THE RELATIONSHIP BETWEEN STIFFNESS \& STRESSES OF MEMBERS OF RIGID FRAMED STRUCTURES
by

HONG KYUN KIM
B. of Science in Engineering, Seoul National University 1955

A MASTER'S THESIS

Submitted in partial fulfillment of the requirements for the degree MASTER OF ARCHITECTURAL ENGINEERING College of Architecture and Design

$L D$ 2668

 T4

 \(1765^{-}\)

 \(1<49\)

 C 2
 TABLE OF CONTENTS
Documert Page
I. INTRODUCTION. 1
II. PRELIMINARY CALCULATION 3
A. Floor Area Carried by Beam 3
B. Selection of the Size of Beams and Columns 3
C. Moment of Inertia and Stiffness Factors 5
D. Joint Equation 6
E. Mechanical Tabulation 7
III. CONSIDERATION OF THE RESULTS OF CALCULATIONS 28
A. Negative Moment at Interior Face of Exterior Beam 28
B. Negative Monent at Interior Face of Exterior Beam and Its Distribution to Adjacent Colum Above and Below 31
C. Negative Moment at Interior Spans and
Positive Moment at Mid-Spans 33
D. Future Development 33
IV. BIBLIOGRAPHY 35

I. INTRODUCTION

This study has been made to detemine the relationships between stress and variety in size of menbers in multi-story rigid-franed structures. By analyzing the stresses of many different frames and investigating the results by statistical methods, the varieties of stress are easily observed and reduced to formulas.

Tse result of the above (the formula) will be very helpful Ir analyzing the stress of rigid framed structures. Because engineers face the difficulty of choosing the values of moment of inertia (in subsequent paragraphs the symbol I represents moment of inertia) which are deterinined by the size of members.

In general, stress analysis is processed with trial I values Which are chosen from experience. If the size of members are out of the adjustable range of reinforcing steel, re-calculation should be made based on the trial stress analysis. Therefore, it is desirable to avoid the complexities and discrepancies, as raentioned above, in calculating the stress of rigid framed structures. There may be many different ways to investigate this problem based on the load situation and the shape of the structure. The following study is mainly concerned with gravity loading situations of up to three or four story buildings with different story heights and span lengths. In buildings of up to three or four stories, in most cases, wind load does not govern the design since increased allowable unit stresses are used for computation. Therefore, it appears that the slop deflection method is in such cases nost suitable for theoretical analysis.

Of the following 15 cases, a typical case (1) has been thoroughly analyzed; in the remaining instances, only the results of moment diagrans are mentioned. As a typical case, a three story, five bay frame, symmetrical at the center line of the mid-bay and which had a perpendicular span length of 20 feet, was chosen. This is shown in Figure 1-1. For loading conditions $30 \mathrm{lb} . / \mathrm{sq}$. ft. for snow load, and $60 \mathrm{Ib} . / \mathrm{sq} . \mathrm{ft}$. for live load was selected.

For the purpose of minimization of the error between the trial section and the final section, maximum beam moment is assumed to be $1 / 10 \mathrm{WL} \mathrm{L}^{2}$. This value was taken from ACI Code Section 904 (C). In the case of a simp?e beam, maximum bending moment occurs at the center line and the value is $M_{0}=w L^{2} / 8$. Therefore $1 / 10 \mathrm{wL}^{2}$ is sald to be $8 / 10 \mathrm{M}$.

Fig. 1-1

The slab load is distributed at 45 degrees at the corner of intersecting beams and Mobecomes $M_{0}=w / 24\left(3 L^{2}-4 a^{2}\right)$. Therefore Meg. пах. $=8 / 10 \times \mathrm{w} / 24\left(3 L^{2}-4 \mathrm{a}^{2}\right)$ $=\frac{W}{30}\left(3 L^{2}-4 a^{2}\right)$

II. PRELIMINARY CALCULATION

A. Floor Area Carried By Beams

In this type of structure, the floor lead carried by a beam is seen in Fig. 2-1. Total load is the sum of the live load and the dead load. The sum is assumed to be 190 lb . per sq. ft. for floor beans and 160 lb . per sq. ft. for roof beams. Is is convenient to convert the dead load of the beam

Pig. 2-1 to an equally distributed floor load by dividing the entire floor area which the beam carries.

