false positive rate, which is the proportion of non-major epidemics wrongly classified as major epidemics 
(= 1 – specificity); fn = false negative rate, which is the proportion of major epidemics wrongly classified as non-major epidemics (= 1 – sensitivity); mc = the 
overall misclassification rate, which is 0 if all observations are perfectly classified and 1 if all observations were wrongly classified. 

d Test metrics were based on YI as the optimal cut-point. 
e Base models to which weather-based predictors were added. Categorical predictors included in base models were: base 0 (res1 res2 res3); base 1 (res1 res2 res3 

wc2 wc3); base 2 (res1 res2 res3 TYPE). res1 = 1 if resistance level = susceptible, 0 otherwise; res2 = 1 if resistance level = moderately susceptible, 0 otherwise; 
res3 = 1 if resistance level = moderately resistant, 0 otherwise; wc2 = 1 if winter wheat and corn residue is absent, 0 otherwise; wc3 = 1 if winter wheat and corn 
residue is present, 0 otherwise; TYPE = 1 if winter wheat, 0 if spring wheat. 
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RESULTS 

FHB severity (S) was 0 to 86% (Fig. 4), with a mean of 10.4%. 
Of the 527 observations, 15.4% were S = 0. Some 50% of S 
values were <3.2% and 80% were <19.3% (Fig. 4, inset). After 
the binary categorization of S, major epidemics were represented 
by 31% of the observations, with that proportion being approxi-
mately equal in spring wheat (30%) and winter wheat (32%) (test 
for equality of proportions P value = 0.792). Cultivar resistance 
was associated with decreased risk of major FHB epidemics, as 
expected (Fig. 5A and B). As resistance level increased from 
category 0 to 3, the proportion of observations classified as epi-
demics fell from 0.45 to 0.30 to 0.23 to 0.19, and the differences 
in proportions were statistically significant (P = 0.0003). Across 
all observations, the presence of corn residue was associated with 
an increased risk of epidemics; 26% of observations with corn = 0 
were classified as epidemics, whereas 40% of observations with 
corn = 1 were epidemics (P = 0.001). However, when the data 
were subset by wheat type, presence of corn residue was associ-
ated with an increased epidemic risk in winter wheat only (Fig. 
5C). By comparison, there were not many observations in the 
category of spring wheat with corn residue (32 such observa-
tions); therefore, there was not enough supporting evidence indi-
cating an increased risk of major epidemics in spring wheat due to 
localized (within-plot) corn residue. 

Base model performance. Each of the three base models con-
sidered was capable of predicting FHB epidemics to varying 
degrees of accuracy (Table 2). Resistance alone was, in fact, a 
significant predictor as expected, because the resistance-level 
variable is based on previous observations of disease severity. To 
see this, consider the base.0 model, which contained three binary 
indicator variables (res1, res2, and res3) representing susceptible, 
moderately susceptible, and moderately resistant cultivars, respec-
tively. The respective odds ratios (with RESIST = 0 [very suscep-
tible] as the baseline) were 0.53, 0.27, and 0.22. Interpreting the 
odds ratios meant that the odds of a major FHB epidemic (10% 
severity) on susceptible, moderately susceptible, and moderately 
resistant cultivars were 47, 73, and 78% lower, respectively, than 

the odds of a major FHB epidemic on a very susceptible cultivar 
(RESIST = 0). 

Final model set. The two-stage predictor and model selection 
protocols applied to each base model–window combination, fol-
lowed by culling based on performance diagnostics, resulted in 
the selection of 15 models. This model set contained both logistic 
and additive logistic regression models (Table 2). There were five 
models built on base.0, four on base.1, and six on base.2. Seven 
were pre-anthesis and the remaining eight were post-anthesis 
models. The pre-anthesis models were from the 7-, 10-, 14-, and 
15-day windows. The post-anthesis models were, by contrast, 
concentrated in the shorter windows (5-, 7-, and 10-day). All 15 
models were relatively close in measures such as AUC and YI. 
The AUCs did not exceed 0.9 (Table 2). 

