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Abstract 

Crops research moving forward faces many challenges to improve crop performance. In 

breeding programs, phenotyping has time and economic constraints requiring new phenotyping 

techniques to be developed to improve selection efficiency and increase germplasm entering the 

pipeline. The objectives of these studies were to examine the changes in spectral reflectance with 

soybean breeding from 1923 to 2010, evaluate band regions most significantly contributing to 

yield estimation, evaluate spectral reflectance data for yield estimation modeling across 

environments and growth stages and to evaluate the usefulness of spectral data as an optimized 

phenotyping technique in breeding programs. Twenty maturity group III (MGIII) and twenty 

maturity group IV (MGIV) soybeans, arranged in a randomized complete block design, were 

grown in Manhattan, KS in 2011 and 2012. Spectral reflectance data were collected over the 

growing season in a total of six irrigated and water- stressed environments. Partial least squares 

and multiple linear regression were used for spectral variable selection and yield estimation 

model building. Significant differences were found between genotypes for yield and spectral 

reflectance data, with the visible (VI) having greater differences between genotypes than the 

near-infrared (NIR). This study found significant correlations with year of release (YOR) in the 

VI and NIR portions of the spectra, with newer released cultivars tending to have lower 

reflectance in the VI and high reflectance in the NIR. Spectral reflectance data accounted for a 

large portion of variability for seed yield between genotypes using the red edge and NIR portions 

of the spectra. Irrigated environments tended to explain a larger portion of seed yield variability 

than water-stressed environments. Growth stages most useful for yield estimation was highly 

dependent upon the environment as well as maturity group. This study found that spectral 

reflectance data is a good candidate for exploration into optimized phenotyping techniques and 

with further research and validation datasets, may be a suitable indirect selection technique for 

breeding programs.    
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Chapter 1 - Precision Phenotyping Using Canopy Reflectance 1 

Measurements in Field Crops Research: A Review 2 

 Introduction 3 

One of the challenges of plant breeders moving forward is to create genotypes that 4 

produce more with fewer inputs and on fewer acres. Over the last decade, advancements in 5 

genotyping techniques have reached new heights, whereas phenotyping techniques have stayed 6 

stagnant (Furbank and Tester, 2011). As crops research moves forward, characterization and 7 

screening of large populations as well as more efficiently selecting superior genotypes for 8 

quantitative traits such as yield is necessary. The phenotyping constraints make this exploration 9 

and selection process difficult due to the time and economic investment as well as the destructive 10 

nature and single time point of such techniques (Reynolds et al., 1999). To increase efficiency in 11 

crop research and development and utilize the genotypic resources available, precise and 12 

effective phenotyping techniques need to be developed (Montes et al., 2007; Furbank, 2009).  13 

These challenges and constraints have led to studies focused on precision phenotyping 14 

techniques using canopy reflectance and canopy temperature measurements that are both precise 15 

and high-throughput allowing for more genetic material to be screened in less amount of time 16 

(Reynolds et al., 2007). These techniques look to accurately characterize morphological and 17 

physiological traits that can be used as an indirect selection method and improve yield (Richards 18 

et al., 2001; 2002). Precision phenotyping techniques can also give researchers a repeatable, 19 

accurate, nondestructive method of characterizing plant functions throughout the growing season 20 

(Hatfield et al., 2008).  21 

Precision phenotyping is based on the reflectance and absorption characteristics of 22 

vegetation and the spectral response recorded by remote sensors (Holland et al., 2006). Remote 23 
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sensors have been utilized in close proximity with the plant, mounted on tractors for high-24 

throughput measurements, or mounted on satellites, such as LandSat. These spectral responses 25 

can then be used to calculate vegetation indices or in the case of full spectra techniques, used 26 

independently in model building. Most of the indices, such as the widely used NDVI, are 27 

functions of ratios or proportions between wavelengths that correlate to specific plant 28 

biophysical or biochemical properties such as leaf composition, biomass production, or 29 

pigmentation (Osborne et al., 2002).  30 

In a research setting, the accurate prediction of quantitative traits such as yield can be 31 

used as an important tool for identifying superior lines or used as a screening tool in many trait 32 

mining studies, without the need for high input costs such as harvesting (Ma et al., 2001; Montes 33 

et al., 2007). This can lead to larger breeding programs that utilize more plots and material in the 34 

pipeline. To accurately estimate yield, an understanding of the biophysical/biochemical 35 

components influencing the spectra to understand what the sensor is sensing as well as 36 

conclusions made based upon the spectral response curves. These biophysical/biochemical 37 

components, such as canopy and leaf structure and pigment status may not allow the plant to 38 

fully reach its genetic yield potential (Clevers, 1997), and many researchers have suggested that 39 

yield gains seen in field crops can be attributed to more efficient photosynthetic parameters 40 

(Waddington et al., 1986; Caldirini et al., 1995; Sayre et al., 1997; Reynolds et al., 1999).  41 

 Plant Biophysical and Biochemical Properties 42 

Leaf reflectance and emittance of solar radiation is the basis for canopy reflectance and 43 

canopy temperature research (Inman et al., 2007). The amount of reflectance observed is a 44 

product of the leaf tissues, cellular structure, and the air-cell wall-protoplast-chloroplast 45 

interaction (Kumar and Silva, 1973). Chlorophyll a and b as well as anthocyanins and 46 
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carotenoids preferentially reflect and absorb wavelengths, which can then be used to estimate the 47 

concentration and status of these pigments (Hatfield et al., 2008). The wavelengths that correlate 48 

well with certain plant functions or parameters can then be used to model plant phenotypes 49 

(Thomas and Oerther, 1972; Filella et al., 1995). Emitted and reflected wavelengths can be used 50 

in the same fashion to correspond to canopy temperature using infrared thermometers (Gausman 51 

et al., 1969; Blackmer et al., 1994).  52 

 Canopy reflectance Properties 53 

Canopy structure has a tremendous influence on the electromagnetic spectral response 54 

obtained by remote sensors. Because researchers are collecting solar radiation reflecting from the 55 

leaf surface, canopy biochemical and biophysical properties play a large role in what light and in 56 

what capacity the light is in, that the sensors are detecting (Asner et al., 1998). As the canopy 57 

structure changes, light may be reflected or diffused from different portions of the leaf and the 58 

canopy, causing a magnitude of variation from sample-to-sample (Asner et al., 1998). Also, soil 59 

background may confound these scans, creating unwanted variability in the sample. However, 60 

researchers can also take advantage of these variations and model these differences (Richie et al., 61 

2010). By modeling the canopy structure, researchers can make inferences about the health of the 62 

plant and desired attributes such as photosynthetic capabilities (Thomas and Gausman 1977; 63 

Wessman, 1990).  64 

Early research was focused on finding new wavelengths and spectral regions that 65 

correlated to plant function. Tucker (1978) proposed 5 primary and 2 transition regions of the 66 

visible and near infrared spectrum to characterize plant functions. 400-500nm (blue region) 67 

correlates to chlorophyll and carotenoid concentrations, 500-620 (green region) correlates to a 68 

reduction in chlorophyll absorption, which is why plants appear green, 620-700nm (red) which 69 
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correlates to an upswing in chlorophyll absorption (creation of the red edge), 700-740, which is a 70 

transition stage from red absorption to near infrared radiation (NIR) reflection, resulting in a 71 

sharp spike in reflection percentages in the spectral response, and from 750-1100 nm. The last 72 

region, NIR, is a high reflection region and also contains possible water absorption regions. 73 

Signal to noise ratio in remote sensing research is always a concern and sensing reflectance of 74 

plant canopies increases this ratio (Weber et al., 2012). Equations that have been proposed try to 75 

take into account background aspect such as soil and dead biomass with some success, but 76 

researchers have yet to fully account for all in-field variables when capturing reflectance data 77 

from full plant canopies (Daughtry et al., 2000; Hatfield et al., 2008). 78 

 Water Status 79 

Evaluating water status using any technique has its basis in the fundamentals of water 80 

status and movement in the plant, such as total water content, water potential of the roots and 81 

cells, and transpiration and photosynthetic rates (Pearcy et al., 1989). Water stress research using 82 

remote sensing techniques has been used for many years, starting with Tanner (1963) studying 83 

plant temperature variations from air temperature (Hatfield et al., 2008). This early research led 84 

to characterizing water stress through leaf and canopy temperature and water absorption bands 85 

within the EMS. This research has even been used to create irrigation schedules (Bausch and 86 

Duke, 1996) to reduce excess water use and characterize superior water use efficient plants in 87 

breeding programs. 88 

Researchers have been able to characterize plant water status and stress through the 89 

preferential absorption of water and more specifically the hydroxyl ions within the 90 

electromagnetic spectrum (Peñuelas et al., 1993; 1997; Gao, 1996; Serrano et al., 2000). The 91 

NIR (730-1300) and middle infrared (1300-2500 nm) has been shown to correlate well with 92 
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water status/content of plants and the wavelengths 970, 1240, 1400, and 2700 nm have been 93 

proposed as water absorption bands indicative of water status (Tucker, 1980; Peñuelas et al., 94 

1993; Gao, 1996; Zarco-Tejada et al., 2001; Gutierrez et al., 2010).  95 

Peñuelas et al. 1993 developed the water index (WI) defined as R970/R900, to predict water 96 

stress and was found to strongly correlate with the relative water content of the plants and. The 97 

normalized difference water index, proposed by Gao (1996) defined as (R860-R1240/R860+R1240) 98 

has been used to evaluate water stress in corn and soybeans (Anderson et al., 2004) with 99 

favorable results. Babar et al., 2006a proposed normalizing the WI, using the wavelengths 970, 100 

900, and 850nm, developed by Peñuelas et al., 1993 found it to be useful for screening wheat 101 

genotypes for water stress and water use efficiency (Gutierrez et al., 2010). Prasad et al., 2007a, 102 

b also normalized the WI, using the wavelengths 970, 920, and 880nm to screen winter wheat 103 

lines under dry-land conditions (Gutierrez et al., 2010). These authors propose that the 104 

normalization of the WI provides added genotypic variation explanation. However, Gutierrez et., 105 

al 2010 found that only the normalized water index using wavelengths 970 and 880 nm proposed 106 

by Prasad et al., 2007 a, b was the only index sufficient for predicting water stress within field 107 

experiments.  108 

 Leaf Biochemical Properties 109 

Leaf biochemistry is a major portion of the physiological function of plant leaves and 110 

serves as the building block for energy production. Many of the physiological parameters that 111 

show genotypic variation pertain to biochemical parameters, with most of the components being 112 

pigment concentration and status (Reynolds et al., 2009). The photosynthetic capacity and 113 

efficiency of a plant is a function of the chlorophyll and other pigment content of the plant. 114 
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Chlorophyll status can then estimate biomass production and photosynthetic capacity (Curran et 115 

al., 1990; Filella et al., 1995). Also, due to chlorophyll content being directly influenced by 116 

nitrogen status, chlorophyll status estimation can directly relate to nitrogen status (Filella et al., 117 

1995; Moran et al., 2000). Chlorophyll content is also related to plant stress and senescence, 118 

suggesting chlorophyll can be used to characterize genotypes for stress (Hendry et al., 1987; 119 

Merzlyak and Gitelson, 1995; Peñuelas and Filella, 1998; Merzlyak et al., 1999; Carter and 120 

Knapp, 2001).Remote sensing leaf pigments can serve as a non-destructive, repeatable way to 121 

characterize plant functions and relate this to overall plant health (Hatfield and Prueger, 2010).  122 

With new advancements in the understanding of leaf structure and remote sensing 123 

interaction, many modern studies have developed indices expressing the relationship between 124 

leaf biochemical properties and spectral responses obtained. Peñuelas et al., 1995 and Gitelson 125 

and Merzlyak, 1994 have expresses various chlorophyll and chlorophyll:carotenoid ratios using 126 

specially derived indices, Gamon et al., 1992, 1997 have characterized photosynthetic 127 

performance based on spectral responses. The ratio (R531-R570)/(R531+R570), where R570 is the 128 

reflectance at 570nm and R531 is the reflectance at 531 nm, has been widely used to characterize 129 

leaf pigment status (Gamon et al., 1992; Peñuelas et al., 1995). Chappelle et al., 1992 found that 130 

wavebands 650, 675, and 700 nm could be used to predict chlorophyll and beta carotene in 131 

soybean leaves. Also, alternative wavelengths have been used based on correlation to specific 132 

physiological functions (Gamon et al., 1992; Inoue et al., 2006; Garbulsky et al., 2008). Being 133 

able to model genotypic responses that incorporate these functions have potential to exploit 134 

important traits in breeding programs. 135 

Chlorophyll A and B are essential pigments within a plant that convert light energy into 136 

chemical energy through the process of photosynthesis. From chlorophyll, researchers can 137 
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directly determine photosynthetic potential and primary productivity of the plant (Curran et al., 138 

1990; Filella, 1995). Chlorophyll A and B absorb solar radiation at specific wavelengths to 139 

covert this energy into chemical energy. Based on the wavelengths that are either absorbed or 140 

reflected by these pigments, scientists are able to assess overall health and efficiency of the plant. 141 

Chlorophylls have a high absorbance in the red (600-730 nm) and blue (400-500nm) regions of 142 

the spectrum. Chlorophyll b preferentially absorbs light in the 460 and 650 nm regions, 143 

chlorophyll a absorbs in the 580, 630, and 670 nm regions of the spectrum, and 415 nm is a 144 

preferential absorption of both (Chappelle et al., 1992).  Blue regions of the spectrum also 145 

correlate to carotenoid preferential absorption, and therefore are not commonly used in 146 

chlorophyll concentration and status estimates (Sims and Gamon, 2002). The green and red 147 

region of the spectrum around the 550nm and 700nm regions are primarily used due to high 148 

chlorophyll concentrations needed to saturate these wavelengths (Sims and Gamon, 2002). Many 149 

researchers such as Thomas and Gausman, 1977; Buschman and Nagel, 1993; Datt, 1998, 1999; 150 

Gitelson and Merzylak 1996; 1997; Gitelson et al., 1996b; and Schepers et al., 1996, have 151 

characterized the chlorophyll wavelength absorption into chlorophyll concentration models 152 

utilizing mainly the red. Sims & Gamon, (2002), correlated the 700nm region of the spectrum to 153 

chlorophyll concentration, which is used by many researchers as a base line for new chlorophyll 154 

indices. Gitelson and Merzlyak 1994 used (R780/R700) and (R750-R705/R750+R705), where R780 is 155 

the reflectance at 780nm, R700 is the reflectance at 700nm, R750 is the reflectance at 750nm and 156 

R705 is the reflectance at 705nm, to estimate chlorophyll content with great success. Other 157 

researchers have also used the 550nm and 700 nm regions of the spectrum (Aoki et al., 1986; 158 

Gitelson and Merzlyak, 1997; Datt, 1998; Gamon and Surfus, 1999; Carter and Knapp, 2001; 159 

Richardson et al., 2002; Sims and Gamon, 2002). Chlorophyll content has many variables, and 160 
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Gitelson et al. 2002 suggest that broadband reflectance is necessary for broad scale adaptation of 161 

chlorophyll estimation across species and ecosystems. 162 

 Anthocyanins and carotenoids are important pigments of the plant biochemical process as 163 

well. Few researchers have delved into anthocyanin and carotenoid research due to numerous 164 

variables such as other pigment absorption and leaf cell structure problems. Gamon and Surfus 165 

(1999), developed a model and indices for anthocyanin concentration estimation based on a red 166 

to green ratio, R600-R700/R500-R600, and the green channel on LandSat has been explored by Vina 167 

and Gitelson et al., 2011, to estimate anthocyanin status with success, but has yet to be 168 

replicated. Hatfield et al., 2008 hypothesized that 2 band indices are confounded by variables 169 

such as other pigment absorption and leaf scattering of light. Gitelson et al., 2001, Gitelson et al., 170 

2003a, and Gitelson et al., 2006, found 3-band indices in the (waveband regions) ineffective in 171 

developing reliable models to estimate carotenoid and anthocyanin concentrations, suggesting 172 

full spectrum hyperspectral data collection may be necessary for reliable model estimations. 173 

