LAMINAR FLOW THROUGH AN ANNULUS

WITH POROUS WALLS

by

SHUN-FAN CHIEN

Diploma, Taipei Institute of Technology
Republic of China, 1964

9589

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Applied Mechanics

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1972

Approved by:

C\Mq

/Major Profes



=~ A
R e
c"s
OQ

*
¥ d TABLE OF CONTENTS

ce
TN

a

INTRODUCTION

GOVERNING EQUATIONS FOR LAMINAR INCOMPRESSIBLE FLOW
REDUCTION OF THE FLOW EQUATIONS

APPROXTMATE ANALYSIS

NUMERICAL RESULTS AND DISCUSSION

CONCLUSION AND REMARKS

REFERENCES

ACKNOWLEDGEMENT

APPENDIX

Page

10
18
24
37
39

40



u(0)
f(r),h(r)
F("l),H(’l)

R

ii
NOMENCLATURE
Cylindrical coordinates used to indicate the directions
The velocity components in the directions of r,g, and z
respectively
The non-dimensional velocity components in the r and z directions
respectively
The imner and outer radii of the annulus respectively
The pressure
The constant wall velocities at the inner and outer walls of the
annulus, respectively
Typical velocity based on the velocities of suction or injection
at the wall (bQ = be + aQa)
The axial velocity occurring at the entrance for the annulus
The arbitrary non-dimensional functions of r
The arbitrary non-dimensional functions of’l
Reynolds number for the cross flow in the annulus R = —g%—

The Reynolds number for the longitudinal flow in the annulus

bu(0)
¥

The inner and outer walls skin frictional coefficients

N =

respectively
A dimensionless distance parameter equal to (r/b)2 for the annulus
The ratio of inner to outer radius (a/b)2

The fluid kinematic viscosity (ﬂ/f)

The first and second coefficients of viscosity
Kronecker delta

rThe rate of linear strain tensor éaj =1/2 (qi,j + qj’i)

The stress tensor
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The stress vector

Body forces

The velocity vector

The unit normal vector
The comoving derivatives

The total flow entity



I. INTRODUCTION

The problems of normal fluid injection and suction through a porous
annulus or a channel play a vital role in many kinds of engineering applica-
tions. It is of practical interest in éonnection with the transpiration or
sweat-cooling of heated surfaces such as turbine blades, rocket walls, or
wing surface in high-speed flight. In recent time, the problem of flow
through an annulus with porous walls has gained considerable importance in
view of its technological and aeronautical applications. If fluid is withdrawn
through porous walls, thickness of boundary layer decreases and the flow
become more stable. Thus, transition from laminar to turbulent flow is
delayed. The study of this phenomena by way of mathematical analyses and
the solutions solved by various approximate methods for obtaining solutions
valid for different restricted ranges of fluid suction and injection at the
porous walls of different kind of flows have appeared in literature.

In 1953, Berman (1) initiated the study of the laminar flow in a uniform-
ly porous channel by applying a perturbation method. Under his assumptions
that a solution for the flow between porous parallel plates with constant
and equal permeability at both walls, the velocity component normal to the
wall was independent of the distance along the chamnnel for the case of very
low suction and injection. Sellars(2) and Yuan(3) extended the investiga=
tion to higher cross flow Reynolds numbers, in which the reciprocal of the
Reynolds number R is used as a perturbation parameter.

Yuan and Finkelstein (4) treated the problem for flow through a circular
tube. He solved and obtained a solution of the ordinary differential equa-
tion by perturbation procedure for small values of normal fluid velocity at

the wall. In addition, however, there an asymtotic sclution to the reciprocal



of the normal velocity Reynolds number, also valid for higher injection
and suction rates, was developed. Mordochow (5) solved the problems on
laminar flow through a channel and tube with injection by using a method of
averages in conjunction with auxiliary boundary conditions derived from the
governing ordinary differential equation. It is valid for small suction
(or injection) and also for large suction (or injection) and has obtained
good agreement with the results of Berman (1) and Yuan (3).

In 1958, Berman (6) again derived and solved the problem for flow through
a porous annulus. The solution is the simple case where the amount of fluid
entering through the outer wall is equal to the amount of fluid leaving
through the inner wall. He simplified the Navier-Stokes equation and obtained
an exact solution diréctly by integrations. Terrill (7) reduced the problem
of laminar flow through a porous annulus with constant velocity of suction at
the walls and with swirl to a solution of four sets of non-linear differential
equations. He solved the particular case of the problem by series perturbation
method.

In recent years, electronic digital computers have expanded the applica-
tion of numerical techniques. Using these devices, it is a straightforward
matter to provide the numerical solution of several thousand simul taneous
linear and non-linear differential equations subject to a complete set of
initial conditions. This kind of computational speed has led to radically
new ideas and concepts for solving large system of equations. In this report,
the quasilinearization technique is used in obtaining numerical solutions of
of the velocity profiles by the influence of the cross flow Reynolds numbers R,
the effect of the pressure in the annulus walls, and the coefficients of skin

friction at the wall. Results of these efforts are graphically illustrated.