Model performance. Overall misclassification rates averaged 
0.26 on the training data and 0.34 on the test data. On the training 
data, post-anthesis models seemed, on average, to be the better 
classifiers than pre-anthesis models (mean Cohen’s kappa of 0.49 
versus 0.40 for pre-anthesis). However, that advantage was not 
apparent in the test data metrics where, for example, the average 
misclassification rate for post-anthesis models (0.33) was close to 
that for the pre-anthesis models (0.35). A trade-off between sensi-
tivity and specificity was apparent, in that higher sensitivities were 
achieved at the expense of specificity, and vice versa. This phe-
nomenon is indicated by the sloped lines in Figure 6, which are 
(unweighted) linear regressions of specificity on sensitivity over 
all 15 models. The selected models all offered a better sensitivity-
specificity balance than the updated versions of the currently 
deployed models (Fig. 6), as well as incorporating both spring 
and winter wheat types into the same models. According to the 
McNemar tests (not shown), model 12 was the best pre-anthesis 
model in making fewer misclassification errors than other pre-
anthesis models, and the same could be said for model 15 among 
the post-anthesis models. There was no indication of a trend 
(either increasing or decreasing) in misclassification rate with 
window length. However, lower misclassification rates were 
associated with higher numbers of weather-based predictors in a 
model. 

 

Fig. 4. Histogram of the 527 Fusarium head blight severity (S) values in the data matrix. The vertical dashed line represents the severity cutoff of 10% for
dichotomization of observations into non-major epidemics (S < 10) or major epidemics (S  10). Inset: a sample quantile plot showing the proportion of severity 
values (x-axis) that are less than an observed severity value (y-axis). 
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Selected weather-based predictors. Although we started with 
380 weather-based predictors (Table 1), only 21 were retained in 
the 15 final selected models, after eliminating predictors because 
of collinearity or because they did not pass the first or second 
stage of predictor or model selection (Table 2). Moreover, these 
21 fell into 9 predictor groups, where a group consisted of a set of 
predictors varying only in the length of the defining window 
(Appendix, Table 3); the original candidate predictor set 
contained 38 predictor groups. All 21 selected weather-based 
predictors were some variant of t, rh, or a combination of the two. 
The one exception was RHR.RHG90nR.PRE7.24H, which was a 
combination of rh and r (Appendix, Table 3). None of the dd or 
vpd predictors appeared in the final 15 models. 

DISCUSSION 

Different research groups have translated the generalized FHB 
risk algorithms into quantitative models in various ways (55), 
thereby producing numerous representations of three basic vari-
ables (t, rh, and r). Some differences in predictor formulations 
reflect the limitations of data available to modelers. Once a specific 
objective had been defined (e.g., predicting mycotoxin levels 
versus disease intensity), the properties of the available disease 
and weather data sets defined the set of possible candidate weather-
based predictors, while also being consistent with the generalized 
risk algorithm and underlying basic epidemiology. For example, 
Moschini and Fortugno (41) were limited to heading date as the 
available phenological reference point, and basic weather vari-
ables measured were available on a daily basis (as opposed to 
hourly). Kriss et al. (29) had to rely on a generalized calendar 
date for crop maturity as the phenological reference point. The 
weather data available for their empirical efforts were a mixture 
of daily and hourly measurements. Del Ponte et al. (10) built a 
mechanistic simulation model, with inputs being restricted to 

available daily weather summaries. Therefore, when each model 
is examined within the context of its development, it is not sur-
prising to see so many different representations of weather-based 
predictors. Basically, all FHB predictive models attempt to cap-
ture how two sets of conditions (moisture and t) influence processes 
making up the FHB disease cycle. They just differ in how these 
conditions are represented numerically, for the reasons discussed 
above. The analyses described here benefited from (i) a larger 
than typical data set of 527 observations; (ii) flowering date esti-
mates serving as the phenological reference point for each obser-
vation; (iii) hourly t, rh, and r data; and (iv) analytical insights 
from contemporary statistical sciences for the modeling of binary 
data that were either not available or widely appreciated at the 
time that previous empirical models (12) were being developed. 
We started with more ways of representing moisture and t than 
considered before (12), within short windows that either started or 
ended at anthesis. Subset selection algorithms then identified 
weather-based predictors, enhancing the predictive accuracy pro-
vided by cultivar resistance and corn residue indicators. Several 
possible models that included up to four weather variables were 
selected, and no single model could be considered best based on 
multiple diagnostic criteria. 