 Many authors have studied chlorophyll and other pigment models with varying success, 174 

but the consensus seems to be, full spectra indices or statistical models are necessary to fully 175 

capture the relationship between leaf pigments and reflectance spectra. However, models 176 

utilizing regions know to correlate well with plant function can be used to characterize many 177 

traits that are of importance to crop researchers. These models may also be able to be used for 178 

screening of specific traits that may not be necessarily captured by visual phenotyping 179 

techniques.   180 

 Yield Estimation 181 

 With the new challenges of feeding an ever-growing population with fewer resources, it 182 

is necessary for crops researchers to streamline the breeding approach and develop techniques 183 
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that allow for more genetic material to be screened within a program in a shorter amount of time. 184 

Due to high genetic variability and extensive genotype x environment interactions associated 185 

with yield, precise phenotyping is essential for future development. Most of the field based 186 

research that is conducted on yield estimation models using canopy reflectance and canopy 187 

temperature measurements are focused on 2 or 3 band indices, which can be highly variable and 188 

inconsistent (Babar et al., 2006 a,b). Some of these indices have been useful in estimating yield 189 

through other plant characteristics such as chlorosis (Adams et al., 1999), green cover (Dusek et 190 

al., 1985; Daughtry et al., 2000), chlorophyll (Datt, 1999; Daughtry et al., 2000), and 191 

photosynthetically active tissue (Wiegand et al., 1991). These indices, like pigment status have 192 

had varying degrees of success, but none have fully captured the underlying physiological and 193 

environmental factors leading to phenotypic yield. New studies that focus on utilizing full 194 

spectrum instruments and models have been published in recent years in wheat (Hansen et al., 195 

2002; Hansen and Schjoering, 2003; Pimstein et al., 2007; 2011), corn (Hong et al., 2001; Weber 196 

et al., 2012), rice (Lin et al., 2012), cotton (Zhao et al., 2006) and soybean (Kaul et al., 2005) in 197 

optimal and drought environments. Incorporating these new models into high efficiency 198 

platforms has also been characterized and explored (Montes et al., 2007; Walter et al., 2012; 199 

White et al., 2012). Other researchers have also related canopy temperature, which is emitted 200 

thermal radiation to yield (Reynolds et al., 1994; Fischer et al., 1998). Combining reflectance 201 

models with canopy temperature can integrate many physiological parameters that lead to robust 202 

yield prediction models that account for a large portion of the variability among genotypes 203 

(White et al., 2012). Leaf and canopy reflectance data can give insight into many physiological 204 

parameters such as photosynthetic capacity, aboveground biomass, and water status that have 205 

highly correlated association with yield (Royo et al., 2003; Weber et al., 2012). Many of these 206 
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studies have focused on wheat and are seen to correlate more effectively with optimal 207 

environments due to yield potential being fully met (Aparicio et al., 2000; Royo et al., 2003; 208 

Gutieirrez et al., 2010). 209 

 Canopy Temperature for Yield 210 

 Canopy temperature (CT) measurements are a fast and accurate way to study stomatal 211 

conductance and leaf transpiration (Jones et al., 2009). Canopy temperature measurements are 212 

based on using thermal infrared (IR) radiation which relates to evaporation or transpiration from 213 

a plant leaf. When a plant stops transpiration and closes the stomata, the temperature of the leaf 214 

and ultimately canopy increases. This is due to the assumption that transpired water evaporated 215 

from the leaf surface and cools the leaf below ambient air temperatures (Jackson, 1981). CT 216 

measurements can then be used to distinguish genotypes and make selection for high yielding 217 

varieties (Reynolds et al., 2009). 218 

 Canopy temperature and canopy temperature depression (CT - ambient air temperature) 219 

can be used for many essential plant functions. Early research focused on crop stress indicators 220 

using canopy temperature with great success (Jackson et al., 1981). Blum et al., 1989 related 221 

yield stability to canopy temperatures in wheat under drought conditions with correlations of 222 

0.64 and 0.72 between the drought susceptible index and CT. In soybean Fletcher et al., 2007 223 

and Ries et al., 2012 found that canopy temperature can be utilized to characterize slow wilting 224 

and radiation use efficiency. Research has suggested that lower CT correlate with high yielding 225 

wheat varieties in well watered and stressed environments (Reynolds et al., 1999; Babar et al., 226 

2006b; Gutierrez et al., 2010). Research also suggests that selecting for lower CT varieties can 227 

increase yields in a breeding program in well watered and water stressed environments (Amani et 228 

al., 1996; Reynolds et al., 2009). Research conducted suggests a correlation with CT and grain 229 
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yield in soybean (McKinney et al., 1989), cotton (Hatfield et al., 1987), millet (Singh and 230 

Kanemasu, 1983), as well as wheat. Incorporating canopy temperature into breeding programs for 231 

high yielding varieties may be a useful indirect selection tool for plant breeders. Therefore, CT is 232 

well suited to be utilized in yield estimation models. 233 

 Reflectance indices for Yield  234 

Recent research conducted suggests that reflectance wavelength equations called indices 235 

correlating to yield can be used as an indirect selection method (Araus et al., 2001). Most of the 236 

research conducted on yield prediction using canopy reflectance techniques focuses on the 237 

reflected solar radiation in the visible red (600nm-730nm) and near infrared (730nm-1100nm) 238 

regions of the electromagnetic spectrum, which was first shown to correlate to crop conditions 239 

by Bauer 1981 and Walburg et al., 1982.  Researchers can then develop rapid, nondestructive, 240 

and repeatable measurements (Field et al., 1995). 241 

Vegetation indices are used to maximize the relationship between certain solar radiation 242 

wavelengths and plant function, while minimizing the effect of background noise (Huete et al. 243 

2002; Hatfield and Prueger 2010). Hatfield and Prueger 2010 studied various vegetation indices 244 

in corn and soybean and concluded that multiple indices must be used to account for the 245 

variations seen between different crops and different growing conditions. Babar et al., 2006a 246 

concluded that vegetation indices using NIR reflectance were the most correlated with yield in 247 

wheat. Wiegand et al., 1991 also illustrates that yield prediction by spectral indices must be site-248 

independent in order to create a prediction model that can be used and fully accepted in crop 249 

research. 250 

Most of the indices correlate plant parameters such as pigment status to grain yield. 251 

Indices such as the simple ratio (SR), first used by Jordan 1969 and Rouse et al., 1973 described 252 
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by the equation (RNIR/RRED), captures the ratio of NIR reflectance to reflectance in the red. SR has 253 

been shown to correlate well with biomass, LAI, fractional photosynthetically active radiation 254 

(FPAR), and ground cover, and yield in wheat and soybeans (Hatfield, 1983; Wiegand et al., 255 

1991; Ball and Konzak, 1993; Price and Bausch 1995; Aparicio et al., 2000; Serrano et al., 2000; 256 

Ma et al., 2001; Royo et al., 2003; Hatfield and Prueger, 2010). The basis for the SR is the strong 257 

absorption of red light and the strong reflection of NIR by healthy plant vegetation, and small 258 

changes in these reflectance or absorption patterns can give researchers a lot of information 259 

about overall plant health, especially chlorophyll a and b. The normalized difference vegetation 260 

index (NDVI), derived by Deering 1978 and Tucker 1979 to estimate green biomass and 261 

intercepted PAR, defined as (RNIR-RRED/RNIR+RRED), has been used extensively to predict yield and 262 

other plant functions with many crops using hyper-spectral and satellite imagery (Wiegand et al., 263 

1991; Peñuelas et al., 1997; Lewis et al., 1998; Aparicio et al., 2000; Ma et al., 2001; Shanahan 264 

et al., 2001; Royo et al., 2002; Royo et al., 2003; Prasad et al., 2007a;b; Marti et al., 2007). The 265 

NDVI captures plant health, with healthy plants having high absorption in the red and high 266 

reflection in the NIR. If the plant is under stress or is starting to senesce, the absorption of red 267 

light by the chlorophylls and other pigments and cellular components will decrease. Gitelson et 268 

al., 1996a proposed the GNDVI as a substitute to the high saturation point of the red region in 269 

the NDVI. Shanahan et al., 2001 have successfully predicted yields in corn under normal 270 

growing conditions in Nebraska using the GNDVI. Researchers found that normalizing the green 271 

and NIR relationship was highly correlated with grain yield, explaining 70 to 92% of yield 272 

variability at mid grain fill in corn (Shanahan et al., 2001). Ma et al., 2001 used the NDVI (R613-273 

R559/R613+R559) to predict soybean yield, and concluded a high correlation with soybean yields 274 

under irrigated conditions and explained up to 80% of the variation within yield. The 275 
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photochemical reflectance index (PRI), defined by the equation (R550 – R531)/(R550 + R531) 276 

captures the normalized difference between the major green wavelength reflectance of the plant 277 

canopy and leaves, which can be used to quantify radiation use efficiency (Gamon et al., 1992). 278 

Trotter et al., 2002 and Garbulsky 2011 used the PRI to assess nitrogen use efficiency and 279 

radiation use efficiency to distinguish genotypes that were superior compared to checks. These 280 

indices have been used estimate yield varying environments on many platforms. 281 

Other indices focus on the biophysical parameters, such as water content and leaf area. 282 

The leaf area index (LAI), first illustrated by Tucker and Sellers, 1986 was developed to predict 283 

vegetation parameters such as green biomass and green leaf area (Babar et al. 2006b). The leaf 284 

area index captures the genotypic differences between photosynthetically active radiation (PAR) 285 

being absorbed and used by leaves with more area and being able to monitor important crop 286 

variables throughout the growing season (Clevers, 1997). Elliot and Regan 1993 and Aparicio et 287 

al., 2000 and 2002 have determined that LAI plays a large part in plant function and correlates 288 

well with yield prediction. Many water indices have been developed to relate reflectance 289 

measurements with success in the 850 and 970 nm regions with bread and durum wheat yield 290 

(Royo et al., 2003; Prasad et al., 2007b; Gutierrez et al., 2010). The water indices focus on the 291 

minor water absorption bands within the spectrum and capture relative water content based on 292 

absorption strength by water within the plant leaves. Capturing biophysical properties can 293 

capture properties that influence yield production of field crops. 294 

Most of the research conducted using reflectance measurements for yield estimation 295 

focus on calculated indices. These indices are easy to calculate and give researchers a way to 296 

easily handle the large amount of data associated with such research, however, indices tend to be 297 

environment specific and outside of wheat, have a low correlation with yield (Aparicio et al., 298 
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2000; Ma et al., 2001; Guitierrez-Rodrigues et al., 2004; Prasad et al., 2007a and b; Gutierrez et 299 

al., 2010). Therefore, more complex models need to be developed using more of the spectrum to 300 

capture the necessary variation within yield across different environments and crops (Osborne et 301 

al., 2002; Pimstein et al., 2007; 2011; Weber et al., 2012). 302 

 Yield estimation using hyper spectral data 303 

Recently, studies utilizing full spectrum models focusing on several hundred bands 304 

contributing to yield estimation have been conducted. Full spectrum models are considered for 305 

yield estimation due to confounds such as biomass saturation, dense cover, high LAI, and high 306 

chlorophyll levels (Pimstein et al., 2007). High yielding varieties tend to have high 307 

biophysical/biochemical properties, making it unreliable to distinguish these genotypes using 308 

spectral indices (Baret and Guyot, 1991; Buschmann and Nagel, 1993; Aparicio et al., 2002; 309 

Pimstein et al., 2007). None of the developed indices can meet these needs, therefore, more 310 

complex characterization models based on more of the spectra must be developed (Hansen and 311 

Schjoering, 2003). Due to yield being a function of many physiological and environmental 312 

parameters that change throughout the growing season, combining many different wavebands 313 

over an entire growing season should give more precise yield estimation models (Araus et al., 314 

2008). 315 

Full spectrum multivariate data analysis with spectral reflectance data to create yield 316 

estimation models in field crops has been utilized in recent years (Hong et al., 2001; Hansen et 317 

al., 2002; Chang et al., 2003; Ferri et al., 2004; Kaul et al., 2005; Poss et al., 2006; Pimstein et 318 

al., 2007; 2011; Gutierrez et al., 2011; Weber et al., 2012; Lin et al., 2012). This is mainly due to 319 

the large datasets associated with spectral research, high multicollinearity that is associated with 320 

wavebands close to each other, and fears of over fitting models with more bands (Thenkebail et 321 
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al., 2002; Lin et al., 2012). To deal with these dilemmas, researchers have turned to approaches 322 

such as partial least squares (PLS), principal component analysis (PCA), and artificial neural 323 

networks (ANN) to develop hyper spectral yield estimation models. Incorporating more bands 324 

into a model may allow for more variability within certain predictors without reducing the 325 

effectiveness of the model. 326 

 The main approach used to deal with the challenges of hyper spectral data analysis focus 327 

on reducing the correlation between predictor variables, causing multicollinearity and 328 

normalizing the variability within predictor variables from sample to sample. Also, researchers 329 

use these new techniques to tease apart the spectral response curves into meaningful spectral 330 

waveband regions. PCA has been used by researchers to build yield prediction models that 331 

explain 70 to 90% of the yield variability in maize (Hong et al., 2001; Chang et al., 2003) and 332 

39% of the variability in yield among soybean genotypes (Hong et al., 2001). Stepwise 333 

regression explained almost 95% of the variability within maize yield using 6 bands (Osborne et 334 

al., 2002). ANN has also been used in soybean to build prediction models that explain between 335 

46 and 81% of the variability in yield and 42 to 77% in corn (Kaul et al., 2005). Hansen et al., 336 

2002 compared three different PLS methods and concluded the N-PLS was the most consistent 337 

for yield and protein content estimation in wheat and barley, explaining up to 75% of the 338 

variation in protein content and up to 97% of the variation in yield. Similarly, under different 339 

water regimes, Weber et al., 2012 found that PLS explained a maximum of 40% of the 340 

variability within corn yield, and found that prediction models created explained more variability 341 

in water limited environments than non-water limited environments. Lin et al., 2012 used 342 

orthogonal projections to latent structure PLS in rice and could distinguish 3 cultivars with 90% 343 

accuracy but dropped to 80% when distinguishing 1 cultivar. Researchers also determined that 344 
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reducing the dataset to 10 nm intervals reduced the noise within the dataset. Utilizing 345 

multivariate analysis is new to precision phenotyping research but appears to have potential to 346 

create yield prediction models as well as explain other important phenotypic parameters. 347 

 Conclusion 348 

 With the challenges needing to be met by plant breeders moving forward, new and 349 

innovative phenotyping technologies need to be developed that allows for more genetic material 350 

and advanced genotyping technologies to be utilized. Precision phenotyping using canopy 351 

reflectance data can be utilized by plant breeders to characterize a large number of genotypes in a 352 

precise and cost effective manner. Reflectance indices can be used to classify many different 353 

plant functions that are vital to characterizing field crops and screen genotypes for traits vital for 354 

plant breeders to meet the challenges. With the advancements in statistical analysis, hyper 355 

spectral data can be used to create models that can quantify quantitative traits such as yield and 356 

allow plant breeders to screen more genotypes in more environments. Moving forward, more 357 

research needs to be conducted in order for yield prediction models to be fully implemented into 358 

breeding programs, but reflectance data can be utilized to characterize large genotype 359 

experiments.   360 
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Chapter 2 - Characterizing Changes in Soybean Spectral Response 812 

Curves with Breeding Advancements 813 

 Abstract 814 

Soybean (Glycine max (L.) Merr.) crop yield has steadily increased in the past 60 years 815 

due in part to breeding advances. Spectral reflectance correlated to specific plant 816 

functions may help characterize the impact of breeding on soybean cultivar development. 817 

The objectives of this study were:1) to find specific regions of the soybean spectra 818 

response curves that show genotypic differences; and 2) to determine the effect of the 819 

breeding process on spectral response curves of soybean cultivars. Spectral reflectance 820 

measurements were taken on 20 maturity group III (MGIII) and 20 maturity group IV 821 

(MGIV) soybean genotypes ranging in release year from 1923 to 2010 (arranged in a 822 

randomized complete block design) in 2011 and 2012 in Manhattan, KS. Significant 823 

genotypic differences were found between entries, especially in the green (500 nm– 600 824 

nm), red (600 nm–700 nm), and red-edge (700nm–730 nm) portions of the spectra. This 825 

study also found significant correlations with year of release (YOR) in the visible (VIS) 826 

and near-infrared (NIR) spectra. The newer released cultivars tended to have lower 827 

reflectance values in the VIS and red-edge spectra portions and higher values in the NIR 828 

portion of the spectra than older cultivars. This study concluded that breeding has most 829 

affected spectral reflectance curves by reducing the VIS portion of the spectra and 830 

extending the red-edge, resulting in a shift to lower reflectance values further into the 831 