II. GOVERNING EQUATIONS FOR LAMINAR
INCOMPRESSIBLE FLOW

The differential equations which giwfre a complete solution of the motion
of fluid are the equation of continuity (conservation of mass) and the
equation of motion. The equation of motion is often referred to as the
Navier-Stokes egquation.
2.1l. Conservation of Mass

Consider a surface S enclosing a fixed region of space V, through which
a continuum flows as shown in Fig.(l). Let the outer unit normal vector to
a differential surface element dS be ni(r): Let F: r(r,t) be the mass density
at the point, at time t, and let qi(r,t) be the velocity of mass. It is
obvious that the concept of conservation of mass, i.e. the rate of increase
of mass in region V is exactly equal to the amount of mass flowing into the
region per unit of time, The rate of increase of mass within any fixed volume

-

1ls

_D - o]
ot F av = —r dav (2.1)
A'S v

Mass emerges from the volume, passing through the boundary surface at the

rate (qunids. Thus, if the mass is to be conserved, it is necessary that

Je
T av = - ‘Oqinids (2.2)

or
L5 dv + f»qinids =0 (2.3)
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Fig. 1. A fixed region of space through which the
continuum flows



Applying Gauss' theorem to convert the surface integral to a volume

integral. Equation (2.3) becomes

[gz + (Pqi),i} dv = 0 (2.4)

Since this equation is true for any volume V, and since the function

and qiand their derivatives are continuous

Jf
Jt

+ (rqi),i =0 (2.5)

Equation (2.5) is the conventional equation of continuity. For the

steady state, the equation (2.5) becomes

For an incompressible fluid, the equation (2.6) becomes

dy95 = 0 (2.7)

2.2. The Momentum Equation

The principle of conservation of momentum is given by Newton's second
law of motion. Choose an arbitrary region of space, V, in which the continuum
moves as shown in Fig.(2).

Newton's second law states that the total force acting on a particle dVr
is equal to the mass dV times the acceleration dqi/dt. The total force
acting on a particle is the sum of the body forces and surface forces. These

arise from the pressures acting on the control volume surface. These pressures



Fig.(2).

Free body diagram of an arbitrary region

of space in which the continuum moves



are due to forces fields such as gravitional, electric, and magnetic fields.

It is more convenient here to consider the same amount of fluid. The Newton's

second law can be written as

Dq

dav

P’ (98 + pE;av (2.8)

v s v

Converting the left side of equation (2.8) into the sum of surface

integral and volume integral by using the Reynolds transport theorem,

D DF. .ees
—| pFy; e-. V= F-——lj——-—dv
Dt ] Dt
v v
- "i"‘( F - - -) dV + n F s ® = dS (2-9)
= | 9 fFij P rij
v s
Thus
(pq.)
5 s+ Ff. dv = Ej‘—Fi{i—cw + f;qiq.n.ds (2.10)
i i ot i3
5 v v s
where n,(y) is the unit normal vector to the surface element dS on S. by

3

replacing ({ in terms of the stress tensorﬂij.

4 ds = | ¢Z.n, av (2.11)

s v

and transforming the surface integral in eqn.(2.10) into volume integral

by means of Gauss' theorem, eqn.(2.10) can be rewritten as



d( qi)
U}i’j + rfi - —752——-- (fqiqj),j dav (2.12)

v

Since this holds true for any volume, and since all functions as well

as their derivatives are assumed continuous, then

d(Fqi}
Jdt

+ (Fqiqj),j = Ffi + g-j’i,j (2.13)

or

Py

Dt

1
= fi + F [,";i,j (2.14)

In considering the surface forces, if it is assumed that the fluid is
isotropic, homogeneous, and Newtonion. The surface forces, are expressed by

the stress tensor with a scalar viscosity as

o ~
0y = - o+ 804, + 2 A5, (2.15)

By utlizing the relationship

1
éaj = —;— ( qi’j + qj’i ) (2.16)
hence
o ~
Dq. L A+
PR " fi == p,i + /‘l qj’Jl + —fi qi,jj (2-17)
Dt 1 ¢ ?

o
where 23 J| are constants



If the flow is incompressible then the eqn.{(2.17) for the momentum

equation (Navier-Stokes) becomes

) ~
Dq, 1 M
=f, = = . —_— .y e
- 5 r Pay + f’ 9053 (2.18)
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ITTI. REDUCTION OF THE FLOW EQUATIONS
3.1. Simplified Differential Equations
Consider the fluid flow with suction and injection through the porous
walls. The following assumptions are made:

e
1. Steady flow ( == 0),

2. The fluid is incompressible ( ggﬁ = 0),

3. Body forces (gravity field) are neglected (fi = 0),

4, The flow is laminar,

5. The fluid flowing through the porous walls is uniform throughout,
6. No swirl velocity.

With the assumptions, (1) through (6), the governing equations (2.7)