B. Selection of the Size of Beams and Columns

In a practical sense, the size of beams used is consistant through out each floor, the size of columns being determined by the combined axial and flexural stresses. By considering the fact that the interior coluan is not affected very much by the bending moment induced by gravity load, and the exterior column, which usually has half of the interior gravity load, is much affected by the bending moment, one sees that the size of the column becomes nearly the same through out each floor. Thus, in this study, the size of the interior columns is usually used as the standard for each floor.

1. Size of Beam

1mas: $=\mathrm{w} / 30\left(3 L^{2}-4 a^{2}\right)$

$$
\begin{aligned}
=3.6 / 30 \quad 3(24)^{2}-4(10)^{2}= & 159.5 \text { ft. }- \text { kips } \\
& \text { for floor beams }
\end{aligned}
$$

$\begin{aligned} & \text { Mmax. }=3.0 / 30 \quad 3(24)^{2}-4(10)^{2}= 132.8 \text { ft. }- \text { kips } \\ & \text { for roof beams }\end{aligned}$
Therefore if we assume $b=14$ ", then
$d=\sqrt{\frac{11}{K b}}=\sqrt{\frac{159.5 \times 12 \times 1000}{236 \times 14}}=\sqrt{578}=2^{4}+1^{\prime \prime}$
including fire-protection and stirrups,
say $D=28^{\prime \prime}$ for floor beans.
$d=\sqrt{\frac{M}{K b}}=\sqrt{\frac{132.8 \times 12 \times 1000}{236 \times 14}}=\sqrt{482}=21.9$
say $D=24 "$ for roof beams.

2. Size of Column

Colum Load (Interior Col.)
$3^{p} c=(20 \times 24) \times 150=72.0$ kips
$2^{P} c=(20 \times 24) \times 180+72.0=72.0$ kips
$1^{P}{ }_{c}=(20 \times 24) \times 180+158.4=24.8 \mathrm{kips}$
As a trial section for the thire floor column, if one chooses $12^{\prime \prime} \times 12^{\prime \prime}$ with $4-\# 9$ bars. Then

$$
\begin{aligned}
A_{g} & =12^{\prime \prime} \times 12^{\prime \prime}=144 \mathrm{sq} \cdot \text { in. } \\
P_{g} & =4 / 144=0.0278 \\
A_{t} & =(n-1) A_{S}+A_{g}=36+144=180 \mathrm{sq} \cdot \text { in. } \\
f_{c} & =P / A_{t}=72,000 / 180=400 \mathrm{psi} \\
P_{\text {all. }} & =0.8 \times 144(0.225 \times 3000+20,000 \times 0.0278) \\
& =142 \mathrm{kips}
\end{aligned}
$$

$$
\begin{aligned}
& F_{\mathrm{C} \text { all. }}=142 / 180=790 \text { psi therefore } \\
& f_{\mathrm{c}} / F_{\mathrm{C}}=400 / 790=0.507 \text { which is large enough. }
\end{aligned}
$$

C. Moment of Incrtia and Stiffness Factors

In preliminary calculations, the effect of reinforcement is not considered in computing the moment of inertia since the exact amount of reinforcing steel is not determined until the stress analysis is completely finished.

It will be helpful to make a table and a diagram of stiffness ratios as shown in Figure 2-2.