NIR and then a sharp inflection to the NIR, with higher values in the NIR. In addition, a 832 

crossover occurs in new genotypes around 1150 nm, resulting in lower reflectance values 833 

in the transition from the NIR to the middle infrared. These results suggest that breeding 834 
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advancement has had an impact on spectral reflectance curves and the areas that have 835 

been changed with breeding advancement may be exploited for further advancement. 836 

 Introduction 837 

One way to characterize plant phenotypes and function is by measuring spectral 838 

reflectance. The amount of reflectance observed is a product of the leaf tissues, cellular structure, 839 

and air-cell wall–protoplast-chloroplast interaction (Kumar and Silva, 1973). The visible (VIS) 840 

portion of the spectra (400–730 nm) have low reflectance due to the absorptive attributes of 841 

chlorophyll and other accessory pigments such as carotenoids, carotenes, and anthocyanins; 842 

however, the near-infrared portion (NIR) has a high reflectance caused by the scattering of light 843 

by cellular components and water. Many of the physiological parameters that show genotypic 844 

variation — most of which are pigment concentration and status — pertain to biochemical 845 

parameters (Reynolds et al., 2009). The photosynthetic capacity and efficiency of a plant is a 846 

function of the chlorophyll and other pigment content of the plant. Chlorophyll status can also be 847 

used to estimate biomass production and photosynthetic capacity (Curran et al., 1990; Filella et 848 

al., 1995), and, because chlorophyll content is directly influenced by nitrogen, chlorophyll status 849 

estimation can relate directly to nitrogen status (Filella et al., 1995; Moran et al., 2000). By 850 

modeling the leaf structure and content, researchers can make inferences about the plant’s health 851 

and desired attributes, such as photosynthetic capabilities and water status (Thomas and 852 

Gausman, 1977; Wessman, 1990). Researchers also have estimated yield through other plant 853 

characteristics such as chlorosis (Adams et al., 1999), green cover (Dusek et al., 1985; Daughtry 854 

et al., 2000), chlorophyll (Datt, 1999; Daughtry et al., 2000), photosynthetically active tissue 855 

(Wiegand et al., 1991), and water status (Prasad et al., 2007a,  2007b). 856 
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Chlorophylls have a high absorbance in the red (600–700 nm) and blue (400–500 nm) 857 

regions of the spectrum. Chlorophyll b preferentially absorbs light in the 460 and 650 nm 858 

regions, chlorophyll a absorbs in the 580, 630, and 670 nm regions of the spectrum, and 415 nm 859 

is a preferential absorption of both in soybean (Chappelle et al., 1992). Blue spectrum regions 860 

also correlate to carotenoid preferential absorption and therefore are not commonly used in 861 

chlorophyll concentration and status estimates (Sims and Gamon, 2002). The green and red 862 

regions of the spectrum—around 550 nm and 700 nm, respectively—are primarily used, due to 863 

high chlorophyll concentrations needed to saturate these wavelengths (Sims and Gamon, 2002). 864 

Shanahan et al. (2001) explained from 70 to 92% of yield variability at mid-grain fill in corn 865 

using the green region and NIR. Sims and Gamon (2002) correlated the 700 nm region to 866 

chlorophyll concentration, which is used by many researchers as a baseline for new chlorophyll 867 

indices. The ratio (R531-R570)/(R531+R570) has been widely used to characterize leaf pigment 868 

status in many species (Gamon et al., 1992; Peñuelas et al., 1995). Chappelle et al. (1992) found 869 

that wavebands 650, 675, and 700 nm could be used to predict chlorophyll (R
2
 = 0.934) and beta 870 

carotene (R
2
 = 0.935) in soybean leaves. Gitelson and Merzlyak (1994) used (R780/R700) and 871 

(R750-R705/R750+R705) to explain as much as 98% of the variability within chlorophyll content in 872 

chestnut and maple trees. The normalized difference vegetation index (NDVI) derived by 873 

Deering (1978) and Tucker (1979) to estimate green biomass and intercepted PAR, defined as 874 

(RNIR-RRED/RNIR+RRED), has been used to predict yield and other plant functions with many crops 875 

using hyperspectral and satellite imagery (Wiegand et al., 1991; Peñuelas et al. 1997; Ma et al. 876 

2001; Shanahan et al. 2001; Royo et al. 2002; Royo et al. 2003; Prasad et al. 2007a, 2007b; Marti 877 

et al. 2007). Ma et al. (2001) explained up to 80% of the yield variability in soybean using 613 878 

and 813 nm. Others have also used the 550 and 700 nm regions of the spectrum when leaves are 879 
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yellow-green (Gitelson and Merzlyak, 1996; Datt 1998; Gamon and Surfus, 1999; Sims and 880 

Gamon, 2002) to estimate chlorophyll status and yield, but high absorption in these regions may 881 

lead to saturation at relatively low chlorophyll concentrations. Gamon and Surfus (1999) 882 

developed a model and indices for anthocyanin concentration estimation based on a red-to-green 883 

ratio, R600-R700/R500-R600, and Viña and Gitelson (2011) used broadband wavelengths to estimate 884 

anthocyanin status (R
2
 = 0.25 – 0.89) with peak absorption around 540 to 560 nm.  885 

Plant water status and stress through the preferential absorption of water and, more specifically, 886 

the hydroxyl ions within the electromagnetic spectrum also can be used to characterize plants 887 

(Peñuelas et al., 1993; Peñuelas et al., 1997; Gao, 1996; Serrano et al., 2000). The NIR (700–888 

1300) and middle infrared (1300–2500 nm) ranges have been shown to correlate well with water 889 

status or content of plants and the wavelengths 970, 1240, 1400, and 2700 nm have been 890 

proposed as water absorption bands (Peñuelas et al., 1993; Gao, 1996; Gutierrez et al., 2010). 891 

Babar et al. (2006a, 2006b) used the wavelengths developed by Peñuelas et al. (1993) and found 892 

them useful for screening wheat genotypes for water stress and water-use efficiency. Prasad et al. 893 

(2007a, 2007b) used the wavelengths 970, 920, 900, 880, and 850 nm to screen winter wheat 894 

lines under dryland conditions and found significant correlations with yield. Gao (1996) 895 

normalized wavebands (R860-R1240/R860+R1240) and evaluated water stress in corn and soybean, 896 

with favorable results.  897 

Spectral reflectance correlated to specific plant functions may help characterize the 898 

impact of breeding on soybean cultivar development. The objectives of this study were:1) to find 899 

specific regions of the soybean spectral response curves that show genotypic differences and 900 

could be exploited for genotype distinction; and 2) to determine the effect of the breeding 901 

process on spectral response curves of soybean cultivars released from 1923 to 2010. 902 
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 Materials and Methods 903 

 Experimental and Field Design  904 

 A study was conducted on soybean [Glycine max. (L) Merr.] at the Kansas State 905 

University Research farm south of Manhattan, KS, in 2011 and 2012. In 2011, experiments 906 

(location A) were conducted on a well-drained silt loam soil of the Eudora and Belvue types. In 907 

2012, location B was a well-drained silt loam soil of the Bismarckgrove-Kimo complex, and 908 

location C was a well-drained silt-sandy loam soil of the Belvue and Eudora types.  909 

Twenty maturity group III (MGIII) and 20 maturity group IV (MGIV) soybean cultivars, 910 

ranging in release year from 1923 to 2010 (Table 1), were selected for release-year diversity out 911 

of the Soybean Genetic Gain Study coordinated by Dr. Brian Diers, University of Illinois. 912 

Selected cultivars were a mixture of private and public genotypes. 913 

Replicated plots were planted on 23 May 2011 on field A, and 16 May 2012 and 4 June 914 

2012 on fields B and C, respectively. Each experimental unit consisted of 4 rows (3.4 meter 915 

long; spaced 76 cm apart). Genotypes were planted in separate well-watered and water-stressed 916 

environments arranged in a randomized complete block design with four replications. In both 917 

years, weed pressure and fertility were not limiting. Flood irrigation was applied to the well-918 

watered environments starting at reproductive stage 1 (R1) and continued weekly until R6. In 919 

2011, no supplemental irrigation was applied to the water-stressed environments. Due to 920 

extremely dry conditions, irrigation was applied once shortly after R1 in 2012 to ensure crop 921 

development in the water-stressed environments. 922 

 Phenotypic Traits 923 

Maturity, height, and lodging were taken on all plots during both seasons. Maturity was 924 

calculated as the number of days past 31 August when 95% of the pods had reached mature plant 925 
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color. Height (cm) was measured as the distance from the base of the plant to the top of the main 926 

stem. Lodging was scored on a scale of 1 to 5, based on the amount of leaning or broken plants. 927 

Upright plants with no lean were scored as 1; other scores were 2 = 20° lean, 3 = 45° lean, 4 = 928 

60° lean, and 5 = flat on the ground. The center two rows of each plot were mechanically 929 

harvested using a 2-row plot combine. Seed yield was recorded as kg ha
-1

, adjusted to uniform 930 

moisture. 931 

 Canopy Reflectance Measurements  932 

 Canopy reflectance measurements were conducted using an ASD FieldSpec 3 933 

spectroradiometer (Analytical Spectral Devices, Boulder, CO). Solar radiation reflecting back 934 

from the plant canopy was captured from 350 to 2500 nm in the electromagnetic spectrum using 935 

fiber optics with a 25° field of view and sampling intervals of 1.4 nm between 350 and 1050 nm 936 

and 2 nm between 1050 and 2500 nm. Moving averages were calculated automatically to achieve 937 

1-nm-width continuous bands. A white calibration disk (BaSO4) was used to achieve reflectance 938 

percentages and to calibrate the spectroradiometer with a dark current and white reference every 939 

40 plots or when needed (ranging from every plot to 40 plot intervals, depending on field 940 

conditions). The sensor was mounted on an adjustable monopod pole and held vertically 1 m 941 

above the canopy to achieve a 50-cm circumference collection area. Two measurements were 942 

taken per plot on rows 2 and 3, excluding the first meter of each plot to eliminate border effect. 943 

Each measurement was the average of 10 scans, which was calculated automatically. Spectral 944 

data were collected on nearly cloud-free days within ±2 hours of solar noon. Measurements were 945 

collected weekly from R3–R6 in 2011 and R2–R6 in 2012 (Fehr and Caviness, 1977), totaling 946 

three and four collection dates for the water-stressed and well-watered environments in 2011, 947 

respectively. In 2012, there were five collection dates for the well-watered MGIV environment 948 
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on field B and four collection dates for the well-watered MGIII experiment on field B and well-949 

watered MGIII and MGIV experiments on field C. There were three collection dates for the 950 

water-stressed experiment on field B, but only two collection dates for the water-stressed 951 

environment on field C for each maturity group.  952 

 Data Pretreatment 953 

Hyperspectral data were initially trimmed from 350–2500 nm to 400–1310 nm, which 954 

was necessary to eliminate noise from atmospheric absorption regions focused around the water 955 

absorption bands in the infrared and atmospheric scatter of blue color in the ultraviolet portion of 956 

the spectrum. Before averages were calculated for observation day and season totals, initial 957 

outlier control was implemented on each observation day’s raw data. After outliers were 958 

identified and excluded from analysis, data were combined to form 10-nm-wide band regions to 959 

reduce the dataset size and eliminate some of the collinearity associated with bands in close 960 

proximity (Naes et al., 2004). Combined bands have been determined to contain less variation 961 

from sample to sample than single-band measurements (Lin et al., 2012).  962 

 Statistical Analyses 963 

All data were analyzed using SAS 9.2 (SAS Institute, 2008). The GLIMMIX procedure 964 

of SAS (SAS Institute, 2008) was used for analysis of variance (ANOVA) of yield. Cultivar and 965 

experiment were treated as fixed effects and replication nested within the experiment was treated 966 

as a random effect. PROC GLM was used for ANOVA of the wavebands. Spectral data were 967 

analyzed for significant difference between genotypes using the genotype × environment 968 

interaction as the error term. PROC CORR was used to characterize the relationship between 969 

YOR and each waveband.  970 

 971 
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 Results and Discussion 972 

 Genotypic Performance for Yield and Reflectance Data 973 

Genotypes differed significantly in average seed yield across the six environments in both 974 

maturity groups (Table 2.1). Seed yield ranged from 2.32 to 4.63 t ha
-1

 and 1.97 to 4.26 t ha
-1

 for 975 

the MGIII and MGIV experiments, respectively. Seed yield increased with year of release by 976 

0.0238 and 0.0255 t ha
-1

 year
-1

 and had coefficient of determination values of 82 and 86% 977 

between yield and YOR in MGIII and MGIV, respectively (Figure 2.1). Yield increases are 978 

consistent with observations of short-season soybean covering 58 years of cultivar development 979 

(Morrison et al., 1999). Significant differences between genotypes, environments, and genotype 980 

× environment interaction were observed for seed yield (P < 0.0001) in both maturity groups 981 

(Table 2.2). The genotype × environment interactions were quite low compared with the total 982 

phenotypic variation of each maturity group experiment because the genotypes tested were 983 

genetically diverse with a large gradient between high-yielding and low-yielding genotypes.  984 

Significant differences (P < 0.05) were detected between genotypes for individual band 985 

regions in both maturity groups, with the exception of 905 nm in MGIII (Table 2.3). In the 986 

MGIII experiment, Illini was eliminated from spectral analysis due to spectral inconsistencies 987 

from lodging and soil confounds. The VIS portion of the spectrum (405–695 nm) had greater 988 

genotypic differences than the NIR (705–1305 nm) in both maturity groups. The highest 989 

genotypic differences (based on F values) were observed in the green and red portions of the 990 

spectrum in both maturity groups. In the MGIII and MGIV experiments, the 735 to 1135 nm 991 

region was the least significant portion of the spectrum. Large G × E interactions and high 992 

variability in the NIR from cellular scatter can account for the decreased genotypic differences 993 

observed for this region. The MGIV experiment had higher genotypic differences observed than 994 
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the MGIII experiment because G × E interactions constituted less of the total phenotypic 995 

variation.  996 

Spectral responses varied based on YOR in both maturity groups. The earliest released 997 

cultivars tended to have higher values in the VIS portion of the spectrum and lower values in the 998 

NIR than the latest released cultivars (Figures 2.2 and 2.3). Maturity group spectral curves were 999 

similar in magnitude. High values for group VIS suggests that chlorophyll and other associated 1000 

pigments are not as plentiful or efficient in the earlier cultivars, and higher values in the green 1001 

correlates with more yellow pigment and therefore more foliar diseases or issues contributing to 1002 

decreased plant function. These results are consistent with trends observed in soybean (Ma et al., 1003 

2001), corn (Chang et al., 2003; Weber et al., 2012), wheat (Hansen et al., 2002), and rice (Lin et 1004 

al., 2012). Higher reflectance in the NIR suggests more biomass production or denser canopy 1005 

and cellular structure in the later cultivars (Sims and Gamon, 2003; Royo et al., 2003). In the 1006 

MGIV experiment, greater separation was observed between cultivars in the 735– 1095 nm—an 1007 

area correlated with brown pigmentation, biomass production, and water status—than in the 1008 

MGIII experiment (Figure 2.3). Observed results suggest that foliar diseases and maturity play a 1009 

larger role in MGIV than in MGIII. The MGIII experiment genotypes separate much more in the 1010 

1155–1305 nm regions (Figure 2.2), which have been associated with biomass production, water 1011 

content, and water status. In both experiments, genotypes tended to be stable in the VIS and NIR: 1012 

entries exhibited high reflection in the VIS but lower NIR reflection values. Weber et al. (2012) 1013 

found a crossover in the water content region and concluded that lower values in this region 1014 

correlated with high-yielding corn cultivars. A water-content region crossover was also observed 1015 

in this experiment, which validates Weber et al.’s assertion for soybean and suggests that the 1016 

crossover region may be a candidate for genotypic differentiation. 1017 
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 Correlation of Spectral Reflectance Data to Year of Release 1018 