and (2.18) are reduced to the forms

Q:d.y, = ‘_Pai + yql’_‘]] i,j =1,2,3

and Qes. = 0 =123
3.2. Flow through a Porous Annulus
Choose a cylindrical polar coordinate system (r,f,2z) where the axis

o=z lies along the center of the anmulus. The velocity vector at point

(r,B,2) is
q; === (q;,d,,9y) == (q,,94,9,))
If the resultant flow is assumed to be independent of g, and ( ),B =0,

because of axially symmetric flow, the Navier-Stokes and continuity equations

became



11

sTTes snoxod yjtm adyd sopnuue ue yInoayl moTd *€*31d

..‘ - .
.ﬁaLgﬁﬁ__:w_

27777 7 Z 727777777747 L«\\\E\\\»\\\\s\\\\
l\\l\!\\\‘l e o
Ii

L

AR e lH I!Ill IIIIII Ai
z, e
B —
S
T T T L LT T T T g gy y=s=s o)

R

)




12

1 1
Ad,0, * 9, = - 5Py + Wa,  + _r Qry + G0 ,0) (3.2a)
1 - 1 qr
QA s, * LA = " -F-p,r + v(qr’zz + 9.t —;—-qr,r - > ) (3.2b)
and (rqz),z + (rqr),r =0 (3.2¢)

The above equations will be used to investigate the fluid flow in an
annulus pipe with uniform permeability for outer and inner walls. The
boundary conditions are:

at r = a q. = - Qa q =0

(3.3)

atr=>0 .= Q q, = 0

The above boundary conditions imply that fluid is being withdrawn
through the annulus wallé with constant velocity Qa at r = a and Qb at
r = b. For obtaining a solution of equations (3.2) with boundary conditions
(3.3), the radial velocity component can be assumed as a function of r

alone

_ f(r)
qr — m r (3.4)

where f(r) is an arbitrary non-dimensional function of r, Q is a typical wall
velocity based on the suction or injection velocity Qa or Qb. The equation

of continuity yields
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q = = bQ = 2z + Qh(r) ' (3.5)

where h(r) is an arbitrary non-dimensional function of r and f'(r) is the
first derivative of f(r) with respect to r. If equation (3.4) and (3.5)

are substituted into the equation (3.2a) and (3.2b), then

1 22 yia
—p = |22 oreev o 40 (r2emt 4 pen - £ | 2
F ' Z r3 r3
m Vv
- | (fh' = £'h) + — (ch" + h') (3.6a)
r r
l- 2.2
— o, = - 2 (e - o B e ) (3.6b)
r r

The right hand side of (3.6b) is seen to be a function of r only,

hence differentiation with respect to z, and yields

p’rz = O (3.7)

Also by differentiating (3.6a) with respect to r and equating the

coefficient of z to zero, it yields

r2 (£'£" - ££"') + r (3ff" + f'2) - 3ff

|
(=]

- B%—( - rsfiv + 2r2f"' - 3rf" + 3f') = {3.8a)

r (fh" - £'h) + (£'h - £h') - X (xh"t 4 rhv - ht)
bQ

]
o

(3.8b)
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Eqn.(3.8) can be considerably simplified by introducing the non-

dimensional independent variable defined by
q = /) (3.9)
and defining the functions occuring in the velocity components as

£(r) = F(Y) h(r) = H(D) (3.10)

hence the equation (3.8) reduces to

"{Fi" + 2F"' 4 R(F'F" - FF"') = 0 (3.11)
and
qH"' + 2H" + RGHF" - FH") = 0 (3.12)
jo 0]
where R = is a cross flow Reynolds number.
2y

BOUNDARY CONDITIONS

In order to complete the formulation of the problems the governing
equations (3.11) and (3.12) must be accompanied by a set of boundary conditions.
The boundary conditions of F(") and H(']) are obtained from equations

(3.4), through (3.5) and (3.10), thus

Q .
a, % Qb
F(1)=-E—?o = - F(L)=—==§ (3.13a)
Q
F-(’}O) =0 F'(1) = 0 (3.13b)
and H (‘(o) =0 H(1) =0 (3.13c¢)
in which Mo = (a/b)?

The equation (3.11) does not involve HCTJ, the fourth-order, non-linear

differential equation together with four associate boundary conditions
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(3.13a) and (3.13b) constitute an unique solution of the equations of
motion and continuity as formulated.

In regard to eqn.(3.12), it needs an extra boundary condition to solve
the third-order, non-linear differential equation. Compare equations (3.12)

with (3.11) subjected to the boundary condition (3.13c), gives

H("'() ol P! (’[)
or .
H) - 2%0-’- At (3.14)

where U(0) is an arbitrary constant. If the suction or injection begins
from z = 0, the U(O)F'(q) will be the velocity profile at z = 0. Prior to
obtaining some solutions for F(T), the choice of typical velocity has to
be considered.