TABLE 2-1

	B	D	I	L	K	K
$3^{\mathrm{B}} 1,2,3$	14	24	16,150	288	56.1	0.63
$1,2^{\mathrm{B}} 1,2,3$	14	28	25,600	288	89.0	1
$3^{\mathrm{C}} 1,2,3$	12	12	1,730	144	12.0	0.14
$2^{\mathrm{C}} 1,2,3$	14	14	3,200	144	22.2	0.25
$1^{\mathrm{C}_{1}, 2,3}$	18	18	8,750	216	40.5	0.46

In anelyzing the stresses by the slope deflection method, it will be convenfent to compute the value of twice the sum of the stiffness ratio at each joint. Special care should be taken in computing the value of 2 k at the joints G, H, and K in Fig. (2-2). For instance at joint $G, ~ \varnothing G=-\varnothing G^{\prime}$ since it is a symmetrical deflection. Therefore, $M G G^{\prime}=k\left(2 \not G^{\prime}+\not G^{\prime}\right)$ becomes MGG' $=k(2 \not \subset G-\not \subset G)=k(\not \subset G)=1 / 2 k(2 \not \subset G)$. Thus $1 / 2 k$ is used for $2 \mathrm{kG}, 2 \mathrm{kH}$ and 2 kJ .

$$
\begin{aligned}
& 2 k_{a}=2(0.63+0.14)=1.54 \\
& 2 k_{b}=2(0.14+0.25+1.0)=2.78 \\
& 2 k_{c}=2(0.25+0.46+1.0)=3.42 \\
& 2 k_{d}=2(0.63+0.14+0.63)=2.80 \\
& 2 k_{e}=2(0.14+0.25+1.0+1.0)=4.78 \\
& 2 k_{\mathrm{c}}=2(0.25+0.46+1.0+1.0)=5.42 \\
& 2 k_{\mathrm{g}}=2(0.14+0.63+0.63 / 2)=2.17 \\
& 2 k_{\mathrm{h}}=2(0.14+0.25+1.0+1.0 / 2)=3.78 \\
& 2 k_{j}=2(0.25+0.46+1.0+1.0 / 2)=4.42
\end{aligned}
$$

D. Joint Equations

In any joint, the sum of the bending moment of members at a joint will be zero. Thus following equations are established.

$$
\begin{aligned}
& M_{a b}+M_{a d}=0 \\
& M_{b a}+M_{b c}+M_{b e}=0 \\
& M_{c b}+M_{c l}+M_{c f}=0 \\
& M_{d a}+M_{d g}+M_{d e}=0 \\
& M_{e b}+M_{e h}+M_{e f}+M_{e d}=0 \\
& M_{f c}+M_{f j}+M_{f 2}+M_{f e}=0
\end{aligned}
$$

$$
\begin{aligned}
& M_{g d}+M_{g g} \prime+M_{g h}=0 \\
& M_{h e}+M_{h h \prime}+M_{h g}+M_{h j}=0 \\
& M_{j \Upsilon}+M_{j j}+M_{j h}+M_{j 3}=0
\end{aligned}
$$

E. Mechanical Tabulations

In the slope deflection method, the general form of bending moment at each end of 2 member " $A-B$ " is described as

$$
\begin{align*}
M_{a b}=2 E K\left(2 \theta_{a}+\theta_{b}-3 R\right)+M_{a b}^{f i x} & (2-5-1) \\
M_{b a}=2 E K\left(2 \theta_{b}+\theta_{a}-3 R\right)+M_{b a}^{f i x} \cdot & (2-5-2) \\
\text { If put } \varnothing=2 E K_{0}(0) & \\
\psi=2 E K_{0}(-3 R) \text { then } & \\
M_{a b}=k\left(2 \phi_{a}+\phi_{b}+\psi\right)+M_{a b}^{f i x} . & (2-5-3) \tag{2-5-3}\\
M_{b a}=k\left(2 \varnothing_{b}+\varnothing_{a}+\psi\right)+M_{b a}^{f i x} . & (2-5-4) \tag{2-5-4}
\end{align*}
$$

K_{O} denotes a randomly selected standard stiffness
factor and k is the stiffness ratio of the member $A-B$ for the standard stiffness factor K_{O}.