Many of the genotypic differences in spectral reflectance were significantly correlated (r) 1019 

to YOR (Figure 2.4). Compared with the NIR portion of the spectrum, highest r values were 1020 

observed in the VIS portion in both experiments. The green (505-595 nm), red (605–695 nm), 1021 

and red-edge (705–735 nm) regions of spectrum (r = -0.79 to -0.83, r = -0.76 to -0.85, and r = -1022 

0.76 to -0.88 respectively) exhibited the highest correlations with YOR in both MG genotypes 1023 

(Figure 4). The NIR was not as consistent between maturity groups: the 1155–1305 nm had 1024 

significant association with YOR in the MGIII experiment and the 765–1125 nm regions in the 1025 

MGIV experiment.  1026 

For the MGIII experiment, r values ranging from -0.88 to 0.6 were observed for 1027 

waveband to YOR correlation. For the MGIV experiment, r values ranged from -0.93 to 0.60. 1028 

The green and red regions correlate with the green reflection and red absorption by chlorophyll 1029 

and other photosynthetic pigments. The blue portion of the spectrum (405–495) also had 1030 

significant correlation with YOR (r = -0.61 to -0.77) in the MGIII and MGIV (r = -0.53 to -0.93) 1031 

because of absorption peaks in chlorophyll a and b and beta carotene within soybean leaves in 1032 

this region (Chappelle et al., 1992). Wavebands in the blue also have been associated with 1033 

canopy temperature measurements. Canopy temperature has been shown to have a significantly 1034 

negative correlation with soybean YOR and yield. The blue region in field-based research tends 1035 

to be unreliable, however, due to atmospheric scatter of blue light; hence, r = -0.93 in the MGIV 1036 

experiment seems like an unlikely result. Abnormally high reflectance values were obtained in 1037 

the 405 waveband region from some of the earlier-released cultivars. This result may be due to 1038 

atmospheric scatter or the tendency for older cultivars to lodge and allow soil confounds to 1039 

influence the spectra more. 1040 
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The red inflection region (705–735 nm) was highly significantly correlated with YOR in 1041 

the MGIII (r = 0.65–0.84) and MGIV (r = 0.79–0.88) experiments (Figure 2.4). In the MGIII 1042 

experiment, the 705-nm region had the highest correlation with year, but in the MGIV 1043 

experiment, the 715-nm region had the most significant correlation. Filella and Peñuelas (1994) 1044 

characterized the red-edge inflection point as the transition region between red and NIR, where a 1045 

sharp increase in reflection values are observed. They found that the region correlated well with 1046 

overall leaf health, in which the magnitude of the difference between the reflection values 1047 

between the red and NIR is a function of chlorophyll content and health, plant nitrogen status, 1048 

and plant water status. Plants with a steeper increase in reflection values between the two regions 1049 

have high chlorophyll content, high leaf area, and overall healthier vegetation. Weber et al. 1050 

(2012) found that the red-edge region contributed significantly to yield estimation, which 1051 

explains a significant portion of yield variation in corn cultivars. This study found negative 1052 

correlations between YOR and reflection values in this region. Compared with other cultivars, a 1053 

decrease in reflection is associated with a shift of the red edge to longer wavelengths, which 1054 

occurs because of increased chlorophyll content and increased biomass production (Filella and 1055 

Peñuelas, 1994).  1056 

Near-infrared measurements were not as well correlated with YOR as the VIS spectrum, 1057 

but significant correlations were found between YOR and the NIR plateau (745–895 nm), as well 1058 

as the small water absorption region (915–1065 nm) in the MGIV entries. Decreased spectral 1059 

reflectance in the plateau region correlates with brown pigment (senescence), and significant 1060 

correlations (r = 0.32 to 0.60) suggest that maturity and a higher incident of foliar diseases 1061 

occurred in the later (rather than the earlier) MGIV cultivars. The maturity factor may be due to 1062 

the extremely hot and dry conditions in 2011 and 2012 and an early frost in 2012, which 1063 
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prevented some MGIV cultivars from reaching full maturity. Visual observations indicated that  1064 

earlier-released MGIV cultivars tended to have more foliar issues leading to early senescence 1065 

and less green tissue due to insects and disease than earlier-released MGIII genotypes. The 1066 

plateau region has been shown to be associated with total biomass production, which suggests 1067 

that total biomass may have increased with YOR. As in the plateau region, the small water 1068 

absorption region had a positive relationship between YOR, and these band regions may suggest 1069 

that total water content has increased as breeders have made selections based on other 1070 

characteristics.  1071 

This experiment found significant correlations with YOR in the 1100–1305-nm regions 1072 

in the MGIII entries but not in the MGIV genotypes. The 1100–1305-nm regions have been 1073 

associated with plant water status with high absorption and lower reflection of light by water 1074 

leading to greater water content within the plant leaf (Sims and Gamon, 2003). In this 1075 

experiment, later- released genotypes had a higher reflection in these regions than earlier-1076 

released genotypes. Sims and Gamon (2003) concluded that thick canopies (such as those seen in 1077 

the newer-released cultivars) tend to confound water absorption regions, leading to increased 1078 

reflection values. The greater reflectance values would be expected because less light penetrates 1079 

thicker vegetation than thinner vegetation (Bull, 1991). Asrar et al. (1983) found that NIR and 1080 

red reflectance could be used for leaf area index (LAI) calculation (which measures 1081 

photosynthetically active tissue) and concluded that high reflectance in the NIR was associated 1082 

with higher LAI values in wheat. However, LAI values are highly influenced by soil 1083 

backgrounds, which could be an influence in the spectra obtained in this study. As visual 1084 

observations and observed higher values in the NIR have shown, a conclusion can be made that 1085 
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later-released cultivars had more biomass than the older cultivars and that this additional biomass 1086 

could be used for increased light interception (Figures 2.2 and 2.3).  1087 

The overall observed trend in reflection values is a decrease in the VIS and an increase in 1088 

the NIR. These observations suggest a greater absorption of light incident upon the leaves by the 1089 

major pigments associated with photosynthesis and a high refection of NIR light by the same 1090 

pigments, as well as an overall healthier leaf and canopy structure. The significant correlation 1091 

differences in the NIR between maturity groups are most likely due to morphological and 1092 

phenological differences between cultivars. The MGIII experiment comprised cultivars that were 1093 

more adapted to Kansas growing conditions. In the MGIV experiment, hot and dry conditions in 1094 

2011 and an early frost in 2012 did not allow certain cultivars to reach full maturity. In addition, 1095 

earlier-released cultivars in the MGIV experiment had more lodging issues, which tended to 1096 

confound long wavelengths in the NIR more than in the MGIII experiment.  1097 

 Conclusions 1098 

As these observations indicate,  significant differences in the VIS, red-edge, and NIR 1099 

waveband regions were found among, both, MGIII and IV genotypes. The largest genotypic 1100 

differences were observed in the red and red-edge portion so of the spectra in between both MG 1101 

genotypes. The NIR was far less significant than the VIS, with only small portions between MG 1102 

genotypes exhibiting significant genotypic differences.  1103 

Improvements in seed yield through cultivar development resulted in several changes in 1104 

spectral curves. The VIS and red-edge regions of the spectrum had the most significant negative 1105 

correlations with YOR. The newer released cultivars tended to have lower reflectance values in 1106 

the VIS and red-edge spectra portions and higher values in the NIR portion of the spectra than 1107 

older cultivars. Breeding has most affected spectral reflectance curves by reducing the VIS 1108 
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portion of the spectra and extending the red-edge, resulting in a shift to lower reflectance values 1109 

further into the NIR and then a sharp inflection to the NIR, with higher values in the NIR. In 1110 

addition, a crossover occurs in new genotypes around 1150 nm, resulting in lower reflectance 1111 

values in the transition from the NIR to the middle infrared. These results suggest that breeding 1112 

advancement has had an impact on spectral reflectance curves and the areas that have been 1113 

changed with breeding advancement may be exploited for further advancement. Caution should 1114 

be applied to certain aspects of spectral data because weather and soil confounds may lead to 1115 

inconsistent spectra. Nevertheless, spectral reflectance data may provide an indirect selection 1116 

tool for increasing genetic gain in yield of soybean cultivars. 1117 
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Table 2.1. Cultivars used for spectral data evaluation with year of release and two-year 1295 

yield averages. 1296 

Cultivar Year of Release Yield  Cultivar Year of Release Yield  

  t ha
-1

   t ha
-1

 

 MGIII   MGIV  

AK (Harrow) 1928 2.67 Boone 1935 2.34 

Calland 1968 2.95 Chief 1940 1.97 

Dunfield 1923 2.32 Clark 1953 2.70 

IA 3010 1998 4.30 Cutler 1968 2.74 

Illini 1927 2.72 Douglas 1980 2.76 

Lincoln 1943 2.51 Flyer 1988 3.48 

MACON 1995 3.86 KS4694 1993 3.24 

NE3001 2004 3.59 LD00-3309 2005 4.09 

Private 3- 1 1978 3.80 Macoupin 1930 2.29 

Private 3- 8 2002 4.08 Private 4- 1 1985 3.54 

Private 3- 9 1989 4.03 Private 4- 4 2001 3.86 

Private 3-12 1997 4.11 Private 4- 6 1980 3.56 

Private 3-13 2004 4.44 Private 4-11 2000 4.04 

Private 3-14 2007 4.63 Private 4-12 1973 2.92 

Private 3-15 1983 2.99 Private 4-13 1984 3.60 

Private 3-21 2001 4.30 Private 4-19 2006 3.68 

Private 3-23 2006 4.49 Private 4-20 2008 4.21 

Shelby 1958 2.81 Private 4-21 2010 4.26 

Wayne 1964 2.92 Private 4-22 2000 3.68 

Williams 1971 3.44 Sparks 1981 2.98 

 1297 
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 1299 
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 1302 

 1303 
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 1305 
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 1308 

 1309 
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Table 2.2. Analysis of variance for seed yield of MGIII and IV experiments. 1312 

 1313 

 1314 

 1315 

 1316 

 1317 

 1318 

 1319 

 1320 

 1321 

 1322 

 1323 

 1324 

 1325 

 1326 

 1327 

 1328 

 1329 

 1330 

 1331 

 1332 

 1333 

 1334 

 1335 

 1336 

 1337 

 1338 

 1339 

 1340 

Source D.F. F Value Pr > F 

MGIII 

Genotype (G) 18 111.57 < 0.01 

Environment (E) 5 109.10 < 0.01 

G x E 94 3.11 < 0.01 

MGIV 

Genotype (G) 19 95.98 < 0.01 

Environment (E) 5 82.76 < 0.01 

G x E 95 3.90 < 0.01 
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Table 2.3 Band regions with genotypic differences from analysis of variance (N=20), for 1341 

MGIII and MGIV experiments. 1342 

 MGIII MGIV 

Band F Value F Value 

405 20.61** 13.47** 
415 19.96** 13.63** 
425 17.41** 12.54** 
435 15.80** 11.41** 
445 15.26** 10.85** 
455 15.11** 10.68** 
465 15.41** 10.59** 

475 15.78** 10.58** 

485 16.09** 10.56** 
495 16.90** 10.88** 
505 18.66** 13.60** 
515 22.73** 15.00** 
525 29.10** 17.86** 
535 32.83** 18.87** 
545 34.42** 19.32** 
555 34.77** 19.46** 
565 33.83** 19.62** 
575 31.08** 19.27** 

585 28.34** 18.63** 
595 26.62** 18.02** 
605 25.23** 17.53** 
615 22.78** 16.52** 
625 21.12** 15.64** 
635 20.46** 15.22** 
645 19.29** 13.82** 
655 17.94** 12.44** 
665 17.11** 11.12** 
675 17.33** 10.61** 
685 17.52** 11.48** 

695 22.96** 17.13** 
705 37.14** 20.73** 
715 38.07** 18.55** 
725 22.66** 12.10** 
735 8.69** 5.41** 
745 3.12** 3.13** 
755 1.96* 3.19** 
765 1.85* 3.41** 
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775 1.96* 3.61** 
785 1.99* 3.68** 
795 2.00* 3.70** 
805 2.01* 3.73** 
815 1.97* 3.71** 
825 2.00* 3.74** 
835 2.04** 3.80** 
845 2.10** 3.85** 
855 2.12** 3.89** 
865 2.15** 3.92** 
875 2.17** 3.95** 

885 2.16** 3.97** 
895 1.97* 3.95** 
905 1.59 3.96** 
915 1.73* 3.96** 
925 1.87* 4.01** 
935 2.05* 3.84** 
945 2.11** 3.93** 
955 2.23** 4.01** 
965 2.41** 4.14** 
975 2.56** 4.23** 
985 2.63** 4.30** 
995 2.67** 4.34** 

1005 2.67** 4.66** 
1015 2.66** 4.68** 
1025 2.65** 4.69** 
1035 2.64** 4.70** 
1045 2.64** 4.70** 
1055 2.63** 4.70** 
1065 2.61** 4.70** 
1075 2.58** 4.70** 
1085 2.34** 4.70** 
1095 2.08** 4.69** 
1105 2.39** 4.67** 

1115 2.57** 4.61** 
1125 2.60** 4.51** 
1135 2.90** 4.65** 
1145 3.38** 4.81** 
1155 4.26** 5.08** 
1165 4.56** 5.24** 
1175 4.74** 5.32** 
1185 4.86** 5.37** 
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1195 4.94** 5.41** 
1205 4.95** 5.42** 
1215 4.90** 5.41** 
1225 4.84** 5.38** 
1235 4.78** 5.37** 
1245 4.73** 5.35** 
1255 4.68** 5.34** 
1265 4.65** 5.32** 
1275 4.68** 5.34** 
1285 4.75** 5.37** 
1295 4.89** 5.38** 

1305 5.00** 5.41** 
* = P ≤ 0.05 

** = P ≤ 0.01 
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 1366 

Figure 2.A. Relationship between year of release and two-year yield 

means for MGIII and MGIV experiments. Least square line with 

equation and coefficient of determination (R
2
) represented at the top 

of the figure. 
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 1367 

 1368 Figure 2.B. Mean spectral response curves of MGIII genotypes (without ‘Illini’). 

Wavebands are 10nm intervals and reflectance is the percentage of a white reference 

panel. 
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 1374 

Figure 2.C. Mean spectral response curves of MGIV genotypes. Wavebands are 10nm 

intervals and reflectance is the percentage of a white reference panel. 
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 1375 

Figure 2.D. Correlation coefficient (r) values between wavelength (nm) and year of release 1376 

for MGIII and MGIV two-year mean reflectance values. An r value ≥ ±0.37 is significant at 1377 

the Pr≤0.05 level, and an r value ≥ ±0.56 is significant at the Pr≤0.01. 1378 

 1379 
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Chapter 3 - Characterizing Soybean Seed Yield Using Optimized 1 

Phenotyping with Canopy Reflectance  2 

 Abstract 3 

Genotyping and phenotyping technologies that increase the amount of genetic material in 4 

the breeding program and increase the efficiency of cultivar development are necessary to 5 

accomplish the genetic gains needed to meet food demand. Optimized phenotyping using canopy 6 

reflectance measurements may provide  a logical solution. The objectives of this study were: 1) 7 

to determine if canopy reflectance is useful in characterizing soybean seed yield; 2) to build yield 8 

estimation models for use as a screening tool; 3) to determine which wavebands contribute most 9 

to soybean yield estimation; and 4) to determine which spectral reflectance observations at 10 

specific growth stages contribute most to soybean seed yield. Canopy reflectance and seed yield 11 

were measured on 20 maturity group III (MGIII) and 20 maturity group IV (MGIV) soybean 12 

cultivars released from 1923 to 2010. Measurements were conducted on six irrigated and water-13 

stressed environments in 2011 and 2012. Spectral band regions significantly contributing to seed 14 

yield prediction were selected through partial least squares regression, and yield estimation 15 

models were created using selected band regions through multiple linear regression. Significant 16 

differences were detected between genotypes, environments, and genotype × environment 17 

interactions for yield and band regions. Yield prediction models created using the red edge and 18 

portions of the near-infrared spectrum explained much of the variation in seed yield among 19 

genotypes. No significant trend was found for specific growth stages contributing more to yield 20 

estimation modeling or between water regimes. Yield estimation models using canopy 21 

reflectance measurements may be a useful selection tool in breeding programs. 22 
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 Introduction 1 