For simplicity, it is generally assumed that the typical velocity

is the magnitude of the total walls injection or suction.
bQ = b + aQ (3.15)
Integrating eqn.(3.11), one obtains the form,

ﬂlF"' + F" + R(F'2 - FF") = k (3.16)

where k is the constant of integration. The general boundary conditions for

the flow through porous walls with suction or injection can be written as

Fc70)=-p( F(1)=p
(3.17)
F'(qo) =0 F'(1) =0

where J(and P are constants.



3.3. Representations of the Velocity Profiles

16

From eqn.(3.9) the velocity components in the axial and radial directions

are given in terms of the dimensionless distance parameter TT The radial

velocity component is
F())

4r=a,._1

1

and the axial velocity component in the annulus is

2Q z
U(0) |1 = =——— ( = ):\ F'(’()
u(0) b

,'qz=
' 4R z
=U(0) |1 - —( —}:l F (D
N b
ba bu(0)
where R = ——, and N = .

2y
3.4. The Effect of Porous Walls on Annulus Flow

a. The Pressure Drop

(3.18)

(3.19)

The pressure distribution in the annulus can be obtained after integrat-

ing eqns.(3.6a) and (3.6b) and by (3.9) and (3.10). One obtains the pressure

drop in dimensionless form after some rearrangement

" p(z,1) - p(z,rl)
pr = 2
1/2 Q

200 R re L
[F' '_(Tﬂ
b >
1

for the radial pressure variation and

. p(O,"l) - P(Zsrl)

1/2 U(0)2

(3.20)
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gk z 2R 2
=— (=) 1-—(-=) (3.21)

for the axial pressure drop
b. The Skin Priction at the Wall
The coefficient of skin friction at the inner and outer walls of the

annulus are indicated as C

£i and Cfo’ respect}vely. The shear stresses

acting on the immer wall and outer wall are defined a ’7; and ’g, respectively.

“hHT - (qz’r) M=
. " o
2uu(0) 4R 2
= 1 -— (=) /’{ F"(’() (3.22a)
b N b = 3
To =" (qz’r>
1=t
Z}U(O) AR =z
= = 1l -—(-) Fr(l) (3.22b)
b N b
the coefficients of skin friction are then
2 [T
Cer = >
u(0)
4,/ 4R 7
- __z"_ IEL s i, ):l F"('{ ) (3.23a)
N N b °©
e
o wo?

4 AR zZ |
,}L -—( - ):} F"(1) (3.23b)
N b
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IV. APPROXIMATE ANALYSIS
4.1. Quasilinearization Method
Quasilinearization may be viewed as an extension of Newton's method for
the solution of algebraic equations to the solution of differential equations.
The method can be applied to a system of linear and non-linear first-order
ordinary differential equations.
Consider the vector equation
d;{ -
—_— = f(X) (4.1)
1

with m final conditions

xj(r{l) =Xj‘,{1 j '—'1,2,-.---,“! (4.2)
n
and n - m (m £ =) initial conditions
5 .
xk("L) = :5{7&) ‘ k = m+l,m+2,.,n (4.3)

where x is a vector composed of n-dependent variables in the system of
equations, 1'tthe independent variable, and £(x) a vector function that

gives the derivatives of the dependent variable. If f(x) = fi(xl,xz,..,xn,"l}

is linear, equation (4.1) can be solved by using a step by step integration
method. If £(x) = fi(:c_'_,xz,....,xn,rl) is non-linear and all of the boundary
conditions use initial-value type, the Runge-Kutta-Gill method can be

employed directly. Since fi(xl,xz,.....,xn,"L) is non=linear and has a two

point boundary type, posed by (3.11), the vector form of equation (4.1) is

first linearized around point (x_L,xZ, .....,xn,"l) as follow:
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_(k+1)
dx

1

= f(?:k,fl) + J(;:k) (>'<k+1 - :?k) (4.4)

where X and f are in vector form and represent the vectors (X ;X.jeeceey,X )
: X% n

and (fl sEyeeeens fn) respectively. The Jacobian matrix J(;:k) is defined by

- EAY, I 7]
yﬁ yxz LR X N N} yxn
15, o, v/,
= jﬁ yxa [N NN N ] yxn

Jf, 5 %n

T TR T |

The (k+l1) approximation, ;ck+1, to the solution is obtained by expanding

the right-hand side about the el approximation ik and retaining the linear
term as a recurrent form equation (4.4) can also be considered.

This equation is linear and one may use the usual way for solving the
system of linear ordinary differential equations by sﬁarting with assumptions
of the initial conditions. .