All 15 models contained at least one predictor that was based 
on rh. Of the 15 models, 5 had only rh-type predictors. The other 
10 models each had predictors based on t, rh, and interactions 
between t and rh. By contrast, none of the weather-based pre-
dictors in the final 15 models were dd- or vpd-based. An r-based 
predictor (RHR.RHG90nR.PRE7.24H) appeared in only one 
model; furthermore, this predictor was an interaction-type vari-
able with rh. Our results suggest that (i) rh-type predictors are 
better than other moisture-based summaries, considered here as 
representing the association between major FHB epidemics and 
underlying wetness requirements, and (ii) moisture is more of a 
limiting factor than t for major FHB epidemics in the United 

 

Fig. 5. Mosaic plots of the number of major Fusarium head blight epidemics (fhb = 1) and non-major epidemics (fhb = 0), where observations are further grouped 
as in a two-way contingency table A, by cultivar resistance level (RESIST) and wheat TYPE (spring or winter); B, by RESIST and presence (CORN = 1) or 
absence (CORN = 0) of corn residue; C, by TYPE and CORN. Within each mosaic plot, the lengths of the bars are proportional to the number of observations in 
the classes fhb = 0 and fhb = 1. Bar sizes are proportional to the number of observations in each two-way classification. 
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States. The greater relative importance of moisture-related predic-
tors over t-related ones was also a qualitative observation made in 
previous empirical models (12,29,41,50,71). One may be tempted 
to relate weather-based predictors to specific processes within the 
FHB cycle but these empirical predictors only show correlation or 
association with the disease, and no proof of causation or mecha-
nism should be made. However, the modeling results are con-
sistent with known aspects of the disease cycle. Given that wheat 
is most susceptible to infection at anthesis (47,63), one may 
presume that the pre-anthesis weather-based predictors capture 
conditions associated with inoculum production and dispersal up 
to anthesis (50). The post-anthesis predictors would likewise rep-
resent additional favorable conditions for infection and coloni-
zation of the spikes occurring within 15 days post-anthesis (9). 

Most FHB predictive models to date do contain some repre-
sentation of r as a moisture-based predictor. Perhaps this is not 
unexpected, given the emphasis on r in the generalized risk 
algorithms (47,59,63), which would have influenced modelers to 
create r-based predictors. However, in our investigation, r pre-
dictors were selected much less frequently than rh predictors with 
the bootstrap procedure. Thus, one is led to question why other 
empirical model sets contain r-type predictors at a higher fre-
quency than found for our model set. Previous empirical models 
(12,41) were developed under an apparent parsimony objective, 
which meant feature selection (such as stepwise regression) was 
done. One shortcoming with feature selection is the candidate set 
itself: selection algorithms will generally select something from 

the candidate set and, if the latter happened to be relatively small 
and possibly weighted with r-derived predictors (e.g., more  
r-based predictors than rh-based predictors in the data matrix), 
one would expect r showing up in at least some of the models 
returned by the selection algorithm. Rainfall is certainly important 
for conidial dispersal (48,50) but other effects of r may be more 
related to the creation of wet surfaces or to increases in atmos-
pheric moisture. With the (sometimes large) correlations between 
weather variables, we believe that r is probably a surrogate for 
other moisture-related variables that are more directly related to 
components of the FHB cycle. In fact, this is what Moschini and 
Fortugno (41) recognized and tried to capture in their NPPRH 
predictor, which represents 2-day periods in which moisture was 
high, because they did not have data at a resolution that would 
allow a more direct estimation of the duration of spike wetness. 