 Due to the complex genetic basis of soybean yield, classic breeding approaches are still 2 

utilized to assess yield potential and improvement. In these approaches, crosses are made with 3 

elite lines and progeny and then selected based on attributes favorable to specific target 4 

environments. Superior genotypes are moved through the process, with seed yield used as a main 5 

selection criterion (Loss and Siddique, 1994). This selectivity has decreased genotypic diversity 6 

because many parental lines have similar backgrounds. Mechanized harvesters are utilized to 7 

make the process of obtaining seed yield faster, but this method is expensive, laborious, and 8 

time-consuming. Field evaluation of plots under normal growing conditions will always be 9 

necessary, but if specific regions of the electromagnetic spectrum can consistently account for a 10 

large portion of seed yield variability between genotypes and across environments, the 11 

technology may a useful indirect selection criterion for breeding programs. 12 

Most of the field-based research conducted on yield estimation models using canopy 13 

reflectance are focused on one-, two-, or three-band indices, which can be highly variable and 14 

inconsistent (Babar et al., 2006a, 2006b). Some of these indices have been useful in estimating 15 

yield through other plant characteristics, such as chlorosis (Adams et al., 1999), green cover 16 

(Dusek et al., 1985; Daughtry et al., 2000), chlorophyll (Datt, 1999; Daughtry et al., 2000), and 17 

photosynthetically active tissue (biomass) (Wiegand et al., 1991). These indices have had 18 

varying degrees of success, but none have fully captured the underlying physiological and 19 

environmental factors behind consistent phenotypic yield estimation.  20 

Studies focusing on utilizing full-spectrum instruments and models for various 21 

parameters have been published in recent years in wheat (Hansen et al., 2002; Pimstein et al., 22 

2007, 2011), corn (Hong et al., 2001; Weber et al., 2012), rice (Lin et al., 2012), and cotton 23 

(Zhao et al., 2006) in optimal and drought environments. Additional studies have characterized 24 
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and explored how to incorporate these new models into high-efficiency platforms (Walter et al., 1 

2012; White et al., 2012).  2 

Most of the indices created correlate plant health parameters such as pigment status to 3 

grain yield. Indices such as the simple ratio (SR), first used by Jordan (1969) and Rouse et al. 4 

(1973) and described by the equation [RNIR/RRED]), capture the ratio of NIR reflectance to red 5 

reflectance. SR has been shown to correlate well with biomass, leaf area index (LAI), fractional 6 

photosynthetically active radiation (FPAR), ground cover, and wheat and soybean yield 7 

(Hatfield, 1983; Wiegand et al., 1991; Ball and Konzak, 1993; Price and Bausch, 1995; Ma et al., 8 

2001; Royo et al., 2003; Hatfield and Prueger, 2010). The normalized difference vegetation 9 

index (NDVI) (derived by Deering (1978) and Tucker (1979) to estimate green biomass and 10 

intercepted PAR; defined as [RNIR-RRED/RNIR+RRED]) has been used to predict yield and other plant 11 

functions with many crops using hyperspectral and satellite imagery (Wiegand et al., 1991; 12 

Peñuelas et al., 1997; Ma et al., 2001; Shanahan et al., 2001; Royo et al., 2002; Royo et al., 2003; 13 

Prasad et al., 2007a, 2007b; Marti et al., 2007). Gittelson et al. (1996a) proposed the Green 14 

NDVI as a substitute for the high saturation point of the NDVI’s red region. Shanahan et al. 15 

(2001) have successfully predicted yields in corn under normal growing conditions in Nebraska 16 

using the Green NDVI. Researchers found that normalizing the green and NIR relationship was 17 

highly correlated with grain yield, explaining 70 to 92% of yield variability at mid–grain fill 18 

(Shanahan et al., 2001). Ma et al. (2001) used the Green NDVI (R613-R559/R613+R559) to predict 19 

soybean yield and found a high correlation with soybean yields under irrigated conditions, which 20 

explained up to 80% of the variation within yield. The photochemical reflectance index (PRI), 21 

which is defined by the equation (R550 – R531)/(R550 + R531), captures the normalized difference 22 

between the major green wavelength reflectance of the plant canopy and leaves, which can be 23 
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used to quantify radiation use efficiency (Gamon et al., 1992). Trotter et al. (2002) and 1 

Garbulsky (2011) used the PRI to assess nitrogen use efficiency and radiation use efficiency to 2 

distinguish genotypes that were superior to checks. These indices have been used estimate yield 3 

varying environments on many platforms. 4 

Other indices focus on the biophysical parameters, such as water content and leaf area. 5 

Leaf area index (first illustrated by Tucker and Sellers, 1986) was developed to predict 6 

vegetation parameters such as green biomass and green leaf area (Babar et al., 2006a, 2006b). 7 

The LAI captures the genotypic differences between photosynthetically active radiation (PAR) 8 

either being absorbed by leaves with more area or being able to monitor important crop variables 9 

throughout the growing season (Clevers, 1997). Aparicio et al. (2002) have determined that LAI 10 

plays a large part in plant function and correlates well with yield prediction. Many water indices 11 

have been developed to relate reflectance measurements with success in the 850 and 970 nm 12 

regions with bread and durum wheat yield (Royo et al., 2003; Gutierrez et al., 2010). The water 13 

indices focus on the minor water absorption bands within the spectrum and capture relative water 14 

content based on absorption strength of water within the plant leaves. Capturing biophysical 15 

properties can mean discovering properties that influence yield production of field crops. These 16 

indices are easy to calculate and give researchers a way to easily handle the large amounts of 17 

data associated with such research; however, indices tend to be environment-specific and have a 18 

low correlation with yield outside of wheat (Ma et al., 2001; Gutierrez-Rodrigues et al., 2004; 19 

Prasad et al., 2007a; Gutierrez et al., 2010). Therefore, more complex models that use more of 20 

the spectrum need to be developed to capture the necessary variation within yield across different 21 

environments and crops (Pimstein et al., 2007 and 2011; Weber et al., 2012). 22 
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High-yielding cultivars tend to have high biophysical and biochemical properties that 1 

make distinguishing these genotypes using spectral indices unreliable (Baret and Guyot, 1991; 2 

Aparicio et al., 2002; Pimstein et al., 2007). Due to confounds such as biomass saturation, dense 3 

cover, high LAI, and high chlorophyll levels, full-spectrum models have been considered for 4 

yield estimation. These models have not been utilized, however, because of over-fitting and 5 

collinearity concerns from the large number of predictors and typically small sample size 6 

associated with spectral research (Pimstein et al., 2007). The main approaches used to meet the 7 

challenges of hyperspectral data analysis focus on reducing the correlation between predictor 8 

variables, causing multicollinearity and normalizing the variability within predictor variables 9 

from sample to sample. Researchers also use these new techniques to make the spectral response 10 

curves into meaningful spectral waveband regions.  11 

Principal component analysis (PCA) has been used by researchers to build yield 12 

prediction models that explain 70 to 90% of the yield variability in maize (Hong et al., 2001; 13 

Chang et al., 2003) and 39% of the yield variability among soybean genotypes (Hong et al., 14 

2001). Using six bands, regression explained almost 95% of the variability within maize yield. 15 

Artificial Neural Network Analysis has also been used in soybean to build prediction models that 16 

explain between 46 and 81% of the yield variability in soybean and 42 to 77% in corn (Kaul et 17 

al., 2005). Researchers also determined that reducing the dataset to 10-nm intervals reduced the 18 

noise within the spectra (Lin et al., 2012). Utilizing multivariate analysis is new to precision 19 

phenotyping research but has the potential to create yield prediction models and explain other 20 

important phenotypic parameters. 21 

Partial Least Squares (PLS) was used for initial data pre-treatment and variable reduction 22 

before multiple linear regression techniques (Wold, 1966). Partial least squares was selected for 23 
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analysis due to the high redundancy in spectral data and subsequent multicollinearity between 1 

bands and “large p small n” phenomenon associated with spectral data analysis. Like PCA, PLS 2 

extracts successive linear predictors of y called latent variables or factors. The new variables aim 3 

to explain response variation and predictor variation; models are selected based on balancing 4 

these two goals. Hansen et al. (2002) compared three different PLS methods and concluded the 5 

N-PLS was the most consistent for yield and protein content estimation in wheat and barley, 6 

which explained up to 75% of the variation in protein content and up to 97% of the yield 7 

variation. Using different water regimes, Weber et al. (2012) similarly found that PLS explained 8 

a maximum of 40% of the variability within corn yield and prediction models explained more 9 

variability in water-limited environments than non-water–limited environments. Lin et al. (2012) 10 

used orthogonal projections to latent structure PLS in rice and distinguished three cultivars with 11 

90% accuracy, but this result dropped to 80% when distinguishing one cultivar. 12 

 The goal of this study was to develop statistical models for soybean yield estimation 13 

using canopy reflectance measurements. The specific objectives were to assess canopy 14 

reflectance as a tool for soybean yield estimation, identify specific growth stages significantly 15 

contributing to yield estimation, and test the stability and utility of yield estimation models 16 

across varying environments. 17 
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 Materials and Methods 1 

 Experimental and Field Design 2 

 A study was conducted on soybean [Glycine max (L) Merr.] in 2011 and 2012 at the 3 

Kansas State University Research farm (south of Manhattan, KS). In 2011, experiments (location 4 

A) were conducted on a well-drained silt loam soil of the Eudora and Belvue types. In 2012, 5 

location B was a well-drained silt loam soil of the Bismarckgrove-Kimo complex and location C 6 

was a well-drained silt-sandy loam soil of the Belvue and Eudora types.  7 

 Twenty maturity group III (MGIII) and 20 maturity group IV (MGIV) soybean cultivars, 8 

ranging in release year from 1923 to 2010, were selected for release year diversity out of the 9 

Soybean Genetic Gains Study, which contained 60 MGIII and 54 MGIV genotypes. Selected 10 

cultivars were a mixture of private and public released cultivars. 11 

The experiment was planted in a randomized complete plot design with 4 replications in 12 

2011 and 2012. Replicated plots were planted on 23 May, 2011 on field A, and 16 May, 2012 13 

and on 4 June, 2012 on fields B and C respectively. Each experimental unit consisted of 4 rows, 14 

3.4 meter long, and spaced 76 cm apart. Genotypes were planted in separate irrigated (IRR or I) 15 

and water stressed (DRY or D) environments. In both years, weed pressure and fertility were not 16 

limiting. In 2011 and 2012, flood irrigation was applied to the irrigated plots starting at 17 

reproductive stage 1 (R1), and continued weekly until R6 (Fehr and Caviness, 1977). In 2011, no 18 

supplemental irrigation was applied to the water-stressed environments whereas in 2012, due to 19 

the extremely dry conditions, one irrigation of approximately 5 cm was applied to the DRY plots 20 

on fields B and C shortly after R1 to ensure crop development. No further irrigation was applied 21 

to the DRY plots on field B. Weekly irrigation continued in the IRR plots.  Later in the growing 22 

season on Field C, an irrigation malfunction occurred during seed fill, and the water-stressed 23 
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environment received an additional 5 to 6 cm of water. This irrigation occurred after all of the 1 

spectral readings had been taken. Because of this late-season irrigation, the water treatments for 2 

Field C are designated irrigation 1 (IRR1, or I1) and irrigation 2 (IRR2 or I2), rather than IRR 3 

and DRY. 4 

 Phenotypic Traits 5 

Maturity, height, and lodging were taken on all plots during both seasons. Maturity was 6 

calculated as the number of days past 31 August when 95% of the pods had reached mature 7 

color. Height was measured as the average length (in cm) of mature plants from the ground to the 8 

tip of the main stem. Lodging was scored on a scale of 1 to 5 based on the number of plants 9 

leaning or broken. Upright plants with no lean were scored a 1, 2 = 20° lean, 3 = 45° lean, 4 = 10 

60° lean, and 5 = flat on the ground. Plots were mechanically harvested using a two-row plot 11 

combine, with rows two and three used to calculate seed yield of the plot. Seed yield was 12 

calculated as the total mass of seed obtained and was adjusted to uniform moisture. 13 

 Data Analysis 14 

 Analysis of Variance 15 

 The GLIMMIX procedure in SAS 9.2 (SAS Institute, 2008) was used for analysis of 16 

variance (ANOVA). Cultivar and experiment were treated as fixed effects, and replication nested 17 

within the experiment was treated as a random effect for yield and agronomic traits. For 18 

hyperspectral data, replication nested within experiment and subsamples were treated as random 19 

effects for full-season analysis. For observation-day analysis, the repeated statement for repeated 20 

sampling data was used and treated as a random effect. Environment was classified as year, field, 21 

and water treatment. The Brown-Forsythe homogeny of variance test was implemented in all 22 



65 

 

65 

 

ANOVA analyses, and residuals were used to determine outliers that were excluded from further 1 

statistical analysis.  2 

 Partial Least Squares (PLS) 3 

PROC PLS in SAS 9.2 with the non-linear iterative partial least squares (N-PLS) 4 

algorithm, random k-fold = 10-cross validation, and factor levels set at 15 was used for outlier 5 

identification, pre-treatment, and predictor variable selection on 2011 and 2012 data. The 6 

predicted residual sums of squares (PRESS) were used for model selection. The NIPALS 7 

algorithm was chosen over the SIMPLS algorithm (De Jong, 1993) because of the high 8 

dimensionality and non-linear nature of the hyperspectral data. Random k-fold = 10-cross 9 

validation was chosen because of the small sample size compared with the number of predictors 10 

and the lack of a true validation dataset for validating built models. Max factor number was set at 11 

15, which is the max factor number allowed by SAS for the dataset used. Optimized factor 12 

number was selected when the PRESS statistic was minimized most (Wold, 1966). 13 

 Outlier Identification and Data Synthesis 14 

 Hyperspectral data were initially trimmed from 350 to 2500 nm to 400 to 1310 nm to 15 

eliminate noise from atmospheric absorption regions focused around the water absorption bands 16 

in the near-infrared and atmospheric noise in the ultra-violet areas of the spectrum. For each 17 

observation day, initial outlier control on raw data was implemented before averages were 18 

calculated for observation day and season totals. After outliers were identified and excluded from 19 

analysis, data were combined to form 10-nm band regions to reduce the dataset size and 20 

eliminate some of the collinearity associated with bands in close proximity (Naes et al., 2004). It 21 

was also determined that combined bands would have less variation from sample to sample than 22 

single band measurements (Lin, et al., 2012).  23 
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 1 

 Pre-treatment Before Modeling 2 

 Because modeling assumptions of normality were not met, it was necessary to auto-scale 3 

spectral data and dependent variable before PLS analysis (Harshman and Lundy, 1984). The data 4 

were mean-centered and auto-scaled separately for each individual experiment analysis and then 5 

across experiments when datasets were combined. Mean-centering and scaling eliminates bias 6 

within the bands to ensure even weighting of band magnitude, so the analysis is focused on the 7 

variance (Hansen et al., 2002). Auto-scaling is calculated as the inverse of the standard deviation 8 

for each variable [1/(SDev)]. 9 

 10 

 Predictor Variable Selection 11 

  Hyperspectral band regions from 2-yr means and individual environments that most 12 

significantly contributed to yield estimation were determined using partial least squares 13 

regression (PLSR). In total, 91 band regions from 400 to 1310 nm were analyzed for variable 14 

importance and selected for further analysis through traditional least squares multiple linear 15 

regression (MLR). This procedure was done to extract exact band regions contributing to yield 16 

estimation, which is not possible in PLS models; therefore, custom sensors based on specific 17 

bands could be built for further research studies. Variables were determined to be important 18 

through variable importance within projection plots (VIP), which were created through a macro 19 

in SAS. Wold’s criterion limit of 0.8 was used as a cutoff point to indicate variables that 20 

contributed significantly to yield estimation (Wold, 1966). Band regions were selected within 21 

peaks and over Wold’s threshold. Due to collinearity issues, band regions that significantly 22 

contributed to yield estimation and were close to each other were combined for final analysis.  23 
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 Multiple Linear Regression 1 