A particular solution may be obtained by integrating the whole equation

with the initial conditions
l = ‘ = ” i = 1 2 sassngll (4!5)
X, ( ) P.{ ) b Rk ] ]

The homogeneous solutions are then made for each of n boundary conditions

Bp with the initial conditions
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1 i
xi(’Io) = Hij(To) =§ij ={ 1,3 = 1,2,0000,0 (4.6)

[}
.

where s;j is the Kronecker delta

The general solution of egn.(4.l) will be

(k+1) ~
X. (r() = Pi{(L) -+ CjHij (1() i = 1,2,.-..,!‘1 (4-7)
j=1

1

If the particular solution is chosen to satisfy the n-m known initial
conditions, then there are only m remaining boundary conditions to satisfy,
and only m homogeneous solutions are required, thus the general solution

is reduced to

m

x§k+l)(rl) = Pi('[) + Z chij("l) i=1,2,0ue4n (4.8)
j=1

The constants of integration, Cj, can be determined from the m final

conditions in each. iteration

(k+1)
x,j (*h) =X

i

Since the n-m given initial conditions have been used in selecting the

j =1,2,¢--,m (4-9)

appropriate initial conditions of the particular solutions Pi’ i=m+l,
M+2,esss+,N. The number of equations to be integrated is obviocusly reduced

from (l+n)sets (one set of particular solution and n sets of homogeneous
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solutions) to (1+m) sets or less. Since for the case of m f-% s Oone can

treat the problem in the reverse direction, i.e. integrating from terminal

state to save the computation. The approximation x(k+l)(1) is fed back

into the next iteration to obtain the approximation x(k+2)(1), and the process
is repeated until satisfactory convergence is secured. With a sufficiently
good initial approximation, the solution of egn.(4.8) converges quadratically
and monotonically to the solution equation (4.1).

4.2. Solution for the Flow through a Porous Annulus

For convenience, the eqn.(3.1l1) can be converted to a system of simul-

taneous first-order ordinary differential equations. If

Posx

P = x

2
Fo= % | (4.10)
el = Xy
Y- %

the egqn.{(3.11) becomes

!
d" 2

dx

Il
b

. X
= =,

dﬂ_ (4.11)
dx3 .
|

aq

dx 1
) < S [2x4 + R(X2x3 - x1x4)]
T 1

The corresponding general boundary conditions are
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x () = - d x (1) = B

(4.12)

xzc’zj} =0 ' x,(1) = 0

The recurrent relation for the system of equations as the eqn.(4.4)

after some arrangement, can be written in matrix form

f , N\ ’, ~ r 4 ( 3
}Ll 0 1l 0 0 ]Ll 0
' 0 0 0
x2 1l x2 0
- +
]
x3 0 0 0 1l x3 0
x' k+1 = - Ex - B—x l(-2+RJL‘L) k| x [k+l —-(x X x )uk
=y \T:; T3 "T271 J <L %a) [ *2 375 %
with the boundary conditions
L) = - o £y =
k+l k+1
X, (’(o) =0 (1) =0

There are two initial conditions and two terminal conditions, if the

particular solution Pi(?o) is selected as

P:LP(O) = [-’(’ Oy 0y o]T

Then, there are only two remaining homogeneous solutions
(k+1) oy .
(’) = Pi(’?) + c3Hi3(T) + C4Hi4(7) i=1,2,.0,4

where Hia(’[o} and Hi4( Yo) are assumed as (4.6)



His(’{o) [o, 0; 1, o]T
T

Hi4('L) E}, 0, O; 1]

Two constants C3 and C4 can be determined from the final conditions

L[}

in each iteration.

,5(-]{1'1)(1) _

I
&

I
o

xék+l)(1) _

23
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V. NUMERICAL RESULTS AND DISCUSSION

The numerical results are graphically illustrated in Fig.(5) through
(12)-in dimensionless form.

Fig.(5). through (8) are examples of the axial velocity profiles for the
flow through a porous annulus with different suction and injection rates, at
the position z/b = 10 and the axial flow Reynolds number N = 1000 for the
cases as shown in Fig.(4):

i). Outer porous wall with inner impermeable tube

of =0 | g=1

ii). Inner porous wall with outer impermeable tube

od =1 p=o

iii). Both inner and outer walls have equal permeable rates
A = 0.5 ‘g=o.5

Fig.(5) and Fig.(6) show the effect on the flow caused by suction, and
Fig.(7) and Fig.(8) show the effect of the flow caused by the injection in an
annulus.

The mean axial velocity az is defined as
1

rqzdr 1l

qz = )/T) = 1 - T qz d 1
r dr °
a

(o + BIuCo) 4Rz
geree [1 -—<->J

1-'{ N b
o]

Hence, the axial velocity component is given in terms of the mean

velocity, thus
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1 -
=qz/c.12=—0(—;?o—l"'("() (D/+(Q)5‘O

The velocity profile as shown here are independent of the axial flow
Reynolds number N and the location of the annulus.

The effect of porous walls on the pressure drop in the axial flow
direction and the coefficient of skin friction are shown in Fig.(9) and (10),
respectively.

The previous effort provided a quasilinearization technique for solving
the flow equations and indicated the application of the technique to the flow
through a porous annulus. For further analysis, it is necessary to make some
assumptions about the ratioc of the inner and outer walls of the annulus.

This would involve either letting 72-——#-0 and obtaining a solution as a
flow through a porous pipe, or letting ‘70-—*1 representing the flow between
porous parallel plates.