It would seem logical to use both pre- and post-anthesis 
weather-based predictors in the same model, as previously at-
tempted (12), but the reason for not doing so in the current in-
vestigation goes back to the purpose of the online Fusarium Head 
Blight Risk Assessment Tool. For one major use of the Tool, 
predictions need to be made sufficiently early so that growers 
have time to optionally apply a fungicide. Fungicide application 
at anthesis provides the highest percent control (52). Applications 
during the milk stage may also be beneficial (72) but must adhere 
to pre-harvest interval regulatory requirements. Post-anthesis pre-
dictors (and models which incorporate them) could only be used 
at or near anthesis if driven with extended forecasted weather, 
which adds additional uncertainty to predicted risks, more so the 
longer out the forecast. Additional research should clarify how 
uncertainty in forecasted input predictors can be mathematically 
represented in predicted risk. Nevertheless, post-anthesis models 
can be useful for predicting the level of disease (and ultimately 
deoxynivalenol and yield loss) at crop maturity, of benefit in 
marketing and post-harvest grain-handling decision making. Over-
all, we found greater accuracy (using different measures) for the 
post-anthesis models compared with the pre-anthesis ones, at least 
based on the training data set. 

Multiple predictive models and multiple versions of predictor 
variables are the norm for FHB (12,41,50). Kriss et al. (29) point 
out that this is expected because weather-based predictors are 
correlated; even the underlying time series in t, rh, and r are auto-
correlated (which was exploited in the multiple imputations de-
scribed in the Materials and Methods). Multiple, equally accurate 
empirical models do present a simple but not easily answered 
question: which of the models does one use in practice? Earlier 
researchers simply picked a few that were better according to 
some objective criterion (12,41) on the training set; however, 
model selection is far more complicated (4). McNemar tests on 
the discordant errors provided some guidance by suggesting models 
12 (pre-anthesis) and 15 (post-anthesis) were the better ones in 
terms of overall misclassification on the test data. We also investi-
gated model averaging (data not shown), which sometimes leads 
to better predictive accuracy than any single model in a group 
(23). However in this case, there was no advantage, because 
model-averaged predicted probabilities were dominated by models 
6 and 15 (D. A. Shah, unpublished data). 

Relatively short windows risk not capturing conditions associ-
ated with FHB processes requiring longer times; however, longer 
windows can include too much noise in the predictors. A 5-day 
pre-anthesis duration was apparently too short for capturing asso-
ciations with FHB, because none of the pre-anthesis 5-day win-
dow models made it to the final set of models. Conversely, on the 
post-anthesis side, windows >10 days appeared to have diluted 
predictors with too much noise, because none of the 14- or 15-day 
post-anthesis models were in the final model set. 

The YI measure of accuracy (which balances sensitivity and 
specificity) is just one of several choices (16,26) for determining 
the cut-off threshold for translating predicted probabilities on a 

Fig. 6. Sensitivity and specificity of the final pre-anthesis (filled circles) and
post-anthesis (open circles) models on the training and test data sets. Test data 
were not used in model development. Sloped lines are (unweighted) linear
regressions of specificity on sensitivity over all 15 models. The performance
of currently deployed models, after updating model coefficients on the train-
ing data (see equations 10c and 10d), is represented by the triangle symbol,
and is the combined performance over both spring and winter wheat. 
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continuous scale to classifications of site-years as major or non-
major FHB epidemics on a binary scale. For any of the selected 
models, the sensitivity-specificity balance can be controlled by 
simply moving the classification cut-point along the 0 to 1 prob-
ability scale (33); the choice depends on one’s objectives (e.g., 
equal sensitivity and specificity, maximize specificity, minimize 
costs of false positives, and so on). Interestingly, in this study, 
there was a relation between model sensitivity and specificity 
across all 15 final models, where each model was optimized indi-
vidually by its respective YI. One may postulate that, qualita-
tively, the better-performing models (in balancing sensitivity and 
specificity) were those above the linear regression lines of specifi-
city on sensitivity. However, predictive accuracies alone are not 
sufficient to recommend a model; there needs to be a link to prac-
tical decision consequences, which depends on the relative costs 
associated with false positives and false negatives (37,66). Model 
optimization for minimizing expected costs is currently being 
investigated L. V. Madden and N. McRoberts, unpublished). 