If the joint is fixed and no rotation is allowed, then $R=0, \psi=0$

$$
\begin{align*}
& M_{a b}=k\left(2 \phi_{a}+\varnothing_{b}\right)+M_{a b}^{f i x} . \tag{2-5-5}\\
& M_{b a}=k\left(2 \phi_{b}+\varnothing_{a}\right)+M_{b a}^{f i x} . \tag{2-5-6}
\end{align*}
$$

Each ter of joint equation is described on the following page.

$$
\begin{aligned}
& \begin{array}{l}
M_{a b}=0.14\left(2 \phi_{a}+\phi_{b}\right)-M_{a d}^{f i x} . \\
M_{a d}=0.63\left(2 \phi_{a}+\phi_{d}\right)-M_{a d}
\end{array} \\
& \begin{array}{l}
M_{b a}=0.14\left(2 \phi_{b}+\phi_{\mathrm{a}}\right) \\
M_{\mathrm{be}}=1.0\left(2 \varnothing_{\mathrm{b}}+\phi_{\mathrm{e}}\right)-M_{\mathrm{be}}^{f 1 x_{0}}
\end{array} \\
& M_{b c}=0.25\left(2 \varnothing_{\mathrm{b}}+\varnothing_{\mathrm{c}}\right) \\
& \begin{array}{l}
M_{c b}=0.25\left(2 \phi_{c}+\phi_{b}\right)-M_{c f}^{f 1 x_{0}} \\
M_{c f}=1.0\left(2 \phi_{c}+\phi_{\mathrm{f}}\right)-M_{c I}=0.46\left(2 \phi_{c}\right)
\end{array} \\
& M_{I C}=0.46^{c}\left(\varnothing_{c}\right) \\
& M_{d a}=0.63\left(2 \varnothing_{d}+\phi_{\mathrm{a}}\right)+M_{\mathrm{ad}}^{\text {fix }} \\
& M_{d g}=0.63\left(2 \phi_{d}+\phi_{\mathrm{g}}\right)-M_{d g}^{f \dot{i x}} \\
& M_{\text {de }}=0.14\left(2 \varnothing_{e}+\varnothing_{e}\right) \\
& M_{e d}=0.14\left(2 \phi_{e}+\phi_{d}\right) \\
& M_{e b}=1.0 \quad\left(2 \phi_{e}+\phi_{b}\right)=M_{b e}^{f i x} . \\
& \begin{array}{l}
M_{e h}=1.0\left(2 \varnothing_{e}+\phi_{\text {n }}\right) \\
M_{e f}=0.25\left(2 \phi_{e}^{e}+\phi_{\mathrm{P}}\right)
\end{array} \\
& \begin{array}{l}
M_{f}=0.25\left(2 \phi_{f}+\phi_{e}\right) \\
M_{f c}=1.0\left(2 \phi_{f}+\phi_{c}\right)+M_{c f}^{f i x} .
\end{array} \\
& \begin{array}{l}
M_{f j}=1.0\left(2 \phi_{f}+\phi_{j}\right)-M_{f i}^{f i x} . \\
M_{f 2}^{f j}=0.46\left(2 \phi_{f}^{f}\right)
\end{array} \\
& M_{2 f}=0.46\left(\phi_{\mathrm{S}}\right) \\
& \begin{array}{l}
M_{g d}=0.63\left(2 \varnothing_{g}+\phi_{d}\right)+M_{d g}^{f 1 x} . \\
M_{g h}=0.14\left(2 \varnothing_{g}+\phi_{h}\right)
\end{array} \\
& M_{g}^{g h}=0.63 / 2\left(2 \varnothing_{g}\right)-M_{g \mathrm{~g}}^{\mathrm{g} i x} .
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
M_{j h}=0.25\left(2 \varnothing_{j}+\phi_{h}\right) \\
M_{j 1}^{j h}=1.0\left(2 \phi_{j}^{j}+\phi_{i}\right)+M_{i j}^{p 1 \pi} .
\end{array}
\end{aligned}
$$

Unknown factors such as $\phi_{\mathrm{a}}, \varnothing_{\mathrm{b}} \ldots$ etc, are dealt with by mechanical tabulation of simultaneous equations as described on page 8.