The flow in an annulus is particular interesting in that, as the radius
ratio tends to one, i.e., 7% —— 1 the properties of the flow approach those
for the fluid between two porous plates. On the other hand, for small values
of the radius ratio and an impermeable inner wall the flow behaves like the

flow through a porous pipe. This conflicts with the boundary conditions,

F'("ZO)

0, since the boundary conditions for flow through porous pipe are

at 7= 0 %‘ﬂl/j;_)-=o li.rn/TF"(’()=0
0
1 F(Q)=1 F'(1) = 0

at"(=
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The equations of motion and continuity are associated with the boundary
conditions including two init;al conditions of limiting forms and two ter-
minal conditions for éhe porﬁus pipe. T& try to obtain numerical solutions
by using the quasilinearization technique would be extremely complicated
due to the limiting forms appeared in the two initial boundary conditions.

An analytical study of this topic has been obtained by many classical methods.
Yuan and Finkelstein (4) indicated the correct separation of variables for

a uniformly porous tube and gave perturbation solution valid for small values
of the cross flow Reynolds number R, based on the normal velocity at the
walls. Also, an asymptotic solution to the first power of the reciprocal of
the cross ficw R was employed, and is valid for large values of the injection
velocity at the wall.

The computations for the flow through a porous annulus were programmed in
Fortran IV and the sclutions were carried out on an IBM 360/50 computer (see
Appendix). The results for the small cross-flow Reyﬁolds number R =1 to R = 2
are in excellent agreement with Terrill's (7). The discrepancy becomes greater
as the value of R increases up to + 5, (see Fig.ll). Convergence of the
quasilinearization process was tested by comparing the values of xi and x§+l
at the point of F and F' in the problem of a porous annulus, is shown in
Fig.(12). The initial approximation is certainly uninspired. The second
approximation and succeeding approximations converge rapidly from that side.

No instability is shown by the final profiles, except that the flow itself is

unstable,
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VI. CONCLUSION AND REMARKS

With the assumptions regarding the flow conditions listed in III, a
solution of Navier-Stokes equations has been obtained for the case of the
steady state flow of an incompressible fluid in an annulus with porous walls.
The non-linear problem, which is so complicated that the solutions are
difficult to obtain analytically, the approach of quasilinearization is
introduced.

The velocity distribution in the main flow direction at any arbitrary
cross-section of the annulus can be calculated from eqn.(3.19). In the
case of the solid wall annulus, the axial velocity is not symmetrical and
the maximum velocity occurs closer to the imner wall of the annulus.

When fluid flows through an armulus with porous outer wall, the maxi-
mum velocity is closer to the outer wall when the suction (R > 0) occurs
and closer to the inner wall when the injection occurs. For higher injection
rate, the velocity q; is increased slightly and maximum axial velocity occurs
at a point closer to the inner annulus wall. In this case, the flow appears
stable.

In the case of flow through an annulus with porous inner annulus wall,
the profiles of the axial component of velocity appear stable at the conditions
of moderate injection (R<K0) and the lower rate of suction (R>> 0). The
axial velocity profiles increase rapidly while the higher suction occurs,
The point of the maximum velocity was closer to the inner annulus wall, and the
velocity profile soon developed an inflection point suggesting flow instabilit y.

For the case of injection and suction at both walls, it is interesting
to note that the velocity profiles might be considered as the combination of

cases (1) and (ii) for the small rates of suction and injection. But it
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cannot always hold true as the: cross flow Reynolds number increased.

The cross flow Reynolds number required to produce the inflection point in
the profiles varies as the radius ratio becomes greater. The difference of the
axial velocity component for the above cases becomes more exaggerates as the
radius ratio of the annulus is decreased.

The pressure distributions in the main flow direction are shown in
Fig.(9). Considered the flow through the solid wall annulus, R = 0. It was
found that the pressure drop in the axial direction is a linear case with the
variation of (z/b) and the pressure drop became appreciably larger, even for
very small fluid injection at the walls of the annulus, than that in the case
of flow through the solid wall annulus. The pressure distributions are also
greatly affected by the ratio of the radii "{o. When the ratio of the radii ’(o
is small (or large) the change of the corresponding pressure is small (or
large), even in the case of solid wall annulus.

The values assigned to (z/b) are limited by the fact that at some value
of z/b in the anmulus, all the fluid has been removed fhrough the annulus walls.

From eqn.(3.21), it can be shown that the range of allowable values for z/b is

2 N
0 £ = £—
b 2R

One of the most practical applications is the skin friction coefficient
at the wall. In solid anmulus pipe flow, the skin friction at the inner wall

and the outer wall are defined as C_, and Cfo’ respectively and both of them

fi
have the constant value of 4—/I‘F"(’(o)| and i[F"(l)l. The wall frictional
coefficients as calculated f:orn eqn.(3.23). Nit is indicated that the effect
of injection (R < 0) in an annulus flow is to increase the wall frictional
coefficients, and the suction (R > 0) to decrease the wall frictional

coefficients.