The models in this article were restricted to time windows of 
fairly short duration (15 days either before or after anthesis) and 
four weather-based predictors, and these are likely reasons why 
models did not exceed an AUC of 0.9 or a YI of 0.4. One could 
not force better predictive accuracy on these models without re-
laxing the number of weather-based predictors allowed in a single 
model, given the realized variation in the disease and weather data 
and the limited time span of the weather data set. However, corre-
lation between the multiple predictors used in this study would 
have caused problems in model fitting if more predictor variables 
were included in a single model. There also was some curvature 
between logit of the probability of a major epidemic and some of 
the predictor variables. This curvature was accounted for by using 
a generalized additive logistic model, which allowed us to con-
tinue using linear models (on the logit scale) for analysis. Al-
though fit and accuracy were improved with smoothing spline 
functions in the additive logistic model, those models lost some 
interpretability because there is no longer a single parameter 

multiplying a predictor variable (for the predictors represented as 
splines). There are other data-mining methods better able to 
handle nonlinear or highly correlated predictors, such as gradient 
boosting (15) or support vector machines (19), both of which we 
are currently researching. 

We showed that several weather-based, logistic regression 
models with equivalent predictive performance can be created for 
FHB epidemics, depending on how one chooses to summarize 
three basic variables—t, rh, and r—within relatively narrow 
periods (15 days) around anthesis. All models we developed 
contained four or fewer weather-based predictors. They also made 
fewer misclassification errors than updated versions of the models 
currently deployed in the United States National Fusarium Head 
Blight Risk Assessment Tool. Because of their relative simplicity, 
the new models, or the weather-based predictors identified 
through the model-selection process, could lead to improvements 
in the current Risk Assessment Tool, after evaluating their predic-
tive outcome costs. 

APPENDIX 

On run length predictors. Suppose we have a sequence vector 
(seq) of hourly rh values: seq = {77, 62, 61, 73 ,89, 92, 93, 93, 
90, 80, 74, 70, 68, 63, 56, 65, 74, 80, 83, 85, 90, 86, 83, 83, 83, 
82, 84, 84, 74, 73}. Convert the elements of seq to x  {0, 1}, 
where x = 0 if rh < 80 and x = 1 if rh  80%. Then, seq becomes 
seqb, a binary vector: seqb = {0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0}. A run length of length r 
is defined as r consecutive 1s in seqb. So, for example, r = 6 
would represent six consecutive hours in which rh  80%. For 
seqb, we have the set of corresponding run lengths {6, 11}. 
Therefore, the value of the predictor “max[rl (No. h  80%)]”, 
which can be stated descriptively as “the maximum run length of 
the number of consecutive hours in which rh was greater or equal 
to 80%”, is 11. The value of the predictor “count(rl (No. h  80%) 
 6)”, which can be stated descriptively as “the number of times 