PROC GLMSELECT in SAS 9.2 was used for yield estimation model building. All 2 

models were built using band regions selected through PLSR. For variable selection, stepwise 3 

with forward and backward elimination was used with a 0.1 alpha for variable entry and exit 4 

criterion. Due to the small sample sizes, full n-1 cross-validation (jack-knife) was utilized instead 5 

of training and validation datasets. Model selection was completed when the predicted residual 6 

sums of squares (PRESS) statistic and Mallow’s Cp statistic were fully minimized. The selected 7 

beta parameter estimates were then exported into PROC REG (SAS 9.2) for goodness of fit tests. 8 

The variable inflation factor (VIF) was used to determine multicollinearity between parameters, 9 

and a selection value of greater than 10 was used to determine multicollinearity. If a parameter 10 

had a VIF greater than 10, it was eliminated from the possible variables, and the models were re-11 

optimized.  12 

All models were created using total-season least squares mean estimates with maturity 13 

groups kept separate. Two datasets (consisting of least square means from observation days 14 

determined significant contributors to yield estimation) were created for model selection. Each 15 

observation day was individually regressed with yield, and significant days were selected based 16 

on R
2
 values, rMSE, and percentage of the dependent mean accounted for by the rMSE. Models 17 

were validated on individual environments and maturity group for reliability and robustness. 18 

 Results and Discussion 19 

 Genotypic Performance in MGIII and MGIV Yield and Spectra 20 

Genotypes and genotypic performance for yield are the same as in chapter 2. A wide 21 

range was observed in both maturity groups for mean seed yield. Average seed yield ranged from 22 

2.32 to 4.63 t ha
-1

 and 1.97 to 4.26 t ha
-1

 across environments for the MGIII and MGIV 23 
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genotypes, respectively. Mean yields and yield ranges and differences between water regimes 1 

varied highly between locations (Table 3.1). For yield, highly significant genotypic, 2 

environment, and genotype × environment (G × E) interaction differences were detected in both 3 

maturity groups (Table 3.2). In fields A and B, where the water regimes were maintained 4 

throughout the growing season, seed yields were significantly higher in the irrigated treatments 5 

than in the water-stressed treatments. In Field C, where the breakdown of the water regimes 6 

occurred, the irrigated and water-stressed yields were not statistically different.  7 

Analysis of 10-nm hyperspectral band regions revealed genotype and environmental 8 

differences among many waveband regions. The regions that were significant for genotype, 9 

environment, or G × E are listed in Table 3.2. Maturity exhibited significant genotypic, 10 

environment, and G × E interaction differences in both maturity groups (Table 3.2). The G × E 11 

interaction did not account for a large portion of the total phenotypic variation, which suggests 12 

that genotypic means observed in a single environment could be replicated across environments 13 

with minimal interaction influence. Looking at individual growth stage observations, the visible 14 

VIR and red-edge bands were more consistent across growth stages and environments for 15 

genotypic differences in both maturity groups (Table 3.3). In the MGIII and MGIV genotypes, 16 

wavebands at 415 to 715 nm exhibited highly significant (Pr > 0.01) and significant (Pr > 0.05) 17 

genotypic differences in all environments and growth stages; however, no wavebands in the NIR 18 

had significant genotypic differences in all environments and growth stages in both maturity 19 

groups.  20 

For the MGIII genotypes, the later growth stages are more consistent than earlier growth 21 

stages for genotypic differences for all wavebands; however, in the MGIV genotypes, no such 22 

trend is observed, with early and late growth stages exhibiting genotypic differences. As seen, 23 
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the G × E in the VIR and red-edge wavebands is minimal, whereas in the NIR, the G × E is 1 

greater in both maturity groups. Lin et al. (2012) observed greater genotypic differences in the 2 

NIR compared with the VIR in rice. This could be due to the high biomass variability in their 3 

study, which mainly affects the NIR. The small contribution that the G × E interaction 4 

contributes to the total phenotypic variation suggests that spectral data may be robust across 5 

environments, making it a strong candidate for an indirect selection technique. Reynolds et al. 6 

(2009) suggested that G × E stability is one of the major factors for evaluating any new 7 

phenotyping technique. 8 

 Waveband Region Selection 9 

Using PLSR portions of the 2011 and 2012 mean spectra significantly contributed to 10 

yield estimation within the MGIII and MGIV experiments (Figures 3.1A and 3.1H). The VIR 11 

(400 to 700 nm) and red edge (701 to 730 nm) contributed significantly to yield estimation, with 12 

the red and red-edge portions of the spectra exhibiting the most significant projection to yield 13 

estimation in both maturity groups. Most of the NIR portion of the spectra did not contribute 14 

significantly to yield estimation for either maturity group; however, in both maturity groups, the 15 

1290- to 1310-nm regions of the spectra were slightly above the 0.8 threshold, which suggests 16 

increased significance for yield estimation in these regions. 17 

For 2011 Field A irrigated and water-stressed environments, both MGIII and MGIV 18 

mean spectra exhibited high variable importance values in the VIR and red-edge portions of the 19 

spectra (Figures 3.1B, 3.1C, 3.1I, and 3.1J. For the MGIII environments (A-I), visible and red 20 

edge portions had the highest significances for yield estimation, with a sharp decrease at the 21 

beginning of the NIR and a significant increase from 775 to 955 nm (Figure 3.1b). For the A-D 22 

environment, variable importance was similar to that of the A-I environment, but a decrease in 23 
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the blue (400 to 500 nm) portion of the spectra was observed, and there were significant peaks 1 

from 1035 to 1095 nm (Figure 3.1C). 2 

For Field B, the VIR and red edge were highly significant in 2012, similar to that of Field 3 

A and the 2-yr averages for both maturity groups. For environment MGIII B-I, the VIR and NIR 4 

had highly significant portions of the spectra for yield estimation (Figure 3.1D). The red edge 5 

was the most significant, followed by the green and red. A spike in the NIR was observed around 6 

the 915-, 1100-, and 1165-nm regions, as was a sharp peak in the early blue portion of the 7 

spectra. For the MGIII B-D environment the VIR and NIR had highly significant regions above 8 

Wold’s 0.8 threshold, with a sharp decrease in the NIR portion until 1165 to 1305 nm. The red 9 

edge portion was the most significant, as in the A–I environment (Figure 3.1E). 10 

In 2012, neither maturity group in Field C was as consistent as in the other two fields; 11 

there was an irrigation malfunction, no spectral data was collected on IRR1 after the irrigation 12 

malfunction, and yield values were higher than expected. In addition, after the irrigation 13 

malfunction, plants were highly lodged, which could have contributed to inconsistent spectra 14 

influenced by soil background and sensing of under-leaf or stem reflectance. As in the other 15 

fields and environments, however, the VIR and red edge portions were the most useful for yield 16 

estimation (Figures 3.1F, 3.1G, and 3.1M).  17 

The MGIII C-I environment had high peaks of significance in the VIR, but these peaks 18 

were not as strong as those in locations A and B (Figure 3.1F). There was a sharp increase in the 19 

red edge and slight peaks in the 915- to 1005-nm region, as well as in the 1165- to 1305-nm 20 

regions of the NIR. The C-I 2 environment mostly mirrors the C-I 1 environment, with a sharp 21 

peak in the green in the 550-nm region (Figure 3.1G). Compared with the C-I 1 environment, the 22 
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C-I 2 environment saw a sharp increase in the early blue, and the red edge was the most 1 

significant for yield estimation (Figure 3.1G).  2 

In the MGIV A-I environment, a low significance in the blue region and a sharp increase 3 

in the green region was observed, with 550 nm being the highest significance for yield estimation 4 

in the green (Figure 3.1I). The red portion of the spectra was not as significant as the green or as 5 

in the MGIII environments; overall, however, the red-edge was the most significant region for 6 

yield estimation, similar to the MGIII environments. There was also a sharp decrease in the 7 

beginning of the NIR, with the rest of the plateau region (735 to 910 nm) being significant. The 8 

MGIV A-D environment had an increase in the blue region compared to the A-I environment, 9 

with the green being the most significant region of the VIR, similar to the A-I environment 10 

(Figure 3.1J). The red edge was significant, as in the MGIII and MGIV A-I environment; 11 

however, no significant regions of the NIR were observed.  12 

In the MGIV B-I and B-D environments, significant portions of the spectra in the blue, 13 

green, red, and red edge were observed, as well as some portions of the NIR (Figures 3.1K,3.1 14 

L). For the B-I environment, the early blue, green, red, and red edge were the most highly 15 

significant for yield estimation, as well as a slight peak in the 1305-nm region (Figure 3.1K). For 16 

the B-D environment, the early blue, green, and red edge were the most highly significant, 17 

similar to the B-I environment (Figure 3.1L); however, the red portion of the spectra and the NIR 18 

had different significant levels than the B-I environment. In the NIR, peaks in the 765 to 945 nm 19 

and a slight peak from 1065 to 1105 nm were observed, which were not observed in the B-I 20 

environment. These regions have been correlated with biomass production was well as plant 21 

water content; this correlation suggests that genotypes in the water-stressed environment may be 22 

differentiating in total biomass and water content, which leads to differences in yield. 23 
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For the MGIV environments in Field C, no optimized model was found for the C-I 2 1 

environment because of higher than expected yield and inconsistent spectra from irrigation 2 

issues. The C-I 1 environment, however, had significant regions in the VIR and red edge, as well 3 

as most of NIR (with the exception of 1005 to 1125 nm) (Figure 3.1M). Overall, for the MGIV 4 

experiments, Field C was the most inconsistent and had the most variability between regions 5 

significant for yield estimation.  6 

Different wavebands between maturity group mean spectra were detected for yield 7 

estimation. The differences in spectral regions correlated to yield could be due to morphological 8 

characteristics of the maturity groups. Other spectral regions exhibited variable importance 9 

values over Wold’s criterion but were not selected due to fears of high multicollinearity between 10 

bands and over-fitting due to more predictor variables than the sample size (N = 20). 11 

Overall, the most significant portions of the spectra across all experiments were the visible and 12 

red-edge portions of the spectra. The green around the 550-nm region and red around the 675–13 

695-nm regions were the most significant portions of the visible spectra. In the red edge, the 14 

705–715-nm regions were the most significant. The NIR was highly influenced by 15 

environmental factors and was inconsistent in significance for yield estimation across 16 

environments. This result is most likely due to atmospheric scatter and observational day 17 

conditions influencing the spectra. Band regions for final yield modeling were selected based on 18 

significance to yield estimation through importance in projection values in all environments in 19 

both maturity groups. Selected portions of the spectra that were close to each other were 20 

combined to form 11 spectral regions used for further yield modeling. The final bands used for 21 

modeling were 415 (400–430 nm), 550 (530–570 nm), 680 (670–690nm), 715 (700–730 nm), 22 

915 (910–920 nm), 940 (930–950 nm), 990 (980–1000 nm), 1100 (1090–1110 nm), 1140 (1120–23 
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1160 nm), 1245 (1240–1250 nm), and 1300 (1290–1310 nm). The 405–435-nm regions have 1 

been correlated with high chlorophyll a and b as well as beta-carotene absorption, resulting in 2 

low reflectance values in soybean (Chappelle et al., 1992). Lower reflection values in this region 3 

are due to high absorption of light by the chlorophylls and beta-carotene. Peñuelas et al. (1995) 4 

also created a normalized phaeophytinization index (NPQI) that related senescence to reflectance 5 

in the 415- and 435-nm regions.  6 

The 535–565-nm regions of the spectra are in the visible green region of the spectra, 7 

which has high reflection due to chlorophyll a and b reflecting green light. Chappelle et al. 8 

(1992) found that chlorophyll a and b of soybean leaves reflected the 550-nm region the most 9 

and could be used in a ratio with 675 nm to explain 93% of the variation within chlorophyll 10 

content between soybean leaves and could then be related directly to photosynthetic capacity. 11 

Also, 550 nm has been used to explain 92% of yield variability in wheat yield (Royo et al., 12 

2003). Ma et al. (2001) also used 559 nm by itself as well as in a ratio with 613 nm to explain 13 

from 13 to 80% of the variation within yield in soybean genotypes. 14 

The 675–685-nm regions of the spectra are in the middle of the red depression region of 15 

the spectra and have been correlated with chlorophyll absorption in soybean (Chappelle et al., 16 

1992). The lower yielding varieties had a higher reflection value in this region, suggesting a 17 

lower amount of chlorophyll or inefficiency of the chlorophyll, resulting in lower yields in 18 

soybean (Ma et al., 2001), corn (Weber et al., 2012), and wheat (Royo et al., 2003). 19 

 The 705-745nm region encompasses the end of the red and start of the red-edge 20 

inflection point. The red-edge inflection point is the sharp increase in reflection values, due to 21 

the transition from the visible red region to the high-reflection NIR portion due to cellular 22 
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scatter. This inflection point has been used to distinguish plants for health and yield, with 1 

healthier plants having a large contrast between red and NIR (Gitelson et al., 2011).  2 

The 915-nm waveband regions had a high reflection value in the spectra and have been 3 

associated with chlorophyll content measurements. Zhao et al. (2006) found that ratios using 551 4 

and 915 nm as well as 708 and 915 nm accounted for 67–76 % of the variability within 5 

chlorophyll content between cotton genotypes; however, Gitelson et al. (2003 and 2005) found 6 

that the best wavebands for estimating chlorophyll in higher plants were from 525 to 585 nm and 7 

695 to 725 nm. 915 nm also has been used for total biomass prediction in bermudagrass, 8 

accounting for 29.8 to 44.3% of the biomass variation (Stark et al., 2006). Marti et al. (2007) 9 

found that total biomass had a strong correlation with wheat yield (r = 0.97).  10 

Reflection in the 940-nm region has been used in chlorophyll meters (Minolta Osaka Co., 11 

Ltd., Japan) to capture nitrogen status and chlorophyll content of crops (Blackmer et al., 1994). 12 

Vollmann et al. (2011) found a significant correlation with SPAD-502 readings (ratio between 13 

650 nm and 940 nm) and 1000-seed weight in soybean cultivars. High reflection values were 14 

also observed in the 985–995-, 1105-, and 1135–1155-nm regions, with higher yielding 15 

genotypes tending to have higher reflection (data not shown). Wenjiang et al. (2004) found that 16 

wavebands selected through regression techniques for winter wheat total foliar nitrogen content 17 

were in the 1000–1140-nm (r = 0.8325) and 1200–1300-nm (r = 0.5138) regions.  18 

The 1240-nm region of the spectra has been correlated with water content of the leaf in 19 

many crops (Peñuelas et al., 1993; Gao, 1996; Datt et al., 2003; Gutierrez et al., 2010).  20 

Moreover, lower values in the 1150–1260-nm region have been associated with higher water 21 

content (Sims and Gamon, 2003); Prasad et al. (2007b) concluded that indices using water 22 

content bands had higher heritability and could distinguish higher yielding genotypes more 23 
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consistently than vegetation based indices in wheat. The 1095-nm and 1295–1300-nm regions of 1 

the spectra are in the NIR portion, and higher values in these regions correlate to higher yielding 2 

varieties in corn, but no physiological characteristics have been associated with these waveband 3 

regions (Weber et al., 2012).  4 

 Correlation Between Parameters 5 

Significant correlations were found between yield, maturity, and wavebands (Table 3.4). 6 

There was a significant positive correlation (r = 0.68) between yield and maturity in the MGIV 7 

experiment, but no significant correlation (r = 0.35) was found between yield and maturity in the 8 

MGIII genotypes. This result may have been mainly due to premature death of some MGIV 9 

entries in 2011 and an early frost in 2012 that did not allow these genotypes to develop fully. 10 

When the top five maturing cultivars were eliminated from analysis, no significant correlation 11 

was observed between yield and maturity in the MGIV genotypes (data not shown). In both 12 

maturity groups, the VIR wavebands had a negative and more significant correlation with yield 13 

than the NIR wavebands with the exception of 915 in the MGIV (r = 0.46*). The NIR portion 14 

had a positive correlation with yield, with the exception of 1245 and 1300 in both experiments. 15 

Chang et al. (2003) found similar patterns in correlation between VIR and NIR bands to corn 16 

yield; however, they found that in early sampling dates, the NIR had a negative correlation with 17 

yield. They concluded that negative correlations were due to soil reflectance confounds, similar 18 

to observations by Ryerson and Curran (1997). For the MGIII entries, 715 (r = -0.83**) had the 19 

most significant correlation with yield, and 1140 (r = 0.06) exhibited the least association (Table 20 