Fixed end moment $M^{f i x}$. is computed and substituted into the equations on page 8.

1. For Roof Beams

$$
\begin{aligned}
\text { Mf. }= & w / 12 L \quad\left(I^{3}-2 a^{2} L+a^{3}\right) \\
& =\frac{(160 \times 20)}{12 \times 24}(24)^{3}-2(10)^{2}(24)+(10)^{3}=111^{\text {ft. -kipa. }} \\
M_{0}= & w / 24 \cdot\left(3 L^{2}-4 a^{2}\right) \\
= & \frac{160 \times 20}{24} 3(24)^{2}-4(10)^{2}=178 \text { ft. -kips }
\end{aligned}
$$

2. For Floor Beams

$$
\begin{aligned}
& M^{f 1 x}=\frac{(190 \times 20)}{12 \times 2^{4}}(24)^{3}-2(10)^{2}(24)+(10)^{3}=132^{f t} \cdot-k i p s \\
& M_{0}=\frac{190 \times 20}{24} \quad 3(24)^{2}-4(10)^{2}=212^{f t}-k i p s .
\end{aligned}
$$

$T A B T E 2.2$

\bigcirc	$\stackrel{\underset{r}{r}}{\underset{\sim}{r}}$	$\begin{gathered} M \\ M \\ \sim \\ \vdots \end{gathered}$	$\begin{gathered} \mathbb{N} \\ \underset{\sim}{N} \\ \div \end{gathered}$	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc				．	
Q				．	－	O－		$\begin{aligned} & \text { n } \\ & \stackrel{0}{0} \end{aligned}$		0 0 \vdots +	M $\stackrel{M}{\vdots}$ \sim	$\xrightarrow{\sim}$	Y + \square
렬					－		$\begin{gathered} \dot{\rightharpoonup} \\ \stackrel{\rightharpoonup}{r} \\ \dot{0} \end{gathered}$		\cdots	$\stackrel{\sim}{\square}$ $\stackrel{+}{\square}$ \div	10 $\stackrel{-1}{0}$ $\stackrel{\square}{\square}$	¢ 0 \div	0 \square +
\％		，		$\begin{aligned} & M \\ & M \\ & 0 \end{aligned}$			ゼ	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{r}}$		O \vdots \vdots	1 0 \vdots \vdots	0 - - -	\bigcirc
$\stackrel{¢-1}{2}$			－		$\begin{aligned} & \text { n } \\ & \\ & 0 \end{aligned}$				－	－	$\stackrel{\sim}{\wedge}$	ミ	\approx \vdots 0
8\％		0 $-i$		$\underset{\sim-1}{-i}$		\cdots		\bigcirc		O	$\stackrel{c}{¢}$	∞ 0 0 0	0 0 0 0
\％	M 0				$\stackrel{3}{4}$ \vdots 0		M 0 0			$\begin{gathered} \cup \\ 0 \\ 0-1 \\ 1 \end{gathered}$	$\stackrel{\underset{i}{-}}{\stackrel{\sim}{-1}}$	$\stackrel{\square}{\stackrel{\rightharpoonup}{\square}}$	$\stackrel{\ominus}{\stackrel{\rightharpoonup}{2}}$
－		$\stackrel{\text { in }}{\stackrel{\circ}{0}}$	$\begin{gathered} \stackrel{N}{\sim} \\ /^{n} \end{gathered}$			O			＊	\sim \vdots $\div \sim$	M \vdots \cdots	$\stackrel{\square}{\vdots}$	$\stackrel{+}{\div}$
\％	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \dot{0} \end{aligned}$		in		0 $-i$ i	－．				∞ \vdots	∞ \cdots \sim \sim	\bullet \cdots \sim	$\xrightarrow{\sim}$
－		－		M 0 0 i					．	$\stackrel{\square}{\square}$	∞ \vdots \vdots	$\stackrel{M}{1}$	M \cdots