TABLE 3. Weather-based predictors included in the final 15 models 

Model 
IDsa 

 
Predictor acronymb 

 
Description 

 
Groupc

7 & 13 RH.A.POST5.12H Mean rh during overnight period, 5-day post-anthesis 6 
4 & 8 & 14 RH.A.POST7.12H Mean rh during overnight period, 7-day post-anthesis 6 
5 & 9 & 15 RH.A.POST10.12H Mean rh during overnight period, 10-day post-anthesis 6 
1 & 6 RH.A.PRE7.24H Mean rh per day, 7-day pre-anthesis 7 
2 & 10 RH.A.PRE10.24H Mean rh per day, 10-day pre-anthesis 7 
3 & 11 RH.A.PRE14.24H Mean rh per day, 14-day pre-anthesis 7 
2 RH.G90.PRE10.12H Number of h rh  90% during overnight period, 10-day pre-anthesis 9 
2 RH.C6RLG90.PRE10.24H Number of non-overlapping intervals with 6 continuous h in which rh  90%,10-day pre-anthesis 15 
15 RH.C6RLG90.POST10.24H Number of non-overlapping intervals with 6 continuous h in which rh  90%, 10-day post-anthesis 15 
6 T.A.PRE7.24H Mean daily temperature, 7-day pre-anthesis 16 
12 T.A.PRE15.24H Mean daily temperature, 15-day pre-anthesis 16 
7 & 13 T.A.POST5.24H Mean daily temperature, 5-day post-anthesis 16 
4 & 8 & 14 T.A.POST7.24H Mean daily temperature, 7-day post-anthesis 16 
5 & 9 & 15 T.A.POST10.24H Mean daily temperature, 10-day post-anthesis 16 
6 T.L9.PRE7.24H Number of h (t < 9°C), 7-day pre-anthesis 19 
12 T.L9.PRE15.24H Number of h (t < 9°C), 15-day pre-anthesis 19 
7 & 13 TRH.15T30nRHG80.POST5.12H Number of h (15°C  t 30°C & rh  80%) during overnight period, 5-day post-anthesis 31 
4 & 8 & 14 TRH.15T30nRHG80.POST7.12H Number of h (15°C  t 30°C & rh  80%) during overnight period, 7-day post-anthesis 31 
5 & 9 & 15 TRH.15T30nRHG80.POST10.12H Number of h (15°C  t  30°C & rh  80%) during overnight period, 10-day post-anthesis 31 
6 RHR.RHG90nR.PRE7.24H Number of days (mean(rh)  90% & rainfall occurred), 7-day pre-anthesis 34 
12 TRH.15T30nRHG80.PRE15.24H Number of h (15°C  t 30°C & rh  80%), 15-day pre-anthesis 37 

a A simple way of identifying a model. 
b Acronyms follow the naming convention a.b.w.c, where a indicates whether the variable summarizing vapor pressure deficit (VPD), dewpoint depression (DD), 

relative humidity (RH), temperature (T), rainfall (R), or pairwise interactions between temperature and relative humidity (TRH) or between relative humidity and 
rainfall (RHR); b indicates the type of summary measure (description column), such as A for average (mean), L for less than, and so on; w is a placeholder for 1
of 10 vectors of hourly time series weather data ( wpre.5, wpre.7, wpre.10, wpre.14, wpre.15, wpost.5, wpost.7, wpost.10, wpost.14, and wpost.15), where the subscript in the 
preceding list indicates if the weather data span 5, 7, 10, 14, or 15 days pre- or post-anthesis; and c indicates a 24-h day (24H: 0800 to 0800 h) or a 12-h 
overnight period (12H: 2000 to 0800 h).  

c Within groups, predictors vary only over the defining window. For example, group 7 contains predictors measuring mean rh per day, with five in the pre-anthesis 
period (5-, 7-, 10-, 14-, and 15-day windows) and five in the post-anthesis period (5-, 7-, 10-, 14-, and 15-day windows). Therefore, there are 10 predictors per
group and, hence, 380 total predictors.  
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there were six or more consecutive hours in which rh was at least 
80%”, is 2. 

On additive logistic regression. We characterized nonlinear-
ity-in-the-logit by generalizing the linear logistic regression 
model. Following the notation of Hastie et al. (23), the linear 
logistic regression model relates the logit link of µ to p predictors 
with the equation: 

logit (µ) =  + 1X1 + … + pXp (A1) 

The j are fixed (constant) coefficients. The additive logistic 
regression model, a special case of a GAM, generalizes equation 
A1 by relaxing the assumption of fixed coefficients: 

logit (µ) =  + f1(X1) + … + fp(Xp)  (A2) 

where the fj() are smooth functions. Equation A2 is still linear, 
but each term is now more flexible than a constant j multiplied 
by a predictor. 

Additive logistic regression versions of the 15 logistic regres-
sion models were fit using a thin plate spline smoother for fj(xj) 
with a slight over-smoothing in the generalized cross validation 
score ( = 1.4), useful to prevent overfitting in binomial models 
(70). 
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