3.4). In the MGIV experiment, 680 (r = -0.78**) was the most significantly correlated with yield, 21 

and 1140 (r = 0.03) was the least correlated.  22 
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Significant correlation coefficients were identified between maturity and the wavebands 1 

in both maturity groups (Table 3.4). For the MGIII genotypes, no significant correlations were 2 

identified in the VIR, but significant positive correlations were identified in the NIR (r = 0.51* to 3 

0.73**). For the MGIV genotypes, significant correlations between maturity and wavebands 4 

were found in the VIR (r = -0.48* to -0. 59**) and NIR (r = 0.46* to 0.57**) portions of the 5 

spectrum. Due to the NIR’s association with cell structure, earlier maturing varieties would have 6 

cellular degradation due to senescence sooner than later maturing varieties and would be 7 

distinguished due to low NIR values.  8 

In both maturity groups, wavebands in the VIR portion were significantly correlated with 9 

each other (r = 0.77** to 0.99**), and the NIR wavebands were significantly correlated with 10 

each other (r = 0.69** to 1.00**). In the MGIII and MGIV genotypes, wavebands close in 11 

proximity were highly correlated with each other, and 1245 and 1300 had a correlation 12 

coefficient of 1.00. In both maturity groups, 1245 and 1300 tended to be significantly correlated 13 

with other bands, suggesting multicollinearity between these bands that could confound 14 

regression analysis. The high correlation between wavebands suggests that these wavebands are 15 

not independent information and techniques need to be employed to detect multicollinearity in 16 

regression analysis to reduce the risk of over-fitting yield estimation models.  17 

 Growth Stage Selection 18 

Yield estimation models based on growth stages that explained a significant proportion of 19 

the yield variation were created for both maturity groups (Tables 3.5 and 3.6; growth stage 20 

observations selected for further analysis are bolded). Overall, some observation days were 21 

significantly better than other observation days. Weather and other environmental conditions 22 

seemed to affect the spectral response curves from observation day to observation day, leading to 23 
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some observations being inconsistent and showing lack of fit, whereas others significantly 1 

contribute to yield estimation. Also, expanding upon the intensity of observations to alleviate 2 

some of these problems may be necessary. The results seem to suggest that singular observation 3 

days are not consistent enough for yield estimation across different environments and 4 

recommendations for best growth stages for yield estimation cannot be concluded. Although not 5 

recorded in this study, these inconsistencies across days and environments could be due to 6 

changing air temperature, sun angle, and humidity levels affecting spectral reflectance values. 7 

Environments A-I and B-D tended to have the most consistent models, with all observation days 8 

in both maturity groups selected for final model building. Irrigated environment models tended 9 

to explain a greater portion of yield among genotypes than water-stressed environments, which is 10 

most likely due to genotypes being easier to distinguish in high-yielding environments than low–11 

yield potential environments. No real trend for early or later growth stages was observed in this 12 

study, which is inconsistent with observations made by Ma et al. (2001), who found that late 13 

seed fill (R6) accounted for the most yield variability in soybean cultivars and that reproductive 14 

stages were better for yield estimation than vegetation stages. A study by Ma et al. (2001), 15 

however, was conducted using the Green NDVI, which may be more consistent in later growth 16 

stages than earlier growth stages due to greater genotypic differences in the green and NIR 17 

portions of the spectrum later in the growing season. Similar wavebands were selected for yield 18 

estimation in both maturity groups, with 715 (11-MGIII; 12-MGIV) and 915 (5-MGIII; 5-19 

MGIV) utilized the most and 1300 (1) and 1245 (1) the least.  20 

MGIII regression models for yield estimation based on growth stage explained from 47 to 21 

85% of the variability in seed yield using 1–4 wavebands, with the exception of three 22 

environments with no significant regression models identified (Table 3.5). Root means square 23 
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error values ranged from 0.32 to 0.56 t ha
-1

. The R
2
 for each water regime explained a similar 1 

amount of yield variability in irrigated environments (R
2
 = 0.47 - 0.85) and water-stressed 2 

environments (R
2
 = 0.51 to 0.79) when comparing growth stages. Environments in 2012 (R

2
 0.47 3 

to 0.85) tended to explain more of the variation in yield than 2011 (R
2
 = 0.51 to 0.73) 4 

environments; however, environment A-I had all observation days contributing to the final 5 

training model, whereas no other environment besides B-D had more than two observations 6 

contributing to the final training model dataset. For Field A, the R3-R4 growth stage in the AWI 7 

environment exhibited the highest R
2
 for seed yield. The highest yield variability explained was 8 

in environment C-I 1 at the R6 (late seed fill) growth stage (R
2
 = 0.85). The R3 and R3-4 growth 9 

stage observation on B-I and R3 growth stage observation on C-I 1 were not significant. 10 

MGIV regression models for yield estimation based on growth stage explained from 30 to 89% 11 

of the variability in seed yield using 1–5 wavebands, with the exception of three environments 12 

with significant regression models identified (Table 3.6). Root mean square values ranged from 13 

0.31 to 0.66 t ha
-1

, with the R5 growth stage in the A-D environment exhibiting the lowest and 14 

the R4 growth stage in B-I exhibiting the highest values. Unlike the MGIII experiment, 2011 15 

environments (R
2
 = 0.54 to 0.89) tended to account for a larger amount of yield variability than 16 

2012 data (R
2
 = 0.30 to 0.86), and environment A-I was also the most consistent, with all 17 

observation days selected for final training model creation. The regression model created using 18 

the R3-R4 growth stage on A-I exhibited the highest coefficient of determination value, but also 19 

used the most wavebands (5), suggesting the model is most likely over-fit and the R
2
 value was 20 

inflated. The same conclusion could be made about the R5 observation on B-I, but these growth 21 

stages were kept due to similar wavebands used in other models. The lack of fit observed for the 22 

A-I 2 environment can be explained by the previously explained irrigation malfunction. Also, as 23 
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in the MGIII experiment, the R2-R3 observation for B-I was discarded due to inconsistent 1 

spectra, which may have been related to high humidity and temperature conditions during 2 

spectral measurements. 3 

 Yield Estimation Model Development 4 

Selected observation days from the individual environment analysis were combined into 5 

a single dataset for each maturity group and used to build the final training models for yield 6 

estimation in both maturity groups. Datasets were means calculated from singular observation 7 

day data. The summary statistics and equation for the selected growth stage observations based 8 

on two-year spectra and yield means for MGIII and MGIV genotypes are presented in Table 3.7 9 

and Figure 3.2. For the MGIII genotypes, through multiple linear regression, the estimation 10 

model explained 83% of the variability within yield between genotypes. Red-edge region 715 11 

explained the most yield variability in models (73%), and the 1100 waveband region explained 12 

10% of the yield variability. In the training model, the β parameter estimate for the 715 13 

waveband was negative, suggesting varieties with high values for the 715 will have decreased 14 

yields (Figure 3.2). This result is consistent with previous research findings that lower reflection 15 

values in the red region of the spectra correlates with higher grain yields (Weber et al., 2012). 16 

The 1100 waveband was positive, which is consistent with previous research suggesting 17 

increased reflectance in the NIR area can correlate with higher yields (Weber et al., 2012). 18 

For the MGIV experiment, the training model accounted for 81% of the yield variability 19 

between genotypes. The 715 (700–730 nm) and 915 (910–920 nm) wavebands were selected in 20 

the training model, which is consistent with the red edge and NIR measurements seen in the 21 

MGIII training model. 715 explained the most yield variability at 70%, and 915 wavebands 22 

explained 11% of the variability in yield. The β parameter estimate for the 715 waveband was 23 
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negative, suggesting genotypes with high values for the 715 will have decreased yields, as in the 1 

MGIII models. The 915 waveband was also positive, which was consistent with MGIII 2 

genotypes and previous research (Reynolds et al., 1999; Lin et al., 2012; Weber et al., 2012). 3 

Results suggest that selecting significant growth stage observations improved yield 4 

estimation models. Results also indicate that the 715 waveband explains a large portion of the 5 

variability within seed yield, and previous research concluded that soybean yield can be directly 6 

related to chlorophyll content (Morrison et al., 1999). Although not as important as chlorophyll, 7 

this study found wavebands in the NIR to be highly effective in estimating yield when combined 8 

with the red edge. Observations by Morrison et al. (1999) and Voldeng et al. (1997) that 9 

increases observed in soybean seed yield can be attributed to increased chlorophyll content and 10 

photosynthetic capacity. Reynolds et al. (1999) also concluded that increases observed in wheat 11 

yield were due to a better partitioning of photosynthetic components; however, Lin et al. (2012) 12 

concluded that the NIR regions from 760–1030 nm contributed the most to rice cultivar 13 

discernment. 14 

 Yield Estimation Model Validation 15 

Validation of training models on individual environments delivered mixed results for 16 

both maturity groups, with coefficient of determination values ranging from 29 to 79% for the 17 

MGIII genotypes and 1 to 83% for the MGIV genotypes (Table 3.8). As in the observation-day 18 

selection analysis, the training model accounted for a large portion of the variability in yield, 19 

whereas in other environments and observation days, the training models did not account for a 20 

significant portion of the variability in yield. For the MGIII genotypes, the mean R
2
 for the 21 

irrigated water regime was 56%, whereas in the water-stressed regime, the mean was 63%. 22 

Similar results were observed in the MGIV genotypes, with the irrigated regime accounting for 23 
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49% of the variability in with the C-I 2 environments and 59% without. The water-stressed 1 

environment mean accounted for 62% of variability, and when comparing water regimes within 2 

the same field, the water-stressed environment mean accounted for a larger portion in three of the 3 

four instances, with A-I for the MGIV genotypes as the lone exception. These results are similar 4 

to observations by Ma et al. (2001) that stressed environments accounted for more variability 5 

than optimal environments. The authors concluded that results were due to greater differences in 6 

genotypes between higher and lower yielding spectra in the non-optimal compared with the 7 

optimal environments. In three of six environments for MGIII and four of six environments for 8 

MGIV genotypes, the season totals (ST) accounted for as much or more of the variation in yield 9 

than individual growth stages. These results are somewhat surprising because season total means 10 

would be expected to be more robust and have less error associated with the values than single 11 

observations, resulting in higher R
2
 values.  12 

For the MGIII genotypes, the highest R
2
 value was observed in the C-I 1 environment (R

2
 13 

= 0.79) season total dataset. The growth stage observation with the highest validation R
2
 was 14 

observed in the C-I 1 environments as well, with an R
2
 value of 0.75. The year averages were 15 

consistent for the MGII genotypes, with each year spectra mean dataset accounting for 68% of 16 

the variability within yield between genotypes. For the MGIV genotypes, the highest R
2
 17 

observed was the season total validation dataset for the B-D environment (R
2
 = 0.83). The 18 

highest single growth stage was observed for the R1–R2 growth stage for environment B-I (R
2
 = 19 

0.79). Contrary to the MGIII training model, the MGIV training model did not have consistent 20 

performance for year means, with the 2011 mean dataset accounting for 65% and the 2012 mean 21 

dataset accounting for 79% of the variability within yield. This is surprising given that single 22 

growth stage validations on Field A in 2011 were more consistent than 2012 validations; 23 
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however, a larger difference was observed in validation R
2
 values between water regimes for 1 

Field A than in Field B. Field C, of course, had the largest differences due to previously 2 

explained irrigation issues and the failure of spectral data to be representative of the harvested 3 

plants.  4 

Regarding relative performance, models ranked the genotypes in a similar fashion in both 5 

maturity group experiments. Within a breeding program, rank order is usually more important 6 

than actual yield when comparing genotypes to commercial checks. This is due to the high G × E 7 

interaction and low heritability associated with yield. For the MGIV environment season totals, 8 

the top three highest yielding genotypes were distinguished in the top 25% (5 genotypes) in 9 

environments B-I and A-D as well as two-year means of the irrigated and water-stressed 10 

environments. This means that five genotypes would have to be selected select the top three 11 

yields. The top three genotypes were distinguished in the top 50% (10 genotypes) in 12 

environments B-D, C-I 2, and A-I. For the MGIV environments, the top three yielding genotypes 13 

were distinguished in the top 25% in the B-I and B-D environments and in the top 50% in the C-I 14 

1, B-D, A-I, and two-year irrigated mean. Environment C-I 2 and the two-year water-stressed 15 

mean did not distinguish the genotypes within the top 75% of the genotypes. This is most likely 16 

due to problems stated above. In 14 of the 16 environments, the top three highest yielding 17 

genotypes were distinguished in the top 50% of the genotypes, and six of those were within the 18 

top 25%. 19 

 Conclusions 20 

PLS variable selection was used to detect important spectral waveband regions 21 

contributing to soybean yield and reduced the spectral datasets to a manageable size for 22 

regression analysis. Most of the spectral waveband regions selected have been correlated with 23 
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key biophysical/biochemical components that have been proven to contribute to yield in many 1 

crops. Regression models built based on two-year means explained a large portion of the 2 

variability within soybean yield in both maturity groups. The red-edge area and portions of the 3 

NIR were the most important portions of the electromagnetic spectra, and creation of yield 4 

prediction models based on these waveband regions can account for a significant amount of 5 

variability within soybean seed yield. Variability was high within and between growth stages, 6 

water regimes, environments, and years for validation of training models. Environmental factors 7 

such as weather, time of day, and other factors appear to affect spectral reflectance 8 

tremendously, leading the training models performing better or worse on different validation 9 

datasets. The performance was not as consistent as hoped, but still accounted for a significant 10 

portion of variability in seed yield in most environments. The training models also had the ability 11 

to distinguish the top three highest yielding genotypes within the top 50% of the genotypes in 12 

most validation datasets.  13 

This experiment demonstrated that canopy reflectance can be used to characterize 14 

soybean seed yield using a diverse set of genotypes. These genotypes allowed for significant 15 

variation in model training datasets; however, experiments need to be conducted with genotypes 16 

that have less diversity to validate the models. Integrating spectral reflectance measurements into 17 

a high-throughput platform also is necessary before this technology can be adopted in breeding 18 

programs. 19 
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Table 3.1. Mean seed yield by environments and range in yield across genotypes within 1 

environments. 2 

Year Field  
Water 
regime 

Mean  LSD Range 

Maturity group III 

   t ha-1 

2011 A IRR 2.98 0.43 2.52 
2011 A DRY 1.75 0.60 2.01 
2012 B IRR 3.63 0.58 2.67 
2012 B DRY 2.78 0.92 2.31 
2012 C IRR1 3.99 0.60 2.86 

2012 C IRR2 3.94 0.59 3.33 

Maturity group IV 

2011 A IRR 3.20 0.52 3.27 
2011 A DRY 1.76 0.55 1.81 
2012 B IRR 3.59 0.38 3.63 
2012 B DRY 3.23 0.41 2.49 
2012 C IRR1 3.77 0.74 2.14 
2012 C IRR2 3.99 0.51 2.68 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 
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 1 

Table 3.2. Maturity group III (MGIII) and maturity group IV (MGIV) analysis of variance 2 

F-values for seed yield, maturity (Mat), and spectral wavelengths used for yield estimation 3 

models. 4 

Source DF Yield Mat 415 550 680 715 915 940 990 1100 1140 1245 1300 

MGIII 

Gen (G) 19 111.6** 75.0** 10.2** 17.3** 12.6** 14.7** 5.1** 4.5** 4.6** 3.5** 3.9** 4.7** 4.7** 

Env (E) 5 109.1** 94.3** 18.3** 11.0** 8.7* 8.3* 45.1** 38.9** 40.8** 36.4** 14.9** 28.3** 23.6** 

G × E 95 3.1** 4.5** 3.3** 3.5** 3.2** 3.5** 2.1* 2.0* 1.9* 1.7* 1.5* 1.7* 1.7* 

MGIV 

Gen (G) 19 99.9** 40.4** 90.9** 16.3** 8.5** 14.9** 3.0* 2.5* 2.8* 2.9* 2.2* 2.1* 2.1* 

Env (E) 5 84.5** 567.4** 112.3** 137.6** 139.7** 139.6** 50.7** 59.3** 55.5** 49.5** 64.9** 61.1** 58.8** 

G × E 95 3.9** 2.6** 1.0 1.4* 1.1 1.5* 0.8 0.6 0.6 0.6 0.5 0.5 0.5 

* = Pr < 0.05 ** = Pr < 0.01 
 

 
               

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 
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Table 3.3. Maturity group III (MGIII) and maturity group IV (MGIV) analysis of variance 

F-values for 2011 and 2012 experiments, and wavelengths used for yield estimation models. 