Finally, in an attempt to solve the problems of the flow through the
annulus with porous wall, the quasilinearization method has been widely used
in solving the non-linear differential equations for any arbitrary cross flow
R, except in a few limiting cases that have been stated previously. The method
.used in this report provides the following advantages.

l. The procedure of calculation is simple and usually attacked by
numerical integration using the digital computer.

2. The method gives promise of producing rapid convergence to solution
of unstable flow problems from arbitrary initial guesses. Iterative solution
of the resulting linear differential equation usually converges quadratically
to the solution of the ériginal equation. The proof was given by Bellman

and Kalaba (8).
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FLCw THROUGH PORCGUS ANNULLS BY QUASI-L INEAR METHGCD
MATY, PROGRAM
IMPLICIT RcAL*8(A-Hy0=-2),INTEGER(I=N)
DIMZNSICN PSTAR(Z)LCFL(3),CF2(3)
DIMENSIO: QU4) o Y(1O0L44) o YFI(4)oYH2{4),YP(4),S(101),CL(1Ulsq)
DIMEINSION VZ(10193),RA13),RB(3)
DIMNSICiv RR{7)4 AK(101,4)
DIVMCONSION D2U10144)sS0101,40,A0244),4B14)4G(3),C(2),ZRI1I1),0¥Y(4)
1 FORMATI{//// 10X 'cTA="3F 1054 /)
2 FORMATILOX*RZIYNOLDS NUMEZR="4F10.5,//)
3 FORMAT(Z20X,y "AXIAL VELGCITY PRUFILZ UJUAVE'/4,27X,*AT Z/C=10 "I=100!
1'% /)
4 FORMATI(IZX,'CASE I%,12Xy*CASC IIY, 11X 'CASE 1T117,/)
5 FORMAT(EX43C1E«8)
6 FORMATI(/ /420X, "CONSTANT COF INTEGRATION', /)
7 FCRNAT(//420X,*PRESSURE CROP IN AXIAL DIRECTION?', /)
E FORMATIFL10.5)
9 FORMATI(2X,2F10+5)
21 FORMAT(//,20%,'SKIN FRICTION', /)
22 FORMATIEX33C1848,4/)
23 FORMATI(6X,32018e8,/7/77//77717)
RT=10.0
REN=1000.0
LL=2
L=41
NN=7
DIv=L-.
READ(E48)(RR{K) 4 k=1,AN)
DO 59 I=1.3
RZAC(5,9) RA(I),RE(I)
59 CCONTINUE
GO 1005 JX=1,3
REAC(5+9) ETALAINIT
H=(;«0-Z=TA)/DIV
D0 10CC K=1,NN
RE=RR (K)
INITTAL CCNCITICHS
DO E0 J=i,L
DD &2 I=1+4
82 YUJ 1)=AINIT
§C CONTINuzZ
DO 10C1 JC=1,3
ALPHA=RA{JC)
BELTA=RB(JC)
NO=C
Bl NO=NO+1
DO €6 I=1,L
86 S(I)=Yv(I,1)
RUNGE-RUTTA-GILL INTZGRATICN
INITIAL APPROXIMATION
VO 83 I=1.4
83 YHL(I}Y=0.0



E4

g5

88
11

91

il
93
9z

94

112

9é

95

201

13

143

203
202
301

YHl(3l=1-U

DO &4 I=1.4

YHZ ([)=0.0
YH2{4)=1.0

DO €5 I=..,4
YP(I’=GIU
YP(1l)=ALPHA

0O 11 [=1+4
Q‘I)=D.O

00 91 I=1.4
DL{1,1)=YHLILI)
X=ETA

DO 92 I=z,L
IT=1-3

DO 11i J=l.4
AK(ITJd)=Y(11,44)
CALL RKGI(XsHyYHL QDY AK,1I,RE,1)
0o 93 h=i,4
DL{I,#)=YH1(M)
CONTINLE

DO G4 I=1l+4 .
D2{1l,I1)=YH2(I)
D0 12 I=1+4
QlI1=C-0

=ZTA

DO 95 I=:z,L
11=1-1

DO 1.2 J=1l,4
AK‘II'J)=Y‘II'JL
CALL RKG{XyFyYHZ29QsDYsAK,II1sRZy1)
Do 9% M=, 44
D2({1+¥¥=YH2 (M)
CONT INUE

PART SOLM

DO 201 I=1l,4
slil, 1)=YPLD)

DO 13 I=l.4
GtIN=C.C

K=zTA

DO 20z I=24L
I1=1-1

UD 113 J=1l.4
AK(![.JI=Y‘II'J’
CALL RKG(XsHyYPyQoDYAK, II4RE42)
DO 2032 Mm=]1,4
ElI4MI=YPIM)
CONTIAUC
A{l1.1)=Di{L,1)
All,22=Dc(L,y 1)
Al2411=0.1(L,y2)
Al2,2)=DclL, 2}
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3C2