$$
\begin{aligned}
& \begin{array}{l}
M_{a b}=0.14(2 \times 75 \cdot 3+43.5)=+27.2 \\
M_{a d}^{a b}=0.63(2 \times 75 \cdot 3-17.6)-111=-27.2
\end{array} \\
& M_{b a}=0.14(2 \times 43.5+75.3)=22.7 \\
& { }^{3} \mathrm{ba}=1.0 \quad(2 \times 43.5-8.65)-132=53.65 \\
& M_{b c}=0.25(2 \times 43.5+37.4)=31.1
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
M_{d a}=0.63 & (2 x-17.6=75.3)+111=+136.25 \\
M_{d g}=0.63(2 x-17.6+5.0)-11 & =-130.1 \\
M_{d e}=0.14(2 x-17.6-8.65) & =-6.15
\end{aligned} \\
& \begin{aligned}
M_{e d} & =0.14(2 x-8.65-17.6)=-4.79 \\
M_{e d} & =1.0(2 x-8.65+43.5)+132=+158.2 \\
M_{e h} & =1.0(2 x-8.65+2.0)-132=-147.3 \\
M_{e f}=0.25(2 x-8.65-6.77) & =-6.02
\end{aligned} \\
& \begin{array}{l}
M_{\mathrm{f}}=0.25(2 x-6.77-8.65)=-5.55 \\
M_{c}=1.0(2 x-6.77+37.4)+132=+155.86
\end{array} \\
& i^{c} c=1.0(2 x-6.77+1.42)-132=-144.12 \\
& M_{1}=0.46(2 x-6.77)=-6.23 \\
& \begin{array}{l}
M_{g d}=0.63(2 \times 5.0-17.6)+111=+106.2 \\
M_{g h}=0.14(2 \times 5.0+2.0) \quad=+1.68 \\
M_{g g}=0.63 / 2(2 \times 5.0)-111=-107.85
\end{array} \\
& \begin{array}{l}
\text { Whg }=0.14(2 \times 2.0+5.0)=+1.26 \\
\text { Whe }=1.0(2 \times 2.0-8.65)+132= \\
\text { Mh }=1.0 / 2(2 \times 2.0)-132=-130 \\
\text { NHj }^{\text {N }}=0.25(2 \times 2.0+1.42)=+1.36
\end{array} \\
& \begin{array}{l}
M_{j h}=0.25(2 \times 1.42+2.0)=+1.21 \\
M_{j f}=1.0(2 \times 1.42-6.77)+132=+128.07
\end{array} \\
& M_{j j}=1.0 / 2(2 \times 1.42)-132=-130.58 \\
& M_{j 3}^{j}=0.46(2 \times 1.42)=+1.30
\end{aligned}
$$

Fig. 2-3

In the following fourteen cases, analysis is done by the same procedure, results are shown on pages $14-27$.

In these calculations, stiffness ratios of colurns are selected after considering the varying axial colunn loads. With these resul.ts, a relationship will be sought between bending moment, at each joınt and at mid-span, uith value of simple beam moment in a similar situation.

Fig. 2-6

Fig. 2-7

Fig. 2-8

Fig. 2-11

Fig. 2-12

Fig. 2-17
III. CONSIDERATION FOR THE RESULT OF CALCULATION
A. Negative Moment at Interior Faces of Exterior Beams. In finding a certain relationship between bending moment and the stiffness ratio with the above result of calculation, the ratio of K_{b} (stiffness ratio of an exterior beam) and ΣK (the sum of stiffness ratio of members at the exterior joint of bean) and the ratio of M_{b}, the negative moment at interior face of exterior beam, and M_{0}, simple beam moment of the beam, are shown on Table $3-1$, and taken as horizontal and vertical component, respectively in the Fig. 3-1.