 MGIV 

     Wavelength 

 (nm) 

Year Field-Env Growth Stage DF 415 550 680 715 915 940 990 1100 1140 1245 1300 

2011 A-I R3 19 2.87** 3.91** 2.35** 4.57** 2.20** 2.09** 1.59 1.57 1.52 1.43 1.45 

2011 A-I R3-R4 19 3.92** 6.46** 4.38** 4.81** 4.93** 4.09** 3.50** 3.10** 2.11** 2.11** 2.00* 

2011 A-I R5 19 4.75** 6.59** 3.87** 4.94** 9.78** 8.28** 6.27** 5.03** 3.70** 2.84** 2.68** 

2011 A-I R5-R6 19 2.81** 3.01** 2.81** 2.65** 5.57** 5.00** 3.51** 2.64** 2.14** 1.69* 1.64 

2011 A-D R2-R3 19 7.05** 6.57** 4.98** 5.11** 2.13** 2.01** 2.00** 1.98* 1.77* 1.83* 1.80* 

2011 A-D R3-R4 19 7.87** 7.36** 4.25** 6.19** 4.05** 4.03** 3.73** 3.50** 3.43** 3.36** 3.34** 

2011 A-D R5 19 6.17** 5.69** 6.41** 6.69** 7.84** 7.22** 5.42** 4.28** 3.23** 2.45** 2.36** 

2012 B-I R1-R2 19 5.01** 8.20** 3.02** 9.89** 4.52** 4.93** 3.94** 3.39** 3.54** 2.95** 2.97** 

2012 B-I R2-R3 19 3.91** 4.77** 2.37** 4.23** 0.76 1.03 1.23 1.43 1.95* 1.75* 1.48 

2012 B-I R4 19 1.82* 2.30** 1.84* 2.32** 1.68 1.78* 1.66 2.00* 1.68* 1.29 1.32 

2012 B-I R5 19 4.58** 6.97** 4.08** 6.77** 3.05** 2.77** 2.77** 2.16** 1.84* 2.02** 1.98* 

2012 B-I R5-R6 19 3.09** 4.74** 2.96** 4.32** 2.81** 2.62** 2.47** 2.45** 2.31** 2.34** 2.34** 

2012 B-D R3 19 4.63** 3.43** 2.33** 3.49** 1.72* 1.88* 1.76* 1.36 1.48 1.51 1.75* 

2012 B-D R4 19 5.58** 4.97** 3.34** 4.57** 3.96** 3.45** 3.22** 3.26** 2.58** 2.61** 2.54** 

2012 B-D R6 19 3.81** 6.89** 3.47** 6.85** 6.35** 5.74** 4.89** 4.69** 3.90** 3.48** 3.37** 

 MGIII 

     Wavelength 

 (nm) 

Year Field-Env Growth Stage DF 415 550 680 715 915 940 990 1100 1140 1245 1300 

2011 A-I R3-R4 19 2.77** 3.41** 2.20** 2.94** 1.57 1.58 1.43 0.96 1.29 0.74 0.79 

2011 A-I R4 19 6.27** 9.82** 4.36** 9.98** 3.29** 2.86** 2.46** 2.32** 2.08** 2.25** 2.27** 

2011 A-I R5 19 3.77** 8.22** 1.86* 5.55** 3.71** 3.10** 2.41** 1.96* 1.80* 1.84* 1.86* 

2011 A-I R6 19 3.15** 8.31** 8.19** 5.73** 3.86** 3.48** 2.94** 2.24** 2.02** 1.93* 1.87* 

2011 A-D R3-R4 19 4.31** 6.89** 3.35** 6.79** 1.84* 1.75* 1.83* 1.35 1.44 1.52 1.52 

2011 A-D R5 19 7.16** 19.44** 5.92** 17.97** 4.26** 3.75** 3.97** 3.58** 3.13** 3.93** 3.93** 

2011 A-D R6 19 16.12** 17.37** 18.58** 10.90** 8.31** 7.06** 5.61** 4.12** 2.79** 2.12** 1.95* 

2012 B-I R2 19 5.35** 8.81** 3.93** 9.17** 1.31 3.49** 2.47** 3.18** 2.33** 3.33** 3.30** 

2012 B-I R3 19 2.73** 4.32** 2.38** 4.57** 1.44 1.43 1.45 NS 1.42 1.50 1.51 

2012 B-I R3-R4 19 2.03** 3.84** 2.15** 4.12** 1.71* 1.70* 1.78* 1.59 1.69* 1.82* 1.83* 

2012 B-I R5-R6 19 6.16** 8.86** 7.00** 9.53** 1.82* 1.98* 2.24** 2.07** 2.49** 2.77** 2.84** 

2012 B-D R3 19 3.35** 2.95** 1.97* 4.14** 1.67* 1.66* 1.65 1.30 1.40 1.64 1.67* 

2012 B-D R4 19 6.64** 7.85** 5.47** 11.26** 1.91* 1.72* 1.85* 1.64 1.72* 2.22** 2.31** 

2012 C-I 1 R2 19 9.38** 18.06** 9.25** 13.45** 1.45 1.60 1.67* 1.39 1.77* 1.92* 2.01** 

2012 C-I 1 R3 19 1.71* 3.34** 1.94* 3.01** 0.73 0.71 0.71 NS 0.72 0.74 0.75 

2012 C-I 1 R4-R5 19 3.38** 4.50** 2.49** 5.21** 1.61 1.76* 1.77* 1.46 1.80* 1.85* 1.92* 

2012 C-I 1 R6 19 5.58** 6.01** 4.44** 7.63** 2.75** 2.65** 3.34** 2.72** 2.80** 3.65** 3.69** 

2012 C-I 2 R2 19 1.83* 2.73** 1.61* 3.93** 1.45 1.46 1.54 1.70* 1.38 1.56 1.59 

2012 C-I 2 R4-R5 19 4.17** 6.29** 3.69** 9.74** 4.01** 4.29** 4.54** 3.00** 3.74** 4.09** 4.14** 
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2012 C-I R1-R2 19 7.04** 11.90** 6.55** 8.27** 1.10 1.05 1.33 1.24 1.28 1.58 1.58 

2012 C-I 1 R2-R3 19 1.67* 2.17** 1.05 1.69* 0.77 0.71 0.72 0.65 0.78 0.60 0.50 

2012 C-I 1 R4 19 4.99** 6.19** 3.57** 5.98** 2.57** 2.41** 2.35** 1.91* 1.77* 1.82 1.78* 

2012 C-I 1 R5-R6 19 8.10* 7.30** 6.39** 7.71** 3.27** 3.40** 3.26** 2.82** 2.91** 2.78** 2.77** 

2012 C-I 2 R3 19 1.53 1.33 1.44 1.67* 1.21 1.29 2.07** 1.08 1.78* 2.02** 2.05** 

2012 C-I 2 R4 19 1.37 1.31 1.26 1.29 1.89* 1.83* 1.82* 1.58 1.49 1.51 1.47 

* = Pr>0.05, ** = Pr>0.01 
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Table 3.4. Maturity group III (MGIII) Pearson’s correlation coefficients and p-values for 

two-year averages of seed yield, maturity, and wavebands used for yield estimation models. 

MGIII on upper right; maturity group IV (MGIV) on lower left. 

 
Yield mat 415 550 680 715 915 940 990 1100 1140 1245 1300 

yield ----- 0.35 -0.58** -0.80** -0.64** -0.83** 0.39 0.30 0.18 0.27 0.06 -0.12 -0.17 

mat 0.68** ----- 0.19 -0.12 0.01 -0.18 0.72** 0.73** 0.70** 0.69** 0.66** 0.53* 0.51* 

415 -0.60** -0.48* ----- 0.84** 0.93** 0.77** 0.04 0.16 0.26 0.20 0.37 0.47* 0.50* 

550 -0.75** -0.52* 0.85** ----- 0.93** 0.98** -0.08 0.02 0.14 0.07 0.27 0.43 0.48* 

680 -0.78** -0.59** 0.91** 0.94** ----- 0.87** -0.01 0.10 0.20 0.15 0.31 0.44* 0.48* 

715 -0.75** -0.53* 0.78** 0.99** 0.91** ----- -0.07 0.03 0.16 0.07 0.28 0.46* 0.51* 

915 0.46* 0.57** -0.17 0.03 -0.17 0.08 ----- 0.99** 0.96** 0.98** 0.92** 0.82** 0.80** 

940 0.39 0.53* -0.12 0.10 -0.09 0.16 0.99** ----- 0.99** 0.99** 0.96** 0.88** 0.86** 

990 0.19 0.36 0.07 0.31 0.13 0.38 0.94** 0.97** ----- 0.99** 0.99** 0.94** 0.92** 

1100 0.32 0.46* 0.01 0.21 0.05 0.26 0.96** 0.97** 0.97** ----- 0.96** 0.90** 0.88** 

1140 0.03 0.21 0.19 0.46* 0.30 0.53* 0.85** 0.90** 0.97** 0.93** ----- 0.97** 0.96** 

1245 -0.12 0.05 0.34 0.60** 0.47* 0.66** 0.73** 0.79** 0.91** 0.85** 0.98** ----- 1.00** 

1300 -0.18 0.01 0.37 0.64** 0.51* 0.70** 0.69** 0.76** 0.89** 0.82** 0.96** 1.00** ----- 

* Pr > 0.05 ** Pr > 0.01 
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Table 3.5. Results of the maturity group III (MGIII) stepwise regression models by growth 

stage within environments, coefficient of determination (R2), root means square error 

(rMSE), percentage rMSE of dependent means (% rMSE of mean), and waveband(s) in 

final model. 

Environment Growth stage R
2
 rMSE % rMSE of mean Waveband(s) 

   t ha
-1

   

A-I R3-R4 0.73 0.47 15.66 415 680 

A-I R4 0.66 0.53 17.64 715 940 

A-I R5 0.62 0.56 18.80 550 915 

A-I R6 0.69 0.51 17.02 415 715 

A-D R3-R4 0.51 0.49 26.99 680 940 

A-D R5 0.57 0.46 25.35 715 940 

A-D R6 0.55 0.45 25.08 680 

B-D R3 0.66 0.42 14.49 715 915 

B-D R4 0.70 0.38 13.32 715 

B-I R2 0.47 0.66 17.18 550 

B-I R3 NS NS NS  

B-I R3-R4 NS NS NS  

B-I R5-R6 0.80 0.44 11.86 550 715 915 

C-I 2 R2 0.66 0.51 12.47 550 715 915 

C-I 2 R4-5 0.79 0.40 10.02 415 550 915 940 

C-I 1 R2 0.78 0.37 9.10 680 715 

C-I 1 R3 NS NS NS  

C-I 1 R4-5 0.78 0.38 9.30 550 715 990 

C-I 1 R6 0.85 0.32 7.79 550 715 990 

BOLD = Selected observations used for training model creation. 
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Table 3.6. Results of the maturity group IV (MGIV) stepwise regression models by growth 

stage with experiment,  coefficient of determination (R2), root means square error (rMSE), 

percentage rMSE of dependent mean (% rMSE of mean), and wavebands in final model 

(wavebands). 

Experiment Growth stage R
2
 rMSE % rMSE of mean Wavebands 

   t ha
-1

   

A-I R3 0.73 0.56 17.10 715 1100 

A-I R3-R4 0.89 0.39 11.86 415 680 715 915 1300 

A-I R5 0.75 0.53 16.45 715 915 

A-I R5-R6 0.73 0.56 17.27 715 915 

A-D R2-R3 0.69 0.31 17.48 940 1100 1245 

A-D R3-R4 0.54 0.38 21.25 680 715 940 

A-D R5 0.66 0.31 17.14 550 

B-D R3 0.79 0.37 11.32 715 940 

B-D R4 0.77 0.39 11.78 715 1100 

B-D R6 0.67 0.45 13.69 550 

B-I R1-R2 0.79 0.47 12.94 715 940 

B-I R2-R3 NS NS NS 

 B-I R4 0.57 0.66 18.38 715 915 

B-I R5 0.86 0.40 11.07 550 715 915 990 

B-I R5-R6 0.71 0.53 14.62 550 

C-I 2 R3 NS NS NS 

 C-I 2 R4 NS NS NS 

 C-I 1 R1-R2 0.52 0.43 11.15 715 

C-I 1 R2-R3 0.47 0.45 11.74 715 

C-I 1 R4 0.30 0.52 13.49 415 

C-I 1 R5-R6 0.37 0.49 12.80 415 

BOLD = Selected observations used for training model creation. 
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Table 3.7. Results of stepwise regression yield estimation models for maturity group III 

(MGIII) and maturity group IV (MGIV) selected datasets. 

Model 

Variable 

(nm) 

Variable 

R
2 

Model 

R
2 

Equation 

MGIII  
715 0.73 0.83 Yield = -52.35 - 556.42 (715 nm) + 275.28 (1100 nm) 

1100 0.10 

MGIV  
715 0.70 0.81 Yield = -45.13 - 619.09 (715 nm) + 172.24 (915 nm) 

915 0.11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.8. Yield estimation model validation results for maturity group III (MGIII) and 

maturity group IV (MGIV) growth stages and season totals (ST) for optimized yield 
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estimation models. I indicates an irrigated environment; D indicates a water-stressed 

environment. 

 

 

 

 

 

 

Environment Growth stage R2 Environment Growth stage R2 

MGIII MGIV 

A-I R3-R4 0.49 A-I R3 0.72 

A-I R4 0.51 A-I R3-R4 0.75 

A-I R5 0.66 A-I R5 0.75 

A-I R6 0.62 A-I R5-R6 0.72 

A-I ST 0.53 A-I ST 0.78 

A-D R3-R4 0.62 A-D R2-R3 0.43 

A-D R5 0.55 A-D R3-R4 0.44 

A-D R6 0.64 A-D R5 0.60 

A-D ST 0.67 A-D ST 0.51 

B-D R3 0.64 B-D R3 0.77 

B-D R4 0.61 B-D R4 0.72 

B-D ST 0.66 B-D R6 0.64 

B-I R2 0.54 B-D ST 0.83 

B-I R3-R4 0.29 B-I R1-R2 0.79 

B-I R5-R6 0.64 B-I R4 0.38 

B-I ST 0.59 B-I R5 0.56 

C-I 2 R2 0.46 B-I R5-R6 0.61 

C-I 2 R4-5 0.42 B-I ST 0.68 

C-I 2 ST 0.45 C-I 2  R3 0.01 

C-I 1  R2 0.75 C-I 2 R4 0.01 

C-I 1 R4-5 0.53 C-I 2 ST 0.02 

C-I 1 R6 0.64 C-I 1 R1-R2 0.54 

C-I 1 ST 0.79 C-I 1 R2-R3 0.41 

2011 avg. ST 0.68 C-I 1 R4 0.28 

2012 avg. ST 0.68 C-I 1 R5-R6 0.40 

   C-I 1 ST 0.49 

   2011 avg. ST 0.65 

   2012 avg. ST 0.79 
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Figure 3.A. Variable importance in projection plots displaying results from partial least 

squares regression (PLS) analyses. (A) Maturity group III (MGIII) 2011–2012 two-year 

means, (B) MGIII 2011 A-I means, (C) MGIII 2011 A-D means, (D) MGIII  2012 B-I 

means, (E) MGIII 2012 B-D means, (F) MGIII 2012 C-I 1 means, (G) MGIII 2012 C-I 2 

means, (H) maturity group IV (MGIV) 2011–2012 two-year means, (I) MGIV 2011 A-I 

means, (J) MGIV 2011 A-D means, (K) MGIV 2012 B-I means, (L) MGIV 2012 B-D means, 

(M) MGIV 2012 C-I 1 means. 
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Figure 3.B. Relationships between observed and predicted seed yield for maturity group III 

(MGIII) and maturity group IV (MGIV) two-year waveband means with selected growth 

stage 