305

208
210

211

350
4073
212

1001
1003

213

1000
1CC5

31
3D

44

Bi=BELTA-E(Lsi)

B2=-Z(Ls2) :
DET=A{1,3)%A12,2)-A(1,2)V%A(2,1)
Cliry=(A(c,2)%B1-A(1,2)*B2)/LET
Cl2)=(=-2(2,1)%B1+A{1l,1)%B2)/DET

DO 210 I=1,L

DO 208 J=l,4
YUI»d)=S{I,J)+COL)¥DI(T, )40 (23 %D2(]1,4)
CONT INUZ

P=C.0001

DO 211 I=1,L

ERIII=CABS(Y(I,1)=-S(1))

IF{x0.2C.15)GC TO 1003

IF (ER{I)«GT.P) GO TO 81

COMT INU=z

X=cTA

DO 212 I=1,L,LL
VZ(IsJCI=(1e0-ETAIRXY(1,2)

X=X+LL*H

CONTINUE
GUJCY=Y(Lo4d+Y(Ly3)+REX(Y (L, 2)%%2=-Y(L,12%Y({L,3))
PSTAR(JC)I=8+0%5(JCI*RT*(1.0-2+0%R=*¥RT/REN) /RZN
CFLUJC)1=4.0%DSCRT(ETA)#*{1.0-40%REZ*¥RT/RENI®XY[143)/REN
CF2(JC)=4.0%(1e0=4+0¥REFRT/RENIEY (L, 3)/REN
CONTINUE

WRITE (6, LIETA

WRITElG642) RE

WRITE(6,y2)

WRITE(H,44)

OO 213 T=isLsLL
WRITEIEHE)(VZ‘I'JC);JC:]. 93)

CONTINUC

WRITE(6406)

WRITE(6+5)1{G{JC)+JC=1,3)

WRITELG,T)

WRITLZ(6:5)1(PSTAR(JC Iy dC=1+4F)
WRITE(G6421)

WRITZ(6,22Y (CFLilJC),JC=1,2)
WRITE(Ey23)ICFZLJC) 4 JC=143)

CONTIAUC

CONTINUE

~STO0P

cND

SUBROUTIE DERIVIXsH,YsDYshyK4RE,JC)

IMPLICIT REAL*B(A~H,U~Z),INTEGER(I-N)

DIMCENSION Y{&)LY{4) W (10ig4)

D0 31 I=1,3

DY(I)=yY([+1)

DY (o) =(RZ*(VILI*WIK,4)=Y {2 YFW{K, 3)=Y{3)FW(K,y2)+Y( &I %W (K, 1))
1-2.0%Y(4)) /X



IF (JC+"Ze2) GO TO 37
36 DY (&) =(R=IVYILIEW(K &)=Y (2)%H(K, 3)- Y(3)*W(K 2ItY (&) %EHIK,1))
1-2eCY(4)+RZEF (WK 2V ERW (K 3 ~W Ky 1) Fd (Ko &)) I/ X
37 RETURN
ZND
SUBRCUTIWE RKG{XsHyY Qe DYy sKsRELJC)
IMPLICIT REAL*8({A-H,0-2), INTEGCRII-N)
DIMENSION Y(4)oDY(4),Q(4) sA(2 )y (10Lle4)
A(l1)=0.29268321.88] 345
Al2)=1.7071067311865
H2=0+ 3%H
CALL DERiV{x_gP'Y]vaﬂinﬁE’JC)
DO 10 I=1,4
=HzZ2*0DY(I)-Q( 1)
Y(I)=Y(I}+R
10 Q(E)=G(I)+3.0%2=-H2*DY(])
X=X+HZ
DO 20 J=1,2
CALL DERIVIXyHsY+sDYsWsKeRZoJC)
L0 30 I=i+4
R=A(JIF(HEDY (ID=-G (1))
Y{I)=Y({I)+R
30 Q{IN=Q (1 )+3.0%xR-A(J)*H=DY(])
2C CONTIRUE
X=X+HZ
CALL CERIVUXyFeY DY Wy KyRZ,HJIO)
DO 40 I=is+4
Re(H=DY(1I)~2.0%Q(1)}/6.0
¥{Ii=y({I)+R
40 QMII=0(1)+3 0 *R-H2*DY(1]1)
RzTURN
EMD

1911
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The purpose of this study is to present an analysis of a steady,
laminar incompressible flow through an anmulus with suction and injection
velocity at the walls. The exact solution of the Navier-Stokes equations
reduced to fourth-order non-linear differential equations with appropriate
boundary conditions are obtained. A quasilinearization method was used to
solve the latter equations for an arbitrary flows through the porous walls.

The development of éssential equations of the incompressible flow is
presented first. A flow through porous annulus is then studied. The velocity
components, the pressure distributions, and the coefficients of wall friction
are expressed as functions of the ratio of velocity through the walls, on

position coordinates, annulus dimensions, and fluid properties.