An almost straight line is shown on Fig.3-1, and it is observed that there exists a rational relationship between the stiffness ratio and the bending moment.

With respect to the ratio $\mathbb{K}_{\mathrm{b}} / \Sigma \mathrm{K}$, consideration should be given in formulating the above relationship into a formula. For, when the value $K_{b} / \Sigma K$ is close to zero (in other words K_{b} becomes smaller), it denotes that both beam ends are fixed, and when the value $K_{b} / \Sigma k$ is close to one, it denotes a cantilevered beam situation.

Therefore, it is not desirable to pick the above two excessive cases as a standard point in formulating the formula. Error will be minimized by using a reasonably selected $K_{b} / \Sigma K$ value between zero and one.

Adopted into a general form of linear formula,

$$
Y=a x+b
$$

corresponding $K_{b} / \Sigma K$ values vary from 0.82 to 0.39 while the value
ANTHES 3-1

Case 5	
Kb/ 2π	$16 / 150$
0.82	0.154
0.705	0.232

Case 10	
$\mathrm{Hb} / \Sigma \%$	$1: 6 / 20$
0.77	0.192
0.558	0.310

N

Csec 4	
$\mathrm{~Kb} / \Sigma z$	$13 \mathrm{~b} / \mathrm{HO}$
0.82	0.155
0.72	0.257
0.585	0.305

9
$1: 3 / E \%$
0.103
0.335
0.353

 0.325

Fig. 3-1.
of M_{B} / M_{0} veries from 0.153 to 0.425 , therefore,
$a=0.153-0.425 / 0.82-0.39=-0.63$
If the standard point is chosen as $K_{b} / \Sigma K=0.55$ then $H_{b} / M_{0}=0.322$ thus Mneg. $=M_{0}\left(\mathrm{~K}_{\mathrm{b}} / \Sigma \mathrm{K}-0.55\right)(-0.63)+0.322(3-1)$

Observing the Fig. 3-1, there would be less error when the value of $K_{b} / \Sigma K=1$ is used than when that of $K_{b} / \Sigma K=0$ is used. $M_{b} / M_{0}=0.04$ when $K_{b} / \Sigma K=1$ thus
$M_{\text {neg. }}=M_{0}\left(K_{b} / \Sigma K-1\right)(-0.63)+0.04 \quad(3-2)$
As an example, if $K_{b} / \Sigma K=0.808$, substitute into the formula (3-1)

$$
\begin{aligned}
M_{\text {neg. }}= & M_{0}(0.808-0.55)(-0.63)+0.322 \\
= & 0.1595 \mathrm{M}_{0} \text { which is close enough to } \\
& 0.16 \mathrm{M}_{0} \text { in Table }(3-1)
\end{aligned}
$$

If formula ($3-2$) is used, and $K_{b} / \Sigma k=0.55$, then
$M_{\text {neg. }}=M_{0}(0.55-1)(-0.63)+0.04=0.323 M_{0}$.
This value is also close enough to the value $0.322 \mathrm{M}_{0}$ in Table (3-1).
B. Negative Moment at Interior Faces of Exterior Beams And Its Distribution to Adjacent Columns Above And Below. As to the exterior column moment, it is somewhat
difficult to relate to the stiffness ratio, since the distribution is irregular. As the result of observing Fig. 2-3 - 2-17 it is found that there exist certain relationships between upper and lower moment of a colum in each floor.

On the roof floor, upper exterior column moment is same amount as but with opposite sign of the negative moment at the
interior faces of the exterior beam.
At each floor, lower column moment is approximately 90% of the upper moment of the same column. Therefore, upper colum moment of next lower floor is computed by deducting lower colum moment from negative beam moment.
nth fl. col. upper $\mathrm{MO}_{\mathrm{O}} \mathrm{M}=$ beam $\mathrm{M}_{\mathrm{O}} \mathrm{M}$

nth $\begin{aligned} & \text { fl.col } \\ & =90 \% \text { lower Morn } M_{0}\end{aligned}$
n-1 th fl. col.
upper Mom. = Beam Mom. nth F1. col. lower Mom.

Fig. 3-2
Fig. 3-2 shows the relationship between the negative beam moment and adjacent column moment above and below.

By repeating this process, exterior column moments are easily found. Even this calculation is not accurate enough for precise calculation though is is good enough for approximate analysis, and for determination of suitable member size.
C. Negative Moment ai Faces of Interior Spans and Positive Moment at Mid-Span.
According to the ACI code Section 904, negative moment at interior spans of continuous beams are classified by their situation such as exterior faces of first interior supports, other faces of interior supports, etc.

In a practical sense, the size of a bean is determined by the condition which is critical and adjusted by suitable reinforcement. Therefore, for the purpose to assume maximum negative moment, $3 / 4$ Momay be used, this value is slightly less than that of the continuous beam moment in section 904 (C) of the ACI code.

As to the positive moment, it is generally computed by deducting the average of the negative moments, from Mo which has the maximum simple beam moment.

D. Future Development.

In most cases, the amount of interior colum moment is very small and does not much affect design. Thus, negative and positive beam moments and exterior column moment are of more importance in the design. Therefore, this study will be of use not only in approxinate stress analysis but also in determining suitable sizes of members for accurate stress analysis.

This article is only concerned with a symnetrical low story building containing a certain live load. It would be of interest and value to investigate more complicate conditions, such as unsymetrical framed structures, different loading
situations, and other situations. By plotting graphs and establishing formulas for these results, contributions to practical usage may be considorable.

Borg, S. F. and Joseph J. Gennard
Advanced Structural Analysis. New York: D. Van Nostrand Co. Inc., 1950.

Dunham, Clarence W., C.E. The Theory and Practice of Reinforced Concrete. 3rd ed. New York: McGraw-Hill, 1953.

Anerican Concrete Institute ACI Building Code. Michigan: 1963.

American Institute of Steel Construction, Inc. Manual of Steel Construction. 6th cd. New York: 1963.

```
THE RELATIONSHIP BETWEEN STIFFNESS & STRESSES
OF IEMBERS OF RIGID FRAVED STRUCTURES
by
    HONG KYUN KIM
B. of Science in Engineering, Seoul National
```

AN ABSTRACT OF A MASTER'S THES IS
Submitted in partial fulfillment of the
requirements for the degree

```MASTER OF ARCHITECTURAL ENGINEERING
```

College of Architecture and Design

ABSTRACT

This study is an attempt to describe a suitable method for determining proper member size in rigid framed structures by the slope deflection method.

Beginning with calculations based on a structure of three stories and five bays (symmetrical at the center line). Various combinations of story height, span length and member size were described and analized for suitability.

To this analysis were added comparable analyses of structures of two and four stories in height, and three and seven bays.

Preliminary calculations are for reinforced concrete structures supporting both a dead load (the structure itself) and a live load (here considered to be an office).

In a practical sense, beams and colums of the same size are used throughout each story. Unlmown factors such as $\emptyset \mathrm{A}$, ØB -----etc. which denote twice the sum of stiffness ratios multiplied by slope at each joint are solved by mechanical tabulation of simultaneous equations. For all fifteen seperate variations which were anelized by the same procedure moment diagrams were drawn.

By observing the above results, the ratio of Kb (the stiffness ratio of an exterior beam) andEk (the sum of the stiffness ratio of members at the joint of the beam) and the ratio of Mb (the negative moment at an interior face of an exterior beam) and Mo (the simple heam monent of a member) are show and plotted
on a graph; then formulated by statistical methods so as to investigate certain relationships between stresses and stiffness. Also distribution of negative moment at an interior face of an exterior beam transmitted to columns above and below the joint is observed and negative moment at all other faces and positive moment at midspan are related to the bending moment of a simple beam in the same situation.

